
Guardian
Programmer’s Guide

Abstract

This guide describes how to access operating-system services from an application
program using Guardian™ procedure calls.

Product Version

N/A

Supported Release Version Updates

This manual supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, and G06.25 and all subsequent G-series RVUs, until
otherwise indicated by its replacement publications.

Part Number Published

421922-014 August 2012

Document History
Part Number Product Version Published

421922-009 N/A August 2010

421922-010 N/A January 2011

421922-011 N/A August 2011

421922-013 N/A February 2012

421922-014 N/A August 2012

Guardian Programmer’s Guide
Glossary Index Figures Tables
What’s New in This Manual xxv
Manual Information xxv
New and Changed Information xxv

About This Manual xxix
Contents xxix
Related Reading xxx
Notation Conventions xxxv

Legal Notices xl
HP Encourages Your Comments xli

1. Introduction to Guardian Programming
Providing Fault Tolerance 1-1

Application-Level Fault Tolerance 1-2
Mirrored Disks 1-3
Multiple Copies of the Operating System 1-3
System Integrity 1-3

System Services 1-3
The File System 1-4
The Startup Sequence 1-7
Process Management 1-8
Memory Management 1-8
Time Management 1-9
Data Manipulation 1-9
Debugging, Trap Handling, and Signal Handling 1-9

The Requester/Server Application Model 1-10
Advantages of the Requester/Server Model 1-11
Monitoring Server Processes 1-15
Requesters and Servers in Fault-Tolerant Applications 1-15
Client/Server Application Model 1-15
 Hewlett-Packard Company—421922-014
i

Contents 1. Introduction to Guardian
Programming (continued)
1. Introduction to Guardian Programming (continued)
Accessing Guardian Procedures 1-18

Calling Guardian Procedures From TAL or pTAL 1-18
Calling Guardian Procedures From C or C++ 1-19
Calling Guardian Procedures From Pascal 1-20
Calling Guardian Procedures From COBOL85 1-20
Calling Guardian Procedures From FORTRAN 1-20

TNS/E Program Execution Modes 1-21
Similarities and Differences Between H-series RVUs on the TNS/E Platform and G-

Series RVUs on the TNS/R Platform 1-21
TNS/R Program Execution Modes 1-23
Using Parameter Declarations Files 1-23
Synchronizing Processes 1-24

2. Using the File System
File Concepts 2-1

Disk Files 2-1
Device Files 2-3
Process Files and $RECEIVE 2-4

File Names 2-4
Permanent Disk-File Names 2-4
Temporary Disk-File Names 2-6
Device-File Names 2-6
Process File Names 2-7

Location Independent Disk-File Names 2-9
Passing File Names to Processes 2-9

Using CLASS MAP DEFINEs 2-10
Using the Startup Sequence 2-10

Creating and Accessing Files 2-10
Creating Files 2-10
Opening Files 2-15
Reading and Writing Data 2-18
Getting File Information 2-26
Handling File-System Errors 2-26
Closing Files 2-29

Accessing Files: An Example 2-29
Guardian Programmer’s Guide—421922-014
ii

Contents 3. Coordinating Concurrent File Access (continued)
3. Coordinating Concurrent File Access (continued)
Setting the Access Mode 3-1
Setting the Exclusion Mode 3-3
Locking a File 3-6
Avoiding Deadlocks 3-7

Avoiding Multiple-Process Deadlocks 3-7
Avoiding Single-Process Deadlocks 3-10

4. Using Nowait Input/Output
Overview of Nowait Input/Output 4-1
Applying a Nowait Operation on a Single File 4-3
Applying Multiple Nowait Operations on a Single File 4-5

Completing I/Os in the Order Initiated 4-6
Completing I/Os in Any Order 4-7
Using File-System Buffering 4-8

Applying Nowait Operations to Multiple Files 4-10
Nowait I/O: An Example 4-12
Using FILE_COMPLETE_ and its Companion Procedures 4-24

Using the FILE_COMPLETE_SET_ Procedure 4-24
Using the FILE_COMPLETE_GETINFO_ Procedure 4-27
Using the FILE_COMPLETE_ Procedure 4-27

Nowait-Depth 4-30

5. Communicating With Disk Files
Types of Disk Files 5-1

Unstructured Files 5-1
Structured Files 5-2
Alternate-Key Files 5-7
Queue Files 5-8

Using Unstructured Files 5-9
Creating Unstructured Files 5-9
Opening Unstructured Files 5-11
Positioning, Reading, and Writing With Unstructured Files 5-11
Locking With Unstructured Files 5-11
Renaming Unstructured Files 5-12
Avoiding Unnecessary Cache Flushes to Unstructured Files 5-13
Closing Unstructured Files 5-13
Purging Unstructured Files 5-14
Altering Unstructured-File Attributes 5-15
Guardian Programmer’s Guide—421922-014
iii

Contents 5. Communicating With Disk Files (continued)
5. Communicating With Disk Files (continued)
Using Relative Files 5-15

Creating Relative Files 5-16
Opening Relative Files 5-17
Positioning, Reading, and Writing With Relative Files 5-17
Locking, Renaming, Caching, Closing, Purging, and Altering Relative Files 5-18
Relative-File Programming Example 5-18

Using Entry-Sequenced Files 5-31
Creating Entry-Sequenced Files 5-31
Opening Entry-Sequenced Files 5-32
Positioning, Reading, and Writing With Entry-Sequenced Files 5-32
Locking, Renaming, Caching, Closing, Purging, and Altering Entry-Sequenced

Files 5-33
Monitoring Writes to a Disk File 5-33
Entry-Sequenced File Programming Example 5-36

Using Key-Sequenced Files 5-47
Creating Key-Sequenced Files 5-47
Opening Key-Sequenced Files 5-48
Positioning, Reading, and Writing With Key-Sequenced Files 5-49
Locking, Renaming, Caching, Closing, Purging, and Altering Key-Sequenced

Files 5-51
Key-Sequenced File Programming Example 5-51
Using Alternate Keys With an Entry-Sequenced File 5-72
Using Alternate Keys With a Key-Sequenced File 5-72

Using Partitioned Files 5-77
Creating Partitioned Files 5-77
Accessing Partitioned Files 5-80

Using Alternate Keys 5-81
Creating Alternate-Key Files 5-81
Adding Keys to an Alternate-Key File 5-85
Using Alternate Keys With a Relative File 5-86

6. Communicating With Processes
Sending and Receiving Messages: An Introduction 6-1
Sending Messages to Other Processes 6-4

Opening a Process 6-4
Writing Messages to Another Process 6-6

Queuing Messages on $RECEIVE 6-8
Guardian Programmer’s Guide—421922-014
iv

Contents 6. Communicating With Processes (continued)
6. Communicating With Processes (continued)
Receiving and Replying to Messages From Other Processes 6-10

Opening $RECEIVE for Two-Way Communication 6-10
Reading Messages for Two-Way Communication 6-11
Replying to Messages 6-11
Sending, Receiving, and Replying to Messages: An Example 6-13
Closing $RECEIVE 6-13

Receiving Messages From Other Processes: One-Way Communication 6-15
Opening $RECEIVE for One-Way Communication 6-15
Reading From $RECEIVE for One-Way Communication 6-15
Sending and Receiving One-Way Messages: An Example 6-15

Handling Multiple Messages Concurrently 6-17
Opening $RECEIVE to Allow Concurrent Message Processing 6-17
Reading Messages for Concurrent Processing 6-18
Getting Information About Messages Read From $RECEIVE 6-19
Replying to Messages 6-21
Handling Multiple Messages Concurrently: An Example 6-22

Checking for Canceled Messages 6-23
Checking for Cancellation Messages 6-24
Using the MESSAGESTATUS Procedure 6-25

Receiving and Processing System Messages 6-26
Receiving System Messages 6-27
Processing Open and Close System Messages 6-29
Processing Control, Setmode, Setparam, and Controlbuf Messages 6-30

Handling Errors 6-31
Communicating With Processes: Sample Programs 6-31

Programming the Requester 6-32
Programming the Server 6-51

7. Using DEFINEs
Example Uses for DEFINEs 7-2

Example of a CLASS MAP DEFINE 7-3
Example of a CLASS SEARCH DEFINE 7-4
Example of a CLASS TAPE DEFINE 7-5
CLASS DEFAULTS DEFINEs 7-5

DEFINE Names 7-7
Guardian Programmer’s Guide—421922-014
v

Contents 7. Using DEFINEs (continued)
7. Using DEFINEs (continued)
DEFINE Attributes 7-8

Attribute Data Types 7-8
Attribute Values 7-9
CLASS Attribute 7-9

Working With DEFINEs 7-10
Enabling DEFINEs 7-10
Referring to DEFINEs 7-11

Adding DEFINEs 7-11
Setting Attributes in the Working Set 7-12
Checking the Working Set for Errors 7-13
Adding a DEFINE to the Context of Your Process 7-14
Deleting DEFINEs From the Process Context 7-15
Saving and Restoring DEFINEs 7-15
Saving and Restoring the Working Set 7-16

Using DEFINEs: An Example 7-17

8. Communicating With a TACL Process
Setting Up the Process Environment 8-1
Obtaining Startup Information 8-3

 Using INITIALIZER to Read the Startup Message 8-6
Processing the Startup Message 8-6

Using ASSIGNs and PARAMs 8-8
Using INITIALIZER to Read Assign and Param Messages 8-12
Processing Assign Messages 8-12
Processing the Param Message 8-14

Setting a Timeout Value for INITIALIZER 8-16
Reading the Startup Sequence Without INITIALIZER 8-16
Waking the TACL Process 8-19
Causing the TACL Process to Display Text 8-20

9. Communicating With Devices
Overview of I/O Subsystem 9-1
Addressing Devices 9-2
Accessing Devices 9-3
Controlling Devices 9-4
Guardian Programmer’s Guide—421922-014
vi

Contents 9. Communicating With Devices (continued)
9. Communicating With Devices (continued)
Getting Device Information 9-5

Additional Device Information (G-series Only) 9-8

10. Communicating With Terminals
Accessing a Terminal 10-1

Opening a Terminal 10-4
Transferring Data Between Application and Terminal 10-6
Timing Out Terminal Response 10-8
Echoing Text to the Terminal 10-9
Setting the Transfer Mode 10-9
Terminating Terminal Access 10-10

Communicating in Conversational Mode 10-10
Using the Line-Termination Character 10-11
Setting the Interrupt Characters for Conversational Mode 10-12
Controlling Forms Movement 10-16

Communicating in Page Mode 10-18
Using the Page-Termination Character 10-19
Setting the Interrupt Characters for Page Mode 10-20
Communicating With Pseudopolled Terminals 10-22

Managing the BREAK Key 10-23
Taking BREAK Ownership 10-25
Releasing BREAK Ownership 10-26
Selecting BREAK Mode 10-27

Recovering From Errors 10-36
Recovering From Errors That Indicate a Temporary Lack of Resources 10-37
Recovering From an “Operation Timed Out” Error 10-37
Recovering From a BREAK Error 10-37
Responding to Operator Preemption 10-38
Recovering From a Modem Error 10-38
Recovering From a Path Error 10-38
Recovering From Errors: A Sample Program 10-39

11. Communicating With Printers
Accessing a Printer 11-2

Procedures for Working With Printers 11-2
A Printer Program Outline 11-4
Guardian Programmer’s Guide—421922-014
vii

Contents 11. Communicating With Printers (continued)
11. Communicating With Printers (continued)
Using the Printer Control Language 11-5

Controlling the Printer 11-6
Commonly Used PCL Escape Sequences 11-8

Programming for Tandem Laser Printers 11-9
Selecting a Printer Language (5577 Only) 11-10
Using Job-Control Commands 11-11
Using Page-Control Commands 11-14
Printing Text 11-16
Resetting the Laser Printer Default Values 11-19

Programming for Tandem Matrix Line Printers 11-19
Using Page-Control Commands 11-20
Controlling Forms Movement 11-21
Printing Text 11-26
Resetting the Printer to Default Values 11-29

Recovering From Errors 11-29
Recovering From a “Device Not Ready” Error 11-30
Recovering From Path Errors 11-30

Sample Program for Using a Printer 11-31

12. Communicating With Magnetic Tape
Accessing Magnetic Tape: An Introduction 12-2
Positioning the Tape 12-4

Spacing Forward and Backward by Files 12-5
Spacing Forward and Backward by Record Blocks 12-7
Rewinding the Tape 12-10

Reading and Writing Tape Records 12-11
Reading Tape Records 12-11
Writing Tape Records 12-13

Blocking Tape Records 12-15
Working in Buffered Mode 12-16

Invoking and Revoking Buffered-Mode Operation 12-17
Flushing the Buffer 12-18
Buffered Mode for Streaming Devices (D-Series Only) 12-19
Buffering End-of-File Marks 12-19
An Example of Buffered-Mode Operation 12-19
Guardian Programmer’s Guide—421922-014
viii

Contents 12. Communicating With Magnetic
Tape (continued)
12. Communicating With Magnetic Tape (continued)
Working With Standard Labeled Tapes 12-21

Enabling Labeled Tape Processing 12-21
Creating Labeled Tapes 12-21
Checking for Labeled Tape Support 12-21
Accessing Labeled Tapes 12-22
Writing to the Only File on a Labeled Tape Volume 12-29
Writing to a File on a Multiple-File Labeled Tape Volume 12-33
Writing to a File on Multiple Labeled Tape Volumes 12-38
Reading From the Only File on a Labeled Tape Volume 12-42
Reading From a File on a Multiple-File Labeled Tape Volume 12-45
Reading From a File on Multiple Labeled Tape Volumes 12-48

Accessing a Labeled Tape File: An Example 12-52
Preparing the Tape 12-52
Creating the DEFINE 12-52
Writing the Program 12-53

Working With Unlabeled Tapes 12-70
Accessing Unlabeled Tapes 12-70
Writing to a Single-File Unlabeled Tape 12-74
Writing to a Multiple-File Unlabeled Tape 12-77
Writing to a File on Multiple Unlabeled Tape Reels 12-79
Reading From a Single-File Unlabeled Tape 12-82
Reading From a Multiple-File Unlabeled Tape 12-83
Reading From a File on Multiple Unlabeled Tape Reels 12-84

Terminating Tape Access 12-84
Recovering From Errors 12-85

Recovering From “Device Not Ready” Errors 12-87
Recovering From Tape Unit Power Failure 12-87
Recovering From Path Errors 12-88

Accessing an Unlabeled Tape File: An Example 12-89
Guardian Programmer’s Guide—421922-014
ix

Contents 13. Manipulating File Names
13. Manipulating File Names
Overview 13-1

Identifying Portions of File Names 13-2
Working With File-Name Patterns 13-3

Scanning, Resolving, and Unresolving File Names 13-4
Scanning a String for a Valid File Name 13-4
Resolving Names 13-7
Truncating Default Parts of File Names 13-13
Extracting Pieces of File Names 13-15

Modifying Portions of a File Name 13-18
Modifying One Part of a File Name 13-19
Replacing a File-Name Suffix or File-Name Prefix 13-19
Replacing a Subpart of a Process ID 13-20

Comparing File Names 13-20
Searching For and Matching File-Name Patterns 13-21

Establishing the Start of a File-Name Search 13-21
Finding the Next Matching File Name 13-26
Terminating the File-Name Search 13-31
File-Name Matching 13-31

Manipulating File Names: An Example 13-33

14. Using the IOEdit Procedures
When to Use and When Not to Use EDIT Files 14-1
Overview of IOEdit 14-2

When Should You Use IOEdit? 14-2
Line Numbers and Records 14-4
Packed Line Format 14-5
The EDIT File Segment 14-7
IOEdit and Errors 14-7

Creating, Opening, and Initializing an IOEdit File 14-8
Opening an Already Existing File 14-8
Opening a Nonexistent File 14-9
Initializing an Already Open File 14-10
Guardian Programmer’s Guide—421922-014
x

Contents 14. Using the IOEdit Procedures (continued)
14. Using the IOEdit Procedures (continued)
Reading and Writing an IOEdit File 14-11

Record Pointers 14-11
Selecting a Starting Point 14-12
Performing Sequential Reading 14-13
Performing Sequential Writing 14-13
Setting and Getting the Record Number Increment 14-15
Renumbering Lines 14-15
Handling “File Full” Errors 14-16
Deleting Lines 14-16
Line Backspacing 14-17

Using Nowait I/O With IOEdit Files 14-18
Compressing an IOEdit File 14-18
Closing an IOEdit File 14-19

Closing a Single File 14-19
Closing All EDIT Files 14-19

15. Using the Sequential Input/Output Procedures
An Introduction to the SIO Procedures 15-2

FCBs for SIO Files 15-2
Steps for Writing a Program 15-3
Differences Between TNS/R Native and TNS Procedures 15-3

Initializing SIO Files Using TAL or pTAL DEFINEs 15-5
Setting Up the SIO Data Structures 15-6
Assigning a Logical File Name 15-10
Using the INITIALIZER Procedure 15-12
Setting Up File Access 15-14
Reassigning a Physical File Name to a Logical File 15-19
Sample Initialization 15-19

Opening and Creating SIO Files 15-23
Setting Flag Values in the OPEN^FILE Call 15-23
Opening SIO Files: Simplest Form 15-24
Creating SIO Files 15-24
Block Buffering With SIO Files 15-25
Purging Data When Opening 15-26

Getting Information About SIO Files 15-26
Guardian Programmer’s Guide—421922-014
xi

Contents 15. Using the Sequential Input/Output
Procedures (continued)
15. Using the Sequential Input/Output Procedures (continued)
Reading and Writing SIO Files 15-27

Handling Basic I/O With SIO Files 15-28
Changing the Interactive Read Prompt 15-29
Handling Long Writes 15-30
Handling Padding Characters 15-31
Writing to a Printer 15-36

Accessing EDIT Files 15-37
Opening an EDIT File 15-38
Setting the Read Position 15-38

Handling Nowait I/O 15-39
Waiting for One File 15-39
Waiting for Any File 15-42

Handling Interprocess Messages 15-45
Passing Messages and Reply Text Between Processes 15-45
Passing Messages Between Processes: No Reply Data 15-48
Communicating With Multiple Processes 15-52

Handling System Messages 15-52
Selecting or Masking System Messages 15-53
Reading System Messages 15-54

Handling BREAK Ownership 15-54
Taking BREAK Ownership 15-55
Checking for a Break Message 15-56
Returning BREAK Ownership 15-56
Handling BREAK Ownership: An Example 15-57
Handling BREAK Ownership With $RECEIVE Handled as a Non-SIO File 15-59

Handling SIO Errors 15-60
Handling Error Messages 15-60
Handling Fatal Errors 15-61
Handling Retryable Errors 15-63

Closing SIO Files 15-65
Initializing SIO Files Without TAL or pTAL DEFINEs 15-65

Allocating FCBs 15-66
Initializing FCBs 15-67
Naming FCBs 15-67
Setting Up File Access Without INITIALIZER 15-67
Sample Initialization 15-68

Using the SIO Procedures: An Example 15-71
Guardian Programmer’s Guide—421922-014
xii

Contents 16. Creating and Managing Processes
16. Creating and Managing Processes
Process Management Overview 16-1

Process Identifiers 16-2
Programs and Processes 16-3
Process Organization 16-5
Process Security 16-10
Relationship With Other Processes 16-11
Relationship With a Home Terminal 16-14
Process Subtype 16-15
Process Priority 16-15
Process Execution 16-18

Creating Processes 16-19
Using the PROCESS_LAUNCH_ Procedure 16-21
Creating an Unnamed Process 16-23
Creating a Named Process 16-23
Creating a Process in a Nowait Manner 16-26
Analyzing Process-Creation Errors 16-27
Specifying Process Attributes and Resources 16-28

Sending the Startup Sequence to a Process 16-38
Sending and Receiving the Startup Message 16-39
Sending and Receiving Assign and Param Messages 16-46

Monitoring a Child Process 16-46
Deleting Processes 16-47

Deleting Your Own Process 16-48
Deleting Other Processes 16-50
Using Stop Mode to Control Process Deletion 16-51
Reusing Resources Held by a Stopped Process 16-51

Suspending and Activating Processes 16-52
Suspending Your Own Process 16-52
Suspending Other Processes 16-52
Activating Another Process 16-53

Getting and Setting Process Information 16-53
Getting Process Information 16-53
Setting Process Information 16-60

Manipulating Process Identifiers 16-61
Retrieving Information From a Process Handle 16-62
Converting Between Process Handles and Process File Names 16-62
Controlling the IPU Affinity of Processes 16-64
Guardian Programmer’s Guide—421922-014
xiii

Contents 17. Managing Memory
17. Managing Memory
An Introduction to Memory-Management Procedures 17-1
Managing the User Data Areas 17-2

Managing the TNS User Data Segment 17-2
Managing the Native User Data Areas 17-6
Checking the Bounds of Your Data Areas 17-15

Using (Extended) Data Segments 17-16
Overview of Selectable Segments 17-17
Overview of Flat Segments 17-19
Which Type of Segment Should You Use? 17-20
Using Selectable Segments in TNS Processes 17-21
Accessing Data in Extended Data Segments 17-22
Attributes of Extended Data Segments 17-23
Allocating Extended Data Segments 17-23
Checking Whether an Extended Data Segment Is Selectable or Flat 17-28
Making a Selectable Segment Current 17-28
Referencing Data in an Extended Data Segment 17-29
Checking the Size of an Extended Data Segment 17-34
Changing the Size of an Extended Data Segment 17-34
Transferring Data Between an Extended Data Segment and a File 17-35
Moving Data Between Extended Data Segments 17-37
Checking Address Limits of an Extended Data Segment 17-38
Sharing an Extended Data Segment 17-39
Determining the Starting Address of a Flat Segment 17-41
Deallocating an Extended Data Segment 17-42

Using Memory Pools 17-42
Defining a Memory Pool 17-43
Getting Space in a Memory Pool 17-46
Returning Memory Pool Space 17-47
Changing the Size of a Memory Pool 17-47
Getting Information About a Memory Pool 17-48
Debugging a Memory Pool 17-48

18. Managing Time
How the System Keeps Time 18-1

Clock Averaging and System Time 18-1
Time Zones and Daylight Saving Time 18-2
128-Bit, 64-Bit, and 48-Bit Timestamps 18-2
Guardian Programmer’s Guide—421922-014
xiv

Contents 18. Managing Time (continued)
18. Managing Time (continued)
Using the Time Management Procedures 18-4
Time and Date Manipulation 18-6

Working With 64-Bit Julian Timestamps 18-6
Working With Julian Day Numbers 18-12
Working With 48-Bit Timestamps 18-13

Timing in Elapsed Time and Timing in Process Time 18-15
Setting and Canceling Timers: Elapsed Time 18-16
Setting and Canceling Timers: Process Time 18-17
Timing Your Process 18-19
Timing Another Process 18-19
Converting Process Time Into a Readable Form 18-19

Measuring Long Time Intervals 18-20
A Sample Long-Range Timer 18-20

Managing System Time 18-25
Checking the System Clock 18-26
Setting the System Clock 18-26
Interacting With the DST Transition Table 18-29

19. Formatting and Manipulating Character Data
Using the Formatter 19-1

Format-Directed Formatting 19-2
List-Directed Formatting 19-25

Manipulating Character Strings 19-35
Converting Between Strings and Integers 19-35
Case Shifting Character Strings 19-36
Editing a Character String 19-37
Sorting Characters 19-46

Programming With Multibyte Character Sets 19-49
Checking for Multibyte Character-Set Support 19-51
Determining the Default Character Set 19-52
Analyzing a Multibyte Character String 19-52
Dealing With Fragments of Multibyte Characters 19-54
Handling Multibyte Blank Characters 19-54
Determining the Character Size of a Multibyte Character Set 19-54
Case Shifting With Multibyte Characters 19-55
Testing for Special Symbols 19-55
Sample Program 19-56
Guardian Programmer’s Guide—421922-014
xv

Contents 20. Interfacing With the ERROR Program
20. Interfacing With the ERROR Program
Creating an ERROR Process 20-2
Opening an ERROR Process 20-3
Sending an ERROR Process a Startup Message 20-4
Reading and Processing Error-Message Text 20-5
Closing and Deleting an ERROR Process 20-5
Using the ERROR Process: An Example 20-6

21. Writing a Requester Program
Functions of a Requester 21-1

Terminal Interface 21-2
Field Validation 21-2
Data Mapping 21-2
Application Control 21-3

File System I/O Synchronization 21-4
Sync-Depth 21-5
Sync-Depth in Practice 21-6
File Sync Block Checkpoints (Example) 21-7

Writing a Requester Program: An Example 21-9
User Interface 21-10
Application Overview 21-10
Coding the Requester Program 21-14

22. Writing a Server Program
Functions of a Server Process 22-1

Multithreaded and Single-Threaded Servers 22-1
Receive-Depth 22-2
Context-Free Servers 22-3

Maintaining an Opener Table 22-3
The Opener Table 22-3
Getting Message Information 22-4
Adding a Requester to the Opener Table 22-5
Checking a Request Against the Opener Table 22-6
Deleting a Requester From the Opener Table 22-6

Writing a Server Program: An Example 22-8
Application Overview 22-8
The Part-Query Server ($SER1) 22-10
The Process-Order Server ($SER2) 22-28
The Order-Query Server ($SER3) 22-48
Guardian Programmer’s Guide—421922-014
xvi

Contents 23. Writing a Command-Interpreter Monitor
($CMON)
23. Writing a Command-Interpreter Monitor ($CMON)
Communicating With TACL Processes 23-2
Controlling the Configuration of a TACL Process 23-4

Retaining Default Values 23-7
Setting Configuration Parameters 23-7

Controlling Logon and Logoff 23-8
Controlling Logon 23-9
Controlling Logoff 23-12
Controlling Illegal Logon 23-13

Controlling Passwords 23-14
When the User Requests to Change a Local Password 23-14
When the User Requests to Change a Remote Password 23-15

Controlling Process Creation 23-17
Controlling the Priority of a New Process 23-20
Controlling the CPU of a New Process 23-21

Controlling Change of Process Priority 23-22
Controlling Adding and Deleting Users 23-24

Controlling Adding a User 23-24
Controlling Deleting a User 23-26

Controlling $CMON While the System Is Running 23-27
Setting the Logon Display Text at Run Time 23-29
Refusing Command-Interpreter Requests 23-31
Controlling Which CPU a Process Can Run In 23-33

Writing a $CMON Program: An Example 23-36
Sample $CMON Program 23-36
Sample Command-Interface Program 23-70

Debugging a TACL Monitor ($CMON) 23-89
A TACL Macro for Debugging and Testing a $CMON Program 23-89
Procedure for Debugging and Testing a TACL Monitor ($CMON) 23-92

24. Writing a Terminal Simulator
Specifying Device Subtype 30 24-2

Why Device Subtype 30 Must Be Specified 24-2
How to Specify Device Subtype 30 24-2

Assigning a Name to the Terminal-Simulation Process 24-3
Accepting System Messages Through $RECEIVE 24-3
Guardian Programmer’s Guide—421922-014
xvii

Contents 24. Writing a Terminal Simulator (continued)
24. Writing a Terminal Simulator (continued)
Specifying How to Process System Messages 24-4

Allowing the Requester to Specify the last-params Parameter 24-4
Allowing the Requester to Call SETPARAM 24-5

Processing I/O Requests 24-5
Processing System Messages 24-9

Processing Control Messages 24-10
Processing Setmode Messages 24-10
Processing Setparam Messages 24-11
Processing Device-Type Information Requests 24-12

Managing the BREAK Key 24-13
Tracking the BREAK Owner 24-14
Basing Interprocess I/O on BREAK Mode 24-14
Sending Break-on-Device Messages 24-15

25. Debugging, Trap Handling, and Signal Handling
Invoking a Debugger 25-1

Getting a Process Into the Debug State 25-2
Specifying the Debugging Environment 25-6

Handling Trap Conditions 25-9
Setting Up a Trap Handler 25-11
Processing a Trap 25-12
Exiting a Trap Handler 25-13
Disabling Trap Handling 25-14
Trap Handling on Native Systems 25-15
Writing a Trap Handler: Examples 25-16

Handling Signals 25-20
About Signals 25-21
Comparing Traps and Signals 25-22
When Would You Use a Signal Handler? 25-23
Standard Signals Functions 25-23
Using Standard Signals Functions 25-26
HP Extensions 25-27
Using HP Extensions 25-28
Interoperability Considerations 25-29
Examples 25-29
Guardian Programmer’s Guide—421922-014
xviii

Contents 26. Synchronizing Processes
26. Synchronizing Processes
How Binary Semaphores Work 26-2
Summary of Guardian Binary Semaphore Procedures 26-4
 Using the Binary Semaphore Procedure Calls 26-5

Creating a Binary Semaphore 26-5
Opening a Binary Semaphore 26-6
Locking a Binary Semaphore 26-6
Unlocking a Binary Semaphore 26-7
Testing Ownership of a Binary Semaphore 26-7
Forcing a Lock on a Binary Semaphore 26-8
Closing a Binary Semaphore 26-8

Binary Semaphore Interface Declarations 26-8
Binary Semaphore Example 26-10

Shared Structure 26-10
External Declarations 26-10
Procedure USERESOURCE 26-11
Procedure PRIMARY 26-11
Procedure SECONDARY 26-12

BINSEM_GETSTATS_ and BINSEM_STAT_VERSION_ Example 26-12

27. Fault-Tolerant Programming in C
Overview of Active Backup Programming 27-1
Summary of Active Backup Processing 27-2
What the Programmer Must Do 27-3

Planning Tasks 27-3
Programming Tasks 27-4

C Extensions That Support Active Backup Programming 27-5
Starting the Backup Process 27-5
Opening a File With a Specified Sync Depth 27-6
Retrieving File Open State Information in the Primary Process 27-6
Opening Files in the Backup Process 27-6
Retrieving File State Information in the Primary Process 27-7
Updating File State Information in the Backup Process 27-7
Terminating the Primary and Backup Processes 27-7

Organizing an Active Backup Program 27-8
Primary Process Organization 27-9
Backup Process Organization 27-10
Guardian Programmer’s Guide—421922-014
xix

Contents 27. Fault-Tolerant Programming in C (continued)
27. Fault-Tolerant Programming in C (continued)
Updating State Information 27-11

Types of State Information 27-13
Updating Control State Information 27-14
Updating File State Information 27-15
Updating Application State Information 27-18
Guidelines for Updating State Information 27-18
Example of Updating State Information 27-20
Saving State Information for Multiple Disk Updates 27-23

Providing Communication Between the Primary and Backup Processes 27-23
Sending Messages From the Primary to the Backup 27-24
Receiving Messages in the Backup Process 27-25
Monitoring the Backup Process 27-26

Programming Considerations 27-27
Compile-Time and Linker Considerations 27-27
Run-Time Considerations 27-28

Comparison of Active Backup and Passive Backup 27-29
Active Backup Example 1 27-32

Program Declarations 27-35
Creating and Starting the Backup Process 27-39
Updating State Information 27-41
Primary and Backup Processing 27-43
Compiling and Running the Example 27-48
Example With Debugging Options 27-48

Active Backup Example 2 27-52
Program Declarations 27-53
Creating and Starting the Backup Process 27-58
Updating State Information 27-58
Primary and Backup Processing 27-59
Compiling and Running the Example 27-65

28. Using Floating-Point Formats
Differences Between Tandem and IEEE Floating-Point Formats 28-1
Building and Running IEEE Floating-Point Programs 28-2
Compiling and Linking Floating-Point Programs 28-2
Link-Time Consistency Checking 28-3
Run-Time Consistency Checking 28-4
Run-Time Support 28-4
Debugging Options 28-4
Guardian Programmer’s Guide—421922-014
xx

Contents 28. Using Floating-Point Formats (continued)
28. Using Floating-Point Formats (continued)
Conversion Routines 28-5
Floating-Point Operating Mode Routines 28-5

A. Mixed Data Model Programming
Using 64-bit Addressable Memory A-1

Accessing Data in 64-bit Segments A-1
Allocating a 64-bit Segment A-2
Dynamic Memory Allocation in 64-bit Segments A-3
Data Scanning and Movement within 64-bit Segments A-4
File I/O to/from 64-bit Segments A-4
Socket I/O to/from 64-bit Segments A-5
OSS I/O to/from 64-bit segments A-5
Debugging Programs with 64-bit Segments A-6
Examples A-6

Glossary

Index

Figures
Figure i. Related Manuals xxxii
Figure 1-1. A Requester/Server Application 1-10
Figure 1-2. Multiple Users in a Requester/Server Application 1-12
Figure 1-3. Multiple Functions in a Requester/Server Application 1-13
Figure 1-4. Requester/Server Application in a Network Environment 1-14
Figure 1-5. Client/Server Architecture 1-16
Figure 1-6. Distributed Client/Server 1-17
Figure 2-1. Disk Files 2-3
Figure 2-2. File Space Allocated in Extents 2-12
Figure 3-1. Exclusion and Access Mode Compatibility 3-5
Figure 3-2. Two Processes in Deadlock 3-8
Figure 3-3. Avoiding the Two-Process Deadlock 3-9
Figure 3-4. Single-Process Deadlock 3-10
Figure 3-5. Avoiding the Single-Process Deadlock 3-11
Figure 4-1. Waited and Nowait I/O 4-2
Figure 4-2. Multiple Concurrent Operations on One File 4-5
Figure 4-3. Nowait Operations on Multiple Files 4-10
Figure 5-1. Relative-File Structure 5-3
Figure 5-2. Entry-Sequenced File Structure 5-4
Guardian Programmer’s Guide—421922-014
xxi

Contents Figures
Figure 5-3. Key-Sequenced File Structure 5-6
Figure 5-4. An Alternate-Key File 5-8
Figure 5-5. Monitoring Write Operations on a Disk File 5-34
Figure 5-6. Example of Alternate-Key File for Use With an Entry-Sequenced

File 5-72
Figure 5-7. Example of Alternate-Key File for Use With a Key-Sequenced

File 5-73
Figure 5-8. Sample Partitioned File 5-80
Figure 5-9. Example of Alternate-Key File for Use With a Relative File 5-86
Figure 6-1. Sending and Receiving Messages 6-2
Figure 6-2. Multiple Requester Processes and Message Queuing 6-8
Figure 6-3. Message Queuing by Process Priority 6-9
Figure 6-4. Two-Way Interprocess Communication 6-14
Figure 6-5. One-Way Interprocess Communication 6-16
Figure 6-6. Example of Handling Multiple Messages Concurrently 6-22
Figure 6-7. Example of a Requester/Server Application 6-31
Figure 9-1. Overview of the I/O Subsystem 9-2
Figure 10-1. Conversational Transfer Mode 10-10
Figure 10-2. Conversational-Mode Interrupt Characters—Default Values 10-13
Figure 10-3. Changing Conversational-Mode Interrupt Characters 10-14
Figure 10-4. Page Transfer Mode 10-19
Figure 10-5. Page-Mode Interrupt Characters—Default Values 10-20
Figure 10-6. Changing Page-Mode Interrupt Characters 10-20
Figure 10-7. Enabling BREAK 10-25
Figure 10-8. BREAK Access Established After Pressing the BREAK Key 10-28
Figure 10-9. BREAK Access Established Before Pressing the BREAK Key 10-29
Figure 11-1. Modified VFC Table 11-25
Figure 12-1. Physical Tape Records Containing Records of Unspecified

Length 12-15
Figure 12-2. Physical Tape Records Containing Records of Fixed Length 12-16
Figure 12-3. Example of Buffered-Mode Operation 12-20
Figure 12-4. Example of a WRITE Error in Buffered Mode 12-86
Figure 14-1. An IOEdit Packed Line 14-6
Figure 15-1. File-Name Conventions for SIO File 15-9
Figure 15-2. The INITIALIZER Process 15-12
Figure 15-3. Nowait I/O Applied to a Single SIO File 15-40
Figure 15-4. Nowait I/O Applied to Multiple SIO Files 15-42
Figure 15-5. Requester and Server Processes in Two-Way Communication 15-47
Figure 15-6. Requester and Server Processes in One-Way Communication

(pTAL Version) 15-50
Guardian Programmer’s Guide—421922-014
xxii

Contents Figures
Figure 15-7. Requester and Server Processes in One-Way Communication
(TAL Version) 15-51

Figure 16-1. TNS and Native Process Code Spaces 16-7
Figure 16-2. Mom and Ancestor Processes 16-12
Figure 16-3. Job Ancestor Relationships 16-14
Figure 16-4. Execution Priority Example 16-17
Figure 16-5. Process States 16-18
Figure 16-6. Runnable Processes 16-19
Figure 16-7. Running a Process at a High PIN or a Low PIN 16-30
Figure 17-1. The User Data Segment 17-2
Figure 17-2. The Data Stack 17-5
Figure 17-3. Data Segments for TNS/R Native Processes 17-8
Figure 17-4. Native Main Stack 17-12
Figure 17-5. Relative Location of Selectable Segments 17-18
Figure 17-6. Relative Location of Flat Segments 17-20
Figure 17-7. Referencing a Selectable Segment 17-31
Figure 17-8. Referencing Flat Segments 17-33
Figure 17-9. Defining a Memory Pool 17-44
Figure 17-10. Getting Space in a Memory Pool 17-46
Figure 18-1. Time Management Procedures 18-5
Figure 18-2. Elapsed Time and Process Time 18-15
Figure 19-1. Format-Directed Formatting 19-3
Figure 19-2. Formatting Input 19-5
Figure 19-3. Contents of a Data Descriptor 19-7
Figure 19-4. Formatting Numbers and Text 19-10
Figure 19-5. Buffer Control 19-12
Figure 19-6. Formatting Literals 19-14
Figure 19-7. Tabulating Data 19-17
Figure 19-8. List-Directed Formatting 19-26
Figure 21-1. Functions of a Requester Process 21-2
Figure 21-2. Server Selection by Function 21-3
Figure 21-3. Selecting From Functionally Identical Servers 21-4
Figure 21-4. The Requester in the Example Application 21-11
Figure 21-5. Relationship Between Major Procedures in the Requester

Program 21-14
Figure 22-1. Single-Threaded and Multithreaded Servers 22-2
Figure 22-2. Server Processes in the Example Application 22-10
Figure 22-3. Relationship Between Major Procedures in the Part-Query

Server 22-11
Guardian Programmer’s Guide—421922-014
xxiii

Contents Tables
Figure 22-4. Relationship Between Major Procedures in the Process-Order
Server 22-28

Figure 22-5. Relationship Between Major Procedures in the Order-Query
Server 22-48

Figure 23-1. Relationships Between TACL Processes and $CMON 23-2
Figure 23-2. $CMON With Operator Control Process 23-28
Figure 25-1. Trap Handler Data Stack When Trap Occurs 25-12
Figure 25-2. Trap Handler Data Stack After Storage Allocation 25-13
Figure 26-1. Binary Semaphore 26-2
Figure 27-1. Active Backup Program Structure 27-8
Figure 27-2. Updating State Information 27-12
Figure 27-3. Control State Example 27-14
Figure 27-4. Using Switch Statement to Determine the Continuation Point 27-15
Figure 27-5. Primary Process Functional Flow 27-33
Figure 27-6. Backup Process Functional Flow 27-34

Tables
Table 10-1. Terminal CONTROL Operations 10-3
Table 10-2. Summary of Terminal SETMODE Functions 10-3
Table 11-1. Printer CONTROL Operations 11-3
Table 11-2. Printer SETMODE Functions 11-3
Table 11-3. Common PCL Escape Sequences 11-8
Table 11-4. Default VFC Table 11-22
Table 11-5. Modified VFC Table 11-24
Table 12-1. Magnetic Tape CONTROL Operations 12-2
Table 12-2. Magnetic Tape SETMODE Functions 12-3
Table 12-3. SETMODE 66 parameter-1 Settings for Tape Density 12-72
Table 12-4. Commonly Encountered Tape Errors 12-87
Table 14-1. Advantages of IOEdit Over SIO 14-2
Table 14-2. Advantages of SIO Over IOEdit 14-4
Table 14-3. Functions of the OPENEDIT_ Procedure 14-8
Table 14-4. Record Numbers 14-11
Table 14-5. Effects of the BACKSPACEEDIT Procedure 14-17
Table 16-1. Priority Values for System and User Processes 16-16
Table 25-1. Summary of Trap Conditions 25-10
Table 25-2. Map of Signals to Traps 25-22
Table 25-3. Signals Functions That Conform to the POSIX.1 Standard 25-24
Table 25-4. HP Signals Extensions to the POSIX.1 Standard 25-27
Table 26-1. Process Synchronization 26-3
Table 26-2. Binary Semaphore Procedure Calls 26-4
Table 27-1. Differences Between C Active Backup and TAL Passive Backup 27-30
Guardian Programmer’s Guide—421922-014
xxiv

Guardian Programmer’s Guide — 421922-014
xxv

What’s New in This Manual

Manual Information
Guardian Programmer’s Guide

Abstract

This guide describes how to access operating-system services from an application
program using Guardian™ procedure calls.

Product Version

N/A

Supported Release Version Updates

This manual supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, and G06.25 and all subsequent G-series RVUs, until
otherwise indicated by its replacement publications.

Document History

New and Changed Information

Changes to the 421922-014 manual
Updated the following for the J06.14 and H06.25 RVUs:

• Corrected the programming example in Mixed Data Model Programming on
page A-1.

• Updated TSMSGIP process information for RVUs beginning with J06.12 and
H06.23 in Controlling the IPU Affinity of Processes on page 16-64.

• Updated system clock information throughout Managing Time on page 18-1.

• Updated binary semaphore information throughout Synchronizing Processes on
page 26-1.

Part Number Published

421922-014 August 2012

Part Number Product Version Published

421922-009 N/A August 2010

421922-010 N/A January 2011

421922-011 N/A August 2011

421922-013 N/A February 2012

421922-014 N/A August 2012

What’s New in This Manual

Guardian Programmer’s Guide — 421922-014
xxvi

Changes to the 421922-013 manual:

Changes to the 421922-013 manual:
Added an appendix to describe Mixed Data Model Programming.

Changes to the 421922-011 manual:

• Rephrased the words Processor and Processor Module to CPU and to IPU at few
instances throughout the document.

• Updated the first sentence in Spreading the Workload Among Multiple CPUs.

• Updated the following in the glossary:

• Rephrased Processor Module term used in Process Environment definition in
the Glossary to IPU.

• Reworded Processor to CPU and replaced its definition.

• Added the term IPU and defined it in the Glossary.

• Updated and added the following information in chapter 16:

• Updated the first sentence in Process Priority section.

• Updated the sentence The example in Figure 16-4 shows shows how CPU
time is divided among three processes executing in the same IPU.

• Added Controlling the IPU Affinity of Processes to chapter 16.

• Added Control the placement of processes onto IPUs (IPUAFFINITY_GET_,
IPUAFFINITY_SET_, and IPUAFFINITY_CONTROL_). to the existing list.

• Rephrased the paragraphs after Figure 16-16 on page 16-19.

• Added Controlling the IPU Affinity of Processes section at the end of the
chapter.

Changes to the 421922-010 manual:

• Updated the following figures for image quality reasons:

° Figure 3-3, Avoiding the Two-Process Deadlock, on page 3-9.

° Figure 5-6, Example of Alternate-Key File for Use With an Entry-Sequenced
File, on page 5-72.

° Figure 12-3, Example of Buffered-Mode Operation, on page 12-20.

° Figure 15-2, The INITIALIZER Process, on page 15-12.

° Figure 15-5, Requester and Server Processes in Two-Way Communication, on
page 15-47.

° Figure 16-7, Running a Process at a High PIN or a Low PIN, on page 16-30.

° Figure 17-6, Relative Location of Flat Segments, on page 17-20.

What’s New in This Manual

Guardian Programmer’s Guide — 421922-014
xxvii

Changes to the 421922-009 Manual

° Figure 27-1, Active Backup Program Structure, on page 27-8.

° Figure 27-5, Primary Process Functional Flow, on page 27-33.

° Figure 27-6, Backup Process Functional Flow, on page 27-34.

• Added the following tables:

° Table 11-4, Default VFC Table, on page 11-22.

° Table 11-5, Modified VFC Table, on page 11-24.

Changes to the 421922-009 Manual

• Updated the description of Using DEFINEs on page 7-1.

• Updated the sequence in the Reading the Startup Sequence Without INITIALIZER
section on page 8-17 and updated the example on page 8-18.

• Updated the example in the Specifying a Process Name section on page 16-24.

• Updated the description about Clock Averaging and System Time on page 18-1.

Changes to the H06.14/J06.03 Manual

• References to Release Version Updates (RVUs) throughout this manual have been
updated to include references to J-series RVUs, where appropriate.

Changes to the 421922-004 Manual

• Unless otherwise indicated in the text, discussions of native mode behavior,
processes, and so forth apply to both the TNS/R code that runs on G-series
systems and to the TNS/E code that runs on H-series systems.

• Section 1, Introduction to Guardian Programming discusses Similarities and
Differences Between H-series RVUs on the TNS/E Platform and G-Series RVUs
on the TNS/R Platform.

• Section 16, Creating and Managing Processes, includes new information about
Process Organization and Data Spaces for Native Processes for TNS/E native
processes.

• Section 17, Managing Memory includes information about managing memory in
TNS/E systems:

• Managing the TNS User Data Segment

• Managing the Native User Data Areas

• How the Main and Priv Stacks Are Used

• Changing the Maximum Size of the Heap

• Changing the Maximum Size of the Main Stack

What’s New in This Manual

Guardian Programmer’s Guide — 421922-014
xxviii

Changes to the 421922-004 Manual

• Overview of Flat Segments

• Allocating a Selectable Segment

• Allocating a Flat Segment

• Using Memory Pools

• Section 25, Debugging, Trap Handling, and Signal Handling includes information
about using the H-series debuggers.

• Section 28, Using Floating-Point Formats adds that the IEEE floating-point format
is the default floating-point format on H-series NonStop operating system and later
product versions.

Guardian Programmer’s Guide — 421922-014
xxix

About This Manual
This guide describes how to call Guardian procedures from your application program to
obtain services from the operating system. Except where noted, the Guardian
programming environment is assumed.

This guide is intended for intermediate and advanced application programmers who
are not familiar with the operating system. You should already be familiar with the
high-level programming language in which you are implementing your application. To
get the most out of this guide, you should also have some knowledge of the
Transaction Application Language (TAL).

Contents
This guide provides details of how to access services that are accessible through
Guardian procedure calls to the operating system or file system. Many complete
programming examples illustrate the use of these features. These examples start off
simple in the early sections and become increasingly complex as the guide
progresses. Toward the end of the guide is a complete example of a requester/server
application.

This guide is organized as follows:

• Section 1, Introduction to Guardian Programming provides an overview of the
procedure-call interface to the operating system, including an introduction to the
requester/server application model.

• Section 2, Using the File System through 15 describe how to use the file system.
This includes the use of file-system elements to communicate with disk files and
device files, as well as communication with other processes. In addition, access to
EDIT files using the sequential input/output (SIO) and IOEdit procedures is also
discussed.

• Section 16, Creating and Managing Processes discusses process management,
including how to create and delete processes, suspend and activate processes,
and retrieve process information.

• Section 17, Managing Memory shows how to manage memory, including how to
manage the user data segment, how to access data in extended data segments,
and how to use memory pools.

• Section 18, Managing Time shows how to manage the time-related features of the
operating system.

• Section 19, Formatting and Manipulating Character Data shows how to use
procedure calls to format and manipulate character data, including how to work
with multibyte character sets.

• Section 20, Interfacing With the ERROR Program shows how to interface with the
ERROR program.

About This Manual

Guardian Programmer’s Guide — 421922-014
xxx

Related Reading

• Sections Section 21, Writing a Requester Program and Section 22, Writing a
Server Program provide working examples of requester and server programs.

• Sections Section 23, Writing a Command-Interpreter Monitor ($CMON) and
Section 24, Writing a Terminal Simulator show how to write a Tandem Advanced
Command Language (TACL) monitor program ($CMON) and how to write a
terminal simulator.

• Section Section 25, Debugging, Trap Handling, and Signal Handling provides
debugging, trap-handling, and signal-handling information.

• Section 26, Synchronizing Processes shows how to use the binary semaphore
procedure calls to synchronize processes for the purpose of accessing a shared
resource.

• Section 27, Fault-Tolerant Programming in C explains how to use process pairs to
write fault-tolerant programs in the C programming language.

• Section 28, Using Floating-Point Formats explains how to use the floating-point
formats.

Related Reading
While using this guide, you will also need to refer to some of the manuals described
here. Figure i shows the relationship between this guide and the manuals you are
most likely to need to refer to. The following paragraphs provide a complete list. The
following manuals appear in D-series, G--series, and H-series collections in the
NonStop Technical Library, but each manual may not be supported in all collections.

Manuals Containing Procedure-Call Information
The following manuals contain information related to Guardian procedure calls:

• The Guardian Procedure Calls Reference Manual contains a detailed description of
the syntax for most of the Guardian procedure calls.

• The Guardian Programming Reference Summary provides a summary of
procedure call syntax, interprocess messages, error codes, and other material in a
quick-reference format.

• The Guardian Procedure Errors and Messages Manual describes error codes for
Guardian procedures, error lists, interprocess messages, and trap numbers.

Manual Containing OSS Programming Information
The Open System Services Programmer’s Guide contains programming information
related to OSS system and library function calls, as well as information on using
Guardian procedure calls from the OSS environment.

About This Manual

Guardian Programmer’s Guide — 421922-014
xxxi

Manual Containing Application Availability
Information

Manual Containing Application Availability Information
The Availability Guide for Application Design provides an overview of application
availability options available to software designers and developers.

Manuals Containing DSM Programming Information
The following manuals contain information for writing Distributed Systems
Management (DSM) applications:

• The SPI Programming Manual describes the Subsystem Programmatic Interface
and how to use it in a DSM application.

• The EMS Manual describes the Event Management Service, which allows an
application to collect, process, distribute, and generate event messages.

• The Tandem NonStop Kernel Event Management Programming Manual describes
NonStop operating system event messages.

Manuals About the Command Interface
The following manuals contain information related to the command interface:

• The Guardian User’s Guide provides information about the Guardian command
interface to the operating system. Useful primarily for inexperienced end users,
this guide tells how to use the most commonly used commands and utilities.

• The TACL Reference Manual provides a reference for all TACL commands and
built-in functions, arranged alphabetically.

About This Manual

Guardian Programmer’s Guide — 421922-014
xxxii

Manuals About the Command Interface

Figure i. Related Manuals

VST 001. VSD

About This Manual

Guardian Programmer’s Guide — 421922-014
xxxiii

Manuals Describing Programming Languages and
Tools

Manuals Describing Programming Languages and Tools
The following manuals contain reference information for writing programs in high-level
languages.

• TAL Programmer’s Guide

• TAL Reference Manual

• pTAL Reference Manual

• pTAL Conversion Guide

• COBOL85 Manual Note: This manual is replaced in the H-series by the HP
COBOL Manual for TNS and TNS/R Programs and the HP COBOL Manual for
TNS/E Programs

• C/C++ Programmer’s Guide

• Pascal Reference Manual

• FORTRAN Reference Manual

• TACL Reference Manual

The following manuals describe tools used in program development:

• The nld and noft Manual describes nld, the Native Mode Linker, and noft, the
Native Object File Tool. These utilities replace Binder for native mode. Note: This
manual is replaced in the H-series by the nld Manual and the noft Manual

• The Binder Manual describes Binder, an interactive linker that allows you to
examine, modify, and combine object files and to generate load maps and cross-
reference listings.

• The Inspect Manual describes the Inspect program, an interactive debugger. You
can use the Inspect program as either a source-level symbolic debugger or a
machine-level debugger. Note: This manual is replaced in the H-series by the
Native Inspect Manual.

• The Debug Manual describes Debug, a machine-level interactive debugger.

Manuals Containing Native Migration Information
The following manuals contain information introducing new NonStop operating system
features and steps required to migrate programs to these new platforms..

• The TNS/R Native Application Migration Guide introduces the TNS/R native
compilers and utilities and the TNS/R execution environment.

• The H-Series Application Migration Guide introduces the TNS/E native compilers
and utilities and the TNS/E execution environment.

About This Manual

Guardian Programmer’s Guide — 421922-014
xxxiv

Database-Related Manuals

Database-Related Manuals
The following manuals contain programming material for writing programs that access
either Enscribe data files or a NonStop SQL/MP database:

• Enscribe Programmer’s Guide

• NonStop SQL/MP Reference Manual

• NonStop SQL Programming Manual for TAL

• NonStop SQL/MP Programming Manual for COBOL85

• NonStop SQL/MP Programming Manual for C

• NonStop SQL Programming Manual for Pascal

• Introduction to NonStop Transaction Manager/MP (TM/MP)

• NonStop TM/MP Application Programmer’s Guide

• NonStop TM/MP Reference Manual

• NonStop TM/MP Configuration and Planning Guide

Device-Related Manuals
The following manuals contain information about programmer utilities that you can use
with disk files and devices:

• File Utility Program (FUP) Reference Manual

• The spooler manuals

• Guardian Disk and Tape Utilities Reference Manual

The following manuals contain programming information for accessing terminals and
printers:

• Asynchronous Terminal and Printer Processes Programming Manual

System Generation and Configuration Manuals
The following manuals contain D-series system generation and configuration
information. Of interest to the programmer here is how to configure devices on your
system:

• System Generation Manual

• System Generation Manual for Terminals and Printers

• System Generation Manual for Disk and Tape Devices

• Dynamic System Configuration (DSC) Manual

• Introduction to Tandem NonStop Systems

About This Manual

Guardian Programmer’s Guide — 421922-014
xxxv

System and Internal Design Manuals

The following manuals contain configuration information for G-series releases.

• System Generation Manual for G-Series Releases

• SCF Reference Manual for the Kernel Subsystem

• SCF Reference Manual for G-Series Releases

• SCF Reference Manual for the Storage Subsystem

• Asynchronous Terminal and Printer Processes Programming Manual

• SCF Reference Manual for Asynchronous Terminals and Printer Processes

• Himalaya S-Series Planning and Configuration Guide

• TCP/IP Configuration and Management Manual

• Introduction to Tandem Himalaya S-Series Servers

• LAN Configuration and Management Manual

• WAN Subsystem Configuration and Management Manual

System and Internal Design Manuals
The system description manual for your system provides in-depth background
information about system architecture.

Notation Conventions

General Syntax Notation
The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

About This Manual

Guardian Programmer’s Guide — 421922-014
xxxvi

General Syntax Notation

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
 [OFF]
 [SMOOTH [num]]

K [X | D] address-1

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list may be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

About This Manual

Guardian Programmer’s Guide — 421922-014
xxxvii

General Syntax Notation

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

 [, attribute-spec]...

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

About This Manual

Guardian Programmer’s Guide — 421922-014
xxxviii

Notation for Messages

Notation for Messages
The following list summarizes the notation conventions for the presentation of
displayed messages in this manual.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list might
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

LDEV ldev [CU %ccu | CU %...] UP [(cpu,chan,%ctlr,%unit)]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list might be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

LBU { X | Y } POWER FAIL

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

About This Manual

Guardian Programmer’s Guide — 421922-014
xxxix

Notation for Management Programming Interfaces

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Notation for Management Programming Interfaces

UPPERCASE LETTERS. Uppercase letters indicate names from definition files; enter these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

token-type

!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Change Bar Notation
Change bars are used to indicate substantive differences between this edition of the
manual and the preceding edition. Change bars are vertical rules placed in the right
margin of changed portions of text, figures, tables, examples, and so on. Change bars
highlight new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all
messages except LOGICAL-CLOSE and LOGICAL-OPEN.

Legal Notices

Guardian Programmer’s Guide — 421922-014
xl

Change Bar Notation

Legal Notices
© Copyright 2012 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

Legal Notices

Guardian Programmer’s Guide — 421922-014
xli

HP Encourages Your Comments

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement that you have concerning this document.

Guardian Programmer’s Guide — 421922-014
1 - 1

1
Introduction to Guardian
Programming

Writing an application program requires an understanding of the environment and
services provided by the operating system. This guide describes how to use Guardian
procedures in your application program to obtain services from the HP NonStop
operating system and the file system (that is, from the operating system).

This section introduces some of the key topics covered in this guide and provides
references to other sections that contain more detailed information. This section
provides an overview of:

• The role of the operating system in providing fault tolerance

• The operating-system services available to the application programmer

• The requester/server application design that much of this guide supports

• How to call Guardian procedures from an application program

• The program execution modes that are available on TNS/R systems

• How to use the parameter declarations files

• How to synchronize processes

Providing Fault Tolerance
The basic design philosophy of fault tolerance is that no single module failure will stop
or contaminate the operating system. This capability is called fault-tolerant operation.
Redundant hardware, backup power supplies, alternate data paths and bus paths,
redundant controllers, and mirrored disks all contribute to the fault tolerance of the
operating system. The Introduction to Tandem NonStop Systems describes these
features.

There is more to fault tolerance than hardware. Fault tolerance requires that all
programs, the operating system as well as individual application programs, contribute
to the reliability and recoverability of a process if a failure occurs. Therefore, fault
tolerance should be considered from both the hardware and software perspectives.

For information about options for achieving fault tolerance in software applications,
refer to the Availability Guide for Application Design.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 2

Application-Level Fault Tolerance

Application-Level Fault Tolerance
There are several ways in which an application can be designed to withstand
operating-system failures. Three such methods are introduced below:

• Transaction protection using the NonStop Transaction Manager/MP (TM/MP)

• Process pairs

• Persistent processes

Any combination of these techniques could be appropriate for providing fault tolerance,
depending on the needs of the application.

The Transaction Approach to Fault Tolerance
Using TM/MP software, fault tolerance is achieved by grouping operations into
transactions. At the start or end of a transaction, your data is always in a consistent
state. If any kind of failure occurs during the transaction, then the transaction is
“backed out” by rolling back the data to the known consistent state at the start of the
transaction. The transaction can then be restarted using consistent data. See the
Introduction to NonStop Transaction Manager/MP (TM/MP) for details.

Process Pairs
You use function calls (in C programs) or Guardian procedure calls to provide fault
tolerance in your application by means of process pairs: a primary process performs
the application, while a secondary (backup) process in another CPU remains ready to
take over if the primary fails. The primary process uses checkpoints to copy selected
parts of its environment to the backup. Using this checkpointed information, the
backup process is able to take over from the primary without interrupting service to the
user of the application.

The process-pair technique can be used to protect data that cannot be considered part
of a transaction and therefore cannot be protected by the transaction mechanism; for
example, information that remains in memory and does not get written to disk.

Writing fault tolerant programs using the C language is described in Section 27,
Fault-Tolerant Programming in C.

Persistent Processes
Processes that only supply services to other processes but otherwise maintain no data
of their own need only to continue to execute. For such processes, it might be
appropriate simply to ensure that the process gets restarted whenever it stops. A
monitor process that periodically checks the process status can restart such a process.
Processes monitored in this way are sometimes called “persistent processes.”

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 3

Mirrored Disks

Mirrored Disks
One effective protection against loss of data is the use of mirrored disk volumes.
Mirrored disk volumes maintain copies of data on two physically independent disk
drives that are accessed as a single device and managed by the same I/O process. All
data written to one disk is also written to the other disk. All data read from one disk
could be read from the other, because the data is identical. A mirrored volume protects
data against single-disk failures: if one disk drive fails, the other remains operational.
The odds against both disk drives failing at the same time are high when you always
have a disk drive repaired or replaced promptly if it fails.

After a disk is replaced or a drive is repaired, all data is copied back onto it when the
operator issues a Peripheral Utility Program (PUP) REVIVE command (on D-series
releases) or Subsystem Control Facility (SCF) REVIVE command (on G-series
releases). Processing continues while the revive operation takes place. Mirrored
operation resumes as the transfer of data begins.

Multiple Copies of the Operating System
Each CPU has its own copy of the operating system. If a failure of one processing
module should occur, then each other processing module has its own operating system
copy to allow it to continue. Moreover, a failure in the operating system is confined to
the CPU in which the failure occurs, without affecting the other processing modules.

System Integrity
Concurrent with application program execution, the operating system continually
checks the integrity of the system. Each CPU transmits “I’m alive” messages to all
other CPUs at a predefined interval (approximately once per second). Following this
transmission, each CPU checks for the receipt of an “I’m alive” message from each of
the other CPUs.

In addition to sending “I’m alive” messages to other CPUs, each CPU periodically tests
its ability to send and receive messages by sending messages to itself on both buses.
Unless it regularly receives messages from itself on at least one bus, it halts to ensure
that it will not interfere with the correct operation of other CPUs.

If the operating system in one process module fails to receive “I’m alive” messages
from another process module then it responds as follows. The operating system
groups the CPUs that are able to send messages to themselves and others. CPUs
show that they are operational by joining the group; any modules that do not join the
group within a short period of time are declared nonoperational.

System Services
You can access the services supported by the operating system in two ways:

• By making calls from an application program to Guardian procedures

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 4

The File System

• By interacting with the Tandem Advanced Command Language (TACL) command
interpreter

This guide describes how to use Guardian procedures. For information about entering
commands at the command-interpreter prompt, see the TACL Reference Manual.

The following paragraphs describe the system services available to the application or
system programmer through Guardian procedures and provide an overview of how
these services might be used when writing an application.

The File System
The file system provides access to data and devices. Specifically, the file system
provides the following services to the application or system programmer:

• File identification through file names

• Control over concurrent access to files

• Waited and nowait I/O

• Access to structured and unstructured disk files through the Enscribe database
record manager

• Communication between processes (interprocess communication)

• The ability to perform file-name substitution or pass values to a process using
DEFINEs

• Access to devices

The following paragraphs introduce each of these services and two additional sets of
routines that are related to the file system but not part of it: the SIO (sequential
input/output) routines and the IOEdit routines.

Files and File Names
The file system provides a set of Guardian procedures that you can use not only to
access files on disk but also to access a wide variety of other entities, including
terminals, printers, tapes, and processes; in other words, anything your program can
do I/O to. It is possible to do this because the file system treats all these entities as
files. This way, the file system is able to mask as far as practical the differences
between devices but give access to file-type-specific features where needed.

A file name is not necessarily the name of a disk file. A file name is a character string
presented to a Guardian procedure (such as the FILE_OPEN_ procedure) in order to
open a connection through the file system. The file name identifies an object to read or
write, such as a disk file, a terminal, a printer, or a process.

Section 2, Using the File System, describes files and file names in detail and provides
information on how to perform common tasks on files, such as opening, closing,
reading, and writing.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 5

The File System

Operations that you can perform on file names are described in Section 13,
Manipulating File Names. For example, you can scan a string of characters to see
whether it contains a valid file name, or you can modify portions of a file name.

Concurrent File Access
Because the operating system provides a multiprocessing environment, it is possible
that more than one process may try to access the same data concurrently. The
operating system therefore provides services that each process can use when
accessing data and devices to protect them from corruption by other processes. You
can apply this protection at the file or record level.

Section 3, Coordinating Concurrent File Access, provides details of file-level locking
and concurrency control for all types of files. Section 5, Communicating With Disk
Files, provides information about locking at the record level for disk files.

Waited and Nowait I/O
Having initiated an I/O operation, a process normally waits for the I/O operation to
finish before it continues. This operation is known as waited I/O.

In nowait I/O, a process continues processing after initiating the I/O. The process and
the I/O then proceed in parallel. This feature of nowait I/O can be used, for example,
in a process that prompts several terminals for input. Such a process can have several
I/O operations outstanding at once, and it can then respond to the first terminal that
responds.

In addition to allowing the application to proceed in parallel with an I/O operation,
nowait I/O can also be used to specify a time limit for an I/O operation. For example,
an application can prompt a user to log on to the application, then stop itself if the user
does not respond within a given time.

Section 4, Using Nowait Input/Output, provides details of waited and nowait I/O.

Disk-File Access
Disk files are either NonStop SQL files or Enscribe files. For information on how to
access NonStop SQL files, see the NonStop SQL manuals. This guide discusses
Enscribe files.

Using the Enscribe database record manager, you can work with key-sequenced files,
entry-sequenced files, and relative files, as well as with unstructured files.

Section 5, Communicating With Disk Files, describes access to Enscribe disk data files
using Guardian procedure calls.

In addition to accessing Enscribe files directly through the Guardian procedures
described in this guide, you can also access disk files using the TM/MP software; see
the NonStop TM/MP Application Programmer’s Guide for details.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 6

The File System

Interprocess Communication
The message system allows processes to pass messages to each other. This
subsystem not only provides critical links between various process modules within the
operating system itself but also provides the mechanism for user processes to send
messages to each other and for user processes to receive messages from the
operating system.

Interprocess communication is done using request-response interactions. The term
“message” is used to refer to the request part of the communication. The response is
usually called a “reply.” The reply can contain data, or it might contain no useful data
other than an acknowledgment that the request has been accepted. However, there is
always a reply of some kind.

To send messages to another process, you first establish a connection to that process
by opening the process and then write to the file number returned by the open.
Because a process might not know in advance which processes will send messages to
it and in which order, all messages to a process arrive using a single file-system
connection that is established when the process opens a file using the special name of
$RECEIVE.

Section 6, Communicating With Processes, provides details on how to pass messages
between user processes and receive messages from the operating system.

DEFINEs
A DEFINE is a named set of attributes and values that you use to pass information to a
process before running the process. For example, you can pass labeled-tape
attributes to a process using a DEFINE; this way you can make the process access a
different labeled-tape file and for a different purpose each time you run it.

Section 7, Using DEFINEs, describes how to program with DEFINEs.

Devices
As already mentioned, terminals, printers, magnetic tape devices, and data
communications lines are treated as files. Section 9, Communicating With Devices,
provides an overview of common information about the programmatic interface to all
devices.

For terminals, an application process can perform read and write operations in a way
similar to reading from and writing to other files. The application can also control the
operation of a terminal; for example, the program can control the action taken when the
user presses the BREAK key and whether input typed by the user is displayed on the
terminal screen. You can write an application program that simulates a terminal.
Section 10, Communicating With Terminals, describes terminal I/O operations.
Section 24, Writing a Terminal Simulator, provides information on how to write a
terminal-simulation process.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 7

The Startup Sequence

For printers, the operating system allows the application not only to write data to the
printer file but also to provide control operations such as advancing the paper to the
top of the page or changing the character font of printers that have that capability. The
printer control language (PCL) provides application control capability. Section 11,
Communicating With Printers, provides details.

For magnetic tape, an application program can perform read and write operations as
well as control operations such as rewinding the tape. The operating system supports
both labeled and unlabeled tape. Section 12, Communicating With Magnetic Tape,
describes the programmatic interface.

Sequential Input/Output (SIO) Routines
The sequential input/output (SIO) routines provide a higher-level interface than the file
system. They are useful for reading or writing text streams to or from a terminal, a
printer, or a disk file in EDIT format. For example, you might use SIO for command
input or listing files.

A higher-level interface like the one provided by SIO is necessary for accessing files in
EDIT format, because these files have a data structure in addition to what the file
system understands.

The programmatic interface to the SIO routines is made up of a set of Guardian
procedure calls and is described in Section 15, Using the Sequential Input/Output
Procedures.

The IOEdit Routines
The IOEdit routines provide an alternative to SIO for accessing files in EDIT format.
Like SIO, IOEdit provides a higher-level interface than the file system.

Section 14, Using the IOEdit Procedures, describes the programmatic interface to
IOEdit.

The Startup Sequence
When a new process starts, a sequence of messages usually provides that process
with some information about the process’s environment: specifically, some user-
specified file names used by the process and other user-specified information in the
form of ASSIGNs or PARAMs. This startup sequence is usually observed whenever
one process creates another; the creating process sends the information to the new
process, but it is up to the new process to decide what to do with the information. The
TACL process is an example of a process that always sends this information to the
processes it creates.

Section 8, Communicating With a TACL Process, provides details of the startup
sequence between the TACL process and a process it creates. For information about
how you can construct and send the startup message sequence from your application,
see Section 16, Creating and Managing Processes.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 8

Process Management

Process Management
The Guardian procedures provide you with the ability to create and manage processes,
including the ability to allocate process resources such as the CPU in which the
process will run.

One of the distinguishing features about the operating system is the ability of the
system to withstand failures without stopping the application. The Tandem Pathway
and TM/MP products provide functions that make some types of applications tolerate
system failures; the Pathway and TM/MP manuals provide details. The operating
system supports the concept of process pairs for withstanding the failure of the CPU in
which the application process is running.

A process pair is two executions of the same program, coordinated so that one
process acts as backup to the other process. Each process runs in a different CPU.
Logic within the program determines which process is the primary and which is the
backup. If there is a failure in the CPU in which the primary process is running, then
the backup process can take over from the primary.

The reason that the backup process is able to take over from the primary is that the
program is coded to pass checkpointing messages to the backup process from the
primary, thus keeping the backup process continually aware of the executing state of
the primary process. If the backup process receives notification that the CPU of the
primary process has failed, then the backup process assumes the role of the primary
process and continues executing the application. The end user of the application
remains unaware of any failure.

Section 16, Creating and Managing Processes, describes how to create and manage
simple processes.

Memory Management
The operating system manages virtual address space. The organization of space for
user data differs for TNS/R native processes and TNS processes. (Refer to “TNS/R
Program Execution Modes,” later in this section, for descriptions of TNS/R native
processes and TNS processes.)

TNS/R native processes have a main stack and a priv stack. A native process also
has a globals-heap segment, which contains global data and, optionally, a heap. The
main stack and the heap grow automatically as needed, up to a maximum size. The
maximum size of each can be specified when a process is created. The default limit
for the main stack is 1 megabyte; the default limit for the heap is 32 megabytes.

TNS processes have a user data segment, which is typically 128 KB in size. The first
64 KB of the user data segment contains global data and the user data stack. The
remaining 64 KB is also available for use, but TAL and pTAL programs must manage
the space themselves. The Common Run-Time Environment (CRE) manages that
area for programs in other TNS languages.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 9

Time Management

For both TNS/R native processes and TNS processes, if you need more space than
what is available in the data areas normally provided by the system, you must use
extended data segments. There are two types of extended data segments: Flat
segments, which can provide up to 128 megabytes of extra storage, and selectable
segments, which can provide up to 127.5 megabytes of extra storage.

Memory pools provide a simple and efficient way to manage extended data segments.
Memory pools can also be used to manage data in the user data segment.

Section 17, Managing Memory, describes memory management, including how to
manage the user data segment, how to manage extended data segments, and how to
use memory pools.

Time Management
The operating system provides time management in the sense of timekeeping and
interval timing. “Timekeeping” means keeping track of the time of day in each CPU.
“Interval timing” means the ability to control when actions occur or to report on how
long an activity has been in progress. For example, you can set timeout values for
certain operations or find out how long a process has been executing.

Section 18, Managing Time, describes the programmatic interface to the timing
features of the operating system.

Data Manipulation
The operating system provides several features that enable you to manipulate data.
These features include:

• Procedures that convert numeric data between binary values and the ASCII strings
that represent them.

• A formatter that formats output data and converts input data from external to
internal form.

• Support for multibyte character sets, enabling applications to support character
sets that require more characters than are provided by standard ASCII code.

Section 19, Formatting and Manipulating Character Data, provides information about
the programmatic interface to the data-manipulation features of the operating system.

Debugging, Trap Handling, and Signal Handling
The system provides tools for debugging object code: the Inspect, Visual Inspect,
Native Inspect (on TNS/E systems) and Debug debuggers. The Inspect program is a
high-level symbolic debugger. Debug is a low-level debugger, providing information at
the machine-code level. Visual Inspect is a NonStop operating system symbolic
debugger that uses program visualization, direct manipulation, and other techniques to
improve productivity in the development or production environment. Native Inspect is a

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 10

The Requester/Server Application Model

symbolic command-line debugger used for debugging TNS/E native process and
snapshots on HP TNS/E systems.

Certain critical error conditions occurring during process execution prevent normal
process execution. They are mostly unrecoverable. In TNS processes, these errors
cause traps. In native processes, these errors cause the process to receive a signal.
(Refer to TNS/E Program Execution Modes and TNS/R Program Execution Modes,
later in this section, for descriptions of native processes and TNS processes.) Traps
and signals are handled by trap handlers and signal handlers, respectively.

When a trap occurs in a TNS process, the default action is for the process to enter
Debug (or the Inspect debugger can be explicitly specified for a process). If you prefer
to write your own trap handler, you can call the ARMTRAP procedure to install your
handler. Your trap handler is subsequently notified of the particular trap condition.

When a native process receives a signal, the default action is for the process to
abnormally terminate. If you prefer to write your own signal handler, you can call the
SIGACTION_INIT procedure to install your handler. Your signal handler is
subsequently executed when the process receives a signal.

Section 25, Debugging, Trap Handling, and Signal Handling, describes the debugging,
trap-handling, and signal-handling features of the operating system for Guardian
processes. For debugging and signal handling in OSS processes, see the Open
System Services Programmer’s Guide.

The Requester/Server Application Model
Traditionally, application designers have placed the logic for all the functions of an
application in one unified program. This program handled all aspects of the
application: terminals, database, remote communication, and so on. The operating
system, allows the application designer to divide the application into requester
processes and server processes. These processes then communicate with each other
by sending and receiving messages.

Requester processes typically represent the external user, while server processes
provide most of the functional logic of the application. A typical requester/server
application might have requester processes to control terminals, while server
processes provide database control. Figure 1-1 shows the model in its simplest form.

Figure 1-1. A Requester/Server Application

VST002.VSD

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 11

Advantages of the Requester/Server Model

The fact that the file system treats processes as files allows you to send user
messages to them as if writing to a file. Remember that processes read interprocess
messages by reading from a special input file opened with the name $RECEIVE. Each
process has its own $RECEIVE input file.

Much of this guide assumes a requester/server model. Section 6, Communicating
With Processes, discusses the techniques used for communication, including how to
send a message to another process and how to read messages from another process.
Section 21, Writing a Requester Program, and Section 22, Writing a Server Program,
provide detailed examples of requester and server processes incorporating many of
the features described in earlier sections.

Advantages of the Requester/Server Model
One of the advantages of the requester/server design is modularity. Once the
interfaces between the processes have been defined, each process can be developed
separately by its own development team. Modules developed this way are inherently
easier to maintain.

Requester/server applications are a convenient design model not only because of the
ease with which these applications can be developed and maintained but also
because:

• You can easily add users to the application.

• You can easily add new functions.

• You can spread the load among multiple CPUs within a system.

• You can improve the performance of an application that runs on several systems in
a network.

The following paragraphs discuss the above advantages of the requester/server
design.

Adding Users to the Application
When you need to add new users, all you need to do is replicate the requester
process. The server process is able to handle requests from several requesters.
Typically, the server handles one request at a time; when the server completes a
request, it waits for a request from some other requester. Alternatively, the server can
be designed to process requests concurrently.

Figure 1-2 shows several requesters accessing the same server.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 12

Advantages of the Requester/Server Model

Figure 1-2 shows one terminal for each requester process. Requesters can also
provide support for several terminals in each process.

Adding New Functions
If you need to add a new function to your application, you can add another server
process that performs the new function. The existing server processes need no
modification. Requester logic that deals with existing servers does not need changing
either, but you will need some additional logic to communicate with the new server
process.

Figure 1-3 shows an additional server used to maintain an additional database. When
a requester makes a request against database 1, it sends an interprocess message to
server 1; when a requester makes a request against database 2, it sends a message
to server 2.

Figure 1-2. Multiple Users in a Requester/Server Application

VST003.VSD

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 13

Advantages of the Requester/Server Model

Figure 1-3. Multiple Functions in a Requester/Server Application

VST004.VSD

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 14

1 Introduction to Guardian Programming

Spreading the Workload Among Multiple CPUs
One reason why the requestor/server model works well with the operating system is
the fact that you can take advantage of the NonStop multi-CPU architecture, which
allows different parts of the application to run in parallel on different CPUs. Because
the application is made up of several requester and server processes, these processes
can be spread among the CPUs, thereby allowing parallel processing and allowing you
to take maximum advantage of the processing power available in each of the system’s
CPUs.

Applying the Requester/Server Model in a Network
Environment
Another reason why the requester/server model works well with the operating system
is the fact that it can be efficiently applied to a network of systems. In a computer
network, the data that a user wants to access is often controlled by some other node in
the network. You can use the requester/server model to ensure that each process in
an application runs on the same system as the resource that it manages. This way,
the only network traffic caused by the application is interprocess messages.

Figure 1-4 illustrates the requester/server model applied to an application in a network
environment. Here, each requester process runs on the same system that the user is
connected to, while each server process runs on the same system as the data it
manages.

Figure 1-4. Requester/Server Application in a Network Environment

VST005.VSD

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 15

Monitoring Server Processes

Monitoring Server Processes
A monitor is a separate process that, along with other functions it might be performing,
monitors and controls the execution of other processes. Because server processes
must continue to run to provide needed services, one common use of a monitor is to
check that each server continues running and to restart any server that stops.

A monitor is often implemented as a process pair to ensure that it survives CPU
failures.

Requesters and Servers in Fault-Tolerant Applications
There are many approaches to making an application fault tolerant. There is no best
method that suits all applications. The best method to use depends on the application
in question.

One common way of making a requester/server application fault tolerant is to run the
server process as a process pair while the requesters run as simple processes. The
primary server process then uses checkpoints to copy critical data to its backup
process to enable a smooth transition if a failure occurs. This design makes sense in
many cases, because it is the server that provides most of the functional logic of the
application.

Another approach to fault tolerance is to have a fault-tolerant monitor process. If a
failure occurs, then the backup process is able to restart each server process on an
alternate CPU, thereby allowing the application to continue with minimal interruption.

Client/Server Application Model
The client/server model, which evolved from the requester/server model, enables the
client to issue commands to the host from a GUI on a PC (see Figure 1-5 below). The
client interface typically has pull-down menus, dialog boxes, color and other features
that provide ease of use. In “fat” client applications, most of the processing occurs on
the PC instead of the host; the client often accesses a database using a
vendor-supplied product (for example, the open database connectivity). In “medium”
client applications, the processing occurs on both the host and the client. In “thin”
client applications, most of the processing occurs on the host. See the Introduction to
NonStop Transaction Processing for more information about the client/server model for
application development.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 16

Client/Server Application Model

Figure 1-5. Client/Server Architecture

VST148.VSD

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 17

1 Introduction to Guardian Programming

Distributed Client/Server
Distributed applications place parts of the business logic on various servers, which can
be the same or different platforms (see Figure 1-6 below). For example, the web
server might provide the user interface while the two servers provide the application
and database logics.

Figure 1-6. Distributed Client/Server

There are a variety of software products available for developing requester/server,
client/server, and distributed client/server applications in the Guardian environment.
These products include the Pathway/TS, the Remote Server Call (RSC), and the
NonStop Server Object Gateway (SOG).

The Pathway/TS transaction-processing environment is designed for terminal-based
requester/server applications. Pathway/TS terminal applications are written in screen
COBOL, which simplifies screen definition and provides a means for invoking the
servers. Server programs are written in C or COBOL.

Pathway/TS uses the run-time environment of NonStop TS/MP and NonStop
Transaction Manager/MP (NonStop TM/MP) software. This means that all Pathway/TS
terminal-based applications automatically acquire the NonStop fundamentals of
continuous availability, data integrity, and scalability without special coding of
applications. See the Pathway/TS System Management Manual for details.

The Remote Server Call (RSC) product enables you to develop client/server
applications where UNIX and PC workstations invoke NonStop TS/MP server
processes residing on the NonStop servers. Many languages, tools, and applications
work with RSC, including environments that generate standard C sequences. Many
other off-the-shelf tools are supported as well. RSC supports many communications
protocols, including TCP/IP, NetBIOS, Asynchronous, Eicon X.25, X.25 over
asynchronous, and IPX/SPX. See the Remote Server Call (RSC) manuals for details.

VST149.VSD

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 18

Accessing Guardian Procedures

NonStop Server Object Gateway links popular desktop tools and critical business
services using ActiveX controls. It enables any application that supports ActiveX
controls to access Pathway services. SOG simplifies the development and deployment
of GUI clients by shielding developers from the complexities of the transaction
processing server. Pathway services appear as ActiveX objects within the client
application. Client developers need no knowledge of Pathway APIs. SOG also handles
communications and automatic data conversion between the client and the server
using TCP/IP protocol. See the Nonstop Server Object Gateway User’s Guide for
details.

Accessing Guardian Procedures
You can access the services provided by the Guardian procedures from any supported
high-level language, including C, C++, Pascal, COBOL85, and FORTRAN, as well as
the Transaction Application Language (TAL) and the Portable Transaction Application
Language (pTAL).

You must read the appropriate language reference manual to find out how to access
Guardian procedures from the language you are using. However, you need to read
this guide if your program makes calls to the Guardian procedures, regardless of the
programming language you are using.

Although most of the examples in this guide are given in TAL, they have been carefully
written to avoid, where possible, use of TAL features that are not normally found in
other programming languages; this approach helps to make the programming
examples more readable, especially if you do not normally write programs in TAL.

Calling Guardian Procedures From TAL or pTAL
Using TAL or pTAL (which compiles native RISC code), you can access Guardian
procedures contained in the $SYSTEM.SYSTEM.EXTDECS0 file. This file is a source
library for the external declarations for most of the procedures in the system library.
However, some external declarations are not found in the EXTDECS0 file but are
found in pTAL header files instead. (You cannot call these procedures from a TAL
program.) Refer to the Guardian Procedure Calls Reference Manual for information
about where external declarations are to be found for particular Guardian procedures.

Any Guardian procedure from the EXTDECS0 file that your program calls must be
listed in a ?SOURCE compiler directive before the first call to that procedure appears
within your program source. Typically, you include one ?SOURCE directive at the start
of your program that lists all the Guardian procedures that you use; for example:

!global declarations

?SOURCE $SYSTEM.SYSTEM.EXTDECS0(FILE_OPEN_,FILE_CLOSE_,READX,
? WRITEX,WRITEREADX)

!procedure declarations

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 19

Calling Guardian Procedures From C or C++

The above ?SOURCE directive copies into your program for compilation the external
declarations for only the FILE_OPEN_, FILE_CLOSE_, READX, WRITEX, and
WRITEREADX procedures.

Multiple versions of the external declarations file are available in case you might need
to run your program on older versions of the operating system as well as the current
version. Specify the version of your choice as follows:

For example, if the current version of the operating system is D40, EXTDECS0 relates
to release D40, EXTDECS1 relates to release D30, and EXTDECS relates to release
D20.

Because the version is specified by a relative value, there is no need to constantly
update the level of the external declarations file used in your programs. If you specify
the level as EXTDECS0, your programs will always use the current version of the
external declarations file.

Calling Guardian Procedures From C or C++
HP C provides a library file known as the cextdecs header to help you make calls to
Guardian procedures from the C and C++ languages. The cextdecs header contains
C-coded declarations that enable most of the Guardian procedures to be called directly
through C or C++ function calls. However, some declarations are not found in the
cextdecs header, but are found in other C header files instead. Refer to the
Guardian Procedure Calls Reference Manual for information about where declarations
are to be found for a particular Guardian procedure.

Guardian procedures that return both a return value and a condition code cannot be
called directly from C or C++, nor can Guardian procedures that take the name of
another procedure as a parameter. For each of these calls you must:

• Supply a “jacket” procedure in a TAL module. This jacket procedure must call the
desired Guardian procedure and then return the information to the caller of the
jacket procedure in a way that can be handled by the C or C++ function.

• Provide a function declaration in your C or C++ program to call the jacket
procedure.

The C/C++ Programmer’s Guide provides complete details on how to call all Guardian
procedures from a C or C++ program, whether the call is direct or indirect.

For information on when and how to use calls to the Guardian procedures in your C or
C++ program, you should continue to read this guide. Although most of the examples
are given in TAL, the program logic is similar for both languages.

EXTDECS0 the current operating system version

EXTDECS1 the current version minus 1

EXTDECS the current version minus 2

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 20

Calling Guardian Procedures From Pascal

Calling Guardian Procedures From Pascal
The PEXTDECS file makes it easy to import Guardian procedures into a Pascal
program. This file contains Pascal-coded definitions for Guardian procedure calls,
enabling you to invoke Guardian procedures as Pascal functions. To pass parameter
values to the Guardian procedure call, you simply pass the equivalent parameters to
the corresponding Pascal function.

For complete instructions on how to call Guardian procedures from a Pascal program,
see the Pascal Reference Manual .

For information on when and how to use calls to the Guardian procedures in your
Pascal program, you should continue to read this guide. Although the examples are
given in TAL, the program logic is similar for both languages.

Calling Guardian Procedures From COBOL85
All Guardian procedures that you can call safely from a COBOL85 program are
declared in the external declarations file for COBOL85. Multiple versions of this file
exist. You can specify the version of your choice from the following:

The COBOL85 external declarations file enables COBOL85 programmers to call
Guardian procedures using ENTER TAL statements.

The COBOL85 Manual provides complete instructions on how to use ENTER TAL
statements to call Guardian procedures from a COBOL85 program, with examples of
how to map COBOL85 parameters to TAL parameters.

As for C and Pascal programmers, COBOL85 programmers need to read this guide for
information about how to use the Guardian procedures.

Calling Guardian Procedures From FORTRAN
All files required by the FORTRAN programmer to access Guardian procedures are
provided with the FORTRAN compiler. Therefore, to make a Guardian procedure call,
you must declare the appropriate variables and then access the Guardian procedure
either through a function call if the procedure returns a value or through a subroutine
call if the procedure does not return a value.

For complete details on how to call Guardian procedures from FORTRAN, see the
FORTRAN Reference Manual.

For information on how to use Guardian procedures in a FORTRAN program, you
should continue to read this guide.

COBOLEX0 contains the current version

COBOLEX1 contains the current version minus 1

COBOLEXT contains the current version minus 2

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 21

TNS/E Program Execution Modes

TNS/E Program Execution Modes
Like the G-series environment, the H-series and J-series environment support a native
execution mode for TNS/E native processes. TNS/E native compilers and tools are
used to generate native code that uses the process, memory, and instruction set
architectures that are native to Itanium CPUs. The H-series and J-series RVUs
support native versions of C, C++, and COBOL as well as a pTAL compiler. TNS/E
native execution mode can be summarized as follows.

• Programs are generated by TNS/E native compilers.

• Programs use TNS/E native process and memory architecture.

• Programs consist of TNS/E native object code.

• Code consists of Itanium instructions. Itanium instructions are executed directly on
Itanium CPUs.

• A TNS/E native program can contain only TNS/E native object code. Because of
architectural differences between the execution modes, interpreted object code,
accelerated object code, and native object code cannot be mixed in one program
file.

Similarities and Differences Between H-series RVUs on the
TNS/E Platform and G-Series RVUs on the TNS/R Platform

The H-series RVUs on the TNS/E platform provide a programming environment that is
similar to that provided by the G-series RVUs on the TNS/R platform. These similarities
ease the transition to the new platform and facilitate the migration of applications to the
new environment. Similarities include:

• Binary compatibility for TNS programs. Interpreted and accelerated execution
modes are supported.

• Full support for TNS development tools. You can continue to develop TNS
applications on an H-series system using familiar tools.

• A native development environment that is similar to the TNS/R native
development environment. The C, C++, COBOL, and pTAL languages are
supported.

• TNS/E native development tools have the same, or added, functionality as the
TNS/R native development tools.

• In most cases, the same changes are required to migrate TNS applications to
TNS/E native mode as to migrate them to TNS/R native mode.

• In most cases, no source code changes are required to migrate TNS/R native
mode programs to TNS/E native mode.

• Debugging of snapshot files. You can debug TNS, TNS/R, and TNS/E snapshot
files.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 22

Similarities and Differences Between H-series RVUs
on the TNS/E Platform and G-Series RVUs on the

• Full support for native-mode cross-compilation on the PC.

• Full support for TNS/R native compilers and linkers. You can compile and link,
but not execute, TNS/R native applications on an H-series system.

• Support for FORTRAN and Pascal languages. A TNS FORTRAN compiler is
provided, and both FORTRAN and Pascal accelerated object files will run on the
TNS/E platform, but they must be accelerated by the H-series Object Code
Accelerator (OCA).

Differences in the G-series and H-series development environments include:

• TNS/R native object files cannot be executed on a TNS/E platform; all TNS/R
native programs must be recompiled using a TNS/E native compiler.

• TNS/E native object files cannot be executed on a TNS/R platform.

• The H-series OSS environment does not support TNS execution; OSS programs
must be migrated to TNS/E native mode to run on an H-series system.

• TNS/E native development tools (compilers, linkers, and certain utilities) have
new names, although their functionality is nearly identical.

• Different command line and system level debugging tools are provided in the H-
series RVUs.

• All H-series libraries are dynamic-link libraries (DLLs); shared run-time libraries
(SRLs) are not supported. The H-series RVUs provide more extensive support for
DLLs than do the G-series RVUs.

• All TNS/E native code is position-independent code (PIC); unlike the TNS/R
native environment, there is no distinction between PIC and non-PIC.

TNS/E Object File Format
The TNS/E native object file format differs from that of TNS/R native object files. Key
differences are:

• TNS/E native object files are in 64-bit ELF format, while TNS/R native object files
are in 32-bit ELF format.

• In the Guardian environment, TNS/E native object files are type 800 files; TNS/R
native object files are type 700 files.

• TNS/R native object files use the Third Eye format, which mixes symbol
information needed at link time with symbol information needed only for debugging
at run time. TNS/E native object files use a separate DWARF symbol table for
debugging information.

Note. All details mentioned for H-series RVUs are also applicable to J-series RVUs unless
indicated otherwise.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 23

TNS/R Program Execution Modes

TNS/E native and TNS/R native object files differ in other respects as well. See the eld
Manual and the enoft Manual for details on the structure of TNS/E native object files.

TNS/R Program Execution Modes
TNS/R systems can execute TNS/R native code, TNS code, and accelerated code.
User processes can run in all three of these modes.

TNS/R native code is produced by a native compiler and consists entirely of RISC
instructions that have been arranged to take full advantage of the RISC architecture. A
program consisting of native code is called a native program. You can produce native
object code by using a native compiler. Refer to the C/C++ Programmer’s Guide and
the pTAL Programmer’s Guide for information about native compilers.

TNS code executes TNS instructions facilitated by millicode. Millicode is assembled
program code, consisting of RISC instructions, that implements various TNS low-level
functions. A program consisting of TNS code is called a TNS program. You produce
TNS object code by using a compiler that is not native. Actual TNS CPUs do not
support D40 or later versions of the operating system.

Accelerated code is produced by the Accelerator, a program that processes a TNS
object file to run more efficiently on a TNS/R CPU. An accelerated object file consists
of Accelerator-generated RISC instructions as well as the original TNS instructions. A
program that contains accelerated code is called an accelerated program. For more
information on using the Accelerator, see the Accelerator Manual.

The accelerated version of an object file almost always runs faster than the TNS
version; the native version of an object file almost always runs faster than the
accelerated version. The actual differences in execution speed between TNS,
accelerated, and native versions of the same program may vary, depending on the
constructs that are used in the source code.

A TNS/R native process is a process that is initiated by executing a TNS/R native
program. A native process executes in the native operating environment of the TNS/R
CPU.

A TNS process is a process that is initiated by executing a TNS or accelerated
program. A TNS process executes in an emulated TNS operating environment.

Using Parameter Declarations Files
HP provides a set of files that contain useful literals and data structures. Many of
these literals and data structures can be used in defining parameters for Guardian
procedure calls. The Data Definition Language (DDL) makes these literals available
from the TAL, C, COBOL85, and Pascal programming languages.

The following files are provided in the subvolume $SYSTEM.ZSYSDEFS:

• ZSYSDDL contains the DDL declarations used to generate the other ZSYS files.

Introduction to Guardian Programming

Guardian Programmer’s Guide — 421922-014
1 - 24

Synchronizing Processes

• ZSYSTAL contains literals and data structure declarations for TAL programs.

• ZSYSC contains literals and data structure declarations for C programs.

• ZSYSCOB contains literals and data structure declarations for COBOL85
programs.

• ZSYSPAS contains literals and data structure declarations for Pascal programs.

To use the DDL declarations in your application, include the appropriate ZSYS file in
your program. You do this using a ?SOURCE compiler directive before your program
uses any of the literals or data structures listed in the ZSYS file. Like the EXTDECS
files, you need to list only the sections that contain the declarations you need.

The following example for a TAL program includes the literals declared in the
FILENAME^CONSTANT and FILESYSTEM^CONSTANT sections of the ZSYSTAL file:

?SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL(FILENAME^CONSTANT,
? FILESYSTEM^CONSTANT)

Synchronizing Processes
One or more processes executing concurrently may need to share a particular
resource. This sharing of resources can result in conflicts and possible errors. Binary
semaphores provide a way to synchronize processes so that only one process at a
time can access a shared resource. While a process is using the resource, other
processes can execute concurrently until they need to use the resource; they then
enter a wait state. When the original process is through with the resource, it releases
its hold on the resource, and a waiting process is selected to resume execution and
use the resource.

Using binary semaphores, you can maximize parallelism in processes (that is, the
degree to which processes execute concurrently) while ensuring that conflicts over
shared resources are avoided.

Coding programs to use binary semaphores is described in Section 26, Synchronizing
Processes.

Note. Many programming examples shown throughout this guide make use of the literals in
the ZSYSTAL file. You can recognize them by the first four characters, which are always
“ZSYS.”

Guardian Programmer’s Guide — 421922-014
2 - 1

2 Using the File System
This section reviews the concept of a file and describes some of the common
operations that you can use on a file. This section discusses the different types of files
and describes file-name syntax. It goes on to introduce some techniques for passing
file names to a process before describing how to perform the following tasks:

• How to pass a file name to a process using a DEFINE or the startup sequence of
messages

• How to create and open files using the FILE_CREATE[LIST]_, FILE_OPEN_, and
PROCESS_CREATE_ procedures

• How to read from a file using the READ[X] and READUPDATE[X] procedures and
write to a file using the WRITE[X], WRITEREAD[X], and WRITEUPDATE[X]
procedures

• How to get information about files using the FILE_GETINFO[LIST][BYNAME]_
procedures

• How to handle file-system errors using the FILE_GETINFO_ procedure

• How to close files using the FILE_CLOSE_ procedure

At the end of the section, a sample program performs many of these tasks.

Many references point to more detailed information in this guide and in other manuals.

All of the capabilities of the PROCESS_CREATE_ procedure described in this section
are also available through the PROCESS_LAUNCH_ procedure, although parameters
are passed in a different manner to PROCESS_LAUNCH_. How to use the
PROCESS_LAUNCH_ procedure is explained in Section 16, Creating and Managing
Processes.

File Concepts
Recall from Section 1, Introduction to Guardian Programming, that under the operating
system, the following entities are all treated as files:

• Disk files

• Devices other than disks, such as terminals, printers, and magnetic tape drives

• Processes

Each of these entities is reviewed in the following paragraphs.

Disk Files
Disk files can be SQL files or Enscribe files. You access Enscribe files using the
Enscribe database record manager. You access SQL files using the NonStop SQL

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 2

Disk Files

product. This guide discusses access to Enscribe files. For details on SQL files, see
the SQL programming manuals.

Types of Enscribe Files
The Enscribe database record manager provides access to and operations on
Enscribe disk files. The Enscribe software is an integral part of the operating system.
It supports the following file types:

• Key-sequenced files, in which records are placed in ascending sequence based on
a key field. The key field is a part of the record.

• Relative files, in which records are stored at locations relative to the beginning of
the file.

• Entry-sequenced files, where records are appended to a file in the order they are
written to the operating system.

• Unstructured files, in which records are defined by the application. Records are
written to and read from a file using relative byte addresses within the file.

Section 5, Communicating With Disk Files, provides an overview of disk files along with
programming examples of how to access and manipulate disk files. The Enscribe
Programmer’s Guide provides complete details.

Volumes, Subvolumes, and Files
The usable space of a disk (the part that can store files) is called a volume. For
convenience, file names within the same volume that have a common middle part are
treated as a logical group of files or a subvolume. Figure 2-1 shows how the file
name reflects this organization.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 3

Device Files

Device Files
In addition to program and data files stored on disk, every terminal, printer, and
magnetic tape is a file. Treating devices in this way makes device I/O as easy as
accessing disk files. This approach allows disk files and devices to be handled
uniformly where appropriate and allows programs to be as device-independent as
possible.

What constitutes an I/O transfer with a device other than a disk depends on the
characteristics of the device. On a conversational-mode terminal, for example, a
transfer is one line of information; on a page-mode terminal, a transfer can be up to
one page of information; on a line printer, a transfer is one line of print; on a magnetic
tape unit, a transfer is one physical record on tape.

This guide discusses how to communicate with terminals, printers, and magnetic tape
drives. Sections 9 through 12 provide details. For information on accessing data
communications lines, refer to the appropriate data communications manual.
Additional information on accessing terminals, printers, and magnetic tapes can also
be found in the data communications manuals.

Figure 2-1. Disk Files

VST006.VSD

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 4

Process Files and $RECEIVE

Process Files and $RECEIVE
The file system allows you to open and access processes as files. A process can open
another process using a process file name and then send data to the process by
writing to the open file.

A process can receive data from other processes by opening a file using the special
file name “$RECEIVE.” Through $RECEIVE, you can read not only messages from
other processes but also operating-system messages.

Section 6, Communicating With Processes, provides details on how processes
communicate with each other.

File Names
Every file has at least one unique name by which the file is accessed. (Devices other
than disks, but not subdevices, have two names—a regular file name and a logical
device number). The file name is used by a process when gaining access to (or
opening) a file. The file is named when the file is created.

The file name is unique not only on the system where the file is physically located but
also within the system’s network.

Some differences exist between the form of file name you use to access a file
programmatically and the form of file name you use interactively. The syntax
definitions given here apply to programmatic access.

The rules for naming a file depend on whether you are naming a disk file, a device file,
or a process file. The rules for each of these entities are given in the following
paragraphs. Generally, the following rules apply:

• File names are made up of alphanumeric characters but can also include some of
the following special characters when used as delimiters:

\ $ # : .

• File names are not case-sensitive; $OURVOL.MYSUBVOL.MYFILE refers to the
same file as $ourvol.mysubvol.myfile.

Permanent Disk-File Names
Permanent disk files are named when they are created. Once a permanent disk file is
created, it remains on disk until explicitly purged. File creation is discussed later in this
section.

The name of a disk file when fully qualified consists of four parts: the node name, the
volume, the subvolume, and the file ID. Periods separate the parts from each other.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 5

Permanent Disk-File Names

The syntax definition for a permanent disk file is shown below. (Temporary disk files
are described later.)

Permanent disk-file names must follow these rules:

• A permanent disk-file name must be made up entirely of alphanumeric characters,
except for the backslash (\) that begins the node name, the dollar sign ($) that
begins the volume name, and the periods that separate the pieces of the file name.
The second character of node-name and volume-name and the first character of
subvolume-name and file-id must be alphabetic characters.

• Disk-file names have a maximum length of 35 characters, of which 8 characters
are reserved for the node-name (including the backslash). The volume-name,
subvolume-name, and file-id fields can have up to 8 characters each. (Note
that the 8 characters of volume-name includes the dollar sign.) The following
example illustrates the maximum sizes of each piece of a disk-file name:

\nnnnnnn.$vvvvvvv.ssssssss.ffffffff
 8 + 1 + 8 + 1 + 8 + 1 + 8 = 35 characters

• A fully qualified file name contains a node-name, a volume-name, a
subvolume-name, and a file-id. A partially qualified file name contains at
least the file-id but does not contain all four parts. The file-id is the only
mandatory part of a permanent disk-file name. The operating system provides
default values for all other unspecified parts of the file name:

² If the volume-name is omitted, the default volume name is used in its place.

² If the subvolume-name and volume-name are both omitted, the default
volume-name and subvolume-name are used.

² If the node-name is omitted, the default system is assumed.

The default values are passed to the process from the user’s =_DEFAULTS
DEFINE. This DEFINE contains default values for the node name, volume name,
and subvolume name. Its contents change when the user changes the current
default values by issuing VOLUME, SYSTEM, and LOGON TACL commands. See
Section 7, Using DEFINEs, for details of programmatic use of DEFINEs.

The following are all valid disk-file names; if \SWITCH.$DATA.MESSAGES is the
default subvolume, then they all refer to the same file:

\SWITCH.$DATA.MESSAGES.ARCHIVE

$DATA.MESSAGES.ARCHIVE

MESSAGES.ARCHIVE

\SWITCH.ARCHIVE

Permanent disk-file name:

[node-name.][[volume-name.]subvolume-name.]file-id

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 6

Temporary Disk-File Names

ARCHIVE

Temporary Disk-File Names
Sometimes a file is required only as temporary work space for a program and is no
longer useful once the process has terminated. Such a file is known as a temporary
file. A temporary file must be created programmatically, and it exists only until the file
is closed. The name of such a file has the following syntax:

The following are valid temporary file names:

\TRANSAC.$ACCOUNT.#1234567

$ACCOUNT.#1234567

#1234567

Temporary files are created programmatically by calling the FILE_CREATE_ procedure
and, usually, specifying the volume. If the volume or node name is not specified, then
the default values provided by the =_DEFAULTS DEFINE are again used.

The temp-file-id is not specified by the program. It is returned automatically by
the operating system. It always begins with a pound sign (#), followed by four to seven
digits.

Device-File Names
File names also provide access to devices such as terminals, printers, magnetic tape
drives, and data communications lines. A device can be accessed either by name or
by logical device number.

Device names and logical device numbers are assigned either at operating-system
generation time—see the System Generation Manual —or dynamically using the
Configuration Utility Program (COUP) on D-series release systems or the Subsystem
Control Facility (SCF) on G-series release systems. See the Dynamic System
Configuration (DSC) Manual for more information about COUP and see the SCF
reference manuals for more information about SCF. In either case, the assignment of
device names and device numbers is the responsibility of system management, not the
application programmer.

Device-file names have the following syntax:

Temporary disk-file name:

[node-name.][volume-name.]#temp-file-id

Device-file name:

[node-name.] { device-name[.qualifier] }
 { ldev-number }

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 7

Process File Names

The device-name part of the name can be up to 8 characters long and must start
with a dollar sign ($). Again, all characters must be alphanumeric, and the second
character of the device-name part must be a letter. The qualifier is an optional
alphanumeric string that always begins with the pound sign (#) character followed by
an alphabetic character. The meaning of a qualifier depends on the device type.

We recommend using device names to identify devices. However, you can also
identify a device using a logical device number that is an integer always preceded by a
dollar sign. Five digits (up to 34492) are allowed in the logical device number.

Process File Names
Process file names have two forms: one for named processes and one for unnamed
processes.

Process File Names for Named Processes
You can name a process at the same time you create the process either by specifying
the NAME option of the RUN command or by specifying the name-option parameter
when calling the PROCESS_CREATE_ procedure. You can accomplish the same
thing with the PROCESS_LAUNCH_ procedure, although the equivalent parameters
are passed as fields in a structure. Process creation is described in detail in
Section 16, Creating and Managing Processes.

Assigning a name to a process hides its location in the operating system and hides
whether it can reference a process pair. A process name also makes interprocess
communication easier, because the name that you pass to the FILE_OPEN_
procedure is already known. On the other hand, a process that wants to communicate
with an unnamed process cannot have prior knowledge of the process file name; it
must establish what the process file name is at run time, then pass it to the
FILE_OPEN_ call.

The syntax for file names for named processes follows:

A named process is identified by an alphanumeric name in the process-name field.
A process-name is made up of 1 to 5 alphanumeric characters beginning with a
dollar sign ($). The character after the dollar sign must be a letter.

The optional sequence number (seq-no) enables instances of a process name to be
distinguished over time. A specific process name often represents a service (for
example, $S is a spooler collector), and the user does not care whether the service
provider is the same instance as it was some time earlier; the user simply wants the
service. The seq-no field is therefore often omitted. However, although failure and
restart of a server is irrelevant to some requesters, it may be important to others. The

Process file name, named process:

[node-name.]process-name[:seq-no][.q1[.q2]]

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 8

Process File Names

operating system must therefore be able to distinguish different instances of the same
named server.

The named form of the process also permits qualifiers (q1 and q2) to be passed to the
process. These are alphanumeric values. q1 must start with a pound sign (#).
(q2 must not include a pound sign.) Although they are checked for correct format,
these qualifiers have no meaning to the file system. Their meaning is application-
dependent. When a process is opened by another process, the qualifiers are passed
to the process being opened. For example, $S.#WIDE might indicate to a spooler
collector process that it should direct the lines being sent to it to a printer with a line
width of 132 characters; $S.#NARROW would request a printer with a line width of
80 characters.

Process File Names for Unnamed Processes
Sometimes it is necessary to refer to a process without using a process name. For
example, you can identify one member of a process pair using a process file name for
an unnamed process.

The syntax for file names for unnamed processes follows:

An unnamed process is identified by a combination of the CPU module number (cpu)
and process identification number (pin). The process identification number (or PIN) is
a unique number within a CPU.

Note that the seq-no field is mandatory for unnamed processes. If a process fails and
some other process is created using the same CPU and PIN, the requester needs to
know that the new process is not the one that it has open. Using the sequence
number, the operating system is able to inform the requester that the server has failed
by sending it an error condition.

Process Descriptors
A process descriptor is a limited form of a process file name. It is the form of process
file name returned by Guardian procedure calls. The syntax for process descriptors
follows:

Process file name, unnamed process:

[node-name.]$:cpu:pin:seq-no

Process descriptor, named process:

node-name.process-name:seq-no

Process descriptor, unnamed process:

node-name.$:cpu:pin:seq-no

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 9

Location Independent Disk-File Names

Note that a process descriptor always contains a node name and a sequence number.
It never contains qualifiers.

Location Independent Disk-File Names
Location independent disk-file names are supported by the NonStop Storage
Management Foundation (SMF) product, which is designed to help automate system
storage-management tasks. Location independent naming means that a disk file has
both an external, or logical, name and an internal, or physical, name.

Normally, a disk file’s name indicates the location of the file. For example, the file
\SYS99.$BIGVOL.MYSUBVOL.MYFILE would designate a file located on the
subvolume MYSUBVOL, on the volume $BIGVOL, on the node \SYS99. However, if
this file were managed by the SMF subsystem, its location would be independent of
the name, except for the name of the node.

The SMF subsystem controls the mapping of the external name of a file to the internal
name. This allows the internal name, which identifies the file’s physical location to the
disk process, to change when a file is moved to a different location, while the external
name remains the same to applications and to users. The mapping function is
transparent to applications and to users.

The external name of a file managed by the SMF subsystem follows the normal syntax
for a disk file name; you cannot tell that it is an SMF external name by looking at it.
You can perform any normal operation on the file by using its external name.

However, there are restrictions against directly accessing an SMF file by its internal
name. Also, information requests based on the internal name are disallowed unless
explicitly asked for. (For example, wild-card searches either by TACL commands, such
as the command FILEINFO $VOL.*.*, or by calls to the FILENAME_FIND* procedures,
do not return information about files contained in the ZYT* and ZYS* subvolumes,
which are reserved for SMF internal files; ZYS* and ZYT* must be specified to get
information on internal files that they contain.)

For more information on the SMF product and how to use it, refer to the NonStop
Storage Management Foundation User’s Guide.

Passing File Names to Processes
There are two ways in which you can pass file names to a process:

• Using a CLASS MAP DEFINE (or other DEFINE CLASS that passes file names)

• Using the startup sequence of messages

Either of these methods allows you to use the same program to access different files
without changing your program code.

These concepts are introduced below. For simplicity, early sections of this guide refer
to file names directly, not by DEFINE name or by reference to the startup sequence.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 10

Using CLASS MAP DEFINEs

Using CLASS MAP DEFINEs
A DEFINE is a collection of attributes to which a common name has been assigned.
These attributes can be passed to a process simply by referring to the DEFINE name
from within the process. The =_DEFAULTS DEFINE is an example of such a DEFINE;
this DEFINE passes the default node name, volume, and subvolume to a process.

The DEFINE mechanism can be used for passing file names to processes; this kind of
DEFINE is called a CLASS MAP DEFINE. The following example creates a CLASS
MAP DEFINE called =MYFILE and gives it a FILE attribute equal to
\SWITCH.$DATA.MESSAGES.ARCHIVE:

1> SET DEFINE CLASS MAP, FILE \SWITCH.$DATA.MESSAGES.ARCHIVE
2> ADD DEFINE =MYFILE

Whenever your process accesses the DEFINE =MYFILE, it gets the name of the file
specified in the DEFINE. For example, when your process opens =MYFILE, the file
that actually gets opened is \SWITCH.$DATA.MESSAGES.ARCHIVE.

See Section 7, Using DEFINEs, for a complete discussion on how to use DEFINEs in
your application programs.

Using the Startup Sequence
The startup sequence is a sequence of messages that are passed from the parent
process to the new process when the process is created. The exchange of messages
has to be agreed upon by both processes but typically involves passing a form of the
IN and OUT file names in the Startup message, and sometimes other file names in
Assign messages.

See Section 8, Communicating With a TACL Process, for information on how to access
this information for processes that are started by the TACL process. For processes
that are started from an application, see Section 16, Creating and Managing
Processes.

Creating and Accessing Files
The rest of this section describes how to use Guardian procedures to perform common
operations on files, such as creating, opening and closing, and reading and writing, as
well as gathering information about files and handling file-system errors.

Creating Files
The technique for creating files depends on the type of file you are creating. You can
create files interactively through the TACL command interpreter or certain utilities or
programmatically by calling Guardian procedures. This guide is concerned with
manipulating files programmatically. For details of the relevant command-interpreter
commands, read the Guardian User’s Guide.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 11

Creating Files

Disk files, for example, can be created programmatically using the
FILE_CREATE[LIST]_ procedure or interactively using the TACL CREATE or File Utility
Program (FUP) CREATE command. Device files are created either at operating-
system generation time or by COUP (D-series releases) and SCF (G-series releases);
they are not created programmatically. Process files are created when a process is
created either programmatically using the PROCESS_LAUNCH_ or
PROCESS_CREATE_ procedure or interactively using the TACL RUN command. One
of the most important effects of creating a file is that a file name is given to the file.

Creating Disk Files
You can use either the FILE_CREATE_ or FILE_CREATELIST_ procedure to create
disk files programmatically. FILE_CREATE_ allows you to specify most of the
commonly used properties that a disk file can have, such as the file type (unstructured,
relative, entry sequenced, or key sequenced), block length, record length, and extent
sizes. Some files, however, need properties that you cannot assign using
FILE_CREATE_ (such as alternate-key files and partitioned files); for these files, you
need to use the FILE_CREATELIST_ procedure.

Some examples of what you can do with the FILE_CREATE_ procedure are given
here. For specific examples of using FILE_CREATELIST_, see Section 5,
Communicating With Disk Files. For complete details of both of these procedures, see
the Guardian Procedure Calls Reference Manual.

The following lines of code create a permanent, unstructured disk file:

STRING NAME[0:ZSYS^VAL^LEN^FILENAME - 1];
STRING .S^PTR;
 .
 .
NAME ':=' "$OURVOL.MYSUBVOL.DATAFILE" -> @S^PTR;
LENGTH := @S^PTR '-' @NAME;
ERROR := FILE_CREATE_(NAME:ZSYS^VAL^LEN^FILENAME,
 LENGTH);

The first parameter to the call passes the name of the file to be created. In this case,
the name is $OURVOL.MYSUBVOL.DATAFILE. Because the node name is not
specified, the node name in the =_DEFAULTS DEFINE is used.

The first parameter also indicates the maximum length of the file name in bytes. The
buffer (NAME in this example) should also have a length equal to the maximum file-
name length. In this case, the literal ZSYS^VAL^LEN^FILENAME provided in the
ZSYSTAL file has been used to reserve a buffer large enough for any file name
including space for future expansion of file names. Here, the maximum length need
only reserve enough space for the supplied file-name string, because the actual length
of the file name is known on input.

Note. File names should normally be passed to a process either in a DEFINE (see Section 7,
Using DEFINEs) or in the Startup message (see Section 8, Communicating With a TACL
Process). For simplicity, however, examples throughout this section receive hard-coded file
names.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 12

Creating Files

The second parameter designates the actual length of the supplied file name. File
names are variable length, so it is necessary to tell the operating system how many
bytes to expect. In this case, pointers have been used to identify each end of the file-
name string before computing the string length.

To create a temporary file, use the FILE_CREATE_ procedure without specifying the
subvolume or file ID of the name. For example:

NAME ':=' "$OURVOL" -> @S^PTR;
LENGTH := @S^PTR '-' @NAME;
ERROR := FILE_CREATE_(NAME:ZSYS^VAL^LEN^FILENAME,
 LENGTH);

Here, a temporary file is created somewhere on the volume $OURVOL. The name of
the temporary file is returned in the NAME variable, and the name length in LENGTH.
In this case, you should use the ZSYS^VAL^LEN^FILENAME literal to allow future
expansion of the file name, because the length of the file name is not known on input.

Allocating Extents
So far no attention has been paid to how the operating system allocates disk space for
a created file. It does so in extents, where an extent is a physically contiguous area of
disk that may be as small as 2048 bytes or as large as 128 megabytes (MB). While
applications see a file as a logically contiguous area of storage, the operating system
splits the file space into extents. Figure 2-2 shows an example of a file split into three
extents.

If you do not specify an extent size, the operating system uses the default extent size
of one page (2048 bytes). Smaller extents mean less wasted allocated disk space, but
CPU overhead is reduced by having larger extents because there are fewer extents to
manage. A smaller extent size is therefore suitable for small files because it wastes
less disk space. Larger files can be managed more efficiently with larger extents,
because that results in fewer extents to manage.

Each file that is not empty is made up of at least one extent, the primary extent; an
empty file has no extents. If a file is larger than the primary extent size, additional

Figure 2-2. File Space Allocated in Extents

VST007.VSD

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 13

Creating Files

secondary extents are allocated. The secondary extents are all the same size, but the
primary extent may be a different size than the secondary extents. Extents are
automatically allocated to the file by the disk process as the need arises up to a file-
dependent maximum value.

Parameters of the FILE_CREATE[LIST]_ procedure allow you to specify the extent
sizes. One parameter specifies the length of the primary extent in pages (2048-byte
units). Another parameter specifies the length of each secondary extent, also in
pages.

The following example allocates a primary extent of 8 megabytes and secondary
extents of 1 megabytes each.

PRIMARY^EXTENT^SIZE := 4096;
SECONDARY^EXTENT^SIZE := 512;
NAME := "$OURVOL.MYSUBVOL.DATAFILE" -> @S^PTR;
LENGTH := @S^PTR '-' @NAME;
ERROR := FILE_CREATE_(NAME:ZSYS^VAL^LEN^FILENAME,
 LENGTH,
 !file^code!, !not specified
 PRIMARY^EXTENT^SIZE,
 SECONDARY^EXTENT^SIZE);

So far you have seen how to control the size of the extents allocated to a file. You also
need to set the amount of space that can be allocated to the file by specifying the
maximum number of extents. By default, up to 16 extents can be allocated as needed.

You set the maximum number of extents initially using another parameter of the
FILE_CREATE_ procedure. The following example sets the maximum to 32:

MAX^EXTENTS := 32;
CALL FILE_CREATE_(NAME:ZSYS^VAL^LEN^FILENAME,
 LENGTH,
 !file^code!,
 PRIMARY^EXTENT^SIZE,
 SECONDARY^EXTENT^SIZE,
 MAX^EXTENTS);

This number can be changed either by using the FUP ALTER command—see the File
Utility Program (FUP) Reference Manual —or programmatically using the SETMODE
procedure call, function 92—see the Guardian Procedure Calls Reference Manual.

Creating Processes
You can create processes either by issuing the RUN command from the TACL
command interpreter or by calling the PROCESS_LAUNCH_ or PROCESS_CREATE_
Guardian procedure from a program. (How to use the PROCESS_LAUNCH_
procedure is explained in Section 16, Creating and Managing Processes.)

The TACL RUN command can create named or unnamed processes. If you use the
NAME option of the RUN command, then a named process is created. Without the
NAME option, the RUN command usually creates an unnamed process, unless the
RUNNAMED flag is specified for the object file, in which case the process is always

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 14

Creating Files

named. (See the discussion earlier in this section about named and unnamed
processes.)

If the process is created programmatically using the PROCESS_CREATE_ procedure,
the process is named or unnamed depending on the information supplied with the call.
One parameter of the PROCESS_CREATE_ procedure is known as the
name-option parameter. If it is 1, then the process is named using the name
supplied in the name:length parameter.

When creating processes from $SYSTEM.SYSnn, specifying the $SYSTEM.SYSTEM
subvolume is recommended. When you specify the $SYSTEM.SYSTEM subvolume,
the system dynamically searches for the object file first in the $SYSTEM.SYSTEM
subvolume. If the object file is not found in $SYSTEM.SYSTEM, the search continues
in the $SYSTEM.SYSnn subvolume. When you specify the $SYSTEM.SYSnn
subvolume, you are explicitly specifying the location of the object. This means that any
stored reference to the object must be updated to point to the location of the new
object whenever a new version of the operating system is installed.

The following example starts a process from the program contained in the disk file
\SYSTEM1.$MASTER.PROGS.SERVER and names the process $SER1. This
example uses the literal ZSYS^VAL^PCREATOPT^NAMEINCALL supplied in the
ZSYSTAL file to specify that the process will be named. This example also uses the
ZSYS^VAL^LEN^PROCESSDESCR literal from the ZSYSTAL file to specify the
maximum length of the returned process descriptor.

OBJECT^FILENAME ':=' "\SYSTEM1.$MASTER.PROGS.SERVER"
 -> @S^PTR;
OBJFILENAME^LEN := @S^PTR '-' @OBJECT^FILENAME;
NAME^OPTION := ZSYS^VAL^PCREATOPT^NAMEINCALL;
PROCESS^NAME ':=' "$SER1" -> @S^PTR;
PROCESSNAME^LEN := @S^PTR '-' @PROCESS^NAME;
ERROR := PROCESS_CREATE_(
 OBJECT^FILENAME:OBJFILENAME^LEN,
 !library^file:lib^name^len!,
 !swap^file:swap^name^len!,
 !ext^swap^file:ext^swap^len!,
 !priority!,
 !processor!,
 !process^handle!,
 !error^detail!,
 NAME^OPTION,
 PROCESS^NAME:PROCESSNAME^LEN,
 DESCR:ZSYS^VAL^LEN^PROCESSDESCR,
 DESCLEN);

Your program can now send messages to $SER1 by opening and writing data to the
process file name returned in the DESCR array variable.

As when creating any file, you need to supply the maximum file-name length. Again
we recommend using the ZSYS^VAL^LEN^PROCESSDESCR literal from the
ZSYSTAL file for this purpose. The actual length of the process descriptor is returned
in the DESCLEN integer variable.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 15

Opening Files

If the name-option parameter is set to 2, then the operating system provides a
name. To set the name-option parameter to 2, we recommend using the
ZSYS^VAL^PCREATOPT^NAMEDBYSYS literal from the ZSYSTAL file. In this case,
the name:length parameter is omitted. A named-form process descriptor (a process
file name without any qualifier) is returned in DESCR:

NAME^OPTION := ZSYS^VAL^PCREATOPT^NAMEDBYSYS;
ERROR := PROCESS_CREATE_(
 OBJECT^FILENAME:OBJFILENAME^LEN,
 !library^file:lib^name^len!,
 !swap^file:swap^name^len!,
 !ext^swap^file:ext^swap^len!,
 !priority!,
 !processor!,
 !process^handle!,
 !error^detail!,
 NAME^OPTION,
 !name:length!,
 DESCR:ZSYS^VAL^LEN^PROCESSDESCR,
 DESCLEN);

If name-option is set to 0, then an unnamed process descriptor is returned in
DESCR. You can make sure that the name-option parameter is correctly set by
using the ZSYS^VAL^PCREATOPT^NONAME literal:

NAME^OPTION := ZSYS^VAL^PCREATOPT^NONAME;
ERROR := PROCESS_CREATE_(
 OBJECT^FILENAME:OBJFILENAME^LEN,
 !library^file:lib^name^len!,
 !swap^file:swap^name^len!,
 !ext^swap^file:ext^swap^len!,
 !priority!,
 !processor!,
 !process^handle!,
 !error^detail!,
 NAME^OPTION,
 !name:length!,
 DESCR:ZSYS^VAL^LEN^PROCESSDESCR,
 DESCLEN);

Opening Files
Your program must open a file before gaining access to it. Use the FILE_OPEN_
procedure to open any file on your system or network. You supply the procedure with
a file name and the name of a variable in which to return the file number. You will later
use this file number to perform operations on the open file. The association of the file
number with the file name remains until the file is closed.

The FILE_OPEN_ procedure call has many options; only the most common are
described here. For a complete description of all FILE_OPEN_ parameters, refer to
the Guardian Procedure Calls Reference Manual.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 16

Opening Files

Examples of opening disk files, device files, and process files follow.

Opening Disk Files
To open a disk file, use a call like the following:

FILE^NAME ':=' "$OURVOL.MYSUBVOL.DATAFILE" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 FILENUM);

The first parameter (FILE^NAME:LENGTH) is the file name created by the
FILE_CREATE[LIST]_ procedure (or the TACL CREATE command or the FUP
CREATE command). LENGTH is an integer variable that specifies the length in bytes
of the file name. If the file was created using the FILE_CREATE_ procedure, you can
use the length value returned by that procedure.

The second parameter (FILENUM) returns a number that your program uses to identify
the file in subsequent operations. Once the file is opened, you use this number to
identify the file.

Opening Disk Files for Ensured Data Integrity
To ensure data integrity when you perform write operations to a disk file, you need to
open that file using a nonzero value for the sync-depth parameter as follows:

FILE^NAME ':=' "$OURVOL.MYSUBVOL.DATAFILE" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
SYNC^DEPTH := 1;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 FILENUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 SYNC^DEPTH);

Setting the sync-depth parameter to a nonzero value causes the disk I/O process to
checkpoint information to its backup process when performing I/O operations. If the
CPU on which the primary disk process is running fails, then the backup disk process
can use the checkpointed information to establish whether it needs to complete the
operation or whether the operation finished successfully before the failure occurred.
Recovery from a CPU failure in this way is invisible to the application process.

If you do not set the sync-depth parameter to a nonzero value on opening the file,
the backup disk process has no way of knowing whether the operation finished
successfully. If you open a disk file with a zero sync depth, then a CPU failure could
cause corruption of data.

Opening Devices
Opening a device file is similar to opening a disk file. The call to FILE_OPEN_ is the
same; the only difference is in determining the file name. Remember that device

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 17

Opening Files

naming is a system-management function, therefore you need to know some system-
configuration information before attempting to open a device file.

The following example opens a printer called $LP1:

FILE^NAME ':=' "$LP1" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 FILENUM);

The next example opens the home terminal of the process:

ERROR := PROCESS_GETINFO_(
 !process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMINAL^NAME:ZSYS^VAL^LEN^FILENAME,
 LENGTH);
ERROR := FILE_OPEN_(TERMINAL^NAME:LENGTH,
 FILENUM);

Here, the PROCESS_GETINFO_ call returns the name of the home terminal in the
variable TERMINAL^NAME, along with the file-name length in LENGTH. Both of these
values are supplied to the FILE_OPEN_ call. You now use the returned file number to
perform I/O operations on the terminal.

Opening Processes
To open a process, you simply pass the process file name and its length to the
FILE_OPEN_ procedure. If the process you are opening was created by the current
process (using, for example, a call to PROCESS_CREATE_ as described earlier in this
section), then you use the process descriptor returned by the process creation
procedure. If the process was created outside the current process, then you can pass
the process name in the FILE_OPEN_ call.

Consider a requester process $REQ that needs the services of a server process
$SER1 that was created and named using the RUN command. The requester may
open the server process as follows:

FILE^NAME ':=' "$SER1" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 FILENUM);

To receive messages sent to it, the $SER1 process must open its $RECEIVE file:

FILE^NAME ':=' "$RECEIVE" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
RECEIVE^DEPTH := 1;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 FILENUM,
 !access!,
 !exclusion!,

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 18

Reading and Writing Data

 !nowait^depth!,
 RECEIVE^DEPTH);

The requester process can now pass messages to the server process.

Reading and Writing Data
The operating system supports several procedure calls that enable reading and writing
of files:

• READX and READ each read a record from an open file into an application buffer.
There are two differences between these procedures: one is that READX can read
into a buffer in either the user data segment or an extended data segment,
whereas READ must have the application buffer in the user data segment; the
other difference is that READX reads data into a buffer declared with data type
STRING, whereas READ reads data into a buffer declared with data type INT.

• WRITEX and WRITE each write a record to an open file from an application buffer.
The same two differences apply to WRITE and WRITEX as to READ and READX,
this time regarding the position and data type of the buffer containing the data to be
written.

See Section 17, Managing Memory, for discussions on accessing extended data
segments.

Before performing any I/O to a file, the file must be open as described in Opening
Files, earlier in this section.

I/O With Disks
I/O to all supported types of disk files is described in detail in Section 5,
Communicating With Disk Files. This subsection describes some of the simple
operations that can be performed on unstructured files. The various pointers used to
control position within the file and the procedures used to perform I/O operations are
introduced.

Associated with each file that you have open are three pointers: a current-record
pointer, a next-record pointer, and an end-of-file pointer. The current-record pointer
and next-record pointer are used to establish at which byte in the file a read or write
operation will begin. These pointers can be manipulated to perform sequential or
random access.

The end-of-file pointer simply points to the last relative byte of the file plus 1. It is
automatically advanced by the number of bytes written whenever you append data to
the file.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 19

Reading and Writing Data

When you open a file, the current-record and next-record pointers point to the first byte
in the file:

A READ[X] or WRITE[X] procedure call always begins at the byte pointed to by the
next-record pointer. The next-record pointer is advanced on each READ[X] or
WRITE[X] call to provide automatic sequential access to the file.

Normally, the next-record pointer is rounded up to an even value. However, if the file
was created as an odd-unstructured file (by setting bit <15> of the FILE_CREATE_
options parameter to 1) then the next-record pointer is advanced by exactly the
number of bytes transferred.

Following the read or write operation, the current-record pointer indicates the first byte
affected by the read or write operation. The following example transfers 512 bytes of
data from the disk file starting at relative byte 0 into a buffer in memory called
SBUFFER.

STRING .SBUFFER[0:511];
 .
 .
RCOUNT := 512;
CALL READX(FILENUM,
 SBUFFER,
 RCOUNT,
 NUMXFERRED);

VST008.VSD

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 20

Reading and Writing Data

The actual number of bytes transferred is returned in NUMXFERRED. The positions of
the pointers are as follows. The next-record pointer is increased by 512 bytes; the
current-record pointer still addresses relative byte 0:

If you reissue an identical READX call, the next 512 bytes are read into SBUFFER
(starting at byte 512). The next-record pointer is increased by 512 bytes and now
points to relative byte address 1024; the current-record pointer points to relative byte
512:

RCOUNT := 512;
CALL READX(FILENUM,
 SBUFFER,
 RCOUNT,
 NUMXFERRED);

VST009.VSDVST009.VSD

VST010.VSD

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 21

2 Using the File System

If you now issue the following WRITEX call, 512 bytes are written into the disk file,
starting at the byte addressed by the next-record pointer. The effect on the pointers is
the same as if you had issued a READ call:

WCOUNT := 512;
CALL WRITEX(FILENUM,
 SBUFFER,
 WCOUNT);

Random access to a disk file is provided by the POSITION procedure. This procedure
sets the current-record pointer and next-record pointer. The following example sets
both these pointers to relative byte 4096:

FILE^POINTERS := 4096D;
CALL POSITION(FILENUM,
 FILE^POINTERS);

Note that the procedure requires a double-length integer.

A READX call now reads the data, starting at relative byte 4096:

RCOUNT := 512;
CALL READX(FILENUM,
 SBUFFER,
 RCOUNT,
 NUMXFERRED);

This call transfers 512 bytes from the disk file starting at relative byte 4096 into
SBUFFER. The next-record pointer is increased by 512 bytes so that further

VST011.VSD

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 22

sequential access is automatic. The current-record pointer still points at relative byte
4096:

I/O operations can also be performed starting at the relative byte pointed at by the
current-record pointer. To read from the current-record pointer, you use the
READUPDATE[X] procedure; to write starting at the current-record pointer, you use the
WRITEUPDATE[X] procedure.

A typical read record, update record, write record back sequence makes use of a
READ[X] call followed by a WRITEUPDATE[X] call. For example, if you follow the
above READX call with a WRITEUPDATEX call that uses the same buffer size as the
READX call, then the record read by the READX call gets written over because the
WRITEUPDATEX call starts writing at the current-record pointer, not the next-record
pointer:

WCOUNT := 512;
CALL WRITEUPDATEX(FILENUM,
 SBUFFER,
 WCOUNT);

Following the WRITEUPDATEX call, the current-record and next-record pointers
remain unchanged:

To append records to a file, you must position the current-record and next-record
pointers to the end of the file. You do this by supplying the POSITION procedure with
-1 as the byte address:

FILE^POINTERS := -1D;
CALL POSITION(FILENUM,
 FILE^POINTERS);

VST013.VSD

VST014.VSD

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 23

Following the above call, the current-record and next-record pointers are positioned as
follows:

Successive write operations then append records to the file.

I/O With Devices
Sections 9 through 12 describe I/O operations to device files in detail. This subsection
briefly presents the procedures used and gives one specific example of the
WRITEREADX procedure that is particularly useful for communicating with terminals.

Because devices can be treated as files, input and output to devices can be done
using read and write operations like those for disk files. For device-specific operations,
such as setting the mode of operation for a device, you use the SETMODE and
CONTROL procedures.

Writing to a printer involves simply using the WRITE[X] procedure. Communicating
with magnetic tape uses the READ[X] and WRITE[X] procedures along with the
CONTROL procedure that is used to space the tape backwards and forwards. I/O to
terminals can also be done using simple READ[X] and WRITE[X] calls. In many
applications, however, communicating with a terminal involves displaying a prompt and
then waiting for a response. The WRITEREAD[X] procedure combines both of these
operations into one procedure.

The WRITEREAD[X] procedure has two parts: the first part writes the contents of a
memory buffer to the specified file, and the second reads the response back into the
same buffer. The procedure requires at least four parameters: the file number of the
file you want to communicate with, the buffer name, the number of bytes to be written,
and the maximum number of bytes that will be returned. When communicating with a
terminal in conversational mode, the read ends when a line-termination character is
entered (typically a carriage return). A fifth parameter returns the actual number of
bytes read.

The following example prompts the user to enter an account number. The procedure
returns when the user has entered a number and pressed the line-termination
character:

VST015.VSD

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 24

SBUFFER ':=' "PLEASE ENTER ACCOUNT NUMBER: " -> @S^PTR;
WCOUNT := @S^PTR '-' @SBUFFER;
RCOUNT := 72;
CALL WRITEREADX(FILENUM,
 SBUFFER,
 WCOUNT,
 RCOUNT,
 NUMXFERRED);

The call writes 30 bytes from the memory buffer SBUFFER, then prepares for reading
up to 72 bytes of information back into the same buffer. A count of the number of bytes
entered is given in NUMXFERRED.

I/O With Processes
A process writes messages to another process by writing to the open process file. To
read messages sent by another process, your process must read from its $RECEIVE
file. (By default, messages from the operating system are also read through
$RECEIVE; you can choose not to receive file management system messages,
however, by setting the appropriate bit in the FILE_OPEN_ procedure options
parameter.)

Communication between processes can be two-way or one-way. In two-way
communication, the first process sends a message to the second process, and then
the second process reads the message and responds with reply information. In one-
way communication, one process simply sends a message to the other and the other
process reads it; the second process passes no information in the response to the first
process.

Consider a requester process $REQ that performs two-way communication with a
server process $SER1. $REQ opens $SER1 and $SER1 opens $RECEIVE. Because
$REQ wants to read a reply from $SER1, it sends a request message using the
WRITEREADX procedure. Because the server expects to send reply text or an error
indication back to the requester, it reads the message from $RECEIVE using a
READUPDATEX call and then sends a reply using a REPLYX call.

 $REQ $SER1

NAME ':=' "$SER1"; NAME ':=' "$RECEIVE";
LEN := 5; LEN := 8;
ERROR := FILE_OPEN_(ERROR := FILE_OPEN_(
 NAME:LEN, NAME:LEN,
 FN, FN,
 !access!, !access!,
 !exclusion!, !exclusion!,
 !nowait^depth!, !nowait^depth!,
 1); 1);
 . .
 . .
BUFF ':=' "MESSAGE..."; .
CALL WRITEREADX(FN,BUFF, CALL READUPDATEX(FN,BUFF,
 WCOUNT,RCOUNT); RCOUNT);
 .

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 25

 .
 .
 CALL REPLYX(BUFFER,COUNT);

The call to REPLYX by the server satisfies the WRITEREADX call. That is, whatever
REPLYX returns in its BUFFER is what WRITEREADX reads.

Note that the sixth parameter, the receive depth, is specified in the FILE_OPEN_ call in
the server. Here, the receive depth is specified as 1 to enable the READUPDATEX
procedure to process one message at a time. The receive depth is discussed in detail
in Section 6, Communicating With Processes, along with other interprocess
communication issues.

In one-way communication, the server passes no information in the response to the
requester. In this case, the requester can issue the request using the WRITEX
procedure instead of WRITEREADX. Because the server does not send any
information in the reply, it can read the message from $RECEIVE using the READX
procedure. The reply to the requester is made when the READX finishes, allowing the
WRITEX in the requester to finish. If there is no message in $RECEIVE, the READX
call waits until a message arrives (unless the “nowait” option is specified; see
Section 4, Using Nowait Input/Output).

 $REQ $SER1

NAME ':=' "$SER1"; NAME ':=' "$RECEIVE";
LEN := 5; LEN := 8;
ERROR := FILE_OPEN_(ERROR := FILE_OPEN_(
 NAME:LEN, NAME:LEN,
 FNUM, FNUM,
 !access!, !access!,
 !exclusion!, !exclusion!,
 !nowait^depth!, !nowait^depth!,
 1); 1);
 . .
 . .
 . .
BUFFER ':=' "MESSAGE...";
CALL WRITEX(FNUM,BUFFER, CALL READX(FNUM,BUFFER,
 WCOUNT); RCOUNT);
 . .
 . .

There is actually a third way of communicating with another process (sometimes called
“one-and-a-half-way communication”) that has elements of one-way communication
and two-way communication. Here, the requester sends a message to the server
using the WRITE[X] procedure (not expecting return data). If the server reads the
message using the READUPDATE[X] procedure, the WRITE[X] does not terminate
until the server responds by calling REPLY[X]. The WRITE[X] procedure cannot read
data, but it does return the file-system error number sent in the reply.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 26

Getting File Information

Getting File Information
The following related procedures provide information on all files: disk files, device files,
and process files:

Refer to the Guardian Procedure Calls Reference Manual for a complete description of
each of these procedures. This guide presents a brief overview.

Information provided by the brief-form procedures includes:

• The name of the file and file-name length

• The last error number returned from the file system

• Device type and subtype, as well as information about the specific device type

• The physical record length associated with the file

The extended-form procedures can return all the above, plus information about the
current position pointers, key values, access modes, exclusion modes, and so on.

One common use of the FILE_GETINFO_ procedure is to return the value of the last
file-system error. File-system errors are discussed in the next subsection.

Handling File-System Errors
An error number is associated with the completion of each procedure call to the file
system. The error number indicates whether the procedure executed successfully. If
the procedure did not execute successfully, then you can use the error number to help
determine what went wrong.

An error number is a 16-bit signed integer. To avoid using negative numbers, only
15 bits are used, yielding a range of error numbers from 0 up to about 32K. Error
numbers are categorized as follows:

• Error number 0 indicates that the procedure executed successfully.

• Error numbers in the range 1 through 9 are warnings. Warnings indicate that some
event has happened that may or may not be harmful to your process. For
example, reaching the end of file returns a warning error number.

FILE_GETINFO_ Returns brief information about an open file
identified by file number.

FILE_GETINFOBYNAME_ Returns brief information about a file identified
by file name. The file need not be open to get
information using this procedure.

FILE_GETINFOLIST_ Returns extended information about an open file
identified by file number.

FILE_GETINFOLISTBYNAME_ Returns extended information about a file
identified by file name.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 27

Handling File-System Errors

• Error numbers in the range 10 and up indicate an error encountered in a standard
operation, such as an attempt to access a file before it is open, or that a system
component failed while the procedure was executing.

• Error numbers 300 through 511 are reserved for application-dependent use.

Returned Error Numbers and Condition Codes
Some file-system procedures return the error number directly to the calling program.
Others return only a condition code as follows:

Following procedure calls that provide only a condition code, your program must issue
a FILE_GETINFO_ call to obtain the error number.

Your program should always check for errors immediately after executing a file-system
procedure call. If the call returns the error itself, simply check the return value. If a
nonzero error number is returned, your program could, for example, call a user-written
procedure to process the error. The following example calls the procedure
FILE^ERRORS to process the error number:

FILE^NAME ':=' "$OURVOL.MYSUBVOL.DATAFILE" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 FILENUM);
IF ERROR <> 0 THEN CALL FILE^ERRORS(ERROR);

If the procedure sets a condition code, you need to call the FILE_GETINFO_
procedure to determine the error number. The error number is returned in the second
parameter:

CALL WRITEX(FILENUM,BUFFER,WCOUNT);
IF <> THEN
BEGIN
 CALL FILE_GETINFO_(FILENUM,ERROR);
 CALL FILE^ERRORS(ERROR);
END;

The Guardian Procedure Calls Reference Manual indicates which procedures return
the error number and which procedures set a condition code.

The procedure FILE^ERRORS might, for example, simply print the error number on
the terminal. The user would then be expected to look up the error number using the
ERROR command. The sample program at the end of this section shows a procedure
coded to work this way. Alternatively, FILE^ERRORS could be coded to communicate
directly with the ERROR program, causing the error text to be displayed on the
terminal screen without the need for manual intervention. Section 20, Interfacing With
the ERROR Program, describes how to do this.

> condition-code-greater-than (CCG) indicates a warning

< condition-code-less-than (CCL) indicates an error

= condition-code-equal (CCE) indicates successful execution

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 28

Handling File-System Errors

Retrying After an Error
In some cases, the error condition may be temporary. Your program can try the
operation again after a period of time or following some operator intervention. For
example, the following errors typically indicate a temporary error in an operation that
your program can retry once the condition that caused the error is corrected:

It might be useful to retry errors 101 and 102 more than once.

In other cases, the error number indicates a condition that typically cannot be
recovered by trying the operation again, as in the following examples:

If you do choose to retry the operation that caused one of these errors, be sure to
delay for an appropriate period between detecting the error and retrying the operation.
You should also keep a retry counter or a timer to indicate when to give up retrying the
operation. See Section 18, Managing Time, for information about setting up timers.

For details of all file-system errors, including a discussion of the cause of the error, the
action taken by the system, and suggested action for your program to take, see the
Guardian Procedure Errors and Messages Manual.

Error 40 Operation timed out

Error 73 File/record locked

Error 100 Device not ready or controller not operational

Error 101 No write ring (magnetic tape)

Error 102 Paper out, bail open, or end of ribbon (line printer)

Error 110 Only BREAK access permitted (terminal)

Error 111 Terminal operation aborted because of BREAK

Error 11 File not in directory or record not in file, or the specified tape file is not
present on a labeled tape

Error 12 File in use

Error 14 Device does not exist

Error 43 Unable to obtain disk space for file extent

Error 45 File is full

Error 48 Security violation

Error 49 Access violation, or attempt to use an unexpired labeled tape for output,
or mismatch between DEFINE USE attribute (input or output/extend) and
the current operation (read or write)

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 29

Closing Files

Closing Files
You can close files explicitly using the FILE_CLOSE_ procedure.

ERROR := FILE_CLOSE_(FILENUM);

If you do not explicitly close a file, the file remains open until the process stops. When
a process stops, all files that the process has open are automatically closed.

Once you have closed a file, the file number can no longer access that file. The file
number is now available to be reassigned to another file.

Accessing Files: An Example
The following simple program uses many of the procedure calls described in this
section. The program shows communication with a terminal and with an unstructured
disk file.

The program is designed to keep a daily log of comments. It allows the user to append
comments to the log or read comments from the log.

The program prompts a user to request one of these functions:

• Append a record to the disk file. Records are 512 bytes long and are terminated
when the line-termination character is entered.

• Read a record from the disk file and display it on the terminal. Read operations
begin at the first record in the file. The program prompts the user to make
additional read requests. Successive read operations display records sequentially.

• Exit the program.

Before running the program, the data file to contain the log must exist. You can create
this file either programmatically by using the FILE_CREATE_ procedure as described
earlier in this section or interactively using either the CREATE command or the FUP
CREATE command. The following example uses the FUP CREATE command:

1> FUP
-CREATE $ADMIN.OPERATOR.LOGFILE
CREATED - $ADMIN.OPERATOR.LOGFILE
-EXIT
2>

The program consists of the following procedures:

• The LOGGER procedure is the main procedure. It calls INIT to handle the Startup
messages and open files. It calls the GET^COMMAND procedure to prompt the
user for the function to perform and then calls the appropriate procedure to
execute the selected function. If the user selected “r,” the LOGGER procedure
calls READ^RECORD. If the user selected “a,” the LOGGER procedure calls
APPEND^RECORD. If the user selected “x,” the LOGGER procedure calls
EXIT^PROGRAM.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 30

Accessing Files: An Example

• The INIT procedure reads and discards the Startup messages before opening the
terminal file and the disk file containing the daily log.

• The GET^COMMAND procedure displays a menu of options on the user’s terminal
and returns the selected option (“r,” “a,” or “x”) to the main procedure.

• The READ^RECORD procedure reads records from the log file. Starting from the
beginning of the file, this procedure reads each record from the file, displays it on
the terminal, and then prompts the user to read the next record. If the user
declines or the end of the file is reached, the procedure returns to the main
procedure.

• The APPEND^RECORD procedure prompts the user to enter some comments and
then writes those comments to the end of the file.

• The EXIT^PROGRAM procedure stops the program.

• The ILLEGAL^COMMAND procedure responds to the user entering an illegal
function. That is, the user entered something other than “r,” “R,” “a,” “A,” “x,” or “X.”
After informing the user of the illegal input, the procedure returns to the main
procedure.

• The FILE^ERRORS^NAME and FILE^ERRORS procedures display error
messages when the program receives a file-system error on trying to execute a
file-system procedure call. FILE^ERRORS^NAME is used if the file is not yet
open. FILE^ERRORS is used if the file is already open. After displaying a file-
system error message, these procedures stop the process.

The TAL code for this program appears on the following pages.

Note. Near the beginning of the source code that follows are some definitions of TAL
DEFINEs used by the program to help formatting and displaying messages. Refer to the TAL
Reference Manual for details of TAL DEFINEs. Do not confuse TAL DEFINEs with the file
system DEFINEs described in Section 7, Using DEFINEs.

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 31

Accessing Files: An Example

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !max-file name
 ! length
LITERAL BUFSIZE = 512;

STRING .SBUFFER[0:BUFSIZE]; !I/O buffer (one extra char)
STRING .S^PTR; !pointer to end of string
INT LOGNUM; !log file number
INT TERMNUM; !terminal file number

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,
? PROCESS_GETINFO_,FILE_OPEN_,WRITEREADX,WRITEX,
? PROCESS_STOP_,READX,POSITION,DNUMOUT,FILE_GETINFO_)
?LIST

!--
! These DEFINEs make it easier to format and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =

 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 32

Accessing Files: An Example

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name and its length
! and the error number. This procedure is used when the
! file is not open, so there is no file number for it.
! FILE^ERRORS is to be used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!---

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program

 CALL PROCESS_STOP_;
END;

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to display the
! information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!---

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN-1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 33

Accessing Files: An Example

!---
! Procedure to write a message on the terminal and check
! for any error. If there is an error, this procedure
! attempts to write a message about the error and then
! stops the program.
!---

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

!--
! Procedure to prompt the user for the next function to be
! performed:
!
! "r" to read records
! "a" to append a record
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' for Read Log, ");
 PRINT^STR(" 'a' for Append to Log, ");
 PRINT^STR(" 'x' for Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 34

Accessing Files: An Example

!--
! Procedure for reading records. The user selected function
! "r." The start of the read is selected randomly by record
! number. The user has the option of sequentially reading
! subsequent messages.
!--

PROC READ^RECORD;
BEGIN
 INT COUNT^READ;
 INT ERROR;

! Position current-record and next-record pointers
! to the beginning of the file:

 CALL POSITION (LOGNUM, 0D);
 IF <> THEN CALL FILE^ERRORS (LOGNUM);

! Loop reading and displaying records until user
! declines to read next record (any response other than
! "y"):

 DO BEGIN

 PRINT^BLANK;

 ! Read a record from the log file and display
 ! it on the terminal. Display "No such record"
 ! if reach end of file:

 CALL READX(LOGNUM,SBUFFER,BUFSIZE,COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(LOGNUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(LOGNUM);
 END;

 CALL WRITE^LINE(SBUFFER,COUNT^READ);

 PRINT^BLANK;

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 35

Accessing Files: An Example

 ! Prompt the user to read the next record. The user
 ! must respond "y" to accept, otherwise the procedure
 ! returns to select next function:

 SBUFFER ':=' ["Do you want to read another ",
 "record (y/n)? "]
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");
END;

!--
! Procedure for appending a record. The user selected
! function "a." The user is prompted to enter comments. The
! procedure puts the comments in a new record at the end of
! the file.
!--

PROC APPEND^RECORD;
BEGIN
 INT COUNT^READ;

 PRINT^BLANK;

! Prompt user for comments and read comments into the
! buffer:

 SBUFFER ':=' "Enter today's comments: "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Blank out portion of buffer past last character read:

 SBUFFER[COUNT^READ] ':=' " " & SBUFFER[COUNT^READ]
 FOR BUFSIZE-COUNT^READ BYTES;

! Place the next-record pointer at the end of file and
! write the new record there:

 CALL POSITION (LOGNUM,-1D);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

 CALL WRITEX(LOGNUM,SBUFFER,BUFSIZE);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);
END;

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 36

Accessing Files: An Example

!--
! Procedure to exit the program.
!--

PROC EXIT^PROGRAM;
BEGIN
 CALL PROCESS_STOP_;
END;

!--
! Procedure to process an invalid command. The procedure
! informs the user that the selection was other than "r,"
! "a," or "x."
!--

PROC INVALID^COMMAND;
BEGIN

 PRINT^BLANK;

! Inform the user that the selection was invalid and
! return to prompt again for a valid function:

 PRINT^STR ("INVALID COMMAND: " &
 "Type either 'r,' 'a,' or 'x'");
END;

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 37

Accessing Files: An Example

!--
! Procedure to initialize the program. It calls
! INITIALIZER to dispose of the startup sequence of messages.
! It opens the home terminal and the data file used by the
! program.
!--

PROC INIT;
BEGIN
 STRING .LOGNAME[0:MAXFLEN - 1]; !name of log file
 INT LOGLEN; !length of log name
 STRING .TERMNAME[0:MAXFLEN - 1]; !terminal file
 INT TERMLEN; !length of term name
 INT ERROR;

! Read and discard the startup sequence of messages.

 CALL INITIALIZER;

! Open the terminal file. For simplicity this program uses
! the home terminal; the recommended approach is to use the
! IN file read from the Startup message; see Section 8 for
! details:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMNAME:MAXFLEN,
 TERMLEN);
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,
 TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the log file with a sync depth of 1:

 LOGNAME ':=' "$XCEED.DJCEGD10.LOGFILE" -> @S^PTR;
 LOGLEN := @S^PTR '-' @LOGNAME;
 ERROR := FILE_OPEN_(LOGNAME:LOGLEN,
 LOGNUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 1);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(LOGNAME:LOGLEN, ERROR);
END;

Using the File System

Guardian Programmer’s Guide — 421922-014
2 - 38

Accessing Files: An Example

!--
! This is the main procedure. It calls the INIT procedure to
! initialize and then goes into a loop calling GET^COMMAND
! to get the next user request and then calling a procedure
! to carry out the selected request.
!--

PROC LOGGER MAIN;
BEGIN
 STRING CMD;

 CALL INIT;

! Loop indefinitely until user selects function "x":

 WHILE 1 DO
 BEGIN

 ! Prompt for the next command:

 CMD := GET^COMMAND;

 ! Call the function selected by user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^RECORD;

 "a", "A" -> CALL APPEND^RECORD;

 "x", "X" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL INVALID^COMMAND;
 END;
 END;
END;

Guardian Programmer’s Guide — 421922-014
3 - 1

3
Coordinating Concurrent File
Access

Several processes can access the same file at the same time. This section describes
the procedures that allow you to coordinate such concurrent access. Each process
indicates (when opening the file) how it intends to use the file, either by specifying the
access mode and the exclusion mode to the file or by accepting default values.

Topics covered in this section include:

• How to set the access mode for a file; the access mode limits the operations to be
performed by the opener. The access mode is specified as read/write, read-only,
or write-only. Setting the Access Mode, below, provides details.

• How to set the exclusion mode; the exclusion mode specifies how much access
other processes are allowed. It can provide shared, protected, or exclusive
access. Setting the Exclusion Mode, later in this section, shows how to do this.

• How to apply a lock to a file that is already open. In addition to exclusion specified
at file-open time, the file system also allows you to apply a lock to a file that is
already open. You do this using the LOCKFILE procedure as described in Locking
a File in this section. You can also inadvertently cause your process to wait
indefinitely because it has to wait for a locked resource that never becomes
available. The last subsection, Avoiding Deadlocks, describes how to prevent this.

Locking issues regarding concurrent access at the record level, are not described here;
see Section 5, Communicating With Disk Files, for details. This section discusses file-
level concurrency issues.

Setting the Access Mode
When you open a file, you do so with an access mode that indicates what kind of
operations you will perform on the file once it is open. The access mode can allow you
to read and write to the file, perform only read operations, or perform only write
operations.

The third parameter of the FILE_OPEN_ procedure (the access parameter) specifies
the access mode. This parameter can have one of the following values:

0 Read/write access (the default access)

1 Read-only access

2 Write-only access

3 Extend access (applies to magnetic tape only—refer to Section 12,
Communicating With Magnetic Tape)

Coordinating Concurrent File Access

Guardian Programmer’s Guide — 421922-014
3 - 2

Setting the Access Mode

The following example opens three files, one for reading and writing, one for read-only
access, and one for write-only access:

LITERAL READ^WRITE = 0;
LITERAL READ^ONLY = 1;
LITERAL WRITE^ONLY = 2;
 .
 .
 .
ERROR := FILE_OPEN_(FILENAME1:LENGTH1,
 FILENUM1,
 READ^WRITE);
IF ERROR <> 0 THEN ...

ERROR := FILE_OPEN_(FILENAME2:LENGTH2,
 FILENUM2,
 READ^ONLY);
IF ERROR <> 0 THEN ...

ERROR := FILE_OPEN_(FILENAME3:LENGTH3,
 FILENUM3,
 WRITE^ONLY);
IF ERROR <> 0 THEN ...

Whether access to the file is granted, however, depends on file ownership and on the
security assigned to the file by the owner. The file owner has the right to determine
who can open the file and for what purpose. The file owner determines who is allowed
to read from the file, write to the file, execute the file, and purge the file. Access to the
file for any of these purposes can be limited to the file owner, the group or network
community the owner belongs to, or all users of the system or network. (Access can
be controlled at a finer-grained level if the file is Safeguard protected.)

If access to the file is refused because of security, the FILE_OPEN_ procedure returns
an error.

The output of the TACL FILEINFO command shows the security assigned to each file.
The columns headed “RWEP” show the security assigned for reading, writing,
executing, and purging, respectively, as follows:

To access any file on a remote node requires matching remote passwords on the local
node and the remote node.

O Only the file owner on the local node

U Only the file owner on the local node or a remote node

G Users in the same group as the owner and on the local node

C Users in the same group as the owner on the local node or a remote node

– Access by local super-ID user only

A All users on the local node

N All users on the local node or any remote node

Coordinating Concurrent File Access

Guardian Programmer’s Guide — 421922-014
3 - 3

Setting the Exclusion Mode

Refer to the TACL Reference Manual for more details on the TACL FILEINFO
command.

Consider a file owned by user 24,48 (where 24 is the user’s group number and 48 is
the user number within that group) with security permissions “GOA-”:

A process executed by user 24,40 now tries to open the file. If this process tries to
open the file for reading and writing, the open will fail because the file security permits
only the owner to write to the file. Similarly, the open will fail if user 24,40 tries to open
the file in write-only mode. If user 24,40 tries to open for reading only, however, the
open will succeed because the owner and the opener are in the same group and the
owner has set the security on the file to allow anyone in the same group to read the
file.

For details on how to set and change the security of a file using the TACL program,
refer to the Guardian User’s Guide.

Setting the Exclusion Mode
To ensure a consistent view of data, it is often necessary to restrict concurrent access
to a file. The file system provides the following levels of exclusion:

• Shared (the default exclusion)

The opening process tolerates any access mode of other openers, but no other
process is allowed exclusive access to the file. Shared mode also prevents
another process from opening the file with the protected mode if this process has
the file open for writing.

Shared mode permits the highest level of concurrent operation and is therefore the
normal mode of operation in a multiple-user environment where there is access to

G In the read column indicates that anyone in the user’s group on the local node
can read the file, but no one outside the group can read it.

O In the write column says only the owner on the local node can open the file for
writing.

A In the execute column says anyone on the local node can execute the file.

– In the purge column says only the super-ID user on the local node can purge the
file.

Note. If files are protected by Safeguard, then the FILEINFO command does not return useful
information. If the Safeguard protection is applied at the file level, then FILEINFO returns a
string of asterisks for the security permissions for that file. If the Safeguard protection is
applied at the subvolume or volume level, then the output of the FILEINFO command appears
as a normal FILEINFO display but does not reflect the Safeguard protection.

The Safeguard protection mechanism is different from the mechanism described here. See
the Safeguard Reference Manual for details.

Coordinating Concurrent File Access

Guardian Programmer’s Guide — 421922-014
3 - 4

Setting the Exclusion Mode

a shared database. Any transaction-processing application would be typical.
Here, data integrity can be provided at a lower level (for example, the record level).

• Protected

The opening process tolerates only other openers with read-only access mode. In
addition, processes attempting to open the file for exclusive access are barred
from the file. Different processes may have the same file open in protected mode,
but only if all openers are opening the file for read-only access.

Protected mode is used when a consistent view of the entire database is required,
such as for end-of-period stock taking or balance sheet preparation.

• Exclusive

The opening process allows no other access to the file until the file is closed.

Use exclusive mode only when no other access can be tolerated; for example,
during major restructuring of your database.

Figure 3-1 summarizes the effects of all possible combinations of access mode and
exclusion mode. When you read the table, the exclusion and access mode with which
some other process has the file open are given along the top of the table. The
exclusion and access mode you are requesting to open the file with are shown in the
leftmost columns. “Y” at the intersection indicates that the new open is allowed and
the requested permissions granted.

You use the exclusion parameter of the FILE_OPEN_ procedure to specify the
exclusion mode. This parameter can have the following values:

If the parameter is omitted, 0 (shared mode) is assumed by default.

0 Shared access

1 Exclusive access

3 Protected access

Coordinating Concurrent File Access

Guardian Programmer’s Guide — 421922-014
3 - 5

Setting the Exclusion Mode

The following example opens three files:

LITERAL READ^WRITE = 0;
LITERAL READ^ONLY = 1;
LITERAL WRITE^ONLY = 2;
LITERAL SHARED^ACCESS = 0;
LITERAL EXCLUSIVE^ACCESS = 1;
LITERAL PROTECTED^ACCESS = 3;
 .
 .
 .
ERROR := FILE_OPEN_(FILENAME1:LENGTH1,FILENUM1);
IF ERROR <> 0 THEN ...

Figure 3-1. Exclusion and Access Mode Compatibility

VST121.VSD

Coordinating Concurrent File Access

Guardian Programmer’s Guide — 421922-014
3 - 6

Locking a File

ERROR := FILE_OPEN_(FILENAME2:LENGTH2,FILENUM2,
 READ^ONLY,
 PROTECTED^ACCESS);
IF ERROR <> 0 THEN ...

ERROR := FILE_OPEN_(FILENAME3:LENGTH3,
 FILENUM3,
 !access!,
 EXCLUSIVE^ACCESS);
IF ERROR <> 0 THEN ...

The first FILE_OPEN_ call uses the default values to open FILENAME1 for reading
and writing with shared exclusion mode. The second call opens FILENAME2 for read-
only access with protected exclusion mode. The last call opens FILENAME3 for
reading and writing (by default) but with exclusive access.

If the open cannot proceed due to an exclusion mode held by another process, then
the FILE_OPEN_ procedure returns an error.

Locking a File
So far this guide has discussed methods of exclusion that are applied when a file is
opened. You can apply a temporary exclusion to a file by locking it with the LOCKFILE
procedure. While you have the file locked, no other process can access any part of the
locked file (with one exception described later in this subsection). The lock can be
removed using the UNLOCKFILE procedure:

CALL LOCKFILE(FILENUM);
 .
 .
 .
CALL UNLOCKFILE(FILENUM);

If your process tries to lock a file that is locked by another process, your call to
LOCKFILE does not finish until the other process unlocks the file. If your process tries
to write to a locked file, the write operation fails and an error code is returned. If your
process tries to read from a locked file, the read operation does not finish until the
other process unlocks the file.

You can use function 4 of the SETMODE procedure to change the processing that
occurs when you try to lock or read from a file that is locked by another process.
SETMODE function 4 allows several such options. For example:

• You can specify that lock and read operations on files that are locked by another
process should finish immediately and return with an error indication:

LITERAL SET^LOCK^MODE = 4,
 REJECT^MODE = 1;
 .
 .
CALL SETMODE(FILENUM,
 SET^LOCK^MODE,
 REJECT^MODE);

Coordinating Concurrent File Access

Guardian Programmer’s Guide — 421922-014
3 - 7

Avoiding Deadlocks

• You can specify that read operations should finish normally and that data should be
returned in the buffer even though another process has the file locked. You should
be aware, of course, that the process that has locked the file might change the
record after the process reads the record:

LITERAL READ^THROUGH^MODE = 2;
 .
 .
CALL SETMODE(FILENUM,
 SET^LOCK^MODE,
 READ^THROUGH^MODE);

Refer to the Guardian Procedure Calls Reference Manual for a complete description of
all SETMODE function 4 options.

You can obtain information about file locks, such as how many processes hold locks on
the file and how many processes are waiting for file locks, by calling the
FILE_GETLOCKINFO_ procedure. Refer to the Guardian Procedure Calls Reference
Manual for details of this procedure.

Avoiding Deadlocks
There are two kinds of deadlocks your process might encounter:

• Multiple-process deadlocks

• Single-process deadlocks

The following paragraphs describe each kind of deadlock and how to detect or avoid
them.

Avoiding Multiple-Process Deadlocks
Figure 3-2 shows an example of how two processes competing for resources are able
to cause each other to wait indefinitely. This kind of situation is known as a deadlock.

Note.

² You can apply locks to records as well as files. You apply a lock to a record using the
LOCKREC procedure and remove the lock using the UNLOCKREC procedure. You can
manipulate record locks in all the ways described above for file locks. See Section 5,
Communicating With Disk Files, for more information on disk-file records.

² Throughout this section, the default of waited I/O has been assumed. In cases where the
process is described as waiting for some kind of response, the rules might change if
nowait I/O is used. Nowait I/O is described in the next section.

Coordinating Concurrent File Access

Guardian Programmer’s Guide — 421922-014
3 - 8

Avoiding Multiple-Process Deadlocks

Process A acquires the lock on file 1. Process B acquires the lock on file 2. Now
process A would like to lock file 2 but cannot because process B has it locked.
Process B can never release the lock it has on file 2 because it is waiting for a lock on
file 1, which process A can never release.

You can avoid this kind of deadlock by careful programming practice, as shown in
Figure 3-3.

Figure 3-2. Two Processes in Deadlock

VST016.VSD

Coordinating Concurrent File Access

Guardian Programmer’s Guide — 421922-014
3 - 9

Avoiding Multiple-Process Deadlocks

By making sure that each process acquires its locks in the same order, you ensure that
no deadlock can occur. Here, process B waits when it tries to lock file 1. Process A is
then able to get both the locks it needs to continue. Process A eventually releases its
locks, allowing process B to continue.

Note that more than two processes and two files may be involved in this kind of
deadlock situation. Process A may wait for process B, which waits for process C,
which waits for process D, which waits for process A. The solution is the same.
Always acquire the locks in the same order in each process.

Figure 3-3. Avoiding the Two-Process Deadlock

VST017.VSD

Process A Process B

CALL LOCKFILE (FILE1);

CALL LOCKFILE (FILE);

CALL UNLOCKFILE (FILE1);

CALL UNLOCKFILE (FILE2);

CALL LOCKFILE (FILE1);

 wait

CALL LOCKFILE (FILE2);

 wait

Process B waits for
Process A to
release lock on
FILE1

Process A releases
flock on FILE!, so
Process B blocks
FILE1

Process B waits for
Process A to release
lock on FILE2

Process A releases
flock on FILE2, so
Process B blocks
FILE2

Coordinating Concurrent File Access

Guardian Programmer’s Guide — 421922-014
3 - 10

Avoiding Single-Process Deadlocks

3 Coordinating Concurrent File Access

Avoiding Single-Process Deadlocks
A process can also cause itself to deadlock, as shown in Figure 3-4.

Here, process C has opened the same file twice, returning two file numbers. The
process acquires a lock using one of the file numbers, then tries to read the file using
the other file number. Process C waits forever for itself to unlock the file.

Correct use of SETMODE function 4 allows your program to avoid this kind of
deadlock. Figure 3-5 shows how.

Figure 3-4. Single-Process Deadlock

Note. This kind of deadlock does not occur if the file is protected by the NonStop Transaction
Manager/MP (TM/MP), because TM/MP organizes locks by transaction ID, not file number.
See the NonStop TM/MP Application Programmer’s Guide for details.

VST018.VSD

Coordinating Concurrent File Access

Guardian Programmer’s Guide — 421922-014
3 - 11

Avoiding Single-Process Deadlocks

By issuing a call to SETMODE function 4 on each file number, subsequent read
operations return immediately with an error code if the read could not proceed.
Deadlock is thus avoided.

Figure 3-5. Avoiding the Single-Process Deadlock

VST019.VSD

Guardian Programmer’s Guide — 421922-014
4 - 1

4 Using Nowait Input/Output
This section discusses how to do I/O operations without having the process wait for
completion of the operation. A process that does not wait for I/O operations to finish is
said to be using nowait I/O.

This section uses examples to show the different ways in which you can use nowait
I/O. It discusses how to write programs that:

• Perform a single nowait I/O operation against just one file

• Perform multiple I/O operations that run concurrently against just one file

• Perform multiple I/O operations that run concurrently against more than one file

A complete program is included that shows how to use nowait I/O to time out I/O
operations.

Overview of Nowait Input/Output
Normally, when a process issues an I/O request, the process waits for the operation to
finish before continuing. The process enters the wait state (see Section 16, Creating
and Managing Processes, for a discussion of process states) and some other process
gains access to the CPU. Instead of having your process wait for the operation to
finish, however, you can write your program to initiate the I/O operation and then
continue processing while the I/O operation finishes. Completion of the I/O is detected
later by a call to the AWAITIO[X] procedure.

You should use the AWAITIOX procedure to complete nowait READX, WRITEX, and
WRITEREADX calls. You should use the AWAITIO procedure to complete nowait
READ, WRITE, and WRITEREAD calls.

You can also use the FILE_COMPLETE_ procedure to complete nowait calls that you
would otherwise complete by calling AWAITIO[X]. The FILE_COMPLETE_ procedure
has special features; for example, you can use it to complete nowait I/O on any file
from a predefined set of files, which can include both Guardian files and Open System
Services (OSS) files. The FILE_COMPLETE_ procedure and its companion
procedures, FILE_COMPLETE_SET_ and FILE_COMPLETE_GETINFO_, are
discussed later in this section.

Figure 4-1 compares waited I/O with nowait I/O.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 2

Overview of Nowait Input/Output

When you use nowait I/O, however, you typically do so for one of the following
reasons:

• To apply a time limit to an operation

• To support multiple independent logical processing threads in a single program

The ability to overlap application processing with I/O operations is often secondary.

To use nowait I/O, you need to do the following:

• Set the nowait parameter in the FILE_OPEN_ call to specify nowait I/O on all
operations to the file that use the returned file number.

• Use calls to the AWAITIO[X] procedure to check for or wait for completion of the
I/O operation.

Figure 4-1. Waited and Nowait I/O

Note. It is important to distinguish between the FILE_OPEN_ nowait parameter and the
nowait bit in the FILE_OPEN_ option parameter. The nowait parameter allows you to
establish nowait access to the file once the file is open. The nowait bit in the option
parameter allows you to perform the open operation itself in a nowait manner. All combinations
are possible in the same call except that you cannot have a nowait open operation and permit
waited I/O operations on the same file.

VST020.VSD

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 3

Applying a Nowait Operation on a Single File

I/O operations initiated by the procedures listed below execute in parallel with your
process when invoked on a file opened for nowait I/O. You must complete each of
these calls by a separate call to the AWAITIO[X] procedure if the I/O operation is
against a file opened for nowait I/O.

Applying a Nowait Operation on a Single File
The simplest case of a nowait operation is that of a single I/O operation against one
file. In other words, multiple I/Os are not permitted to run concurrently against this file,
nor are nowait operations performed against other files.

First of all, you need to open the file for nowait I/O. You do this by putting a nonzero
value in the fifth parameter (nowait) of the FILE_OPEN_ procedure call. The nowait
parameter specifies how many outstanding nowait I/O operations can concurrently
exist against the file when identified by the returned file number. To allow only one
nowait operation at a time, set this value to 1 as shown in the example below:

NOWAIT^DEPTH := 1;
ERROR := FILE_OPEN_(DATAFILE:LENGTH,
 FILENUM,
 !access!,
 !exclusion!,
 NOWAIT^DEPTH);
IF ERROR <> 0 THEN ...

After opening the file, you can issue an I/O operation against the file:

BYTES := 512;
CALL WRITEX(FILENUM,
 BUFFER,
 BYTES);
IF <> THEN ...

CONTROL SETMODENOWAIT (for other than disk files)

CONTROLBUF

LOCKFILE UNLOCKFILE

LOCKREC UNLOCKREC

READ[X] WRITE[X]

READLOCK[X] WRITEREAD[X]

READUPDATE[X] WRITEUPDATE[X]

READUPDATELOCK[X] WRITEUPDATELOCK[X]

Note. When performing a nowait write operation, it is important that you do not overwrite your
write buffer between the WRITE[X] or WRITEREAD[X] procedure call and the corresponding
AWAITIOX procedure call. If you do modify the buffer in this period, then you cannot be sure
which data actually gets written.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 4

Applying a Nowait Operation on a Single File

In this example, if the WRITEX call initiates just one I/O operation (as, for example,
when writing to an unstructured file), it returns immediately to the program. If the
WRITEX call initiates several I/O operations (as, for example, when writing to a key-
sequenced file that has alternate keys), then the program waits until the last I/O
operation starts. In either case, once control is returned to your program, the program
continues to execute until it reaches a call to the AWAITIOX procedure. Additional
attempts to initiate I/O operations on this file before the current I/O finishes will return
an error because only one I/O is permitted to run at a time.

You must complete the I/O operation at some point later in the program. The
AWAITIO[X] procedure gives you three ways you can do this, depending on the value
you assign to the timeout parameter:

• Wait indefinitely until the I/O finishes. You do this by assigning -1D to the timeout
parameter or by omitting the timeout parameter. In this case, AWAITIO[X] waits
as long as it takes for the I/O to finish:

CALL AWAITIOX(FILENUM);
IF <> THEN ...

• Specify a time limit for the I/O to finish. Set the timeout parameter to the number
of one hundredths of a second that your program will wait for the operation to
finish. Error 40 (operation timed out) is returned if the operation does not finish
within the time limit, and the operation is canceled.

LIMIT := 100D;
CALL AWAITIOX(F1,
 !buffer^address!,
 !count^transferred!,
 !tag!,
 LIMIT);
IF <> THEN ...

• Return immediately to the program whether the I/O operation finishes or not. You
do this by setting the time limit to zero:

LIMIT := 0D;
CALL AWAITIOX(F2,
 !buffer^address!,
 !count^transferred!,
 !tag!,
 LIMIT);

This method effectively checks whether the I/O is finished and then returns. The
procedure call returns error 40 (operation timed out) if the I/O is not finished, but it
does not cancel the operation.

This example should be part of a loop that regularly checks for I/O completion.

Caution. When the file system cancels an operation due to timeout, it does not undo those
parts of the operation that have already finished. For example, in an operation that requires
multiple physical I/O operations, some of those operations may have finished and others may
not have finished.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 5

Applying Multiple Nowait Operations on a Single File

Applying Multiple Nowait Operations on a
Single File

Files other than disk files allow multiple I/O operations to run concurrently. Figure 4-2
shows several I/O operations executing concurrently against the same file. This file
must be opened specifically to allow concurrent I/O operations.

To permit multiple operations on the same file to run concurrently, you must open the
file with the nowait parameter set to the maximum number of concurrent I/Os that you
will permit against that file.

Once several concurrent I/O operations have started, you can require that operations
finish in the order in which they started, or you can allow them to finish in any order.
SETMODE function 30 determines which of these alternatives you use. The way you
distinguish between operations depends on which option you choose.

• To force I/O operations to finish in the order in which you start them, you make no
call to SETMODE function 30 or you set the parameter-1 parameter to 0 before
calling SETMODE function 30. The first call to AWAITIO[X] completes the oldest
outstanding operation, the second call completes the second oldest, and so on.

• To allow completions to occur in any order, you must call SETMODE function 30
with bit 15 of the parameter-1 parameter set to 1.

Figure 4-2. Multiple Concurrent Operations on One File

VST021.VSD

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 6

Completing I/Os in the Order Initiated

This subsection discusses both of these approaches.

In both of these approaches, the AWAITIO[X] call can wait indefinitely, time out, or
check for completion and return immediately, exactly as in the single-I/O single-file
model discussed in the previous subsection. (When a timeout expires, only the oldest
I/O operation is canceled.)

Completing I/Os in the Order Initiated
The following example uses nowait I/O to start several I/O operations. In this case,
calls to the AWAITIOX procedure complete the operations in the order they started.

NOWAIT^DEPTH := 4;
ERROR := FILE_OPEN_(PROCESSNAME:LENGTH,
 F4,
 !access!,
 !exclusion!,
 NOWAIT^DEPTH);
IF ERROR <> 0 THEN ...
 .
 .
 .
BYTES := 10;
LENGTH := 512;
CALL WRITEREADX(F4,BUFFER1,BYTES,LENGTH);
IF <> THEN ...

BYTES := 25;
LENGTH := 512;
CALL WRITEREADX(F4,BUFFER2,BYTES,LENGTH);
IF <> THEN ...

BYTES := 12;
LENGTH := 512;
CALL WRITEREADX(F4,BUFFER3,BYTES,LENGTH);
IF <> THEN ...
 .
 .
 .
CALL AWAITIOX(F4);
IF <> THEN ...

CALL AWAITIOX(F4);
IF <> THEN ...

CALL AWAITIOX(F4);
IF <> THEN ...

The FILE_OPEN_ call sets the nowait depth to 4, allowing up to four nowait operations
to run concurrently against the file. The program then issues three WRITEREADX
operations against the file and continues processing. Finally, the program issues three
calls to the AWAITIOX procedure. The first call completes the operation started by the
first WRITEREADX call, the second AWAITIOX call completes the operation started by
the second WRITEREADX call, and so on.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 7

Completing I/Os in Any Order

Completing I/Os in Any Order
Now consider what happens when I/O operations are allowed to finish in any order.
Two different uses of the SETMODE procedure produce slightly different results:

• Setting parameter-1 to 1 causes I/O operations to finish in any order, except if
more than one operation is ready to finish at the time of the AWAITIO[X] call. In
this case, the operations that are ready finish in their issued order.

• Setting parameter-1 to 3 causes I/O operations to finish in the order chosen by
the operating system to be most efficient.

The next example shows how to use function 30 of the SETMODE procedure to permit
I/O operations to finish in any order. Previous examples have simply passed the file
number to the AWAITIOX procedure to identify the completing operation. The file
number is enough to identify the I/O operation if only one such operation per file is
allowed to run concurrently with the program. When you permit more than one
operation per file to run concurrently, however, you need to initiate each operation with
a unique tag so that you can identify the operation when it finishes. The following
example shows this method.

INT(32) TAG, TAG1 := 1D, TAG2 := 2D, TAG3 := 3D;
LITERAL CHOOSE^ORDER = 30,
 ANY^ORDER = 1;
 .
 .
NOWAIT^DEPTH := 4;
ERROR := FILE_OPEN_(PROCESSNAME:LENGTH,
 F4,
 !access!,
 !exclusion!,
 NOWAIT^DEPTH);
IF ERROR <> 0 THEN ...
CALL SETMODE(F4,CHOOSE^ORDER,ANY^ORDER);
 .
 .
 .
BYTES := 10;
LENGTH := 512;
CALL WRITEREADX(F4,
 BUFFER1,
 BYTES,
 LENGTH,
 TAG1);
IF <> THEN ...

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 8

Using File-System Buffering

BYTES := 25;
LENGTH := 512;
CALL WRITEREADX(F4,
 BUFFER2,
 BYTES,
 LENGTH,
 TAG2);
IF <> THEN ...

BYTES := 12;
LENGTH := 512;
CALL WRITEREADX(F4,
 BUFFER3,
 BYTES,
 LENGTH,
 TAG3);
IF <> THEN ...
 .
 .
 .
CALL AWAITIOX(F4,
 !buffer^address!,
 BYTE^COUNT,
 TAG);
IF <> THEN ...

The sixth parameter (tag) of each WRITEREADX call assigns a unique tag. The
AWAITIOX procedure retrieves the tag value in its own tag parameter and thereby
identifies the completing operation. All procedures that are affected by nowait I/O can
set the value of the tag.

The above example shows only one AWAITIOX call. You typically place this call in a
loop that repeats for each initiated I/O.

Using File-System Buffering
HP recommends that you use a different application buffer for each concurrent read
operation. However, if you must use the same buffer, then you need to use an
intermediate file-system buffer to prevent the read operations from corrupting each
other’s buffered data. You make use of file-system buffers by issuing SETMODE
function 72.

For files opened with the FILE_OPEN_ procedure, the operating system normally
transfers data directly between the application buffer and the I/O buffer. If concurrent
operations use the same application buffer, it is possible that one such operation
overwrites the buffer before some other operation has completed its transfer. The
result is that one of these operations transfers corrupted data.

Caution. You should not use file-system buffering with WRITE or WRITEREAD operations,
because you can still corrupt your data when the file system performs implicit retry operations.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 9

Using File-System Buffering

By issuing SETMODE function 72, you cause the operating system to use an
intermediate file-system buffer in the process file segment (PFS):

LITERAL USE^PFS = 72,
 ON = 1;
 .
 .
CALL SETMODE(FILE^NUM,
 USE^PFS,
 ON);

Consider two concurrent read operations that use the same buffer without using file-
system buffering:

1. The first read operation starts and reads data into the application buffer.

2. The second read operation starts and also reads data into the application buffer.

3. The AWAITIO[X] procedure now completes the first read operation. However,
instead of returning the record read by the first operation, the buffer contains the
record read by the second operation.

The same two read operations making use of file-system buffering in the PFS execute
as follows:

1. The first read operation starts and reads data into a location in the PFS.

2. The second read operation starts and reads data into a different location in the
PFS.

3. The AWAITIO[X] procedure completes the first read, transferring data from the
location in the PFS assigned to the first read operation. The returned data
therefore corresponds to the first read operation.

Note. The most effective way to prevent concurrent I/O operations from destroying the
contents of each other’s buffers is by using different buffer areas. That way there is no need
for system buffering, and your program can take advantage of the efficiency of transferring
data directly from the I/O buffers to the application buffers.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 10

Applying Nowait Operations to Multiple Files

Applying Nowait Operations to Multiple Files
Your program may open several files for nowait I/O and issue one or more I/O
operations against each file. (Some kinds of opens, for example those of disk files,
allow only one operation at time.) Figure 4-3 shows how nowait operations can occur
concurrently on multiple files.

When nowait I/O operations are applied to multiple files, you cannot predict the order in
which the operations will finish. In Figure 4-3, the first and third write operations are to
the same files, therefore the first write will finish before the third write. The second
write is to a different file; therefore it is not clear when it will finish with respect to the
first and third writes.

To allow completion of a nowait operation to any file, you use the AWAITIO[X]
procedure in a way that responds to the first completed I/O, regardless of the file that
the I/O operation was made against. You do this by setting the file-number

Figure 4-3. Nowait Operations on Multiple Files

VST022.VSD

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 11

Applying Nowait Operations to Multiple Files

parameter of the AWAITIO[X] procedure to -1. When AWAITIO[X] returns, it sets the
file-number parameter to the number of the file whose I/O operation finished.

If you issue just one I/O operation at a time to each file, then the file number returned
by the AWAITIO[X] procedure is enough to identify the completed operation. However,
it is often easier to use tags as described in the previous subsection.

A typical use for executing concurrent I/O operations against more than one file might
be when a process communicates with more than one terminal. The problem with
using waited I/O is that your program might, for example, issue a WRITEREADX call to
the terminal of a user who has left the office. The user of the other terminal is locked
out by this action, because the program waits indefinitely on the WRITEREADX call.
Using nowait I/O, the WRITEREADX call can be issued to both terminals; the process
responds to the terminal that replies:

NOWAIT^DEPTH := 1;
ERROR := FILE_OPEN_(TERM1:LENGTH,
 TERM^NUM1,
 !access!,
 !exclusion!,
 NOWAIT^DEPTH);
IF ERROR <> 0 THEN ...

ERROR := FILE_OPEN_(TERM2:LENGTH,
 TERM^NUM2,
 !access!,
 !exclusion!,
 NOWAIT^DEPTH);
IF ERROR <> 0 THEN ...
 .
 .
CALL WRITEREADX(TERM^NUM1,
 BUFFER1,WCOUNT1,
 RCOUNT1,TAG1);
IF <> THEN ...

CALL WRITEREADX(TERM^NUM2,
 BUFFER2,WCOUNT2,
 RCOUNT2,TAG2);
IF <> THEN ...
 .
 .
ANY^FILE := -1;
CALL AWAITIOX(ANY^FILE,
 !buffer^address!,
 BYTES,
 TAG);
 .
 .

In the skeleton code shown above, the file number associated with the file of the
completed I/O operation is returned in ANY^FILE. The program can now use the
variable ANY^FILE to identify the active terminal, so it knows how to process the data
read by this operation.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 12

Nowait I/O: An Example

Nowait I/O: An Example
The following example shows a complete working program that uses nowait I/O to time
out terminal response.

This example enhances the example given at the end of Section 2, Using the File
System. Whenever the program prompts the user to enter a value, a timer is started.
If the user does not respond to the prompt within five minutes, the user is logged off
and the program terminates.

Before prompting the user to select a function, the program checks whether the user is
logged on. If not, no prompt is issued and the program terminates. If the user is
logged on, then the program prompts the user to select a function.

The user is asked to log on when the program starts. The program uses a global
variable LOGGED^ON as a flag to indicate whether the user is logged on. After
successfully logging on, LOGGED^ON is set to 1. If the user fails to respond to any
prompt within the timeout period, then LOGGED^ON gets set to 0.

As with the example in Section 2, Using the File System, the data file to contain the log
must exist before the program is run. You can create this file using either the TACL
CREATE command or the FUP CREATE command. It is important that the file you
create is named in the appropriate call to the FILE_OPEN_ procedure in the program.

The code for this program appears on the following pages.

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !maximum file-name
 ! length
LITERAL BUFSIZE = 512;
LITERAL WAIT^TIME = 30000D; !wait up to 5 minutes for
 ! input

STRING .SBUFFER[0:BUFSIZE]; !I/O buffer (one extra char)
STRING .S^PTR; !pointer to end of string
INT LOGNUM; !log file number
INT TERMNUM; !terminal file number
INT LOGGED^ON; !nonzero if someone is
 ! logged on

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,
? PROCESS_GETINFO_,FILE_OPEN_,WRITEREADX,WRITEX,AWAITIOX,
? PROCESS_STOP_,READX,POSITION,DNUMOUT,FILE_GETINFO_,SETMODE)
?LIST

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 13

Nowait I/O: An Example

!--
! Here are some DEFINEs to make it easier to format and
! print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =

 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 14

Nowait I/O: An Example

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is used when the
! file is not open, so there is no file number for it.
! FILE^ERRORS is to be used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!---

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);
 CALL AWAITIOX(TERMNUM);

! Terminate the program:

 CALL PROCESS_STOP_;
END;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 15

Nowait I/O: An Example

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to do the display.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!---

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN-1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

!---
! Procedure to write a message on the terminal and check
! for any error. If there is an error, this procedure
! attempts to write a message about the error and then
! stops the program.
!---

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 CALL AWAITIOX(TERMNUM);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 16

Nowait I/O: An Example

!--
! Procedure to write messages on the terminal and read the
! user's reply. If there is an error, this procedure
! attempts to write a message about the error and the program
! is stopped. If the read takes longer than the defined wait
! time, the procedure returns 1 as its result to signal the
! caller of the timeout. Otherwise it returns 0.
!--

INT PROC WRITEREADTERM(BUF,LEN,READCOUNT,COUNT^READ);
STRING .EXT BUF;
INT LEN;
INT READCOUNT;
INT .COUNT^READ;
BEGIN
INT ERR;

! Prompt the user for input:

 CALL WRITEREADX(TERMNUM,BUF,LEN,READCOUNT);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 CALL AWAITIOX(TERMNUM,
 !buffer^address!,
 COUNT^READ,
 !tag!,
 WAIT^TIME);
 IF <> THEN

! Check for timeout:

 BEGIN
 CALL FILE_GETINFO_(TERMNUM,ERR);
 IF ERR = 40 THEN RETURN 1;
 CALL FILE^ERRORS(TERMNUM);
 END;

 BUF[COUNT^READ] := 0;
 RETURN 0;
END;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 17

Nowait I/O: An Example

!--
! Procedure to prompt the user to log on. If logon is
! successful, the global variable LOGGED^ON is set to 1.
!--

PROC LOGON;
BEGIN
 LITERAL NAMESIZE = 20;
 LITERAL PWSIZE = 10;
 STRING .USER^NAME[0:NAMESIZE - 1];
 INT NAMELEN;
 STRING .PASSWORD[0:PWSIZE - 1];
 INT PWLEN;
 INT I;

! Space down five lines and announce logon:

 FOR I := 1 TO 5 DO PRINT^BLANK;
 PRINT^STR("Please log on");

! Loop until logon is successful:

 DO
 BEGIN

 ! Request user name:

 PRINT^BLANK;
 SBUFFER ':=' "User name: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 NAMESIZE);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 CALL AWAITIOX(TERMNUM,
 !buffer^address!,
 NAMELEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 USER^NAME ':=' SBUFFER FOR NAMELEN;

 ! Request user's password, disabling echo of the input:

 CALL SETMODE(TERMNUM,20,0);
 SBUFFER ':=' "Password: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 PWSIZE);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 CALL AWAITIOX(TERMNUM,
 !buffer^address!,
 PWLEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 CALL SETMODE(TERMNUM,20,1);
 PASSWORD ':=' SBUFFER FOR PWLEN;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 18

Nowait I/O: An Example

 ! Perform application-dependent check to verify the
 ! user name and password and set LOGGED^ON to true
 ! if successful. This example does no checking.

 LOGGED^ON := 1;

 ! Erase the password as soon as it is no longer needed:

 PASSWORD ':=' [PWSIZE * [" "]];

 END UNTIL LOGGED^ON;
END;

!--
! This procedure asks the user for the next function to do:
!
! "r" to read records
! "a" to append a record
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' for Read Log, ");
 PRINT^STR(" 'a' for Append to Log, ");
 PRINT^STR(" 'x' for Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 IF WRITEREADTERM(SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ) THEN RETURN "x";
 RETURN SBUFFER[0];
END;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 19

Nowait I/O: An Example

!--
! Procedure for reading records. The user selected function
! "r." The start of the read is selected randomly by record
! number. The user has the option of sequentially reading
! subsequent messages.
!--

PROC READ^RECORD;
BEGIN
 INT COUNT^READ;
 INT ERROR;

! Position current-record and next-record pointers to the
! beginning of the file:

 CALL POSITION(LOGNUM, 0D);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

! Loop reading and displaying records until user declines
! to read next record (any response other than "y"):

 DO BEGIN

 PRINT^BLANK;

 ! Read a record from the log file and display it on the
 ! terminal. Print "No Such Record" if end of file
 ! reached:

 CALL READX(LOGNUM,SBUFFER,BUFSIZE,COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(LOGNUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(LOGNUM);
 END;

 CALL WRITE^LINE(SBUFFER,COUNT^READ);

 PRINT^BLANK;

 ! Prompt the user to read the next record (user must
 ! respond "y" to accept, otherwise return to select
 ! next function):

 SBUFFER ':=' ["Do you want to read another ",
 "record (y/n)? "]
 -> @S^PTR;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 20

Nowait I/O: An Example

 IF WRITEREADTERM(SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ) THEN
 BEGIN
 LOGGED^ON := 0;
 RETURN;
 END;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");
END;

!--
! Procedure for appending a record. The user selected
! function "a." The user is prompted to enter comments. The
! procedure puts the comments in a new record at the end of
! the file.
!--

PROC APPEND^RECORD;
BEGIN
 INT COUNT^READ;

 PRINT^BLANK;

! Prompt user for comments and read comments into the
! buffer:

 SBUFFER ':=' "Enter today's comments: "
 -> @S^PTR;
 IF WRITEREADTERM(SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ) THEN
 BEGIN
 LOGGED^ON := 0;
 RETURN;
 END;

! Blank out portion of buffer past last character read:

 SBUFFER[COUNT^READ] ':=' " " & SBUFFER[COUNT^READ]
 FOR BUFSIZE-COUNT^READ BYTES;

! Place the next-record pointer at the end of file and
! write the new record there:

 CALL POSITION (LOGNUM,-1D);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

 CALL WRITEX(LOGNUM,SBUFFER,BUFSIZE);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);
END;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 21

Nowait I/O: An Example

!--
! Procedure to process an invalid command. The procedure
! informs the user that the selection was other than "r,"
! "a," or "x."
!--

PROC INVALID^COMMAND;
BEGIN

 PRINT^BLANK;

! Inform the user that the selection was invalid and then
! return to prompt again for a valid function:

 PRINT^STR ("INVALID COMMAND: " &
 "Type either 'r,' 'a,' or 'x'");
END;

!--
! Procedure to initialize the program. It calls
! INITIALIZER to dispose of the startup sequence of messages.
! It opens the home terminal and the data file used by the
! program.
!--

PROC INIT;
BEGIN
 STRING .LOGNAME[0:MAXFLEN - 1]; !name of log file
 INT LOGLEN; !length of log name
 STRING .TERMNAME[0:MAXFLEN - 1]; !terminal file
 INT TERMLEN; !length of term name
 INT ERROR;

! Read and discard startup sequence of messages.

 CALL INITIALIZER;

! Open the terminal file for nowait I/O. For simplicity
! this program uses the home terminal; the recommended
! approach is to use the IN file read from the Startup
! message; see Section 8, Communicating With a TACL Process,
! for details:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMNAME:MAXFLEN,
 TERMLEN);
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,
 TERMNUM,
 !access!,
 !exclusion!,
 1);

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 22

Nowait I/O: An Example

 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the log file with a sync depth of 1:

 LOGNAME ':=' "$ADMIN.OPERATOR.LOGFILE" -> @S^PTR;
 LOGLEN := @S^PTR '-' @LOGNAME;
 ERROR := FILE_OPEN_(LOGNAME:LOGLEN,
 LOGNUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 1);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(LOGNAME:LOGLEN, ERROR);

! Clear the LOGGED^ON flag:

 LOGGED^ON := 0;

END;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 23

Nowait I/O: An Example

!--
! This is the main procedure. It calls the INIT procedure to
! initialize and then goes into a loop calling GET^COMMAND
! to get the next user request and calling the procedure
! to carry out that request.
!--

PROC LOGGER MAIN;
BEGIN
 STRING CMD;

 CALL INIT;

! Loop indefinitely:

 WHILE 1 DO
 BEGIN

 ! Prompt the user to log on:

 CALL LOGON;

 ! Loop until user types "x" or does not answer a prompt:

 WHILE LOGGED^ON DO
 BEGIN

 ! Prompt for the next command.

 CMD := GET^COMMAND;

 ! Call the function selected by user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^RECORD;

 "a", "A" -> CALL APPEND^RECORD;

 "x", "X" -> LOGGED^ON := 0;

 OTHERWISE -> CALL INVALID^COMMAND;
 END;
 END;
 END;
END;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 24

Using FILE_COMPLETE_ and its Companion
Procedures

Using FILE_COMPLETE_ and its Companion
Procedures

The FILE_COMPLETE_ procedure and its companion procedures,
FILE_COMPLETE_SET_ and FILE_COMPLETE_GETINFO_, provide additional
capabilities for programs that use nowait I/O. They combine and enhance the function
of the AWAITIO[X] procedures and the Open System Services (OSS) select()
function. For example, you can use these procedures to complete nowait I/O on OSS
files in parallel with nowait I/O on Guardian files. You can define a particular set of files
to be “enabled” for completion and then complete outstanding I/O operations on these
files over a series of calls.

In brief, these procedures are used as follows:

• The FILE_COMPLETE_SET_ procedure enables a single file or set of files for
completion by subsequent calls to the FILE_COMPLETE_ procedure. This set of
files can include both Guardian and OSS files.

• The FILE_COMPLETE_GETINFO_ procedure returns information about the set of
files that are currently enabled for completion.

• The FILE_COMPLETE_ procedure completes one previously initiated I/O
operation for a Guardian file or returns ready information for an OSS file. The
Guardian or OSS file is from the set of files that have been enabled for completion.

The following paragraphs explain in more detail how these procedures are used.

Using the FILE_COMPLETE_SET_ Procedure
You can use the FILE_COMPLETE_SET_ procedure to enable a single file or set of
files for completion by subsequent calls to the FILE_COMPLETE_ procedure. A file
that is “enabled for completion” is part of the set of files that the FILE_COMPLETE_
and FILE_COMPLETE_GETINFO_ procedures are aware of and can act upon; files
that are not part of this set are ignored by these procedures. You can add a file to the
enabled set only if it has been opened in a nowait manner; OSS files can be opened
blocking or nonblocking.

In a call to the FILE_COMPLETE_SET_ procedure, you can add files or remove files
from the enabled set. To do this, you pass an array of one or more
COMPLETE^ELEMENT structures to the FILE_COMPLETE_SET_ procedure. Each
structure describes a file to be added to or removed from the enabled set. Each
described file can be either a Guardian file or an OSS file.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 25

Using the FILE_COMPLETE_SET_ Procedure

The COMPLETE^ELEMENT structure is defined in the ZSYS* files. In the TAL
ZSYSTAL file, it is defined as follows:

By enabling a Guardian file and specifying file number -1D in the Z^FNUM^FD field of
this structure, you cause all Guardian files to be enabled for completion (that is, all
Guardian files that your program has open for nowait I/O). By removing Guardian file
number -1D, you remove all Guardian files from the enabled set. With OSS files, you
can specify -1D only to remove all OSS files from the enabled set.

In the call to the FILE_COMPLETE_SET_ procedure, you must also pass a value that
represents the total number of files described in the array parameter. Optionally, you
can include an output parameter that returns an index to an element in the array
parameter if it is in error.

The following example specifies one Guardian file and one OSS file to be added and
one OSS file to be removed from the set of enabled files:

?SOURCE ZSYSTAL(ZSYS^DDL^COMPLETE^ELEMENT)

LITERAL MAX_COMPLETE_ELEMENTS = 20;

STRUCT .COMPLETE_LIST
 (ZSYS^DDL^COMPLETE^ELEMENT^DEF) [0:MAX_COMPLETE_ELEMENTS -
1];

INT(32) FILENUM;
INT(32) FILEDESC1;
INT(32) FILEDESC2;

INT ERROR_ELEMENT;
INT NUM_ELEMENTS;
INT ERROR;
 .
 .

STRUCT ZSYS^DDL^COMPLETE^ELEMENT^DEF (*);
 BEGIN
 INT(32) Z^FNUM^FD;
 STRUCT Z^OPTIONS;
 BEGIN
 UNSIGNED(1) Z^SET^FILE;
 UNSIGNED(1) Z^FILETYPE;
 BIT_FILLER 14;
 BIT_FILLER 13;
 UNSIGNED(1) Z^READ^READY;
 UNSIGNED(1) Z^WRITE^READY;
 UNSIGNED(1) Z^EXCEPTION;
 END;
 INT(32) Z^COMPLETION^TYPE = Z^OPTIONS;
 END;

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 26

Using the FILE_COMPLETE_SET_ Procedure

-- Describe Guardian file to be added to the enabled set
COMPLETE_LIST[0].Z^FNUM^FD := FILENUM; -- Guardian file
 -- number
COMPLETE_LIST[0].Z^OPTIONS.Z^SET^FILE := 0;-- Add this file
to
 -- the enabled
set
COMPLETE_LIST[0].Z^OPTIONS.Z^FILETYPE := 0;-- This is a
 -- Guardian file

-- Describe OSS file to be added to the enabled set
COMPLETE_LIST[1].Z^FNUM^FD := FILEDESC1; -- OSS file
 -- descriptor
COMPLETE_LIST[1].Z^OPTIONS.Z^SET^FILE := 0;-- Add this file
to
 -- the enabled
set
COMPLETE_LIST[1].Z^OPTIONS.Z^FILETYPE := 1;-- This is an OSS
 -- file

-- The following fields are only used when enabling an OSS
file
COMPLETE_LIST[1].Z^OPTIONS.Z^READ^READY := 1; -- Return read
 -- ready
COMPLETE_LIST[1].Z^OPTIONS.Z^WRITE^READY := 1;-- Return write
 -- ready
COMPLETE_LIST[1].Z^OPTIONS.Z^EXCEPTION := 1; -- Return
 -- exception
 -- occurred

-- Describe OSS file to be removed from the enabled set
COMPLETE_LIST[2].Z^FNUM^FD := FILEDESC2; -- OSS file
 -- descriptor
COMPLETE_LIST[2].Z^OPTIONS.Z^SET^FILE := 1;-- Remove this
file
 -- from enabled
set
COMPLETE_LIST[2].Z^OPTIONS.Z^FILETYPE := 1;-- This is an OSS
 -- file

NUM_ELEMENTS := 3; -- Number of elements (files described)
ERROR := FILE_COMPLETE_SET_ (
 COMPLETE_LIST -- in; element list
 ,NUM_ELEMENTS -- in; number of elements
 ,ERROR_ELEMENT -- out; index to element in
error
);
IF ERROR <> 0 THEN ...

Each file that is added to the enabled set remains in the set until your program
removes or closes the file. Completion on a file does not remove it from the enabled
set.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 27

Using the FILE_COMPLETE_GETINFO_ Procedure

Using the FILE_COMPLETE_GETINFO_ Procedure
You can use the FILE_COMPLETE_GETINFO_ procedure to obtain information about
the set of files that are currently enabled for completion.

Through an output parameter, the FILE_COMPLETE_GETINFO_ procedure returns an
array of COMPLETE^ELEMENT structures that describe the files that are enabled for
completion. This structure is the same as that used to specify a file to the
FILE_COMPLETE_SET_ procedure. (See the structure definition
ZSYS^DDL^COMPLETE^ELEMENT^DEF under Using the FILE_COMPLETE_SET_
Procedure.)

When calling the FILE_COMPLETE_GETINFO_ procedure, you must specify the
maximum number of structures that your program can accept as output from the
procedure. There is also an optional output parameter that returns the actual number
of structures that are returned. This number is equal either to the number of files
enabled for completion or to the maximum number of COMPLETE^ELEMENT
structures that can be returned.

In the following example, a call is made to the FILE_COMPLETE_GETINFO_
procedure:

?SOURCE ZSYSTAL(ZSYS^DDL^COMPLETE^ELEMENT)

LITERAL MAX_COMPLETE_ELEMENTS = 20;

STRUCT .COMPLETE_LIST
 (ZSYS^DDL^COMPLETE^ELEMENT^DEF) [0:MAX_COMPLETE_ELEMENTS -
1];

INT NUM_ELEMENTS_OUT;
INT ERROR;
 .
 .
ERROR := FILE_COMPLETE_GETINFO_ (
 COMPLETE_LIST -- out; set of enabled
files
 ,MAX_COMPLETE_ELEMENTS -- in; max elements
 ,NUM_ELEMENTS_OUT -- out; number of returned
 -- elements
);
IF ERROR <> 0 THEN ...

Using the FILE_COMPLETE_ Procedure
You can use the FILE_COMPLETE_ procedure to complete one previously initiated I/O
operation on a Guardian file or to return ready information on an OSS file. The
Guardian file or OSS file is from the set of files that are enabled for completion. You
can have the procedure either check for completion and immediately return or wait until
either a completion or a timeout occurs.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 28

Using the FILE_COMPLETE_ Procedure

Completion on Guardian Files
You can use the FILE_COMPLETE_ procedure to complete I/O operations on the
same Guardian files as the AWAITIO[X] procedures. (Refer to the discussion of the
AWAITIO[X] procedures earlier in this section.) It is possible to use the
FILE_COMPLETE_ procedure in parallel with the AWAITIO[X] procedures in your
program.

In general, when completing I/O on Guardian files, the FILE_COMPLETE_ procedure
behaves very similarly to AWAITIO[X], although one major difference is that it uses a
predefined set of files that are enabled for completion. For a list of specific differences
between FILE_COMPLETE_ and AWAITIO[X], refer to the description of the
FILE_COMPLETE_ procedure in the Guardian Procedure Calls Reference Manual.

Completion on OSS Files
Completion on an OSS file means checking for readiness. The file is ready if data can
be sent, if data can be received, or if an exception occurred. The operation of
checking for readiness is equivalent to calling the OSS select() function, except that
the FILE_COMPLETE_ procedure returns ready information for only one file at a time.
It is also possible to use the FILE_COMPLETE_ procedure in parallel with the OSS
select() function in your program.

For more information on the OSS select() function, refer to the select(2) function
reference page either online or in the Open System Services System Calls Reference
Manual.

Calling the FILE_COMPLETE_ Procedure
The only parameter that must be supplied when you call the FILE_COMPLETE_
procedure is an output parameter that returns completion information for the Guardian

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 29

Using the FILE_COMPLETE_ Procedure

file that was completed or the OSS file that is ready. This structure is defined in the
ZSYS* files. In the TAL ZSYSTAL file, it is defined as follows:

For definitions of the fields of this structure, refer to the description of the
FILE_COMPLETE_ procedure in the Guardian Procedure Calls Reference Manual.

The first optional parameter is the timelimit parameter, which is used the same way
that the timeout parameter to the AWAITIO[X] procedures, described earlier in this
section, is used. However, the following differences exist:

• Error 40, which is returned by the FILE_COMPLETE_ procedure if you specify a
timelimit value other than -1D and an I/O operation times out, does not cause
any outstanding I/O operation to be canceled; the operation is considered
incomplete.

• Error 26 is returned by the FILE_COMPLETE_ procedure only if you specify a
timelimit value of -1D but no I/O operation has been initiated.

The other optional parameters together provide a means for you to supply a set of files
to be temporarily enabled for completion. This set overrides the set of files that were
enabled by previous calls to the FILE_COMPLETE_SET_ procedure, but only for the
current call to FILE_COMPLETE_. You specify the temporary set of enabled files in
much the same manner as the “permanent” set: by supplying an array of
COMPLETE^ELEMENT structures that describe the files, except that the array is
supplied directly to the FILE_COMPLETE_ procedure. (For a description of the
COMPLETE^ELEMENT structure, refer to Using the FILE_COMPLETE_SET_
Procedure.)

STRUCT ZSYS^DDL^COMPLETION^INFO^DEF (*);
 BEGIN
 INT Z^FILETYPE;
 INT(32) Z^ERROR;
 INT(32) Z^FNUM^FD;
 STRUCT Z^RETURN^VALUE;
 BEGIN
 BIT_FILLER 15;
 BIT_FILLER 1;
 BIT_FILLER 13;
 UNSIGNED(1) Z^READ^READY;
 UNSIGNED(1) Z^WRITE^READY;
 UNSIGNED(1) Z^EXCEPTION;
 END;
 INT(32) Z^COMPLETION^TYPE = Z^RETURN^VALUE;
 INT(32) Z^COUNT^TRANSFERRED = Z^RETURN^VALUE;
 INT(32) Z^TAG;
 END;

Note. For better performance, use the set of files enabled by the FILE_COMPLETE_SET_
procedure rather than specifying a temporary override list to the FILE_COMPLETE_
procedure.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 30

Nowait-Depth

In the following example, the call to the FILE_COMPLETE_ procedure waits for ten
seconds for a completion to occur on one of the files in the enabled set; the temporary
override set is not used.

?SOURCE ZSYSTAL(ZSYS^DDL^COMPLETION^INFO)

STRUCT .COMPLETE_INFO (ZSYS^DDL^COMPLETION^INFO^DEF);
INT(32) TIME_LIMIT;
INT ERROR;
 .
 .
TIME_LIMIT := 1000D; -- Wait for 10 seconds
ERROR := FILE_COMPLETE_ (
 COMPLETE_INFO_ -- out; info on completed
file
 ,TIME_LIMIT -- in; time limit on
completion
);
IF ERROR <> 0 THEN ...

Nowait-Depth
The nowait-depth parameter is used by requesters when opening files.The nowait-
depth parameter tells the file system and the server the maximum number of I/O
requests that can be issued concurrently using the same file number.

The file system completes multiple requests against the same file in the exact order
issued, even if the reply for a request issued later physically arrives before the reply for
a previously issued request. SETMODE 30 enables the file system to complete I/O
requests in the order the server replies.

Nowait-depth value Description

0 Waited I/O. As soon as an I/O is initiated for this file, the process
is suspended until the operation is completed.

1 No-waited I/O. Initiating the I/O operation does not suspend the
process. I/O operations must be completed using an AWAITIO
call. A nowait-depth value of 1 is the maximum value allowed
for $RECEIVE and disk files. If the application needs to issue
concurrent I/O on a disk file, open the file several times and issue
each no-wait request using a different file number.

> 1 (greater than 1) Concurrent no-waited I/O. Here, multiple concurrent I/Os are
supported over a single file open. To track the different I/Os, the
requester must assign each I/O a unique tag that is returned to
the requester when the operation is completed. Although the file
system supports nowait-depth value in the range 0 through 15,
many devices and processes do not support open requests with a
nowait-depth value greater than 1.

Using Nowait Input/Output

Guardian Programmer’s Guide — 421922-014
4 - 31

Nowait-Depth

Note that FILE_OPEN_ can be performed no-waited. In this case FILE_OPEN_ returns
a file number immediately, which must be used in a later call to AWAITIO (the open
does not complete until AWAITIO returns). Use this when opening a process file to
ensure that the opened process reads its $RECEIVE messages. If you call
FILE_OPEN_ waited, the requester might hang indefinitely if the server misbehaves.

Guardian Programmer’s Guide — 421922-014
5 - 1

5 Communicating With Disk Files
Data files are typically either NonStop SQL files or files managed by the Enscribe
database record manager. This section discusses Enscribe files. For details of
NonStop SQL file management, see the NonStop SQL manuals.

In this section, you will learn about each file type supported by the Enscribe software
and how to access such files using Guardian procedure calls. Specifically, this section
covers the following topics:

• How to use unstructured files

• How to use structured files, including relative files, entry-sequenced files, and key-
sequenced files

• How to use partitioned files

For each type of file, this section outlines the common file-system operations: create,
open, position, read and write, lock, rename, close, purge, and alter attributes.
Emphasis is given to differences among the file types.

This section does not attempt a comprehensive description of Enscribe files; rather, it
outlines the major features and programmatic operations affecting Enscribe files and
provides examples. Refer to the Enscribe Programmer’s Guide for complete details.

Many of the programmatic tasks described in this section can also be done
interactively using the File Utility Program (FUP); refer to the File Utility Program (FUP)
Reference Manual for details.

Accessing Enscribe files through the NonStop Transaction Manager/MP (TM/MP) is
not discussed here. You should refer to the NonStop TM/MP Application
Programmer’s Guide for details.

Types of Disk Files
The Enscribe database record manager supports structured and unstructured files.
Structured files contain data and control information that allows each data record to be
uniquely identified. Unstructured files contain only data; access to data is done using a
byte address within the file.

Unstructured Files
The Enscribe database record manager imposes no structure on an unstructured file.
Any structure that such a file has is imposed by the application.

The application can access arbitrary portions of the file by setting the record pointers to
the desired starting byte positions. The current-record pointer addresses the current
record, and the next-record pointer addresses the record that physically follows the
current record. This type of file is therefore suitable for sequential access. To
randomly access records in an unstructured file, you need to set up the pointers with
the byte address of the start of the desired record, relative to the beginning of the file.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 2

Structured Files

Unstructured files are suitable for applications that are sequential in nature or where
the application itself provides the structure. Files created by the EDIT and TEDIT
programs are typical examples of unstructured files.

Structured Files
The Enscribe software supports the following types of structured files:

• Relative files

• Entry-sequenced files

• Key-sequenced files

The following paragraphs describe the major characteristics of these file types and
indicate the types of applications that can best take advantage of each file type.

Relative Files
Relative files are made up of logical records. A fixed amount of storage is used for
each record, even though the data saved in the record can be a different length. The
fixed length, known as the record length, is therefore the maximum length of a relative-
file record.

Figure 5-1 shows the structure of a relative file.

Each record in a relative file is identified by a number whose value is the position of the
record in the file. The first record in the file is record number 0. You access a given
record by setting up the file pointers with the record number and then issuing the
appropriate procedure call. Existing records can be updated or deleted. An update
can change the record length (up to the maximum length). New records are usually
appended to the file.

Relative files are appropriate when you can assign unique numbers to records from a
compact range. An employee file indexed on employee number could be a suitable
application because the employee number and record number can be the same. If
there is a high turnover and employee numbers are never reassigned, however, a key-
sequenced file may be more appropriate because the relative file would contain many
empty records. A relative file also makes it impossible to include alphabetic characters
in the employee ID.

An inventory file indexed by part number might seem to be an appropriate application
of relative files. However, part-number schemes do tend to have large gaps; a record
would be reserved for each number, whether there was a corresponding part for it or
not.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 3

Structured Files

Figure 5-1. Relative-File Structure

VST023.VSD

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 4

Structured Files

Entry-Sequenced Files
Records in an entry-sequenced file are variable length. Writing to the file involves
appending records to the end of the file. Records therefore appear in the file in the
order in which they were written. Once the record is written, its size cannot be
changed.

Figure 5-2 shows the structure of an entry-sequenced file.

The key to an entry-sequenced file is the record address, made up of the block byte
address and the record number within that block. You use the record address to
access a given record. Because you cannot change the length of a record in an entry-
sequenced file, records are usually not updated, unless you do so without changing the
record length.

Entry-sequenced files are useful when records of variable length are anticipated in an
application that stores data chronologically. A transaction logging file, for example,
saves a record of information for each transaction in the order in which the transactions
occurred.

Figure 5-2. Entry-Sequenced File Structure

VST024.VSD

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 5

Structured Files

Key-Sequenced Files
In key-sequenced files, each record is identified by a unique key that is stored in the
record itself. With key-sequenced files, you can read records, insert new records,
delete records, and update records. When updating records, you also have the
possibility of changing the length of the record.

Tree-structured index records provide random access to the data records. Data
records can also be accessed sequentially in key sequence.

Key-sequenced files are “tree structured.” The trunk of the tree is an index block
containing records that each point to a second level of index block. The second-level
index blocks contain pointers to a third level, and so on. Finally, the lowest level of
index block contains pointers to the leaves of the tree that contain the data records.

Figure 5-3 shows the structure of a key-sequenced file. This example shows two
levels of index blocks. The second level of index blocks points directly to the data
blocks.

You access data records randomly by specifying the key value of a record. The search
starts by comparing the supplied key with the record keys in the highest-level index
block. The system software finds the highest key in the block that is less than or equal
to the supplied key value. The corresponding record contains a pointer to a second-
level index block where the key comparison is repeated. By traversing index blocks in
this way, the Enscribe software finally arrives at the data block that contains the
desired record. A search of this block locates the record.

When adding a record to a key-sequenced file, the data record is added to the file and
the index records are updated accordingly. Key-sequenced files are initially set up with
empty records in the data blocks to enable records to be added efficiently. When a
data block is full, the Enscribe software creates another and sets up the index pointers
accordingly.

Key-sequenced files also support sequential access of data records by key sequence.

Key-sequenced files are suitable for any application where random access by key
value is required. An inventory file where each record describes a part could be set up
as a key-sequenced file, using the part number as the unique key. A banking system
organized by account number is another typical example.

Note. All index blocks and data blocks of a key-sequenced file reside in the same file.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 6

Structured Files

Figure 5-3. Key-Sequenced File Structure

VST025.VSD

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 7

Alternate-Key Files

Alternate-Key Files
An alternate-key file is a key-sequenced file that has a special association with a
primary file. The primary file can be a relative file, an entry-sequenced file, or another
key-sequenced file. This association allows the file system to use the records in the
alternate-key file to keep track of records in the primary file.

An alternate-key file can be opened and read or updated by itself, just like any key-
sequenced file.

Although the main purpose of an alternate-key file is to provide alternate access to
records in primary files, the ability to manipulate the alternate file on its own is
sometimes useful. For example, when all data for some application function is
contained within the alternate-key file and the primary file is large, there can be
significant performance advantage to accessing the smaller alternate-key file on its
own.

A record in any structured file can be accessed by one or more alternate keys. For
example, it might be useful for a banking application to be able to access an account
by name as well as account number. Alternate-key files provide the access
mechanism.

An alternate-key file contains a record for each valid alternate key. This record
contains three fields:

• The alternate-key value.

• A key specifier: a two-byte value that distinguishes among different alternate keys
in the same alternate-key file. For example, an inventory application might use
part description and supplier name as secondary keys; the key-specifier field
indicates whether a given record uses a part description or a supplier name as the
secondary key.

• The primary key of the corresponding data record. For a relative file, the primary
key is the record number. For an entry-sequenced file, the primary key is the
record address. For a key-sequenced file, the primary key is the key value
embedded in the record itself.

For alternate-key files containing nonunique alternate-key values, records with like key
specifiers are always contained in the same alternate-key file. An alternate-key file
may contain more than one key specifier. In other words, all alternate keys can be
contained in the same alternate-key file, or they can be segregated according to key
type. Figure 5-4 shows several key specifiers in the same alternate-key file.

Records with unique alternate keys are always contained in the same file. They are
never kept in the same file with keys that are a different length.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 8

Queue Files

When a new key is added to the data file, new alternate keys are automatically added
to the alternate-key file (unless the alternate key is defined as not automatically
updated).

Unlike primary keys, alternate keys can be duplicated if the file is designated to accept
duplicate keys. Duplicate keys are added to the alternate-key file in the same order as
the corresponding key in the primary file. Figure 5-4 shows examples of duplicate
keys.

Duplicate alternate keys can, for example, provide keyed access for two people with
the same name; their primary keys would, of course, have unique values such as a
bank account number or social security number.

Queue Files
A queue file is a special type of key-sequenced disk file that can function as a queue.
Processes can queue and dequeue records in a queue file.

Queue files contain variable-length records that are accessed by values in designated
key fields. Unlike other key-sequenced files, queue files have primary keys but cannot
have alternate keys. The primary key for a queue file includes an eight-byte
timestamp; you can add a user key if desired. The disk process inserts the timestamp
when each record is inserted into the file, and maintains the timestamp during
subsequent file operations.

Figure 5-4. An Alternate-Key File

VST026.VSD

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 9

Using Unstructured Files

For more information about queue files and how to use them, refer to the Enscribe
Programmer’s Guide.

Using Unstructured Files
You can access unstructured files using system procedures such as FILE_OPEN_,
READ[X], READUPDATE[X], WRITE[X], WRITEUPDATE[X], and so on. Unstructured
files are suitable for sequential I/O; successive calls to the READX procedure, for
example, read successive records from the file. Positioning is done by the file system,
which advances the current-record and next-record pointers as records are read.
Much of the method for working with unstructured files has already been discussed in
Section 2, Using the File System. This subsection emphasizes how to create
unstructured files.

The IOEdit subset of procedures, provides additional functions for accessing
unstructured EDIT files. Refer to Section 14, Using the IOEdit Procedures, for details.

As an aid to sequential-file access, the procedure library contains another subset of
procedures specifically for sequential I/O. These procedures are known as the
sequential input/output (SIO) procedures and are described in Section 15, Using the
Sequential Input/Output Procedures.

For an example of accessing an unstructured file using READX, WRITEX, and
POSITION procedure calls, refer to the log-file program given at the end of Section 2,
Using the File System.

Creating Unstructured Files
You can create an unstructured file interactively using the FUP CREATE command or
programmatically by issuing a call to the FILE_CREATE[LIST]_ procedure. In either
case, you need to supply the following information:

• The file type for an unstructured file. Unstructured is the default file type.

• The size of the buffer used to transfer data between the disk and the disk process
for an unstructured file. The buffer size can be 512, 1024, 2048, or 4096 bytes.
The default block size is 4096 bytes.

You can improve the efficiency of the disk cache management scheme by setting
the buffer size to the same size as each data transfer. See the discussion on
transfer size in the Enscribe Programmer’s Guide for details.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 10

Creating Unstructured Files

The following example interactively creates an unstructured file with a buffer size of
512 bytes using the FUP CREATE command:

1> FUP
-SET TYPE U
-SET BUFFERSIZE 512
-SHOW
 TYPE U
 EXT (1 PAGES, 1 PAGES)
 MAXEXTENTS 16
 BUFFERSIZE 512
-CREATE $ADMIN.OPERATOR.LOGFILE
CREATED - $ADMIN.OPERATOR.LOGFILE
-EXIT
2>

Refer to the File Utility Program (FUP) Reference Manual for more details on how to
create files using the FUP CREATE command.

The following example programmatically creates the same file using the
FILE_CREATE_ procedure:

STRING .FILE^NAME[0:ZSYS^VAL^LEN^FILENAME - 1];
INT LENGTH;
INT FILE^TYPE := 0;
INT BUFFER^SIZE := 512;
 .
 .
FILE^NAME ':=' "\SYS.$ADMIN.OPERATOR.LOGFILE" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
CALL FILE_CREATE_(FILE^NAME:ZSYS^VAL^LEN^FILENAME,
 LENGTH,
 !file^code!,
 !primary^extent^size!,
 !secondary^extent^size!,
 !max^extents!,
 FILE^TYPE,
 !options!,
 !record^len!,
 BUFFER^SIZE);

As for any disk file, you should also consider the desired extent sizes for your file. The
above example creates a file using the default extent sizes of 1 page for the primary
extent and 1 page for each of the secondary extents. Refer to Section 2, Using the
File System, for details of setting extent sizes.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 11

Opening Unstructured Files

Opening Unstructured Files
You open an unstructured file as you would any other file, by using the FILE_OPEN_
procedure.

INT FILE^NUM;
 .
 .
CALL FILE_OPEN_(FILE^NAME:LENGTH,
 FILE^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 SYNC^DEPTH);

This example opens the file for reading and writing with waited I/O. Refer to Section 3,
Coordinating Concurrent File Access, for information on access and exclusion modes
and to Section 4, Using Nowait Input/Output, for a discussion of waited versus nowait
I/O.

A sync depth of 1 permits retryable write requests against the file when automatically
recovering from path errors. In other words, the sync depth ensures that your data
does not get corrupted due to path errors.

Positioning, Reading, and Writing With Unstructured Files
Unstructured files can be accessed sequentially. Random access is also possible if
the byte address of the data you need is known; you set the byte address using the
POSITION procedure. To begin sequential access anywhere except at the beginning
of the file, you need to set the pointers to the starting byte address.

Refer to Section 2, Using the File System, for details of how to access data in an
unstructured file, including a discussion on the function of the file pointers.

Locking With Unstructured Files
Sometimes you need to ensure exclusive access to a given file or record for a limited
time, for example, while a transaction is in progress. As with any disk file, you can lock
other processes out of an unstructured file by using the LOCKFILE procedure or out of
a given record by using the LOCREC procedure.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 12

Renaming Unstructured Files

Section 3, Coordinating Concurrent File Access, describes how to use the LOCKFILE
procedure to acquire a file lock, and how to remove a file lock using the UNLOCKFILE
procedure. LOCKREC and UNLOCKREC work in a similar way, as follows:

CALL POSITION(FILE^NUM,
 RECORD^ADDRESS);
CALL LOCKREC(FILE^NUM);
IF <> THEN ... !could not get the lock
 .
 .
!protected I/O operations
 .
 .
CALL UNLOCKREC(FILE^NUM);

The LOCKREC procedure locks the current record (the one addressed by the current-
record pointer). UNLOCKREC removes the lock from the current record. Use care to
ensure that the file pointers are positioned correctly when unlocking the record. If you
have used sequential reads or writes or have done multiple I/O operations to the file
since locking the record, you will need to reset the pointers before unlocking the
record.

Renaming Unstructured Files
You rename an unstructured file as you would any other file, by using the
FILE_RENAME_ procedure. The following procedure call renames the file opened
with file number FILE^NUM.

NAME ':=' "\SYS.$ADMIN.OPERATOR.LOGFILE1" -> @S^PTR;
NAME^LENGTH := @S^PTR '-' @NAME;
ERROR := FILE_RENAME_(FILE^NUM,
 NAME:NAME^LENGTH);
IF ERROR <> 0 THEN ...

Note. For files that are protected by the NonStop Transaction Manager/MP (TM/MP), the
acquisition and release of record locks is different from using the Enscribe procedures without
NonStop TM/MP protection. Every modified record gets an implicit lock that is not released,
even by explicit unlock requests, until the transaction ends. Refer to the NonStop TM/MP
Application Programmer’s Guide for details.

Note. You can rename only the subvolume and file ID parts of the file name. You cannot
change the name of the volume on which the file resides. The volume specified must be the
same as the volume the file already resides on.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 13

Avoiding Unnecessary Cache Flushes to
Unstructured Files

Avoiding Unnecessary Cache Flushes to Unstructured Files
You can avoid unnecessary cache flushes to unstructured files in the same way as for
any other file by using function 152 of the SETMODE procedure as shown in the
following code fragment:

LITERAL AVOID^FLUSH = 152,
 DONT^FLUSH = 1;
 .
 .
CALL SETMODE(FILE^NUM,
 AVOID^FLUSH,
 DONT^FLUSH);
IF <> THEN ...

By default, an unaudited file always has its cache flushed when you close the file. By
using SETMODE 152, you avoid this unnecessary overhead in the following situations:

• After the close, the file remains open for writing by your process or some other
process.

• The close is not the last close on a file that was opened with a nonzero sync-depth
value.

To be effective, SETMODE 152 with param1 set to 1 should be performed for each
open of the file. Any open that does not perform SETMODE 152 with param1 set to 1
causes a cache flush when it closes the file.

For optimal performance, you should not use SETMODE 152 with param1 set to 1 if
the file is to be closed by all openers at about the same time. This is because, in such
a case, all buffers in the cache are flushed serially by the last opener rather than in
parallel by each opener.

For audited files, SETMODE 152 is unnecessary. The NonStop TM/MP product
automatically avoids unnecessary flushes. See the NonStop TM/MP Reference
Manual for details.

Closing Unstructured Files
An unstructured file can be closed in the same way as any other file, by using the
FILE_CLOSE_ procedure:

ERROR := FILE_CLOSE_(FILE^NUM);
IF ERROR <> 0 THEN ...

When a process terminates, any files that the process still has open are automatically
closed.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 14

Purging Unstructured Files

Purging Unstructured Files
You purge an unstructured file the same way you would purge any file; either
interactively using the FUP PURGE command or TACL PURGE command, or
programmatically by calling the FILE_PURGE_ procedure. Purging does not normally
delete the data, but it changes pointers to show the file to be absent and its extent
space deallocated.

The file should be closed before you attempt to purge it.

You can force the FILE_PURGE_ procedure to clear the file of all data by setting the
CLEARONPURGE flag. You may want to do this for security reasons; otherwise the
extents that the purged file occupied do become readable when reallocated to another
file. Use function 1 of the SETMODE procedure to set the CLEARONPURGE flag
(bit 1) to 1.

The following example purges a file and clears all its data:

LITERAL SET^SECURITY = 1,
 CLEAR^ON^PURGE = %40000;
INT OLD^VALUES[0:1];
 .
 .
!Save current security flag values

CALL SETMODE(FILE^NUM,
 SET^SECURITY,
 !param^1!,
 !param^2!,
 OLD^VALUES);

!Set CLEARONPURGE and merge with existing security flag
!values:

CALL SETMODE(FILE^NUM,
 SET^SECURITY,
 (CLEAR^ON^PURGE LOR OLD^VALUES[0]));
IF <> THEN ...
 .
 .
ERROR := FILE^CLOSE(FILE^NUM);
IF ERROR <> THEN ...
 .
 .
NAME ':=' "\SYS.$ADMIN.OPERTOR.LOGFILE1" -> @S^PTR;
NAME^LENGTH := @S^PTR '-' @NAME;
ERROR := FILE_PURGE_(NAME:NAME^LENGTH);
IF ERROR <> 0 THEN ...

Common reasons for an error to be returned are that some other process has the file
open, the owner does not permit this process to purge the file, or the file is a TMF audit
file. The Transaction Management Facility subsystem (TMF) is the main functional
component of NonStop TM/MP.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 15

Altering Unstructured-File Attributes

Altering Unstructured-File Attributes
As for any other file type, file attributes for an unstructured file are normally set when
the file is created. These attributes include, for example, an application-supplied file
code or an expiration time before which the file cannot be purged. You can, however,
change some attributes of an existing file by calling the FILE_ALTERLIST_ procedure.

The following example changes the file code for the file named MYFILE and sets TMF
auditing for the file. Here, a change of file code is requested by the item-list
parameter (code 42), and a change in TMF audit status by item-list code 66. The
new values are provided in the first and second items listed in the values parameter.

FILENAME ':=' "MYFILE";
NAME^LENGTH := 6;
ITEM^LIST ':=' [42,66];
NUMBER^OF^ITEMS := 2;
VALUES ':=' [125,1];
VALUES^LENGTH := 4;
ERROR := FILE_ALTERLIST_(FILENAME:NAME^LENGTH,
 ITEM^LIST,
 NUMBER^OF^ITEMS,
 VALUES,
 VALUES^LENGTH);

An alternate way of altering file attributes is to use the FUP ALTER command. This
command allows you to set attributes interactively through the TACL program instead
of programmatically using the FILE_ALTERLIST_ procedure.

See the Guardian Procedure Calls Reference Manual for complete details of every file
attribute that you can change with the FILE_ALTERLIST_ procedure. See the
Guardian Procedure Calls Reference Manual for details of the FUP ALTER command.

Using Relative Files
This subsection discusses how to create and access relative files. It outlines the
common file-system operations: create, open, position, read and write, lock, rename,
close, purge, and alter attributes. The discussion includes a complete program that
makes use of the major features of relative files, including the ability to randomly
access a file using the record number.

The discussion here is limited to primary-key access, that is, access by record number.
Relative files can also be accessed by alternate keys; for details, refer to Using
Alternate Keys later in this section.

Note. When you call FILE_ALTERLIST_ for a given file, the file must not be open otherwise
the procedure returns an error.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 16

Creating Relative Files

Creating Relative Files
You can create a relative file either interactively using the FUP CREATE command or
programmatically using the FILE_CREATE[LIST]_ procedure. In either case, you need
to supply information about how to build the file, including the appropriate file type,
block size, and maximum record length.

The following example creates a relative file interactively using the FUP CREATE
command:

1> FUP
-SET TYPE R
-SET BLOCK 4096
-SET REC 128
-SHOW
 TYPE R
 EXT (1 PAGES, 1 PAGES)
 REC 128
 BLOCK 4096
 MAXEXTENTS 16
-CREATE $ADMIN.OPERATOR.RELFILE
CREATED - $ADMIN.OPERATOR.RELFILE
-EXIT
2>

Refer to the File Utility Program (FUP) Reference Manual for more details on how to
create files using the FUP CREATE command.

The next example creates the same file programmatically using the FILE_CREATE_
procedure:

STRING .FILE^NAME[0:ZSYS^VAL^LEN^FILENAME - 1];
INT LENGTH;
INT FILE^TYPE := 1;
INT RECORD^LENGTH := 128;
INT BLOCK^LENGTH := 4096;
 .
 .

FILE^NAME ':=' "\SYS.$HR.RECORDS.EMPFILE" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
ERROR := FILE_CREATE_(FILE^NAME:ZSYS^VAL^LEN^FILENAME,
 LENGTH,
 !file^code!,
 !primary^extent^size!,
 !secondary^extent^size!,
 !max^extents!,
 FILE^TYPE,
 !options!,
 RECORD^LENGTH,
 BLOCK^LENGTH);
IF ERROR <> 0 THEN ...

A file type of 1 specifies a relative file.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 17

Opening Relative Files

The record length is set to 128 bytes, which sets the limit on the size of a logical
record. (Recall that the maximum size of a logical record for a relative file is the record
length.) A block size of 4096 limits the maximum size of a record that could be
specified.

The block size is the number of bytes that are transferred between the disk and the
disk process. The block size can be 512, 1024, 2048, or 4096 bytes. Records cannot
span blocks; therefore the block size must be at least large enough to contain one
record and the overhead associated with the block. In other words, the maximum
record size is smaller than the block size. A block usually contains multiple records.

As for any disk file, the file system allocates a primary extent to the file and as many
secondary extents as necessary (up to the maximum allowed). The above example
assumes the default extent sizes and default maximum number of extents. Extent
allocation is described in Section 2, Using the File System.

Opening Relative Files
A relative file is opened in the same way as any other file, by using the FILE_OPEN_
procedure. See Using Unstructured Files, earlier in this section, for details.

Positioning, Reading, and Writing With Relative Files
Before performing a read or write operation on a relative file, you must be sure that the
current-record and next-record pointers point to the appropriate places. When you
open the file, the pointers are set up to access record 0. If you want to randomly
access other records in the file, you must move the pointers using the POSITION
procedure to do this. For example:

INT(32) RECORD^NUM;
 .
 .
RECORD^NUM := 24D;
CALL POSITION(FILE^NUM,RECORD^NUM);
IF <> THEN ...

The above example places the current-record and next-record pointers at the start of
record number 24 in the file. Your program can now do sequential read and write
operations using the READ[X] or WRITE[X] procedures starting at record number 24.
READUPDATE[X] and WRITEUPDATE[X] can be used if you do not wish to move the
file pointers, for example, when updating a record.

You can position the file pointers to the next empty physical record by setting the
record number to -2D. You can address the end of the file (for appending a record) by
setting the record number to -1D.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 18

Locking, Renaming, Caching, Closing, Purging, and
Altering Relative Files

Locking, Renaming, Caching, Closing, Purging, and Altering
Relative Files

The operations of locking, renaming, closing, and purging relative files, altering
relative-file attributes, and avoiding unnecessary cache flushes of relative files are the
same as for any disk file. See Using Unstructured Filesearlier in this section.

Relative-File Programming Example
This example is an extension of the log-file program described near the end of
Section 2, Using the File System. It is modified to use a relative file instead of an
unstructured file. A relative file is suitable for this kind of application because:

• Entries in the file are chronological and therefore suitable for referencing by record
number.

• The record number gives the user a key to access records randomly.

You can create the relative file required by this program using the FILE_CREATE_
procedure as described under Creating Relative Files, or you can simply use FUP
commands as shown below:

1> FUP
-SET TYPE R
-SET BLOCK 4096
-SET REC 512
-SHOW
 TYPE R
 EXT (1 PAGES, 1 PAGES)
 REC 512
 BLOCK 4096
 MAXEXTENTS 16
-CREATE $ADMIN.OPERATOR.RELFILE
CREATED - $ADMIN.OPERATOR.RELFILE
-EXIT
2>

The record length is set by a FUP command to 512 bytes. Each record’s data can
therefore be any length up to 512 bytes.

In addition to code modified to use a relative file instead of an unstructured file, this
program contains a function that updates an existing record.

To make the code use a relative file instead of an unstructured file, the code has been
modified in the following ways:

• The UPDATE^RECORD procedure has been added. This procedure allows the
user to replace an existing record. It prompts the user for the record number to
update, then prompts for the new comments and writes the new contents over the
original contents in the file. Finally, the procedure returns control to the LOGGER
procedure.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 19

Relative-File Programming Example

• The READ^RECORD procedure prompts the user for the record number of the first
record to be read instead of always starting with the first record in the file.

• The LOGGER and GET^COMMAND procedures support the “u” option for
updating a record.

The code for this program appears on the following pages.

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !maximum file-name
 ! length
LITERAL BUFSIZE = 512;

STRING .SBUFFER[0:BUFSIZE]; !I/O buffer (one extra char)
STRING .S^PTR; !pointer to end of string
INT LOGNUM; !log file number
INT TERMNUM; !terminal file number

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,
? PROCESS_GETINFO_,FILE_OPEN_,WRITEREADX,WRITEX,
? PROCESS_STOP_,READX,POSITION,DNUMOUT,FILE_GETINFO_,
? READUPDATEX,WRITEUPDATEX,DNUMIN)
?LIST

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 20

Relative-File Programming Example

!--
! Here are some DEFINEs to make it easier to format and print
! messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print a line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER, 0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 21

Relative-File Programming Example

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is mainly to be used when
! the file is not open, so there isn't a file number for it.
! FILE^ERRORS is to be used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!---

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program:

 CALL PROCESS_STOP_;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 22

Relative-File Programming Example

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to do the display.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!---

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

!---
! This procedure writes a message on the terminal and checks
! for any error. If there is an error, it attempts to write
! a message about the error and the program is stopped.
!---

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 23

Relative-File Programming Example

!--
! This procedure asks the user for the next function to do:
!
! "r" to read records
! "u" to update a record
! "a" to append a record
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' for Read Log, ");
 PRINT^STR(" 'u' for Update Log, ");
 PRINT^STR(" 'a' for Append to Log, ");
 PRINT^STR(" 'x' for Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 24

Relative-File Programming Example

!--
! Procedure for reading records. The user selected function
! "r." The start of the read is selected randomly by record
! number. The user has the option of sequentially reading
! subsequent messages.
!--

PROC READ^RECORD;
BEGIN
 INT COUNT^READ;
 INT(32) RECORD^NUM;
 STRING .EXT NEXT^ADR;
 INT STATUS;
 INT ERROR;

! Prompt the user to select a record:

PROMPT^AGAIN:
 PRINT^BLANK;
 SBUFFER ':=' "Enter Record Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 SBUFFER[COUNT^READ] := 0;

! Convert ASCII to numeric:

 @NEXT^ADR := DNUMIN(SBUFFER,RECORD^NUM,10,STATUS);
 IF STATUS OR @NEXT^ADR <> $XADR(SBUFFER[COUNT^READ]) THEN
 BEGIN
 PRINT^STR("Error in the record number");
 GOTO PROMPT^AGAIN;
 END;

! Position current-record and next-record pointers to
! selected record:

 CALL POSITION(LOGNUM,RECORD^NUM);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 25

Relative-File Programming Example

! Loop reading and displaying records until user declines
! to read next record (any response other than "y"):

 DO BEGIN

 PRINT^BLANK;

 ! Read a record from the log file and display
 ! it on the terminal. If end-of-file is reached,
 ! return control to LOGGER procedure:

 CALL READX(LOGNUM,SBUFFER,BUFSIZE,COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(LOGNUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(LOGNUM);
 END;

 CALL WRITE^LINE(SBUFFER,COUNT^READ);

 PRINT^BLANK;

 ! Prompt the user to read the next record (user
 ! must respond "y" to accept, otherwise return
 ! to select next function):

 SBUFFER ':=' ["Do you want to read another ",
 "record (y/n)? "]
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 26

Relative-File Programming Example

!--
! Procedure for updating a record. The user selected
! function "u." The user is prompted for the record number
! to update. The procedure displays the current contents and
! prompts for the new. After the user enters the new
! contents, the procedure updates the log file.
!--

PROC UPDATE^RECORD;
BEGIN
 INT COUNT^READ;
 INT(32) RECORD^NUM;
 STRING .EXT NEXT^ADR;
 INT STATUS;
 INT ERROR;

! Prompt the user to select a record:

PROMPT^AGAIN:
 PRINT^BLANK;
 SBUFFER ':=' "Enter Record Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 SBUFFER[COUNT^READ] := 0;

! Convert ASCII to numeric:

 @NEXT^ADR := DNUMIN(SBUFFER,RECORD^NUM,10,STATUS);
 IF STATUS OR @NEXT^ADR <> $XADR(SBUFFER[COUNT^READ]) THEN
 BEGIN
 PRINT^STR("Error in the record number");
 GOTO PROMPT^AGAIN;
 END;

! Position current-record and next-record pointers to
! selected record:

 CALL POSITION(LOGNUM,RECORD^NUM);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

! Read the record without moving the current-record and
! next-record pointers. If end-of-file is reported,
! return to LOGGER:

 CALL READUPDATEX(LOGNUM,SBUFFER,BUFSIZE,COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(LOGNUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 27

Relative-File Programming Example

 CALL FILE^ERRORS(LOGNUM);
 END;

! Write the record to the terminal screen:

 PRINT^BLANK;
 CALL WRITE^LINE(SBUFFER,COUNT^READ);

! Prompt the user for the updated record:

 PRINT^BLANK;
 SBUFFER ':=' "Enter New Contents of Record: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Write new record to log file:

 CALL WRITEUPDATEX(LOGNUM,SBUFFER,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

END;

!--
! Procedure for appending a record. The user selected
! function "a." The user is prompted to enter comments. The
! procedure puts the comments in a new record at the end of
! the file.
!--

PROC APPEND^RECORD;
BEGIN
 INT COUNT^READ;

 PRINT^BLANK;

! Prompt user for comments and read comments into the
! buffer:

 SBUFFER ':=' "Enter today's comments: "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Place the next-record pointer at the end-of-file and
! write the new record there:

 CALL POSITION(LOGNUM, -1D);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

 CALL WRITEX(LOGNUM,SBUFFER,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 28

Relative-File Programming Example

!--
! Procedure to exit the program.
!--

PROC EXIT^PROGRAM;
BEGIN
 CALL PROCESS_STOP_;
END;

!--
! Procedure to process an invalid command. The procedure
! informs the user that the selection was other than "r,"
! "u", "a," or "x."
!--

PROC INVALID^COMMAND;
BEGIN

 PRINT^BLANK;

! Inform the user that his selection was invalid
! then return to prompt again for a valid function:

 PRINT^STR("INVALID COMMAND: " &
 "Type either 'r,' 'u,' 'a,' or 'x'");
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 29

Relative-File Programming Example

!--
! This procedure does the initialization for the program.
! It calls INITIALIZER to dispose of the startup messages.
! It opens the home terminal and the data file used by the
! program.
!--

PROC INIT;
BEGIN
 STRING .LOGNAME[0:MAXFLEN - 1]; !name of log file
 INT LOGLEN; !length of log name
 STRING .TERMNAME[0:MAXFLEN - 1]; !terminal file
 INT TERMLEN; !length of term name
 INT ERROR;

! Read and discard startup messages:

 CALL INITIALIZER;

! Open the terminal file. For simplicity we use the home
! terminal; the recommended approach is to use the IN file
! read from the Startup message; see Section 8, “Communicating
! With a TACL Process,” for details:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMNAME:MAXFLEN,
 TERMLEN);
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the log file with a sync depth of 1:

 LOGNAME ':=' "$ADMIN.OPERATOR.RELFILE" -> @S^PTR;
 LOGLEN := @S^PTR '-' @LOGNAME;
 ERROR := FILE_OPEN_(LOGNAME:LOGLEN,
 LOGNUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 1);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(LOGNAME:LOGLEN,ERROR);
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 30

Relative-File Programming Example

!--
! This is the main procedure. It calls the INIT procedure to
! initialize and then it goes into a loop calling GET^COMMAND
! to get the next user request and calling the procedure
! to carry out that request.
!--

PROC LOGGER MAIN;
BEGIN
 STRING CMD;

 CALL INIT;

! Loop indefinitely until user selects function "x":

 WHILE 1 DO
 BEGIN

 ! Prompt for the next command:

 CMD := GET^COMMAND;

 ! Call the function selected by user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^RECORD;

 "u", "U" -> CALL UPDATE^RECORD;

 "a", "A" -> CALL APPEND^RECORD;

 "x", "X" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL INVALID^COMMAND;
 END;
 END;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 31

Using Entry-Sequenced Files

5 Communicating With Disk Files

Using Entry-Sequenced Files
Entry-sequenced files have a different structure than relative files, therefore file
creation is different. File access is also different; random file access, for example, is
done by record address instead of record number. This subsection discusses how to
use entry-sequenced files, placing emphasis on file creation and file access because
these are the operations that differ from operations performed on other structured file
types. At the end of the subsection is a sample program showing I/O operations on an
entry-sequenced file.

The discussion here is limited to primary-key access, that is, by record address.
Alternate keys are discussed later under the heading Using Alternate Keys.

Creating Entry-Sequenced Files
You can create an entry-sequenced file either interactively using the FUP CREATE
command or programmatically using the FILE_CREATE[LIST]_ procedure. In either
case, you need to supply information about how to build the file, including the
appropriate file type, block length, and record length.

The following example creates an entry-sequenced file interactively using the FUP
CREATE command:

1> FUP
-SET TYPE E
-SET BLOCK 4096
-SET REC 4072
-SHOW
 TYPE E
 EXT (1 PAGES, 1 PAGES)
 REC 4072
 BLOCK 4096
 MAXEXTENTS 16
-CREATE $ADMIN.OPERATOR.ESFILE
CREATED - $ADMIN.OPERATOR.ESFILE
-EXIT
2>

Refer to the File Utility Program (FUP) Reference Manual for more details on how to
create files using the FUP CREATE command.

The next example creates the same file programmatically using the FILE_CREATE_
procedure:

STRING .FILE^NAME[0:ZSYS^VAL^LEN^FILENAME - 1];
INT LENGTH;
INT FILE^TYPE := 2;
INT RECORD^LENGTH := 4072;
INT BLOCK^LENGTH := 4096;
 .
 .

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 32

Opening Entry-Sequenced Files

FILE^NAME ':=' "\SYS.$HR.RECORDS.ESFILE" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
CALL FILE_CREATE_(FILE^NAME:ZSYS^VAL^LEN^FILENAME,
 LENGTH,
 !file^code!,
 !primary^extent^size!,
 !secondary^extent^size!,
 !max^extents!,
 FILE^TYPE,
 !options!,
 RECORD^LENGTH,
 BLOCK^LENGTH);

A file type of 2 specifies an entry-sequenced file.

The maximum record length has been set to 4072 bytes, almost equal to the block
size. (Entry-sequenced files require a few bytes of overhead in each block.) There is
no need to make the record size any smaller, because space is not wasted when you
use records that are smaller than the maximum (unlike relative files, where disk space
equal to the maximum record size is allocated even if the record itself is only one byte
long). Records can be any length from one byte up to this maximum. Unlike relative
files, records follow each other immediately, regardless of their sizes.

In this example, the block size is 4096 bytes. The file system will pack as many
records into this block size as it can, then start another block.

Opening Entry-Sequenced Files
Once an entry-sequenced file is created, you can open it as you would any file, by
using the FILE_OPEN_ procedure. See Using Unstructured Files for an example of
opening a disk file.

Positioning, Reading, and Writing With Entry-Sequenced Files
Write operations to an entry-sequenced file are done by appending records to the file
using the WRITE[X] procedure. Before writing, you must position the current-record
and next-record pointers at the end of the file. You do this by positioning to
address -1D:

INT(32) RECORD^ADDR;
 .
 .
RECORD^ADDR := -1D;
CALL POSITION(FILE^NUM,
 RECORD^ADDR);
CALL WRITEX(FILE^NUM,
 BUFFER,
 STRING^LENGTH);

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 33

Locking, Renaming, Caching, Closing, Purging, and
Altering Entry-Sequenced Files

To allow the appended record to be randomly accessed, you can acquire the record
address (combination of block number and record number) by issuing a
FILE_GETINFOLIST_ call as follows:

LITERAL MAX^RESULT^LENGTH = 34;
INT(32) RECORD^ADDRESS := 0D;
 .
 .
NUMBER^OF^ITEMS := 1;
GET^RECORD^ADDRESS := 12;
CALL FILE_GETINFOLIST_(FILE^NUM,
 GET^RECORD^ADDRESS,
 NUMBER^OF^ITEMS,
 RECORD^ADDRESS,
 MAX^RESULT^LENGTH);

Here, item 12 is passed to the procedure to return the current-record pointer. The
procedure returns the current-record pointer (containing the record address) in
RECORD^ADDRESS. Your program can then use this address to access the stored
record using the READ[X] procedure:

CALL POSITION(FILE^NUM,
 RECORD^ADDRESS);

CALL READX(FILE^NUM,
 BUFFER,
 BUFFER^LENGTH,
 BYTES^READ);

Locking, Renaming, Caching, Closing, Purging, and Altering
Entry-Sequenced Files

The operations of locking, renaming, closing, and purging entry-sequenced files,
altering entry-sequenced-file attributes, and avoiding unnecessary cache flushes of
entry-sequenced files are the same as for any disk file. See Using Unstructured Files
earlier in this section.

Monitoring Writes to a Disk File
You can use operation 27 of the CONTROL procedure to detect write operations to a
disk file. This feature is typically used with entry-sequenced files to check for writes to
the end of the file.

A typical example of the use of this feature is with a file that contains a log of
instructions written to the file by various processes. Your process needs to read these
instructions from the file and therefore needs to know when a write has taken place.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 34

Monitoring Writes to a Disk File

Using the CONTROL 27 Operation
To find out whether a write operation might have taken place, you issue the
CONTROL 27 operation against a file number that is open for nowait I/O. When a
write occurs against any open on this file, the corresponding call to the AWAITIO
procedure returns. Note that adding a record to the file is not the only reason why the
CONTROL operation might finish; for example, a write operation that occurs as a result
of a backing out a transaction will also complete the CONTROL operation.

Figure 5-5 shows how CONTROL operation 27 is typically used.

The following sequence explains how the example in Figure 5-5 works:

1. The first FILE_OPEN_ call opens the file for nowait I/O, with a sync-depth of 0.

2. The second FILE_OPEN_ call opens the file again, this time for waited I/O.

3. The CONTROL 27 operation is issued against the file number returned by the
nowait open; the CONTROL operation returns immediately.

Figure 5-5. Monitoring Write Operations on a Disk File

VST124.VSD

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 35

Monitoring Writes to a Disk File

4. The DO-UNTIL loop issues read operations against the file number returned by the
waited open. The loop exits when the READX procedure returns an end-of-file
error.

This operation serves the following purposes:

• The first time through the loop, the calls to READX read any records that were
already written to the file.

• In subsequent loops, the READX procedure reads the record at the end of the
file that was detected by the last CONTROL 27 operation that finished.

• If the last CONTROL 27 operation finished because of some reason other than
appending a record to the file, the READX procedure returns an end-of-file
error on the first call. The operation that caused the CONTROL operation to
finish is ignored.

5. The AWAITIO procedure returns when the CONTROL 27 operation finishes; that
is, after a write operation to the file from any process has taken place.

6. The program issues another CONTROL 27 operation to wait for the next write to
the file.

Using SETMODE Function 146 With CONTROL Operation 27
If several processes issue CONTROL 27 operations against the same file, the effect
differs, depending on whether you use SETMODE function 146.

Several CONTROL 27 operations could be issued against the same file before there is
any write to the file. In this case, all CONTROL 27 operations normally finish when
one write to the file occurs. If you need only one of these processes to respond to a
new record, then you can use SETMODE function 146.

When you use SETMODE function 146, a write operation completes only one of the
pending CONTROL 27 operations. These operations are queued; therefore, the
operation that finishes is the last one that was still pending.

Once the CONTROL 27 operation finishes for a given process, that process should
read the new record and make sure no other process can read it, for example by
locking it. Next time a record gets written to the file, the process that is next on the
queue returns from its CONTROL 27 operation; the process skips over the locked
record and reads the record that was just added.

You set the mode as follows:

LITERAL YES = 1,
 ONE^CONTROL27^AT^A^TIME = 146;
 .
 .
CALL SETMODE(FNUM,
 ONE^CONTROL27^AT^A^TIME,
 YES);
IF <> THEN ...

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 36

Entry-Sequenced File Programming Example

Entry-Sequenced File Programming Example
This example again uses the log-file program. Here, the program is shown modified to
use an entry-sequenced file. The entry-sequenced file is suitable for this kind of
application because:

• File entries are chronological.

• Variable-length entries are permitted. Unlike for relative files, you do not allocate
512 bytes for each record; you use only as much disk space as there are data
characters entered in the record. This feature also enables entries up to a
complete block in length.

• Record addresses permit random access.

Entry-sequenced files do, however, have the following drawbacks for this type of
application:

• You cannot update a record with a record of arbitrary length (record updates must
be exactly the same size).

• The record address is difficult to use because it is made up of the sum of the block
address and the record number relative to the start of the block.

You can programmatically create the entry-sequenced file required by this program by
using the FILE_CREATE_ procedure as described in Creating Entry-Sequenced Files
earlier in this subsection, or you can simply use FUP commands as shown below:

1> FUP
-SET TYPE E
-SET BLOCK 4096
-SET REC 4072
-SHOW
 TYPE E
 EXT (1 PAGES, 1 PAGES)
 REC 4072
 BLOCK 4096
 MAXEXTENTS 16
-CREATE $ADMIN.OPERATOR.ESFILE
CREATED - $ADMIN.OPERATOR.ESFILE
-EXIT
2>

Notice that the maximum record length has been set to 4072 bytes. This is the
maximum allowed in a block of 4096 bytes; the remaining 24 bytes are overhead.
There is no need to restrict the record size further than this, because the only disk
space used is the actual size of the data written.

The sample program shown below differs from the relative-file example as follows:

• There is no UPDATE^RECORD procedure and no corresponding option. Entry-
sequenced files do not support this feature.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 37

Entry-Sequenced File Programming Example

• The APPEND^RECORD procedure contains additional code to return the record
address and display it on the terminal. The user can use this address to randomly
access the record.

The code for this program follows.

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST,SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !maximum file-name
 ! length
LITERAL BUFSIZE = 512;

STRING .SBUFFER[0:BUFSIZE]; !I/O buffer (one extra char)
STRING .S^PTR; !pointer to end of string
STRING .LOGNAME[0:MAXFLEN - 1]; !name of log file
INT LOGLEN; !length of log name
INT LOGNUM; !log file number
STRING .TERMNAME[0:MAXFLEN - 1]; !terminal file
INT TERMLEN; !length of term name
INT TERMNUM; !terminal file number

?NOLIST,SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,
? PROCESS_GETINFO_,FILE_OPEN_,WRITEREADX,WRITEX,
? PROCESS_STOP_,READX,POSITION,DNUMOUT,FILE_GETINFO_,
? READUPDATEX,WRITEUPDATEX,DNUMIN,FILE_GETINFOLIST_)
?LIST

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 38

Entry-Sequenced File Programming Example

!--
! Here are some DEFINEs to make it easier to format and print
! messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR (S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT (N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Put a double-length integer into the line:

 DEFINE PUT^DOUBLE (N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,N,10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER, @S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE (SBUFFER, 0) #;

! Print a string:

 DEFINE PRINT^STR (S) = BEGIN START^LINE;
 PUT^STR (S);
 PRINT^LINE; END #;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 39

Entry-Sequenced File Programming Example

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is mainly to be used when
! the file is not open, so there isn't a file number for it.
! FILE^ERRORS is to be used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!---

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program:

 CALL PROCESS_STOP_;
END;

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to display the
! information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!---

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN-1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 40

Entry-Sequenced File Programming Example

!---
! This procedure writes a message on the terminal and checks
! for any error. If there is an error, it attempts to write
! a message about the error and the program is stopped.
!---

PROC WRITE^LINE (BUF, LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

!--
! This procedure asks the user for the next function to do:
!
! "r" to read records
! "a" to append a record
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' for Read Log, ");
 PRINT^STR(" 'a' for Append to Log, ");
 PRINT^STR(" 'x' for Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 41

Entry-Sequenced File Programming Example

!--
! Procedure for reading records. The user selected function
! "r." The start of the read is selected randomly by record
! number. The user has the option of sequentially reading
! subsequent messages.
!--

PROC READ^RECORD;
BEGIN
 INT COUNT^READ;
 INT(32) RECORD^NUM;
 STRING .EXT NEXT^ADR;
 INT STATUS;
 INT ERROR;

! Prompt the user to select a record:

PROMPT^AGAIN:
 PRINT^BLANK;
 SBUFFER ':=' "Enter Record Address: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 SBUFFER[COUNT^READ] := 0;

! Convert ASCII to numeric:

 @NEXT^ADR := DNUMIN(SBUFFER,RECORD^NUM,10,STATUS);
 IF STATUS OR @NEXT^ADR <> $XADR(SBUFFER[COUNT^READ]) THEN
 BEGIN
 PRINT^STR("Error in the record number");
 GOTO PROMPT^AGAIN;
 END;

! Position current-record and next-record pointers to
! selected record:

 CALL POSITION(LOGNUM,RECORD^NUM);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 42

Entry-Sequenced File Programming Example

! Loop reading and displaying records until user declines
! to read next record (any response other than "y"):

 DO BEGIN

 PRINT^BLANK;

 ! Read a record from the log file and display it on the
 ! terminal. If end-of-file is reached, return control
 ! to LOGGER procedure.

 CALL READX(LOGNUM,SBUFFER,BUFSIZE,COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(LOGNUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR ("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(LOGNUM);
 END;

 CALL WRITE^LINE(SBUFFER,COUNT^READ);

 PRINT^BLANK;

 ! Prompt the user to read the next record (user must
 ! respond "y" to accept, otherwise return to select
 ! next function):

 SBUFFER ':=' ["Do you want to read another ",
 "record (y/n)? "]
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 43

Entry-Sequenced File Programming Example

!--
! Procedure for appending a record. The user selected
! function "a." The user is prompted to enter comments. The
! procedure puts the comments in a new record at the end of
! the file.
!--

PROC APPEND^RECORD;
BEGIN
 INT GET^REC^ADDR := ZSYS^VAL^FINF^CURRRECPOINTER;

 INT COUNT^READ;
 INT WIDTH;
 INT(32) REC^ADDR;
 INT ERROR;

 PRINT^BLANK;

! Prompt user for comments and read comments into the
! buffer.

 SBUFFER ':=' "Enter today's comments: "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Place the next-record pointer at the end-of-file and
! write the new record there:

 CALL POSITION(LOGNUM, -1D);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

 CALL WRITEX(LOGNUM,SBUFFER,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

! Get the record address and display it on the terminal:

 ERROR := FILE_GETINFOLIST_(LOGNUM,GET^REC^ADDR,1,
 REC^ADDR,$LEN(REC^ADDR));
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(LOGNAME:LOGLEN,ERROR);

 START^LINE;
 PUT^STR("Record address is: ");
 PUT^DOUBLE(REC^ADDR);
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER);

END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 44

Entry-Sequenced File Programming Example

!--
! Procedure to exit the program.
!--

PROC EXIT^PROGRAM;
BEGIN
 CALL PROCESS_STOP_;
END;

!--
! Procedure to process an invalid command. The procedure
! informs the user that the selection was other than "r,"
! "u," "a," or "x."
!--

PROC INVALID^COMMAND;
BEGIN

 PRINT^BLANK;

! Inform the user that the selection was invalid and then
! return to prompt again for a valid function:

 PRINT^STR ("INVALID COMMAND: " &
 "Type either 'r,' 'a,' or 'x'");
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 45

Entry-Sequenced File Programming Example

!--
! This procedure does the initialization for the program.
! It calls INITIALIZER to dispose of the startup messages.
! It opens the home terminal and the data file used by the
! program.
!--

PROC INIT;
BEGIN
 INT ERROR;

! Read and discard startup messages.

 CALL INITIALIZER;

! Open the terminal file. For simplicity we use the home
! terminal; the recommended approach is to use the IN file
! read from the Startup message; see Section 8, “Communicating
! With a TACL Process,” for details:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMNAME:MAXFLEN,
 TERMLEN);
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the log file with a sync depth of 1:

 LOGNAME ':=' "$ADMIN.OPERATOR.ESFILE" -> @S^PTR;
 LOGLEN := @S^PTR '-' @LOGNAME;
 ERROR := FILE_OPEN_(LOGNAME:LOGLEN,
 LOGNUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 1);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(LOGNAME:LOGLEN,ERROR);
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 46

Entry-Sequenced File Programming Example

!--
! This is the main procedure. It calls the INIT procedure to
! initialize and then it goes into a loop calling GET^COMMAND
! to get the next user request and calling the procedure
! to carry out that request.
!--

PROC LOGGER MAIN;
BEGIN
 STRING CMD;

 CALL INIT;

! Loop indefinitely until user selects function "x":

 WHILE 1 DO
 BEGIN

 ! Prompt for the next command.

 CMD := GET^COMMAND;

 ! Call the function selected by user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^RECORD;

 "a", "A" -> CALL APPEND^RECORD;

 "x", "X" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL INVALID^COMMAND;
 END;
 END;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 47

Using Key-Sequenced Files

Using Key-Sequenced Files
This subsection discusses the way the programmatic interface to key-sequenced files
differs from that of the other structured file types. Specifically, it discusses how to
create and access a key-sequenced file. At the end of the subsection is a working
example of a program that uses a key-sequenced file.

The discussion here is limited to primary-key access. Alternate keys are discussed
later under the heading Using Alternate Keys.

Creating Key-Sequenced Files
You can create a key-sequenced file either interactively using the FUP CREATE
command or programmatically using the FILE_CREATE[LIST]_ procedure. In either
case, you need to supply information about how to build the file, such as the following:

• The file-type parameter must be set to 3 to specify a key-sequenced file.

• Key compression and compaction can also be specified on file creation. These
features are used to eliminate leading or trailing parts of similar keys to save
space. For details, see the Enscribe Programmer’s Guide.

• The block size is the number of bytes that are transferred between the disk and the
disk process. The block size can be 512, 1024, 2048, or 4096 bytes (including a
few bytes of overhead). Records cannot span blocks, therefore the block size
must be at least large enough to contain one record plus the overhead. A block
usually contains multiple records.

• The maximum record length must be set to some value within the limits imposed
by the block size.

• The key length specifies the number of bytes in the primary key.

• The key offset is the number of bytes into a record where the primary key starts.
The default offset is zero, the first field in the record.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 48

Opening Key-Sequenced Files

The following example creates a key-sequenced file interactively using the FUP
CREATE command. The new file has a block size of 4096 bytes, maximum record
length of 128 bytes, and key length of 16 bytes, and the key offset is zero.

1> FUP
-SET TYPE K
-SET BLOCK 4096
-SET REC 128
-SET IBLOCK 2048
-SET KEYLEN 16
-SHOW
 TYPE K
 EXT (1 PAGES, 1 PAGES)
 REC 128
 BLOCK 4096
 IBLOCK 2048
 KEYLEN 16
 KEYOFF 0
 MAXEXTENTS 16
-CREATE \SYS.$MANUF.RECORDS.INVENTRY
CREATED - \SYS.$MANUF.RECORDS.INVENTRY
-EXIT
2>

Refer to the File Utility Program (FUP) Reference Manual for more details on how to
create files using the FUP CREATE command.

The following example creates the same key-sequenced file programmatically using
the FILE_CREATE_ procedure:

NAME ':=' "\SYS.$MANUF.RECORDS.INVENTRY" -> @S^PTR;
NAME^LENGTH := @S^PTR '-' @NAME;
FILE^TYPE := 3;
RECORD^LENGTH := 128;
BLOCK^LENGTH := 4096;
KEY^LENGTH := 16;
KEY^OFFSET := 0;
CALL FILE_CREATE_(NAME:ZSYS^VAL^LEN^FILENAME,
 NAME^LENGTH,
 !file^code!,
 !primary^extent^size!,
 !secondary^extent^size!,
 !max^extents!,
 FILE^TYPE,
 !options!,
 RECORD^LENGTH,
 BLOCK^LENGTH,
 KEY^LENGTH,
 KEY^OFFSET);

Opening Key-Sequenced Files
You open a key-sequenced file as you would any file, by using the FILE_OPEN_
procedure. See Using Unstructured Files earlier in this section for an example.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 49

Positioning, Reading, and Writing With Key-
Sequenced Files

Positioning, Reading, and Writing With Key-Sequenced Files
Read and write operations on key-sequenced files are done using READ[X],
READUPDATE[X], WRITE[X], and WRITEUPDATE[X] procedure calls, as for any file.
However, what is unique about key-sequenced files is the way you position the current-
record and next-record pointers before reading, writing, or updating the file. The
KEYPOSITION procedure sets the pointers to the appropriate record using one of the
positioning modes: exact, approximate, or generic.

• Exact positioning sets both pointers to the exact key value specified by the
KEYPOSITION call. If there is no record with the specified key, an error is
returned by the procedure that subsequently attempts to access the record. This
mode is used when updating a record to be sure that the user is accessing the
correct record.

Suppose you have a file of records sorted on social security number. You would
use a code fragment similar to the following to update a specific record. In this
case, the code updates the record with social security number 327-67-1120.

LITERAL EXACT = 2;
 .
 .
KEY^VALUE ':=' "327671120" -> @S^PTR;
KEY^LEN := @S^PTR '-' @KEY^VALUE;
CALL KEYPOSITION(KEY^FILE^NUM,
 KEY^VALUE,
 !key^specifier!,
 KEY^LEN,
 EXACT);

CALL READUPDATEX(KEY^FILE^NUM,
 BUFFER,
 $LEN(RECORD),
 BYTES^READ);
IF <> THEN ...
 .
 .
CALL WRITEUPDATEX(KEY^FILE^NUM,
 BUFFER,
 $LEN(RECORD));
IF <> THEN ...
 .
 .

• Approximate positioning sets both pointers to the record containing either the exact
key or the next greater key. This mode is often used for starting a sequential read
operation.

For example, a user may want to examine all records starting with those whose
primary key value begins with “C.” Here, you would use approximate positioning to
set the pointers to the first record that begins with “C.” This example assumes that
each key is made up entirely of alphabetic characters. It loops indefinitely, reading

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 50

Positioning, Reading, and Writing With Key-
Sequenced Files

one record each time it goes through the loop. The READX procedure returns an
error when the end-of-file is reached; you can use this condition to exit the loop.

LITERAL APPROX = 0;
 .
 .
KEY^VALUE := "CAAAAAAAAAAAAAAA";
CALL KEYPOSITION(NAME^FILE^NUM,
 KEY^VALUE,
 !key^specifier!,
 !length^word!,
 APPROX);
WHILE 1 DO
BEGIN
 CALL READX(NAME^FILE^NUM,
 BUFFER,
 $LEN(RECORD),
 BYTES^READ);
 IF <> THEN ...
END;
 .
 .

• Generic key positioning uses a partial key to reference a group of records that
contain the partial key. If you use the key value “C” with generic positioning, then
your program accesses the first record whose primary key begins with “C,” if one
exists. If there is no such record, the KEYPOSITION call returns without error but
the I/O operation that attempts to access the record does return an error.

To use generic key positioning, you must also supply the length of the part of the
key that will be used to start the generic access. In the example given below, the
single letter “C” is used, therefore the key length is set to 1.

In the following example, a READX call returns an end-of-file indication as soon as
the key value no longer matches the generic key given in the KEYPOSITION call:

LITERAL GENERIC = 1;
 .
 .
KEY^VALUE := "C";
KEY^LENGTH := 1;
CALL KEYPOSITION(NAME^FILE^NUM,KEY^VALUE,
 !key^specifier!,
 KEY^LENGTH,GENERIC);
WHILE 1 DO
BEGIN
 CALL READX(NAME^FILE^NUM,BUFFER,
 $LEN(RECORD),BYTES^READ);
 IF <> THEN ...
END;
 .
 .

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 51

Locking, Renaming, Caching, Closing, Purging, and
Altering Key-Sequenced Files

So far, sequential reading of a key-sequenced file has been assumed to mean reading
records in ascending key sequence. By setting bit 1 of the positioning-mode
parameter, however, you can read sequentially in descending key sequence.

Positioning is unnecessary when writing a new record to a key-sequenced file. The
Enscribe software responds to the WRITEX call by inserting the new record into the file
in position according to its key value.

Locking, Renaming, Caching, Closing, Purging, and Altering
Key-Sequenced Files

The operations of locking, renaming, closing, and purging key-sequenced files, altering
key-sequenced-file attributes, and avoiding unnecessary cache flushes of key-
sequenced files are the same as for any disk file. See Using Unstructured Files earlier
in this section.

Key-Sequenced File Programming Example
A different application will be used to illustrate the use of key-sequenced files. This
example provides access to a key-sequenced file that contains an inventory.
Information about each item is stored in a record accessible by part number. The
record structure is as follows:

You can create the key-sequenced file required by this program using the
FILE_CREATE[LIST]_ procedure as described under Creating Key-Sequenced Files
earlier in this section. Or you can simply use FUP commands as shown below:

1> FUP
-SET TYPE K
-SET BLOCK 2048
-SET REC 134
-SET IBLOCK 2048
-SET KEYLEN 6
-SHOW
 TYPE K
 EXT (1 PAGES, 1 PAGES)
 REC 134
 BLOCK 2048
 IBLOCK 2048
 KEYLEN 6
 KEYOFF 0
 MAXEXTENTS 16
-CREATE $APPL.SUBAPPL.PARTFILE
CREATED - $APPL.SUBAPPL.PARTFILE

027CDT .CDD

supplier

60
bytes

desc-len

2
bytes

part number description supp-len quantity price

6
bytes

60
bytes

2
bytes

2
bytes

2
bytes

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 52

Key-Sequenced File Programming Example

-EXIT
2>

The program is similar to the relative-file example given earlier in this section in that it
enables the user to read records, add records, and update records. Because access
to the file is by key value, however, the mechanism is different.

The following procedures provide the major functions of reading, updating, and
inserting records:

• The READ^RECORD procedure allows the user to read one record followed
optionally by subsequent sequential reads as it did in the relative-file program. But
here, the key to the random record is the part number—a field of data in the record
itself, not the physical record number. Also, because of the way Enscribe
manages key-sequenced files, sequential reading returns records in key sequence
(by part number), not physical sequence.

This procedure uses an approximate key position to enable the user to start
reading from a particular key value without concern as to whether the key actually
exists. This feature enables the user to start browsing the file from any key value.

• The UPDATE^RECORD procedure displays the record for update before
prompting the user for the updated information. First it prompts the user for the
key to the record to be updated (the part number). Then it uses the
READUPDATEX procedure to get the current information from the record. After
displaying the current contents of the record on the user's terminal and receiving
the new contents from the user, this procedure reads the record from the disk file
again, this time using the READUPDATELOCKX procedure; in addition to reading
the record to check whether the record has been modified by some other user
since the previous READUPDATEX call, this procedure also locks the record to
ensure exclusive access while updating. Finally, UPDATE^RECORD issues a call
to WRITEUPDATEUNLOCKX to write the new record contents to disk and unlock
the record.

Locking and unlocking the record protects the record against other processes while
your process is updating the record. Multiple copies of this program can therefore
exist without corrupting each other’s view of data.

• The INSERT^RECORD procedure replaces the APPEND^RECORD procedure of
the log-file program. INSERT^RECORD allows the user to insert new records into
the file. Here, the procedure prompts for the contents of the new record (including
the part number) and then writes the record in the appropriate position in the file.
The insertion is rejected if a record with the same key already exists.

The following procedures support the above major procedures:

• The DISPLAY^RECORD procedure displays the contents of a part record.

• The ENTER^RECORD procedure prompts for information from the user to create a
record. When creating a new record, this procedure prompts for every field in the
new record. When updating an existing record, this procedure prompts for all but

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 53

Key-Sequenced File Programming Example

the part number, which is already known. The parameter to the procedure
specifies whether an update or a new record is required.

The code for this program appears on the following pages.

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST,SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !maximum file-name
 ! length
LITERAL OLD = 0; !updating in ENTER^REC
LITERAL NEW = 1; !new record in ENTER^REC
LITERAL BUFSIZE = 132; !size of terminal buffer
LITERAL PARTSIZE= 6; !size of part number
LITERAL DESCSIZE= 60; !size of part description
LITERAL SUPPSIZE= 60; !size of supplier name

STRING .SBUFFER[0:BUFSIZE]; !I/O buffer (one extra
 ! char)
STRING .S^PTR; !pointer to end of string
INT PARTFILE^NUM; !part file number
INT TERMNUM; !terminal file number

STRUCT .PART^RECORD;
BEGIN
 STRING PART^NUMBER[0:PARTSIZE-1];
 STRING DESCRIPTION[0:DESCSIZE-1];
 INT DESC^LEN;
 STRING SUPPLIER[0:SUPPSIZE-1];
 INT SUP^LEN;
 INT ON^HAND;
 INT UNIT^PRICE;
END;

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (INITIALIZER,
? PROCESS_GETINFO_,FILE_OPEN_,WRITEREADX,WRITEX,NUMIN,
? KEYPOSITION,PROCESS_STOP_,READX,DNUMOUT,FILE_GETINFO_,
? READUPDATEX,WRITEUPDATEX,DNUMIN,READUPDATELOCKX,
? WRITEUPDATEUNLOCKX,FILE_GETINFOLIST_,UNLOCKREC)
?LIST

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 54

Key-Sequenced File Programming Example

!--
! Here are a few DEFINEs to make it a little easier to
! format and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR (S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT (N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print a line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR (S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 55

Key-Sequenced File Programming Example

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is mainly to be used when
! the file is not open, when there is no file number for it.
! FILE^ERRORS is used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program

 CALL PROCESS_STOP_;
END;

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to display the
! information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS (FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 56

Key-Sequenced File Programming Example

!--
! This procedure writes a message on the terminal and checks
! for any error. If there is an error, it attempts to write
! a message about the error and the program is stopped.
!--

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

!--
! This procedure asks the user for the next function to do:
!
! "r" to read records
! "u" to update a record
! "i" to insert a record
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' to Read Record, ");
 PRINT^STR(" 'u' to Update a Record, ");
 PRINT^STR(" 'i' to Insert a Record, ");
 PRINT^STR(" 'x' to Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER, @S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 57

Key-Sequenced File Programming Example

!--
! Procedure to display a part record on the terminal
!--

PROC DISPLAY^RECORD;
BEGIN

 PRINT^BLANK;

! Display part number:

 PRINT^STR("Part Number Is: " & PART^RECORD.PART^NUMBER
 FOR PARTSIZE);

! Display part description:

 PRINT^STR("Part Description: " & PART^RECORD.DESCRIPTION
 FOR PART^RECORD.DESC^LEN);

! Display part supplier name:

 PRINT^STR("Supplier: " & PART^RECORD.SUPPLIER
 FOR PART^RECORD.SUP^LEN);

! Display quantity on hand:

 START^LINE;
 PUT^STR("Quantity on hand: ");
 PUT^INT(PART^RECORD.ON^HAND);
 PRINT^LINE;

! Display unit price:

 START^LINE;
 PUT^STR("Unit Price: $");
 PUT^INT(PART^RECORD.UNIT^PRICE);
 PRINT^LINE;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 58

Key-Sequenced File Programming Example

!--
! Procedure to prompt user for input to build a new record or
! update an existing record. When updating, an empty
! response (COUNT^READ=0) means to leave the existing value
! unchanged.
!--

PROC ENTER^RECORD(TYPE);
INT TYPE;

BEGIN
 INT COUNT^READ;
 INT STATUS;
 STRING .NEXT^ADDR;

 DEFINE BLANK^FILL(F) =
 F ':=' " " & F FOR $LEN(F)*$OCCURS(F)-1 BYTES #;

 PRINT^BLANK;

! If inserting a new record, prompt for a part number.
! If updating an existing record, record number is already
! known:

 IF TYPE = NEW THEN
 BEGIN
 SBUFFER ':=' "Enter Part Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 BLANK^FILL(PART^RECORD.PART^NUMBER);
 PART^RECORD.PART^NUMBER ':='
 SBUFFER FOR $MIN(COUNT^READ,PARTSIZE);
 END;

! Prompt for a part description:

 SBUFFER ':=' "Enter Part Description: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 COUNT^READ := $MIN(COUNT^READ,DESCSIZE);
 BLANK^FILL(PART^RECORD.DESCRIPTION);
 PART^RECORD.DESCRIPTION ':=' SBUFFER FOR COUNT^READ;
 PART^RECORD.DESC^LEN := COUNT^READ;
 END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 59

Key-Sequenced File Programming Example

! Prompt for the name of the supplier:

 SBUFFER ':=' "Enter Supplier Name: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 COUNT^READ := $MIN(COUNT^READ,SUPPSIZE);
 BLANK^FILL(PART^RECORD.SUPPLIER);
 PART^RECORD.SUPPLIER ':=' SBUFFER FOR COUNT^READ;
 PART^RECORD.SUP^LEN := COUNT^READ;
 END;

! Prompt for the quantity on hand and unit price:

PROMPT^AGAIN:
 SBUFFER ':=' "Enter Quantity On Hand: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 SBUFFER[COUNT^READ] := 0;
 @NEXT^ADDR :=
 NUMIN(SBUFFER,PART^RECORD.ON^HAND,10,STATUS);
 IF STATUS OR @NEXT^ADDR <> @SBUFFER[COUNT^READ] THEN
 BEGIN
 PRINT^STR("Invalid number");
 GOTO PROMPT^AGAIN;
 END;
 END;

PROMPT^AGAIN1:
 SBUFFER ':=' "Enter Unit Price: $" -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 SBUFFER[COUNT^READ] := 0;
 @NEXT^ADDR :=
 NUMIN(SBUFFER,PART^RECORD.UNIT^PRICE,10,STATUS);
 IF STATUS OR @NEXT^ADDR <> @SBUFFER[COUNT^READ] THEN
 BEGIN
 PRINT^STR("Invalid number");
 GOTO PROMPT^AGAIN1;
 END;
 END;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 60

Key-Sequenced File Programming Example

!--
! Procedure for reading records. The user selected function
! "r." The start of the read is selected by approximate key
! positioning. The user has the option of sequentially
! reading subsequent records.
!--

PROC READ^RECORD;
BEGIN
 INT COUNT^READ;
 INT ERROR;

! Prompt the user for the part number:

 PRINT^BLANK;
 SBUFFER ':=' "Enter Part Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Position approximately to the selected record:

 CALL KEYPOSITION(PARTFILE^NUM,SBUFFER,
 !key^specifier!,
 COUNT^READ,0);
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

! Loop reading and displaying records until user declines
! to read the next record (any response other than "y"):

 DO BEGIN

 PRINT^BLANK;

 ! Read a record from the part file.
 ! If end-of-file is reached,
 ! return control to the main procedure.

 CALL READX(PARTFILE^NUM,PART^RECORD,$LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(PARTFILE^NUM);
 END;

 ! Display the record on the terminal:

 CALL DISPLAY^RECORD;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 61

Key-Sequenced File Programming Example

 PRINT^BLANK;

 ! Prompt the user to read the next record (user
 ! must respond "y" to accept, otherwise return
 ! to select next function):

 SBUFFER ':=' ["Do you want to read another ",
 "record (y/n)? "]
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 62

Key-Sequenced File Programming Example

!--
! Procedure for updating a record. The user selected
! function "u." The user is prompted to enter the part
! number of the record to be updated, then the old contents
! are displayed on the user's terminal before the user
! is prompted to enter the updated record.
!--

PROC UPDATE^RECORD;
BEGIN

 INT COUNT^READ;
 INT ERROR;
 STRUCT .SAVE^REC(PART^RECORD);
 STRUCT .CHECK^REC(PART^RECORD);

 PRINT^BLANK;

! Prompt the user for the part number of the record to be
! updated:

 PRINT^BLANK;
 SBUFFER ':=' "Enter Part Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Position exactly to the selected record.

! SBUFFER[COUNT^READ] ':=' [PARTSIZE*[" "]];
 CALL KEYPOSITION(PARTFILE^NUM,SBUFFER,
 !key^specifier!,
 COUNT^READ,2);
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

! Read the selected record. If no such record exists,
! the procedure informs the user and returns control to
! the main procedure:

 CALL READUPDATEX(PARTFILE^NUM,PART^RECORD,
 $LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,ERROR);
 IF ERROR = 11 THEN
 BEGIN
 PRINT^BLANK;
 START^LINE;
 PUT^STR("No such record");
 PRINT^LINE;
 RETURN;
 END
 ELSE CALL FILE^ERRORS(PARTFILE^NUM);
 END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 63

Key-Sequenced File Programming Example

! Save the record for later comparison

 SAVE^REC ':=' PART^RECORD FOR $LEN(PART^RECORD) BYTES;

! Display the record on the terminal:

 CALL DISPLAY^RECORD;

! Prompt the user for the updated record:

 CALL ENTER^RECORD(OLD);

! Now that we have the user's changes, reread the record
! and check to see whether someone else changed it while
! the user was responding.

 CALL READUPDATELOCKX(PARTFILE^NUM,CHECK^REC,
 $LEN(PART^RECORD));
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

 IF CHECK^REC <> SAVE^REC FOR $LEN(PART^RECORD) BYTES THEN
 BEGIN
 CALL UNLOCKREC(PARTFILE^NUM);
 PRINT^BLANK;
 PRINT^STR("The record was changed by someone else " &
 "while you were working on it.");
 PRINT^STR("Your change was not made.");
 RETURN;
 END;

! Write the new record to the file:

 CALL WRITEUPDATEUNLOCKX(PARTFILE^NUM,PART^RECORD,
 $LEN(PART^RECORD));
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 64

Key-Sequenced File Programming Example

!--
! Procedure for inserting a record. The user selected
! function "i." The user is prompted to enter the new record.
! The procedure inserts the new record in the appropriate
! place in the file.
!--

PROC INSERT^RECORD;
BEGIN
 INT ERROR;

 PRINT^BLANK;

! Prompt the user for the new record:

 CALL ENTER^RECORD(NEW);

! Write the new record to the file:

 CALL WRITEX(PARTFILE^NUM,PART^RECORD,$LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,ERROR);
 IF ERROR = 10 THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR
 ("There is already a record with that " &
 "part number.");
 PRINT^STR("Your new one was not entered.");
 END ELSE BEGIN
 CALL FILE^ERRORS(PARTFILE^NUM);
 END;
 END;
END;

!--
! Procedure to exit the program.
!--

PROC EXIT^PROGRAM;
BEGIN
 CALL PROCESS_STOP_;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 65

Key-Sequenced File Programming Example

!--
! Procedure to process an invalid command. The procedure
! informs the user that the selection was other than "r,"
! "u", "a," or "x."
!--

PROC INVALID^COMMAND;
BEGIN

 PRINT^BLANK;

! Inform the user that his selection was invalid
! then return to prompt again for a valid function:

 PRINT^STR("INVALID COMMAND: " &
 "Type either 'r,' 'u,' 'i,' or 'x'");
END;

!--
! This procedure does the initialization for the program.
! It calls INITIALIZER to dispose of the startup messages.
! It opens the home terminal and the data file used by the
! program.
!--

PROC INIT;
BEGIN
 STRING .PARTFILE^NAME[0:MAXFLEN - 1]; !name of part file
 INT PARTFILE^LEN; !length of part-file
 ! name
 STRING .TERMNAME[0:MAXFLEN - 1]; !terminal file
 INT TERMLEN; !length of terminal-
 ! file name
 INT ERROR;

! Read and discard startup messages.

 CALL INITIALIZER;

! Open the terminal file. For simplicity we use the home
! terminal; the recommended approach is to use the IN file
! read from the Startup message; see Section 8, Communicating
With a TACL Process for
! details:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMNAME:MAXFLEN,
 TERMLEN);
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 66

Key-Sequenced File Programming Example

! Open the part file with a sync depth of 1:

 PARTFILE^NAME ':=' "$APPL.SUBAPPL.PARTFILE" -> @S^PTR;
 PARTFILE^LEN := @S^PTR '-' @PARTFILE^NAME;
 ERROR := FILE_OPEN_(PARTFILE^NAME:PARTFILE^LEN,
 PARTFILE^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 1);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(PARTFILE^NAME:PARTFILE^LEN,
 ERROR);
END;

!--
! This is the main procedure. It calls the INIT procedure to
! initialize, then it goes into a loop calling GET^COMMAND
! to get the next user request and calling the procedure
! to carry out that request.
!--

PROC PARTS MAIN;
BEGIN
 STRING CMD;

 CALL INIT;

! Loop indefinitely until user selects function x:

 WHILE 1 DO
 BEGIN

 ! Prompt for the next command.

 CMD := GET^COMMAND;

 ! Call the function selected by user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^RECORD;

 "u", "U" -> CALL UPDATE^RECORD;

 "i", "I" -> CALL INSERT^RECORD;

 "x", "X" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL INVALID^COMMAND;
 END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 67

Key-Sequenced File Programming Example

 END;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 68

Key-Sequenced File Programming Example

!--
! Procedure for inserting a record. The user selected
! function "i." The user is prompted to enter comments. The
! procedure puts the comments in a new record at the end of
! the file.
!--

PROC INSERT^RECORD;
BEGIN
 INT COUNT^READ;
 INT ERROR;

 PRINT^BLANK;

! Prompt user for comments and read comments into the
! buffer:

 CALL GET^DATE;
 RECORD.DATE ':=' SBUFFER FOR DATESIZE;

 SBUFFER ':=' "Enter comments: "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 COMMENTSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 RECORD.DATA ':=' SBUFFER FOR COUNT^READ;
 RECORD.DATA^LEN := COUNT^READ;

! Position to the end of file and write the new record:

 CALL POSITION(LOGNUM,-1D);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

 CALL WRITEX(LOGNUM,RECORD,$LEN(RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(LOGNUM,ERROR);
 IF ERROR = 10 THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR
 ("There is already a record for that date.");
 PRINT^STR("This comment was not entered.");
 END ELSE BEGIN
 CALL FILE^ERRORS(LOGNUM);
 END;
 END;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 69

Key-Sequenced File Programming Example

!--
! Procedure to exit the program.
!--

PROC EXIT^PROGRAM;
BEGIN
 CALL PROCESS_STOP_;
END;

!--
! Procedure to process an invalid command. The procedure
! informs the user that the selection was other than "r,"
! "u," "i," or "x."
!--

PROC INVALID^COMMAND;
BEGIN

 PRINT^BLANK;

! Inform the user that the selection was invalid and then
! return to prompt again for a valid function:

 PRINT^STR("INVALID COMMAND: " &
 "Type either 'r,' 'u,' 'i,' or 'x'");
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 70

Key-Sequenced File Programming Example

!--
! This procedure does the initialization for the program.
! It calls INITIALIZER to dispose of the startup messages.
! It opens the home terminal and the data file used by the
! program.
!--

PROC INIT;
BEGIN
 STRING .LOGNAME[0:MAXFLEN - 1]; !name of log file
 INT LOGLEN; !file name length
 STRING .TERMNAME[0:MAXFLEN - 1]; !terminal file
 INT TERMLEN; !name length
 INT ERROR;

! Read and discard startup sequence of messages:

 CALL INITIALIZER;

! Open the terminal file. For simplicity we use the home
! terminal; the recommended approach is to use the IN file
! read from the Startup message; see Section 8,
! "Communicating With the TACL Process," for details:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMNAME:MAXFLEN,
 TERMLEN);
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the log file with a sync depth of 1:

 LOGNAME ':=' "$ADMIN.OPERTOR.ALTLOG" -> @S^PTR;
 LOGLEN := @S^PTR '-' @LOGNAME;
 ERROR := FILE_OPEN_(LOGNAME:LOGLEN,
 LOGNUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 1);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(LOGNAME:LOGLEN,ERROR);
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 71

Key-Sequenced File Programming Example

!--
! This is the main procedure. It calls the INIT procedure to
! initialize and then it goes into a loop calling GET^COMMAND
! to get the next user request and calling the procedure
! to carry out that request.
!--

PROC LOGGER MAIN;
BEGIN
 STRING CMD;

 CALL INIT;

! Loop indefinitely until the user selects function "x":

 WHILE 1 DO
 BEGIN

 ! Prompt for the next command:

 CMD := GET^COMMAND;

 ! Call the function selected by the user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^RECORD;

 "u", "U" -> CALL UPDATE^RECORD;

 "i", "I" -> CALL INSERT^RECORD;

 "x", "X" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL INVALID^COMMAND;
 END;
 END;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 72

Using Alternate Keys With an Entry-Sequenced File

Using Alternate Keys With an Entry-Sequenced File
The application of alternate keys to an entry-sequenced file is similar to applying
alternate keys to relative files. Instead of a record number, the alternate-key file cross-
references the alternate-key value to a record address.

Applying alternate keys to the example given in the subsection Using Entry-Sequenced
Files produces the structure shown in Figure 5-6:

You can enhance the sample program shown in the subsection Using Entry-
Sequenced Files to use the date as an alternate key by making exactly the same
changes as were made to the relative-file example.

Using Alternate Keys With a Key-Sequenced File
When using alternate keys with a key-sequenced file, the alternate key cross-
references the primary key.

For an example of how to use alternate keys with a key-sequenced file, the example
given in the subsection Using Key-Sequenced Files is modified to be able to read
records using the part description as a key. The alternate-key file therefore lists
records in part-description order, each referencing a part number. Figure 5-7 shows
the sample file structure.

Figure 5-6. Example of Alternate-Key File for Use With an Entry-Sequenced File

VST030.VSD

Alternate-Key File Data File

DA 19890102 2050

DA 19890109 2049

DA 19890106 04

DA 19890105 03

DA 19890104 2048

DA 19890104 02

DA 19890103 01

DA 19890102 00

19890102

19890103

19890102

19890109

19890104

19890106

19890105

19890104

00

01

02

03

04

2048

2049

2050

Key Specifier

Secondary Key

Primary Key

Record Number

Secondary Key (Date)

Comments

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 73

Using Alternate Keys With a Key-Sequenced File

To create the data and alternate-key files, you can use the FILE_CREATE_ procedure
as described under Creating Alternate-Key Files earlier in this subsection, or you can
use the FUP utility as follows:

1> FUP
-SET TYPE K
-SET REC 134
-SET BLOCK 4096
-SET IBLOCK 4096
-SET KEYLEN 6
-SET ALTKEY("DE",KEYOFF 6,KEYLEN 60)
-SET ALTFILE(0, ALT2)
-SHOW
 TYPE K
 EXT (1 PAGES, 1 PAGES)
 REC 130
 BLOCK 4096
 IBLOCK 4096
 KEYLEN 6
 KEYOFF 0
 ALTKEY("DE", FILE 0, KEYOFF 6, KEYLEN 60)
 ALTFILE(0, $ADMIN.OPERATOR.ALT2)
 ALTCREATE
 MAXEXTENTS 16
-CREATE KEY2FILE
CREATED $ADMIN.OPERATOR.KEY2FILE
CREATED $ADMIN.OPERATOR.ALT2
-EXIT
2>

Few changes need to be made to the old program, because the same record structure
as before is used. The only change is in the READ^RECORD procedure, which now
prompts the user whether the access is to be by part number or by part description. If
the user chooses to access by part number, then the procedure prompts for the part
number as before. If the user chooses to access the file by part description, then the
procedure uses “DE” (short for “description”) as the key specifier. Because the part

Figure 5-7. Example of Alternate-Key File for Use With a Key-Sequenced File

VST031.VSD

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 74

Using Alternate Keys With a Key-Sequenced File

description is variable in length, the key length is specified in the call to
KEYPOSITION.

You can add further options to the following code to access records by supplier name,
inventory level, or price.

!--
! Procedure for reading records. The user selected function
! "r." The start of the read is selected by approximate key
! positioning. The user has the option of sequentially
! reading subsequent records.
!--

PROC READ^RECORD;
BEGIN
 INT COUNT^READ;
 INT ERROR;
 INT KEY^SPEC;
 INT POSITIONING^MODE;
 INT COMPARE^LEN;

 LITERAL APPROX = 0;
 LITERAL GENERIC = 1;

! Prompt the user for the key to access the record by:

 PRINT^BLANK;
 PRINT^STR("Type 'p' to access by part number");
 PRINT^STR("Type 'd' to access by part description");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER, @S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 CASE SBUFFER[0] OF
 BEGIN
 "p", "P" ->

 ! Prompt the user for the part number:

 PRINT^BLANK;
 SBUFFER ':=' "Enter Part Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Set the key specifier to zero for the primary key:

 KEY^SPEC := 0;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 75

Using Alternate Keys With a Key-Sequenced File

 ! Set the compare length to the length of the
 ! primary key and pad the value with blanks, in case
 ! the full length was not entered:

 COMPARE^LEN := PARTSIZE;
 SBUFFER[COUNT^READ] ':=' [PARTSIZE*[" "]];

 ! Set the positioning mode to approximate:

 POSITIONING^MODE := APPROX;

 "d", "D" ->

 ! Prompt for part description:

 PRINT^BLANK;
 SBUFFER ':=' "Enter Part Description: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Set key specifier to "DE":

 KEY^SPEC := "DE";

 ! Set positioning mode to generic:

 POSITIONING^MODE := GENERIC;

 ! Set the compare length equal to the number of
 ! bytes entered:

 COMPARE^LEN := COUNT^READ;

 OTHERWISE ->
 PRINT^STR("Invalid key");
 RETURN;
 END;

! Position to the selected record:

 CALL KEYPOSITION(PARTFILE^NUM,SBUFFER,KEY^SPEC,
 COMPARE^LEN,POSITIONING^MODE);
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 76

Using Alternate Keys With a Key-Sequenced File

! Loop reading and displaying records until user declines
! to read the next record (any response other than "y"):

 DO BEGIN

 PRINT^BLANK;

 ! Read a record from the part file.
 ! If the end of file is reached,
 ! return control to the main procedure.

 CALL READX(PARTFILE^NUM,PART^RECORD,$LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(PARTFILE^NUM);
 END;

 ! Display the record on the terminal:

 CALL DISPLAY^RECORD;

 PRINT^BLANK;

 ! Prompt the user to read the next record (user
 ! must respond "y" to accept, otherwise return
 ! to select next function):

 SBUFFER ':=' ["Do you want to read another ",
 "record (y/n)? "]
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 77

Using Partitioned Files

Using Partitioned Files
When you create a file, you can choose to have the file reside on multiple volumes. A
file can span up to 16 volumes in this way. Moreover, the disk volumes can be
connected to the same or different controllers, on the same or different processing
modules, or can even span multiple systems. Once the file is created, the locations of
file partitions are transparent to the application. The user does not need to be
concerned about which partition to access; the user sees the file as contiguous.

The obvious reason for partitioning a file is to acquire more disk space for a file that
does not fit on one disk volume. Partitioning files, however, can also improve
application performance by taking advantage of parallelism:

• If the file resides on several volumes connected to the same controlling device,
then disk-head movements (or “seek” operations) can overlap on the different disk
drives.

• If each partition resides on a volume that is connected to a different controller, then
data transfers can occur concurrently.

• If each partition resides on a volume connected to a different processing module,
then concurrent processing is possible.

For relative and entry-sequenced files, the application uses the primary partition until it
is full, then starts to fill up the first extra partition, and so on. For key-sequenced files,
you assign partial key values to each partition when the file is created; for example, the
first partition might contain keys A through J, the second partition keys K through Q,
and the third partition keys R through Z.

Creating Partitioned Files
To create a partitioned file, you need only create the primary partition; the extra
partitions are created automatically, assuming you give the system the correct
information. You can create a partitioned file either interactively using the FUP
CREATE command or programmatically using the FILE_CREATELIST_ procedure.

Note. Use care when naming your secondary partitions. For secondary partitions that reside
on a remote system with respect to the primary partition, you can use only names that have 7
characters or fewer, because one byte of the name is used to contain the node number.
Secondary partitions that reside on the same node as the primary partition can have up to 8
characters.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 78

Creating Partitioned Files

The simplest way to create a partitioned file is by using the FUP CREATE command as
shown below. This example creates a partitioned file that could be used by the
inventory application described in the subsection Using Key-Sequenced Files, earlier in
this section.

1>
FUP
-SET TYPE K
-SET REC 134
-SET EXT (64,8)
-SET BLOCK 4096
-SET IBLOCK 4096
-SET KEYLEN 8
-SET PART (1,$PART1,64,8,"25")
-SET PART (2,$PART2,64,8,"50")
-SET PART (3,$PART3,64,8,"75")
-CREATE KEYFILE
 .
 .
-EXIT
2>

Refer to the File Utility Program (FUP) Reference Manual for more details on how to
create files using the FUP CREATE command.

The next example creates the same file programmatically using the
FILE_CREATELIST_ procedure. You supply this procedure with an item-list and a
list of corresponding values. The item-list parameter is an array of numbers that
identify the values given in the values parameter. In the following example, item
number 41 identifies the first word of the values array as the file type, item number 43
identifies the second word as the record length, and so on.

?NOLIST
?INSPECT,SYMBOLS
?SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL

! Global variables:

STRING .S^PTR;
 .
 .

?SOURCE $SYSTEM.SYSTEM.EXTDECS0
?LIST
 .
 .

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 79

Creating Partitioned Files

PROC CREATE^PARTS MAIN;
BEGIN
 STRING .KEYFILE[0:ZSYS^VAL^LEN^FILENAME]; !primary-key
 ! file name
 INT LENGTH; !length of primary file name
 INT .ITEM^LIST[0:63]; !list of items to pass to
 ! FILE_CREATELIST_
 INT .VALUES[0:512]; !values of those items
 INT NUMBER^ITEMS; !number of items
 INT VALUES^LEN; !total length of items
 INT ERROR; !system procedure call error

 KEYFILE ':=' "$ADMIN.OPERATOR.KEYFILE" -> @S^PTR;

 LENGTH := @S^PTR '-' @KEYFILE;

 ITEM^LIST ':=' [ZSYS^VAL^FCREAT^FILETYPE,
 ZSYS^VAL^FCREAT^LOGICALRECLEN,
 ZSYS^VAL^FCREAT^BLOCKLEN,
 ZSYS^VAL^FCREAT^KEYOFFSET,
 ZSYS^VAL^FCREAT^KEYLEN,
 ZSYS^VAL^FCREAT^PRIMEXTENTSIZE,
 ZSYS^VAL^FCREAT^SCNDEXTENTSIZE,
 ZSYS^VAL^FCREAT^NUMPRTNS,
 ZSYS^VAL^FCREAT^PRTNDESC,
 ZSYS^VAL^FCREAT^PRTNVOLLEN,
 ZSYS^VAL^FCREAT^PRTNVOLNAMES,
 ZSYS^VAL^FCREAT^PRTNPARTKEYLEN,
 ZSYS^VAL^FCREAT^PRTNPARTKEYVAL];

 NUMBER^ITEMS := 13;

 VALUES ':=' [3, !primary-key file type
 134, !primary-key file record length
 4096, !primary-key file block length
 0, !primary-key file key offset
 6, !primary-key file key length
 64, !number of alternate-key specifiers
 8,
 64,8,64,8,64,8,
 6,6,6,
 "$PART1$PART2$PART3",
 2,
 "255075"] -> @S^PTR;

 VALUES^LEN := (@S^PTR '-' @VALUES) '<<' 1; !length in
 ! bytes
 ! of VALUES
 ! parameter

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 80

Accessing Partitioned Files

! Create the file:

 ERROR := FILE_CREATELIST_(KEYFILE:ZSYS^VAL^LEN^FILENAME,
 LENGTH,
 ITEM^LIST,
 NUMBER^ITEMS,
 VALUES,
 VALUES^LEN);
END;

Either of the above examples creates a file with four partitions on volumes $ADMIN,
$PART1, $PART2, and $PART3. The records are segregated by key value as shown
in Figure 5-8:

Accessing Partitioned Files
You access a partitioned file in exactly the same way you would a nonpartitioned file.
Open the file by simply opening the file name of the primary partition. The
FILE_OPEN_ procedure returns just one file number, which you use to access the file
as you would any other disk file.

Figure 5-8. Sample Partitioned File

VST032.VSD

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 81

Using Alternate Keys

5 Communicating With Disk Files

Using Alternate Keys
This subsection examines how you can access a record in a structured file using a key
value other than the primary key. To do this, you need an alternate-key file to provide
the link between the alternate and primary keys.

Creating Alternate-Key Files
You can create primary-key and alternate-key files either interactively using the FUP
CREATE command or programmatically using the FILE_CREATELIST_ procedure. In
either case, you need to supply information about how to build the files, including the
attributes of the primary file as well as the attributes of the alternate-key file.

The simplest way to create alternate-key files is by using the FUP CREATE command
as shown below. This example creates a primary-key file like the one created in the
previous example and also creates two alternate-key files to access the data records
by part description (“DE” specifier) and supplier name (“SU” specifier).

1> FUP
-SET TYPE R
-SET BLOCK 4096
-SET REC 130
-SET KEYOFF 0
-SET KEYLEN 8
-SET ALTKEY ("DE",FILE 0,KEYOFF 8,KEYLEN 60)
-SET ALTFILE (0,$ADMIN.OPERATOR.ALT2)
-SET ALTKEY ("SU",FILE 1,KEYOFF 66,KEYLEN 60)
-SET ALTFILE (1,$ADMIN.OPERATOR.ALT3)
-SHOW
 TYPE K
 EXT (1 PAGES, 1 PAGES)
 REC 130
 BLOCK 4096
 ALTKEY ("DE", FILE 0, KEYOFF 6, KEYLEN 60)
 ALTKEY ("SU", FILE 1, KEYOFF 66, KEYLEN 60)
 ALTFILE (0, $ADMIN.OPERATOR.ALT2)
 ALTFILE (1, $ADMIN.OPERATOR.ALT3)
 ALTCREATE
 MAXEXTENTS 16
-CREATE KEY2FILE
CREATED - $ADMIN.OPERATOR.KEY2FILE
CREATED - $ADMIN.OPERATOR.ALT2
CREATED - $ADMIN.OPERATOR.ALT3
 .
 .
-EXIT
2>

Refer to the File Utility Program (FUP) Reference Manual for more details on how to
create files using the FUP CREATE command.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 82

Creating Alternate-Key Files

The next example creates the same files programmatically using the
FILE_CREATELIST_ procedure. You supply this procedure with an item-list and a
list of corresponding values. The item-list parameter is an array of numbers that
identify the values given in the values parameter. In the example below, item number
41 identifies the first word of the values array as the file type, item number 43
identifies the second word as the record length, and so on.

?NOLIST
?INSPECT,SYMBOLS
?SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL

! Global variables:

STRING .S^PTR;
 .
 .

?SOURCE $SYSTEM.SYSTEM.EXTDECS0
?LIST
 .
 .

PROC CREATE^ALTS MAIN;
BEGIN
 STRING .KEYSFILE[0:ZSYS^VAL^LEN^FILENAME]; !primary-key
 ! file name
 INT LENGTH; !length of primary file name
 INT .ITEM^LIST[0:63]; !list of items to pass to
 ! FILE_CREATELIST_
 INT .VALUES[0:512]; !values of those items
 INT NUMBER^ITEMS; !number of items
 INT VALUES^LEN; !total length of items
 INT REC^LEN; !alternate-key file record
 ! length
 INT BLOCK^LEN; !alternate-key file block
 ! length
 INT KEY^LEN; !alternate-key file key
 ! length
 INT KEY^OFFSET; !alternate-key file key
 ! offset
 INT ERROR; !system procedure call error

 KEYSFILE ':=' "$ADMIN.OPERATOR.KEY2FILE" -> @S^PTR;

 LENGTH := @S^PTR '-' @KEYSFILE;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 83

Creating Alternate-Key Files

 ITEM^LIST ':=' [ZSYS^VAL^FCREAT^FILETYPE,
 ZSYS^VAL^FCREAT^LOGICALRECLEN,
 ZSYS^VAL^FCREAT^BLOCKLEN,
 ZSYS^VAL^FCREAT^KEYOFFSET,
 ZSYS^VAL^FCREAT^KEYLEN,
 ZSYS^VAL^FCREAT^NUMALTKEYS,
 ZSYS^VAL^FCREAT^ALTKEYDESC,
 ZSYS^VAL^FCREAT^NUMALTKEYFILES,
 ZSYS^VAL^FCREAT^ALTFILELEN,
 ZSYS^VAL^FCREAT^ALTFILENAMES];

 NUMBER^ITEMS := 10;

 VALUES ':=' [3, !primary-key file type
 130, !primary-key file record length
 4096, !primary-key file block length
 0, !primary-key file key offset
 6, !primary-key file key length
 2, !number of alternate-key specifiers

 ! Alternate key descriptor for description
 ! field:

 "DE", !key specifier for description
 ! field
 60, !length of alternate key
 6, !alternate-key file key offset
 0, !alternate-key file number
 0, !not used
 0, !not used

 ! Alternate key descriptor for supplier
 ! field:

 "SU", !key specifier for description
 ! field
 60, !length of alternate key
 66, !alternate-key file key offset
 0, !alternate-key file number
 0, !not used
 0, !not used

 ! Other values:

 2, !number of alternate-key files
 20, !length of first alternate-key
 ! file name
 20, !length of second alternate-key
 ! file name

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 84

Creating Alternate-Key Files

 ! Concatenated alternate-key file names:

 "$ADMIN.OPERATOR.ALT2
 $ADMIN.OPERATOR.ALT3"]
 -> @S^PTR;

 VALUES^LEN := (@S^PTR '-' @VALUES) '<<' 1; !length in
 ! bytes
 ! of VALUES
 ! parameter

! Create the primary file:

 ERROR := FILE_CREATELIST_(KEYSFILE:ZSYS^VAL^LEN^FILENAME,
 LENGTH,
 ITEM^LIST,
 NUMBER^ITEMS,
 VALUES,
 VALUES^LEN);

! Create the alternate-key file ALT2:

 KEYSFILE ':=' "$ADMIN.OPERATOR.ALT2" -> @S^PTR;
 LENGTH := @S^PTR '-' @KEYSFILE;
 REC^LEN := 68;
 BLOCK^LEN := 4096;
 KEY^LEN := 68;
 KEY^OFFSET := 0;

 ERROR := FILE_CREATE_(KEYSFILE:ZSYS^VAL^LEN^FILENAME,
 LENGTH,
 !file^code!,
 !primary^extent^size!,
 !secondary^extent^size!,
 !max^extents!,
 !file^type!,
 !options!,
 REC^LEN,
 BLOCK^LEN,
 KEY^LEN,
 KEY^OFFSET);

! Create the alternate-key file for ALT3:

 KEYSFILE ':=' "$ADMIN.OPERATOR.ALT3" -> @S^PTR;
 LENGTH := @S^PTR '-' @KEYSFILE;
 REC^LEN := 68;
 BLOCK^LEN := 4096;
 KEY^LEN := 68;
 KEY^OFFSET := 0;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 85

Adding Keys to an Alternate-Key File

 ERROR := FILE_CREATE_(KEYSFILE:ZSYS^VAL^LEN^FILENAME,
 LENGTH,
 !file^code!,
 !primary^extent^size!,
 !secondary^extent^size!,
 !max^extents!,
 !file^type!,
 !options!,
 REC^LEN,
 BLOCK^LEN,
 KEY^LEN,
 KEY^OFFSET);
END;

Adding Keys to an Alternate-Key File
Usually, you do not add keys to an alternate-key file directly. The file system inserts
the alternate keys automatically whenever a new key is added to the primary-key file.

However, you can create an alternate-key file and specify that updates will not be done
automatically. For example, in an application where a specific alternate key will not be
used until some time after the primary file is updated, your application can choose to
batch updates to an alternate-key file and then have the updates performed later.
Such an approach means that you have to access the alternate-key file directly.

If you do need to access the alternate-key file directly, then the file system is unable to
provide the same protection as when you access alternate keys using the file number
of the primary file. Here, you must protect your alternate-key files from duplicate
insertions when concurrent insertions take place on the primary file. To do this, you
must set the alternate-key insertion locking mode, using SETMODE function 149, as
follows:

LITERAL ALT^KEY^INSERTION^LOCKING = 149,
 AUTO^LOCK = 1;
 .
 .
CALL SETMODE(F^NUM,
 ALT^KEY^INERTION^LOCKING,
 AUTO^LOCK);

This procedure call provides record-level locks while a record is being inserted in the
primary data file. The lock is released as soon as the insert is complete.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 86

Using Alternate Keys With a Relative File

Using Alternate Keys With a Relative File
Alternate keys used with a relative file reference a record number. As with any
alternate-key mechanism, each occurrence of an alternate key references a primary
key. Recall that for relative files, the primary key is the record number.

The log-file programming example from the subsection Using Relative Files will be
enhanced to show how alternate keys can be used with relative files. The old example
used a record to contain comments entered by the user. Here, two fields are added to
the record structure so that one field can contain the user's comments, on the date,
and a third field contains the length of the comments in bytes:

The date field serves as the alternate key, enabling the user to look up information in
the log using the date. “DA” will be used for the key specifier, short for “date.” The
alternate-key and primary-key files look something like the example shown in
Figure 5-9.

Figure 5-9. Example of Alternate-Key File for Use With a Relative File

VST028.VSD

VST029.VSD

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 87

Using Alternate Keys With a Relative File

Alternate keys suit this application because:

• Using a key value such as the date is a convenient way of accessing data. (The
relative-file example shown earlier in this section expects the user to know the
record number.)

• The user can make more than one entry per day in the log, because alternate keys
can be duplicated.

• Log entries can be made in any order, because the user can read sequentially by
alternate-key value instead of by physical record sequence (as you would get
when reading by record number).

The sample program needs a new primary-key file because of the new record
structure. You also need an alternate-key file. You can create these files
programmatically using the FILE_CREATE[LIST]_ procedure as described under
Creating Alternate-Key Files earlier in this section, or you can use the FUP utility.

The following example uses FUP to create a primary-key file called ALTLOG and an
alternate-key file called ALTKEY:

1> FUP
-SET TYPE R
-SET BLOCK 2048
-SET REC 512
-SET ALTKEY ("DA",KEYOFF 0,KEYLEN 8)
-SET ALTFILE (0,ALTKEY)
-SHOW
 TYPE R
 EXT (1 PAGES, 1 PAGES)
 REC 512
 BLOCK 2048
 ALTKEY ("DA", FILE 0, KEYOFF 0, KEYLEN 8)
 ALTFILE (0, $ADMIN.OPERATOR.ALTKEY)
 ALTCREATE
 MAXEXTENTS 16
-CREATE $ADMIN.OPERATOR.ALTLOG
CREATED - $ADMIN.OPERATOR.ALTLOG
CREATED - $ADMIN.OPERATOR.ALTKEY
-EXIT
2>

The sample program shown in this subsection enhances the program given in the
subsection Using Relative Files to use alternate keys. The major changes are
summarized as follows:

• The program declares a data structure RECORD to describe each record. Each
record contains a 8-character date (in the format yyyymmdd), a 502-character field
for the user’s comments, and an integer value representing the length of the
comments in bytes. The READ^RECORD, UPDATE^RECORD, and
INSERT^RECORD procedures all use this data structure when reading records
from the data file or writing records to the data file.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 88

Using Alternate Keys With a Relative File

• The GET^DATE procedure has been added to prompt the user for the date and
check its length.

• The READ^RECORD procedure is modified as follows:

• The procedure prompts the user for a date instead of a record number.

• The procedure positions the pointers using the KEYPOSITION procedure
(instead of POSITION). KEYPOSITION uses the alternate key to position the
pointers. It also uses approximate positioning mode to accept a key value that
does not exist. This is a useful feature, for example, if the user wants to read
the log for the month of April and there was no entry for April 1.

• Positioning by alternate key also causes sequential reads to be done in
alternate-key sequence rather than by record number.

• The UPDATE^RECORD procedure also prompts the user for a date and then
positions the pointers using this date and the KEYPOSITION procedure. Here, the
positioning mode is exact. If there is no such key, then the procedure displays “No
such record” and returns to the LOGGER procedure.

• The INSERT^RECORD procedure replaces the APPEND^RECORD procedure. It
works like APPEND^RECORD, except that it prompts the user separately for the
date and comments. Note that positioning is still done using the POSITION
procedure, because the program simply adds records to the end of the file.

• The LOGGER procedure does not change. The alternate-key file is automatically
opened when the corresponding data file is opened. Therefore there is no need for
a separate open.

The following complete program applies alternate keys to a relative file.

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 89

Using Alternate Keys With a Relative File

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !maximum file-name
 ! length
LITERAL DATESIZE = 8; !size of date field
LITERAL COMMENTSIZE = 502; !size of comment field

STRING .S^PTR; !pointer to end of string
INT LOGNUM; !log file number
INT TERMNUM; !terminal file number

STRUCT .RECORD;
BEGIN
 STRING DATE[0:DATESIZE-1];
 INT DATA^LEN;
 STRING DATA[0:COMMENTSIZE-1];
END;

LITERAL BUFSIZE = COMMENTSIZE;
STRING .SBUFFER[0:BUFSIZE]; !terminal I/O buffer
 ! (one extra character)

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (INITIALIZER,
? PROCESS_GETINFO_,FILE_OPEN_,WRITEREADX,WRITEX,
? PROCESS_STOP_,READX,KEYPOSITION,DNUMOUT,FILE_GETINFO_,
? READUPDATEX,WRITEUPDATEX,DNUMIN,POSITION)
?LIST

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 90

Using Alternate Keys With a Relative File

!--
! Here are some DEFINEs to make it easier to format and print
! messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print a line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR (S);
 PRINT^LINE; END #;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 91

Using Alternate Keys With a Relative File

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is used when the
! file is not open, when there is no file number for it.
! FILE^ERRORS is used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!---

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program:

 CALL PROCESS_STOP_;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 92

Using Alternate Keys With a Relative File

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to display the
! information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!---

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

!---
! Procedure to write a message on the terminal and check
! for any error. If there is an error, the procedure
! attempts to display a message about the error and stop
! the program.
!---

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 93

Using Alternate Keys With a Relative File

!--
! Procedure to ask the user for the next function to do:
!
! "r" to read records
! "u" to update a record
! "i" to insert a record
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' for Read Log, ");
 PRINT^STR(" 'u' for Update Log, ");
 PRINT^STR(" 'i' for Insert a comment, ");
 PRINT^STR(" 'x' for Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 94

Using Alternate Keys With a Relative File

!--
! Procedure for getting a date from the user. The date
! entered is returned in SBUFFER.
!--

PROC GET^DATE;
BEGIN
 INT COUNT^READ;

PROMPT^AGAIN:
 PRINT^BLANK;
 SBUFFER ':=' "Enter Date (yyyymmdd): " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF COUNT^READ <> DATESIZE THEN
 BEGIN
 START^LINE;
 PUT^STR("The date should be ");
 PUT^INT(DATESIZE);
 PUT^STR(" characters.");
 PRINT^LINE;
 GOTO PROMPT^AGAIN;
 END;
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 95

Using Alternate Keys With a Relative File

!--
! Procedure for reading records. The user selected function
! "r." The start of the read is selected randomly by record
! number. The user has the option of sequentially reading
! subsequent messages.
!--

PROC READ^RECORD;
BEGIN
 LITERAL APPROX = 0;
 INT KEY^SPEC;
 INT COUNT^READ;
 INT STATUS;
 INT ERROR;

! Prompt the user to select a record by entering a date:

 CALL GET^DATE;

! Position the current-record and next-record pointers to
! the selected record:

 KEY^SPEC ':=' "DA";
 CALL KEYPOSITION(LOGNUM,SBUFFER,KEY^SPEC,
 !length^word!,
 APPROX);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

! Loop, reading and displaying records, until the user
! declines to read the next record (any response other than
! "y"):

 DO BEGIN

 PRINT^BLANK;

 ! Read a record from the log file. If the end of file is
 ! reached, return control to the LOGGER procedure:

 CALL READX(LOGNUM,RECORD,BUFSIZE,COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(LOGNUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(LOGNUM);
 END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 96

Using Alternate Keys With a Relative File

 ! Print the record on the terminal:

 PRINT^STR("Date: " & RECORD.DATE FOR DATESIZE);
 PRINT^STR("Comments: " & RECORD.DATA FOR
 RECORD.DATA^LEN);

 PRINT^BLANK;

 ! Prompt the user to read the next record. The user
 ! must respond "y" to accept, otherwise the procedure
 ! returns to select the next function:

 SBUFFER ':=' ["Do you want to read another ",
 "record (y/n)? "]
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");
END;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 97

Using Alternate Keys With a Relative File

!---
! Procedure for updating a record. The user selected
! function "u." The user is prompted for the key of the
! record to update. The procedure displays the current
! contents and prompts for the new. After the user enters
! the new contents, the procedure updates the log file.
!---

PROC UPDATE^RECORD;
BEGIN
 LITERAL EXACT = 2;
 INT KEY^SPEC;
 INT COUNT^READ;
 INT STATUS;
 INT ERROR;

! Prompt the user to select a record:

 CALL GET^DATE;

! Position the current-record and next-record pointers to
! the selected record:

 KEY^SPEC ':=' "DA";
 CALL KEYPOSITION(LOGNUM,SBUFFER,KEY^SPEC,
 !length^word!,
 EXACT);
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

! Read the record. Return to LOGGER if the record does not
! exist:

 CALL READX(LOGNUM,RECORD,$LEN(RECORD),COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(LOGNUM,ERROR);
 IF (ERROR = 1) OR (ERROR = 11) THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(LOGNUM);
 END;

! Write the record to the terminal screen:

 PRINT^BLANK;
 PRINT^STR("Date: " & RECORD.DATE FOR DATESIZE);
 PRINT^STR("Comments: " & RECORD.DATA FOR
 RECORD.DATA^LEN);

! Prompt the user for the updated record:

 PRINT^BLANK;
 SBUFFER ':=' "Enter Revised Comments: " -> @S^PTR;

Communicating With Disk Files

Guardian Programmer’s Guide — 421922-014
5 - 98

Using Alternate Keys With a Relative File

 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 COMMENTSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 RECORD.DATA ':=' SBUFFER FOR COUNT^READ;
 RECORD.DATA^LEN := COUNT^READ;

! Write new record to log file:

 CALL WRITEUPDATEX(LOGNUM,RECORD,$LEN(RECORD));
 IF <> THEN CALL FILE^ERRORS(LOGNUM);

END;

Guardian Programmer’s Guide — 421922-014
6 - 1

6
Communicating With Processes

This section describes how to use file-system procedures to communicate with other
processes. Specifically, this section covers the following topics:

• How processes engage in two-way communication. Here, a process sends a
message to another process. After processing the message, the recipient replies
to the message.

• How processes engage in one-way communication. In one-way communication,
the sender receives no meaningful information from the recipient. However, there
is a variation on one-way communication where, although the sender receives no
meaningful data in the reply, it does receive an error code.

• How a server processes messages concurrently, then replies to them in any order.

• How to handle system messages.

At the end of the section is a complete example of a simple application that makes use
of requesters and servers. For complex examples, see Section 21, Writing a
Requester Program, and Section 22, Writing a Server Program.

Throughout this section it is assumed that all processes involved already exist.
Section 2, Using the File System, gives some examples of how to create processes.
For more details about processes in general, refer to Section 16, Creating and
Managing Processes.

This section does not describe how to process the Startup message; Section 8,
Communicating With a TACL Process, provides details. Nor does this section describe
how user processes pass the Startup message to each other; Section 16, Creating and
Managing Processes, provides details. For details of a simplified process start-up
using SIO procedures, refer to Section 15, Using the Sequential Input/Output
Procedures.

This section does not discuss the use of sync IDs. It is possible, following a failure,
that a process could receive the same message twice. Sync IDs are used to
determine which one of a duplicated set of messages a process should respond to
following a failure.

Sending and Receiving Messages:
An Introduction

Interprocess communication (IPC):

• Permits a user process to receive messages from other user processes, thus
providing the basis of the requester/server model introduced in Section 1,
Introduction to Guardian Programming, as well as allowing processes to pass

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 2

Sending and Receiving Messages: An Introduction

information to child processes by way of a Startup message (see Section 8,
Communicating With a TACL Process).

• Permits user processes to receive system messages.

A process sends a message to another process by opening the recipient process file
and writing a message to it. A process receives a message—whether the message is
a request from another user process or a system message—by reading from a special
file called $RECEIVE. Figure 6-1 shows these concepts.

Communication with other processes is done using procedure calls to the file system.
The relevant procedures are introduced below:

Figure 6-1. Sending and Receiving Messages

AWAITIO[X] Checks for completion of I/O for any system
procedure. Specific to process communication, it
checks for completion of read operations pending on
the $RECEIVE file; AWAITIO checks READ and
READUPDATE operations, and AWAITIOX checks
READX and READUPDATEX operations as well as
for READ and READUPDATE.

CANCEL Cancels the oldest outstanding operation on a
process or $RECEIVE file.

CANCELREQ Cancels a message identified by a tag value.

CONTROL Issues CONTROL operations to a process that
simulates an I/O device.

CONTROLBUF Issues CONTROLBUF operations to a process that
simulates an I/O device.

FILE_CLOSE_ Terminates access to a process file or to the
$RECEIVE file.

VST033.VSDVST033.VSD

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 3

Sending and Receiving Messages: An Introduction

FILE_GETINFO_ Provides error information and characteristics about
the open process file or $RECEIVE file.

FILE_GETRECEIVEINFO_ Returns information about the last message read from
the $RECEIVE file. The information includes a tag
that identifies the message.

FILE_OPEN_ Establishes communication with a process file for
sending messages or with the $RECEIVE file for
receiving messages.

MESSAGESTATUS Checks the $RECEIVE file to see whether a specific
message has been canceled.

READ[X] Reads information from the $RECEIVE file. The
READ procedure reads data into a buffer in the user
data segment of the reading process. The READX
procedure reads data into a buffer in either the user
data segment or an extended data segment of the
reading process.

READUPDATE[X] Reads a message from $RECEIVE, expecting to
reply to the message sender in a subsequent call to
the REPLY procedure. The READUPDATE
procedure reads data into a buffer in the user data
segment of the receiving procedure. The
READUPDATEX procedure reads data into a buffer in
either the user data segment or an extended data
segment of the receiving process.

REPLY[X] Replies through the $RECEIVE file to a message that
was previously read by READUPDATE. Optionally,
REPLY[X] uses the message tag returned from
FILE_GETRECEIVEINFO_ to designate which
message is replied to. The REPLY procedure returns
data from a buffer in the user data segment of the
replying process. The REPLYX procedure returns
data from a buffer either in the user data segment or
in an extended data segment of the replying process.

SETMODE Issues SETMODE functions to a process that
simulates an I/O device. SETMODE is also used to
turn on/off message queuing by priority of the sending
process and to check whether any message has been
canceled.

SETMODENOWAIT Performs the same functions as SETMODE but in a
nowait manner.

SETPARAM Issues SETPARAM operations to a process that
simulates an I/O device.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 4

Sending Messages to Other Processes

For details about each of the above procedures, refer to the Guardian Procedure Calls
Reference Manual.

Sending Messages to Other Processes
A requester process initiates communication with a server process by sending a
message (a request) to the server. To do so, the requester process typically executes
the following sequence:

1. Open the server process.

2. Create the request in a buffer in the requester’s user data stack or extended data
segment.

3. Send the message to the server, optionally waiting for a reply.

The following paragraphs explain how to do this.

Opening a Process
You open a process by passing the process file name as the file-name parameter to
the FILE_OPEN_ procedure. The process descriptor can be named or unnamed, as
described in Section 2, Using the File System.

Refer to Section 2, Using the File System, for information on how to create a process.
For a thorough discussion of processes, refer to Section 16, Creating and Managing
Processes.

WRITE[X] Sends a message to another process and waits for a
reply (assuming waited I/O). WRITE[X] ignores the
reply data and is often used to send a server request
for which the server does not send any reply data.

The WRITE procedure sends data from a buffer in the
user data segment of the sending process. The
WRITEX procedure sends data from either the user
data segment or an extended data segment of the
sending process.

WRITEREAD[X] Sends a message to another process and waits for a
reply from that process. The WRITEREAD procedure
sends data from a buffer in the user data segment of
the sending process. The WRITEREADX procedure
sends data from either a buffer in the user data
segment or a buffer in an extended data segment of
the sending process.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 5

Opening a Process

Examples of Opening a Process
The following example opens process $SER1 for waited I/O.

FILE^NAME := "$SER1" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 PROC^NUM);
IF ERROR <> 0 THEN ...

Alternatively, you can open the server file for nowait I/O:

NOWAIT^DEPTH := 1;
FILE^NAME ':=' "$SER1" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 PROC^NUM,
 !access!,
 !exclusion!,
 NOWAIT^DEPTH);
IF ERROR <> 0 THEN ...

The use of waited or nowait I/O affects the way you send messages to the server
process. Writing Messages to Another Process, later in this section, explains this.

When Does the Open Finish?
The sample code fragments for opening a process work for opening any server
process. However, the time at which the open finishes depends on the way the server
process opens $RECEIVE.

If the server has not yet opened $RECEIVE, the requester’s open will not finish until it
does. Once the server opens $RECEIVE, the open finishes at one of three points in
time:

• If the server opens $RECEIVE without requesting system messages, the
requester’s open finishes as soon as the server has opened $RECEIVE.

• If the server opens $RECEIVE to request system messages and to enable two-
way communication (receive-depth parameter set to a value greater than zero),
the requester’s open finishes when the server replies to the Open message.

• If the server opens $RECEIVE to request system messages but does not enable
two-way communication (receive-depth parameter set to zero), the requester’s
open finishes when the server reads the Open message.

See Receiving and Processing System Messages, later in this section, for information
about opening $RECEIVE to receive system messages.

See Opening $RECEIVE for Two-Way Communication and Opening $RECEIVE for
One-Way Communication later in this section for details about setting the
receive-depth parameter.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 6

Writing Messages to Another Process

Writing Messages to Another Process
Once the process file is open, you can communicate with the process by writing a
message to the file number returned by the FILE_OPEN_ call. To send a message,
you use either the WRITE[X] or WRITEREAD[X] procedure. For two-way
communication (reply data expected), you should use WRITEREAD[X]. For one-way
communication (no reply data expected) or one-way communication with error return,
you can use a call to WRITE[X] or WRITEREAD[X].

As mentioned earlier under Opening a Process, the requester can open the server
process for waited or nowait I/O. If the requester can wait for a reply, it should use
waited I/O. If the requester cannot wait, it should initiate communication using nowait
I/O and complete the communication later with a call to the AWAITIO[X] procedure.
This is an application design issue. Refer to Section 4, Using Nowait Input/Output, for
a detailed discussion of nowait I/O.

Writing a Message: No Reply Data Expected
The following example writes a message to a process without expecting any reply
data. Here, the process has been opened using waited I/O.

LENGTH := $LEN(REQUEST.MESSAGE);
SBUFFER ':=' REQUEST.MESSAGE FOR LENGTH;
CALL WRITEX(PROC^NUM,
 SBUFFER,
 LENGTH,
 COUNT^WRITTEN);
IF <> THEN ...

The WRITEX procedure returns when the recipient process has read the message by
issuing a READ[X] procedure call or has called REPLY[X] to respond to the message
after having read it with READUPDATE[X]; that is, the sender and recipient processes
remain synchronized. The count-written parameter shows how many bytes were
read by the recipient process.

If you use WRITEREAD[X] to send a one-way message, then that call also returns as
soon as the recipient process issues a READ[X] procedure call (or a READUPDATE[X]
procedure call followed by a REPLY[X] call). In this case, the WRITEREAD[X]
procedure returns no bytes.

If you opened the process using nowait I/O, then the WRITE[X] procedure returns
immediately. The requester and server become synchronized when the requester
completes the corresponding call to AWAITIO[X]. The following example shows how
this part of the requester might be coded:

LENGTH := $LEN(REQUEST.MESSAGE);
SBUFFER ':=' REQUEST.MESSAGE FOR LENGTH;
CALL WRITEX(PROC^NUM,
 SBUFFER,
 LENGTH,
 COUNT^WRITTEN);
IF <> THEN ...

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 7

Writing Messages to Another Process

 .
 .
CALL AWAITIOX(PROC^NUM);
IF <> THEN ...

Writing a message for one-way communication with error return is no different from
that given in the above examples. The only difference is in the server process, which
must use READUPDATE[X] and REPLY[X].

Writing a Message: Reply Data Expected
Two-way communication expects reply data in reply to a written message. Here, you
use the WRITEREAD[X] procedure to send the message to the server and receive the
reply from the server in the same buffer.

Note that it is the action taken by the server process that determines whether one-way
or two-way communication is being used. For two-way communication, the recipient
process reads the message using a READUPDATE[X] procedure and then replies to
the message using the REPLY[X] procedure. WRITEREAD[X] returns when the
REPLY[X] procedure finishes, keeping the processes synchronized.

The following example sends a request for a database access to a server process.
The reply returns the information retrieved from the database. This example assumes
waited I/O.

STRUCT .RECORD;
BEGIN
 INT FUNCTION^CODE;
 INT ACCOUNT^NUMBER;
 INT AMOUNT;
END;

RECORD.FUNCTION^CODE := ADD;
RECORD.AMOUNT := 250;
RECORD.ACCOUNT^NUMBER := 16735;
WCOUNT := $LEN(RECORD);
RCOUNT := $LEN(RECORD);
CALL WRITEREADX(PROC^NUM,
 RECORD,
 WCOUNT,
 RCOUNT,
 COUNT^READ);
IF <> THEN ...

Had the process been opened for nowait I/O, the WRITEREAD[X] procedure would
return immediately. The associated AWAITIO[X] call would finish on receipt of the
reply and synchronize the processes.

Note. It is possible for the server process to send reply data even though the requester used
the WRITE[X] procedure instead of WRITEREAD[X]. The file system simply discards the reply
without even sending an error code to the requester or the server.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 8

Queuing Messages on $RECEIVE

Queuing Messages on $RECEIVE
Messages destined for a given server process are placed by the file-system software in
a queue in the $RECEIVE file for the process in question. Note that this queue exists
in main memory, not on disk.

Normally, the queue is organized so that the server process reads messages from
$RECEIVE in the order in which they arrive. This is usually true whether messages
came from application requester processes, the server’s parent process, or the
operating system.

Figure 6-2 shows a typical queue. In this example, the server process has received
messages from its parent process (the Startup message) and messages from each of
three requester processes.

As an alternative to reading messages from $RECEIVE in the order in which they
arrive, you can have the queue reordered according to the priority of the messages.
Usually, the priority of a message is the same as the priority of the process that sent
the message.

Note. Some system status messages (such as message -2, the CPU Down message) do get
delivered ahead of messages from processes, including processes that are part of the
operating system.

Figure 6-2. Multiple Requester Processes and Message Queuing

VST034.VSD

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 9

Queuing Messages on $RECEIVE

To reorder the message queue according to message priority, the server process must
issue SETMODE function 36 as follows:

LITERAL PRIORITY^QUEUING = 36,
 ON = 1,
 OFF = 0;
 .
 .
CALL SETMODE(RECV^NUM,
 PRIORITY^QUEUING,
 ON);
IF <> THEN ...

The priority of every process is set when the process is created. Refer to Section 16,
Creating and Managing Processes, for details of how to do this using the
PROCESS_CREATE_ procedure.

Figure 6-3 shows how messages are queued according to sender process priority.

Figure 6-3. Message Queuing by Process Priority

VST035.VSD

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 10

Receiving and Replying to Messages From
Other Processes

Receiving and Replying to Messages From
Other Processes

First look at how two-way communication works. This subsection is concerned with
processes that read a message, process the message, and then reply to the sender
before reading the next message. The file system keeps track of where to send
replies. The following paragraphs describe how to perform two-way communication.

Here, it is assumed that the server processes each message in turn. That is, the
server reads a message from the top of $RECEIVE, processes and replies to this
message, and then reads the next message.

It is possible to read several messages and then process them in any order. Doing so
involves putting each message on a list of messages that have been read but not
replied to and then removing the message from the queue when the message is
replied to. The subsection Handling Multiple Messages Concurrently, later in this
section, describes how to do this.

Opening $RECEIVE for Two-Way Communication
The receiving process reads messages from the $RECEIVE file. For two-way
communication, the process must set the receive-depth to a value greater than
zero.

The receive depth specifies how many messages can be read by the server process
before any message is replied to. For one-way communication, this value defaults to
zero because no reply is intended and therefore there is no need to queue messages
in this way. When processing and replying to one message at a time, however, the
maximum number of messages that can be read but not replied to is one. Hence the
server process is opened with a receive depth of 1.

You set the receive depth using a parameter of the FILE_OPEN_ procedure as shown
below:

FILE^NAME ':=' "$RECEIVE";
LENGTH := 8;
RECV^DEPTH := 1;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 RECV^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 RECV^DEPTH);
IF ERROR <> 0 THEN ...

Note that although the receive-depth parameter is in the same position in the
procedure call as the sync-depth parameter for disk-file opens, the purpose of the
parameter is different.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 11

Reading Messages for Two-Way Communication

Reading Messages for Two-Way Communication
Use the READUPDATE[X] procedure to read a message from $RECEIVE if you want
to reply to the message with data. READUPDATE[X] reads the message without
terminating the WRITEREAD[X] procedure issued by the sender of the message. The
WRITEREAD[X] procedure instead waits for a reply.

An example of a READUPDATEX call follows:

CALL READUPDATEX(RECV^NUM,
 SBUFFER,
 RCOUNT);
IF <> THEN ...

Replying to Messages
After reading a message from $RECEIVE using the READUPDATEX procedure, use
the REPLYX procedure to send the reply. This procedure sends data back to the
sender of the original message and returns an error indication:

STRUCT .RECORD;
BEGIN
 INT FUNCTION^CODE;
 INT ACCOUNT^NUMBER;
 INT AMOUNT;
END;

RECORD.AMOUNT := 1250;
WCOUNT := $LEN(RECORD);
ERROR := 0;
CALL REPLYX(RECORD,
 WCOUNT,
 !count^written!,
 !message^tag!,
 ERROR);
IF <> THEN ...

Returning Data
In the example above, the first parameter in the REPLYX call contains the reply
message; in this case, a data record requested by the sender.

Returning Error Information
The ERROR parameter in the above example can also be returned to the message
originator. Its purpose is to return an indication that there is a problem. Typically, the
reply data does not contain the expected result. The requested operation may not
have been completely and correctly performed.

The range of error codes between 256 and 511 is reserved for application programs to
use. You can freely define the meanings of these error codes yourself, as part of the
relationship between the requester and the server.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 12

Replying to Messages

Error numbers outside the range 256 through 511 are reserved for the operating
system and should not be used arbitrarily, because this could interfere with correct
error handling inside the operating system and file system.

If there is no problem, a value of zero (the default value) will be returned.

The requester process should call FILE_GETINFO_ after returning from the
WRITEREAD[X] call to obtain the returned error code, just as you would use
FILE_GETINFO_ to obtain any file-system error code.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 13

Sending, Receiving, and Replying to Messages:
An Example

6 Communicating With Processes

Sending, Receiving, and Replying to Messages: An Example
In the example shown in Figure 6-4, the server process sends a reply back to the
requester. This example allows the user of the terminal running the requester process
to query the user of the terminal running the server process. The purpose of the
example is to show the concept. The long example at the end of this section shows a
practical use.

The programs work like this: Initially, the requester prompts its terminal user for
message input using WRITEREADX, and then it sends the message to the server.
The server (which has opened the $RECEIVE file with a receive depth of 1) uses the
READUPDATEX procedure to read the message from $RECEIVE so as not to
terminate the requester’s WRITEREADX without reply data. The server displays the
received message on its home terminal using WRITEREADX, which solicits a reply
from the terminal user. The server process then returns the reply to the requester
using the REPLYX procedure. Finally, the requester displays the reply on its home
terminal and waits for further input from the user. Both processes terminate when the
server user types “EXIT.”

Closing $RECEIVE
You explicitly close $RECEIVE as you would any file using the FILE_CLOSE_
procedure:

ERROR := FILE_CLOSE_(RECV^NUM);
IF ERROR <> 0 THEN ...

As for any file, if you do not explicitly close $RECEIVE, then the file is implicitly closed
when the process terminates.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 14

Closing $RECEIVE

Figure 6-4. Two-Way Interprocess Communication

VST036.VSD

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 15

Receiving Messages From Other Processes: One-
Way Communication

Receiving Messages From Other Processes:
One-Way Communication

Now look at how one-way communication works. When receiving messages in one-
way communication, all the server has to do is read the message and process it. No
reply data is necessary in the reply.

To receive a message from another process, the server process must open the
$RECEIVE file and read from it. The following paragraphs explain how to do this if
your program will not send a reply to the sending process.

Opening $RECEIVE for One-Way Communication
As for two-way communication, the receiving process reads messages from the
$RECEIVE file. For one-way communication, however, it is not necessary to set the
receive-depth parameter to a nonzero value because the receiving process does
not return any reply data. You therefore open the $RECEIVE file using the
FILE_OPEN_ procedure as shown below:

FILE^NAME ':=' "$RECEIVE";
LENGTH := 8;
FILE_OPEN_(FILE^NAME:LENGTH,
 RECV^NUM);
IF <> THEN ...

Reading From $RECEIVE for One-Way Communication
Use the READ[X] procedure to read the first message from $RECEIVE. In addition to
reading the message, the READ[X] procedure also keeps the requester and server
processes synchronized by terminating the WRITE[X] or WRITEREAD[X] procedure
call that the requester used to send the message.

CALL READX(RECV^NUM,
 SBUFFER,
 RCOUNT);
IF <> THEN ...

If you want to send an error response to the requester process without sending any
other data, use the READUPDATE[X] and REPLY[X] procedures as used for two-way
communication. You also need to open $RECEIVE with a receive depth of at least 1.
Because the requester sent the message using the WRITE[X] procedure, WRITE[X]
waits for the reply to finish but discards any data sent in the reply. By calling the
FILE_GETINFO_ procedure after the WRITE[X] procedure, the requester can obtain
the error code sent in the reply.

Sending and Receiving One-Way Messages: An Example
The example shown in Figure 6-5 shows one-way communication between a requester
process and a server process. The requester process writes messages to the server

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 16

Sending and Receiving One-Way Messages:
An Example

process file as typed by the user at a terminal. The server reads each message from
$RECEIVE and displays the message on the home terminal of the process. Both
processes stop when the user at the terminal of the requester process types “EXIT.”

Again, the purpose of this example is to show the concept. The example does not
necessarily perform a useful function.

Figure 6-5. One-Way Interprocess Communication

VST037.VSD

VST037.VSD

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 17

Handling Multiple Messages Concurrently

Handling Multiple Messages Concurrently
So far, you have seen how a server processes requests one at a time as it reads them
from the $RECEIVE file. However, in some applications, it could happen that for the
server to complete a request, it must wait for events outside the server process to
finish. Other requests might have to wait a long time for the server to become
available. By handling multiple requests concurrently, the server is able to process
requests while waiting for longer-running requests to finish.

This subsection describes how the server can read several requests from $RECEIVE
and then process and reply to them in any order. To do so, the server typically
executes the following sequence:

1. Open $RECEIVE with a receive depth equal to the maximum number of requests
to this process that you want to be able to process concurrently.

2. Read requests from $RECEIVE. The file system assigns a tag value to each
message and keeps a list of all messages that you have read from $RECEIVE but
not yet replied to.

3. Process these requests in any order. This gives the server the flexibility of
assigning priority to requests or processing requests concurrently.

4. Reply to each message after processing. The file system removes the message
from the list of messages that have not been replied to.

The following paragraphs describe how the server process performs these functions,
including how to ensure, when you send a reply, that the reply goes to the process that
issued the corresponding request.

Opening $RECEIVE to Allow Concurrent Message Processing
To open the $RECEIVE file and enable concurrent message processing, you need to
set the receive-depth parameter equal to the maximum number of messages that
your server program will queue before replying. The length of this list is an application
design issue.

The following example sets the receive depth to 4:

FILE^NAME ':=' "$RECEIVE";
LENGTH := 8;
RECV^DEPTH := 4;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 RECV^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 RECV^DEPTH);
IF ERROR <> 0 THEN ...

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 18

Reading Messages for Concurrent Processing

Reading Messages for Concurrent Processing
You use the READUPDATE[X] procedure to read each message without terminating
the corresponding WRITEREAD[X] call. The WRITEREAD[X] procedure finishes when
you reply to the message using the REPLY[X] procedure. With queued messages,
however, you should use message tags to make sure that each reply goes to the
process that sent the message you are replying to.

When processing several messages concurrently, there needs to be a way to identify
each message. The message tag returned by the FILE_GETRECEIVEINFO_
procedure can be used for this purpose. Remember that FILE_GETRECEIVEINFO_
gets information about the most recently read message. You therefore need to issue a
call to this procedure following each READUPDATE call; for example:

CALL READUPDATEX(RECV^NUM,
 SBUFFER0,
 RCOUNT);
IF <> THEN ...;

ERROR := FILE_GETRECEIVEINFO_(INFORMATION);
IF ERROR <> 0 THEN ...;
TAG0 := INFORMATION[2];
 .
 .

CALL READUPDATEX(RECV^NUM,
 SBUFFER1,
 RCOUNT);
IF <> THEN ...;

ERROR := FILE_GETRECEIVEINFO_(INFORMATION);
IF ERROR <> 0 THEN ...;
TAG1 := INFORMATION[2];
 .
 .

CALL READUPDATEX(RECV^NUM,
 SBUFFER2,
 RCOUNT);
IF <> THEN ...;

ERROR := FILE_GETRECEIVEINFO_(INFORMATION);
IF ERROR <> 0 THEN ...;
TAG2 := INFORMATION[2];
 .
 .

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 19

Getting Information About Messages Read
From $RECEIVE

Getting Information About Messages Read From $RECEIVE
In addition to the message tag, the FILE_GETRECEIVEINFO_ procedure returns
additional information about the last message read from the $RECEIVE file. The
FILE_GETRECEIVEINFO_ procedure returns information as follows:

STRUCT .INFORMATION(ZSYS^DDL^RECEIVEINFORMATION^DEF);
 .
 .
ERROR := FILE_GETRECEIVEINFO_(INFORMATION);
IF ERROR <> 0 THEN ...

The returned information includes the following:

• The I/O operation issued by the sender

• The maximum length of the reply message

• The tag value that identifies the message

• The file number used by the sender for communicating with this process

• The sync ID for fault-tolerant processing

• The process handle that identifies the sending process

• The open label

This information is typically used by the server process to assign priorities for message
handling and to establish message tracking.

This subsection discusses some of the more commonly used information. For further
information, you should refer to Section 16, Creating and Managing Processes, for
information on process handles or to the Guardian Procedure Calls Reference Manual
for complete details about all information returned by the FILE_GETRECEIVEINFO_
procedure.

Getting the I/O Operation
The I/O operation specified by the requester is returned in word 0 of the value returned
by the FILE_GETRECEIVEINFO_ procedure. It has one of the following values:

0

Indicates that the last message received was a system message. Refer to , later
in this section, for a discussion of system messages.

1

Indicates that the last message received resulted from a WRITE[X] procedure
call by the requester process.

2

Indicates that the last message received resulted from a READ[X] procedure call
by the requester process.

3

Indicates that the requester process issued a WRITEREAD[X] procedure call.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 20

Getting Information About Messages Read
From $RECEIVE

The following example extracts the type of operation requested in the message:

STRUCT .INFORMATION(ZSYS^DDL^RECEIVEINFORMATION^DEF);
 .
 .
ERROR := FILE_GETRECEIVEINFO_(INFORMATION);
IF ERROR <> 0 THEN ...;

CASE INFORMATION.Z^IOTYPE OF
BEGIN
 ZSYS^VAL^RCV^IOTYPE^SYSTEMMSG ->!System message
 ZSYS^VAL^RCV^IOTYPE^WRITE ->! Write request
 ZSYS^VAL^RCV^IOTYPE^READ ->!READ[X] request
 ZSYS^VAL^RCV^IOTYPE^WRITEREAD ->!WRITEREAD[X] request
 OTHERWISE ->!Error
END;

Getting the Maximum Reply Count
The maximum reply count indicates the number of reply bytes expected by the sender.
If the message received on $RECEIVE was generated by a WRITEREAD[X] procedure
call, this value is the read-count value specified by the sender in the
WRITEREAD[X] procedure call. If the sender issued a WRITE[X] call, then the
maximum reply count is zero. The value can be nonzero for a READ[X] request or for
a system message.

The value is returned by the FILE_GETRECEIVEINFO_ procedure in word 1. Your
server process can use this value to ensure that the reply does not get truncated when
read by the requester or to adjust a variable-length reply to the expected reply size.

The following example checks the size of the reply data and compares it with the
expected reply size. If the reply data is larger than the expected reply size, then the
server returns error number 300 to the requester to inform the requester that the data
is truncated.

STRUCT .INFORMATION(ZSYS^DDL^RECEIVEINFORMATION^DEF);
 .
 .
!Get the expected reply length:
ERROR := FILE_GETRECEIVEINFO_(INFORMATION);
IF ERROR <> 0 THEN ...;

!Set error if reply longer than expected reply:
SBUFFER ':=' "Reply to Message" -> @S^PTR;
WCOUNT := @S^PTR '-' @SBUFFER;
IF WCOUNT > INFORMATION.Z^MAXREPLYCOUNT THEN ERROR := 300
 ELSE ERROR := 0;

!Reply to requester:
CALL REPLY(SBUFFER,
 WCOUNT,
 !count^written!,
 !message^tag!,

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 21

Replying to Messages

 ERROR);
IF <> THEN ...

Getting the Message Tag
The message tag identifies a message and is used when the recipient process may
have to process multiple messages. The tag enables the recipient process to send the
reply to the correct process, as described earlier in this section.

The message tag is returned by the FILE_GETRECEIVEINFO_ procedure in word 2:

STRUCT .INFORMATION(ZSYS^DDL^RECEIVEINFORMATION^DEF);
 .
 .
ERROR := FILE_GETRECEIVEINFO_(INFORMATION);
IF ERROR <> 0 THEN ...;
 .
 .

MESSAGE^TAG := INFORMATION.Z^MESSAGETAG;
CALL REPLY(BUFFER,
 WCOUNT,
 !count^written!,
 MESSAGE^TAG);

Replying to Messages
When replying to messages that were concurrently processed, you need to include the
message tag as a parameter to the REPLY[X] procedure to ensure that the reply is
sent to the correct process. The following example replies to the three messages
received in the example under Reading Messages for Concurrent Processing, earlier in
this subsection:

CALL REPLYX(SBUFFER0,
 WCOUNT,
 COUNT^WRITTEN,
 TAG0);
IF <> THEN ...;

CALL REPLYX(SBUFFER1,
 WCOUNT,
 COUNT^WRITTEN,
 TAG2);
IF <> THEN ...;

CALL REPLYX(BUFFER2,
 WCOUNT,
 COUNT^WRITTEN,
 TAG1);
IF <> THEN ...;

Note that the order of replying is different from the order of receiving.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 22

Handling Multiple Messages Concurrently:
An Example

Handling Multiple Messages Concurrently: An Example
Figure 6-6 shows an example of message queuing. It is similar to the example given in
Figure 6-4, where concurrent message processing was not done. Here, however, the
server process accepts input from two requesters, queues one message from each,
and then processes and replies to both messages.

Figure 6-6. Example of Handling Multiple Messages Concurrently

VST038.VSD

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 23

Checking for Canceled Messages

Checking for Canceled Messages
Typically, a server processes messages from other processes as follows:

1. The server reads a message from its $RECEIVE file.

2. The server performs some processing in response to the message.

3. The server replies to the process that sent the message.

Between the time the server reads the message using the READUPDATE[X]
procedure and the time the server replies to the message using the REPLY[X]
procedure, the message could be canceled for any of the following reasons:

• The process that sent the message calls CANCEL, CANCELREQ, FILE_CLOSE_,
or certain forms of AWAITIO[X].

• The process that sent the message stops executing (for example, by calling
PROCESS_STOP_).

A typical use for message cancellation is when a requester process wants a high-
priority request performed but the server is taking a long time to process a lower-
priority request. The requester can ask to have the old request canceled so that the
new request can proceed.

For example, a server process might wait indefinitely for input from a terminal or for a
lock on a file. If the requester wants to have another request processed that conflicts
with the long running request—like printing some text to the same terminal—then it can
send a cancellation message to the server before sending the new request. Logic in
the message system prevents the new request from overtaking the cancellation
message and reaching the server first.

Even if a message that has been read using READUPDATE[X] is canceled, the server
must still reply to that message by calling REPLY[X]. The response by the server is an
application design issue that depends on the relationship between the requester and
server. Typically, a requester that cancels a request expects that the original request
may not be fully completed, therefore, the server need not perform any processing for
that message. Moreover, a process that cancels a request and then sends a new
request probably does not want the old request to hold up execution of the new
request. Thus, the server process can avoid unnecessary processing by ensuring that
a message has not been canceled before processing that message.

A process can check for canceled messages in two ways:

• By checking for system message number -38 (cancellation messages) in its
$RECEIVE file. This method is appropriate only when the server handles multiple
requests concurrently.

• By calling the MESSAGESTATUS procedure.

Note. It is never required to cancel a message. Only if a request takes a long time to process
is it appropriate to cancel that request.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 24

Checking for Cancellation Messages

These methods are described in the following paragraphs. Both methods involve use
of the message tag. The message tag is generally used to distinguish among multiple
messages when the server chooses to concurrently process several messages (see
Handling Multiple Messages Concurrently earlier in this section). Here, the message
tag is used to identify the canceled message.

You use the FILE_GETRECEIVEINFO_ procedure to obtain the message tag of the
last message read from $RECEIVE. This procedure returns information about the
message just read.

STRUCT .INFORMATION(ZSYS^DDL^RECEIVEINFORMATION^DEF);
INT TAG;
 .
 .
CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT);
IF <> THEN ...

CALL FILE_GETRECEIVEINFO_(INFORMATION);
TAG := INFORMATION.Z^MESSAGETAG;

Checking for Cancellation Messages
When a requester sends a message to a server and that message is later canceled
(for any of the reasons stated earlier), the operating system sends a system message
to the server to inform the server that the message has been canceled. The system
message is called a cancellation message and is made up of two words: the first word
contains the message type (-38), and the second word contains the message tag of
the canceled message.

The effect of the message and the way the server process must respond are
influenced by when the cancellation message arrives with respect to the processing of
the request to be canceled:

• If the request has not yet been read by the server process, the operating system
removes the request from $RECEIVE and the server never receives the
cancellation message.

• If the request is currently being processed by the server, the cancellation message
will be delivered. The server should stop processing the request. A REPLYX call
is required. There is no point checking for a cancellation message immediately
after reading the request because the requester will usually not issue a
cancellation message right away.

• If the server has already replied to the request, the server will not receive the
cancellation message.

• The cancellation message is not delivered if the server has read but not replied to
the number of messages specified in the receive-depth parameter of the
FILE_OPEN_ call.

If you check for cancellation messages, you should do so at points during message
processing only if the processing takes a long time.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 25

Using the MESSAGESTATUS Procedure

To enable receipt of cancellation messages in its $RECEIVE file, the server process
must call SETMODE function 80. SETMODE function 80 controls several functions
related to the $RECEIVE file, one of which is receipt of cancellation messages. For a
list of the functions performed by SETMODE function 80, see the Guardian Procedure
Calls Reference Manual.

The following example enables the receipt of cancellation messages. To receive
cancellation messages, bit 13 of parameter 1 of the SETMODE function 80 call must
be set to 1:

LITERAL SET^RECV^MSG^MODE = 80,
 ACCEPT^CANCEL^MESSAGES = %B0000000000000100;
 .
 .

CALL SETMODE(RECV^NUM,
 SET^RECV^MSG^MODE,
 ACCEPT^CANCEL^MESSAGES);

Once a call to SETMODE function 80 has been issued, you can check for cancellation
messages as you would any other system message. See , later in this section.

Using the MESSAGESTATUS Procedure
Cancellation messages provide a general mechanism for checking for canceled
messages. However, to request explicit information about the cancellation status of a
particular message that was read from $RECEIVE, your server program can call the
MESSAGESTATUS procedure. The MESSAGESTATUS procedure is the only way to
test for cancellation if $RECEIVE is opened with a receive depth of 1.

The MESSAGESTATUS procedure returns a value that indicates whether a specified
message has been canceled. You pass the message tag to the MESSAGESTATUS
procedure to identify the message you are inquiring about.

The following example checks the status of the message whose message tag is
MSG^TAG:

STATUS := MESSAGESTATUS(MSG^TAG);

The value returned in STATUS is one of the following:

 1 The specified message has been canceled. Thus, a REPLY[X] call is still
required but processing of the request should be terminated. There is no need
to supply data with the reply.

 0 The specified message has not been canceled. Thus, the server must process
the message and send the REPLY[X] to the requester process.

 -1 The specified message does not exist. No reply call is required.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 26

Receiving and Processing System Messages

Receiving and Processing System Messages
Recall that in addition to receiving messages from other processes, a process may
receive system messages from the operating system on the $RECEIVE file.

Of the many system messages that the operating system can send, the writer of an
application usually need be aware of only a subset. Of the system messages that a
process typically processes, some are implicit and others are explicit. Implicit system
messages indicate that some condition has occurred that may affect this process, such
as the death of a process that was created by this process.

Explicit system messages result from an operation performed by another process on
the process file, such as opening the file or performing a SETMODE function. This
subsection discusses explicit messages.

The type of a system message is indicated in the first word of the message. Explicit
messages include the following:

The Open and Close messages can be useful for several reasons; for example:

• To monitor how many processes have this process open

• To limit which processes are allowed to open the server

• To properly service a requester that is run as a fault-tolerant process pair

The Control, Setmode, Setparam, and Controlbuf messages are used if your program
simulates an I/O device. Simple examples of handling these messages are given here.
For a detailed example of handling the Open and Close system messages, see
Section 22, Writing a Server Program. For details of I/O device simulation, see
Section 24, Writing a Terminal Simulator.

The Guardian Procedure Errors and Messages Manual provides the format and
recommended response for every system message that the operating system might
generate.

-32 (Control message) Another process issued a CONTROL procedure call
against this process.

-33 (Setmode message) Another process issued a SETMODE procedure call
against this process.

-34 (Resetsync
message)

Another process issued a RESETSYNC procedure call
against this process.

-35 (Controlbuf
message)

Another process issued a CONTROLBUF procedure call
against this process.

-37 (Setparam message) Another process issued a SETPARAM procedure call
against this process.

-103 (Open message) Another process attempted to open this process.

-104 (Close message) Another process attempted to close this process.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 27

Receiving System Messages

Receiving System Messages
To receive system messages, your program needs to perform the following operations:

• Open $RECEIVE so that your program is able to receive system messages.

• Choose to read D-series system messages (the default) or C-series system
messages.

• Read system messages.

The following paragraphs describe how to perform these operations.

Opening $RECEIVE to Receive System Messages
You can choose to receive or not to receive system messages in the $RECEIVE file.
The choice is made when you open $RECEIVE with the FILE_OPEN_ procedure. If bit
15 of the options parameter is equal to 0 (the default value), then your server
process will receive system messages:

FILE^NAME ':=' "$RECEIVE";
LENGTH := 8;
OPTIONS := 0;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 RECV^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 !sync^depth!,
 OPTIONS);
IF ERROR <> 0 THEN ...

If bit 15 of the options parameter is set to 1, then your process will not receive
system messages:

FILE^NAME ':=' "$RECEIVE";
LENGTH := 8;
OPTIONS.<15> := 1;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 RECV^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 !sync^depth!,
 OPTIONS);
IF ERROR <> 0 THEN ...

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 28

Receiving System Messages

Whether you choose to receive system messages affects the time at which the
corresponding open in the requester finishes:

• If the server opens $RECEIVE without requesting system messages, the
requester’s open finishes as soon as the server has opened $RECEIVE.

• If the server opens $RECEIVE to request system messages and to enable two-
way communication (receive-depth parameter set to a value greater than zero),
the requester’s open finishes when the server replies to the Open message.

• If the server opens $RECEIVE to request system messages but does not enable
two-way communication (receive-depth parameter set to zero), the requester’s
open finishes when the server reads the Open message.

Receiving C-Series or D-Series System Messages
The options parameter also determines whether your process will read D-series
system messages or C-series system messages. For example, message -103 is the
D-series Open message, and message -30 is the equivalent C-series Open message.
By default, you receive only the D-series messages. However, you can receive the
C-series messages instead by setting bit 14 of the options parameter to 1.

The remainder of this section assumes D-series messages.

Reading System Messages
When you receive a system message from $RECEIVE, the READUPDATE[X] or
READ[X] procedure returns a warning condition (CCG). Currently, a system message
is the only reason why the READUPDATE[X] or READ[X] procedure returns with CCG.
However, we recommend testing for error number 6 (system message received) in
case other reasons for returning CCG are added in the future.

CALL READUPDATEX(RECV^NUM,
 SBUFFER,
 RCOUNT);
IF <> THEN
BEGIN
 CALL FILE_GETINFO_(RECV^NUM,
 ERROR);
 IF ERROR = 6 THEN
 BEGIN
 !Process the system message
 .
 .
 END;
END;

The first word in the buffer returned by the read operation contains the system
message number. Your program should then respond according to the system
message number.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 29

Processing Open and Close System Messages

Processing Open and Close System Messages
Message number -103 (the Open message) is delivered to a process when another
process tries to open the process (using the FILE_OPEN_, OPEN, or OPEN^FILE
procedure). Similarly, message number -104 (the Close message) is delivered to a
process when another process tries to close the process (either explicitly using
FILE_CLOSE_, CLOSE, or CLOSE^FILE or implicitly by calling PROCESS_STOP_,
STOP, or ABEND).

You might want your program to receive the Open and Close system messages if your
program is a server to more than one requester process. This way, your program can
control the number of requester processes that simultaneously have the server
process open.

The following example allows up to 5 processes to have the server process open at
one time:

LITERAL LIMIT^REACHED = 5;

ERROR^CODE := 0;
CASE BUFFER OF
BEGIN

 !Process the Open system message:
 ZSYS^VAL^SMSG^OPEN -> BEGIN
 IF OPENERS >= LIMIT^REACHED
 THEN ERROR^CODE := 12
 ELSE OPENERS := OPENERS + 1;
 END;

 !Process the Process Close system message:
 ZSYS^VAL^SMSG^CLOSE -> BEGIN
 OPENERS := OPENERS - 1;
 END;

 !Reject any other system message:
 OTHERWISE BEGIN !returns with
 ERROR^CODE := 2; ! ERROR^CODE = 2
 END;
END;

!Reply to the sender:
CALL REPLYX(!buffer!,
 !write^count!,
 !count^written!,
 !message^tag!,
 ERROR^CODE);

This example uses the variable OPENERS to indicate how many processes currently
have this process open. When the process receives an Open message, it adds one to
OPENERS. When the process receives a Close message it subtracts one from
OPENERS. Once the limit of five has been reached, then the process rejects the open
with error number 12.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 30

Processing Control, Setmode, Setparam, and
Controlbuf Messages

Processing Control, Setmode, Setparam, and
Controlbuf Messages

Your process should accept the -32 (Control), -33 (Setmode), -37 (Setparam), -34
(Resetsync), and -35 (Controlbuf) messages only if the process is simulating an I/O
device. In other words, some other process will issue CONTROL, SETMODE,
SETPARAM, or CONTROLBUF procedure calls against this process as if the process
were an I/O device.

For information on how to respond to each of these system messages, refer to the
Guardian Procedure Errors and Messages Manual. The following example provides a
skeletal outline:

CASE BUFFER OF
BEGIN
 -32 -> BEGIN
 !Process Control message;
 !For application-defined protocols,
 ! set REPLY^LEN as appropriate.
 END;

 -33 -> BEGIN
 !Process Setmode message
 !If last-params requested,
 ! set REPLY^LEN as appropriate.
 END;

 -35 -> BEGIN
 !Process Controlbuf message;
 !For application-defined protocols,
 ! set REPLY^LEN as appropriate.
 END;

 -37 -> BEGIN
 !Process Setparam message;
 !If last-params requested,
 ! set REPLY^LEN as appropriate.
 END;

 OTHERWISE -> BEGIN
 !Process any other message;
 !set REPLY^LEN as approproate.
 END;
END;

!Reply to the message:
CALL REPLYX(SBUFFER,
 $MIN(REPLY^LEN, RECEIVE^INFO[1]),
 !count^written!,
 !message^tag!,
 ERROR^CODE);

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 31

Handling Errors

Handling Errors
For the $RECEIVE file, there are no error conditions for which error recovery should be
attempted, except error 40 (operation timed out).

For a process file opened with a sync depth greater than zero, there are no error
conditions for which error recovery should be retried, except error 40.

For a process file opened with a sync depth of zero, an operation that returns error 201
(path down) should be retried once if the process file is a process pair. An occurrence
of error 201 means that the primary process failed. A reexecution of the call that
returned the error causes communication to occur with the backup process, if any. If
no backup process exists, a second error 201 is returned on reexecution of the call. At
this point, the error can be considered fatal.

Communicating With Processes: Sample
Programs

The sample programs shown here perform the same functions as the key-sequenced
file programming example shown in Section 5, Communicating With Disk Files. Here,
the program has been split into two programs: a requester program that handles input
from and output to a terminal, and a server program that controls access to the
database. The programs communicate through the $RECEIVE file. Figure 6-7 shows
the relationship.

To run the application, you need to create the database file and start the server and
requester processes.

Figure 6-7. Example of a Requester/Server Application

VST039.VSD

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 32

Programming the Requester

Create the database file using FUP commands as follows:

1> FUP
-SET TYPE K
-SET BLOCK 2048
-SET REC 135
-SET IBLOCK 2048
-SET KEYLEN 6
-SHOW
 TYPE K
 EXT (1 PAGES, 1 PAGES)
 REC 130
 BLOCK 2048
 IBLOCK 2048
 KEYLEN 6
 KEYOFF 0
 MAXEXTENTS 16
-CREATE $APPL.SUBAPPL.RECFILE
CREATED - $APPL.SUBAPPL.RECFILE
-EXIT
2>

Because the requester process opens the server by the name $SER1, you need to run
the server process by this name. The following TACL command does this:

1> RUN server-object-file-name /NAME $SER1, NOWAIT/

You can now run as many requester processes as you like as follows:

4> RUN requester-object-file-name
 .
 .

Programming the Requester
The requester program prompts the user for a function to perform. The user can
choose from the following functions:

• Read a record

• Add a record

• Update an existing record

• Exit the program

The requester formulates a request from information entered by the user and sends a
message to the server process containing the appropriate information: a function code
and, for operations that imply writing to the database, the contents of a database
record.

The requester receives a response from the server. The response depends on the
function. For operations that imply reading the database, the response includes
database records. For write operations, a response indicating that the write finished
successfully is enough.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 33

Programming the Requester

The MAIN procedure responds to the user’s selection by calling the appropriate
procedure:

• The READ^RECORD procedure allows the user to read one record followed
optionally by subsequent sequential reads. It prompts the user for a part number
and then sends the part number, along with a function code for an approximate
read, to the server process. The response from the server contains the first record
with a key equal to or greater than the supplied part number or an indication that
the file contains no such record.

If the reply contains a record, then the READ^RECORD procedure calls the
DISPLAY^RECORD procedure to display the record on the user’s terminal. If the
reply contained an end-of-file indication, then the READ^RECORD procedure
prints a “no such record” message on the user’s terminal.

If the user chooses to read more records, then the procedure sends another read
request to the server process using the key value returned by the last read
operation. This time the function code is set for a read-next operation instead of
an approximate read.

• The UPDATE^RECORD procedure displays the record for update before
prompting the user for the updated information. First it prompts the user for the
key to the record to be updated (the part number). It then sends the part number
to the server process along with a read-exact function code. The response from
the server is either the record that the user wants to update or an indication that
the record does not exist.

If the record does not exist, the procedure prints a diagnostic and returns control to
the main procedure. If a record is returned, the procedure calls
DISPLAY^RECORD to display the record on the user’s terminal then calls
ENTER^RECORD to prompt the user to enter new values. Once the values are
entered, UPDATE^RECORD sends the updated record to the server along with a
write function code. The response from the server indicates that the write was
successful, and control returns to the MAIN procedure.

• The INSERT^RECORD procedure calls the ENTER^RECORD procedure to
prompt the user to enter a new record. The INSERT^RECORD procedure then
sends this data structure to the server process along with a function code
indicating that the server should write a new record. The response from the server
is either a confirmation that the write was completed as intended or an indication
that the write could not proceed because a record with the same key already
exists. In either case, control is returned to the MAIN procedure. If the write could
not be completed, INSERT^RECORD prints a message on the user’s terminal.

• The EXIT^PROGRAM procedure stops the requester program. The server
continues to run because other requesters may still be using it.

The TAL code for the requester program follows.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 34

Programming the Requester

?INSPECT, SYMBOLS, NOCODE
?NOLIST,SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !Maximum
 ! file-name
 ! length
LITERAL OLD = 0; !updating in ENTER^REC
LITERAL NEW = 1; !new record in ENTER^REC
LITERAL BUFSIZE = 132; !size of terminal buffer
LITERAL PARTSIZE = 6; !size of part number
LITERAL DESCSIZE = 60; !size of part description
LITERAL SUPPSIZE = 60; !size of supplier name
LITERAL READ^APPROX= 1; !requester function
LITERAL READ^EXACT = 2;
LITERAL WRITE^ONE = 3;
LITERAL UPDATE^ONE = 4;
LITERAL READ^NEXT = 5;

STRING .SBUFFER[0:BUFSIZE]; !I/O buffer (one extra char)
STRING .S^PTR; !pointer to end of string
INT SERVER^NUM; !server file number
INT TERMNUM; !terminal file number

!Data structure for receiving part records from the server
!process:

STRUCT .PART^RECORD;
BEGIN
 STRING PART^NUMBER[0:PARTSIZE-1];
 STRING DESCRIPTION[0:DESCSIZE-1];
 INT DESC^LEN;
 STRING SUPPLIER[0:SUPPSIZE-1];
 INT SUP^LEN;
 INT ON^HAND;
 INT UNIT^PRICE;
END;

!Data structure for sending a request to the server:

STRUCT .REQUEST;
BEGIN
 INT REQUEST^FUNCTION;
 STRUCT PART(PART^RECORD);
 STRUCT OLD^PART(PART^RECORD);
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 35

Programming the Requester

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (INITIALIZER,
? PROCESS_GETINFO_,FILE_OPEN_,WRITEREADX,WRITEX,NUMIN,
? PROCESS_STOP_,READX,DNUMOUT,FILE_GETINFO_,DNUMIN)
?LIST
!--
! Here are a few DEFINEs to make it a little easier to format
! and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR (S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT (N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print a line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR (S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 36

Programming the Requester

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is mainly to be used when
! the file is not open, when there is no file number for it.
! FILE^ERRORS is used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program

 CALL PROCESS_STOP_;
END;

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to display the
! information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS (FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 37

Programming the Requester

!--
! This procedure writes a message on the terminal and checks
! for any error. If there is an error, it attempts to write
! a message about the error and the program is stopped.
!--

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

!--
! This procedure asks the user for the next function to do:
!
! "r" to read records
! "u" to update a record
! "i" to insert a record
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' to Read Record, ");
 PRINT^STR(" 'u' to Update a Record, ");
 PRINT^STR(" 'i' to Insert a Record, ");
 PRINT^STR(" 'x' to Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER, @S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 38

Programming the Requester

!--
! Procedure to display a part record on the terminal
!--

PROC DISPLAY^RECORD;
BEGIN

 PRINT^BLANK;

! Display part number:

 PRINT^STR("Part Number Is: "
 & PART^RECORD.PART^NUMBER
 FOR PARTSIZE);

! Display part description:

 PRINT^STR("Part Description: "
 & PART^RECORD.DESCRIPTION
 FOR PART^RECORD.DESC^LEN);

! Display part supplier name:

 PRINT^STR("Supplier: "
 & PART^RECORD.SUPPLIER
 FOR PART^RECORD.SUP^LEN);

! Display quantity on hand:

 START^LINE;
 PUT^STR("Quantity on hand: ");
 PUT^INT(PART^RECORD.ON^HAND);
 PRINT^LINE;

! Display unit price:

 START^LINE;
 PUT^STR("Unit Price: $");
 PUT^INT(PART^RECORD.UNIT^PRICE);
 PRINT^LINE;
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 39

Programming the Requester

!--
! Procedure to prompt user for input to build a new record or
! update an existing record. When updating, an empty
! response (COUNT^READ=0) means to leave the existing value
! unchanged.
!--

PROC ENTER^RECORD(TYPE);
INT TYPE;

BEGIN
 INT COUNT^READ;
 INT STATUS;
 STRING .NEXT^ADDR;

 DEFINE BLANK^FILL(F) =
 F ':=' " " & F FOR $LEN(F)*$OCCURS(F)-1 BYTES #;

 PRINT^BLANK;

! If inserting a new record, prompt for a part number.
! If updating an existing record, record number is already
! known:

 IF TYPE = NEW THEN
 BEGIN
 SBUFFER ':=' "Enter Part Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 BLANK^FILL(REQUEST.PART.PART^NUMBER);
 REQUEST.PART.PART^NUMBER ':='
 SBUFFER FOR $MIN(COUNT^READ,PARTSIZE);
 END;

! If updating a record, copy the part number from the
! record just read:

 IF TYPE = OLD THEN
 REQUEST.PART.PART^NUMBER ':=' PART^RECORD.PART^NUMBER
 FOR PARTSIZE;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 40

Programming the Requester

! Prompt for a part description:

 SBUFFER ':=' "Enter Part Description: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 COUNT^READ := $MIN(COUNT^READ,DESCSIZE);
 BLANK^FILL(REQUEST.PART.DESCRIPTION);
 REQUEST.PART.DESCRIPTION ':=' SBUFFER
 FOR COUNT^READ;
 REQUEST.PART.DESC^LEN := COUNT^READ;
 END;

! Prompt for the name of the supplier:

 SBUFFER ':=' "Enter Supplier Name: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 COUNT^READ := $MIN(COUNT^READ,SUPPSIZE);
 BLANK^FILL(REQUEST.PART.SUPPLIER);
 REQUEST.PART.SUPPLIER ':=' SBUFFER
 FOR COUNT^READ;
 REQUEST.PART.SUP^LEN := COUNT^READ;
 END;

! Prompt for the quantity on hand:

PROMPT^AGAIN:
 SBUFFER ':=' "Enter Quantity On Hand: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 SBUFFER[COUNT^READ] := 0;
 @NEXT^ADDR := NUMIN(SBUFFER,REQUEST.PART.ON^HAND,10,
 STATUS);
 IF STATUS OR @NEXT^ADDR <> @SBUFFER[COUNT^READ] THEN
 BEGIN
 PRINT^STR("Invalid number");
 GOTO PROMPT^AGAIN;
 END;
 END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 41

Programming the Requester

! Prompt for the unit price:

PROMPT^AGAIN1:
 SBUFFER ':=' "Enter Unit Price: $" -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 SBUFFER[COUNT^READ] := 0;
 @NEXT^ADDR := NUMIN(SBUFFER,REQUEST.PART.UNIT^PRICE,10,
 STATUS);
 IF STATUS OR @NEXT^ADDR <> @SBUFFER[COUNT^READ] THEN
 BEGIN
 PRINT^STR("Invalid number");
 GOTO PROMPT^AGAIN1;
 END;
 END;
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 42

Programming the Requester

!--
! Procedure for reading records. The user selected function
! "r." The start of the read is selected by approximate key
! positioning. The user has the option of sequentially
! reading subsequent records.
!--

PROC READ^RECORD;
BEGIN
 INT COUNT^READ;
 INT ERROR;

! Prompt the user for the part number:

 PRINT^BLANK;
 SBUFFER ':=' "Enter Part Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Fill in REQUEST^FUNCTION and part number parts of data
! structure:

 REQUEST.REQUEST^FUNCTION := READ^APPROX;
 REQUEST.PART.PART^NUMBER ':=' [PARTSIZE*[" "]];
 REQUEST.PART.PART^NUMBER ':=' SBUFFER FOR COUNT^READ;

! Request one record from the server.
! If server replies with end-of-file indication,
! return control to the main procedure.

 CALL WRITEREADX(SERVER^NUM,REQUEST,$LEN(REQUEST),
 $LEN(PART^RECORD),COUNT^READ);

 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(SERVER^NUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(SERVER^NUM);
 END;

! Display record on terminal:

 PART^RECORD ':=' REQUEST FOR $LEN(PART^RECORD);
 CALL DISPLAY^RECORD;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 43

Programming the Requester

! Prompt user to read more records. Return to MAIN
! procedure unless the user types "y" or "Y":

 PRINT^BLANK;
 SBUFFER ':=' "Do you want to read another record (y/n)? "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y") THEN RETURN;

! Loop reading and displaying records until user declines
! to read the next record (any response other than "y"):

 DO BEGIN

 PRINT^BLANK;

 ! Set REQUEST^FUNCTION to get the next record:

 REQUEST.REQUEST^FUNCTION := READ^NEXT;

 ! Set PART.PART^NUMBER to the part number just read:

 REQUEST.PART.PART^NUMBER ':=' PART^RECORD.PART^NUMBER
 FOR PARTSIZE;

 ! Send request to server.
 ! If server replies with end-of-file indication,
 ! return control to the main procedure.

 CALL WRITEREADX(SERVER^NUM,REQUEST,$LEN(REQUEST),
 $LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(SERVER^NUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(SERVER^NUM);
 END;

 ! Display the record on the terminal:

 PART^RECORD ':=' REQUEST FOR $LEN(PART^RECORD);
 CALL DISPLAY^RECORD;

 PRINT^BLANK;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 44

Programming the Requester

 ! Prompt the user to read the next record (user
 ! must respond "y" to accept, otherwise return
 ! to select next function):

 SBUFFER ':=' ["Do you want to read another ",
 "record (y/n)? "]
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");
END;

!--
! Procedure for updating a record. The user selected
! function "u." The user is prompted to enter the part
! number of the record to be updated, then the old contents
! are displayed on the user's terminal before the user is
! prompted to enter the updated record.
!--

PROC UPDATE^RECORD;
BEGIN

 INT COUNT^READ;
 INT ERROR;
 STRUCT .SAVE^REC(PART^RECORD);
 STRUCT .CHECK^REC(PART^RECORD);

 PRINT^BLANK;

! Prompt the user for the part number of the record to be
! updated:

 PRINT^BLANK;
 SBUFFER ':=' "Enter Part Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Fill in the request to read the part record:

 REQUEST.PART.PART^NUMBER ':=' [PARTSIZE*[" "]];
 REQUEST.PART.PART^NUMBER ':=' SBUFFER FOR COUNT^READ;
 REQUEST.REQUEST^FUNCTION := READ^EXACT;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 45

Programming the Requester

! Send the request to the server. If no such record exists,
! the procedure informs the user and returns control to
! the main procedure:

 CALL WRITEREADX(SERVER^NUM,REQUEST,$LEN(REQUEST),
 $LEN(PART^RECORD),COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(SERVER^NUM,ERROR);
 IF ERROR = 11 OR ERROR = 1 THEN
 BEGIN
 PRINT^BLANK;
 START^LINE;
 PUT^STR("No such record");
 PRINT^LINE;
 RETURN;
 END

 ELSE CALL FILE^ERRORS(SERVER^NUM);
 END;

! Save the record in the REQUEST structure for later
! comparison by the server:

 PART^RECORD ':=' REQUEST FOR $LEN(PART^RECORD) BYTES;
 REQUEST.OLD^PART ':=' PART^RECORD FOR $LEN(PART^RECORD)
 BYTES;

 REQUEST.PART ':=' PART^RECORD.PART^NUMBER FOR PARTSIZE;

! Display the record on the terminal:

 CALL DISPLAY^RECORD;

! Prompt the user for the updated record:

 CALL ENTER^RECORD(OLD);

! Fill in the part number:

 REQUEST.PART.PART^NUMBER ':=' PART^RECORD.PART^NUMBER
 FOR PARTSIZE;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 46

Programming the Requester

! Now that we have the user's changes, send a request to
! the server to have the file updated. The server uses
! the REQUEST.OLD information to determine if the
! record has been updated while the user was responding:

 REQUEST.REQUEST^FUNCTION := UPDATE^ONE;

 CALL WRITEREADX(SERVER^NUM,REQUEST,$LEN(REQUEST),
 $LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(SERVER^NUM,ERROR);
 IF ERROR = 300 THEN
 BEGIN
 PRINT^STR("The record was changed by someone " &
 "else while you were working on it.");
 PRINT^STR("Your change was not made.");
 RETURN;
 END
 ELSE CALL FILE^ERRORS(SERVER^NUM);
 END;
 PRINT^STR("Your changes have been made ");
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 47

Programming the Requester

!--
! Procedure for inserting a record. The user selected
! function "i." The user is prompted to enter the new record.
! The procedure inserts the new record in the appropriate
! place in the file.
!--

PROC INSERT^RECORD;
BEGIN
 INT ERROR;

 PRINT^BLANK;

! Set the REQUEST^FUNCTION:

 REQUEST.REQUEST^FUNCTION := WRITE^ONE;

! Prompt the user for the new record:

 CALL ENTER^RECORD(NEW);

! Send the new record to the server:

 CALL WRITEREADX(SERVER^NUM,REQUEST,$LEN(REQUEST),
 $LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(SERVER^NUM,ERROR);
 IF ERROR = 10 THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR
 ("Already a record with that part number.");
 PRINT^STR("Your new one was not entered.");
 END
 ELSE BEGIN
 CALL FILE^ERRORS(SERVER^NUM);
 END;
 END;
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 48

Programming the Requester

!--
! Procedure to exit the program.
!--

PROC EXIT^PROGRAM;
BEGIN
 CALL PROCESS_STOP_;
END;

!--
! Procedure to process an invalid command. The procedure
! informs the user that the selection was other than "r,"
! "u", "a," or "x."
!--

PROC INVALID^COMMAND;
BEGIN

 PRINT^BLANK;

! Inform the user that his selection was invalid
! then return to prompt again for a valid function:

 PRINT^STR("INVALID COMMAND: " &
 "Type either 'r,' 'u,' 'i,' or 'x'");
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 49

Programming the Requester

!--
! This procedure does the initialization for the program.
! It calls INITIALIZER to dispose of the startup messages.
! It opens the home terminal and the data file used by the
! program.
!--

PROC INIT;
BEGIN
 STRING .SERVER^NAME[0:MAXFLEN - 1]; !name of server
 ! process
 INT SERVERLEN; !length of server
 ! name
 STRING .TERMNAME[0:MAXFLEN - 1]; !terminal file
 INT TERMLEN; !length of terminal-
 ! file name
 INT ERROR;

! Read and discard startup messages.

 CALL INITIALIZER;

! Open the terminal file. For simplicity we use the home
! terminal; the recommended approach is to use the IN file
! from the Startup message; see Section 8 for details:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMNAME:MAXFLEN,
 TERMLEN);
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the server process:

 SERVER^NAME ':=' "$SER1" -> @S^PTR;
 SERVERLEN := @S^PTR '-' @SERVER^NAME;
 ERROR := FILE_OPEN_(SERVER^NAME:SERVERLEN,
 SERVER^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 1);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(SERVER^NAME:
 @S^PTR '-' @SERVER^NAME,
 ERROR);
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 50

Programming the Requester

!--
! This is the main procedure. It calls the INIT procedure to
! initialize, then it goes into a loop calling GET^COMMAND
! to get the next user request and calling the procedure
! to carry out that request.
!--

PROC PARTS MAIN;
BEGIN
 STRING CMD;

 CALL INIT;

! Loop indefinitely until user selects function x:

 WHILE 1 DO
 BEGIN

 ! Prompt for the next command.

 CMD := GET^COMMAND;

 ! Call the function selected by user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^RECORD;

 "u", "U" -> CALL UPDATE^RECORD;

 "i", "I" -> CALL INSERT^RECORD;

 "x", "X" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL INVALID^COMMAND;
 END;
 END;
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 51

Programming the Server

Programming the Server
The server program reads and processes messages that arrive in the $RECEIVE file.
Each message contains a function code that the server process uses to determine
what action to take. If the action involves writing a record to the database, then the
message also contains the database record to be written. The possible functions are:

• Read-approximate record

• Read the next record

• Read the exact record

• Update an existing record

• Write a new record

The MAIN procedure of the server process calls the INIT procedure and then reads the
incoming message. It then calls another procedure depending on the value of the
received function code.

• The INIT procedure disposes of the startup messages. It also opens the home
terminal and the data file for the program. The data file is identified by a CLASS
MAP DEFINE. You must create the CLASS MAP DEFINE as follows:

1> SET DEFINE CLASS MAP, FILE $APPL.SUBAPPL.RECFILE
2> ADD DEFINE =PARTFILE

• The READ^APPROX^RECORD procedure is called when a requester process
makes its first of a sequence of read requests. This procedure uses the part
number supplied in the message as the primary key. If no such key exists, then
the procedure reads the record with the next higher key. The procedure then
returns this record to the message sender.

• The READ^NEXT^RECORD procedure is called when the requester process asks
to read the next record in a sequence that started with an approximate read. This
procedure uses the part number supplied in the message as the primary key and
reads the record with the next higher key. The server then returns this record to
the message sender.

• The READ^EXACT^RECORD procedure is called when a requester process wants
to update a database record. It uses the part number supplied in the message as
the primary key and returns the corresponding record to the requester process. If
no such key exists, the server returns an error condition instead of the record.

• The UPDATE^RECORD procedure is called when a requester wants to update a
database record. The procedure uses the part number supplied in the message as
the primary key to the database file, then it overwrites the corresponding database
record using the database record also supplied in the message.

Note that to update a record, the requester invokes the server twice: once to read
the record and once to update it. When making the update request, the requester
sends the read record back to the server so that UPDATE^RECORD can compare

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 52

Programming the Server

it with the current record value. It does this to ensure that the record was not
changed while the user was entering the new data.

• The WRITE^RECORD procedure is called when the requester process sets the
function code to insert a new record. The procedure extracts the database record
from the incoming message and writes it to the database file. If a record with the
same key already exists, then the procedure returns an error indication to the
requester and the new record is discarded.

The TAL code for the server program appears on the following pages.

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 53

Programming the Server

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST,SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !Maximum file-name
 ! length
LITERAL OLD = 0; !updating in ENTER^REC
LITERAL NEW = 1; !new record in ENTER^REC
LITERAL BUFSIZE = 132; !size of terminal buffer
LITERAL PARTSIZE= 6; !size of part number
LITERAL DESCSIZE= 60; !size of part description
LITERAL SUPPSIZE= 60; !size of supplier name
LITERAL READ^APPROX= 1; !function values:
LITERAL READ^EXACT = 2;
LITERAL WRITE^ONE = 3;
LITERAL UPDATE^ONE = 4;
LITERAL READ^NEXT = 5;

STRING .SBUFFER[0:BUFSIZE]; !I/O buffer (one extra char)
STRING .S^PTR; !pointer to end of string
INT PARTFILE^NUM; !part file number
INT TERMNUM; !terminal file number
INT RECV^NUM; !$RECEIVE file number
INT REPLY^ERROR; !error returned to requester

!Structure for part records:

STRUCT .PART^RECORD;
BEGIN
 STRING PART^NUMBER[0:PARTSIZE-1];
 STRING DESCRIPTION[0:DESCSIZE-1];
 INT DESC^LEN;
 STRING SUPPLIER[0:SUPPSIZE-1];
 INT SUP^LEN;
 INT ON^HAND;
 INT UNIT^PRICE;
END;

!Structure for messages received from requester:

STRUCT .REQUEST;
BEGIN
 INT REQUEST^FUNCTION;
 STRUCT PART(PART^RECORD);
 STRUCT OLD^PART(PART^RECORD);
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 54

Programming the Server

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (INITIALIZER,
? PROCESS_GETINFO_,FILE_OPEN_,WRITEREADX,WRITEX,REPLYX,
? KEYPOSITION,PROCESS_STOP_,READX,FILE_GETINFO_,
? READUPDATEX,READUPDATELOCKX,WRITEUPDATEUNLOCKX,
? FILE_GETINFOLIST_,UNLOCKREC,DNUMOUT)
?LIST

!--
! Here are a few DEFINEs to make it a little easier to format
! and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR (S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT (N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print a line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR (S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 55

Programming the Server

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is mainly to be used when
! the file is not open, when there is no file number for it.
! FILE^ERRORS is used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program

 CALL PROCESS_STOP_;
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 56

Programming the Server

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to display the
! information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS (FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

!--
! This procedure writes a message on the terminal and checks
! for any error. If there is an error, it attempts to write
! a message about the error and the program is stopped.
!--

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 57

Programming the Server

!--
! This procedure reads one record from the data file.
! It is invoked in response to a READ^APPROX request issued
! by a requester process.
!--

PROC READ^APPROX^RECORD;
BEGIN
 INT COUNT^READ;
 INT ERROR;

! Position approximately to the selected record:

 CALL KEYPOSITION(PARTFILE^NUM,
 REQUEST.PART.PART^NUMBER,
 !key^specifier!,
 !length^word!,
 0);
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

! Read the selected record:

 CALL READX(PARTFILE^NUM,PART^RECORD,$LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,REPLY^ERROR);
 RETURN;
 END;
 REPLY^ERROR := 0;
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 58

Programming the Server

!--
! This procedure reads one record from the data file.
! It is invoked in response to a READ^EXACT request issued by
! a requester process, as the first phase of a record update.
!--

PROC READ^EXACT^RECORD;
BEGIN
 INT COUNT^READ;
 INT ERROR;

! Position exactly to the selected record:

 CALL KEYPOSITION(PARTFILE^NUM,
 REQUEST.PART.PART^NUMBER,
 !key^specifier!,
 !length^word!,
 2);
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

! Read the selected record:

 CALL READX(PARTFILE^NUM,PART^RECORD,$LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,REPLY^ERROR);
 RETURN;
 END;
 REPLY^ERROR := 0;
END;

!--
! Procedure to insert a new record into the data file.
!--

PROC WRITE^RECORD;
BEGIN

 CALL WRITEX(PARTFILE^NUM,REQUEST.PART,$LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,REPLY^ERROR);
 RETURN;
 END;
 REPLY^ERROR := 0;
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 59

Programming the Server

!--
! Procedure for updating a record. The procedure first
! reads the record from the data file and checks it against
! the original value received by the requester to make sure
! it has not been updated by another user.
! The procedure then writes the updated record to the file.
!--

PROC UPDATE^RECORD;
BEGIN

 INT COUNT^READ;
 INT ERROR;
 STRUCT .SAVE^REC(PART^RECORD);
 STRUCT .CHECK^REC(PART^RECORD);

! Position exactly to the selected record.

 CALL KEYPOSITION(PARTFILE^NUM,
 REQUEST.PART.PART^NUMBER,
 !key^specifier!,
 !length^word!,
 2);
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

! Read the selected record. If no such record exists,
! the procedure sets the reply error to the file system
! error number and returns to the main procedure:

 CALL READUPDATELOCKX(PARTFILE^NUM,PART^RECORD,
 $LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,REPLY^ERROR);
 RETURN;
 END;

! Check that the record just read is identical to the record
! read earlier in the update record sequence. If not,
! return with REPLY^ERROR set to 300:

 IF PART^RECORD <> REQUEST.OLD^PART FOR
 $LEN(PART^RECORD) BYTES THEN
 BEGIN
 CALL UNLOCKREC(PARTFILE^NUM);
 REPLY^ERROR := 300;
 RETURN;
 END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 60

Programming the Server

! Write the new record to the file:

 CALL WRITEUPDATEUNLOCKX(PARTFILE^NUM,REQUEST.PART,
 $LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,REPLY^ERROR);
 RETURN;
 END;
 REPLY^ERROR := 0;
END;

!--
! Procedure to read the next record from the data file.
! The requester supplied the part number of the last
! record read.
!--

PROC READ^NEXT^RECORD;
BEGIN
 INT ERROR;
 INT COUNT^READ;
 INT POSITIONING^MODE;

! Position approximately to the selected record, unless it
! is the exact record:

 POSITIONING^MODE := %B1000000000000000;
 CALL KEYPOSITION(PARTFILE^NUM,REQUEST.PART.PART^NUMBER,
 !key^specifier!,
 !length^word!,
 POSITIONING^MODE);
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

! Read the selected record:

 CALL READX(PARTFILE^NUM,PART^RECORD,$LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM, REPLY^ERROR);
 RETURN;
 END;
 REPLY^ERROR := 0;
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 61

Programming the Server

!--
! This procedure does the initialization for the program.
! It calls INITIALIZER to dispose of the startup messages.
! It opens the home terminal and the data file used by the
! program.
!--

PROC INIT;
BEGIN
 STRING .PARTFILE^NAME[0:MAXFLEN - 1]; !name of part file
 INT PARTFILE^LEN; !length of part-file
 ! name
 STRING .TERMNAME[0:MAXFLEN - 1]; !terminal file
 INT TERMLEN; !length of terminal-
 ! file name
 STRING .RECV^NAME[0:MAXFLEN - 1]; !$RECEIVE file name
 INT RECVLEN; !length of string
 INT OPTIONS; !for FILE_OPEN_
 ! procedure
 INT RECV^DEPTH; !for $RECEIVE
 INT SYNCH^DEPTH; !for data file
 INT ERROR;

! Read and discard startup messages.

 CALL INITIALIZER;

! Open the terminal file. For simplicity we use the home
! terminal; the recommended approach is to use the IN file
! read from the Startup message; see Section 8 for
! details:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMNAME:MAXFLEN,
 TERMLEN);
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open $RECEIVE with a receive depth of 1 and to reject
! system messages:

 RECV^NAME ':=' "$RECEIVE" -> @S^PTR;
 RECVLEN := @S^PTR '-' @RECV^NAME;
 OPTIONS := %B0000000000000001;
 RECV^DEPTH := 1;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 62

Programming the Server

 ERROR := FILE_OPEN_(RECV^NAME:RECVLEN,RECV^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 RECV^DEPTH,OPTIONS);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(RECV^NAME:RECV^NUM,ERROR);

! Open the part file with a sync depth of 1:

 PARTFILE^NAME ':=' "=PARTFILE" -> @S^PTR;
 PARTFILE^LEN := @S^PTR '-' @PARTFILE^NAME;
 SYNCH^DEPTH := 1;
 ERROR := FILE_OPEN_(PARTFILE^NAME:PARTFILE^LEN,
 PARTFILE^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 SYNCH^DEPTH);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(PARTFILE^NAME:PARTFILE^LEN,
 ERROR);
END;

Communicating With Processes

Guardian Programmer’s Guide — 421922-014
6 - 63

Programming the Server

!--
! This is the main procedure. It calls the INIT procedure to
! initialize, then it goes into a loop calling GET^COMMAND
! to get the next user request and calling the procedure
! to carry out that request.
!--

PROC PARTS MAIN;
BEGIN

 CALL INIT;

! Loop indefinitely:

 WHILE 1 DO
 BEGIN

 ! Read a message from $RECEIVE:

 CALL READUPDATEX(RECV^NUM,REQUEST,$LEN(REQUEST));
 IF <> THEN CALL FILE^ERRORS(RECV^NUM);

 ! Select procedure based on request function:

 CASE REQUEST.REQUEST^FUNCTION OF
 BEGIN

 READ^APPROX -> CALL READ^APPROX^RECORD;

 READ^EXACT -> CALL READ^EXACT^RECORD;

 WRITE^ONE -> CALL WRITE^RECORD;

 UPDATE^ONE -> CALL UPDATE^RECORD;

 READ^NEXT -> CALL READ^NEXT^RECORD;

 OTHERWISE -> CALL PROCESS_STOP_;
 END;

 ! Send the reply back to the requester:

 CALL REPLYX(PART^RECORD,$LEN(PART^RECORD),
 !count^written!,
 !message^tag!,
 REPLY^ERROR);
 IF <> THEN CALL PROCESS_STOP_;
 END;
END;

Guardian Programmer’s Guide — 421922-014
7 - 1

7 Using DEFINEs
DEFINEs are file-system elements that provide a means for passing information to a
process. For example, you can use DEFINEs to pass attributes to a process to
provide:

• An alternate name for accessing a file

• A list of subvolumes to search for a file name

• A simple way to set up attributes for labeled-tape processing

• A simple means of passing attributes to the spooler subsystem

You can make use of DEFINEs interactively using TACL, or you can work with
DEFINEs programmatically. DEFINEs are stored within the program file segment
(PFS) of the creating process. DEFINEs specified interactively are stored in the PFS
of the TACL process and affect the environment of TACL. The programmatic approach
stores DEFINEs in the context of the creating process and affects the environment of
the creating process. In either case, DEFINEs can be passed on to other processes
when creating new processes. This functionality is also supported in SCF for a generic
process. For more information, see the SCF Reference Manual for the Kernel
Subsystem.

This section discusses how to use DEFINEs programmatically. For details on how to
use DEFINEs with TACL, read the Guardian User’s Guide.

The subsection Working With DEFINEs describes what your process needs to do to
make use of information passed to the process in the form of DEFINEs.

The subsection Adding DEFINEs describes how to add DEFINEs to the process
context by setting up a working set of DEFINE attributes, how to name the set of
attributes, and how to save the working set in the process context. Specifically, you
will learn how to use procedure calls to perform the following tasks:

• Control whether your process can create or use DEFINEs (DEFINEMODE
procedure).

• Set attributes in the working set (DEFINESETATTR and DEFINESETLIKE
procedures).

• Check the working set for errors (DEFINEVALIDATEWORK procedure).

• Assign a name to a group of DEFINE attributes, thereby adding the DEFINE to the
context of your process (DEFINEADD procedure).

• Delete DEFINEs from your process context (DEFINEDELETE and
DEFINEDELETEALL procedures).

• Save and restore a working set of DEFINE attributes (DEFINESAVE[WORK[2]]
and DEFINERESTORE[WORK[2]] procedures), and use these techniques for
improving the performance of your program.

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 2

Example Uses for DEFINEs

Section 16, Creating and Managing Processes, also contains additional information
about DEFINEs. It describes how to use the PROCESS_LAUNCH_ procedure to
control how DEFINEs are passed from one process to another during process creation.

For complete details of the syntax of all DEFINE-related procedure calls, see the
Guardian Procedure Calls Reference Manual.

Example Uses for DEFINEs
DEFINEs allow attributes to be grouped and named. These attributes can then be
passed to a process or retrieved simply by specifying the name of the DEFINE.
DEFINEs remove the need to set up attributes each time a given process is invoked.

Specifically, several classes of DEFINEs each pass attributes to a specific process or
class of processes. Examples of classes of DEFINEs include:

• CLASS MAP DEFINEs

• CLASS SEARCH DEFINEs

• CLASS TAPE DEFINEs

• CLASS DEFAULTS DEFINEs

CLASS MAP DEFINEs enable a file to be accessed by a DEFINE name as well as the
file name. That is, the DEFINE name is mapped to the file name. The DEFINE name
can then be passed to the file system instead of the file name. In other words, you can
use a CLASS MAP DEFINE to propagate a file name from the process’s creator
without using the startup sequence of messages. This file name can then be passed
to procedures such as FILE_OPEN_ in the form of a DEFINE name, removing the
need to hard code the file name.

CLASS SEARCH DEFINEs contain information to be used for resolving file names with
a search list. It has 21 attributes named SUBVOL0 through SUBVOL20 and another
21 attributes named RELSUBVOL0 through RELSUBVOL20. Each of these attributes
takes the same form and is optional. The value of one attribute is either a single
subvolume specification or a list of them enclosed in parentheses and separated by
commas. A subvolume specification can be a fully or partially qualified subvolume
name, or the name of a CLASS DEFAULTS DEFINE.

With the SUBVOLnn attributes, subvolume name resolution takes place when the
attribute is added; with the RELSUBVOLnn attributes, subvolume name resolution
takes place when the DEFINE is used. The search order for a CLASS SEARCH
DEFINE is as follows:

 SUBVOL0
 RELSUBVOL0
 SUBVOL1
 RELSUBVOL1
 . . .

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 3

Example of a CLASS MAP DEFINE

 SUBVOL20
 RELSUBVOL20

The name of the DEFINE can then be used in a call to the FILENAME_RESOLVE_
procedure to provide a search list for a program file you want to execute, or it can be
used to provide a search list for locating component source files when compiling a
program.

If any attribute is a list, the search order is from left to right within the list.

CLASS TAPE DEFINEs contain attribute information for use with labeled magnetic
tapes. One CLASS TAPE DEFINE must be used for each labeled-tape file that is
accessed by your application. CLASS TAPE DEFINEs are processed by the tape
process and by the file-system FILE_OPEN_ procedure. The attribute parameters of
a CLASS TAPE DEFINE specify parameters such as block size and density.

CLASS DEFAULTS DEFINEs are used to pass default system, volume, subvolume,
and swap information to a process. (For TNS/R native processes, the swap
information is ignored.)

The following paragraphs provide examples of each of these classes of DEFINEs.

Example of a CLASS MAP DEFINE
The following example sets up a DEFINE named =MYFILE with the file name
\SYS1.$OURVOL.MYSUBVOL.DIARY. The code uses procedures DEFINESETATTR
and DEFINEADD. The file is later accessed using the DEFINE name:

ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "MAP";
ATTRIBUTE^LENGTH := 3;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

ATTRIBUTE^NAME ':=' "FILE ";
ATTRIBUTE^VALUE ':=' "\SYS1.$OURVOL.MYSUBVOL.DIARY";
ATTRIBUTE^LENGTH := 28;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

DEFINE^NAME ':=' "=MYFILE ";
LENGTH := 7;
ERROR := DEFINEADD(DEFINE^NAME);
IF ERROR <> 0 THEN ...
 .
 .
 .
ERROR := FILE_OPEN_(DEFINE^NAME:LENGTH,

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 4

Example of a CLASS SEARCH DEFINE

 FILENUM);
IF ERROR <> 0 THEN ...

Example of a CLASS SEARCH DEFINE
The following example sets up attributes for a DEFINE named
=_PROGRAM_SEARCH using procedures DEFINESETATTR and DEFINEADD.
Later, the program calls the FILENAME_RESOLVE_ procedure to find the name within
the search paths set up by the search DEFINE. FILENAME_RESOLVE_ returns the
fully qualified file name.

ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "SEARCH";
ATTRIBUTE^LENGTH := 6;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

ATTRIBUTE^NAME ':=' "SUBVOL0 ";
ATTRIBUTE^VALUE ':=' "=_DEFAULTS";
ATTRIBUTE^LENGTH := 10;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

ATTRIBUTE^NAME ':=' "SUBVOL1 ";
ATTRIBUTE^VALUE ':=' "$APPPROG.MYPROGS,$APPPROG.YOURPGS";
ATTRIBUTE^LENGTH := 33;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

DEFINE^NAME ':=' "=_PROGRAM_SEARCH "
LENGTH := 16;
ERROR := DEFINEADD(DEFINE^NAME);
IF ERROR <> 0 THEN ...
 .
 .
 .
CALL FILENAME_RESOLVE_(OBJFILE:P^LEN,
 FULL^NAME:MAX^LEN,
 FULL^LEN,
 !options!,
 !override^name:length!,
 DEFINE^NAME:LENGTH);

Refer to Section 13, Manipulating File Names, for details of the
FILENAME_RESOLVE_ procedure and other procedures that manipulate file names.

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 5

Example of a CLASS TAPE DEFINE

Example of a CLASS TAPE DEFINE
The following example sets up a DEFINE called =ANSITAPE1. When the DEFINE is
later passed to the FILE_OPEN_ procedure, the corresponding tape file is opened with
the DEFINE attributes automatically set.

ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "TAPE";
ATTRIBUTE^LENGTH := 4;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

ATTRIBUTE^NAME ':=' "USE ";
ATTRIBUTE^VALUE ':=' "IN";
ATTRIBUTE^LENGTH := 2;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

ATTRIBUTE^NAME ':=' "VOLUME ";
ATTRIBUTE^VALUE ':=' "XT55";
ATTRIBUTE^LENGTH := 4;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

ATTRIBUTE^NAME ':=' "LABELS ";
ATTRIBUTE^VALUE ':=' "ANSI";
ATTRIBUTE^LENGTH := 4;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

DEFINE^NAME ':=' "=ANSITAPE1 ";
LENGTH := 10;
ERROR := DEFINEADD(DEFINE^NAME);
IF ERROR <> 0 THEN ...
 .
 .
ERROR := FILE_OPEN_(DEFINE^NAME:LENGTH,
 FILENUM);
IF ERROR <> 0 THEN ...

CLASS DEFAULTS DEFINEs
CLASS DEFAULTS DEFINEs are used to pass default system, volume, subvolume,
and swap information to a process. The receiving process uses the system, volume,
and subvolume default values to expand any file names that are not fully qualified.

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 6

CLASS DEFAULTS DEFINEs

(Although swap space is handled by the Kernel-Managed Swap Facility (KMSF), a
swap file name can still be passed in the =_DEFAULTS DEFINE. This feature
supports programs that use the swap file name to determine the volume on which to
create temporary files.)

The following example sets up the =_DEFAULTS DEFINE with the subvolume
$OURVOL.ACCOUNTS. These default values are automatically passed on to child
processes:

ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "DEFAULTS";
ATTRIBUTE^LENGTH := 8;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

ATTRIBUTE^NAME ':=' "VOLUME ";
ATTRIBUTE^VALUE ':=' "$OURVOL.ACCOUNTS";
ATTRIBUTE^LENGTH := 16;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

=_DEFAULTS is a special case of DEFINE and should be handled differently from
other DEFINEs. Specifically:

• Your application need not reference the =_DEFAULTS DEFINE. Many procedures
use the default values specified in the =_DEFAULTS DEFINE; see the Guardian
Procedure Calls Reference Manual to check which procedures use the defaults
and which do not.

• The file system automatically modifies the =_DEFAULTS DEFINE of a process
when the process receives its Startup message from the command interpreter.
The file system assigns values from this Startup message to the VOLUME attribute
of the DEFINE. This often has no effect because, for example, if TACL sends the
Startup message, it will have ensured that the DEFINE and the Startup message
contain the same default volume. However, programs other than TACL might
behave differently. See Section 8, Communicating With a TACL Process, for
details about the startup sequence.

• The =_DEFAULTS DEFINE cannot be deleted.

• The name of the =_DEFAULTS DEFINE cannot be changed.

• The =_DEFAULTS DEFINE is always propagated to other processes regardless of
the setting of the DEFINE mode. See Section 16, Creating and Managing
Processes, for a discussion on how DEFINEs are propagated.

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 7

DEFINE Names

DEFINE Names
You have seen DEFINE names like =MYFILE and =ANSITAPE1 in the previous
subsection. You specify the name when creating the DEFINE, and you use the name
to subsequently identify the DEFINE. (The above examples show DEFINE creation
using the DEFINEADD procedure.)

A DEFINE name must conform to the following rules:

• The name must be 2 through 24 characters long.

• The first character must be an equal sign (=).

• The second character must be a letter. (DEFINE names whose second character
is an underscore are reserved for uses defined by Tandem. The =_DEFAULTS
DEFINE is one such example.)

• The remaining characters can be letters, numbers, hyphens, underscores, or
circumflexes (^).

Some file-system procedures, such as DEFINEADD and DEFINEDELETE, require a
DEFINE name to be presented as a fixed-length, 24-byte string; for these procedures,
the DEFINE name must be left-justified and padded with blank characters up to a total
length of 24 characters. Other procedures, such as FILE_OPEN_, take the DEFINE
name as a variable-length string that must not contain any blank characters.

Uppercase and lowercase letters in a DEFINE name are equivalent. For example, the
name =MY^DEFINE is equivalent to =My^Define.

To refer to a DEFINE, you use the DEFINE name in your program. Where you use the
name depends on which class of DEFINE you are using:

• You can use a CLASS CATALOG DEFINE name anywhere that you can use an
SQL catalog name. Refer to the Guardian User’s Guide and the NonStop SQL/MP
Reference Manual for detailed information about the CLASS CATALOG DEFINE
and its attributes.

• You can use a CLASS MAP DEFINE name anywhere that you can use a file name.
Refer to the Guardian User’s Guide and the TACL Reference Manual for detailed
information about the CLASS MAP DEFINE and its attributes.

• You can use a CLASS TAPE DEFINE name anywhere you can specify the name of
a tape file. Refer to the Guardian Disk and Tape Utilities Reference Manual for
detailed information about the CLASS TAPE DEFINEs and their attributes.

• You can use a CLASS TAPECATALOG DEFINE name anywhere you can specify
the name of a labeled tape file. It is used in place of a CLASS TAPE DEFINE,
adding several attributes for control of cataloging files that are read from and
written to tape. Refer to the DSM/Tape Catalog User’s Guide for detailed
information about the CLASS TAPECATALOG DEFINEs and their attributes.

• You can use a CLASS SPOOL DEFINE name anywhere that you can specify the
name of a spooler collector. Refer to the Spooler Utilites Reference Manual and

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 8

DEFINE Attributes

the Spooler Plus Utilites Reference Manual for detailed information about the
CLASS SPOOL DEFINE and its attributes.

• You can use a CLASS SEARCH DEFINE name as a parameter to the
FILENAME_RESOLVE_ procedure described in Section 13, Manipulating File
Names.

• You can use a CLASS SORT DEFINE name to specify sort parameters
interactively using the RUN FASTSORT command or programmatically as a
parameter to the SORTBUILDPARAM procedure. CLASS SUBSORT DEFINEs
are referred to from a CLASS SORT DEFINE for passing additional parameters.
Refer to the FastSort Manual for detailed information about CLASS SUBSORT
DEFINE and CLASS SORT DEFINE and their attributes.

DEFINE Attributes
A set of attributes is associated with each DEFINE. One attribute associated with
every DEFINE is the CLASS attribute. The CLASS attribute determines which other
attributes can be associated with the DEFINE.

Each attribute has:

• An attribute name that you cannot change.

• A data type that determines the kind of value you can assign to the attribute.

• A value that you assign using procedure calls. Some attributes have default
values.

The following paragraphs describe the possible data types that a DEFINE attribute can
have and the values those attributes can take. For a complete description of each
CLASS DEFINE and each possible attribute, refer to the specific manuals listed under
DEFINE Names on page 7-7.

Attribute Data Types
When you assign a value to an attribute (using the DEFINESETATTR procedure), you
specify the value as a parameter to the procedure call. This parameter must be
declared as type STRING in your program and contain ASCII characters; even if the
attribute is a number, you must pass the number in ASCII representation.

The STRING values that you can specify for a particular DEFINE attribute are
determined by the data type of the DEFINE attribute. When the DEFINESETATTR
procedure is called to assign an attribute value, the system verifies that the STRING
value you specified matches the data type of the attribute.

The available attribute data types are:

string The attribute can contain a string of ASCII characters.

number The attribute can contain an integer. This integer can be preceded by
a plus or minus sign. It must not contain a decimal point.

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 9

Attribute Values

Attribute Values
You can assign values to each attribute of a DEFINE using procedure calls.

Three kinds of attributes exist: defaulted, required, and optional. Defaulted attributes
are assigned a default value by the file system; this default value is used if you do not
assign another value to the attribute.

You must use procedure calls to assign values to required attributes. If you do not
assign a value to a required attribute, an error occurs when you attempt to add the
DEFINE to the context of a process (or if you check the consistency of the working set
using the DEFINEVALIDATEWORK procedure).

Optional attributes do not have default values and are not required.

Some attributes can be assigned a list of values, rather than a single value. A list of
values is specified as follows:

The attribute value you specify must be consistent. For example, some DEFINEs
include attributes that are mutually exclusive. The system checks attribute values for
consistency and completeness.

CLASS Attribute
All DEFINEs have one special attribute called the CLASS attribute. The CLASS
attribute specifies whether the DEFINE is a TAPE, TAPECATALOG, SPOOL, MAP,
SEARCH, SORT, SUBSORT, CATALOG, or DEFAULTS CLASS DEFINE.

filename The attribute can contain a file name. The file name can be fully or
partially qualified. A partially qualified file name is expanded by the file
system using the volume and subvolume that you specify as a
parameter to the DEFINESETATTR procedure.

subvolnam
e

The attribute can contain a subvolume name. The subvolume name
can be fully or partially qualified. A partially qualified subvolume name
is expanded by the file system using the volume that you specify as a
parameter to the DEFINESETATTR procedure. If no such volume is
specified, then the value provided by the =_DEFAULTS DEFINE is
used.

volname The attribute can contain a volume name, which can be fully or
partially qualified. A partially qualified volume name is expanded by
the file system using the node name specified in the =_DEFAULTS
DEFINE.

keyword The attribute can contain one of a predefined set of keywords. These
keywords are specific to the particular DEFINE class such as SPOOL
or TAPE.

(value1,value2[,value3] ... [,valuen])

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 10

Working With DEFINEs

The CLASS attribute determines what other attributes are associated with the DEFINE.

The CLASS attribute has a data type of keyword. When assigning values to DEFINE
attributes, you must assign one of these values to the CLASS attribute first. Assigning
a value to the CLASS attribute causes default values to be assigned to other attributes
in that DEFINE CLASS.

The attributes of a particular DEFINE are distinct from attributes of the other DEFINE
classes, even when the attributes have the same names.

Working With DEFINEs
The most common use of DEFINEs is to pass information from a parent process to its
child processes. For processes that are created by TACL, you can create DEFINEs
using SET DEFINE commands and ADD DEFINE commands; see the Guardian
User’s Guide. Other processes can pass DEFINEs received from their creators down
to their child processes, or they can add DEFINEs using procedure calls such as
DEFINESETATTR and DEFINEADD; see Adding DEFINEs later in this section.

See Section 16, Creating and Managing Processes, for further information about
propagating DEFINEs, including how to prevent DEFINEs from propagating.

As the recipient of DEFINE information, all you need to do is:

1. Make sure that DEFINE mode is turned on.

2. Refer to the DEFINE by name to make use of the attributes specified in the
DEFINE.

Enabling DEFINEs
Every process has an attribute called DEFINE mode. DEFINE mode controls whether
DEFINEs can be used or created. The DEFINE mode of a process can be on or off.

• When DEFINE mode is off, the DEFINEs that exist in the context of the process
are ignored. When your process starts another process, the DEFINEs in the
context of your current process are not propagated to the new process unless you
specify otherwise in a parameter to the PROCESS_CREATE_ procedure (see
Section 16, Creating and Managing Processes, for details of propagating DEFINEs
to other processes). The one exception to this rule is the =_DEFAULTS DEFINE,
which is always propagated to the child process.

You cannot add or replace DEFINEs in the context of the current process when
DEFINE mode is off.

• When DEFINE mode is on, processes use the DEFINEs that exist in the context of
the current process. When your process starts another process, the DEFINEs in
the context of the current process are propagated to the new process. You can
add or replace DEFINEs in the context of the current process when DEFINE mode
is on.

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 11

Referring to DEFINEs

By default, DEFINE mode is turned on, so it is normally not necessary to enable
DEFINE mode. If DEFINE mode is not enabled, however, you can turn it on as
described below.

You enable DEFINE mode for the current process by calling the DEFINEMODE
procedure with the first parameter set to 1 as follows:

NEW^VALUE := 1;
ERROR := DEFINEMODE(NEW^VALUE,
 OLD^VALUE);
IF ERROR <> 0 THEN ...

The previous setting of the DEFINE mode is returned in OLD^VALUE: 0 indicates
DEFINE mode was turned off, and 1 indicates DEFINE mode was turned on. The
procedure returns error 2067 if the supplied new value is illegal.

To disable DEFINE mode again, simply call the DEFINEMODE procedure again but
with NEW^VALUE set to 0:

NEW^VALUE := 0;
CALL DEFINEMODE(NEW^VALUE,
 OLD^VALUE);

You can also enable or disable DEFINE mode in a process your program is creating by
use of the create-options parameter of the PROCESS_CREATE_ procedure.
Section 16, Creating and Managing Processes, provides details.

Referring to DEFINEs
Assuming DEFINE mode is already on, you simply refer to a DEFINE by name in order
to use it.

Adding DEFINEs
This subsection discusses the system procedures that permit you to enable DEFINEs
and add DEFINEs to the context of the current process. Assuming DEFINE mode is
already on, you perform the following steps when processing DEFINEs:

1. Set the attributes of a new DEFINE in the working set of your process and check
the working set for errors

2. Add/replace the DEFINE in the context of your process

These operations are described in the following paragraphs, as well as how to delete a
DEFINE from the process context and how to save and restore DEFINEs.

Note. DEFINE mode, like DEFINEs themselves, is propagated from the parent process. If
DEFINE mode is turned on in the creator process, then it is also turned on in the child process,
unless the parent process specifically requested something else. If DEFINE mode is turned off
in the parent process, then, by default, it is also turned off in the child process. Therefore, if
DEFINE mode is turned off for your process, you should find out why before proceeding. The
process that turned it off might have had a specific reason to do so.

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 12

Setting Attributes in the Working Set

Setting Attributes in the Working Set
The primary method for setting attributes in the working set is the DEFINESETATTR
procedure. The DEFINESETLIKE and DEFINERESTORE procedures, however, also
have the effect of setting working set attributes.

The following paragraphs describe each of these procedures.

Setting Attributes Using the DEFINESETATTR Procedure
The DEFINESETATTR procedure assigns a value to an individual attribute in the
working set.

When assigning a value to any attribute, you must supply DEFINESETATTR with the
name of the attribute you want to assign a value to, the actual attribute value, and the
length of the value string.

In addition to the name, value, and length of the attribute, if the attribute type is
filename, subvolname, or volname, you should also supply the default-names
parameter to supply values for the node name, volume name, and subvolume name to
be used to convert the attribute value into an internal form. A convenient way of
obtaining these values is by reading them from the Startup message; Section 8,
Communicating With a TACL Process, describes how to do this.

Assign a value to the CLASS attribute first. When you do this, the file system initializes
all defaulted attributes for that DEFINE CLASS with default values. The following
example assigns the value “MAP” to the CLASS attribute:

DEFAULT^VALUES ':=' "$VOL SUBVOL ";
 .
 .
ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "MAP" -> @S^PTR;
ATTRIBUTE^LENGTH := @S^PTR '-' @ATTRIBUTE^VALUE;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH);
IF ERROR <> 0 THEN ...

For a complete list of the error conditions that this procedure might return, see the
Guardian Procedure Calls Reference Manual.

After assigning a value to the CLASS attribute, use additional DEFINESETATTR calls
to assign values to other attributes:

ATTRIBUTE^NAME ':=' "FILE ";
ATTRIBUTE^VALUE ':=' "MYFILE" -> @S^PTR;
ATTRIBUTE^LENGTH := @S^PTR '-' @ATTRIBUTE^VALUE;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LENGTH,
 DEFAULT^VALUES);
IF ERROR <> 0 THEN ...

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 13

Checking the Working Set for Errors

When you have assigned a value to an attribute, the system verifies that the value you
specified matches the data type of the attribute. The procedure returns an error if the
value does not match the data type.

Setting Attributes Using the DEFINESETLIKE Procedure
For any DEFINE that already exists in the context of the current process, you can
initialize the attributes of the working set to the values of the attributes of that DEFINE.
You do this using the DEFINESETLIKE procedure:

DEFINE^NAME ':=' "=TAPE1 ";
ERROR := DEFINESETLIKE(DEFINE^NAME);
IF ERROR <> 0 THEN ...

After initializing the working set attributes using this procedure, you can call
DEFINESETATTR to alter the values of specific attributes.

Setting Attributes Using the DEFINERESTORE Procedure
If you have saved a working set or a DEFINE using the DEFINESAVE procedure (see
Saving and Restoring DEFINEs, later in this section), you can initialize the attributes of
the working set by restoring that DEFINE or saved working set using the
DEFINERESTORE procedure:

LITERAL RESTORE^SAVED = 2;
 .
 .
ERROR := DEFINERESTORE(BUFFER,
 RESTORE^SAVED);

Setting the second parameter to 2 forces the saved DEFINE to be restored as the
working set.

Checking the Working Set for Errors
After assigning values to the attributes in the working set, you can check the attribute
values for errors using the DEFINEVALIDATEWORK procedure. This procedure
indicates whether the attributes in the working set are incomplete, inconsistent, or
invalid.

ERROR := DEFINEVALIDATEWORK(CHECK^NUM);
CASE ERROR OF
BEGIN
 0 -> !no error
 2057 -> !incomplete
 2058 -> !inconsistent
 2059 -> !invalid
 OTHERWISE -> !some other problem
END;

Here, the program checks whether the ERROR value returned is 2057, 2058, or 2059.

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 14

Adding a DEFINE to the Context of Your Process

• 2057 indicates that the working set is incomplete: that is, a required parameter for
the DEFINE CLASS is missing.

• 2058 indicates that the working set is inconsistent; CHECK^NUM qualifies the
inconsistency. For more information about CHECK^NUM, refer to the Guardian
Procedure Errors and Messages Manual.

• 2059 indicates that the working set is invalid.

The system also checks the assigned attributes when you call the DEFINEADD
procedure to add the DEFINE to the context of your process.

Adding a DEFINE to the Context of Your Process
After setting the attributes in the working set, you can assign a DEFINE name to that
attribute set and save it in the context of your process. You do this using the
DEFINEADD procedure:

DEFINE^NAME ':=' "=TAPE1 ";
ERROR := DEFINEADD(DEFINE^NAME,
 !replace!,
 CHECK^NUM);
CASE ERROR OF
BEGIN
 0 -> !no error
 2049 -> !syntax error in name
 2050 -> !DEFINE already exists
 2051 -> !DEFINE does not exist
 2052 -> !can’t get file-system buffer space
 2053 -> !can’t get physical memory
 2054 -> !bounds error
 2057 -> !incomplete
 2058 -> !inconsistent
 2059 -> !invalid
 2066 -> !missing parameter
 2069 -> !DEFINE type not permitted
 OTHERWISE -> !some other problem
END;

When you add a DEFINE to the context of your process, the system checks the values
that you specified to ensure that they are consistent, complete, and valid. If they are
not, a nonzero value is returned. If the error number returned is equal to 2058, then
the system is reporting an inconsistency. The inconsistency is qualified in
CHECK^NUM. The Guardian Procedure Errors and Messages Manual describes each
error.

You can also use the DEFINEADD procedure to replace a DEFINE by the same name
in the context of your current process. To do this, you need to set the second
parameter of the DEFINEADD call to 1.

LITERAL REPLACE = 1;
 .
 .
DEFINE^NAME ':=' "=TAPE1 ";

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 15

Deleting DEFINEs From the Process Context

ERROR := DEFINEADD(DEFINE^NAME,REPLACE,CHECK^NUM);
CASE ERROR OF
BEGIN
 .
 .

Deleting DEFINEs From the Process Context
You can delete DEFINEs from the context of a process using the DEFINEDELETE or
DEFINEDELETEALL procedure. The DEFINEDELETE procedure deletes a specific
DEFINE, for example:

DEFINE^NAME ':=' "=TAPE1 ";
ERROR := DEFINEDELETE(DEFINE^NAME);
IF ERROR <> 0 THEN ...

The DEFINEDELETEALL procedure deletes all DEFINEs from the context of the
current process except the =_DEFAULTS DEFINE. (You cannot delete the
=_DEFAULTS DEFINE.)

CALL DEFINEDELETEALL;

Saving and Restoring DEFINEs
Sometimes it can be useful to maintain several independent contexts for starting new
processes. The DEFINESAVE and DEFINERESTORE procedures provide a way to
save a DEFINE or a working set of attributes in a memory buffer and then restore the
contents of that buffer into a new DEFINE or working set.

You save a DEFINE in a buffer using the DEFINESAVE procedure:

BUFF^LEN := 500;
DEFINE^NAME ':=' "=TAPE1 ";
ERROR := DEFINESAVE(DEFINE^NAME,
 TAPE^BUFFER,
 BUFF^LEN,
 DEFINE^LEN);
IF ERROR <> 0 THEN ...

The above example saves the =TAPE1 DEFINE in a 500-byte buffer named
TAPE^BUFFER. The actual length of the DEFINE is returned in DEFINE^LEN. The
final parameter is set to 0 to tell the system to save the DEFINE named in the first
parameter. When DEFINESAVE saves a DEFINE in a user buffer, the DEFINE is
saved in another format. You should not attempt to modify this format, otherwise
DEFINERESTORE may not be able to restore the DEFINE.

You restore a DEFINE using the DEFINERESTORE procedure. The
DEFINERESTORE procedure can add a DEFINE to the process context or change the
attributes of an existing DEFINE. However, you must specify whether you intend to
add or alter the DEFINE.

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 16

Saving and Restoring the Working Set

LITERAL ADD^DEFINE = 0,
 CHG^DEFINE = 1;
.
.
DEFINE^NAME ':=' "=TAPE1 ";
ERROR := DEFINERESTORE(TAPE^BUFFER,
 ADD^DEFINE,
 DEFINE^NAME,
 CHECK^NUM);
IF ERROR = 2058 THEN ...
ELSE IF ERROR <> 0 THEN ...

DEFINE^NAME ':=' "=TAPE2 ";
ERROR := DEFINERESTORE(TAPE^BUFFER2,
 CHG^DEFINE,
 DEFINE^NAME,
 CHECK^NUM);
IF ERROR = 2058 THEN ...
ELSE IF ERROR <> 0 THEN ...

The first of the two calls shown above adds the DEFINE to the context of the current
process. You specify that the DEFINE is to be added by setting the second parameter
to 0. If a DEFINE of the name =TAPE1 already exists, then the system returns an
error.

The second call above changes the value of an existing DEFINE. Here, the second
parameter is set to 1. If the =TAPE2 DEFINE does not already exist in the context of
the current process, then the system returns an error.

In addition to returning a standard error number, if the system detects that the saved
DEFINE (or saved working set) is inconsistent, then an additional error value is
returned in CHECK^NUM to give more information about the error.

Saving and Restoring the Working Set
You can save the working set of attributes in the background and have the option to
restore the saved working set later. There are three areas where sets of attributes can
be held outside of DEFINEs. The three places are the working set and two
background areas.

• The DEFINESAVEWORK and DEFINERESTOREWORK procedures move sets of
attributes between the working set and one background area.

• The DEFINESAVEWORK2 and DEFINERESTOREWORK2 procedures move sets
of attributes between the working set and the other background area.

You cannot use DEFINERESTOREWORK2 to restore a working set saved by
DEFINESAVEWORK, nor can you use DEFINERESTOREWORK to restore a working
set saved by DEFINESAVEWORK2.

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 17

Using DEFINEs: An Example

The following example uses DEFINESAVEWORK2 to save the attribute values stored
in the current working set. This procedure copies the attributes in the working set to
the background set:

ERROR := DEFINESAVEWORK2;
IF ERROR <> 0 THEN ...

Any attributes that were stored in the background set are destroyed.

The next example restores the background set into the working set using the
DEFINERESTOREWORK2 procedure:

ERROR := DEFINERESTOREWORK2;
IF ERROR <> 0 THEN ...

Note that there is actually a third way of saving and restoring a working set that uses a
buffer instead of a background working set. This method uses the DEFINESAVE and
DEFINERESTORE procedures as already described.

Using DEFINEs: An Example
The sample program shown in this subsection allows the user to create DEFINEs
interactively before starting a process that uses the DEFINEs.

This program first prompts the user for the CLASS of the DEFINE that the user needs
to create. The CREATE^DEFINES procedure then calls a procedure that depends on
the DEFINE CLASS. For example, if the user selected CLASS TAPE, then the
SET^TAPE procedure gets called. This procedure then prompts the user for a value
for each of the DEFINE attributes that pertain to the selected type.

When the user has responded to each possible attribute, control returns to the
CREATE^DEFINES procedure, which calls DEFINEVALIDATEWORK to check that the
working set is consistent before prompting the user for a DEFINE name. When the
user has entered a valid DEFINE name, the CREATE^DEFINES procedure creates the
DEFINE.

Finally, control returns to the MAIN procedure, which prompts the user to create
another DEFINE. When the user declines to create any more DEFINEs, the MAIN
procedure prompts the user for the name of the program file to execute and then
executes the program.

This sample program allows the user to create the following classes of DEFINEs:

• CLASS MAP DEFINEs

• CLASS SEARCH DEFINEs

• CLASS TAPE DEFINEs

• CLASS SPOOL DEFINEs

• CLASS SORT DEFINEs

• CLASS SUBSORT DEFINEs

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 18

Using DEFINEs: An Example

To add another class of DEFINE, you need to add a procedure, similar to the
SET^TAPE procedure, that prompts the user to enter attribute values for the new
DEFINE CLASS. You will also need to make changes to the GET^DEFINE^CLASS
and CREATE^DEFINES procedures as indicated in the following pages.

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !maximum file-name
 ! length
LITERAL BUFSIZE = 512;
LITERAL ABEND = 1;

STRING .SBUFFER[0:BUFSIZE]; !I/O buffer (one extra char)
STRING .S^PTR; !pointer to end of string
INT LOGNUM; !log file number
INT TERMNUM; !terminal file number

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (INITIALIZER,
? PROCESS_GETINFO_,FILE_OPEN_,WRITEREADX,WRITEX,
? PROCESS_STOP_,READX,POSITION,DNUMOUT,FILE_GETINFO_,
? READUPDATEX,WRITEUPDATEX,DNUMIN,DEFINESETATTR,DEFINEADD,
? DEFINEVALIDATEWORK,PROCESS_CREATE_)
?LIST

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 19

Using DEFINEs: An Example

!--
! Here are some DEFINEs to make it easier to format and
! print messages.
!---

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR (S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT (N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print a line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE (SBUFFER, 0) #;

! Print a string:

 DEFINE PRINT^STR (S) = BEGIN START^LINE;
 PUT^STR (S);
 PRINT^LINE; END #;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 20

Using DEFINEs: An Example

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is mainly to be used when
! the file is not open, so there isn't a file number for it.
! FILE^ERRORS is to be used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!---

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program:

 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 21

Using DEFINEs: An Example

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to do the display.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!---

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 22

Using DEFINEs: An Example

!--
! Procedure to print DEFINE errors on the terminal.
!--

PROC DEFINE^ERRORS(ERR^NUM);
INT ERR^NUM;
BEGIN

! Display the error number:

 START^LINE;
 PUT^STR("DEFINE error ");
 PUT^INT(ERR^NUM);
 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Put the error text in the output buffer:

 START^LINE;
 CASE ERR^NUM OF
 BEGIN
 2049 -> PUT^STR("A syntax error occurred in name");
 2050 -> PUT^STR("DEFINE already exists");
 2051 -> PUT^STR("DEFINE does not exist");
 2052 -> PUT^STR
 ("Not enough buffer space or PFS allocation failed");
 2053 -> PUT^STR("Unable to obtain physical memory");
 2054 -> PUT^STR("Bounds error on parameter");
 2055 -> PUT^STR("Attribute not supported");
 2057 -> PUT^STR("DEFINE or working set incomplete");
 2058 -> PUT^STR
 ("DEFINE or working set is not consistent");
 2059 -> PUT^STR("DEFINE or working set is invalid");
 2060 -> PUT^STR("No more DEFINEs");
 2061 -> PUT^STR("No more attributes");
 2062 -> PUT^STR("Attribute name too long");
 2063 -> PUT^STR
 ("A syntax error occurred in DEFAULT^NAMES");
 2064 -> PUT^STR("The attribute cannot be reset");
 2066 -> PUT^STR("Missing parameter");
 2067 -> PUT^STR
 ("Attribute contained an illegal value");
 2068 -> PUT^STR("Saved DEFINE was of invalid CLASS");
 2069 -> PUT^STR
 ("The DEFINE mode of the process does not "
 & "permit the addition of the DEFINE type");
 2075 -> PUT^STR("Invalid options parameter");
 2076 -> PUT^STR("User's buffer is too small");
 2077 -> PUT^STR
 ("Buffer or DEFINE name is an invalid segment");
 2078 -> PUT^STR
 ("Buffer does not contain a valid saved DEFINE");
 OTHERWISE -> PUT^STR("Error number unrecognized");
 END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 23

Using DEFINEs: An Example

! Display the error description on the terminal:

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

END;

!---
! This procedure writes a message on the terminal and checks
! for any error. If there is an error, it attempts to write
! a message about the error and the program is stopped.
!---

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 24

Using DEFINEs: An Example

!--
! This procedure asks the user for the CLASS of the next
! DEFINE:
!
! "1" for a CLASS MAP DEFINE
! "2" for a CLASS SEARCH DEFINE
! "3" for a CLASS TAPE DEFINE
! "4" for a CLASS SPOOL DEFINE
! "5" for a CLASS SORT DEFINE
! "6" for a CLASS SUBSORT DEFINE
! "7" for a CLASS CARALOG DEFINE
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^DEFINE^CLASS;
BEGIN
 INT COUNT^READ;

! Prompt the user for the DEFINE CLASS:

 PRINT^BLANK;
 PRINT^STR("Type '1' for a CLASS MAP DEFINE, ");
 PRINT^STR(" '2' for a CLASS SEARCH DEFINE, ");
 PRINT^STR(" '3' for a CLASS TAPE DEFINE, ");
 PRINT^STR(" '4' for a CLASS SPOOL DEFINE, ");
 PRINT^STR(" '5' for a CLASS SORT DEFINE, ");
 PRINT^STR(" '6' for a CLASS SUBSORT DEFINE, ");
 PRINT^STR(" '7' for a CLASS CATALOG DEFINE, ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 25

Using DEFINEs: An Example

!---
! Procedure to prompt the user for a DEFINE attribute and
! call DEFINESETATTR if the user provides the attribute.
!---

PROC DEFINE^ATTR(ATTR^NAME,VALUES^LIST,VALUES^LEN);
STRING .ATTR^NAME;
STRING .VALUES^LIST;
INT VALUES^LEN;

BEGIN
 INT .DEFAULT^NAMES[0:7] := "$APPLS PROGS ";
 INT COUNT^READ;
 INT ERROR;

! Obtain a value for the attribute from the user:

DO^AGAIN:
 PRINT^BLANK;
 PRINT^STR
 ("Enter a value for the attribute " & ATTR^NAME FOR 16);
 PRINT^STR
 ("Possible values are: " & VALUES^LIST FOR VALUES^LEN);
 PRINT^BLANK;
 SBUFFER ':=' "Choice: " ->@S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 IF COUNT^READ <> 0 THEN
 BEGIN
 ERROR := DEFINESETATTR(ATTR^NAME,SBUFFER,COUNT^READ,
 DEFAULT^NAMES);
 IF ERROR <> 0 THEN
 BEGIN
 CALL DEFINE^ERRORS(ERROR);
 GOTO DO^AGAIN;
 END;
 END;
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 26

Using DEFINEs: An Example

!--
! Procedure to prompt the user for all attributes for a CLASS
! MAP DEFINE.
!--

PROC SET^MAP;
BEGIN
 STRING .VALUES^LIST[0:BUFSIZE - 1];
 STRING .NAME[0:15];

 NAME ':=' "CLASS ";
 VALUES^LIST ':=' "Must be MAP" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "FILE ";
 VALUES^LIST ':=' "Any valid file name" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 27

Using DEFINEs: An Example

!--
! Procedure to prompt the user for all attributes for a CLASS
! SEARCH DEFINE.
!--

PROC SET^SEARCH;
BEGIN
 STRING .VALUES^LIST[0:BUFSIZE - 1];
 STRING .NAME[0:15];
 INT I := 0;

 NAME ':=' "CLASS ";
 VALUES^LIST ':=' "Must be SEARCH" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 WHILE I < 21 DO
 BEGIN
 NAME[0] ':=' " ";
 NAME[1] ':=' NAME[0] FOR 15 BYTES;
 START^LINE;
 PUT^STR("SUBVOL");
 PUT^INT(I);
 NAME[0] ':=' SBUFFER FOR (@S^PTR '-' @SBUFFER) BYTES;
 VALUES^LIST ':='
 "One or more subvolumes or CLASS DEFAULTS DEFINES"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);
 I := I + 1;
 END;

 I := 0;
 WHILE I < 21 DO
 BEGIN
 NAME[0] ':=' " ";
 NAME[1] ':=' NAME[0] FOR 15 BYTES;
 START^LINE;
 PUT^STR("RELSUBVOL");
 PUT^INT(I);
 NAME[0] ':=' SBUFFER FOR (@S^PTR '-' @SBUFFER) BYTES;
 VALUES^LIST ':='
 "One or more subvolumes or CLASS DEFAULTS DEFINES"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);
 I := I + 1;
 END;
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 28

Using DEFINEs: An Example

!--
! Procedure to prompt the user for all attributes for a CLASS
! TAPE DEFINE.
!--

PROC SET^TAPE;
BEGIN
 STRING .VALUES^LIST[0:BUFSIZE - 1];
 STRING .NAME[0:15];

 NAME ':=' "CLASS ";
 VALUES^LIST ':=' "Must be TAPE" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "BLOCKLEN ";
 VALUES^LIST ':=' "Any valid block length" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "DENSITY ";
 VALUES^LIST ':=' "800, 1600, or 6250 bpi" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "DEVICE ";
 VALUES^LIST ':=' "A valid tape device name" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "EBCDIC ";
 VALUES^LIST ':=' "IN, OUT, ON, or OFF" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "EXPIRATION ";
 VALUES^LIST ':='
 "Any valid date (month day year)" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "FILEID ";
 VALUES^LIST ':=' "Any valid tape file name" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "FILESECT ";
 VALUES^LIST ':=' "A number in the range 0001 through 9999"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 29

Using DEFINEs: An Example

 NAME ':=' "FILESEQ ";
 VALUES^LIST ':=' "A number in the range 0001 through 9999"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "GEN ";
 VALUES^LIST ':=' "A number in the range 0001 through 9999"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "LABELS ";
 VALUES^LIST ':=' "ANSI, IBM, OMITTED, or BYPASS"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "MOUNTMSG ";
 VALUES^LIST ':=' "Any text string" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "OWNER ";
 VALUES^LIST ':=' "Any valid owner ID" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "RECFORM ";
 VALUES^LIST ':=' "F or U" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "RECLEN ";
 VALUES^LIST ':=' "A valid record length" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "REELS ";
 VALUES^LIST ':=' "A number in the range 1 through 255"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "RETENTION ";
 VALUES^LIST ':=' "Any integer value" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "SYSTEM ";
 VALUES^LIST ':=' "A valid system name" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 30

Using DEFINEs: An Example

 NAME ':=' "USE ";
 VALUES^LIST ':=' "IN, OUT, EXTEND, or OPENFLAG" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "VERSION ";
 VALUES^LIST ':=' "A number in the range 00 through 99"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "VOLUME ";
 VALUES^LIST ':=' "A six-byte volume ID or SCRATCH"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 31

Using DEFINEs: An Example

!--
! Procedure to prompt the user for all attributes for a CLASS
! SPOOL DEFINE.
!--

PROC SET^SPOOL;
BEGIN
 STRING .VALUES^LIST[0:BUFSIZE - 1];
 STRING .NAME[0:15];

 NAME ':=' "CLASS ";
 VALUES^LIST ':=' "Must be SPOOL" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "BATCHID ";
 VALUES^LIST ':=' "A valid job ID" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "BATCHNAME ";
 VALUES^LIST ':=' "A 1 to 31 character batch name"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "COPIES ";
 VALUES^LIST ':=' "A number in the range 1 through 32767"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "FORM ";
 VALUES^LIST ':=' "A 1 to 16 character form name"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "HOLD ";
 VALUES^LIST ':=' "ON or OFF" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "HOLDAFTER ";
 VALUES^LIST ':=' "ON or OFF" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "LOC ";
 VALUES^LIST ':=' "A valid spooler location" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 32

Using DEFINEs: An Example

 NAME ':=' "MAXPRINTLINES ";
 VALUES^LIST ':=' "A number in the range 1 through 65534"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "MAXPRINTPAGES ";
 VALUES^LIST ':=' "A number in the range 1 through 65534"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "OWNER ";
 VALUES^LIST ':=' "Any valid owner ID" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "PAGESIZE ";
 VALUES^LIST ':=' "A number in the range 1 through 32767"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "REPORT ";
 VALUES^LIST ':=' "A 1 to 16 character report name"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "SELPRI ";
 VALUES^LIST ':=' "A number in the range 0 through 7"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 33

Using DEFINEs: An Example

!--
! Procedure to prompt the user for all attributes for a CLASS
! SORT DEFINE.
!--

PROC SET^SORT;
BEGIN
 STRING .VALUES^LIST[0:BUFSIZE - 1];
 STRING .NAME[0:15];

 NAME ':=' "CLASS ";
 VALUES^LIST ':=' "Must be SORT" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "BLOCK ";
 VALUES^LIST ':=' "Any multiple of 512 up to 30K"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "CPU ";
 VALUES^LIST ':=' "A number in the range 0 through 15"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "CPUS ";
 VALUES^LIST ':=' ["A comma-separated list of numbers ",
 "in the range 0 through 15"]
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "MODE ";
 VALUES^LIST ':=' "AUTOMATIC, MINSPACE or MINTIME"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "NOTCPUS ";
 VALUES^LIST ':=' ["A comma-separated list of numbers ",
 "in the range 0 through 15"]
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "PRI ";
 VALUES^LIST ':=' "A number in the range 1 to 199"
 -> @S^PTR;

 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 34

Using DEFINEs: An Example

 NAME ':=' "PROGRAM ";
 VALUES^LIST ':=' "Any valid program file name"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "SCRATCH ";
 VALUES^LIST ':=' "Any valid disk volume name" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "SEGMENT ";
 VALUES^LIST ':=' "A number 64 or greater" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "SUBSORTS ";
 VALUES^LIST ':='
 "A comma-separated list of CLASS SUBSORT DEFINES"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "SWAP ";
 VALUES^LIST ':='
 "Any valid local file or local volume name" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 35

Using DEFINEs: An Example

!--
! Procedure to prompt the user for all attributes for a CLASS
! SUBSORT DEFINE.
!--

PROC SET^SUBSORT;
BEGIN
 STRING .VALUES^LIST[0:BUFSIZE - 1];
 STRING .NAME[0:15];

 NAME ':=' "CLASS ";
 VALUES^LIST ':=' "Must be SUBSORT" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "BLOCK ";
 VALUES^LIST ':=' "Any multiple of 512 up to 30K"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "CPU ";
 VALUES^LIST ':=' "A number in the range 0 through 15"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "PRI ";
 VALUES^LIST ':=' "A number in the range 1 through 199"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "PROGRAM ";
 VALUES^LIST ':=' "A valid program file name" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "SCRATCH ";
 VALUES^LIST ':='
 "A valid unstructured file name or volume name"
 -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "SEGMENT ";
 VALUES^LIST ':=' "A number 64 or greater" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "SWAP ";
 VALUES^LIST ':=' "A valid file or volume name" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 36

Using DEFINEs: An Example

!--
! Procedure to prompt the user for all attributes for a CLASS
! CATALOG DEFINE.
!--

PROC SET^CATALOG;
BEGIN
 STRING .VALUES^LIST[0:BUFSIZE - 1];
 STRING .NAME[0:15];

 NAME ':=' "CLASS ";
 VALUES^LIST ':=' "Must be CATALOG" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);

 NAME ':=' "SUBVOL ";
 VALUES^LIST ':=' "Any valid subvolume name" -> @S^PTR;
 CALL DEFINE^ATTR(NAME,VALUES^LIST,
 @S^PTR '-' @VALUES^LIST);
END;

!--
! Procedure to process an invalid command. The procedure
! informs the user that the selection was other than a number
! in the range 1 through 7.
!--

PROC INVALID^SELECTION;
BEGIN

 PRINT^BLANK;

! Inform the user that the selection was invalid and
! then return to prompt again for a valid function:

 PRINT^STR("INVALID SELECTION: " &
 "Type number in range 1 through 7. ");
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 37

Using DEFINEs: An Example

!---
! Procedure to create DEFINEs. The procedure prompts the
! user for the DEFINE CLASS, then for each attribute that a
! DEFINE of the selected CLASS can have. When the attributes
! have all been entered, the procedure checks their validity
! and creates the DEFINE.
!---

PROC CREATE^DEFINES;
BEGIN
 STRING .DEFINE^NAME[0:23];
 STRING CMD;
 INT ERROR;
 INT COUNT^READ;

! Loop until all DEFINEs have been created:

 DO BEGIN

 ! Prompt user for CLASS of DEFINE required

 CMD := GET^DEFINE^CLASS;

 ! Call the appropriate procedure to prompt for the
 ! attributes for a DEFINE of the selected CLASS.
 ! Repeat if error on validation check.

 DO^AGAIN:
 CASE CMD OF
 BEGIN
 "1" -> CALL SET^MAP;

 "2" -> CALL SET^SEARCH;

 "3" -> CALL SET^TAPE;

 "4" -> CALL SET^SPOOL;

 "5" -> CALL SET^SORT;

 "6" -> CALL SET^SUBSORT;

 "7" -> CALL SET^CATALOG;

 OTHERWISE -> CALL INVALID^SELECTION;
 END;

 ! Check the working set for errors. If errors, have
 ! option to continue or stop.

 ERROR := DEFINEVALIDATEWORK;
 IF ERROR <> 0 THEN

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 38

Using DEFINEs: An Example

 BEGIN
 CALL DEFINE^ERRORS(ERROR);
 GOTO DO^AGAIN;
 END;

 ! Prompt the user for the DEFINE name:

 REENTER^NAME:
 PRINT^BLANK;
 SBUFFER ':=' "Please Enter a Name for the DEFINE: "
 ->@S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF SBUFFER[0] <> "=" THEN
 BEGIN
 PRINT^STR("First Character Must Be '='");
 GOTO REENTER^NAME;
 END;
 IF COUNT^READ > 24 THEN
 BEGIN
 PRINT^STR
 ("Maximum DEFINE name length 24 characters");
 GOTO REENTER^NAME;
 END;

 DEFINE^NAME[0] ':=' " ";
 DEFINE^NAME[1] ':=' DEFINE^NAME[0] FOR 23;
 DEFINE^NAME[0] ':=' SBUFFER FOR COUNT^READ;

 ! Add the DEFINE to the PFS:

 ERROR := DEFINEADD(DEFINE^NAME);
 IF ERROR <> 0 THEN
 BEGIN
 CALL DEFINE^ERRORS(ERROR);
 GOTO DO^AGAIN;
 END;

 ! Prompt the user to enter more DEFINEs:

 PRINT^BLANK;
 SBUFFER ':=' "Do You Wish to Enter More DEFINEs (y/n)?"
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 END
 UNTIL SBUFFER[0] <> "y" AND SBUFFER[0] <> "Y";
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 39

Using DEFINEs: An Example

!--
! This procedure does the initialization for the program.
! It calls INITIALIZER to dispose of the startup messages.
! It opens the home terminal and the data file used by the
! program.
!--

PROC INIT;
BEGIN
 STRING .TERMNAME[0:MAXFLEN - 1]; !terminal file
 INT TERMLEN;
 INT ERROR;

! Read and discard startup messages:

 CALL INITIALIZER;

! Open the terminal file. For simplicity we use the home
! terminal. The recommended approach is to use the IN file
! read from the Startup message; see Section 8 for
! details:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMNAME:MAXFLEN,
 TERMLEN);
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
END;

Using DEFINEs

Guardian Programmer’s Guide — 421922-014
7 - 40

Using DEFINEs: An Example

!--
! This is the main procedure. It calls the INIT procedure to
! initialize, then it goes into a loop calling GET^COMMAND
! to get the next user request and calling the procedure
! to carry out that request.
!--

PROC STARTER MAIN;
BEGIN
 STRING CMD;
 INT COUNT^READ;
 INT ERROR;

 CALL INIT;

! Prompt user to request DEFINEs:

 SBUFFER ':=' "Do You Want to Set up DEFINEs? " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,
 @S^PTR '-' @SBUFFER,BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Call CREATE^DEFINES if the user responds 'y':

 IF SBUFFER[0] = "y" OR SBUFFER[0] = "Y" THEN
 CALL CREATE^DEFINES;

! Prompt the user for the program file name to execute:

 PRINT^BLANK;
 SBUFFER ':=' "Please enter program file name: "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,
 @S^PTR '-' @SBUFFER,BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Execute the program:

 ERROR := PROCESS_CREATE_(SBUFFER:COUNT^READ);
 IF ERROR <> 0 THEN
 BEGIN
 PRINT^STR("Unable to start specified program");
 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;
END;

Guardian Programmer’s Guide — 421922-014
8 - 1

8
Communicating With a TACL
Process

This section discusses how processes communicate with TACL processes, including:

• How to set up the process environment by using commands at the TACL prompt.

• How the process environment information is passed to the application using
command-interpreter messages. These messages include the Startup, Assign,
and Param messages. They are part of a different set of messages than the
system messages discussed in Section 6, Communicating With Processes.
However, the delivery mechanism is the same: the recipient process reads the
messages from its $RECEIVE file.

• How a new process receives its process environment information from its
$RECEIVE file using the INITIALIZER procedure.

• How a new process can receive its process environment information without using
INITIALIZER.

• How a process wakes the TACL process using the Wakeup command-interpreter
message.

• How a process sends text for display by the TACL process using the Display
command-interpreter message.

To run C or C++ programs in the Guardian environment, see the C/C++
Programmer’s Guide.

Setting Up the Process Environment
A terminal user uses the TACL process to specify the environment in which a process
will run. Some information can be specified before running the process; some
information is specified with the RUN command itself. In either case, this information is
sent to the new process in one or more interprocess messages.

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 2

Setting Up the Process Environment

The following TACL commands can affect the parameter information sent to a new
process:

The VOLUME, RUN, ASSIGN, PARAM, CLEAR, and SYSTEM commands are
described in the TACL Reference Manual.

Once the process environment is set up and the RUN command started, the parameter
information is passed to the new process in the following sequence:

1. The system sends system message number -103 (Open message) to the new
process when the TACL process opens the new process. The TACL process is
then able to send messages to the new process.

2. The TACL process sends a Startup message (command-interpreter message
code -1) to the new process. This message contains the default volume and
subvolume names, as well as the input and output file names and optional
parameters.

3. If requested by the new process, the TACL process sends Assign messages to the
new process (command-interpreter message code -2). These messages contain
logical-file assignments made by the ASSIGN command.

4. If requested by the new process and if the TACL process has accepted any
PARAM statements, the TACL process sends a Param message to the new

ASSIGN Makes logical-file assignments. A logical-file assignment equates a file
name with a logical file of a program and optionally assigns file
characteristics to that file. For each ASSIGN in effect when the
program is run, one Assign message is sent to the new process at the
option of the new process.

CLEAR Clears ASSIGN and PARAM settings.

PARAM Associates an ASCII value with a parameter name. This command is
typically used to pass arbitrary string values to the program. If any
PARAMs are in effect when a program is run, a single Param message
containing all parameter names and values is sent to the new process
at the option of the new process.

RUN Specifies the input and output files and optional parameter string to be
passed to the new process. This information, along with the default
volume and subvolume names, is passed to the new process in the
Startup message.

SYSTEM When used with a nonblank system name, implicitly causes remote
programs to be run. In this case, the volume IN and OUT parameters
passed in the Startup message contain the network node number in the
upper bytes. That is, the upper byte contains the backslash character
(\), and the second byte contains the network node number. Up to six
characters then identify the volume (without the leading dollar sign, $).

VOLUME Specifies the default volume and subvolume names to be passed to the
new process.

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 3

Obtaining Startup Information

process (command-interpreter message code -3). This message contains ASCII
parameter values set up by the PARAM command.

5. The system sends a system message number -104 (Close message) when the
TACL process closes the new process. This message indicates that the TACL
process has completed its communication with the new process.

The new process can read the above messages from its $RECEIVE file by calling the
INITIALIZER procedure. INITIALIZER allows your program to receive these messages
without having to deal directly with $RECEIVE. In addition to reading the messages,
INITIALIZER calls your procedures to process the Startup, Assign, and Param
messages.

DEFINEs are automatically passed to the new process from its parent process when
the new process is created. The new process does not have to do anything to get
these DEFINEs.

If a process other than a TACL process opens the new process, it must send the same
sequence of messages as the TACL process. Section 16, Creating and Managing
Processes, provides details.

Obtaining Startup Information
To obtain startup information, your program must read and process the Startup
message. This message is usually part of the startup sequence that takes place
between a process and the process that it creates. It is sent to every process that is
started by the TACL process. The Startup message can be omitted only if both the
parent and child processes agree.

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 4

Obtaining Startup Information

The structure of the Startup message is shown below:

The maximum length of the Startup message is 596 bytes, including the trailing null
characters. The Startup message contains the following information:

• The value -1 in the first word, which identifies the message as the Startup message
from the TACL process.

• The default volume and subvolume names provided by the last execution of the
VOLUME command. Eight bytes each are provided for the volume and subvolume
names. The volume name must be no greater than seven characters long
(including the dollar sign) if a remote volume is specified as the default volume.

• The input and output files supplied to the process by the RUN command. Eight
bytes each are provided for the volume, subvolume, and file ID parts of the name.

If the file is on a remote node, then the upper two bytes of the volume name
identify the system. The upper byte contains a backslash character (\), and the
second byte contains the node number. This leaves only six bytes for the volume
name. (The dollar sign, $, is not included in the volume name if the file is remote.)
To supply the network version of a file name in the Startup message, the volume
name must be no more that seven characters long (including the dollar sign).

Structure of the Startup message:

STRUCT CI^STARTUP;
BEGIN
 INT MSGCODE; !word 0 – value -1

 STRUCT DEFAULT;
 BEGIN
 INT VOLUME[0:3]; !word 1 – default volume
name
 INT SUBVOL[0:3]; !default subvolume name
 END;

 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3]; !word 9 – IN parameter file
 INT SUBVOL[0:3]; !name of RUN command
 INT FNAME[0:3];
 END;

 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3]; !word 21 – OUT parameter file
 INT SUBVOL[0:3]; !name of RUN command
 INT FNAME[0:3];
 END;

 STRING PARAM[0:n-1]; !word 33 – parameter string
(if
END; !any) of RUN command

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 5

Obtaining Startup Information

The input and output file names in the Startup message have the same structure
as file names on a C-series system. To convert these names to D-series format,
you can use the OLDFILENAME_TO_FILENAME_ procedure.

• A parameter string containing any parameters supplied to the RUN command. The
parameter string contains exactly the same characters as contained in the
parameter string to the RUN command, plus a null byte to terminate the string. If
the resulting message has an odd number of bytes, a second null is added.

If no parameter string data is included, under the standard protocol you must
append two null bytes to the end of the Startup message.

A sample execution of the VOLUME and RUN commands follows:

VOLUME $APPLS.PROGS
RUN MYPROG /IN INFILE,OUT OUTFILE/ PARAM1

The corresponding Startup message sent to the application MYPROG is as follows:

VST040.VSD

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 6

Using INITIALIZER to Read the Startup Message

 Using INITIALIZER to Read the Startup Message
It is up to the application to choose what to do with the information contained in the
Startup message. To use the startup information, your program must first read the
Startup message from its $RECEIVE file. The INITIALIZER procedure provides a
convenient way to do this.

In its simplest form, INITIALIZER reads the Startup message but does not process it:

CALL INITIALIZER;

The benefit of doing this is to prevent unwanted run-time messages indicating that the
Startup message was not read.

If you want to read the Startup message and then process it, you need to specify a
user-supplied procedure to do the processing. Call INITIALIZER as follows:

CALL INITIALIZER(!rucb!,
 !return^data!,
 START^PROC);

Here, START^PROC is a user-supplied procedure that processes the Startup
message. The INITIALIZER procedure passes the message to the user-supplied
procedure. Typically, the user-supplied procedure saves the Startup message in global
data and returns. However, it can alternatively use the RETURN^DATA variable to
return data from the user-supplied procedure back to the procedure that called
INITIALIZER.

The user-supplied procedure must be declared with parameters that match exactly
those expected by the INITIALIZER procedure. See below for an example, or refer to
the Guardian Procedure Calls Reference Manual for a complete description of the
required parameters.

Processing the Startup Message
The example given below is made up of a main procedure that reads the Startup
message and another procedure that processes it. Their combined actions are
summarized as follows:

1. The main procedure calls the INITIALIZER procedure, giving it the name of a
procedure to process the Startup message and an array to receive the response.

2. The INITIALIZER procedure passes the Startup message and message length to
the START^IT procedure. The message is passed in the MESSAGE parameter,
and the message length is passed in the LENGTH parameter.

3. The START^IT procedure saves the Startup message in global data.

4. The START^IT procedure terminates, returning control to the INITIALIZER
procedure.

5. The INITIALIZER procedure returns control to the main procedure.

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 7

Processing the Startup Message

The main procedure can then access the Startup information in the global data area
and open the IN and OUT files identified in the Startup message. Recall, however, that
theses file names are in C-series format and must be converted to D-series format
using the OLDFILENAME_TO_FILENAME_ procedure before you can pass these
names to the FILE_OPEN_ procedure.

? INSPECT, SYMBOLS

!Global variables:
STRUCT .CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULT;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FNAME[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FNAME[0:3];
 END;
 STRING PARAM[0:529];
END;

? NOLIST
? NOLIST,SOURCE $SYSTEM.SYSTEM.EXTDECS(INITIALIZER)
? LIST

PROC START^IT(RUCB,START^DATA,MESSAGE,LENGTH,MATCH) VARIABLE;

INT .RUCB,
 .START^DATA,
 .MESSAGE,
 LENGTH,
 MATCH;

BEGIN
 !Copy the Startup message into the CI^STARTUP structure:
 CI^STARTUP.MSGCODE ':=' MESSAGE[0] FOR LENGTH/2;
END;

PROC INITIAL MAIN;
BEGIN
 CALL INITIALIZER(!rucb!,
 !passthru!,

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 8

Using ASSIGNs and PARAMs

 START^IT);
END;

Using ASSIGNs and PARAMs
To use the values provided with ASSIGN or PARAM commands, a program must
specifically request to receive the Assign and Param messages. You can use the
INITIALIZER procedure to request this information.

If your program requests ASSIGN and PARAM information, then the TACL process
sends one Assign message for each assignment currently in effect and one Param
message containing all parameter assignments currently in effect.

Note that having received the Assign and Param messages, it is still up to the receiving
process to interpret the information.

The Assign message identifies the logical file referred to in the program and the actual
file that will be equated to the logical file. Optionally, file characteristics are also
provided. Refer to Section 2, Using the File System, Section 3, Coordinating
Concurrent File Access, and Section 5, Communicating With Disk Files, for information
about the file characteristics.

File names in Assign messages are of C-series internal format. Therefore, you must
convert each file name to a valid D-series file name before passing it to a D-series
procedure call. If the C-series file name is fully qualified, then you can use the
OLDFILENAME_TO_FILENAME_ procedure. If the file name is not fully qualified, you
should use the FNAMECOLLAPSE procedure.

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 9

Using ASSIGNs and PARAMs

The structure of the Assign message follows.

Structure of an Assign message:

STRUCT CI^ASSIGN;
BEGIN
 INT MSG^CODE; !word 0 – value -2
 STRUCT LOGICALUNIT;
 BEGIN
 STRING PROGNAMELEN; !word 1 – program name
length,
 !0:31 bytes
 STRING PROGNAME[0:30]; !program name (blank-padded)
 STRING FILENAMELEN; !word 17 – file name length,
 !0:31 bytes
 STRING FILENAME[0:30]; !file name (blank-padded)
 END;
 INT(32) FIELDMASK; !word 33 – bit mask to
 !indicate which of the
 !following fields were
 !supplied (1 = supplied)
 !.<0> = physical file name
 !.<1> = primary extent size
 !.<2> = secondary extent size
 !.<3> = file code
 !.<4> = exclusion code
 !.<5> = access specifier
 !.<6> = record size
 !.<7> = block size

 STRUCT PHYSICALFILENAME;
 BEGIN
 INT VOLUME[0:3]; !word 35 - physical file name
 INT SUBVOL[0:3];
 INT FNAME[0:3];
 END;
 INT PRIMARYEXTENT; !word 47 – primary extent
 !size
 INT SECONDARYEXTENT; !word 48 – secondary extent
 !size
 INT FILECODE; !word 49 – file code
 INT EXCLUSIONSPEC; !word 50 – exclusion mode:
 ! %00 if SHARED
 ! %20 if EXCLUSIVE
 ! %60 if PROTECTED
 INT ACCESSSPEC; !word 51 – access mode:
 ! %0000 if read/write
 ! %2000 if read only
 ! %4000 if write only
 INT RECORDSIZE; !word 52 – record size
 INT BLOCKSIZE; !word 53 – block size
END;

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 10

Using ASSIGNs and PARAMs

Suppose a program logically refers to a process as SERVER1, then the following
ASSIGN command associates this logical name with the actual server name $SER1:

1> ASSIGN SERVER1,$SER1

The Assign message received by the program is as follows:

Note. In the figure above, the empty boxes all represent blank characters.

VST041.VSD

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 11

Using ASSIGNs and PARAMs

All parameter values assigned using PARAM commands are delivered to the starting
process in one Param message:

The maximum length of a Param message is 1028 bytes.

Assume that the following PARAM command has been issued at the TACL prompt:

PARAM S1 TEXT-STRING
PARAM I1 123

The Param message requested by the new process contains the following:

Structure of a Param message:

STRUCT CI^PARAM;
BEGIN
 INT MSG^CODE; !word 0 – value -3
 INT NUMPARAMS; !word 1 – number of
 ! parameters in this
message
 STRING PARAMETERS[0:1023]; !word 2 – the parameters
END;

The structure of each parameter in the PARAMETERS field:

param[0] = “n,” length in bytes of parameter name
param[1] FOR n = parameter name
param[n+1] = “v,” length in bytes of parameter value
param[n+2] FOR v = parameter value

VST042.VSD

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 12

Using INITIALIZER to Read Assign and
Param Messages

Using INITIALIZER to Read Assign and Param Messages
To request the TACL process to send all Assign and Param messages, your process
can again use the INITIALIZER procedure. In addition to reading the Startup message,
the INITIALIZER procedure reads the Assign and Param messages if bit 0 of the
flags parameter is set to zero (the default setting). As with the Startup message, you
can process the Assign or Param messages by supplying the name of a message-
processing procedure as a parameter in the call to INITIALIZER.

The following example reads the Startup message, requests and reads the Assign and
Param messages, and calls user-supplied procedures to process each of these
messages:

CALL INITIALIZER(!rucb!,
 !passthru!,
 START^PROC,
 PARAMS,
 ASSIGN^NAME);

The START^PROC procedure processes the Startup message. The PARAMS
procedure processes the Param message, and the ASSIGN^NAME procedure
processes Assign messages.

Processing Assign Messages
The following example requests, reads, and processes Assign messages. Here, the
process is expecting two assignments: one for the variable SERVER1 and one for the
variable SERVER2. A real program will usually also save the Startup message, if only
to apply the default values to the file names from the Assign messages.

This example includes two user-written procedures whose combined actions are
summarized as follows:

1. The main procedure calls the INITIALIZER procedure, passing it the name of the
procedure that will process the Assign messages.

2. The INITIALIZER procedure reads the Startup message and any Assign or Param
messages.

3. The INITIALIZER procedure calls the ASSIGN^NAME procedure for each Assign
message received.

4. The ASSIGN^NAME procedure checks the Assign message for a logical file name
of SERVER1 or SERVER2. If the logical file name is SERVER1, then the actual
file name supplied in the message is equated with the logical name SERVER1. If
the logical file name is SERVER2, then the actual file name is equated with
SERVER2.

5. Once all Assign messages have been processed, the INITIALIZER procedure
reads the Param message. Because no procedure is specified for processing the
Param message, its contents are ignored.

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 13

Processing Assign Messages

6. INITIALIZER returns control to the main procedure.

? INSPECT, SYMBOLS

!Global variables:
INT SERVER1[0:11]; !Names of two server
INT SERVER2[0:11]; ! processes

? NOLIST
? SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER)
? DATAPAGES = 2
? LIST

PROC ASSIGN^NAME(RUCB,
 ASSIGN^DATA,
 MESSAGE,
 LENGTH,
 MATCH) VARIABLE;

INT .RUCB,
 .ASSIGN^DATA,
 .MESSAGE,
 LENGTH,
 MATCH;

BEGIN
 STRING .SMESSAGE := @MESSAGE '<<' 1; !Byte pointer to
 ! Assign message

! If the logical file in the message is "SERVER1," then
! the SERVER1 file name is set equal to the Tandem file
! name provided in the message:

 IF (SMESSAGE[35] = "SERVER1") AND (SMESSAGE[34] = 7)
 THEN SERVER1 ':=' MESSAGE[35] FOR 12;

! If the logical file is "SERVER2," then the SERVER2
! file name is set equal to the Tandem file name provided
! in the message:

 IF (SMESSAGE[35] = "SERVER2") AND (SMESSAGE[34] = 7) THEN
 SERVER2 ':=' MESSAGE[35] FOR 12;
END;

PROC INITIAL MAIN;
BEGIN
 CALL INITIALIZER(!rucb!,
 !passthru!,
 !startupproc!,
 !paramsproc!,
 ASSIGN^NAME);
END;

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 14

Processing the Param Message

Processing the Param Message
This example requests, reads, and processes a Param message. Here, the process
expects only one PARAM named P1. Again two user procedures perform the
processing as follows:

1. The main procedure calls INITIALIZER and supplies it with the name of the
procedure that processes Param messages.

2. The INITIALIZER procedure reads the Startup message and any Assign
messages.

3. The INITIALIZER procedure reads the Param message and calls the PARAMS
procedure.

4. The PARAMS procedure scans the Param message looking for the parameter
name P1. When it finds the P1 parameter, it returns the parameter value to a
global variable along with the parameter length.

Note that if you wanted to retrieve more parameter values from the Param
message, you would start the scan again for each additional parameter.

? INSPECT, SYMBOLS

!Global variables:
STRING .PARAM1[0:255]; !parameter value
INT PARAM1^LEN; !parameter length
INT PARAM1^PRESENT; != 1 if P1 present, 0 if not
 ! present

? NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS(INITIALIZER)
? LIST

PROC PARAMS(RUCB,
 PARAM^DATA,
 MESSAGE,
 LENGTH,
 MATCH) VARIABLE;

INT .RUCB,
 .PARAM^DATA,
 .MESSAGE,
 LENGTH,
 MATCH;

BEGIN
 INT NUMPAR, I; !number of parameters in Param message
 STRING .PTR; !pointer to Param message

! Get the number of parameters in the message:

 NUMPAR := MESSAGE[1];

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 15

Processing the Param Message

! Point to the first parameter:

 @PTR := @MESSAGE[2] '<<'1;

! Set global value to false to indicate no P1 found yet:

 PARAM1^PRESENT := 0;

! Loop for each parameter until P1 found:

 FOR I := 1 TO NUMPAR DO
 BEGIN

 ! If length and name match then P1 found:

 IF PTR = 2 AND PTR[1] = "P1" THEN
 BEGIN

 ! Advance the pointer to the value for P1:
 ! and save the value for P1 in the global PARAM1:

 @PTR := @PTR '+' PTR '+' 1;
 PARAM1 ':=' PTR[1] FOR PTR;

 ! Save the parameter length:

 PARAM1^LEN := PTR;

 ! Set the PARAM1^PRESENT flag to true:

 PARAM1^PRESENT := 1;
 RETURN;
 END;

 ! Skip the parameter name and parameter value
 ! then loop again to try the next parameter:

 @PTR := @PTR '+' PTR '+' 1;
 @PTR := @PTR '+' PTR '+' 1;
 END;
END;

PROC INITIAL MAIN;
BEGIN
 CALL INITIALIZER(!rucb!,
 !passthru!,
 !startupproc!,
 PARAMS);
 .
 .
END;

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 16

Setting a Timeout Value for INITIALIZER

Setting a Timeout Value for INITIALIZER
Normally, INITIALIZER waits 60 seconds for a startup sequence message to arrive on
$RECEIVE. If no message is received in that time, INITIALIZER times out, assuming
that the sending process has either terminated or is not going to send a startup
sequence. For most purposes, the 60-second default value is appropriate; however,
depending on expected system load, you might prefer to set the timeout interval to
some other value.

You use the timeout parameter to the INITIALIZER procedure to set the timeout
value. The supplied value is in units of 0.01 second. Choose the value carefully: small
values time out often, and large values cause INITIALIZER to wait for long periods of
time in cases where the sending process has terminated or does not send the
appropriate startup messages.

The following example sets the timeout interval to 120 seconds:

INT(32) TIMELIMIT;
 .
 .
TIMELIMIT := 12000D;
CALL INITIALIZER(!rucb!,
 !passthru!,
 !startupproc!,
 !paramproc!,
 !assignproc!,
 !flags!,
 TIMELIMIT);

Reading the Startup Sequence Without
INITIALIZER

To read the standard startup sequence of messages without using the INITIALIZER
procedure, your program must do the following:

1. Open $RECEIVE with a receive depth of 1 or more, to allow replies to be made to
the startup messages.

2. Read the Open message from $RECEIVE and reply to it with a reply code of 0.

3. Read the Startup message and process it (for example, by copying it into a global
area). Once you have processed the Startup message, you must take one of the
following actions if you want to receive the remaining messages (Assign and
Param messages) of the startup sequence:

• Reply to the Startup message with a reply code of 70, which instructs the TACL
process to continue sending the startup sequence of messages.

• Reply to the Startup message with a reply code of 0, but with a reply length
of four bytes. To receive Assign messages, bit 0 of the first byte must be 1.

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 17

Reading the Startup Sequence Without INITIALIZER

To receive Param messages, bit 1 of the first byte must be 1. All other bits
must be 0.

If you do not reply to the Startup message or if you reply with some other reply
code, then your process will receive no further startup sequence messages.

4. Read and process each Assign message if there are any and reply to each Assign
message with a reply code of 0.

5. Read the Param message if there is one, process it, and reply to it with a reply
code of 0.

6. If unexpected messages are received, the program must reply to them with the
reply code 100 and continue.

7. Read the Close message and close $RECEIVE.

The following sample procedure performs the above tasks using reply code 70 to
request Assign and Param messages.

PROC READ^STARTUP^SEQUENCE;
BEGIN
 STRING .RCV^NAME[0:ZSYS^VAL^LEN^FILENAME - 1];
 INT RCV^NUM,
 NAMELEN,
 .RCV^BUF[0:514],
 COUNT^READ,
 REPLY^CODE = 0,
 ERROR,
 S^PTR;
 LITERAL RCV^DEPTH = 1,
 RCV^COUNT = 1030,
 CLOSE^MSG = -104;

! Open $RECEIVE:

 RCV^NAME ':=' "$RECEIVE" -> @S^PTR;
 NAMELEN := @S^PTR '-' @RCV^NAME;
 ERROR := FILE_OPEN_(RCV^NAME:NAMELEN,
 RCV^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 RCV^DEPTH);
 IF ERROR <> 0 THEN ...;

! Read the Open message from $RECEIVE:

 CALL READUPDATE(RCV^NUM,RCV^BUF,RCV^COUNT,COUNT^READ);
 CALL FILE_GETINFO_(RCV^NUM,ERROR);
 IF ERROR <> 6 THEN CALL PROCESS_STOP_;

! Loop until Close message received

 WHILE RCV^BUF <> CLOSE^MSG DO
 BEGIN

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 18

Reading the Startup Sequence Without INITIALIZER

 CASE RCV^BUF OF
 BEGIN
 -1 -> BEGIN
 ! Process Startup message
 .
 .
 REPLY^CODE := 70;
 END;

 -2 -> BEGIN
 ! Process Assign message
 .
 .
 REPLY^CODE := 0;
 END;

 -3 -> BEGIN
 ! Process Param message
 .
 .
 REPLY^CODE := 0;
 END;
 ! Process illegal messages
 OTHERWISE->REPLY^CODE := 100;
 END;

 ! Reply to last message received:

 CALL REPLY(!buffer!,
 !write^count!,
 !count^written!,
 !message^tag!,
 REPLY^CODE);

 ! Read next message from $RECEIVE:

 CALL READUPDATE(RCV^NUM,RCV^BUF,RCV^COUNT,COUNT^READ);
 CALL FILE_GETINFO_(RCV^NUM,ERROR);
 IF ERROR <> 6 THEN CALL PROCESS_STOP_;
 END;

! Reply to Close message:

 CALL REPLY(!buffer!,
 !write^count!,
 !count^written!,
 !message^tag!,
 0);

! Close $RECEIVE:

 ERROR := FILE_CLOSE_(RCV^FNUM);
 IF ERROR <> 0 THEN ...
END;

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 19

Waking the TACL Process

Waking the TACL Process
The Wakeup message can be sent by an application process to the TACL process to
cause the TACL process to return to command-input mode. In command-input mode,
TACL prompts for commands.

You might want to use the Wakeup message for one of the following reasons:

• If a process takes BREAK ownership away from the TACL process and then
becomes unresponsive, pressing BREAK does not return control to the TACL
process because it no longer owns BREAK. In addition, the program that does
own BREAK is not checking for BREAK. In this case, you can run a program from
another terminal to send the TACL process the Wakeup message. The TACL
prompt then appears on the user’s terminal, allowing the user to continue.

See Section 10, Communicating With Terminals, for a discussion of the BREAK
key.

• Your program might initially interact with the user, then start some long processing
without user interaction. Before starting the long processing, your process could
send the TACL process a Wakeup message to allow the user to continue.

The Wakeup message is made up of one word containing a message code of -20:

To send the message code to the TACL process, you first need to open the TACL
process as you would any process. Then you write the Wakeup message to the
returned file number. The following example shows how:

?INSPECT, SYMBOLS
?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS(FILE_OPEN_,WRITE,
? DEBUG)
?LIST

PROC AWAKE^CI MAIN;
BEGIN

 LITERAL MAXLEN = 256;
 STRUCT WAKEUP^MSG;
 BEGIN
 INT MSGCODE;
 END;

 INT LENGTH; !length of CI name
 INT CI^NUM; !number of open CI file

Structure of the Wakeup message:

STRUCT WAKEUP^MSG;
BEGIN
 INT MSGCODE; !value -20
END;

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 20

Causing the TACL Process to Display Text

 STRING .CI^NAME[0:MAXLEN - 1]; !CI process name

! Set up the correct message code:

 WAKEUP^MSG.MSGCODE := -20;

! Open the TACL process:

 CI^NAME ':=' "$G55";
 LENGTH := 4;
 ERROR := FILE_OPEN_(CI^NAME:LENGTH,CI^NUM);
 IF ERROR <> 0 THEN CALL DEBUG;

! Write the Wakeup message to the TACL process:

 CALL WRITE(CI^NUM,WAKEUP^MSG,2);
 IF <> THEN CALL DEBUG;
END;

Causing the TACL Process to Display Text
You can cause a TACL process to display text on the terminal by sending a Display
message to it. The TACL process displays the text sent in the message before the
next command prompt.

The message code for the Display message is -21. The complete structure of the
message is shown below:

Note. The recommended way of determining the name of your creator process is to obtain its
process handle using the PROCESSPAIR_GETINFO_ procedure, then pass the process
handle to the PROCESSHANDLE_DECOMPOSE_ procedure to obtain the process name.
For brevity, however, the above example simply uses the hard-coded name. For information
about the PROCESSPAIR_GETINFO_ and PROCESSHANDLE_DECOMPOSE_ procedures,
see Section 16, Creating and Managing Processes, or the Guardian Procedure Calls
Reference Manual.

Display message structure:

STRUCT DISPLAY^MSG;
BEGIN
 INT MSGCODE; !value -21
 STRING TEXT[0:n-1]; !n <= 132
END;

Communicating With a TACL Process

Guardian Programmer’s Guide — 421922-014
8 - 21

Causing the TACL Process to Display Text

To make the TACL process display text, you must first open the TACL process as you
would any process, then write the Display message to the open file number. The
following example shows how:

?INSPECT, SYMBOLS
?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS(FILE_OPEN_,WRITE,
? DEBUG)
?LIST

PROC EGCI MAIN;
BEGIN

 LITERAL MAXLEN = 256;
 STRUCT .DISPLAY^MSG;
 BEGIN
 INT MSGCODE; !set to -31
 STRING TEXT[0:131]; !place holder for text
 END;

 INT LENGTH; !length of process file
 ! name
 INT CI^NUM; !file number of CI
 STRING .CI^NAME[0:MAXLEN - 1]; !file name of CI

! Fill in the display message with -21 for the message
! code and the text to be displayed:

 DISPLAY^MSG.MSGCODE := -21;
 DISPLAY^MSG.TEXT ':=' "Display this Text";

! Open the TACL process:

 CI^NAME ':=' "$G55";
 LENGTH := 4;
 ERROR := FILE_OPEN_(CI^NAME:LENGTH,CI^NUM);
 IF ERROR <> 0 THEN CALL DEBUG;

! Write the display message to the TACL process:

 CALL WRITE(CI^NUM,DISPLAY^MSG,19);
 IF <> THEN CALL DEBUG;
END;

Note. The recommended way of determining the name of your creator process is to obtain its
process handle using the PROCESSPAIR_GETINFO_ procedure, then pass the process
handle to the PROCESSHANDLE_DECOMPOSE_ procedure to obtain the process name.
For brevity, however, the above example simply uses the hard-coded name. For information
about the PROCESSPAIR_GETINFO_ and PROCESSHANDLE_DECOMPOSE_ procedures,
see Section 16, Creating and Managing Processes, or the Guardian Procedure Calls
Reference Manual.

Guardian Programmer’s Guide — 421922-014
9 - 1

9 Communicating With Devices
In addition to introducing some of the major features of the I/O subsystem, this section
discusses mechanisms that your program can use to communicate with devices in
general. These include:

• Device access through device names and logical device numbers

• Control through SETMODE, CONTROL, and SETPARAM procedure calls

• Access to device-specific status information such as device type

The information presented here provides an introduction to subsequent sections that
discuss communication with specific device types: Section 10, Communicating With
Terminals, provides details on communicating with terminals; Section 11,
Communicating With Printers, discusses access to printers; and Section 12,
Communicating With Magnetic Tape, provides information about communicating with
magnetic tape. Refer to the data communications manuals for information regarding
communication with other types of communications lines.

Overview of I/O Subsystem
Before this section discusses how to access and control devices, it is necessary for
you to understand some basic features of the I/O subsystem.

When your application program accesses a device, it does so with a call to the file
system. The file system sends a message to the I/O process that processes all
requests for the specified device.

Usually, two independent paths exist to each device to ensure that the device is always
accessible. Therefore, if any failure occurs within the system, at least one path to the
device is still operable.

Hardware and software work together to provide device fault tolerance in a way that is
invisible to the application process. Figure 9-1 shows the architectural components of
the system that support device fault tolerance.

The I/O process (IOP) contains the code that actually performs the operation on the
device. Note that two IOPs usually exist for the device: a primary IOP and a backup
IOP. Although only the primary IOP is active at any time, the backup is ready to
become the primary if for any reason the primary is unable to continue processing.

For devices that are configured for continuous availability, redundant hardware ensures
that a hardware path is always available to the device. Checkpointing between the
primary IOP and backup IOP makes sure that a backup IOP is always ready to
become the primary should the need arise.

Communicating With Devices

Guardian Programmer’s Guide — 421922-014
9 - 2

Addressing Devices

Addressing Devices
At system-generation time, each device is given a device name and a device number.
Refer to the appropriate system generation manual for details on how these names
and numbers are assigned.

Recall from Section 2, Using the File System, that you can use either the device name
or the logical device number to identify a device:

The device name can be up to 8 alphanumeric characters long: the first character must
be a dollar sign ($), and the second must be alphabetic. The logical device number is
a decimal number in the range 5 through 34492, and it is always preceded by a dollar
sign. (Logical device numbers 0 through 4 are reserved for operating-system
processes.)

Figure 9-1. Overview of the I/O Subsystem

[node-name.]{device-name|ldev-number}

VST043.VSD

Communicating With Devices

Guardian Programmer’s Guide — 421922-014
9 - 3

Accessing Devices

So how do you know the name of the device you want your program to communicate
with? It depends on the device in question. If you simply want to communicate with the
home terminal of the process, you can get the home terminal name using the
PROCESS_GETINFO_ procedure:

CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMINAL^NAME:MAXLEN,
 LENGTH);

To communicate with the IN or OUT file specified in the Startup message, get the file
name from the Startup message using the INITIALIZER procedure as described in
Section 8, Communicating With a TACL Process.

If you need to communicate with a specific terminal, you can find the name of the
terminal by issuing the WHO command on the terminal in question:

9> WHO
Home terminal: \SYS.$MASTER
 .
 .

For terminals you cannot physically access, or for printers, magnetic tape units, or any
other device, you should ask your system administrator for information about the
device names or logical device numbers configured on your system.

Accessing Devices
Device access is the same as for any file. However, you cannot create device files in
an application program. The files are created during system configuration along with
the device names and logical device numbers.

The basic actions of opening, closing, reading from, and writing to devices have
already been discussed in Section 2, Using the File System. In addition to these basic
operations, however, your program can also retrieve information about a specific
device; see Getting Device Information later in this section.

Communicating With Devices

Guardian Programmer’s Guide — 421922-014
9 - 4

Controlling Devices

Controlling Devices
You use the following procedures to control devices:

• CONTROL performs device-specific I/O operations like sending a form feed to a
printer or terminal or rewinding a magnetic tape.

• CONTROLBUF is similar to CONTROL in that it specifies operations to be
performed on a device. CONTROLBUF, however, also enables buffered data to be
passed to a device. For example, you can use CONTROLBUF to load the direct
access vertical format unit (DAVFU) of a subtype 4 printer.

• SETMODE provides several options for setting the operational mode of a device;
for example, the security level for future disk accesses, parity checking on a
terminal, the form length for a printer, or the packet size for an X.25
communications line.

• SETMODENOWAIT provides the same functions as SETMODE but returns to the
caller immediately. SETMODENOWAIT finishes with a call to AWAITIO in the
same way as any other nowait operation. Refer to Section 4, Using Nowait
Input/Output, for details of nowait I/O.

• SETPARAM is concerned with setting and getting parameters for controlling data
communications lines, and for establishing BREAK ownership for a terminal.

For complete details of command syntax for the above procedures, see the Guardian
Procedure Calls Reference Manual. This guide primarily describes CONTROL and
SETMODE (or SETMODENOWAIT). For programming information on the SETPARAM
procedure, refer to the data communications manuals.

SETMODE usually sets a condition within which a device will operate; the condition
remains in effect as long as the file remains open or until the condition is changed with
another call to SETMODE. CONTROL performs an operation on a device. For
example, you use the SETMODE procedure to set the form length for a printer;
SETMODE sets the condition. But to actually issue a form-feed character, you use the
CONTROL procedure.

The next three sections of this manual describe how SETMODE and CONTROL are
used to control terminals, printers, and magnetic tape drives. Specific examples are
given there, since use of these procedures is specific to the device type.

For information on the use of SETMODE and CONTROL with other data
communications lines, refer to the data communications manuals.

Communicating With Devices

Guardian Programmer’s Guide — 421922-014
9 - 5

Getting Device Information

Getting Device Information
On D-series systems, you can obtain detailed information about devices either by
supplying a logical device number to the DEVICE_GETINFOBYLDEV_ procedure or
by supplying a device name to the DEVICE_GETINFOBYNAME_ procedure.
DEVICE_GETINFOBYLDEV_ also has the option of searching for the next logical
device number above the one specified.

On G-series systems, you can use CONFIG_GETINFO_BYNAME2_ and
CONFIG_GETINFO_BYLDEV2_ procedures, respectively.

The information returned by each pair of procedures is similar. In either case, you can
obtain logical device information or physical device information about the primary and
backup I/O processes.

Logical information returned by the device-information procedures includes (but is not
limited to) the following:

• The logical device number of the device for which information is being returned.
This information is most useful when using the search option of the
DEVICE_GETINFOBYLDEV_ procedure.

• The CPU number and process identification number (PIN) for the primary and
backup I/O processes that control access to the specified device.

• The device type and subtype.

For a complete list of logical information, see the Guardian Procedure Calls Reference
Manual.

Physical information returned for the primary and backup I/O processes includes (but is
not limited to):

• A file-system error number returned by the I/O process.

• Subtype information about both halves of a mirrored disk.

• Path information about each potential path to the I/O device, indicating whether the
path is currently configured, whether it is currently in use by the I/O process, and
its operational status.

For a complete list of physical information, see the Guardian Procedure Calls
Reference Manual.

The following example uses the DEVICE_GETINFOBYLDEV_ procedure to return
logical and physical information about all configured devices. It does this by searching
on a logical device number as indicated earlier. To do this, you set bit 15 of the
options parameter to 1.

Communicating With Devices

Guardian Programmer’s Guide — 421922-014
9 - 6

Getting Device Information

!Data structure for returned logical device information:
STRUCT .LOGICAL^INFO;
BEGIN
 INT(32) LDEV; !logical device number
 INT PRIMARY^CPU; !CPU where primary I/O process runs
 INT PRIMARY^PIN; !PIN of primary I/O process
 INT BACKUP^CPU; !CPU where backup I/O process runs
 INT BACKUP^PIN; !PIN of backup I/O process
 INT TYPE; !device type
 INT SUBTYPE; !device subtype
 INT RECORD^SIZE; !record length in bytes
 INT FLAGS; !<1> set if device is TMF audited
 !<2> set if device dynamically
 ! configured
 !<3> set if logically demountable
 !<4> set if device has subdevices
 ! that can be opened
END;

!Template structure for physical device information:
STRUCT PHYSICAL^INFO (*);
BEGIN
 INT STATUS; !file-system error number from IOP
 INT PRIMARY^SUBTYPE; !device subtype of primary half of
 ! mirrored disk
 INT MIRROR^SUBTYPE; !device subtype of mirrored half of
 ! mirrored disk
 INT FLAGS; !<1> set if device has physical
 ! devices
 !<2> set if current primary IOP
 STRUCT PATH0; !substructure for path 0
 BEGIN
 INT FLAGS; !<1> set if path configured
 !<2> set if path currently in use by
 ! IOP
 INT CHANNEL; !channel number of path
 INT CONTROLLER; !controller number of path
 INT UNIT; !unit number of path
 INT STATE; !operational status of path
 END;
 STRUCT PATH1; !substructure for path 1
 BEGIN
 INT FLAGS;
 INT CHANNEL;
 INT CONTROLLER;
 INT UNIT;
 INT STATE;
 END;

Communicating With Devices

Guardian Programmer’s Guide — 421922-014
9 - 7

Getting Device Information

 STRUCT PATH2; !substructure for path 2
 BEGIN
 INT FLAGS;
 INT CHANNEL;
 INT CONTROLLER;
 INT UNIT;
 INT STATE;
 END;
 STRUCT PATH3; !substructure for path 3
 BEGIN
 INT FLAGS;
 INT CHANNEL;
 INT CONTROLLER;
 INT UNIT;
 INT STATE;
 END;
END;

!Variables for DEVICE_GETINFOBYLDEV_ procedure:
INT ERROR,
 LOGICAL^DEVICE, !logical device number
 .L^INFO[0:9], !logical device information
 L^INFO^MAXLEN, !length of output buffer
 L^INFO^LEN, !length in bytes of returned data
 .P^INFO[0:23], !primary IOP information
 P^INFO^MAXLEN, !length of output buffer
 P^INFO^LEN, !length in bytes of returned data
 .B^INFO[0:23], !backup IOP information
 B^INFO^MAXLEN, !length of output buffer
 B^INFO^LEN, !length in bytes of returned data
 OPTIONS; !options parameter

!Data structure for returned physical device information
!related to primary IOP:
STRUCT .PHYSICAL^PRIMARY^INFO (PHYSICAL^INFO);

!Data structure for returned physical device information
!related to backup IOP:
STRUCT .PHYSICAL^BACKUP^INFO (PHYSICAL^INFO);

 .
 .

!Set the maximum lengths of the logical, primary, and backup
!buffers for returned information
L^INFO^MAXLEN := $LEN(LOGICAL^INFO);
P^INFO^MAXLEN := $LEN(PHYSICAL^PRIMARY^INFO);
B^INFO^MAXLEN := $LEN(PHYSICAL^BACKUP^INFO);

Communicating With Devices

Guardian Programmer’s Guide — 421922-014
9 - 8

Additional Device Information (G-series Only)

!Set the search option, starting from logical device
!number 0:
OPTIONS.<15> := 1;
LOGICAL^DEVICE := 0;

!Loop until no more logical device numbers:
WHILE ERROR <> 4 DO
BEGIN

 !Get the device information:
 ERROR := DEVICE_GETINFOBYLDEV(
 LOGICAL^DEVICE;
 L^INFO,L^INFO^MAXLEN,L^INFO^LEN,
 P^INFO,P^INFO^MAXLEN,P^INFO^LEN,
 B^INFO,B^INFO^MAXLEN,B^INFO^LEN,
 !timeout!,
 OPTIONS);

 !Copy device information into prepared data structures:
 LOGICAL^INFO ':=' L^INFO FOR (L^INFO^LEN/2);
 PHYSICAL^PRIMARY^INFO ':=' P^INFO FOR (P^INFO^LEN/2);
 PHYSICAL^BACKUP^INFO ':=' B^INFO FOR (B^INFO^LEN/2);
 .
 .
END;
 .
 .

Additional Device Information (G-series Only)
Some G-series processes support a new interface for obtaining more device
information than was available through the D-series DEVICE_GETINFOBYLDEV_ and
DEVICE_GETINFOBYNAME_ procedures. This interface consists of a client calling
the CONFIG_GETINFO_BYNAME2_ and CONFIG_GETINFO_BYLDEV2_
procedures, and the device returns information to a system message in response to
the call.

In addition to providing information that is common to all types of devices (such as
device type and subtype), the new interface allows devices to optionally define and
return their own device-dependent information.

Communicating With Devices

Guardian Programmer’s Guide — 421922-014
9 - 9

Additional Device Information (G-series Only)

The following C program shows how the CONFIG_GETINFO_BYNAME2_ procedure
can be used to obtain device information for an arbitrary process, in this case
"$EXMPL." This program assumes that the device $EXMPL provides a type for its
device-specific information in "example.h" called example_specific_info_type. Other
devices either return no device-specific information, or return device-specific
information in formats that the programmer specifies.

#include <cextdecs>
#include <stdio.h>
#include <string.h>
#include "zsysc"
#include “example.h”
int main()

{

 char device_name[] = "$EXMPL";
 zsys_ddl_config_getinfo2_def common_info; /* device-independent info */
 example_specific_info_type specific_info; /* device-dependent info */
 short common_len, specific_len; /* returned sizes of device *
 * information */
 long error, error_detail;
 error = CONFIG_GETINFO_BYNAME2_

 (device_name /* Name of device to query */
 ,strlen(device_name) /* .. and it's length */
 ,(short *)&common_info /* Buffer to hold device-independent info */
 ,sizeof(common_info) /* .. and it's size */
 ,&common_len /* .. actual size returned by device */
 ,(char *)&specific_info /* Buffer to hold $EXMPL-specific info */
 ,sizeof(specific_info) /* .. and it's size */
 ,&specific_len /* .. actual size returned by device */
 ,2000 /* Wait at most 20 seconds before timeout */
 ,&error_detail /* More error information */
);

 if(error == 1)
 printf("Filesystem error %d returned\n",error_detail);
 else if(error == 2)
 printf("Parameter %d was invalid\n",error_detail);
 else if(error == 3)
 printf("Parameter %d failed bounds check\n",error_detail);
 else if(error == 4 && error_detail == -1)
 printf("Device returned invalid data to getinfo request\n");
 else if(error == 4)
 printf("Device returned error %d to getinfo request\n",error_detail);
 else {
 /* No error, common_info and specific info now contain valid data
 * of lengths common_len and specific_len */

 }

Communicating With Devices

Guardian Programmer’s Guide — 421922-014
9 - 10

Additional Device Information (G-series Only)

To support the interface for CONFIG_GETINFO_BYNAME2_ procedure or
CONFIG_GETINFO_BYLDEV2_ procedure, a device must be coded to handle a new
system message from $RECEIVE (-147: ZSYS_VAL_SMSG_CONFIGINFO). The
format of this system message is defined in zsysc by the
zsys_ddl_smsg_configinfo2_def type. The reply from a device that supports these
procedures is expected to have a zsys_ddl_smsg_confinf_reply_def format.

The following code fragment demonstrates how a subsystem might be enhanced to
support the CONFIG_GETINFO calls in its $RECEIVE message-handling code.
Effectively, the code simply receives a message from $RECEIVE, and branches to the
code to handle specific types of system messages. To handle the
ZSYS_VAL_SMSG_CONFIGINFO request, the fields of a
zsys_ddl_smsg_confinf_reply_def are filled with appropriate values for the device, and
REPLYX is called to reply to the request. For more information on processing system
messages, see Processing System Messages and Section 9, Communicating With
Devices.

{

 short replyerr;
 zsys_ddl_smsg_configinfo2_def *ci2req;
 zsys_ddl_smsg_confinf_reply_def cireply;
 _cc_status cc;

 /* ... code to receive system messages */
 cc = READUPDATEX(recv_fnum, (char *)message, (short)sizeof(message),&len);
 /* ... */

 switch(message[0]) {
 case ZSYS_VAL . . . :
 /* ... other system message types */

 case ZSYS_VAL . . . :

 /* ... other system message types */

 case ZSYS_VAL_SMSG_CONFIGINFO: /* CONFIG_GETINFO_ request */
 ci2req = (zsys_ddl_smsg_configinfo2_def *)message;
 if(ci2req->z_msgversion != ZSYS_VAL_SMSG_CONFIGINFO_VERS2){
 cc = REPLYX(,,,,FEBADOP);
 /* . . . */

 }

 else {
 cireply.z_msgnumber = ci2req->z_msgnumber;
 cireply.z_msgversion = ci2req->z_msgversion;
 cireply.z_device_type = /* --<-- */ ;
 cireply.z_device_subtype = /* --<-- */ ;
 cireply.z_device_record_size = /* --<-- */ ;
 cireply.z_logical_status = 0 /* --<-- */ ;
 strcpy(cireply.z_config_name, "CONFIG_EXAMPLE_PROC");
 cireply.z_config_name_len = strlen(cireply.z_config_name);
 strcpy(cireply.z_subsys_manager = "$MANAGR";
 cireply.z_subsys_manager_len = strlen(cireply.z_subsys_manager);
 PROCESSHANDLE_GETMINE_((short *)&cireply.z_primary_phandle);
 PROCESSHANDLE_NULLIT_((short *)&cireply.z_backup_phandle);
 cireply.z_specific_info_len = 0;
 cc = REPLYX((char *)&cireply /* buffer */
 , sizeof(cireply) /* write_count */
 , /* count_written */
 , /* message tag */
 , FEOK

Communicating With Devices

Guardian Programmer’s Guide — 421922-014
9 - 11

Additional Device Information (G-series Only)

);
 if(_status_ne(cc)) {
 short err;
 FILE_GETINFO_(g_recv_fnum, &err);
 printf("Warning! Error %d on reply to configinfo
 sysmsg\n",err);
 }
 return;
 }
 break;
 }
}

Guardian Programmer’s Guide — 421922-014
10 - 1

10
Communicating With Terminals

This section describes how an application process can communicate with a terminal
using file-system procedure calls. The file system can communicate with any terminal
whose characteristics can be defined to the system through one of the programs that
can configure devices, such as the system-generation program, SYSGEN. Refer to
the System Generation Manual for Terminals and Printers.

Specifically, this section describes the following topics:

• How to access a terminal: how to open a terminal and how to perform I/O with an
open terminal

• How to communicate with a terminal in conversational mode

• How to communicate with a terminal in page mode

• How to manage the BREAK key

• How to recover from errors

For a complete discussion of the programmatic interface to a terminal, refer to the
appropriate terminal manual; for example, the 653X Multi-Page Terminal Programmer’s
Guide.

Accessing a Terminal
This subsection discusses how to perform basic I/O operations with a terminal as well
as how to control general terminal characteristics. The following topics are discussed:

• How to open a terminal for access

• How to transfer data between a computer system and a terminal

• How to time out a user response

• How to control text echo to the terminal

• How to set the mode of data transfer: conversational or page mode

• How to terminate terminal access

The use of the BREAK key is not discussed here. The BREAK key is described later in
this section in Managing the BREAK Key.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 2

Accessing a Terminal

You access a terminal the same way as you would any file, by using procedure calls to
the file system. You use the following procedure calls to perform the indicated tasks
with terminals:

AWAITIO[X] Waits for completion of outstanding I/O operations
that are pending on the open terminal.

CANCEL Cancels the oldest outstanding operation on an open
terminal.

CANCELREQ Cancels a specified operation on an open terminal.

CONTROL Controls forms movement and modem connection
and disconnection. Table 10-1 provides a summary.

FILE_GETINFOBYNAME_ Provides the device type and configured record
length of the device specified by name.

FILE_CLOSE_ Stops access to an open terminal.

FILE_GETINFO_ Provides error information and characteristics about
an open terminal.

FILE_OPEN_ Establishes communication with a terminal.

PROCESS_GETINFO_ Returns the name of the home terminal of the
process.

READ[X] Waits for and receives information typed at an open
terminal.

SETMODE Sets and clears terminal-related functions.
Table 10-2 provides a summary.

SETMODENOWAIT Acts the same as SETMODE, but the terminal
functions are applied in a nowait manner.

SETPARAM Establishes BREAK key ownership.

WRITE[X] Sends information to an open terminal.

WRITEREAD[X] Writes to an open terminal, then waits for data to be
read from the same terminal.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 3

Accessing a Terminal

Table 10-1 summarizes all CONTROL operations that affect terminal operation.

On return from one of the calls listed in Table 10-1, the condition code should be CCE
if the CONTROL operation was successful. A condition code of CCL indicates an
error.

Table 10-2 summarizes all SETMODE functions that relate to terminal operation.

Table 10-1. Terminal CONTROL Operations

CONTROL
Number Operation

 1 Provides forms control

11 Specifies a wait for a modem connection

12 Disconnects a modem

Table 10-2. Summary of Terminal SETMODE Functions

SETMODE
Number Function

 6 Sets system spacing control

 7 Sets system auto line feed after receipt of line-termination character

 8 Sets the system transfer mode (page mode or conversational mode)

 9 Sets the interrupt characters

 10 Sets parity checking

 11 Sets BREAK ownership (SETPARAM function 3 also sets BREAK mode)

 12 Sets the terminal access mode for normal mode or BREAK mode

 13 Sets system read termination following receipt of ETX character

 14 Sets system read termination following receipt of an interrupt character

 20 Sets echo mode

 22 Sets the terminal baud rate

 23 Sets the number of bits that specify one character

 24 Sets parity generation

 27 Sets system spacing mode

 28 Resets configured values

 38 Sets special line-termination mode and the new line-termination interrupt
character

 67 Enables or disables AUTODCONNECT for full-duplex modems

110 Enables or disables shift in, shift out mode

113 Sets the screen size

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 4

Opening a Terminal

On return from a call to SETMODE for one of the calls listed in Table 10-2, the
condition code should be CCE if the function was performed successfully. A condition
code of CCL indicates an error. A condition code of CCG indicates that the attempted
SETMODE function is invalid for the type of device.

Once you change the mode of terminal using one of these SETMODE functions, the
change remains in effect for all processes that use the terminal until you revoke the
change by issuing another call to the SETMODE procedure.

You can use the last-params parameter of the SETMODE procedure to obtain the
previous settings associated with a function.

For complete details on any of the procedures, CONTROL operations, and SETMODE
functions listed here, refer to the Guardian Procedure Calls Reference Manual.

Opening a Terminal
You establish communication with a terminal the same way as you would for any file,
by issuing a call to the FILE_OPEN_ procedure. You must supply the FILE_OPEN_
procedure with the terminal name. FILE_OPEN_ returns a file number that you use to
make subsequent access to the terminal.

The most common way of opening a terminal is by opening the IN and OUT files
whose names are supplied in the Startup message. A less useful approach is to open
the home terminal of the process. These operations are described below. Note,
however, that opening terminals is not limited in this way; you can open any terminal
that you know the name or logical device number of.

Multiple concurrent opens for a terminal are permitted but limited depending on which
driver controls the terminal.

Opening the IN and OUT Files
Usually, the only terminals that an application needs to open are those terminals
named in the Startup message as the IN file and the OUT file. For example, if you
have saved your Startup message in a structure called CI^STARTUP as described in
Section 8, Communicating With a TACL Process, you would open your IN and OUT
files as follows. Note that the Startup message provides 12-word file names
compatible with C-series systems. To convert these file names into D-series file
names, you can use the OLDFILENAME_TO_FILENAME_ procedure.

LITERAL MAXLEN = 256;
STRING IN^TERMNAME[0:MAXLEN - 1];
STRING OUT^TERMNAME[0:MAXLEN - 1];
INT INFILE^LENGTH, OUTFILE^LENGTH;

STRUCT .CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULT;
 BEGIN

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 5

Opening a Terminal

 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FNAME[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FNAME[0:3];
 END;
 STRING PARAM[0:529];
END;

! Convert the C-series file name into a D-series file name:

 ERROR := OLDFILENAME_TO_FILENAME_(CI^STARTUP.INFILE,
 IN^TERMNAME:MAXLEN,
 INFILE^LENGTH);

! Open the IN file:

 ERROR := FILE_OPEN_(IN^TERMNAME:INFILE^LENGTH,
 IN^TERMNUM);
 IF ERROR <> 0 THEN ...

! Convert the C-series file name into a D-series file name:

 ERROR := OLDFILENAME_TO_FILENAME_(CI^STARTUP.OUTFILE,
 OUT^TERMNAME:MAXLEN,
 OUTFILE^LENGTH);

! Open the OUT file:

 ERROR := FILE_OPEN_(OUT^TERMNAME:OUTFILE^LENGTH,
 OUT^TERMNUM);
 IF ERROR <> 0 THEN ...

Note. The IN file and OUT file names are not necessarily terminal names. They can be any
valid file name as defined for C-series systems.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 6

Transferring Data Between Application and Terminal

Opening the Home Terminal
To open the home terminal (the terminal that starts the application), you can find out
the name of the terminal using the PROCESS_GETINFO_ procedure. The
PROCESS_GETINFO_ procedure returns the terminal name and the name length.
You pass both of these parameters to the FILE_OPEN_ procedure.

ERROR := PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERMINAL^NAME:MAXLEN,
 LENGTH);
IF ERROR <> 0 THEN ...

ERROR := FILE_OPEN_(TERMINAL^NAME:LENGTH,
 TERMNUM);
IF ERROR <> 0 THEN ...

Transferring Data Between Application and Terminal
Use the WRITE[X], READ[X], and WRITEREAD[X] procedures to transfer information
between the application program and the terminal. The following paragraphs describe
how to do this.

Writing to a Terminal
Use the WRITE[X] procedure to write to a terminal as you would any file:

SBUFFER ':=' "Some text to display on the terminal "
 -> @S^PTR;
CALL WRITEX(TERMNUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

The above example writes the text placed into the string buffer to the terminal. The
WRITEX procedure usually appends a carriage return/line feed sequence to the
specified bytes.

Reading From a Terminal
Use the READ[X] procedure to read from a terminal:

CALL READX(TERMNUM,
 SBUFFER,
 BUFSIZE,
 COUNT^READ);
IF <> THEN ...

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 7

Transferring Data Between Application and Terminal

Here, the application process reads up to BUFSIZE (the size of SBUFFER) characters
into the buffer and returns the number actually read in the variable COUNT^READ. On
issuing the READX procedure call, the process waits for the read operation to finish,
which is an indefinite time. The read operation finishes when one of the following
conditions is satisfied:

• The user issues the line-termination or page-termination character (usually
associated with the RETURN key).

• The number of characters specified in BUFSIZE have been read.

Pressing CONTROL/Y or pressing the BREAK key also has the effect of terminating
the input.

Writing to and Reading From a Terminal in One Operation
Use the WRITEREADX procedure to ensure that the system is ready to receive data
from the terminal immediately after you write to the terminal. This feature is useful
when conversationally prompting a terminal user for input. The WRITEREADX
procedure combines a write operation and a read operation in one procedure call.

The following example prompts the terminal user with a colon and then waits for the
reply. Note that the same buffer is used for the prompt as for the reply.

SBUFFER ':=' ": ";
WCOUNT := 1;
CALL WRITEREADX(TERMNUM,
 SBUFFER,
 WCOUNT,
 BUFSIZE,
 COUNT^READ);

IF <> THEN ...

This example writes one character (the colon) from the buffer to the terminal. The
application then waits for a response from the terminal. The response in this case is
either BUFSIZE characters of data or fewer than BUFSIZE characters terminated by
the user pressing the line-termination or page-termination key (usually the carriage
return).

Note that WRITEREADX does not issue a carriage return/line feed sequence after the
write operation. The prompt and the response therefore appear on the same line of
the terminal.

The WRITEREADX procedure is also useful for issuing control commands to the
terminal. For example, you can read the seven-character cursor address from a
terminal by issuing an escape sequence as follows:

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 8

Timing Out Terminal Response

SBUFFER ':=' [%33,"a",%21] -> @S^PTR;
WCOUNT := @S^PTR '-' @SBUFFER;
CALL WRITEREADX(TERMNUM,
 SBUFFER,
 WCOUNT,
 BUFSIZE,
 COUNT^READ);
IF <> THEN ...

After the WRITEREADX procedure finishes, SBUFFER contains the seven-character
cursor address and 7 is returned in COUNT^READ.

Timing Out Terminal Response
Operations with terminals require human response and therefore can take an indefinite
time. You can use the timelimit parameter of the AWAITIOX procedure to ensure
that the operation is completed within a given period of time. To do this, you must have
the terminal open to permit nowait I/O.

The following example prompts a user for an account number. If no response is
received within five minutes, the user is prompted again:

DEFINE FIVE^MINUTES = 30000D#;
LITERAL TIMEOUT = 40;
INT ERROR, .SBUFFER[0:599];
 .
 .
WHILE PROMPT = YES DO
BEGIN
 PROMPT := NO;
 SBUFFER ':=' "Please Enter Account Number" -> @S^PTR;
 CALL WRITEREADX(TERMNUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER,
 BUFSIZE ,
 COUNT^READ);
 IF <> THEN ...
 CALL AWAITIOX(TERMNUM,
 !buffer^address!,
 COUNT^READ,
 TAG,
 FIVE^MINUTES);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TERMNUM,
 ERROR);
 IF ERROR = TIMEOUT THEN PROMPT = YES
 ELSE
 END;
END;

The above program issues the prompt “Please Enter Account Number” every five
minutes until the operator responds.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 9

Echoing Text to the Terminal

Echoing Text to the Terminal
When a user types text at a terminal, the text usually appears on the screen as it is
typed; that is, the text is echoed. Sometimes it is useful, however, for text to be
hidden; for example, when typing in a password. For terminals that are operating in
conversational mode and have terminal echo mode configured at system-generation
time, you can control whether text is echoed.

Use SETMODE function 20 to programmatically control echo mode. The following call
turns off echo mode:

LITERAL ECHO^MODE = 20,
 OFF = 0;
 .
 .
CALL SETMODE(TERMNUM,
 ECHO^MODE,
 OFF);
IF <> THEN ...

To turn echo mode back on again:

LITERAL ON = 1;
 .
 .
CALL SETMODE(TERMNUM,
 ECHO^MODE,
 ON);
IF <> THEN ...

Setting the Transfer Mode
Each terminal has a default transfer mode configured for it at system-generation time.
The mode is either conversational or page. Terminals operating in conversational
mode transfer each character, as typed, to the system buffers. A file transfer is
terminated when a line-termination character (usually a carriage return) is received by
the system.

Terminals operating in page mode store each character, as typed, in an internal buffer.
The entire block of characters is transferred as one continuous stream. The transfer is
usually started when the user presses the ENTER (or SEND or XMIT) key. The file
transfer terminates when a page-termination character (usually a carriage return or
ETX character) is received by the computer system.

You can override the transfer mode set at system-generation time through a call to the
SETMODE procedure with function 8. The following example sets conversational
mode:

LITERAL MODE = 8,
 CONVERSATIONAL = 0;
 .
 .
CALL SETMODE(TERMNUM,

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 10

Terminating Terminal Access

 MODE,
 CONVERSATIONAL);
IF <> THEN ...

To set page mode:

LITERAL PAGE = 1;
 .
 .
CALL SETMODE(TERMNUM,
 MODE,
 PAGE);
IF <> THEN ...

Conversational and page modes of operation are described in detail later in this
section.

Terminating Terminal Access
You terminate access to a terminal as you would for any other file, either by stopping
the process or by calling the FILE_CLOSE_ procedure:

ERROR := FILE_CLOSE_(TERMNUM);
IF ERROR <> 0 THEN ...

Communicating in Conversational Mode
When a terminal operates in conversational mode, each character is transferred to the
I/O buffer in the computer system as soon as it is typed. The read operation (or file
transfer) terminates when a line-termination character is entered at the terminal.
Figure 10-1 shows this concept.

Once the controller detects the line-termination character and notifies the I/O process,
the read operation finishes by transferring the received data into the application buffer
through the file-system buffer. The file-system and I/O buffers are released as soon as
the read finishes.

Figure 10-1. Conversational Transfer Mode

VST044.VSD

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 11

Using the Line-Termination Character

Using the Line-Termination Character
A default line-termination character is configured for each terminal at system-
generation time. It is usually a carriage return. You can set the line-termination
character to any character you like using function 9 of the SETMODE procedure (see
Setting the Interrupt Characters for Conversational Mode later in this subsection).

An example explains how the line-termination mechanism works. Suppose a program
issues a READX procedure call with a read count of BUFSIZE:

CALL READX(TERM^NUM,
 SBUFFER,
 BUFSIZE,
 COUNT^READ);

Then the user types the following information:

Now is the timeCR

initial cursor position

Following the read operation, the application buffer contains “Now is the time” in its first
17 bytes, and 17 is returned in the COUNT^READ variable.

At the terminal, the carriage return typically triggers a carriage return/line feed
sequence. Some terminals provide this feature automatically. For terminals that do
not provide this feature, the system sends the terminal a line feed character on receipt
of a carriage return. The system is configured to do this. You can use function 7 of the
SETMODE procedure to control whether the system sends the line feed character.

The following call causes the file system to send the line feed character automatically
on receipt of a carriage return from the terminal:

LITERAL LINE^FEED = 7,
 ON = 1;
 .
 .
CALL SETMODE(TERM^NUM,
 LINE^FEED,
 ON);

The following call turns off automatic line feed:

LITERAL OFF = 0;
 .
 .
CALL SETMODE(TERM^NUM,
 LINE^FEED,
 OFF);

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 12

Setting the Interrupt Characters for Conversational
Mode

If the user responds to the READX call by entering only a carriage return, then the
contents of the application buffer remain unchanged, zero is returned in
COUNT^READ, and the file system issues a line feed to the terminal:

CR

initial cursor position

Recall that a read operation also terminates when the specified read-count is
satisfied. Suppose your program issues the following procedure call:

RCOUNT := 10;
CALL READX(TERMNUM,
 SBUFFER,
 RCOUNT,
 COUNT^READ);

Now the user types 10 characters without issuing a carriage return:

Now is the

initial cursor position

“Now is the” is returned in the buffer, and 10 is returned in COUNT^READ. The
terminal sends no carriage return, therefore it receives no line feed.

Setting the Interrupt Characters for Conversational Mode
Four programmable interrupt characters are used to cause special actions when
encountered. The system-defined default values of these characters are as follows:

These default values, as summarized in Figure 10-2, apply to a terminal when first
opened in conversational mode or when the access mode of the terminal is changed
from page mode to conversational mode using SETMODE function 8. The following
paragraphs describe the effects of the backspace, line cancel, and end-of-file
characters. The line-termination character was described earlier in Using the Line-
Termination Character.

Figure 10-2 summarizes the interrupt characters that apply to the conversational mode
of operation.

Backspace ASCII code %10

Line cancel ASCII code %30

End-of-file ASCII code %31

Line termination configured

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 13

Setting the Interrupt Characters for Conversational
Mode

Using the Backspace Character
The backspace character permits the user to back up and then reenter one or more
mistyped characters. The specific action involved depends on the type of terminal.
Typically, on video terminals the cursor is backspaced one position for each backspace
received. On hard-copy devices that can backspace, a line feed and a backspace are
issued for the first backspace received, and a single backspace is issued for each
subsequent backspace received. On hard-copy devices that do not backspace, a
backslash (\) is printed for each backspace entered.

Backspacing is invisible to the application program, because the read operation is not
yet complete. In other words, the data eventually returned to the application has
already been edited to reflect the changes intended by the backspacing. The terminal
I/O process handles the backspacing.

Using the Line-Cancel Character
The line-cancel character permits the user to cancel the current line and reenter it.
When the file system receives the line-cancel character, the system writes an “@”
character, followed by a carriage return and a line feed (CRLF) to the terminal.

Line cancel is invisible to the application program. When the read from the terminal
eventually finishes, everything entered before the line-cancel character has already
been discarded and the only data returned to the application are the characters that
were typed after the line-cancel character was entered.

Figure 10-2. Conversational-Mode Interrupt Characters—Default Values

VST118.VSD

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 14

Setting the Interrupt Characters for Conversational
Mode

Using the End-of-File Character
The end-of-file character permits a user to signal an application process that no more
data will be entered. When the file system receives the end-of-file character, the
current file operation is considered to be complete. No data is transferred into the
application program’s buffer area, the count-read parameter returns 0, and the
condition code indicator is set to CCG. The system writes an “EOF!CRLF” character
sequence to the terminal.

Programming the Interrupt Characters
You can change any of the interrupt characters for special applications using
SETMODE function 9 as shown in Figure 10-3. The backspace and line-cancel
characters are replaced by the upper and lower bytes, respectively, of parameter 1,
while the end-of-file and line-termination characters are replaced by the upper and
lower bytes, respectively, of parameter 2.

Receipt of any interrupt character other than the system-defined interrupt characters
always has the same effect, regardless of which interrupt character it replaces:

• The system considers the operation to be complete.

• The application program receives the interrupt character in the buffer along with
the line image (if any).

• The count-read parameter includes the interrupt character.

Figure 10-3. Changing Conversational-Mode Interrupt Characters

VST122.VSDVST122.VSD

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 15

Setting the Interrupt Characters for Conversational
Mode

The following example replaces the configured line-termination character with the line
feed character. The other interrupt characters remain unchanged:

LITERAL INTERRUPT^CHARACTERS = 9;
 .
 .
PARAM1 ':=' [%10,%30];
PARAM2 ':=' [%31,%12];
CALL SETMODE(TERM^NUM,
 INTERRUPT^CHARACTERS,
 PARAM1,
 PARAM2);
IF <> THEN ...

The user now terminates each line with line feed instead of carriage return. The line
feed character is always transmitted to the application buffer and is counted in the
value returned in the count-read parameter.

Setting Transparent Mode
You can force the file system to ignore interrupt characters and have them simply
passed on to the application as any other character. This is the transparent mode.
You select transparent mode by issuing a SETMODE procedure call with function 14.
The following procedure call turns on transparent mode:

LITERAL TRANSPARENT^MODE = 14,
 ON = 0;
 .
 .
CALL SETMODE(TERMNUM,
 TRANSPARENT^MODE,
 ON);
IF <> THEN ...

The following call turns off transparent mode:

LITERAL OFF = 1;
 .
 .
CALL SETMODE(TERMNUM,
 TRANSPARENT^MODE,
 OFF);
IF <> THEN ...

Once transparent mode is operative, READ and WRITEREAD operations terminate
only when the read-count is satisfied.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 16

Controlling Forms Movement

Controlling Forms Movement
The SETMODE and CONTROL procedures explicitly control forms movement in
conversational mode.

Controlling Spacing
Use SETMODE function 6 to change between single spacing and no spacing when
writing data to the terminal. In single spacing the system appends a carriage
return/line feed sequence to each write operation. No spacing gives you the option of
not sending a carriage return/line feed sequence; if you choose not to send the
carriage return/line feed sequence, then successive writes appear on the same line.
Single spacing is the default spacing.

The following code turns off single spacing and positions the cursor following the last
character written:

LITERAL SET^SPACE = 6,
 NO^SPACE = 0;
 .
 .
CALL SETMODE(TERMNUM,
 SET^SPACE,
 NO^SPACE);
IF <> THEN ...

The following code turns single spacing back on again:

LITERAL SPACE = 1;
 .
 .
CALL SETMODE(TERMNUM,
 SET^SPACE,
 SPACE);
IF <> THEN ...

Another reason for using no spacing would be if you needed to overprint on a hard-
copy terminal. By appending a carriage return character to the data to be written, you
can cause a carriage return without a line feed:

LITERAL SET^SPACE = 6,
 NO^SPACE = 0;
DEFINE TWO^TENTHS^OF^SECOND = 20D;
STRING .SBUFFER[0:511];
 .
 .
CALL SETMODE(TERMNUM,
 SET^SPACE,
 NO^SPACE);
IF <> THEN ...

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 17

Controlling Forms Movement

SBUFFER ':=' ["Denote blanks by b.",%015] -> @S^PTR;
CALL WRITEX(TERMNUM,
 SBUFFER,
 @S^PTR ‘-’ @SBUFFER);
IF <> THEN ...

CALL DELAY(TWO^TENTHS^OF^SECOND);

CALL SETMODE(TERMNUM,
 SET^SPACE,
 SPACE);
IF <> THEN ...

SBUFFER ':=' " / " -> @S^PTR;
CALL WRITEX(TERMNUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

The example prints the text “Denote blanks by b.” and then overstrikes the “b” with the
slash character (/).

Because the application program is supplying the carriage return character, a delay
(dependent on the particular terminal involved) might be needed to give the terminal
enough time to complete the carriage return operation. You can accomplish this by
writing some null characters to the terminal or by calling the DELAY procedure.

Controlling Form Feed
Use CONTROL operation 1 to perform form feed or vertical tabulation operations. The
CONTROL parameters for these operations are:

0 for form feed
1 or greater for vertical tabulation

The following example causes an advance to the top of the form for a hard-copy
terminal:

LITERAL FORMS^CONTROL = 1,
 FORM^FEED = 0;
 .
 .
CALL CONTROL(TERMNUM,
 FORMS^CONTROL,
 FORM^FEED);

The system automatically delays subsequent access to the same terminal for a
configured period of time after performing forms control through the CONTROL
procedure.

If the configured delay is not suitable, the application program can issue a form feed
(%14) or vertical tabulation (%13) character through a WRITE procedure call.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 18

Communicating in Page Mode

However, in this case you must delay the application program to permit the forms
movement to finish:

DEFINE TWO^SECONDS = 200D;
 .
 .
CALL WRITEX(TERMNUM,%014,1);
IF <> THEN...

CALL DELAY(TWO^SECONDS);

The application suspends itself for two seconds after sending the form-feed character
to the terminal.

Communicating in Page Mode
Normally, terminals operating in page mode store each character in display memory in
the terminal as it is typed. Display memory is divided into logical pages consisting of
1920 bytes. An entire page of display memory is sent to the computer system at once
as a series of write operations of 256 bytes each. The transfer begins when the user
presses the ENTER (or SEND or XMIT) key. A file transfer terminates when the
computer system receives a page-termination character (typically a carriage return or
ETX character). See Figure 10-4.

For terminals that operate in pseudopolled page mode, the transfer mechanism is
different. Here, the sequence of events is as follows:

1. The user types a block of characters.

2. The user presses the ENTER key, informing the computer system that the terminal
is ready to send a block of information. (The block of information is not sent yet.)

3. The system responds by sending a “trigger” character back to the terminal.

4. The terminal responds to the trigger by sending the complete block of information
to the I/O buffer in the computer system.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 19

Using the Page-Termination Character

Using the Page-Termination Character
A page-termination character is configured at system-generation time for each page-
mode terminal. You can set the page-termination character to any character you like
using function 9 of the SETMODE procedure (see Setting the Interrupt Characters for
Page Mode below).

The page-termination character, when received from a terminal, signals the computer
system that the current page transfer is complete. When the read operation is
complete, the page of data occupies the buffer specified by the application. This buffer
does not contain the page-termination character unless the buffer would otherwise
contain an odd number of bytes. The page-termination character is not counted in the
count-read parameter returned by the read operation.

The system does not issue a carriage return/line feed sequence to the terminal on
receipt of the page-termination character.

As with conversational mode, the read operation automatically finishes if the
read-count specified in the read operation is satisfied.

Figure 10-4. Page Transfer Mode

VST045.VSD

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 20

Setting the Interrupt Characters for Page Mode

10 Communicating With Terminals

Setting the Interrupt Characters for Page Mode
Initially, the only valid interrupt character is the page-termination character. A shown in
Figure 10-5, all four interrupt characters that apply to page mode are set to the
configured page-termination character.

These interrupt characters apply to each page-mode terminal when the terminal is first
opened. The same default values are restored when you dynamically change from
conversational mode to page mode.

You can change the page-mode interrupt characters to other values by using
SETMODE function 9 with the terminal in page mode, as shown in Figure 10-6. You
must provide all four interrupt characters in parameters 1 and 2 of the SETMODE call.

Figure 10-5. Page-Mode Interrupt Characters—Default Values

Figure 10-6. Changing Page-Mode Interrupt Characters

VST117.VSD

VST123.VSD

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 21

Setting the Interrupt Characters for Page Mode

Receipt of any interrupt character other than the configured page-termination character
has the following effect:

• The system considers the operation to be complete.

• The application program receives the page-termination character in the application
buffer along with the page image (if any).

• The count-read parameter returned by the read operation includes the interrupt
character.

The following example shows the action of the interrupt characters when you
dynamically change from conversational mode to page mode and then back to
conversational mode. The configured line-termination character is a carriage return;
the configured page-termination character is also a carriage return. The terminal is
configured as a conversational-mode terminal.

LITERAL CHANGE^MODE = 8, !function for SETMODE; change
 !transfer mode
 CONV^MODE = 0, !parameter for SETMODE;
 !conversational mode
 PAGE^MODE = 1, !parameter for SETMODE; page mode
 SET^INTCHARS = 9, !function for SETMODE; set
 !interrupt characters
 BS^CAN = %004030, !backspace, line cancel
 HT^CR = %004415, !horizontal tab, carriage return
 ETX^EOT = %001404; !end-of-text, end-of-transmission
 .
 .

First, open the terminal.

ERROR := FILE_OPEN_(TERM^NAME,
 TERM^NUM);
IF ERROR <> 0 THEN ...
 .
 .

The terminal opens in conversational mode because it is configured that way. The
default interrupt characters are now in force: backspace, line cancel, end of file,
carriage return.

Now call the SETMODE procedure with function 9 to change the interrupt characters
for conversational mode:

CALL SETMODE(TERM^NUM,
 SET^INTCHARS,
 BS^CAN,
 HT^CR);
IF <> THEN ...
 .
 .

The conversational-mode interrupt characters are now set to backspace, line cancel,
horizontal tab, and carriage return.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 22

Communicating With Pseudopolled Terminals

Now call SETMODE again, but to change the mode to page mode:

CALL SETMODE(TERM^NUM,CHANGE^MODE,PAGE^MODE);
IF <> THEN ...
 .
 .

The terminal is now operating in page mode with all four interrupt characters set to
carriage return (the configured default).

Now call SETMODE again, this time to change the interrupt characters for page mode:

CALL SETMODE(TERM^NUM,
 SET^INTCHARS,
 ETX^EOT,ETX^EOT);
IF <> THEN ...
 .
 .

The interrupt characters for page mode are now end-of-text, end-of-transmission,
end-of-text, and end-of-transmission.

Now call SETMODE again to change the transfer mode back to conversational:

CALL SETMODE(TERM^NUM,
 CHANGE^MODE,
 CONV^MODE);
IF <> THEN ...
 .
 .

The interrupt characters are restored to their initial values: backspace, line cancel, end
of file, and carriage return.

As with conversational-mode terminals, you can force the file system to ignore interrupt
characters by turning on transparent mode using SETMODE function 14. Refer to
Setting Transparent Mode under Setting the Interrupt Characters for Page Mode earlier
in this section.

Communicating With Pseudopolled Terminals
Recall that pseudopolled terminals receive a trigger from the computer system after the
terminal is ready to send the page of data. This trigger may be automatically supplied
by the file system, or it may be done by the application program. Pseudopolled
terminals are always configured during system generation either to receive an
automatic trigger or to have the trigger sent by the application.

The advantage of having the system handle triggering is that the operation is invisible
to the application. The automatic triggering applies only when a READ[X] procedure is
issued to the terminal. It does not apply to WRITEREAD[X], so that the
WRITEREAD[X] procedure can be used for operations such as cursor sensing.

Note. When setting interrupt characters with SETMODE, you must specify all four characters.
If you do not need four interrupt characters, some must be duplicated.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 23

Managing the BREAK Key

The advantage of having the application program handle triggering is that only one
word of buffer space is used while the user enters information. The buffer space is
allocated after the user presses the ENTER key. (Terminals operating in normal page
mode require that the entire system buffer space be allocated during the wait for a
transfer to take place.)

Here’s how application triggering works. The application program initiates a read
operation of one character to the pseudopolled terminal. This read waits for the ready
character.

RCOUNT := 1;
CALL READX(TERM^NUM,
 SBUFFER,
 RCOUNT,
 COUNT^READ);

Reading one byte causes one byte of system buffer space to be allocated. The user
types in the page of text, then presses the ENTER key. Pressing ENTER causes a
ready character (for example, device-control-2) to be sent to the computer system,
causing the read to finish.

The application then issues the trigger character (for example, device-control-1) to the
terminal and issues a read of 600 characters. To ensure that the system is ready to
start reading when the terminal starts transmitting, you must combine both operations
into one using WRITEREADX:

SBUFFER := %21; !device-control-1
WCOUNT := 1;
RCOUNT := 600;
CALL WRITEREADX(TERM^NUM,
 SBUFFER,
 WCOUNT,
 RCOUNT,
 COUNT^READ);

This call to WRITEREADX causes 300 words (600 bytes) of system buffer space to be
allocated. Sending the device-control-1 character to the terminal causes the terminal
to send a page of information to the computer system. The page is returned to the
application process in SBUFFER, and the actual number of bytes read is returned in
COUNT^READ. (As with any file-system operation, the system buffer space is
deallocated after the read finishes.)

Managing the BREAK Key
The file system enables a user to signal a process by pressing the BREAK key. A
common example of the use of the BREAK key to signal a process is in the TACL
process: if an application started from a TACL prompt does not perform its own BREAK
handling, pressing the BREAK key while the application process is running returns
control of the terminal to the TACL process.

An application that performs its own BREAK processing can be interrupted from the
terminal without periodically checking the terminal for input; instead, the application

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 24

Managing the BREAK Key

simply checks the $RECEIVE file for system message -105 (Break-on-Device
message).

You can use BREAK in conversational or page mode.

To write programs that manage the BREAK key, you need to perform some of the
following tasks:

• Enable BREAK by taking ownership of the BREAK key

• Receive and process message -105 (the Break-on-Device message)

• Reestablish BREAK ownership after receiving the Break-on-Device message

• Establish BREAK mode

• Interpret BREAK-related errors

The above tasks are outlined below. The remainder of this subsection describes in
detail how to perform these tasks.

To enable BREAK and perform its own BREAK handling, your program must take
ownership of the BREAK key. You should be aware of the following:

• You establish BREAK ownership using either SETPARAM function 3 or SETMODE
function 11. We recommend using the SETPARAM procedure because only that
procedure allows you specify a break tag value so that you can distinguish
between subdevices when a BREAK occurs.

• Only one process can own the BREAK key at a time.

• If the terminal was opened by the backup process of a process pair, the backup
process automatically becomes the BREAK owner if its primary process fails while
owning BREAK.

• If BREAK is not enabled, then the BREAK key is ignored.

• If the process that owns BREAK is deleted or fails, BREAK ownership is lost. That
is, no process is informed if the BREAK key is pressed.

To receive system message -105 (the Break-on-Device message), your process
must have BREAK enabled. Receiving the Break-on-Device message indicates that
the BREAK key has been pressed.

See the Guardian Procedure Errors and Messages Manual for details on the Break-on-
Device message structure.

To reestablish BREAK ownership after receiving the Break-on-Device message,
your process must either issue a READ or WRITEREAD procedure call to the terminal
or reissue the SETPARAM or SETMODE request that establishes BREAK ownership.
When the BREAK key is pressed, the BREAK feature is no longer enabled; if the
BREAK key is pressed again, it is ignored. You should therefore reestablish BREAK
ownership.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 25

Taking BREAK Ownership

To establish BREAK mode for the terminal, you need to use SETMODE function 12.
Once in BREAK mode, only operations that are associated with BREAK are allowed to
access the terminal.

To interpret BREAK-related errors, check for error 110 (only BREAK access
permitted) and error 111 (operation aborted because of BREAK). Any process using
the same terminal as the TACL process or other process that handles the BREAK key
must check for these errors. See Recovering From Errors later in this section.

Figure 10-7 shows the sequence of events when establishing and reestablishing
BREAK ownership.

Taking BREAK Ownership
When a process takes BREAK ownership for a terminal from another process (for
example, a TACL process), the application process should identify the process that
currently owns BREAK and get the BREAK mode of the current owner. You can do
this by specifying the last-param-array to the SETPARAM procedure call:

LITERAL SET^BREAK^FUNCTION = 3,
 NORMAL^MODE = 0,
 TAKE^BREAK = 1;

INT LAST^PARAM^ARRAY[0:3];
INT PARAM^ARRAY[0:3];
 .
 .
PARAM^ARRAY[0] := TAKE^BREAK;
PARAM^ARRAY[1] := NORMAL^MODE;
PARAM^ARRAY[2] := 0;
PARAM^ARRAY[3] := 0;
PARAM^COUNT := 8;
CALL SETPARAM(TERM^NUM,
 SET^BREAK^FUNCTION,

Figure 10-7. Enabling BREAK

VST046.VSD

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 26

Releasing BREAK Ownership

 PARAM^ARRAY,
 PARAM^COUNT,
 LAST^PARAM^ARRAY,
 LAST^PARAM^COUNT);

The first word of the last-param-array contains an internally defined integer that
identifies the current owner of BREAK. The second word contains an indication of the
BREAK mode.

The last-param-count returns the length of the last-param-array value in
bytes, and is always 8 for function 3.

Releasing BREAK Ownership
When your application no longer wants to receive Break-on-Device messages, it
should reenable BREAK for the last owner.

To return BREAK ownership to the previous BREAK owner, you simply supply the
SETPARAM (or SETMODE) procedure with the internal process identifier and BREAK
mode that you acquired in the call that took BREAK ownership:

CALL SETPARAM(TERM^NUM,
 SET^BREAK^FUNCTION,
 LAST^PARAM^ARRAY,
 LAST^PARAM^COUNT);

In other words, you use the last-param-array and last-param-count values
returned by the previous SETPARAM call as the param-array and param-count
parameters to this call.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 27

Selecting BREAK Mode

10 Communicating With Terminals

Selecting BREAK Mode
Although several processes may have access to a terminal, a process can gain
exclusive access to that terminal when BREAK is pressed. Such a process is
executing in BREAK mode. You establish BREAK mode at the same time you take
BREAK ownership.

When a process executes in BREAK mode, it can communicate with the terminal using
only operations that have BREAK access. Once BREAK access is established, the
process has exclusive access to the terminal.

The following steps are involved in using BREAK mode:

1. Enable BREAK and establish BREAK mode using either SETPARAM function 3 or
SETMODE function 11.

2. Set BREAK access using SETMODE function 12.

3. Relinquish BREAK mode and BREAK access using SETMODE function 12.

4. Return ownership to the previous BREAK owner using SETPARAM function 3 or
SETMODE function 11.

These steps are described in detail in the following paragraphs.

Your program can establish BREAK access before or after the user presses the
BREAK key. If you establish BREAK access after pressing the BREAK key, then the
terminal is inaccessible between pressing the BREAK key and establishing BREAK
access, as shown in Figure 10-8.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 28

Selecting BREAK Mode

Figure 10-8. BREAK Access Established After Pressing the BREAK Key

VSD047.VSD

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 29

Selecting BREAK Mode

If you establish BREAK access before pressing the BREAK key, then the terminal
becomes accessible immediately after the BREAK key is pressed, as shown in
Figure 10-9.

Figure 10-9. BREAK Access Established Before Pressing the BREAK Key

VST048.VSD

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 30

Selecting BREAK Mode

Establishing BREAK Mode
To establish BREAK mode, you must specify BREAK mode when enabling BREAK.
Doing this tells the system to put the terminal into BREAK mode when the BREAK key
is pressed. Once BREAK mode is established, only file operations having BREAK
access are allowed access to the terminal.

The following example enables BREAK. The second word of the param-array
specifies BREAK mode:

LITERAL SET^BREAK^FUNCTION = 3,
 BREAK^MODE = 1,
 TAKE^BREAK = 1;
INT .PARAM^ARRAY[0:3];
INT PARAM^COUNT;
INT .LAST^PARAM^ARRAY[0:3];
INT LAST^PARAM^COUNT;
 .
 .
PARAM^ARRAY[0] := TAKE^BREAK;
PARAM^ARRAY[1] := BREAK^MODE;
PARAM^ARRAY[2] := 0;
PARAM^ARRAY[3] := 0;
PARAM^COUNT := 8;
CALL SETPARAM(TERM^NUM,
 SET^BREAK^FUNCTION,
 PARAM^ARRAY, !word 1 specifies BREAK mode
 PARAM^COUNT
 LAST^PARAM^ARRAY,
 LAST^PARAM^COUNT);

Establishing BREAK Access
When the system puts the terminal into BREAK mode, any operations on the terminal,
even those from the owner of BREAK, are rejected unless the program making the
access has put itself into BREAK access mode. By convention, only the owner of
BREAK is supposed to do that, hence this mechanism ensures that when the terminal
user presses BREAK, the BREAK owner can respond.

Use SETMODE function 12 to establish BREAK access to the terminal. Once BREAK
access is established, the application process can communicate with the terminal in
the usual way.

The following statement establishes BREAK access:

LITERAL BREAK^ACCESS = 1;
LITERAL SET^ACCESS = 12;
 .
 .
CALL SETMODE(HOME^TERM^NUM,
 SET^ACCESS,
 !param1!,
 BREAK^ACCESS);

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 31

Selecting BREAK Mode

Reestablishing Normal Access and Normal Mode
Another call to SETMODE function 12 relinquishes BREAK access and BREAK mode,
returning the terminal status to normal access and normal mode. You achieve this by
setting parameter-1 and parameter-2 to zero:

LITERAL NORMAL^ACCESS = 0,
 NORMAL^MODE = 0;
 .
 .
CALL SETMODE(HOME^TERM^NUM,
 SET^ACCESS,
 NORMAL^MODE,
 NORMAL^ACCESS);

All types of access are now permitted to the terminal.

Returning BREAK to the Previous Owner
Finally, you should return BREAK to the previous owner using either SETPARAM
function 3 or SETMODE function 11:

CALL SETPARAM(TERM^NUM,
 SET^BREAK^FUNCTION,
 LAST^PARAM^ARRAY,
 LAST^PARAM^COUNT);

Using BREAK Mode: An Example
In the following example, the SETPARAM call that establishes BREAK ownership also
sets BREAK mode and saves the identification and BREAK mode of the previous
owner. After enabling BREAK, this example checks $RECEIVE for Break-on-Device
messages. Normally, the process loops doing some computation, without any
interaction with the terminal user. Part of that loop checks $RECEIVE for the Break-
on-Device message. On receipt of a Break-on-Device message, the main procedure
calls the BREAK^IT procedure to process the Break-on-Device message.

?INSPECT, SYMBOLS

!Literals:
LITERAL SET^BREAK^FUNCTION = 3,
 NORMAL^MODE = 0,
 NEW^OWNER = 1,
 BREAK^ACCESS = 12,
 BREAK^ACCESS^ON = 1,
 BREAK^ACCESS^OFF = 0,
 BREAK^MODE = 1,
 NOWAIT = 1,
 MAXLEN = 256;

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 32

Selecting BREAK Mode

!Global variables:

STRING .HOME^TERM[0:MAXLEN -1], !terminal file name
 .RECV^FILE[0:7]
 := "$RECEIVE"; !$RECEIVE file name

INT HOME^TERM^NUM, !terminal number
 .BUFFER[0:127], !buffer for terminal I/O
 RCOUNT, !max bytes read
 WCOUNT, !count of bytes to write
 ERROR, !file-system error number
 BYTES^READ, !number of bytes read
 .PARAM^ARRAY[0:3], !input to SETPARAM
 PARAM^COUNT, !length of PARAM^ARRAY
 .LAST^PARAM^ARRAY[0:3], !values for last owner
 LAST^PARAM^COUNT, !size of last-param-array
 .RECV^BUF[0:66], !buffer for $RECEIVE
 ! messages
 RECV^NUM, !file number for $RECEIVE
 LOOP, I,J; !computation variables

STRING .FIRST^BYTE := @BUFFER '<<' 1; !string pointer to
 ! BUFFER

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS(PROCESS_GETINFO,FILE_OPEN_,
? WRITE,READ,WRITEREAD,FILE_GETINFO_,
? PROCESS_STOP_,DEBUG,SETPARAM,
? AWAITIO,INITIALIZER,SETMODE)
?LIST
?NOMAP,NOCODE

!--!
Procedure to process Break-on-Device message. This
! procedure prompts the user for input and then echoes the
! input back to the terminal. If the user types "exit," then
! the process terminates. If the user types "resume," then
! the process returns to computational mode until the BREAK
! key is pressed again. For any other user response, this
! procedure displays the prompt.
!--

PROC BREAK^IT;
BEGIN
 WHILE 1 DO
 BEGIN

 ! Establish BREAK access:

 CALL SETMODE(HOME^TERM^NUM,BREAK^ACCESS,
 !param1,
 BREAK^ACCESS^ON);

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 33

Selecting BREAK Mode

 ! Prompt the user to enter a string of characters:

 WCOUNT := 2;
 BUFFER ':=' "? ";
 RCOUNT := 128;
 CALL WRITEREAD(HOME^TERM^NUM,BUFFER,WCOUNT,
 RCOUNT,BYTES^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(HOME^TERM^NUM,ERROR);
 CALL DEBUG;
 END;

 ! If the user enters "exit" then terminate:

 IF FIRST^BYTE = "exit" THEN
 BEGIN
 CALL SETMODE(HOME^TERM^NUM,BREAK^ACCESS,NORMAL^MODE,
 BREAK^ACCESS^OFF);
 LAST^PARAM^COUNT := 8;
 CALL SETPARAM(HOME^TERM^NUM,SET^BREAK^FUNCTION,
 LAST^PARAM^ARRAY,LAST^PARAM^COUNT);
 CALL PROCESS_STOP_;
 END;

 ! If the user types "give break", return BREAK to
 ! previous owner and resume:

 IF FIRST^BYTE = "give break" THEN
 BEGIN
 CALL SETMODE(HOME^TERM^NUM,BREAK^ACCESS,NORMAL^MODE,
 BREAK^ACCESS^OFF);
 LAST^PARAM^COUNT := 8;
 CALL SETPARAM(HOME^TERM^NUM,SET^BREAK^FUNCTION,
 LAST^PARAM^ARRAY,LAST^PARAM^COUNT);
 RETURN;
 END;

 ! If the user enters "resume" then give up BREAK access
 ! and return to computational mode:

 IF FIRST^BYTE = "resume" THEN
 BEGIN
 CALL SETMODE(HOME^TERM^NUM,BREAK^ACCESS,
 !param1!,
 BREAK^ACCESS^OFF);
 RETURN;
 END;

 !Otherwise echo the typed string to the terminal then
 !loop to prompt for more input:
 CALL WRITE(HOME^TERM^NUM,BUFFER,BYTES^READ);
 END;
END;

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 34

Selecting BREAK Mode

!--
! Main procedure does computation without terminal
! interaction. The procedure checks $RECEIVE periodically
! for a Break-on-Device message and then calls BREAK^IT to
! process the message.
!--

PROC TERMS MAIN;
BEGIN

! Process the Startup message:

 CALL INITIALIZER;

! Open the terminal file:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 HOME^TERM:MAXLEN,
 LENGTH);
 ERROR := FILE_OPEN_(HOME^TERM:LENGTH,HOME^TERM^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the $RECEIVE files for nowait I/O

 LENGTH := 8;
 ERROR := FILE_OPEN_(RECV^FILE:LENGTH,RECV^NUM,
 !access!,
 !exclusion!,
 NOWAIT);
 IF ERROR <>0 THEN CALL PROCESS_STOP_;

! Enable BREAK:

 PARAM^ARRAY[0] := NEW^OWNER;
 PARAM^ARRAY[1] := BREAK^MODE;
 PARAM^ARRAY[2] := 0;
 PARAM^ARRAY[3] := 0;
 PARAM^COUNT := 8;
 LAST^PARAM^COUNT := 8;
 CALL SETPARAM(HOME^TERM^NUM,SET^BREAK^FUNCTION,
 PARAM^ARRAY,PARAM^COUNT,
 LAST^PARAM^ARRAY,LAST^PARAM^COUNT);

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 35

Selecting BREAK Mode

! Loop indefinitely, checking for Break-on-Device message:

 WHILE 1 = 1 DO
 BEGIN

 ! Issue a nowait read on $RECEIVE:

 CALL READ(RECV^NUM,RECV^BUF,132);
 ERROR := 0;
 LOOP := 40;

 ! Loop until nowait read finishes:

 WHILE LOOP = 40 DO
 BEGIN

 !Check for completion of read operation. Return
 !immediately if incomplete:

 CALL AWAITIO(RECV^NUM,
 !buffer^address!,
 BYTES^READ,
 !tag!,
 0D);
 IF = THEN
 BEGIN

 ! Process user message
 .
 .
 END;

 ! Check if system message:

 IF > THEN
 BEGIN

 ! Check if Break-on-Device message:

 IF RECV^BUF = -105 THEN
 CALL BREAK^IT
 ELSE
 BEGIN

 ! Process other system message
 .
 .
 END;
 END

 ! Else AWAITIO returned with an error:

 ELSE CALL FILE_GETINFO_(RECV^NUM,ERROR);
 LOOP := ERROR;

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 36

Recovering From Errors

 ! Do some computation -- this code could be any non-
 ! interactive task:

 J := 0;
 WHILE J < 2000 DO
 BEGIN
 I := 0;
 WHILE I < 2000 DO
 I := I + 1;
 J := J + 1;
 END;
 END;
 END;
END;

Recovering From Errors
For terminals, error recovery depends on the specific error. Possible errors can be
categorized as follows

• Errors that can be retried indefinitely

• Errors that should be retried but only a limited number of times

• Errors that need special attention

• Errors for which retrying the operation makes no sense

The following errors can be retried indefinitely. This can be important because in some
situations a read operation, for example, might not complete for several days:

Errors 201 through 229 should be retried a limited number of times. These errors
indicate an error in the path to the terminal. Typically, you should retry these errors
between 3 and 10 times.

The following errors often need special attention:

112 Operation preempted by operator message

230 CPU power failed, then restored

231 Controller power failed then restored

246-
249

Expand errors

30-39 Temporary lack of resources

40 Operation timed out

110 and
111

BREAK errors

112 Preempted by operator message

140 Modem error

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 37

Recovering From Errors That Indicate a Temporary
Lack of Resources

The following paragraphs describe the effects of these errors. At the end of this
subsection is a sample program for dealing with terminal errors.

For all errors, you can get a short description of the error using the TACL ERROR
command with the error number as parameter. For more detailed information on the
error, refer to the Guardian Procedure Errors and Messages Manual.

Recovering From Errors That Indicate a Temporary Lack of
Resources

Errors in the range 30 through 39 indicate that some resource is lacking, such as file
system or I/O process buffer space, file-system control blocks, or process control
blocks. These errors can be retried a limited number of times after a short delay.

Recovering From an “Operation Timed Out” Error
Error 40 indicates that the user did not respond to the application within the period
specified in the AWAITIO procedure call. Any data entered before the timeout
occurred is lost. You should therefore send a message to the user to reenter the data.

Recovering From a BREAK Error
Pressing BREAK on a terminal where BREAK is enabled can cause an application
process to receive either of two errors:

The action taken for these errors depends on whether the process receiving the error
is the one with BREAK enabled (the process that receives the Break-on-Device
message).

Error 110 indicates that the BREAK key was pressed and that BREAK mode was
specified when BREAK was enabled (by SETPARAM function 3 or SETMODE function
11). The terminal is inaccessible until the process calls SETMODE function 12 to allow
normal access to the terminal.

If the process receiving error 110 is not the one that enabled BREAK, then the
operation should be retried periodically. If the process has BREAK enabled, it should
check $RECEIVE for the system Break-on-Device message and take appropriate
action.

Error 110 implies that no data was transferred.

Error 111 indicates that BREAK was pressed while the current file operation was taking
place. This error indicates that data may have been lost.

If the process receiving error 111 is not the one that enabled BREAK, then you should
retry the operation. If a write operation was being performed, then the write can simply

Error 110 only BREAK access permitted

Error 111 operation aborted because of BREAK

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 38

Responding to Operator Preemption

be retried. If a read operation was being performed, then a message should be sent
advising the user to retype the last entry before retrying the read.

Keep in mind, however, that if more than one process is accessing a terminal and the
BREAK feature is used, only BREAK access should be allowed after BREAK is
pressed. Therefore, subsequent retries are rejected with error 110 until normal access
is permitted.

If either of these errors is received by a process not having BREAK enabled, the
process should suspend itself for some short period (such as 1 second) before retrying
the operation. You can do this by calling the process-control procedure DELAY. If you
use the FILEERROR procedure to retry the failed operation, the delay is applied
automatically.

If the process has BREAK enabled, then you should check $RECEIVE for the system
Break-on-Device message and then take appropriate action.

Responding to Operator Preemption
Error 112 can occur only if the application process is using the same terminal as the
active operator console device. If the application process is reading from the terminal
(using either READ[X] or WRITEREAD[X]) and a message is sent to the operator, the
read operation is aborted and the operator message is written (that is, operator
messages have a higher priority). Any data entered when the preemption takes place
is lost. The application process should therefore send a message to the user to
reenter the data.

Recovering From a Modem Error
Error 140 occurs if the carrier signal to the modem was lost. The carrier loss may be a
permanent or momentary loss. In either case, it must be assumed that the data was
lost.

The first time error 140 occurs, you should send a message to the user to try entering
the data again. If error 140 recurs after you send this message, then the connection
with the remote terminal is lost. You should then call the CONTROL procedure once to
disconnect the modem (operation 12) and then again to wait for modem reconnection
(operation 11).

Recovering From a Path Error
The application should count how many times path errors 201 through 229 occur on a
particular file. Such an error indicates that one path to the associated device has
failed. If the error recurs when you try the operation again, then both paths have failed
and the device is no longer accessible. If the retry succeeds, then either the alternate
path was successful or the process may have created another backup (because of a
IPU reload or an action by the application program).

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 39

Recovering From Errors: A Sample Program

If an error 210 through 231 occurs, then the operation failed at some indeterminate
point. If reading, you should send a message to the user to reenter the data. Your
application should then try the read operation again.

Recovering From Errors: A Sample Program
The TERM^IO procedure shown in the following example provides a simple way of
handling terminal I/O errors. It divides all errors into those that can be indefinitely
retried and those that should not be indefinitely retried. For indefinitely retryable errors,
the procedure keeps repeating the operation as many times as necessary until the
operation is successful.

For all other errors, the procedure attempts the operation up to five times before giving
up. For simplicity, the procedure retries the operation for errors that never go away on
a retry; it does no harm.

The procedure assumes the following about the process:

• The process does not set a timeout and therefore will never receive a timeout error
(error 40).

• The process does not enable BREAK mode

• If there are any modem connections, no attempt is made to wait for reconnection of
the modem following a permanent modem disconnection

?INSPECT, SYMBOLS, NOCODE
?NOLIST
?SOURCE $TOOLS.ZTOOLD04.ZSYSTAL;
?LIST

! Literals:

LITERAL RETRY^LIMIT = 5;
LITERAL YES = 1;
LITERAL NO = 0;

! Global variables:

INT TERM^NUM;
STRING .SBUFFER;
INT RCOUNT;
STRING .S^PTR;

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,WRITEREADX,
? FILE_GETINFO_,WRITEX,DELAY,
? PROCESS_STOP_);
?LIST

.
.
.

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 40

Recovering From Errors: A Sample Program

!---
! Procedure to perform terminal I/O
!---

PROC TERM^IO;
BEGIN
 INT WCOUNT;
 INT COUNT^READ;
 INT DONE := NO;
 INT RETRY^COUNT;
 INT ERROR;

! Loop until file operation successful:

 WHILE DONE = NO DO
 BEGIN

 ! Set flag for success, initialize retry count, and prompt
 ! for input:

 DONE := YES;
 RETRY^COUNT := 0;
 SBUFFER ':=' "APPL1>" -> @S^PTR;
 WCOUNT := @S^PTR '-' @SBUFFER;
 CALL WRITEREADX(TERM^NUM,SBUFFER,WCOUNT,RCOUNT,
 COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TERM^NUM,ERROR);
 IF ERROR = 112
 OR ERROR = 200
 OR ERROR = 230
 OR ERROR = 231
 OR ERROR = 240
 OR ERROR = 241
 OR ERROR = 246
 OR ERROR = 248
 OR ERROR = 249
 THEN

 ! Retry until successful:

 BEGIN
 SBUFFER ':=' "Terminal I/O error: trying again"
 -> @S^PTR;
 WCOUNT := @S^PTR '-' @SBUFFER;
 CALL WRITEX(TERM^NUM,SBUFFER,WCOUNT);
 CALL DELAY(100D);
 DONE := NO;
 END
 ELSE

Communicating With Terminals

Guardian Programmer’s Guide — 421922-014
10 - 41

Recovering From Errors: A Sample Program

 ! Retry up to RETRY^LIMIT:

 BEGIN
 RETRY^COUNT := RETRY^COUNT + 1;
 IF RETRY^COUNT < RETRY^LIMIT THEN

 ! Retry limit not yet reached, so try again after one
 ! second delay:

 BEGIN
 SBUFFER ':=' "Terminal I/O error: trying again"
 -> @S^PTR;
 WCOUNT := @S^PTR '-' @SBUFFER;
 CALL WRITEX(TERM^NUM,SBUFFER,WCOUNT);
 CALL DELAY(100D);
 DONE := NO;
 END
 ELSE

 ! Retry limit reached. Stop the process:

 BEGIN
 SBUFFER ':='
 "Terminal I/O error: operation failed"
 -> @S^PTR;
 WCOUNT := @S^PTR '-' @SBUFFER;
 CALL WRITEX(TERM^NUM,SBUFFER,WCOUNT);
 CALL PROCESS_STOP_;
 END;
 END;
 END

 ELSE
 CALL PROCESS^INPUT(COUNT^READ);
 END;
END;

Guardian Programmer’s Guide — 421922-014
11 - 1

11 Communicating With Printers
This section describes how your program gains access to a printer and writes data to a
printer. Specifically, this section covers the following topics:

• How to open a printer, write text to it, and pass control information to it using
CONTROL operations and SETMODE functions. Accessing a Printer provides
details.

• How to control laser printers and matrix line printers by sending escape sequences
to them. Using the Printer Control Language provides an overview. Programming
for Tandem Laser Printers and Programming for Tandem Matrix Line Printers
provide details.

• How to recover from errors incurred while printing. See Recovering From Errors.

At the end of this section is a complete sample program that accesses a printer and
responds to printer errors.

Most programs that send output to a printer do so indirectly by writing to a spooler
collector. Some applications, however, need to write directly to the printer, especially if
the user will need immediate notification of printer errors; for example, following a
positioning error when printing paychecks.

Usually, you should write your programs to be able to write either to the spooler or
directly to the printer. The purpose of writing to the spooler is to store for later printing
the exact sequence of operations the program sent to the spooler. The only function
lost by using the spooler is the ability to take special action if errors occur during
printing.

For complete information about a specific printer, refer to the appropriate printer
reference manual. For additional information about accessing printers, such as how to
access a printer over a telephone line, refer to the appropriate data communications
manual.

For complete programming details related to the spooler, see the spooler manuals.

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 2

Accessing a Printer

Accessing a Printer
This subsection introduces the system procedures that relate to printer control and
provides a skeleton program for printer access.

Procedures for Working With Printers
You access a printer the same way as you would any other file, by using file-system
procedure calls. You use the following procedures to perform the indicated tasks with
printers:

AWAITIO[X] Checks for completion of a pending I/O operation.
AWAITIO checks for completion of a READ,
WRITE, or WRITEREAD operation. AWAITIOX
checks for the completion of a READ, WRITE,
WRITEREAD, READX, WRITEX, or
WRITEREADX operation.

CANCEL Cancels the oldest outstanding operation on an
open printer.

CANCELREQ Cancels a specified operation on an open printer.

CONTROL Performs vertical forms-control functions.

DEVICE_GETINFOBYLDEV_ Provides the device type and configured record
length of the device specified by logical device
number as well as the CPU numbers where the
primary and backup I/O processes run.

DEVICE_GETINFOBYNAME_ Provides the device type and configured record
length of the device specified by name as well as
the CPU numbers where the primary and backup
I/O processes run.

FILE_CLOSE_ Stops access to an open printer.

FILE_GETINFO_ Provides error information and characteristics
about an open printer.

FILE_OPEN_ Establishes communication with a printer.

SETMODE Controls various printer functions.

SETMODENOWAIT Does the same as SETMODE, except that printer
functions are applied in a nowait manner.

WRITE[X] Prints a line on the printer.

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 3

Procedures for Working With Printers

Table 11-1 summarizes all CONTROL operations that affect printer operation.

On return from one of the calls listed in Table 11-1, the condition code should be CCE if
the CONTROL operation was successful. A condition code of CCL indicates an error.

Table 11-2 summarizes all SETMODE functions that relate to printer operation.

On return from one of the calls listed in Table 11-2, the condition code should be CCE if
the SETMODE function was performed successfully. A condition code of CCL
indicates an error. A condition code of CCG indicates that the attempted SETMODE
function is invalid for the type of device.

For complete details of these procedure calls, CONTROL operations, and SETMODE
functions, refer to the Guardian Procedure Calls Reference Manual.

Table 11-1. Printer CONTROL Operations

CONTROL
Number Operation

 1 Provides forms control

 11 Specifies a wait for a modem connection

 12 Disconnects a modem

Table 11-2. Printer SETMODE Functions

SETMODE
Number Function

 5 Sets the system automatic perforation skip mode

 6 Sets system spacing control

 22 Sets the line printer baud rate

 25 Sets the form length

 26 Sets or clears vertical tabs

 27 Sets system spacing mode

 28 Resets configured values

 29 Sets automatic answer mode or control answer mode

 37 Gets the device status

 68 Sets the horizontal pitch

 260 Selects printer language (5577 only)

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 4

A Printer Program Outline

A Printer Program Outline
The general approach to directly accessing a line printer from an application program
is:

1. Open the printer by calling the FILE_OPEN_ procedure. Use the printer file name
to identify the printer to the FILE_OPEN_ procedure. To prevent your printed
messages being mixed with messages printed by other processes, you should
open the printer for exclusive access.

2. For a matrix line printer, position the paper to the top of the form by using the
CONTROL procedure. Operation 1 allows you to adjust the paper position.

3. Call the WRITE[X] procedure to print each line of text.

4. When you have finished using a matrix line printer, call the CONTROL procedure
to position the paper again to the top of the form. Then call the FILE_CLOSE_
procedure to terminate your access to the printer.

The code fragments shown below illustrate this technique:

LITERAL MAXLEN = 256;
 .
 .
STRING .PRINTER^NAME[0:MAXLEN - 1] := "$LP1";!printer
 ! name is $LP1
INT PRINTER^NUM; !printer file number
STRING .SBUFFER[0:132]; !print buffer
STRING .S^PTR;
LITERAL EXCLUSIVE = ZSYS^VAL^OPENEXCL^EXCLUSIVE;
LITERAL POSITION = 1;
LITERAL TOP^OF^FORM = 0;
 .
 .
!Open the printer for exclusive access:
LENGTH := 4;
ERROR := FILE_OPEN_(PRINTER^NAME:LENGTH,
 PRINTER^NUM,
 EXCLUSIVE);
IF ERROR <> 0 THEN ...

!Move to the top of the form:
CALL CONTROL(PRINTER^NUM,
 POSITION,
 TOP^OF^FORM);
IF <> THEN ...
 .
 .
!Send text to printer:
SBUFFER ':=' "Print just one line on the printer" -> @S^PTR;
CALL WRITEX(SBUFFER,
 PRINTER^NUM,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 5

Using the Printer Control Language

!Move to the top of the form:
CALL CONTROL(PRINTER^NUM,
 POSITION,
 TOP^OF^FORM);
IF <> THEN CALL DEBUG;
 .
 .

!Close the printer:
CALL FILE_CLOSE_(PRINTER^NUM);
 .
 .

Using the Printer Control Language
All HP printers support the printer control language (PCL). New printers introduced
over the next few years will also support PCL.

PCL allows you to control the printer by sending escape sequences to it. The
procedure-call interface to the file system also allows you to perform some of these
escape sequences simply by calling the SETMODE or CONTROL procedure. The
mapping of these calls to PCL escape sequences is done internally.

The functions provided by PCL vary depending on the type of printer you are using; for
example, printers such as the 5577 and 5574 laser printers support a different subset
of PCL than a matrix line printer such as the 5515. With a goal of printer compatibility,
PCL has five levels of definition. Each printer type supports one of these levels:

• Level 1: the print and space set is a subset of commands for inexpensive printers
that provides a simple way to produce hard copy.

• Level 2: the EDP transaction feature set supports multiple-user printers suitable
for use in an EDP or transaction-oriented environment.

• Level 3: the office word processing feature set provides additional data-
formatting capabilities.

• Level 4: the page-formatting feature set provides comprehensive formatting
capabilities for the support of sophisticated printers such as laser printers.

• Level 5: the enhanced page formatting feature set provides additional formatting
capabilities such as scalable outline fonts, reverse printing (white on black), and
finer rotation increments.

For example, the 5577 and 5574 laser printers support PCL level 5; the 5573 and
5573D laser printers support level 4; the 5515/5516/5518 matrix line printers support
level 2. Use care when writing programs that access printers to ensure that the feature
set used is available on all the printers that you might want your program to work with.

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 6

Controlling the Printer

This subsection describes some of the more common features of PCL. The following
functions are among those supported by PCL:

• Job-control commands let you select the number of copies you want printed and
whether you want duplexing.

• Page-control commands let you establish the page length and margins and provide
forms control.

• Font-management commands allow you to select fonts, establish style and stroke
weight, and so on.

For complete details of what PCL commands are available for the 5577 and 5574 laser
printers, see the PCL 5 Printer Language Technical Reference Manual. For the 5573
and 5573D printers, refer to the Tandem 5573 Laser LX Printer Reference Manual.
For details about Tandem matrix line printers, refer to the Tandem 5515/5516/5518
Printers Technical Reference Manual.

Controlling the Printer
You control any HP supported printer using escape sequences supported by PCL. For
ease of use, some of these escape sequences have equivalent CONTROL operations
or SETMODE functions. You therefore have three ways of sending control information
to the printer: by issuing CONTROL procedure calls, by issuing SETMODE procedure
calls, or by sending the escape sequence itself to the printer using the WRITE[X]
procedure.

Controlling the Printer Using the CONTROL Procedure
The CONTROL procedure controls vertical positioning. For example, you use
CONTROL operation 1 to position the paper at the top of the form. Vertical positioning
is described later in this section.

Controlling the Printer Using the SETMODE Procedure
The SETMODE procedure performs functions such as resetting the printer and
overstriking. These functions are described later in this section.

Controlling the Printer Using Escape Sequences
The WRITE[X] procedure sends escape sequences to the printer to perform any
available printer function. Specifically, you send escape sequences to the printer for
those operations for which there is no alternative CONTROL operation or SETMODE
function. These functions include specifying print characteristics and underlining text.

An escape sequence is a series of characters that begins with the escape character
(ASCII %33). Escape sequences are not printed, but they are interpreted by the
printer.

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 7

Controlling the Printer

Two types of escape sequences can be sent to Tandem printers: two-character escape
sequences and parameterized escape sequences. Two-character escape sequences
have the following general format:

Parameterized escape sequences have the following general format:

The following are examples of parameterized escape sequences:

esc&a99M
esc&a9L

The first example sets the right margin at character position 99. The second example
sets the left margin at character position 9. These examples can be combined as
follows:

esc&a99m9L

Syntax for a two-character escape sequence:

esc x

esc is the escape character (ASCII %33).

x is an ASCII character that specifies the function the printer is to perform.

Syntax for a parameterized escape sequence:

esc param-char group-char parameters term-char

esc is the escape character (ASCII %33).

param-char is an ASCII character—&, (, or)—that specifies that the escape
sequence is a parameterized escape sequence.

group-char is an ASCII character that specifies the type of function the printer is
to perform.

parameters is a string of ASCII characters. The meaning of these characters
depends on the function specified by group-char and term-char.

term-char is an ASCII character that specifies the precise function that the
printer is to perform and marks the end of the parameters. This
character can be uppercase or lowercase:

² An uppercase character specifies the end of the escape
sequence.

² A lowercase character specifies that another escape sequence
immediately follows. The esc, param-char, and group-char
must be omitted from the escape sequence that follows this
lowercase letter.

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 8

Commonly Used PCL Escape Sequences

This escape sequence is equivalent to the previous two examples. Note that the
example specifies a lowercase “m” rather than an uppercase “M.”

To send escape sequences to the printer, you must construct a string of ASCII
characters according to the format of escape sequences given above and send those
characters to the printer using the WRITE[X] procedure. This example sets the left and
right margins.

SBUFFER ':=' [%33,"&a99m9L"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);

Commonly Used PCL Escape Sequences
Table 11-3 lists some of the more commonly used PCL commands and indicates which
Tandem printers support each command.

Table 11-3. Common PCL Escape Sequences (page 1 of 2)

Escape
Sequence Function Performed

5515/5516/55
18 Matrix

Line Printers

5574 and
5577 Laser

Printers

5573 and
5573D Laser

Printers

escE Resets the printer X X X

esc&a#L Left margin X X X

esc&a#M Right margin X X X

esc&a#P Print direction (degrees
in 90-degree increments)

X

esc&d#D Underline enable X X X

esc&d@ Underline disable X X X

esc&k#H Horizontal motion index X X

esc&l#A Paper size X X

esc&l#C Vertical motion index X X

esc&l#D Line spacing X X X

esc&l#E Top margin X X

esc&l#G Output bin selection X

esc&l#H Paper source X X

esc&l#O Orientation X X

esc&l#P Page length X X X

esc&l#S Simplex/duplex selection X
(5577 only)

esc&l1T Job separation X

esc&l#V Select VFC channel X

esc&l#W Programmable VFC X

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 9

Programming for Tandem Laser Printers

Programming for Tandem Laser Printers
This subsection describes some of the more commonly used programmable features
of the supported Tandem laser printers. The supported laser printers include:

• 5573 laser printer supporting PCL 4

• 5573D laser printer supporting PCL 4

• 5574 laser printer supporting PCL 5

• 5577 laser printer supporting PCL 5 and PostScript

The information presented here describes how to use:

• Commands for selecting the printer language you want to use: PostScript or PCL

• Job-control commands to select the number of copies, simplex or duplex mode,
the paper source, and the output bin, and to separate jobs

• Page-control commands to set the page size and length; the size of the left, right,
and top margins; and the horizontal and vertical motion indexes

• Text-printing commands to select a font, the font size, and the orientation, and to
underline text

For complete details of how to use all available PCL commands for the 5574 and 5577
laser printers, see the PCL 5 Printer Language Technical Reference Manual. For the

esc&l#X Number of copies X X

esc(ID Primary symbol set X X X

esc(s#B Primary stroke weight X X

esc(s#H Primary pitch X X X

esc(s#P Primary spacing X X X

esc(s#Q Primary font density X

esc(s#S Primary style X X X

esc(s#T Primary typeface X X X

esc(s#V Primary height X X

esc(#X Primary font selection by
ID number

X X

esc%-
12345X

Universal exit
language/start of PJL

X
(5577 only)

Table 11-3. Common PCL Escape Sequences (page 2 of 2)

Escape
Sequence Function Performed

5515/5516/55
18 Matrix

Line Printers

5574 and
5577 Laser

Printers

5573 and
5573D Laser

Printers

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 10

Selecting a Printer Language (5577 Only)

5573 and 5573D printers, refer to the Tandem 5573 Laser LX Printer Reference
Manual.

Selecting a Printer Language (5577 Only)
The 5577 laser printer can accept commands written in PCL or PostScript printer
language. You can select the language in one of two ways:

• Using SETMODE function 260

• Sending character sequences to the printer

Using SETMODE 260 to Select the Printer Language
Call the SETMODE procedure specifying function 260 and use the param1 parameter
to select the printer language you require. Set param1 to either 2 or 1 to select
PostScript mode. If you set param1 to 2, a system-generated carriage return is issued
at the end of each line; if you set param1 to 1, no system-generated carriage return is
issued at the end of each line. If you specify either 2 or 1, the printer is returned to
PCL mode at the end of the job. Set param1 to 0 to select PCL 5.

The following example selects PostScript mode, with no system-generated carriage
return issued at the end of each line:

CALL SETMODE(260,1);

Using Character Sequences to Select the Printer Language
Use a combination of the Universal Exit Language/Start PJL (printer job language)
command and the @PJL enter-language command to change the printer language
using character sequences.

1. Send a Universal Exit Language/Start PJL command at the beginning and end of
each job. Doing so ensures proper language switching regardless of changes to
the default language established at the printer console panel and establishes clear
print-job boundaries.

2. Send the appropriate @PJL enter-language command.

Note. Language switching must be enabled by entering the SET SWITCH = ON command at
the printer console panel if you intend to use either of the language-switching techniques.
Without this command, the printer interprets switching commands as normal print data, which
will either appear as printer output or cause unpredictable errors in the job output. See the
5577 Printer User's Reference Manual for details about enabling language switching.

Note. Do not follow the Universal Exit Language/Start PJL command with a carriage-
return/line-feed sequence. At the start of a job, you must follow this command immediately
with a @PJL command; otherwise, an implicit switch to the default language occurs. Similarly,
at the end of a job, you should not follow the Universal Exit Language/Start PJL command with
a carriage-return/line-feed sequence.

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 11

Using Job-Control Commands

Use the following sequences to send the Universal Exit Language/Start PJL and @PJL
enter-language commands:

The following example selects PostScript mode:

SBUFFER ':=' [%33,"%-12345X@PJL enter language = PostScript",
 %12] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

Using Job-Control Commands
The Tandem laser printers support PCL commands that provide job-control capabilities
such as selecting the number of copies and whether you want to print on one side of
the paper or on both sides. The following paragraphs describe these features.

These features are supported on all Tandem laser printers except where noted.

Selecting the Number of Copies
You select how many copies of the print job you require by writing an escape sequence
with the following format to the printer:

copies indicates the number of copies of the job you want printed. The following
example prints 5 copies of the current job:

SBUFFER ':=' [%33,"&l5X"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

Escape sequence to send the Universal Exit Language/Start PJL command:

esc%-12345X

Character sequence to enter PostScript mode:

@PJL enter language = PostScript<LF>

Character sequence to enter PCL mode:

@PJL enter language = PCL<LF>

Escape sequence for specifying the number of copies to print:

esc&lcopiesX

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 12

Using Job-Control Commands

Selecting Simplex or Duplex Mode
If a job is printed in simplex mode, it is printed on one side of the paper. Jobs that print
on both sides of the paper are duplex-mode jobs.

You select simplex or duplex mode by writing an escape sequence with the following
format to the printer:

mode-number is 0 for simplex, 1 for duplex with long-edge binding, or 2 for duplex
with short-edge binding. The default mode is simplex.

The following example sets duplex mode with long-edge binding:

SBUFFER ':=' [%33,"&l1S"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

Selecting the Paper Source
The paper source designates one of two paper locations as the paper source for
printing: the internal tray or manual input.

You select the paper source by writing an escape sequence with the following format
to the printer:

For PCL 4, the options for tray-number are:

For PCL 5, the options are:

Escape sequence for setting simplex/duplex mode:

esc&lmode-numberS

Note. Duplexing is supported only on the 5577 laser printer.

Escape sequence for selecting the paper source:

esc<ray-numberH

0 Print the current page without changing the paper source

1 Internal tray (the default source)

2 Manual paper feed

0 Print the current page without changing the paper source

1 Upper paper tray (the default source)

2 Manual paper feed

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 13

Using Job-Control Commands

The following example selects the manual paper feed as the paper source:

SBUFFER ':=' [%33,"&l2H"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

Selecting the Output Bin
You select the output bin by writing an escape sequence with the following format to
the printer:

bin-number is 1 for the upper bin and 2 for the lower bin.

The following example selects the lower bin:

SBUFFER ':=' [%33,"&l2G"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

Separating Jobs
You issue the job separation sequence by writing an escape sequence with the
following format to the printer:

The following issues the job separation sequence:

SBUFFER ':=' [%33,"&l1T"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

3 Manual envelope feed

4 Lower paper tray

6 Envelope feeder

Escape sequence for selecting the output bin:

esc&lbin-numberG

Note. Bin selection is supported only on laser printers that support PCL 5.

Escape sequence for selecting the output bin:

esc&l1T

Note. The job separation feature is supported only on the PCL 5 laser printers.

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 14

Using Page-Control Commands

Using Page-Control Commands
Page-control commands include a subset of escape sequences that allow you to
control characteristics such as the size of the page, orientation, margins, and text
spacing. This subsection presents some of the more common commands. Again, for
complete details on all page-control commands, refer to the appropriate printer
reference manual.

The features described here are supported on all Tandem laser printers.

Setting the Paper Size
You need to specify to Tandem laser printers the physical page size of the paper you
intend to print on. Use an escape sequence with the following format:

size indicates the paper size or envelope size as follows:

Paper sizes:

Envelope sizes:

The following example selects the legal page size:

SBUFFER ':=' [%33,"&l3A"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

Escape sequence to set the paper size:

esc&lsizeA

1 Executive (7.25 inch x 10.5 inch)

2 Letter (8.5 inch x 11 inch)

3 Legal (8.5 inch x 14 inch)

2
6

A4 (210 mm x 297 mm)

8
0

Letter (Monarch 7.75) (3.875 x 7.5)

8
1

Business (Commercial 10) (4.125 x 9.5)

9
0

International DL (110 mm x 220 mm)

9
1

International C5 (162 mm x 229 mm)

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 15

Using Page-Control Commands

Setting the Logical Page Length
The logical page length on Tandem laser printers is controlled by issuing an escape
sequence with the following format:

lines gives the maximum number of lines that each subsequent page can have. This
is the size of the logical page. The logical page sets the bounds for future operations.

The following example sets the page size to 48 lines:

SBUFFER ':=' [%33,"&l48P"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

Setting the Margins
To set the left, right, and top margins, you use the following escape sequences:

The left and right margins are set according to the number of columns from the left or
right edge, respectively, of the logical page. The top margin is set to the number of
lines from the top of the logical page.

The following example sets the text area as 10 columns from the left and right edges of
the logical page and five lines from the top of the logical page:

SBUFFER ':=' [%33,"&a10l10M", %33, "&l5E"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

Escape sequence to set page size:

esc&llinesP

Escape sequence to set the left margin:

esc&acolumn-numberL

Escape sequence to set the right margin:

esc&acolumn-numberM

Escape sequence to set the top margin:

esc&lline-numberE

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 16

Printing Text

Setting the Horizontal and Vertical Motion Indexes
The horizontal motion index designates the distance between columns in 1/120-inch
increments. Similarly, the vertical motion index designates the distance between rows
in 1/48-inch increments. You set the horizontal and vertical motion indexes using the
following escape sequences:

Setting the line spacing has the same effect as setting the vertical motion index, but
you specify the number of lines per inch instead of the distance between adjacent
rows.

The following example sets the horizontal motion index to 14/120-inch and the vertical
motion index to 5 lines per inch:

SBUFFER ':=' [%33,"&k14H", %33, "&l5D"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

Printing Text
PCL supports several operations that affect the appearance of printed characters.
Your program can do the following:

• Select a font and alter its characteristics

• Underline text

The following paragraphs describe how to use these features in an application
program.

Selecting Font Characteristics
Several fonts are supplied with the printer; these fonts are referred to as internal fonts.
You can add fonts to your printer by inserting font cartridges or downloading soft fonts.

Escape sequence to set the horizontal motion index:

esc&kcolumn-separationH

Escape sequence to set the vertical motion index:

esc&lrow-separationC

Escape sequence to set the line spacing:

esc&lline-spacingD

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 17

Printing Text

For internal fonts and downloaded soft fonts, you can alter the font characteristics
including:

• The typeface (Courier, Times Roman, and so on)

• The symbol set; for example, to correspond to a national standard

• The character spacing (fixed or proportional)

• The pitch (number of characters per horizontal inch—proportional fonts only)

• The point size or character height

• The style (upright or italic)

• The stroke weight or boldness

• The orientation (portrait or landscape)

You specify the font characteristics by writing escape sequences with the following
formats to the printer:

Escape sequence for specifying the typeface for the primary font:

esc(sfont-numberT

Escape sequence for specifying the symbol set for the primary font:

esc(id

Escape sequence for specifying the spacing for the primary font:

esc(svalueP

Escape sequence for specifying the pitch for the primary font:

esc(spitch-valueH

Escape sequence for specifying the point size for the primary font:

esc(spoint-sizeV

Escape sequence for selecting the printing style for the primary font:

esc(sstyle-valueS

Escape sequence for selecting the stroke weight for the primary font:

esc(sdensity-valueB

Escape sequence for selecting orientation:

esc&lorientationO

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 18

Printing Text

Refer to the appropriate printer reference manual for a complete list of possible values
for each of these escape sequences. The following example describes a font for the
Courier typeface, with the ASCII symbol set, fixed spacing, 10 characters per inch,
12 point, upright, bold, in portrait orientation:

SBUFFER ':=' [%33,"(s3T",%33,"(0U",%33,"(s0P",%33,"(s10H",
 %33,"(s12V",%33,"(s0S",%33,"(s3B",
 %33,"&l0O"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

Underlining Text
To underline text, write an escape sequence in the following format to the printer:

All text following the underline escape sequence is printed underlined up to the escape
sequence that turns off underlining. By default, underlining is turned off.

position specifies where the line is drawn with respect to the text. position can
have two values:

The following code fragment shows an example for a Tandem laser printer. It uses
floating position underlining:

STRING .START^UNDER[0:4] := [%33,"&d3D"];
STRING .STOP^UNDER[0:3] := [%33,"&d@"];
 .

!Send the start-underlining escape sequence:
CALL WRITEX(PRINTER^NUM,START^UNDER,$LEN(START^UNDER));
IF <> THEN ...

!Send the text to be printed underlined:
SBUFFER ':=' "This is underlined text," -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

!Send the stop-underlining escape sequence:
CALL WRITEX(PRINTER^NUM,STOP^UNDER,STOP^UNDER);
IF <> THEN ...

Escape sequence for underlining text:

esc&dpositionD

Escape sequence to turn off underlining:

esc&d@

0 Fixed position; always the same distance below the line of text

3 Floating position; depends on the underline distance of all fonts printed on the
current line

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 19

Resetting the Laser Printer Default Values

!Subsequent text is not underlined:
SBUFFER ':=' " and this is not. " -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

The above example prints the following text:

This is underlined text, and this is not.

Resetting the Laser Printer Default Values
You can reset the printer to its default values (those configured at the control panel) by
sending an escape sequence in the following format to the printer:

The following example shows how to do this in an application program.

STRING .RESET^PRINTER[0:1] := [%33,"E"];
 .
 .

CALL WRITEX(PRINTER^NUM,
 RESET^PRINTER,
 $LEN(RESET^PRINTER);
IF <> THEN ...

This escape sequence resets printer characteristics such as symbol set, pitch, and
underlining.

Programming for Tandem Matrix Line Printers
This subsection describes some of the more commonly used programmable features
of the Tandem 5515, 5516, and 5518 matrix line printers.

The information presented here describes how to use:

• Page-control commands to set the page length and the size of the left and right
margins

• Forms-movement commands to vertically position the paper

• Text printing commands to set font characteristics, underline text, and perform
overstriking

For complete details of how to use all available PCL commands for the 5515, 5516,
and 5518 line matrix printers, see the Tandem 5515/5516/5518 Printers Technical
Reference Manual.

Escape sequence to restore configured values:

escE

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 20

Using Page-Control Commands

Using Page-Control Commands
Page-control commands include a subset of escape sequences that allow you to
control characteristics such as the length of the page and the left and right margins.
This subsection presents some of the more commonly used commands. Again, for
complete details on all page-control commands, refer to the printer reference manual.

Setting the Page Length
Page length on printers supported by Tandem is controlled by issuing an escape
sequence with the following format:

lines gives the maximum number of lines that each subsequent page can have. This
is the size of the logical page. The logical page sets the bounds for future operations.

The following example sets the page size to 48 lines:

SBUFFER ':=' [%33,"&l48P"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

Setting the Margins
To set the left and right margins, you use the following escape sequences:

The left and right margins are set according to the number of columns from the left or
right edge, respectively, of the logical page.

The following example sets the text area as 10 columns from the left and right edges of
the logical page:

SBUFFER ':=' [%33,"&a10l10M"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

Escape sequence to set page length:

esc&llinesP

Escape sequence to set the left margin:

esc&acolumn-numberL

Escape sequence to set the right margin:

esc&acolumn-numberM

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 21

Controlling Forms Movement

Controlling Forms Movement
Vertical positioning is done on the 5515/5516/5518 printers by looking up values in the
vertical form control (VFC) table in printer memory. You can do this in two ways:

• Use the CONTROL procedure with operation 1

• Use an escape sequence

Using CONTROL Operation 1 to Position the Paper
To vertically position the paper using CONTROL operation 1, you need to supply the
function to be performed. This function is supplied as a parameter to CONTROL
operation 1. The I/O process converts the parameter into an escape sequence that
accesses the VFC table.

The following example positions the paper to the next one-half page:

LITERAL POSITION = 1,
 NEXT^HALF^PAGE = 5;
 .
 .
CALL CONTROL(PRINTER^NUM,
 POSITION,
 NEXT^HALF^PAGE);
IF <> THEN ...

Refer to the description of the CONTROL procedure in the Guardian Procedure Calls
Reference Manual for a complete list of vertical positioning options for printers with
subtype 7.

Using an Escape Sequence to Position the Paper
To position the paper using an escape sequence, you use an escape sequence with a
format like this:

channel-num indicates a channel number in the range 0 through 16 in the VFC table.

The VFC table contains one row for each line that can be printed on a page. Each row
is made up of 17 columns called VFC channels.

Each row/column location in the VFC table contains either a 0 or a 1. A 0 indicates
that the line cannot be accessed when the channel is selected. A 1 indicates that the
line can be accessed when the channel is selected.

Table 11-4 shows part of the default VFC table. The printer software automatically
calculates the default VFC table according to the number of lines on the logical page.

Escape sequence to position the paper:

esc&lchannel-numV

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 22

Controlling Forms Movement

When you access the VFC table using an escape sequence (whether directly or
indirectly using CONTROL operation 1), the printer advances to the next line that
contains a 1 in the selected VFC channel. For example, if the printer is currently at line
5 and channel 6 is selected, the printer advances to line 10.

Refer to the Tandem 5515/5516/5518 Printers Technical Reference Manual for details
on the default channel settings.

Programming the VFC Table
You can program the VFC table so that each entry enables or disables the start of
printing at a given line. You can change the values that are stored in channels 1
through 16. You cannot change the values stored in channel 0.

Note. When you are accessing the VFC table using CONTROL operation 1, the supplied
parameter refers to the VFC channel number offset by one. Parameter 0 refers to channel 1,
parameter 1 to channel 2, and so on. You cannot refer to channel 0 using a CONTROL call.

Table 11-4. Default VFC Table

Line
Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Channel
Number

Top of Physical
page

Top of Form 0

Bottom of Form 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Single Spacing 1

Double Spacing 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Triple Spacing 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

Half form 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Quarter form 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Tenth line 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Bottom of Form 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Bottom of Form - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Top of Form - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Top of Form - 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Seventh line 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

Sixth line 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

Fifth line 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Fourth line 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 23

Controlling Forms Movement

To change the VFC table, send an escape sequence to the printer in the following
form:

This escape sequence moves the binary data provided in vfc-data into the VFC
table. The first word of vfc-data corresponds to row 0, channels 1 through 16; the
second word corresponds to row 1, channels 1 through 16, and so on. byte-count
indicates the number of bytes in vfc-data.

The following example sets up channel 13 to cause the paper to be positioned at the
next eighth line (instead of seventh). All other channels remain unchanged.

STRUCT VF^DATA;
BEGIN
 STRING CONTROL^CHARS[0:5];
 INT TABLE^DATA[0:16];
END;
 .
 .
VF^DATA.CONTROL^CHARS ':=' [%33,"&L9W"] -> @S^PTR;
VF^DATA.TABLE^DATA ':=' [
 %B1011111100011111, !line 0
 %B0010000000000000, !line 1
 %B0011000000000000, !line 2
 %B0010100000000000, !line 3
 %B0011001000000001, !line 4
 %B0010000000000010, !line 5
 %B0011100000000100, !line 6
 %B0010000000000000, !line 7, channel 13 off
 %B0011011000001001, !line 8, channel 13 on
 %B0010100000000000, !line 9
 %B0011000100000010, !line 10
 %B0010000000000000, !line 11
 %B0011101000000101, !line 12
 %B0010000001000000, !line 13
 %B0111000010000000, !line 14, channel 13 off
 %B0000000000000000, !line 15
 %B0000000000001000, !line 16, channel 13 on
];
CALL WRITEX(PRINTER^NUM,VFC^DATA,$LEN(VF^DATA));
IF <> THEN ...

Escape sequence for programming the VFC table:

esc&lbyte-countWvfc-data

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 24

Controlling Forms Movement

The VFC table now contains the values shown in Table 11-4.

Table 11-5. Modified VFC Table

Line
Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Channel
Number

Top of Physical
page

Top of Form 0

Bottom of Form 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Single Spacing 1

Double Spacing 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Triple Spacing 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

Half form 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Quarter form 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Tenth line 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Bottom of Form 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Bottom of Form - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Top of Form - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Top of Form - 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Eighth line 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Sixth line 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

Fifth line 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Fourth line 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 25

Controlling Forms Movement

Figure 11-1. Modified VFC Table

VST120.VSD

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 26

Printing Text

Printing Text
PCL supports several operations that affect the appearance of printed characters on
Tandem matrix line printers. Your program can specify the following:

• Font characteristics, including:

• A symbol set; for example, to correspond to a national standard

• The pitch (number of characters per horizontal inch)

• The style (upright or italic)

• The density or boldness (number of dots per character)

• Text underlining

• Text overstriking

The following paragraphs describe how to use these features in an application
program.

Selecting Font Characteristics
You specify the font characteristics by writing escape sequences with the following
formats to the printer:

Refer to the appropriate printer reference manual for a complete list of possible values
for each of these escape sequences. The following example describes a font for the
Japanese ASCII symbol set, a pitch of 12 characters per inch, italic, with standard
density:

SBUFFER ':=' [%33,"(0K",%33,"(s12H",%33,"(s1S",
 %33,"(s0Q"] -> @S^PTR;
CALL WRITEX(PRINTER^NUM,
 SBUFFER,

Escape sequence for specifying the symbol set for the primary font:

esc(id

Escape sequence for specifying the pitch for the primary font:

esc(spitch-valueH

Escape sequence for selecting the printing style for the primary font:

esc(sstyle-valueS

Escape sequence for selecting the print density for the primary font:

esc(sdensity-valueQ

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 27

Printing Text

 @S^PTR '-' @SBUFFER);
IF <> THEN ...

Underlining Text
To underline text, write an escape sequence in the following format to the printer:

All text following the underline escape sequence is printed underlined up to the escape
sequence that turns off underlining. By default, underlining is turned off.

The following code fragment shows an example for the 5515/5516/5518 printers:

STRING .START^UNDER[0:3] := [%33,"&dD"];
STRING .STOP^UNDER[0:3] := [%33,"&d@"];
 .

!Send the start-underlining escape sequence:
CALL WRITEX(PRINTER^NUM,START^UNDER,$LEN(START^UNDER));
IF <> THEN ...

!Send the text to be printed underlined:
SBUFFER ':=' "This is underlined text," -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

!Send the stop-underlining escape sequence:
CALL WRITEX(PRINTER^NUM,STOP^UNDER,$LEN(STOP^UNDER));
IF <> THEN ...

!Subsequent text is not underlined:
SBUFFER ':=' " and this is not. " -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

The above example prints the following text:

This is underlined text, and this is not.

Overstriking Text
The 5515/5516/5518 printers support two ways to print characters on top of each
other:

• Print adjacent lines on top of each other by calling the SETMODE procedure with
function 6 selected.

Note. You cannot change the pitch in the middle of a line.

Escape sequence for underlining text:

esc&dD

Escape sequence to turn off underlining:

esc&d@

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 28

Printing Text

• Print groups of adjacent characters on top of each other by inserting backspace
control codes.

Using SETMODE 6 to Overstrike Characters

You can use SETMODE function 6 to print a line on top of another line. SETMODE
function 6 controls the spacing after you write a line to the printer. By default, a line
feed and carriage return are performed after each line is printed. By calling SETMODE
function 6, you can suppress the line feed.

The method for overstriking lines using SETMODE function 6 is as follows:

1. Call SETMODE function 6 specifying suppression of the line feed after printing a
line. (Note that you do this before printing the line that you want to overstrike.)

2. Call the WRITE procedure to print the first line.

3. Call SETMODE function 6 to turn off suppression of the line feed.

4. Call the WRITE procedure to print the second line. The second line is printed on
top of the first.

The following example shows the use of SETMODE function 6 to overstrike a line of
text:

LITERAL SPACE^MODE = 6, NO^LF = 0, LF = 1;
 .
 .

!Suppress the line feed:
CALL SETMODE(PRINTER^NUM,SPACE^MODE,NO^LF);
IF <> THEN ...

SBUFFER ':=' "Denote blanks by b. " -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...

!Turn on automatic line feed:
CALL SETMODE(PRINTER^NUM,SPACE^MODE,LF);
IF <> THEN ...

!Print the second line:
SBUFFER ':=' " / " -> @S^PTR;
CALL WRITEX(PRINTER^NUM,SBUFFER,@S^PTR '-' @SBUFFER);
IF <> THEN ...
 .
 .

The “/” character in the second line overstrikes the “b” character of the first line.

Using Backspace Control Codes to Overstrike Characters

To overstrike a single character or small group of characters in a line, it might be easier
to insert the backspace control code into the output buffer. The backspace control
code has the ASCII value %10.

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 29

Resetting the Printer to Default Values

The following example shows the use of the backspace control code to overstrike one
character:

SBUFFER ':=' ["Denote blanks by b",%10,"/. "] -> @S^PTR;
CALL WRITEX(PRINTER^NUMBER,
 SBUFFER,
 @S^PTR '-' @SBUFFER);
IF <> THEN ...

Again, the “/” character overstrikes the “b.”

Resetting the Printer to Default Values
You can reset the printer to its default values (those configured at the control panel) by
sending an escape sequence in the following format to the printer:

The following example shows how to do this in an application program.

STRING .RESET^PRINTER[0:1] := [%33,"E"];
 .
 .

CALL WRITEX(PRINTER^NUM,
 RESET^PRINTER,
 $LEN(RESET^PRINTER));
IF <> THEN ...

This escape sequence resets printer characteristics such as symbol set, pitch, and
underlining. For the 5515/5516/5518 printers, a new default VFC table is calculated.

Recovering From Errors
The following errors require special consideration for all line printers:

When dealing with these errors, you should also consider whether your program is
using nowait I/O and if so, whether multiple I/O operations are allowed concurrently. If
your program does permit multiple concurrent I/O operations, lines may be missing or
appear printed out of order.

Escape sequence to restore configured values:

escE

100 Device not ready

102 Device out of paper

200-
255

Path errors

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 30

Recovering From a “Device Not Ready” Error

Recovering From a “Device Not Ready” Error
Your application must be able to handle a “not ready” or “paper out” condition. With
some printers, either condition causes a “device not ready” error (refer to the printer
manual). If either of these conditions arises, your program should send a message to
the user or system operator. Your application should then wait for the user to respond,
indicating that the printer is ready.

The FILEERROR procedure is useful with devices that might generate retryable errors.
You should call this procedure after checking the condition code following an I/O
operation with the printer. FILEERROR returns a status value of 1 if the operation
should be retried or 0 if it should not be retried. For errors that need to be retried,
FILEERROR responds as follows:

• For error 100 or error 102, FILEERROR displays an appropriate message on the
home terminal and waits for a reply. The user is then expected to fix the problem
before typing a reply. To continue, the user presses the return key; FILEERROR
returns 1. To discontinue, the user enters STOP; FILEERROR returns 0.

• For path errors (errors 200 through 255) FILEERROR returns 1 where it is
appropriate for your program to retry the operation. For errors 200 and 201,
FILEERROR returns a 1 if it can establish a path to the file in error; otherwise, it
returns 0. For errors 240 and 241, FILEERRORS always returns a 1. For other
path errors, FILEERRORS always returns a 0.

The following example shows one way of using the FILEERROR procedure:

ERROR := 1;
WHILE ERROR DO
BEGIN
 CALL WRITEX(PRINTERNUM,SBUFFER,WCOUNT);
 IF <> THEN
 BEGIN
 IF NOT FILEERROR(PRINTERNUM) THEN
 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;
 ELSE ERROR := 0;
END;

Recovering From Path Errors
Path-error recovery on a printer requires some special considerations because of
paper movement. If a path error is detected and it is either error 200 or 201, the
operation never got started. These operations can be retried if one of these errors
occurs.

If a path error is detected and it is one of errors 210 through 231, the operation failed at
some indeterminate point and paper movement may have occurred. Depending on the
application, different approaches to error recovery are required. If the operation is
critical, such as printing payroll checks, the check should be canceled and a message

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 31

Sample Program for Using a Printer

sent to the operator. However, if the information being printed is not considered
critical, the line can be reprinted (and may thus be duplicated).

Sample Program for Using a Printer
The following example modifies the inventory program developed in Section 5,
Communicating With Disk Files. It now includes an option to print the contents of the
data file. This example also includes logic to read the name of the printer or spooler
collector you wish to print to from the OUT file named in the Startup message.

The example adds some new procedures and makes changes to the MAIN and
GET^COMMAND procedures as follows:

• The MAIN and GET^COMMAND procedures now contain logic to process an
option “p” to print the contents of the data file.

• Option “p” selects the PRINT^FILE procedure. This procedure puts one print line
of information in a buffer and then sends the buffer to the PRINT^OUT procedure
for printing. PRINT^FILE does this by reading each record in turn from the data
file, taking each field in turn, putting the information into the buffer with suitable
leading text, and then calling PRINT^OUT.

• In addition to sending the formatted buffer to the line printer, the PRINT^OUT
procedure also performs error checking and error processing. By calling the
FILEERROR procedure, it is able to decide whether to retry a particular error, wait
for a user response before retrying, or abend the operation.

• The INIT and SAVE^STARTUP^MESSAGE procedures have been added to
perform file initialization. The terminal file name is taken from the IN file name of
the Startup message.

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $TOOLS.ZTOOLD04.ZSYSTAL
?LIST
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !maximum file-
 ! name length
LITERAL OLD = 0;
LITERAL NEW = 1;
LITERAL BUFSIZE = 132;
LITERAL PARTSIZE= 6;
LITERAL DESCSIZE= 60;
LITERAL SUPPSIZE= 60;
LITERAL ABEND = 1;

STRING .SBUFFER[0:BUFSIZE]; !I/O buffer (one extra char)
STRING .S^PTR; !pointer to end of string
INT PARTFILE^NUM; !part file number

Note. This example assumes a 5515/5516/5518 printer. To make the example work with
another type of printer, you need to change the escape sequences used by the PRINT^FILE
procedure for underlining text for the mechanism used on the printer you have.

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 32

Sample Program for Using a Printer

INT TERMNUM; !terminal file number

STRUCT .PART^RECORD; !database record
BEGIN
 STRING PART^NUMBER[0:5];
 STRING DESCRIPTION[0:59];
 INT DESC^LEN;
 STRING SUPPLIER[0:59];
 INT SUP^LEN;
 INT ON^HAND;
 INT UNIT^PRICE;
END;

STRUCT CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULTS;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
END;

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (INITIALIZER,
? FILE_OPEN_,WRITEREADX,WRITEX,KEYPOSITION,NUMIN,
? PROCESS_STOP_,READX,POSITION,DNUMOUT,FILE_GETINFO_,
? READUPDATEX,WRITEUPDATEX,DNUMIN,READUPDATELOCKX,
? WRITEUPDATEUNLOCKX,FILEERROR,CONTROL,FILE_CLOSE_,
? OLDFILENAME_TO_FILENAME_,UNLOCKREC)
?LIST

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 33

Sample Program for Using a Printer

!--
! Here are a few DEFINEs to make it a little easier to format
! and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR (S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT (N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print a line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR (S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 34

Sample Program for Using a Printer

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is mainly to be used when the
! file is not open when there is no file number for it.
! FILE^ERRORS is used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program

 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
END;

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to display the
! information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS (FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 35

Sample Program for Using a Printer

!--
! This procedure writes a message on the terminal and checks
! for any error. If there is an error, it attempts to write
! a message about the error and the program is stopped.
!--

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

!--
! This procedure asks the user for the next function to do:
!
! "r" to read records
! "u" to update a record
! "i" to insert a record
! "p" to print records
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' to Read Record, ");
 PRINT^STR(" 'u' to Update a Record, ");
 PRINT^STR(" 'i' to Insert a Record, ");
 PRINT^STR(" 'p' to Print Records, ");
 PRINT^STR(" 'x' to Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER, @S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 36

Sample Program for Using a Printer

!--
! Procedure to display a part record on the terminal
!--

PROC DISPLAY^RECORD;
BEGIN

 PRINT^BLANK;

! Display part number:

 PRINT^STR("Part Number Is: " & PART^RECORD.PART^NUMBER
 FOR PARTSIZE);

! Display part description:

 PRINT^STR("Part Description: " & PART^RECORD.DESCRIPTION
 FOR PART^RECORD.DESC^LEN);

! Display part supplier name:

 PRINT^STR("Supplier: " & PART^RECORD.SUPPLIER
 FOR PART^RECORD.SUP^LEN);

! Display quantity on hand:

 START^LINE;
 PUT^STR("Quantity on hand: ");
 PUT^INT(PART^RECORD.ON^HAND);
 PRINT^LINE;

! Display unit price:

 START^LINE;
 PUT^STR("Unit Price: $");
 PUT^INT(PART^RECORD.UNIT^PRICE);
 PRINT^LINE;
END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 37

Sample Program for Using a Printer

!--
! Procedure to prompt user for input to build a new record.
!--

PROC ENTER^RECORD(TYPE);
INT TYPE;

BEGIN
 INT COUNT^READ;
 INT STATUS;
 STRING .NEXT^ADDR;

 DEFINE BLANK^FILL(F) =
 F ':=' " " & F FOR $LEN(F)*$OCCURS(F) - 1 BYTES #;

 PRINT^BLANK;

! If inserting a new record, prompt for a part number.
! If updating an exiting record, record number is already
! known:

 IF TYPE = NEW THEN
 BEGIN
 SBUFFER ':=' "Enter Part Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 BLANK^FILL(PART^RECORD.PART^NUMBER);
 PART^RECORD.PART^NUMBER ':=' SBUFFER FOR
 $MIN(COUNT^READ,PARTSIZE);
 END;

! Prompt for a part description:

 SBUFFER ':=' "Enter Part Description: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 COUNT^READ := $MIN(COUNT^READ,DESCSIZE);
 BLANK^FILL(PART^RECORD.DESCRIPTION);
 PART^RECORD.DESCRIPTION ':=' SBUFFER FOR COUNT^READ;
 PART^RECORD.DESC^LEN := COUNT^READ;
 END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 38

Sample Program for Using a Printer

! Prompt for the name of the supplier:

 SBUFFER ':=' "Enter Supplier Name: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 COUNT^READ := $MIN(COUNT^READ,SUPPSIZE);
 BLANK^FILL(PART^RECORD.SUPPLIER);
 PART^RECORD.SUPPLIER ':=' SBUFFER FOR COUNT^READ;
 PART^RECORD.SUP^LEN := COUNT^READ;
 END;

! Prompt for the quantity on hand:

PROMPT^AGAIN:
 SBUFFER ':=' "Enter Quantity On Hand: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 SBUFFER[COUNT^READ] := 0;
 @NEXT^ADDR := NUMIN(SBUFFER,PART^RECORD.ON^HAND,10,
 STATUS);
 IF STATUS OR @NEXT^ADDR <> @SBUFFER[COUNT^READ] THEN
 BEGIN
 PRINT^STR("Invalid number");
 GOTO PROMPT^AGAIN;
 END;
 END;

! Prompt or unit price:

PROMPT^AGAIN1:
 SBUFFER ':=' "Enter Unit Price: $" -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF TYPE = NEW OR COUNT^READ > 0 THEN
 BEGIN
 SBUFFER[COUNT^READ] := 0;
 @NEXT^ADDR := NUMIN(SBUFFER,PART^RECORD.UNIT^PRICE,10,
 STATUS);
 IF STATUS OR @NEXT^ADDR <> @SBUFFER[COUNT^READ] THEN
 BEGIN
 PRINT^STR("Invalid number");
 GOTO PROMPT^AGAIN1;
 END;
 END;
END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 39

Sample Program for Using a Printer

!--
! Procedure to stop printing. This procedure positions the
! paper at the top of the form and closes the printer.
!--

PROC FORMFEED^AND^CLOSE(PNUM);
INT PNUM;
BEGIN
 LITERAL POSITION = 1;
 LITERAL TOP^OF^FORM = 0;

! Position the paper to the top-of-form:

 CALL CONTROL(PNUM,POSITION,TOP^OF^FORM);
 IF <> THEN CALL FILE^ERRORS(PNUM);

! Close the printer:

 CALL FILE_CLOSE_(PNUM);
 IF <> THEN CALL FILE^ERRORS(PNUM);

END;

!--
! Procedure for printing a line on the printer. This
! procedure returns when the line has been successfully
! printed.
!
! If printing is unsuccessful, then the FILEERROR procedure
! offers the user the option of trying again.
!--

PROC PRINT^OUT(PRINTER^NUM,SBUFFER,WCOUNT);
INT PRINTER^NUM;
STRING .SBUFFER;
INT WCOUNT;

BEGIN
 INT ERROR;

 ERROR := 1;
 WHILE ERROR DO
 BEGIN
 CALL WRITEX(PRINTER^NUM,SBUFFER,WCOUNT);
 IF <> THEN
 BEGIN
 IF NOT FILEERROR(PRINTER^NUM)
 THEN CALL FILE^ERRORS(PRINTER^NUM);
 END
 ELSE ERROR := 0;
 END;
END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 40

Sample Program for Using a Printer

!--
! Procedure for printing records. The user selected "p."
! The procedure prints out the entire file, six records
! to a page.
!--

PROC PRINT^FILE;
BEGIN
 STRING .PRINTER^NAME[0:MAXFLEN];
 INT PRINTERNUM;
 INT PLEN;
 INT ERROR;
 LITERAL EXCLUSIVE = 1;
 LITERAL POSITION = 1;
 LITERAL TOP^OF^FORM = 0;

! Open the printer with exclusive access, using the OUT file
! from the Startup message:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.OUTFILE.VOLUME,
 PRINTER^NAME:MAXFLEN,
 PLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 ERROR := FILE_OPEN_(PRINTER^NAME:PLEN,PRINTERNUM,
 !access!,
 EXCLUSIVE);
 IF ERROR <> 0
 THEN CALL FILE^ERRORS^NAME(PRINTER^NAME:PLEN,ERROR);

! Position paper to top of form:

 CALL CONTROL(PRINTERNUM,POSITION,TOP^OF^FORM);
 IF <> THEN CALL FILE^ERRORS(PRINTERNUM);

! Position to the start of the parts file:

 SBUFFER ':=' "0";
 CALL KEYPOSITION(PARTFILE^NUM,SBUFFER,
 !key^specifier!,
 1,0);
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

! Loop until all records printed:

 WHILE 1 DO
 BEGIN

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 41

Sample Program for Using a Printer

 ! Read a record. Return to PARTS if end of file:

 CALL READX(PARTFILE^NUM,PART^RECORD,$LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 CALL FORMFEED^AND^CLOSE(PRINTERNUM);
 RETURN;
 END;
 CALL FILE^ERRORS(PARTFILE^NUM);
 END;

 ! Print the part number:

 START^LINE;
 S^PTR ':=' [%33,"&dDPart Number Is:",%33,"&d@ "]
 -> @S^PTR;
 S^PTR ':=' PART^RECORD.PART^NUMBER FOR 6 -> @S^PTR;
 CALL PRINT^OUT(PRINTERNUM,SBUFFER,@S^PTR '-' @SBUFFER);

 ! Print the part description:

 START^LINE;
 S^PTR ':=' [%33,"&dDPart Description:",%33,"&d@ "]
 -> @S^PTR;
 S^PTR ':=' PART^RECORD.DESCRIPTION FOR
 PART^RECORD.DESC^LEN -> @S^PTR;
 CALL PRINT^OUT(PRINTERNUM,SBUFFER,@S^PTR '-' @SBUFFER);

 ! Print the part supplier name:

 START^LINE;
 S^PTR ':=' [%33,"&dDSupplier:",%33,"&d@ "]
 -> @S^PTR;
 S^PTR ':=' PART^RECORD.SUPPLIER FOR PART^RECORD.SUP^LEN
 -> @S^PTR;
 CALL PRINT^OUT(PRINTERNUM,SBUFFER,@S^PTR '-' @SBUFFER);

 ! Print the quantity on hand:

 START^LINE;
 S^PTR ':=' [%33,"&dDQuantity on hand:",%33,"&d@ "]
 -> @S^PTR;
 PUT^INT(PART^RECORD.ON^HAND);
 CALL PRINT^OUT(PRINTERNUM,SBUFFER,@S^PTR '-' @SBUFFER);

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 42

Sample Program for Using a Printer

 ! Print the unit price:

 START^LINE;
 S^PTR ':=' [%33,"&dDUnit Price:",%33,"&d@ $"]
 -> @S^PTR;
 PUT^INT(PART^RECORD.UNIT^PRICE);
 CALL PRINT^OUT(PRINTERNUM,SBUFFER,@S^PTR '-' @SBUFFER);

 CALL PRINT^OUT(PRINTERNUM,SBUFFER,0);
 END;

END;

!--
! Procedure for reading records. The user selected function
! "r." The start of the read is selected by approximate key
! positioning. The user has the option of sequentially
! reading subsequent records.
!--

PROC READ^RECORD;
BEGIN
 INT COUNT^READ;
 INT ERROR;

! Prompt the user for the part number:

 PRINT^BLANK;
 SBUFFER ':=' "Enter Part Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Position approximately to the selected record:

 CALL KEYPOSITION(PARTFILE^NUM,SBUFFER,
 !key^specifier!,
 COUNT^READ,0);
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 43

Sample Program for Using a Printer

! Loop reading and displaying records until user declines
! to read the next record (any response other than "y"):

 DO BEGIN

 PRINT^BLANK;

 ! Read a record from the part file.
 ! If end-of-file is reached,
 ! return control to the main procedure.

 CALL READX(PARTFILE^NUM,PART^RECORD,$LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record");
 RETURN;
 END;
 CALL FILE^ERRORS(PARTFILE^NUM);
 END;

 ! Display the record on the terminal:

 CALL DISPLAY^RECORD;

 PRINT^BLANK;

 ! Prompt the user to read the next record (user must
 ! respond "y" to accept, otherwise return to select
 ! next function):

 SBUFFER ':=' ["Do you want to read another ",
 "record (y/n)? "]
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");
END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 44

Sample Program for Using a Printer

!--
! Procedure for updating a record. The user selected
! function "u." The user is prompted to enter the part
! number of the record to be updated, then the old contents
! are displayed on the user's terminal before prompting the
! user to enter the updated record.
!--

PROC UPDATE^RECORD;
BEGIN

 INT COUNT^READ;
 INT ERROR;
 STRUCT .SAVE^REC(PART^RECORD);
 STRUCT .CHECK^REC(PART^RECORD);

 PRINT^BLANK;

! Prompt the user for the part number of the record to be
 updated:

 PRINT^BLANK;
 SBUFFER ':=' "Enter Part Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Position exactly to the selected record. First pad the
! key with blanks in case the full length was not entered:

 SBUFFER[COUNT^READ] ':=' [PARTSIZE * [" "]];
 CALL KEYPOSITION(PARTFILE^NUM,SBUFFER,
 !key^specifier!,
 !length^word!,
 2);
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

! Read the selected record. If no such record exists,
! the procedure informs the user and returns control to
! the main procedure:

 CALL READUPDATEX(PARTFILE^NUM,PART^RECORD,
 $LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,ERROR);
 IF ERROR = 11 THEN

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 45

Sample Program for Using a Printer

 BEGIN
 PRINT^BLANK;
 START^LINE;
 PUT^STR("No such record");
 PRINT^LINE;
 RETURN;
 END
 ELSE CALL FILE^ERRORS(PARTFILE^NUM);
 END;

! Save the record for later comparison:

 SAVE^REC ':=' PART^RECORD FOR $LEN(PART^RECORD) BYTES;

! Display the record on the terminal:

 CALL DISPLAY^RECORD;

! Prompt the user for the updated record:

 CALL ENTER^RECORD(OLD);

! Now that the user has entered the changes, reread the
! record and check to see whether someone else changed it
! while the user was responding:

 CALL READUPDATELOCKX(PARTFILE^NUM,CHECK^REC,
 $LEN(PART^RECORD));
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);

 IF CHECK^REC <> SAVE^REC FOR $LEN(PART^RECORD) BYTES THEN
 BEGIN
 CALL UNLOCKREC(PARTFILE^NUM);
 PRINT^BLANK;
 PRINT^STR("The record was changed by someone else " &
 "while you were working on it.");
 PRINT^STR("Your change was not made.");
 RETURN;
 END;

! Write the new record to the file:

 CALL WRITEUPDATEUNLOCKX(PARTFILE^NUM,PART^RECORD,
 $LEN(PART^RECORD));
 IF <> THEN CALL FILE^ERRORS(PARTFILE^NUM);
END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 46

Sample Program for Using a Printer

!--
! Procedure for inserting a record. The user selected
! function "i." The user is prompted to enter the new record.
! The procedure inserts the new record in the appropriate
! place in the file.
!--

PROC INSERT^RECORD;
BEGIN

 INT ERROR;

 PRINT^BLANK;

! Prompt the user for the new record:

 CALL ENTER^RECORD(NEW);

! Write the new record to the file:

 CALL WRITEX(PARTFILE^NUM,PART^RECORD,$LEN(PART^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(PARTFILE^NUM,ERROR);
 IF ERROR = 10 THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("A record exists with that part number.");
 PRINT^STR("Your new one was not entered.");
 END
 ELSE
 BEGIN
 CALL FILE^ERRORS(PARTFILE^NUM);
 END;
 END;
END;

!--
! Procedure to exit the program.
!--

PROC EXIT^PROGRAM;
BEGIN
 CALL PROCESS_STOP_;
END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 47

Sample Program for Using a Printer

!--
! Procedure to process an illegal command. The procedure
! informs the user that the selection was other than "r,"
! "u," "i," "p," or "x."
!--

PROC ILLEGAL^COMMAND;
BEGIN

 PRINT^BLANK;

! Inform the user that his selection was invalid
! then return to prompt again for a valid function:

 PRINT^STR("ILLEGAL COMMAND: " &
 "Type either 'r,' 'u,' 'i,' 'p,' or 'x'");
END;

!--
! Procedure to save the Startup message in the CI^STARTUP
! global structure.
!--

PROC SAVE^STARTUP^MESSAGE(RUCB,START^DATA,MESSAGE,
 LENGTH,MATCH)VARIABLE;
INT .RUCB;
INT .START^DATA;
INT .MESSAGE;
INT LENGTH;
INT MATCH;
BEGIN

! Copy the Startup message into the CI^STARTUP structure:

 CI^STARTUP.MSGCODE ':=' MESSAGE[0] FOR LENGTH/2;
END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 48

Sample Program for Using a Printer

!--
! This procedure does the initialization for the program.
! It calls INITIALIZER to dispose of the startup messages.
! It opens the home terminal and the data file used by the
! program.
!--

PROC INIT;
BEGIN
 STRING .PARTFILE^NAME[0:MAXFLEN - 1]; !name of part file
 INT PARTFILE^LEN;
 STRING .TERM^NAME[0:MAXFLEN - 1]; !terminal file
 INT TERMLEN;
 INT ERROR;

! Read and save startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 SAVE^STARTUP^MESSAGE);

! Open the terminal file (the IN file):

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.INFILE.VOLUME,
 TERM^NAME:MAXFLEN,TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERMNUM);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);

! Open the part file with a sync depth of 1:

 PARTFILE^NAME ':=' "$XCEED.DJCEGD10.PARTFILE" -> @S^PTR;
 PARTFILE^LEN := @S^PTR '-' @PARTFILE^NAME;
 ERROR := FILE_OPEN_(PARTFILE^NAME:PARTFILE^LEN,
 PARTFILE^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 1);
 IF <> THEN
 CALL FILE^ERRORS^NAME(PARTFILE^NAME:PARTFILE^LEN,ERROR);
END;

Communicating With Printers

Guardian Programmer’s Guide — 421922-014
11 - 49

Sample Program for Using a Printer

!--
! This is the main procedure. It calls the INIT procedure to
! initialize, then it goes into a loop calling GET^COMMAND to
! get the next user request and calling the procedure to
! carry out that request.
!--

PROC PARTS MAIN;
BEGIN
 STRING CMD;

 CALL INIT;

! Loop indefinitely until user selects function x:

 WHILE 1 DO
 BEGIN

 ! Prompt for the next command:

 CMD := GET^COMMAND;

 ! Call the function selected by user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^RECORD;

 "u", "U" -> CALL UPDATE^RECORD;

 "i", "I" -> CALL INSERT^RECORD;

 "p", "P" -> CALL PRINT^FILE;

 "x", "X" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL ILLEGAL^COMMAND;
 END;
 END;
END;

Guardian Programmer’s Guide — 421922-014
12 - 1

12
Communicating With Magnetic Tape

Magnetic tapes used on a HP system can be labeled or unlabeled. A labeled tape
contains standard ANSI, IBM, BACKUP, or TMF tape labels that identify files and tape
volumes and control access. Any tape that has none of these tape labels is an
unlabeled tape; it is up to the application to interpret any file or volume header
information or to work without this information.

Labeled tape support provides a mechanism for accessing tapes produced by other
vendors and a way to create tapes on a system to be read by another vendor’s
system. In addition, labeled tapes provide a convenient way for applications on HP
systems to maintain databases on magnetic tape.

This section discusses the programmatic interface with magnetic tapes, describing the
following topics in this order:

• Basic magnetic tape operations that are mostly common to labeled and unlabeled
tapes. These operations include how to position the tape by record or file, how to
read and write tape records, how to block records for efficiency, and how to further
improve performance by using buffered mode.

• Operations specific to labeled tapes, including how to open a labeled tape file and
how to set the attributes for a file using DEFINEs. Examples are included on how
to set attributes for reading and writing single-file labeled tapes, multiple-file
labeled tapes, and files that occupy multiple labeled tapes.

• A complete sample program to maintain data on labeled tape.

• Operations specific to unlabeled tapes. These include how to open an unlabeled
tape file as well as some guidelines on how to access single-file unlabeled tapes,
multiple-file unlabeled tapes, and files contained on more than one unlabeled tape.

• How to terminate access to a labeled or unlabeled tape file.

• How to deal with errors returned by magnetic tape read and write operations.

• A complete sample program showing the use of many of the features described in
this section for writing or accessing data on an unlabeled tape.

You use DEFINEs to specify attributes for labeled tapes, although DEFINEs can also
be used for unlabeled tapes. This section contains some specific examples. For a
general discussion of the programmatic interface to DEFINEs, refer to Section 7, Using
DEFINEs. For a discussion of DEFINEs at the TACL level, refer to the Guardian
User’s Guide.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 2

Accessing Magnetic Tape: An Introduction

Accessing Magnetic Tape: An Introduction
Programmatic access to magnetic tapes is provided by the file-system procedures
listed below:

Table 12-1 summarizes all CONTROL operations that affect magnetic tape operation.

AWAITIO[X] Waits for the completion of outstanding I/O operations
pending on the open magnetic tape unit when operating in
nowait mode.

CONTROL Controls tape positioning and rewind operations. Forward
and backward positioning by record or file are supported.
See Table 12-1.

FILE_CLOSE_ Terminates access to an open magnetic tape unit.

FILE_GETINFO_ Provides error information and characteristics about an open
magnetic tape unit.

FILE_OPEN_ Establishes communication with the magnetic tape unit.

READ[X] Reads records from magnetic tape.

SETMODE Sets and clears buffered mode and streaming modes of
operation, and selects tape density. See Table 12-2.

SETMODENOWAIT Acts the same as SETMODE except that the magnetic tape
functions are applied in a nowait manner.

WRITE[X] Writes records to an open magnetic tape file.

Table 12-1. Magnetic Tape CONTROL Operations (page 1 of 2)

CONTROL
Number Operation

 2 Writes an end-of-file mark.

 3 Rewinds and unloads the tape without waiting for the operation to finish.

 4 Rewinds the tape and takes it offline without waiting for the operation to finish

 (not supported on the 5130, 5160, 5170, and 5180 tape drives).

 5 Rewinds the tape and leaves it online without waiting for the operation to
finish.

 6 Rewinds the tape and leaves it online and waits for the operation to finish.

 7 Spaces forward by a given number of files.

 8 Spaces backward by a given number of files.

 9 Spaces forward by a given number of records.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 3

Accessing Magnetic Tape: An Introduction

On return from one of the calls listed in Table 12-1, the condition code should be CCE
if the CONTROL operation was successful. A condition code of CCL indicates an
error. A condition code of CCG indicates that an end-of-file mark was encountered.

Table 12-2 summarizes all SETMODE functions that relate to magnetic tape.

On return from one of the calls listed in Table 12-2, the condition code should be CCE
if the SETMODE function was performed successfully. A condition code of CCL
indicates an error. A condition code of CCG indicates that the attempted SETMODE
function is invalid for the type of device.

For complete details of these procedure calls, CONTROL operations, and SETMODE
functions, refer to the Guardian Procedure Calls Reference Manual.

Generally, the way you access a magnetic tape from an application program is as
follows:

1. Open the file associated with the magnetic tape device (using the FILE_OPEN_
procedure). An outline is given following Step 4.

2. Position the tape to the file/record that you intend to access (using the CONTROL
procedure). Refer to the next subsection, Positioning the Tape, for details.

 10 Spaces backward by a given number of records.

 24 Forces an end of volume. Unloads the current volume and requests the next
volume. This operation applies only to labelled tape.

 26 Causes the tape process to flush all buffered records to tape

Table 12-2. Magnetic Tape SETMODE Functions

SETMODE
Number Function

 52 Sets and clears short write mode to allow (or disallow) write operations of
less than 24 bytes.

 66 Sets the tape density. This SETMODE function also has the capability of
setting start/stop mode and streaming mode; however, SETMODE 119
should always be used instead. SETMODE 66 is not supported on G-series
releases.

 99 Sets and resets buffered mode.

 119 Sets start/stop or streaming mode. SETMODE 119 is not supported on
G-series releases.

 120 Changes the way the tape process reports the end of file.

 162 Sets compression mode for tape drives that support compression.

Table 12-1. Magnetic Tape CONTROL Operations (page 2 of 2)

CONTROL
Number Operation

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 4

Positioning the Tape

3. Perform read or write operations on the magnetic tape (using the READ[X] or
WRITE[X] procedures). See Reading and Writing Tape Records later in this
section for details.

4. Terminate access to the magnetic tape (using the FILE_CLOSE_ procedure). See
Terminating Tape Access later in this section for details.

The correct method for opening the magnetic tape device depends on whether the
tape you access is labeled or unlabeled. A labeled tape device is always opened by
passing the name of a DEFINE as the file-name parameter to the FILE_OPEN_
procedure; for example:

FILE^NAME ':=' "=TAPE^FILE";
LENGTH := 10;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 TAPE^NUM);
IF ERROR <> 0 THEN ...

=TAPE^FILE is assumed to be a DEFINE that describes a file on the labeled tape.
Subsequent access to the file on tape is made through the file number returned in the
TAPE^NUM variable.

Details about setting up the DEFINE are given with specific examples in Working With
Standard Labeled Tapes later in this section.

You gain access to an unlabeled tape by opening the device by name (or logical device
number) or by using a DEFINE that describes the device. The following example
opens the tape device $TAPE1 by name:

FILE^NAME ':=' "$TAPE1";
LENGTH := 6;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 TAPE^NUM);
IF ERROR <> 0 THEN ...

Refer to Working With Unlabeled Tapes later in this section for further details about
opening unlabeled tapes, including an example of using a DEFINE.

Positioning the Tape
The CONTROL procedure has several operations that move the tape backward and
forward by a specific number of files or record blocks:

• Space forward a number of files using CONTROL operation 7.

• Space backward a number of files using CONTROL operation 8.

• Space forward a number of record blocks using CONTROL operation 9.

• Space backward a number of record blocks using CONTROL operation 10.

• Rewind the tape using CONTROL operation 3, 5, or 6.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 5

Spacing Forward and Backward by Files

Procedure calls that position by record block are valid for labeled and unlabeled tapes.
The file-movement operations are redundant when dealing with labeled tapes because
positioning is done using the FILESEQ and FILESECT values. The file-movement
operations are necessary for accessing the desired file on unlabeled tapes.

Tape positioning by record block applies to labeled and unlabeled tapes.

Spacing Forward and Backward by Files
CONTROL operation 7 moves the tape forward (toward the end-of-tape or EOT
sticker) a specified number of files. The operation stops when the specified number of
end-of-file (EOF) marks are encountered.

The following example shows how to use CONTROL operation 7 to space forward by
three files. The illustration assumes the following call is issued when the tape is
positioned at the beginning-of-tape (BOT) sticker. Note that the tape stops
immediately after the third EOF mark.

LITERAL SPACE^FWD^FILES = 7;
 .
 .
NUMBER^OF^FILES := 3;
CALL CONTROL(TAPE^NUM,
 SPACE^FWD^FILES,
 NUMBER^OF^FILES);
IF <> THEN ...

CONTROL operation 8 moves the tape backward (toward the BOT sticker) a specified
number of files. The operation stops either when the specified number of EOF marks
are encountered or on reaching the BOT sticker.

Note. The tape device must be open before you can use any of the tape-positioning
procedures. How you open the tape depends on whether you are using labeled or unlabeled
tape. For details on opening labeled tapes, see Working With Standard Labeled Tapes later in
this section. For details on opening unlabeled tapes, refer to Working With Unlabeled Tapes.

Note. If the number of files on the tape is less than the number specified in the call to
CONTROL operation 7, then the tape will be pulled off the end of the reel. On 3480 devices,
such an operation also causes an end-of-tape error (error 150).

VST049.VSD

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 6

Spacing Forward and Backward by Files

The next example shows CONTROL operation 8 used to space the tape backward by
one file, starting from the finish point of the previous example. Note that the tape stops
immediately before the EOF mark.

LITERAL SPACE^BACK^FILES = 8;
 .
 .
NUMBER^OF^FILES := 1;
CALL CONTROL(TAPE^NUM,
 SPACE^BACK^FILES,
 NUMBER^OF^FILES);
IF <> THEN ...

Then space the tape backward 10 files:

NUMBER^OF^FILES := 10;
CALL CONTROL(TAPE^NUM,
 SPACE^BACK^FILES,
 NUMBER^OF^FILES);
IF <> THEN
BEGIN
 CALL GET_FILEINFO_(TAPE^NUM,
 ERROR);
 IF ERROR = 154 THEN ... !BOT
 ELSE ... !Other error

Here, because there are fewer than 10 files preceding the start position, the tape
rewinds as far as BOT and the CONTROL operation returns error 154 (BOT detected
when backspacing).

VST050.VSDVST050.VSD

VST051.VSD

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 7

Spacing Forward and Backward by Record Blocks

12 Communicating With Magnetic Tape

Spacing Forward and Backward by Record Blocks
CONTROL operation 9 moves the tape forward (toward the EOT sticker) a specified
number of record blocks. This operation stops when the end of the specified number
of record blocks is encountered. If an EOF mark is encountered, error 1 (EOF
detected) is returned to the program and the tape stops immediately after the EOF
mark. (Note that reaching the EOT sticker does not cause an error because the EOT
sticker is just a warning that the physical end of the tape is near.)

The following examples show how CONTROL operation 9 moves the tape forward.
The first example starts at the BOT sticker and moves the tape forward two record
blocks:

LITERAL SPACE^FWD^RECORDS = 9;
 .
 .
NUMBER^OF^RECORDS := 2;
CALL CONTROL(TAPE^NUM,
 SPACE^FORWARD^RECORDS,
 NUMBER^OF^RECORDS);
IF <> THEN ...

The next example also starts at the BOT sticker and then tries to space forward
10 record blocks. The operation stops because there are fewer than 10 record blocks
in the file. The CONTROL procedure returns error 1 and the tape stops immediately
after the EOF mark:

NUMBER^OF^RECORDS := 10;
CALL CONTROL(TAPE^NUM,
 SPACE^FWD^RECORDS,

VST052.VSD

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 8

Spacing Forward and Backward by Record Blocks

 NUMBER^OF^RECORDS);
IF <> THEN ...

The next example shows the magnetic tape spacing forward a number of record blocks
beyond the EOT sticker. The forward spacing continues because the tape has not yet
reached the end of the file:

NUMBER^OF^RECORDS := 4;
CALL CONTROL(TAPE^NUM,
 SPACE^FWD^RECORDS,
 NUMBER^OF^RECORDS);
IF <> THEN ...

CONTROL operation 10 moves the tape backward (toward the BOT sticker) a
specified number of record blocks. This operation stops when either the tape has
spaced backward over the specified number of record blocks or an EOF mark or BOT
sticker is encountered. Encountering an EOF mark means that the tape has rewound
to the beginning of the file; the tape is positioned immediately before the EOF mark.
Encountering the BOT sticker means that the tape has rewound to the beginning of the
tape; the tape stops immediately after the BOT sticker, and error 154 is returned to the
program.

The following examples show how to space backward by record blocks using
CONTROL operation 10. The first example spaces the tape backward two record
blocks from an initial tape position just before EOF:

LITERAL SPACE^BACK^RECORDS = 10;
 .

Note. To achieve better performance, you should avoid backspacing by record blocks on the
3209/5120 tape subsystems.

VST053.VSD

VST054.VSD

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 9

Spacing Forward and Backward by Record Blocks

 .
NUMBER^OF^RECORDS := 2;
CALL CONTROL(TAPE^NUM,
 SPACE^BACK^RECORDS,
 NUMBER^OF^RECORDS);
IF <> THEN ...

If the tape is positioned immediately after the EOF mark (for example, following a
space file forward operation), CONTROL operation 10 causes the tape to move to just
before the same EOF mark. Error 1 is returned:

NUMBER^OF^RECORDS := 5;
CALL CONTROL(TAPE^NUM,
 SPACE^BACK^RECORDS,
 NUMBER^OF^RECORDS);
IF <> THEN ...

Similarly, the next example tries to space backward eight record blocks when the tape
is positioned somewhere in the middle of the file and there are fewer than eight record
blocks between the current tape position and the beginning of the file. The tape stops
immediately before the EOF mark, and error 1 is returned to the program:

NUMBER^OF^RECORDS := 8;
CALL CONTROL(TAPE^NUM,
 SPACE^BACK^RECORDS,

VST055.VSD

VST056.VSD

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 10

Rewinding the Tape

 NUMBER^OF^RECORDS);
IF <> THEN ...

The next example tries to space backward five record blocks but encounters the BOT
sticker. The tape stops immediately after the BOT sticker, and error 154 is returned to
the program:

NUMBER^OF^RECORDS := 5;
CALL CONTROL(TAPE^NUM,
 SPACE^BACK^RECORDS,
 NUMBER^OF^RECORDS);
IF <> THEN ...

Rewinding the Tape
The CONTROL procedure supports several operations that enable your program to
rewind a tape. You can choose to have the tape stop at the BOT sticker or unload
completely. You can choose to wait for the operation to finish or continue without
waiting for completion.

Use CONTROL operation 3 to rewind and unload the tape without waiting for
completion:

LITERAL REWIND^AND^UNLOAD = 3;
 .
 .
CALL CONTROL(TAPE^NUM,
 REWIND^AND^UNLOAD);
IF <> THEN ...

Use CONTROL operation 4 to rewind the tape and take the tape offline without waiting
for completion. The tape stops at the BOT sticker.

LITERAL REWIND^OFFLINE = 4;
 .
 .
CALL CONTROL(TAPE^NUM,
 REWIND^OFFLINE);
IF <> THEN ...

VST057.VSD

VST058.VSD

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 11

Reading and Writing Tape Records

Use CONTROL operation 5 to rewind the tape to the BOT sticker, leaving the tape
online. This procedure call does not wait for completion.

LITERAL REWIND^ONLINE = 5;
 .
 .
CALL CONTROL(TAPE^NUM,
 REWIND^ONLINE);
IF <> THEN ...

Finally, CONTROL operation 6 rewinds the tape to BOT and leaves the tape online.
Your program waits for the operation to finish.

LITERAL REWIND^AND^WAIT = 6;
 .
 .
CALL CONTROL(TAPE^NUM,
 REWIND^AND^WAIT);
IF <> THEN ...

Reading and Writing Tape Records
Application programs read and write tape records by calling the READ[X] and
WRITE[X] procedures. A record is the amount of data that is read by a single read
operation or written by a single write operation. A record block can be as large as
57,344 bytes depending on the particular tape device. The shortest record block is
usually 24 bytes, but that can be changed using SETMODE function 52 for some
controllers, as described later.

Before performing either read or write operations, the tape file must already be open.
The way you do this depends on whether you are accessing a labeled or unlabeled
tape. Refer to Working With Standard Labeled Tapes later in this section for
information on how to open a labeled tape file and to Working With Unlabeled Tapes,
also later in this section, for details on how to open a tape file for unlabeled tape
access.

The following paragraphs describe how to read and write tape records.

Reading Tape Records
Use the READ[X] procedure to read record blocks from magnetic tape. One READ[X]
procedure call reads one record block from the tape. Whenever a read operation is
issued against the tape file, the tape spaces forward one record block, even if the read
is for zero bytes.

An example shows how to read from a magnetic tape. Consider a file on tape that
consists of three record blocks, where each record block contains 1024 bytes.
Repeated reads of 2048 bytes are executed as follows:

LITERAL EOF = 1;
INT LOOP := 1;
 .

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 12

Reading Tape Records

 .
WHILE LOOP = 1 DO
BEGIN
 RCOUNT := 2048;
 CALL READX(TAPE^NUM,SBUFFER,
 RCOUNT,COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPE^NUM,
 ERROR);
 IF ERROR = EOF THEN LOOP := 0
 ELSE;
 END
 ELSE
 BEGIN

 !Process the record block returned in BUFFER.

 END;
END;

The first, second, and third reads each transfer 1024 bytes into SBUFFER, return 1024
in COUNT^READ, and set the condition code to CCE (the no-error condition code).
The fourth read operation encounters an EOF mark; nothing is transferred into
SBUFFER, 0 is returned in COUNT^READ, and the condition code is set to CCG. The
FILE_GETINFO_ procedure returns 1 in the error variable, informing the process that
the EOF mark is reached.

If the value passed in the read-count parameter is not enough to read an entire
record block, an error indication is returned to the application. For example, a record
block on tape contains 1024 bytes of data and a read of 256 bytes is requested:

RCOUNT:= 256;
CALL READX (TAPE^NUM,
 SBUFFER,
 RCOUNT,
 COUNT^READ);
IF < THEN !Error encountered
BEGIN
 CALL FILE_GETINFO_(TAPE^NUM,
 BUFFER);
 .
 .

059CDT .CDD

EOF1Start 2 3

BOT
Record
Block

Record
Block

Record
Block

Record
Block

EOF

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 13

Writing Tape Records

256 bytes are transferred into SBUFFER, 256 is returned in COUNT^READ, and the
condition code is set to CCL. The call to FILE_GETINFO_ returns error number 21
(illegal count specified). After the read operation, the tape is positioned immediately
before the beginning of the next record block on tape.

Writing Tape Records
Use the WRITE[X] procedure to write record blocks to magnetic tape. Each WRITE[X]
procedure call writes one record block to the tape. The WRITE[X] procedure is
typically used when sequentially appending information on the tape.

The following procedure call writes one record block to tape:

WCOUNT := 2048;
CALL WRITEX(TAPE^NUM,
 TAPE^BUF,
 WCOUNT,
 COUNT^WRITTEN);
IF <> THEN ...

Here, 2048 bytes are written to tape. The value 2048 is returned in the
COUNT^WRITTEN variable.

Normally, the file system pads write operations of fewer than 24 bytes with null (0)
characters. The number of bytes of null characters is 24 minus the write count
specified in the WRITE[X] procedure call. Therefore the smallest record block that can
be written to a tape is 24 bytes.

Using SETMODE function 52, an application can either disallow writing record blocks
that are shorter than 24 bytes, allow records that are shorter than 24 bytes but pad
them with null characters, or allow records that are shorter than 24 bytes without
padding. If writing record blocks shorter than 24 bytes without padding is allowed, then
the limit on the shortest record size allowed is controller-dependent.

The following example disallows writing record blocks that are shorter than 24 bytes:

LITERAL SHORT^WRITE^MODE = 52,
 NO^SHORT^WRITES = 1;
 .
 .
CALL SETMODE(TAPE^NUM,
 SHORT^WRITE^MODE,
 NO^SHORT^WRITES);
IF <> THEN ...

If an application disallows writing short record blocks but later tries to write a record
block of fewer than 24 bytes, the WRITE[X] procedure returns error 21.

When the application has finished writing record blocks to an unlabeled tape, the
application should indicate the end of the tape file by writing an EOF mark to the tape.
You do this by calling CONTROL operation 2:

LITERAL WRITE^EOF = 2;
 .

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 14

Writing Tape Records

 .
CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
IF <> THEN ...

Note that, for unlabeled tapes, closing a file does not write an EOF mark.

For labeled tapes, the end of the tape is identified by the tape labeling mechanism. All
the application needs to do is to detect the EOT sticker, stop writing, and close the file.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 15

Blocking Tape Records

12 Communicating With Magnetic Tape

Blocking Tape Records
A record is a collection of related information as seen by the application; for example, a
data structure containing an account number, name, and balance. Records can be
fixed or variable length.

A record block contains the data that is written to or read from tape in one read or write
operation. Record blocks within a tape file are typically the same length. A record
block, however, can be larger than a record as recognized by the application.

The relationship between the record and the record block written to tape depends on
whether the record length is fixed or unspecified. If you are using an unspecified
record length, each record block typically contains one record and is padded with blank
space. The size of the record block determines the maximum size of the record.
Figure 12-1 shows this concept.

If your application uses fixed-length records, then for efficiency, you can block multiple
records into one record block that is read from or written to tape in one operation. The
record-block size must be an exact multiple of the record size. Figure 12-2 shows this
concept.

Blocking records is more efficient than having equal-sized physical and records for the
following reasons:

• Each physical read or write operation has an overhead associated with it. Blocking
reduces the number of physical read and write operations, therefore reducing the
overhead.

• Record blocks are separated from each other on tape by an interrecord gap.
Blocking reduces the number of interrecord gaps that are needed and therefore
uses less magnetic tape to store the same information.

When the application performs a read operation, however, it receives a record block of
data and must therefore deblock the record block to extract the record that it wants to
read.

Figure 12-1. Physical Tape Records Containing Records of Unspecified Length

VST060.VSD

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 16

Working in Buffered Mode

Working in Buffered Mode
We recommend using buffered mode to improve the performance of tape read and
write operations.

In buffered mode, the tape process, which is a system process, replies to write
requests as soon as the data has been transferred from the application to the tape
process buffer. The application can then continue while the data from the previous
request is written to tape. When buffering, the request that returns the error is not
executed.

If the application continues to issue write requests only, the tape process accepts the
requests until the buffer is full. When the buffer is full, the tape process holds further
requests until previous requests finish.

The application cannot determine which of its previous write requests have been
written to tape. If an error occurs in one of the previous write requests, an error
condition is returned to the application but the application cannot determine which
request failed.

Usually, the tape process does not process requests other than write requests until all
previous write requests have been completed. For example, if the application program
issues a CONTROL request against the tape file, the tape process holds the request
and the application waits until all outstanding writes have finished successfully.
Successful completion of a non-write request means that all records have been written
to tape without error.

Some tape devices, such as the 5170, do support buffered end-of-file marks. This
feature must be specifically enabled using SETMODE function 99 as described below.

If the application closes the tape device before the previous write requests have
finished, the tape process performs the outstanding requests before the close request
is finished. However, because the FILE_CLOSE_ procedure does not return regular

Figure 12-2. Physical Tape Records Containing Records of Fixed Length

VST061.VSDVST061.VSD

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 17

Invoking and Revoking Buffered-Mode Operation

file-system errors, an application closing the tape process when buffers are awaiting
completion cannot be sure those data records have been successfully written to tape.

If the application issues a close request against an unlabeled tape while write requests
are still outstanding, then the data on tape is not terminated with an end-of-file mark.
Any application that later tries to read the tape will not encounter the conventional two
end-of-file marks that indicate the logical end of the tape. The application might
therefore encounter a runaway tape condition or incorrect data.

The above situation can occur when the system closes the tape file for an application
that is stopping or abending. Also, note that this is no different from unbuffered
operation. The tape process does not write trailing end-of-file marks for an application
that accesses unlabeled tape.

When an application encounters an end-of-tape error, the application must stop writing
records and send the end-of-tape sequence. The EOT error is returned for write and
write-end-of-file-mark requests only.

An error indication can be reporting either a problem with the request itself or a
problem with some previous buffered write. If an error is reported on a previous
operation, the request that resulted in the error is not performed. Requests that
terminate a write sequence (typically CONTROL requests such as write-end-of-file-
mark) must allow for this.

There are no special application considerations for read sequences. Buffered-mode
reads are handled by the tape process. If buffered mode is enabled, the tape process
responds to an application read request by reading ahead of the requested record.
The requested record (or error condition) is returned to the application; the remainder
of the data read from tape remains in the tape buffer.

All other requests are performed in buffered mode as they are in unbuffered mode,
except that they can return errors from previous I/O operations.

Invoking and Revoking Buffered-Mode Operation
Buffered mode is allowed only on an exclusive basis: only a single opener can have a
device open at any one time if buffered mode is to be enabled.

Buffered mode is disabled by default.

Buffered mode is enabled by an exclusive opener through SETMODE operation 99; for
example:

LITERAL BUFFERED^MODE = 99,
 ENABLED = 1,
 DISABLED = 0;
 .
 .
CALL SETMODE(TAPE^NUM,

Note. recommends setting a tape device to unbuffered mode before closing. Doing so
ensures that all data records have been successfully written to tape.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 18

Flushing the Buffer

 BUFFERED^MODE,
 ENABLED);

The FILE_OPEN_ request need not specify exclusive access in the call; the tape
process enforces exclusive access by disallowing further opens if buffered mode is
enabled and by disallowing buffered mode if there is more than a single opener. Error
12 (file in use) is returned if the SETMODE request is rejected for this reason.

The SETMODE call to enable buffered-mode operation also fails if the tape process
cannot allocate an I/O segment for its buffers. If the allocation fails, operation
continues in unbuffered mode and error 33 (no buffer space) is returned by the
SETMODE call.

Buffered mode remains enabled until the application closes the device or disables
buffered mode by calling SETMODE; for example:

LITERAL BUFFERED^MODE = 99,
 ENABLED = 1,
 DISABLED = 0;
 .
 .
CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,
 DISABLED);

If buffered mode is disabled using SETMODE while buffered writes are waiting to be
written to tape, the SETMODE does not finish until all outstanding write operations
have completed or an error occurs. Thus, a SETMODE during a buffered write
sequence behaves like any request other than a write request: an error is returned to
indicate that a previous write operation did not finish successfully.

The SETMODE request to enable buffered mode, when issued while already operating
in buffered mode, can serve as a checkpoint operation to allow an application to
confirm that all previous write operations have finished successfully and that the data
was written to tape. This is true of any request (except WRITE[X]) issued after a
sequence of WRITE[X] requests. There is no explicit request that is defined for this
checkpointing purpose.

In all cases, the application must check the error code returned from the SETMODE
request to be sure of its success.

Flushing the Buffer
You can cause the tape process to write the contents of its buffer to tape and
synchronize the drive by issuing the CONTROL 26 operation. You can use this
operation following a write or a write end-of-file mark operation:

LITERAL SYNCHDATA = 26;
 .
 .
CALL CONTROL(TAPE^NUM,
 SYNCHDATA);

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 19

Buffered Mode for Streaming Devices (D-Series
Only)

The operation finishes when the synchronization is complete.

Buffered Mode for Streaming Devices (D-Series Only)
With streaming devices such as the 5120 cartridge tape, the device itself (or its integral
formatter) buffers requests in a way similar to buffered mode. The device replies to the
controller with a positive acknowledgment as soon as the data is transferred to the
device buffer, not when the data has been written to tape. Streaming implies file-level,
rather than record-level, recovery.

For devices such as the 5120 cartridge, buffered mode is enabled by default whenever
a device is placed into streaming mode by the following call:

LITERAL STREAMING^MODE = 119,
 ENABLED = 1,
 DISABLED = 0;
 .
 .
CALL SETMODE(TAPE^NUM,
 STREAMING^MODE,
 ENABLED);

For other streaming devices, such as the 5170, 5180 and 5190 drives, buffering must
be explicitly enabled using SETMODE function 99 as described for non-streaming
devices. For these devices, buffering is not automatic when streaming mode is
enabled using SETMODE function 119.

Buffering End-of-File Marks
Some tape devices, such as the 5170, allow end-of-file marks to be buffered. To
achieve EOF mark buffering, you use SETMODE function 99 with parameter-1 set
to 2:

LITERAL BUFFERED^MODE = 99,
 ENABLE^BUFFERED^EOFMARKS = 2;
 .
 .
CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,
 ENABLE^BUFFERED^EOFMARKS);

An Example of Buffered-Mode Operation
Figure 12-3 shows an example of a buffered-mode write sequence. In this example,
the application sends four write requests and an EOF mark to the tape process. In this
case, three write requests are enough to fill the tape buffer. The application must
therefore wait for the fourth write request (Step 13) until one of the buffered write
operations is written to tape. Once the request to write an EOF mark is issued (Step
19), the tape process holds this request until all outstanding transfers to tape are
complete.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 20

An Example of Buffered-Mode Operation

Figure 12-3. Example of Buffered-Mode Operation

VST062.VSD

Buffer request
Initiate transfer
Reply success

Buffer request
Reply success

Initiate next transfer

Buffer request
Reply success

Buffer full –
hold request

Initiate next transfer
Buffer request
Reply success

Hold request ntill
all buffers written
(because not a
WRITE[X] request)

Initiate next transfer

Write EOF mark

Reply success

Application Tape Process Controller /
drive

WRITE[X]

WRITE[X]

WRITE[X]

WRITE[X]

CONTROL 2

Complete, no error

request 3

request 2

reply 1

reply 4

request 4

request 5

reply 5

request 1

I/O1

reply 2 Complete 1

I/O2

Complete 2

I/O3
Complete, no error

Complete 3

I/O4

Complete 4

I/O5

Complete 5

Complete, no error

Complete, no error

Complete, no error

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 21

Working With Standard Labeled Tapes

Working With Standard Labeled Tapes
The operating system provides support for magnetic tapes written with standard ANSI
or IBM labels. The labeling mechanism allows for easy transfer of information between
systems from different vendors using magnetic tape.

Both the ANSI and IBM standards use labels to describe tape volumes, files, and file
sections. Here, a tape volume is a complete tape reel; a file is a file of information
written to the tape; for large files, a file section identifies the part of a file that resides
on a given tape volume. The concept of a file section therefore makes it possible to
have tape files that occupy more than one tape reel.

For full details of the ANSII standard see the ANSI X31.27-1987 standard as described
in “File Structure and Labeling of Magnetic Tapes for Information Interchange”
published by the American National Standards Institute. For the layout of the IBM and
ANSI label structures, see the Guide to Common System Operation Tasks.

Enabling Labeled Tape Processing
To enable labeled tape processing, your system must be set up as follows:

• Tape-label processing must be turned on at system-generation time. Refer to the
System Generation Manual for Disks and Tapes for details.

• The labeled tape server process $ZSVR must be running. This process is typically
started during cold load.

HP sites can create their own labeled tapes, or they can work with tapes written at any
site with any equipment so long as the tape contains standard ANSI or IBM labels.

Creating Labeled Tapes
Labeled tapes created at a HP site must first be initialized by the MEDIACOM utility or
the TAPECOM utility, which put volume labels on the tape and an indication that this is
a scratch tape. Refer to the DSM/TC Operator Interface (MEDIACOM) for details on
the MEDIACOM utility; refer to the Guardian Disk and Tape Utilities Reference Manual
for details on the TAPECOM utility.

Checking for Labeled Tape Support
You can check whether labeled tape support is turned on by calling the
LABELEDTAPESUPPORT procedure:

RETURNED^VALUE := LABELEDTAPESUPPORT;
IF RETURNED^VALUE = 0 THEN CALL PROCESS_STOP_
ELSE

 !continue labeled tape processing

The value returned by the LABELEDTAPESUPPORT procedure is 0 if tape-label
processing is not turned on or 1 if tape-label processing is turned on.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 22

Accessing Labeled Tapes

Accessing Labeled Tapes
You gain access to a labeled tape by passing a tape DEFINE name to the
FILE_OPEN_ procedure. $ZSVR responds to the FILE_OPEN_ call by sending a
message to the operator to mount the tape on any tape drive. (Recall that when
handling labeled tapes, it is not necessary to identify the device.)

ERROR := FILE_OPEN_(=TAPE^FILE^1,
 TAPE^NUM);
IF ERROR <> 0 THEN ...

When handling labeled tapes, you use a different DEFINE for each file that exists on a
labeled tape. =TAPE^FILE^1 identifies one such file.

You create the DEFINE either interactively at the TACL prompt (see the Guardian
User’s Guide) or programmatically using procedure calls. Complete details on how to
programmatically create DEFINEs are given in Section 7, Using DEFINEs.

You set DEFINE attributes for opening the tape file depending on several factors, such
as whether you are creating a new file or reading or updating an existing file; how
many tape volumes the file takes; or how many files are stored on the one tape
volume.

Recall from Section 7, Using DEFINEs:

• Before working with DEFINEs, you must enable DEFINEs by issuing a
DEFINEMODE procedure call:

NEW^VALUE := 1;
CALL DEFINEMODE(NEW^VALUE,
 OLD^VALUE);

• Once you have specified the DEFINE attributes in the working set, you create the
DEFINE using the DEFINEADD procedure:

DEFINE^NAME ':=' "=NAME^OF^DEFINE ";
CALL DEFINEADD(DEFINE^NAME);

The following paragraphs describe the DEFINE attributes most commonly found in
tape DEFINEs.

In addition, the following paragraphs include instructions for setting magnetic tape
parameters that cannot be set using DEFINEs. These include setting buffered mode
and choosing the device mode. These parameters are set using the SETMODE
procedure after the tape file is open.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 23

Accessing Labeled Tapes

Specifying the DEFINE CLASS
Before setting any other DEFINE attributes for magnetic tape, you must first set the
DEFINE class to “TAPE.” Doing so sets the default attributes in the working set to the
default values for tape. You set the DEFINE class using the DEFINESETATTR
procedure as follows:

ATTRIBUTE^NAME ':=' "CLASS "; !16 bytes
VALUE ':=' "TAPE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 @S^PTR '-' @VALUE,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

Remember from Section 7, Using DEFINEs, that we recommend supplying the current
default values for volume and subvolume to every call to DEFINESETATTR. Some
attributes need these values; others do not. However, supplying these values never
does any harm.

Specifying the Label Type
A labeled tape DEFINE must have the LABELS attribute set to ANSI, IBM, or BYPASS.
(The BACKUP and IBMBACKUP attributes are reserved for use by the BACKUP and
RESTORE utilities.) You can set this attribute programmatically using the
DEFINESETATTR procedure. You must set this attribute to the same value as in the
tape label for your program to access the tape. The $ZSVR process displays a
message prompting for an appropriate tape volume. Your program will wait until an
appropriate tape is mounted before proceeding.

An example follows:

ATTRIBUTE^NAME ':=' "LABELS "; !16 bytes
VALUE ':=' "ANSI" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 @S^PTR '-' @VALUE,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

This call sets the label type to “ANSI,” identifying the tape as containing standard ANSI
labels.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 24

Accessing Labeled Tapes

Specifying Volume and File
You do not need to specify the name of the tape device when accessing labeled tape.
Instead, you identify the file you want by specifying the name of the tape volume and
the name of the file on that volume. The tape can therefore be mounted on any device
and the system will find it. If the tape is mounted on a tape drive on a remote system
in the network, you also need to specify the system name in the SYSTEM attribute.

You specify the volume name using the VOLUME DEFINE attribute. (The VOLUME
attribute is optional when the USE attribute is set to “OUT.”) An example follows:

ATTRIBUTE^NAME ':=' "VOLUME "; !16 bytes
VALUE ':=' "XT55" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 @S^PTR '-' @VALUE,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

This call to DEFINESETATTR sets the volume name to “XT55.” This call identifies the
tape spool containing the file you want to access. The volume name is embedded in
the volume label written at the beginning of the tape.

Now use the FILEID attribute to identify the file within volume XT55. If you are reading
or appending to an existing file, then the FILEID must exactly match the FILEID given
to the file when the file was created. If you are creating a new file, you can use any
FILEID that is unique on the tape volume.

The following example shows how to set the FILEID value:

ATTRIBUTE^NAME ':=' "FILEID "; !16 bytes
VALUE ':=' "FILE1" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 @S^PTR '-' @VALUE,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

If you are accessing a volume that contains more than one file, you also need to
specify the file sequence number. Use the FILESEQ DEFINE attribute as follows:

ATTRIBUTE^NAME ':=' "FILESEQ "; !16 bytes
VALUE ':=' "1";
LENGTH := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 LENGTH,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 25

Accessing Labeled Tapes

Specifying the I/O Operation
You must specify the type of I/O operation you want to perform on the labeled tape.
You can write a new file, read from an existing file, or append to an existing file. You
can specify the I/O operation using either the access parameter of the FILE_OPEN_
procedure or the USE DEFINE attribute.

To specify reading, either set the access parameter of the FILE_OPEN_ procedure for
read-only access or set the USE attribute to “IN.” In either case, when the file is
opened, the tape is positioned immediately before the first record in the file.

For writing a new file, you can either set the access parameter of the FILE_OPEN_
procedure for write-only access or set the USE attribute to “OUT.” When the open
finishes, an empty file is created ready to be written.

Appending can be specified only by setting the USE attribute to “EXTEND.” When the
file is opened, the tape is positioned at the end of the file ready for appending. The file
must be the last file in a file set or an error condition is returned.

An example of how to set the USE attribute follows:

ATTRIBUTE^NAME ':=' "USE "; !16 bytes
VALUE ':=' "EXTEND" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 @S^PTR '-' @VALUE,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

Selecting the Conversion Mode
Tapes with IBM labels are encoded in EBCDIC notation. Information taken from these
tapes must be converted into ASCII code before the HP system can use it.
Conversely, data written to a tape with IBM labels must be converted from ASCII code
to EBCDIC code before being written to tape.

Use the EBCDIC DEFINE attribute to perform code conversion. You must specify this
attribute whenever you access a tape with IBM labels (the LABELS attribute is set to
“IBM”). Set the EBCDIC attribute to “IN” for reading from the tape file or “OUT” for
writing or appending to the tape file; for example:

ATTRIBUTE^NAME ':=' "EBCDIC "; !16 bytes
VALUE ':=' "IN" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 @S^PTR '-' @VALUE,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

ANSI tapes are already in ASCII form and therefore do not need converting.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 26

Accessing Labeled Tapes

Specifying the Block and Record Sizes
The BLOCKLEN, RECLEN, and RECFORM attributes allow you to specify how
records are blocked into record blocks. Recall from Blocking Tape Records, earlier
in this section, that a record is a collection of related information as seen by the
application, and that one or more records can be blocked into one record block that is
read from or written to tape in one operation.

You must specify the relationship between record blocks and records using the
BLOCKLEN, RECLEN, and RECFORM attributes. These attributes are required to
provide compatibility with other vendors. The blocking and deblocking of records is
done programmatically, as described earlier in Blocking Tape Records.

When writing a file, you must specify these values to correspond to the record size and
block size you will use when writing blocks to the file. When reading, the tape process
always uses the values for BLOCKLEN, RECLEN, and RECFORM that are written in
the tape label; the values in the DEFINE are not checked and don’t need to match the
values in the tape label.

The attributes are described as follows:

• The BLOCKLEN attribute specifies the record-block size in bytes. When
appending to a tape file, you must specify the same value as contained in the file
label. If you are creating a new tape file, you must set the value to either an exact
multiple of the record length if you are using fixed-length records or a value equal
to the maximum record length if you are using unspecified-length records. The
following example sets the BLOCKLEN attribute:

ATTRIBUTE^NAME ':=' "BLOCKLEN "; !16 bytes
VALUE ':=' "2048" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 @S^PTR '-' @VALUE,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

• The RECLEN attribute specifies the length of the record if you are using fixed-
length records. For appending, you must set this value to the corresponding value
in the file label. This attribute must not be specified if you are using variable-length
records.

ATTRIBUTE^NAME ':=' "RECLEN "; !16 bytes
VALUE ':=' "64" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 @S^PTR '-' @VALUE,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 27

Accessing Labeled Tapes

² The RECFORM attribute specifies whether records are fixed length or variable
length. It has a value “F” for fixed or “U” for undefined (variable). The following
example sets the RECFORM attribute:

ATTRIBUTE^NAME ':=' "RECFORM "; !16 bytes
VALUE ':=' "F";
LENGTH := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 LENGTH,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

Specifying Tape Density
When writing data, to tape you can specify the tape density in bits per inch. The valid
densities are 1600 and 6250. By default, the system uses the density configured for
the tape drive at system-generation time. You do not need to set the tape density on
reading the tape; the tape controller automatically uses the density of the tape.

Specifically, the criteria for establishing the tape density are as follows:

• If the user specifies the density, then the tape process uses that density.

• Otherwise, if the tape is labeled, then the tape process uses the density indicated
in the tape label.

• Otherwise, the tape process uses the tape density assigned to the device during
system generation.

Use the DENSITY attribute to set the tape density. The following example sets the
tape density to 1600 bits per inch:

ATTRIBUTE^NAME ':=' "DENSITY "; !16 bytes
VALUE ':=' "1600" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 VALUE,
 @S^PTR '-' @VALUE,
 DEFAULT^NAMES);
IF ERROR > 0 THEN ...

Specifying Other Tape DEFINE Attributes
In addition to the CLASS TAPE DEFINE attributes already discussed, you can specify
the following:

• The tape device. Use the DEVICE attribute. Note that it is usually not necessary
to specify the tape device when accessing a labeled tape. This attribute is
commonly used with unlabeled tape processing.

• The earliest date at which the tape can be overwritten. Use the EXPIRATION
attribute to specify the actual date or RETENTION to specify a number of days.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 28

Accessing Labeled Tapes

You will get an error if you try to write to the file before the expiration date.
However, you can still read the file after the expiration date.

• A generation group for the file and a version number within the generation group.
Use the GEN attribute to identify the generation group and the VERSION attribute
to specify the version.

The generation group identifies a specific instance of a file. For example, a payroll
application might create a new instance of the payroll file each time the file is
updated. The GEN attribute allows you to identify a specific generation.

The version number allows you to identify a specific instance of a generation. For
example, suppose the payroll application stopped part way through writing out the
payroll file and had to start over. You should not create another generation
because the data belongs to the same generation as the file that was not
complete. Instead, you create a different version of the same generation.

The HP tape process does not check the generation group and version numbers
when reading a file. However, you might need to specify these values when writing
a file if the file is to be read on another vendor’s equipment and the reading
process expects the information.

• An additional message to display to the operator when the DEFINE is opened.
Use the MOUNTMSG attribute.

• The identity of the owner of the files on the volume. Use the OWNER attribute.

Selecting Device Mode (D-Series Only)
On D-series releases only, if you are accessing a tape on a drive controlled by a
3209/5120 controller, you can access the cartridge in either start/stop or streaming
mode. If you are using this type of drive, you should therefore use SETMODE function
119 to specify the access mode. You set the device mode after opening the tape
device but before accessing the tape.

The following example sets streaming mode.

LITERAL DEVICE^MODE = 119,
 START^STOP = 0,
 STREAMING = 1;
 .
 .
CALL SETMODE(TAPE^NUM,
 DEVICE^MODE,
 STREAMING);
IF <> THEN ...

A program can be designed to run for any type of tape drive/controller by using the
FILE_GETINFO_ procedure immediately after opening the tape file to determine the
subdevice type of the file. If the subdevice type is 5 (that is, the 3209 controller for a
5120 device), then you prompt the user for the mode and set the mode accordingly. If
the subdevice type is not 5, continue without setting the device type.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 29

Writing to the Only File on a Labeled Tape Volume

Setting Buffered Mode
We recommend using buffered mode to increase throughput. However, to use
buffered mode, the application must be able to recover from errors in any buffering
mode it uses. See Recovering From Errors, later in this section, for details.

In the case of a write operation, the application is allowed to continue as soon as the
tape process has received the write request. Without buffered mode, the application
has to wait for each write to tape to finish before continuing. When reading in buffered
mode, the tape process reads ahead in anticipation of sequential reads.

You turn on buffered mode using SETMODE function 99 after the tape device is open:

LITERAL BUFFERED^MODE = 99,
 ON = 1,
 OFF = 0;
 .
 .
CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,
 ON);
IF <> THEN ...

Buffered mode gets turned off when the application closes the tape process or when
the application explicitly turns off buffered mode:

CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,
 OFF);
IF <> THEN ...

For complete details on buffered-mode operation, refer to Working in Buffered Mode,
earlier in this section.

Writing to the Only File on a Labeled Tape Volume
To write to the only file on a labeled tape volume, you need to do the following:

• Create a DEFINE for opening the file for writing

• Open the DEFINE and write to it

You create the DEFINE only once, then use it whenever you write to the file. The
following paragraphs describe how to create the DEFINE and how to write to the tape
using the DEFINE.

Creating the DEFINE
Create the DEFINE as follows:

1. Turn on DEFINEs by calling the DEFINEMODE procedure.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 30

Writing to the Only File on a Labeled Tape Volume

2. Create a working set for the DEFINE using successive calls to the
DEFINESETATTR procedure. The working set should include the following:

• The class of DEFINE (CLASS attribute). Set this value to “TAPE.”

• The type of labels used (LABELS attribute). Set this value to “ANSI” or “IBM.”

• The volume identifier (VOLUME attribute). Set this value to the value written to
the tape in the volume label.

• The file identifier (FILEID attribute). If the file already exists, the file identifier
must be the same as the file identifier in the file label. If the file does not yet
exist, the file identifier can be any valid file identifier.

• The file sequence number (FILESEQ attribute). This value must be set to 1 (or
not specified, as the default is 1) because it is the first file on the tape.

• The I/O operation (USE attribute). This value must be set to “EXTEND” to
append records to the file or “OUT” to write a new file.

• The conversion mode (EBCDIC attribute). Set this value to “OUT” to convert
ASCII code to EBCDIC on output. Use this option only if the tape uses IBM
standard labels.

• The record type (RECFORM attribute). This value specifies fixed-length or
variable-length records.

• The record length (RECLEN attribute). If you are appending to an existing file,
this value must be equal to the value written to the file label when the tape file
was created.

• The record-block length (BLOCKLEN attribute). Set this value to either a
multiple of the fixed record length or the maximum variable record length. If
you are creating a new file, this value is placed in the tape label. If you are
appending to a file, this value must equal the corresponding value in the file
label on the tape.

• The tape density (DENSITY attribute). This value must be the same as the
density of existing data on the tape.

3. Create the DEFINE using the DEFINEADD procedure.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 31

Writing to the Only File on a Labeled Tape Volume

The following example creates a DEFINE called =TAPEFILE^APPEND that describes
a labeled tape file using standard ANSI labels:

!Turn on DEFINE mode:
NEW^VALUE := 1;
ERROR := DEFINEMODE(NEW^VALUE,
 OLD^VALUE);
IF ERROR > 0 THEN ...

!Set the CLASS attribute to TAPE:
ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "TAPE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the LABELS attribute to ANSI:
ATTRIBUTE^NAME ':=' "LABELS ";
ATTRIBUTE^VALUE ':=' "ANSI" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the VOLUME attribute to MYVOL:
ATTRIBUTE^NAME ':=' "VOLUME ";
ATTRIBUTE^VALUE ':=' "MYVOL" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILEID attribute to TAPEFILE:
ATTRIBUTE^NAME ':=' "FILEID ";
ATTRIBUTE^VALUE ':=' "TAPEFILE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILESEQ attribute to 1:
ATTRIBUTE^NAME ':=' "FILESEQ ";
ATTRIBUTE^VALUE ':=' "1";
ATTRIBUTE^LEN := 1;

ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 32

Writing to the Only File on a Labeled Tape Volume

!Set the USE attribute to EXTEND:
ATTRIBUTE^NAME ':=' "USE ";
ATTRIBUTE^VALUE ':=' "EXTEND" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the RECFORM attribute to F:
ATTRIBUTE^NAME ':=' "RECFORM ";
ATTRIBUTE^VALUE ':=' "F";
ATTRIBUTE^LEN := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the RECLEN attribute to 512:
ATTRIBUTE^NAME ':=' "RECLEN ";
ATTRIBUTE^VALUE ':=' "512" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the BLOCKLEN attribute to 2048:
ATTRIBUTE^NAME ':=' "BLOCKLEN ";
ATTRIBUTE^VALUE ':=' "2048" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the DENSITY attribute to 1600:
ATTRIBUTE^NAME ':=' "DENSITY ";
ATTRIBUTE^VALUE ':=' "1600" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Create the DEFINE:
DEFINE^NAME ':=' "=TAPEFILE^APPEND ";
ERROR := DEFINEADD(DEFINE^NAME);
IF ERROR <> 0 THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 33

Writing to a File on a Multiple-File
Labeled Tape Volume

Writing to the File
Use the DEFINE created above for appending to the file as follows:

1. Open the DEFINE using the FILE_OPEN_ procedure. If the DEFINE attributes
match the attributes in the tape label, then the file is opened. If you are opening
the file with write-only access or with the USE attribute set to “OUT,” then the file is
created and opened. The VOLUME attribute is optional when the USE attribute is
set to “OUT.”

The returned file number relates to the tape drive that the tape is mounted on.

2. Turn on buffered mode, if desired, using SETMODE function 99.

3. Write records to the file using the WRITEX procedure.

The following code fragment writes to the tape using the DEFINE created above. Note
that because the record block is four times the size of the record, the application needs
to block four records into one record block before the record block is written to tape in
one write operation.

LITERAL BUFFERED^MODE = 99,
 ON = 1;
 .
 .
!Open the tape file:
FILE^NAME ':=' "=TAPEFILE^APPEND" -> @S^PTR;
ERROR := FILE_OPEN_(FILE^NAME:@S^PTR '-' @FILE^NAME,
 TAPE^NUM);
IF ERROR <> 0 THEN ...

!Set buffered mode:
CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,ON);
IF <> THEN ...
 .
 .

!Block four records into the output buffer:
SBUFFER[0] ':=' LOGICAL^BUFFER^1[0] FOR 512;
SBUFFER[512] ':=' LOGICAL^BUFFER^2[0] FOR 512;
SBUFFER[1024] ':=' LOGICAL^BUFFER^3[0] FOR 512;
SBUFFER[1536] ':=' LOGICAL^BUFFER^4[0] FOR 512 -> @S^PTR;

!Write a record block to the tape file:
CALL WRITEX(TAPE^NUM,SBUFFER,
 @S^PTR '-' @SBUFFER);
 .
 .

Writing to a File on a Multiple-File Labeled Tape Volume
If the labeled tape contains multiple files, the procedure for writing records to the file is
similar to that for writing to the only file on a labeled tape volume. Again you need to

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 34

Writing to a File on a Multiple-File
Labeled Tape Volume

create a DEFINE and then use the DEFINE for writing to the file. The difference is that
the FILESEQ attribute specified in the DEFINE must identify the correct file.

The following paragraphs show how to create a DEFINE for, and write records to, a file
on a multiple-file labeled tape.

Creating the DEFINE
Create the DEFINE as follows:

1. Turn on DEFINEs by calling the DEFINEMODE procedure.

2. Create a working set for the DEFINE using successive calls to the
DEFINESETATTR procedure. The working set should include the following:

• The class of DEFINE (CLASS attribute). Set this value to “TAPE.”

• The type of labels used (LABELS attribute). Set this value to “ANSI” or “IBM.”

• The volume identifier (VOLUME attribute). Set this value to the value written to
the tape in the volume label.

• The file identifier (FILEID attribute). If the file already exists, the file identifier
must be the same as the one in the file label. If the file does not yet exist, you
can specify any valid file identifier.

• The file sequence number (FILESEQ attribute). This value must be set to the
sequence number of the file on the tape. For example, if the DEFINE will
describe the seventh file on the tape, then the FILESEQ attribute must be set
to 7.

• The I/O operation (USE attribute). This value must be set to “EXTEND” to
append records to the file or “OUT” to write records in a new file.

• The conversion mode (EBCDIC attribute). Set this value to “OUT” to convert
ASCII code to EBCDIC on output. Use this option only if the tape uses IBM
standard labels.

• The record type (RECFORM attribute). This value specifies fixed-length or
variable-length records.

• The record length (RECLEN attribute). If you are appending to an existing file,
this value must be equal to the value written to the file label when the tape file
was created.

• The record-block length (BLOCKLEN attribute). Set this value to either a
multiple of the fixed record length or the maximum variable record length. If
you are creating a new file, this value is placed in the tape label. If you are
appending to a file, this value must also equal the corresponding value in the
file label on the tape.

• The tape density (DENSITY attribute). This value must be the same as the
density of existing data on the tape to ensure that the new data gets written at

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 35

Writing to a File on a Multiple-File
Labeled Tape Volume

the same density as data already on the tape. Unlike when reading, when you
write to a tape, the density is not automatically set for you.

3. Create the DEFINE using the DEFINEADD procedure.

The following example creates a DEFINE called =TAPEFILE5^APPEND. It describes
the fifth file on a labeled tape. This tape uses IBM labels.

!Turn on DEFINE mode:
NEW^VALUE := 1;
ERROR := DEFINEMODE(NEW^VALUE,
 OLD^VALUE);
IF ERROR > 0 THEN ...

!Set the CLASS attribute to TAPE:
ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "TAPE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the LABELS attribute to IBM:
ATTRIBUTE^NAME ':=' "LABELS ";
ATTRIBUTE^VALUE ':=' "IBM" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the VOLUME attribute to MYVOL:
ATTRIBUTE^NAME ':=' "VOLUME ";
ATTRIBUTE^VALUE ':=' "MYVOL" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILEID attribute to TAPEFILE:
ATTRIBUTE^NAME ':=' "FILEID ";
ATTRIBUTE^VALUE ':=' "TAPEFILE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILESEQ attribute to 5:
ATTRIBUTE^NAME ':=' "FILESEQ ";
ATTRIBUTE^VALUE ':=' "5";
ATTRIBUTE^LEN := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 36

Writing to a File on a Multiple-File
Labeled Tape Volume

 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the USE attribute to EXTEND:
ATTRIBUTE^NAME ':=' "USE ";
ATTRIBUTE^VALUE ':=' "EXTEND" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the EBCDIC attribute to OUT:
ATTRIBUTE^NAME ':=' "EBCDIC ";
ATTRIBUTE^VALUE ':=' "OUT" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the RECFORM attribute to F:
ATTRIBUTE^NAME ':=' "RECFORM ";
ATTRIBUTE^VALUE ':=' "F";
ATTRIBUTE^LEN := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the RECLEN attribute to 512:
ATTRIBUTE^NAME ':=' "RECLEN ";
ATTRIBUTE^VALUE ':=' "512" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the BLOCKLEN attribute to 2048:
ATTRIBUTE^NAME ':=' "BLOCKLEN ";
ATTRIBUTE^VALUE ':=' "2048" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the DENSITY attribute to 1600:
ATTRIBUTE^NAME ':=' "DENSITY ";
ATTRIBUTE^VALUE ':=' "1600" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 37

Writing to a File on a Multiple-File
Labeled Tape Volume

!Create the DEFINE:
DEFINE^NAME ':=' "=TAPEFILE5^APPEND ";
ERROR := DEFINEADD(DEFINE^NAME);
IF ERROR <> 0 THEN ...

Writing to the File
Use the DEFINE created above for appending to the file as described below. Note that
you can append only to the last file on the tape. So, in this case, the fifth file must also
be the last file.

1. Open the DEFINE using the FILE_OPEN_ procedure. If the file exists and the
DEFINE attributes match those on the tape label, then the file is opened. If the file
does not exist, it is created and opened; the file sequence number must be one
greater than that of the last file on the tape.

The returned file number is related to the tape drive that the tape is mounted on.

2. Turn on buffered mode, if desired, using SETMODE function 99.

3. Write records to the file using the WRITE[X] procedure.

The following code fragment writes to the tape using the DEFINE created above. Note
that because the record block is four times the size of the record, the application needs
to block four records into one record block before the record block is written to tape in
one write operation.

LITERAL BUFFERED^MODE = 99,
 ON = 1;
 .
 .
!Open the tape file:
FILE^NAME ':=' "=TAPEFILE5^APPEND" -> @S^PTR;
ERROR := FILE_OPEN_(FILE^NAME:@S^PTR '-' @FILE^NAME,
 TAPE^NUM);
IF ERROR <> 0 THEN ...

!Set buffered mode:
CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,
 ON);
IF <> THEN ...
 .
 .

!Block four records into the output buffer:
SBUFFER[0] ':=' LOGICAL^BUFFER^1[0] FOR 512;
SBUFFER[512] ':=' LOGICAL^BUFFER^2[0] FOR 512;
SBUFFER[1024] ':=' LOGICAL^BUFFER^3[0] FOR 512;
SBUFFER[1536] ':=' LOGICAL^BUFFER^4[0] FOR 512 -> @S^PTR;

!Write a record block to the tape file:
CALL WRITEX(TAPE^NUM,
 SBUFFER,
 @S^PTR '-' @SBUFFER);

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 38

Writing to a File on Multiple Labeled Tape Volumes

 .
 .

Writing to a File on Multiple Labeled Tape Volumes
The procedure for writing to a file that resides on multiple labeled tapes is similar to the
procedure for writing to a file on a single tape reel. Again you use a DEFINE to
describe the file and the type of operation you intend to perform. Then you open and
write to the DEFINE.

The following paragraphs show the complete procedure for writing records to a file on
multiple reels of labeled tape.

Creating the DEFINE
Create the DEFINE as follows:

1. Turn on DEFINEs by calling the DEFINEMODE procedure.

2. Create a working set for the DEFINE using successive calls to the
DEFINESETATTR procedure. The working set should include the following:

• The class of DEFINE (CLASS attribute). Set this value to “TAPE.”

• The type of labels used (LABELS attribute). Set this value to “ANSI” or “IBM.”

• The volume identifier (VOLUME attribute). This value should specify a list of
volume names starting with the first volume where the file resides.

• The file identifier (FILEID attribute). If the file already exists, the file identifier
must be the same as the file identifier in the file label. If the file does not yet
exist, the file identifier can be any valid file identifier.

• The file sequence number (FILESEQ attribute). This value must be set to 1 (or
not specified, as the default is 1).

• The I/O operation (USE attribute). This value must be set to “EXTEND” to
append records to the file or “OUT” to write to a new file section.

• The conversion mode (EBCDIC attribute). Set this value to “OUT” to convert
ASCII code to EBCDIC on output. Use this option only if the tape uses IBM
standard labels.

• The record type (RECFORM attribute). Specify fixed-length or variable-length
records, as appropriate.

• The record length (RECLEN attribute). If you are appending to an existing file,
this value must be equal to the value written to the file label when the tape file
was created.

• The record-block length (BLOCKLEN attribute). Set this value to either a
multiple of the fixed record length or the maximum variable record length. If
you are creating a new file, this value is placed in the tape label. If you are

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 39

Writing to a File on Multiple Labeled Tape Volumes

appending to a file, this value must also equal the corresponding value in the
file label on the tape.

• The tape density (DENSITY attribute). This value must be the same as the
density of existing data on the tape to ensure that the new data gets written to
tape at the same density as data already on the tape. Unlike when reading,
when you write to a magnetic tape, the density is not automatically set to the
density of data already on the tape.

3. Create the DEFINE using the DEFINEADD procedure.

The following example creates a DEFINE called =MY^TAPE^UPDATE. When writing
to the file described by this DEFINE, the system prompts the user to mount a new tape
when the end of a tape is reached. This is done transparently to the application
program. The tape uses standard ANSI labels.

!Turn on DEFINE mode:
NEW^VALUE := 1;
ERROR := DEFINEMODE(NEW^VALUE,
 OLD^VALUE);
IF ERROR > 0 THEN ...

!Set the CLASS attribute to TAPE:
ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "TAPE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the LABELS attribute to ANSI:
ATTRIBUTE^NAME ':=' "LABELS ";
ATTRIBUTE^VALUE ':=' "ANSI" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the VOLUME attribute to MYVOL:
ATTRIBUTE^NAME ':=' "VOLUME ";
ATTRIBUTE^VALUE ':=' "MYVOL" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILEID attribute to 1_TAPEFILE:
ATTRIBUTE^NAME ':=' "FILEID ";
ATTRIBUTE^VALUE ':=' "1_TAPEFILE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 40

Writing to a File on Multiple Labeled Tape Volumes

 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILESEQ attribute to 1:
ATTRIBUTE^NAME ':=' "FILESEQ ";
ATTRIBUTE^VALUE ':=' "1";
ATTRIBUTE^LEN := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the USE attribute to OUT:
ATTRIBUTE^NAME ':=' "USE ";
ATTRIBUTE^VALUE ':=' "OUT" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the RECFORM attribute to F:
ATTRIBUTE^NAME ':=' "RECFORM ";
ATTRIBUTE^VALUE ':=' "F";
ATTRIBUTE^LEN := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the RECLEN attribute to 512:
ATTRIBUTE^NAME ':=' "RECLEN ";
ATTRIBUTE^VALUE ':=' "512" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the BLOCKLEN attribute to 2048:
ATTRIBUTE^NAME ':=' "BLOCKLEN ";
ATTRIBUTE^VALUE ':=' "2048" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the DENSITY attribute to 1600:
ATTRIBUTE^NAME ':=' "DENSITY ";
ATTRIBUTE^VALUE ':=' "1600" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 41

Writing to a File on Multiple Labeled Tape Volumes

 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Create the DEFINE:
DEFINE^NAME ':=' "=MY^TAPE^UPDATE ";
ERROR := DEFINEADD(DEFINE^NAME);
IF ERROR <> 0 THEN ...

Writing to the File
Use the DEFINE created in the previous example for writing to the file as described
below. Note that the DEFINE refers to the last tape reel of a four-tape file. You can
write or append only to the last tape in the file.

1. Open the DEFINE using the FILE_OPEN_ procedure. If the file section exists and
the DEFINE attributes match those on the tape label, then the file is opened.

The returned file number refers to the tape drive that the tape is mounted on.

2. Turn on buffered mode, if desired, using SETMODE function 99.

3. Write records to the file using the WRITE[X] procedure.

The following code fragment updates records on the tape using the DEFINE created
above. Note that because the record block is four times the size of the record, the
application needs to block four records into one record block before the record block is
written to tape in one write operation.

LITERAL SPACE^FORWARD = 9,
 BUFFERED^MODE = 99,
 ON = 1;
 .
 .

!Open the tape file:
FILE^NAME ':=' "=MY^TAPE^UPDATE" -> @S^PTR;
ERROR := FILE_OPEN_(FILE^NAME:@S^PTR '-' @FILE^NAME,
 TAPE^NUM);
IF ERROR <> 0 THEN ...

!Set buffered mode:
CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,ON);
IF <> THEN ...
 .
 .

!Block four records into the output buffer:
SBUFFER[0] ':=' LOGICAL^BUFFER^1[0] FOR 512 -> @S^PTR;
S^PTR ':=' LOGICAL^BUFFER^2[0] FOR 512 -> @S^PTR;
S^PTR ':=' LOGICAL^BUFFER^3[0] FOR 512 -> @S^PTR;
S^PTR ':=' LOGICAL^BUFFER^4[0] FOR 512 -> @S^PTR;

!Write a record block to the tape file:
CALL WRITEX(TAPE^NUM,SBUFFER,
 @S^PTR '-' @SBUFFER);

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 42

Reading From the Only File on a
Labeled Tape Volume

 .
 .

Reading From the Only File on a Labeled Tape Volume
Like writing, reading from the only file on a labeled tape volume requires a DEFINE
that accurately describes the file and the operation you intend to perform on the file.
Then you read from the file identified by the created DEFINE.

A DEFINE for reading differs from a DEFINE made for writing. You must set the USE
attribute to “IN.” If the tape is an IBM file, you need to set the EBCDIC attribute to “IN.”
Also, you must specify the VOLUME attribute. (The VOLUME attribute is optional
when the USE attribute is set to “OUT.”)

Note that when reading from a tape, it is not necessary to specify the tape density.
The tape controller can determine the correct density.

Just as with writing to the file, you create the DEFINE once and then use it whenever
you want to read from the file.

The following paragraphs describe how to create a DEFINE for this type of tape access
and how to read from the file once the DEFINE exists.

Creating the DEFINE
Create the DEFINE as follows:

1. Turn on DEFINEs by calling the DEFINEMODE procedure.

2. Create a working set for the DEFINE using successive calls to the
DEFINESETATTR procedure. The working set should include the following:

• The class of DEFINE (CLASS attribute). Set this value to “TAPE.”

• The type of labels used (LABELS attribute). Set this value to “ANSI” or “IBM.”

• The volume identifier (VOLUME attribute). Set this value to the value written to
the tape in the volume label.

• The file identifier (FILEID attribute). Set this value to the value written to the
tape in the file label.

• The file sequence number (FILESEQ attribute). This value must be set to 1 (or
not specified, as the default is 1) because it is the first file on the tape.

• The I/O operation (USE attribute). This value must be set to “IN” to read
records from the file.

• The conversion mode (EBCDIC attribute). Set this value to “IN” to convert
EBCDIC code to ASCII on input. Use this option only if the tape uses IBM
standard labels.

3. Create the DEFINE using the DEFINEADD procedure.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 43

Reading From the Only File on a
Labeled Tape Volume

The following example creates a DEFINE called =TAPEFILE^READ that describes a
labeled tape file using standard ANSI labels:

!Turn on DEFINE mode:
NEW^VALUE := 1;
ERROR := DEFINEMODE(NEW^VALUE,
 OLD^VALUE);
IF ERROR > 0 THEN ...

!Set the CLASS attribute to TAPE:
ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "TAPE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the LABELS attribute to ANSI:
ATTRIBUTE^NAME ':=' "LABELS ";
ATTRIBUTE^VALUE ':=' "ANSI" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the VOLUME attribute to MYVOL:
ATTRIBUTE^NAME ':=' "VOLUME ";
ATTRIBUTE^VALUE ':=' "MYVOL" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILEID attribute to TAPEFILE:
ATTRIBUTE^NAME ':=' "FILEID ";
ATTRIBUTE^VALUE ':=' "TAPEFILE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILESEQ attribute to 1:
ATTRIBUTE^NAME ':=' "FILESEQ ";
ATTRIBUTE^VALUE ':=' "1";
ATTRIBUTE^LEN := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the USE attribute to IN:
ATTRIBUTE^NAME ':=' "USE ";

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 44

Reading From the Only File on a
Labeled Tape Volume

ATTRIBUTE^VALUE ':=' "IN" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Create the DEFINE:
DEFINE^NAME ':=' "=TAPEFILE^READ ";
ERROR := DEFINEADD(DEFINE^NAME);
IF ERROR <> 0 THEN ...

Reading From the File
Use the DEFINE created above for reading from the file as follows:

1. Open the DEFINE using the FILE_OPEN_ procedure. If the DEFINE attributes
match the attributes in the tape label, then the file is opened. The returned file
number refers to the tape drive that the tape is mounted on.

2. Turn on buffered mode, if desired, using SETMODE function 99.

3. Read records from the file using the READ[X] procedure.

The following code fragment reads from the tape using the DEFINE created above.
Note that because the record block is four times the size of the record, the application
needs to deblock each record block into four records before the application can make
use of the returned record block.

LITERAL SPACE^FORWARD = 9,
 BUFFERED^MODE = 99,
 ON = 1;
 .
 .

!Open the tape file:
FILE^NAME ':=' "=TAPEFILE^READ" -> @S^PTR;
ERROR := FILE_OPEN_(FILE^NAME:@S^PTR '-' @FILE^NAME,
 TAPE^NUM);
IF ERROR <> 0 THEN ...

!Set buffered mode:
CALL SETMODE(TAPE^NUM,BUFFERED^MODE,ON);
IF <> THEN ...
 .
 .

!Position the tape to the desired record block:
PHYSICAL^RECORD^ADVANCE := 36;
CALL CONTROL(TAPE^NUM,SPACE^FORWARD,PHYSICAL^RECORD^ADVANCE);

!Read a record block from the tape file into the input
!buffer:
RCOUNT := 2048;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 45

Reading From a File on a Multiple-File Labeled
Tape Volume

CALL READX(TAPE^NUM,SBUFFER,
 RCOUNT,COUNT^READ);

!Deblock the input buffer into four records:
LOGICAL^BUFFER^1[0] ':=' SBUFFER[0] FOR 512;
LOGICAL^BUFFER^2[0] ':=' SBUFFER[512] FOR 512;
LOGICAL^BUFFER^3[0] ':=' SBUFFER[1024] FOR 512;
LOGICAL^BUFFER^4[0] ':=' SBUFFER[1536] FOR 512;
 .
 .

Reading From a File on a Multiple-File Labeled Tape Volume
If the labeled tape contains multiple files, the procedure for reading records from the
file is similar to that for reading from the only file on a labeled tape volume; you need to
create a DEFINE and then use the DEFINE for reading from the file. The difference is
that the FILESEQ attribute specified in the DEFINE must identify the correct file.

Again, it is not necessary to specify the tape density when reading. The tape controller
can calculate the density by reading the tape.

The following paragraphs show how to create a DEFINE for this type of access and
then use the DEFINE to read records from a file that resides on a labeled tape
containing other files.

Creating the DEFINE
Create the DEFINE as follows:

1. Turn on DEFINEs by calling the DEFINEMODE procedure.

2. Create a working set for the DEFINE using successive calls to the
DEFINESETATTR procedure. The working set should include the following:

• The class of DEFINE (CLASS attribute). Set this value to “TAPE.”

• The type of labels used (LABELS attribute). Set this value to “ANSI” or “IBM.”

• The volume identifier (VOLUME attribute). Set this value to the value written to
the tape in the volume label.

• The file identifier (FILEID attribute). The file identifier must be the same as the
file identifier in the file label.

• The file sequence number (FILESEQ attribute). This value must be set to the
sequence number of the file on the tape. For example, if the DEFINE will
describe the seventh file on the tape, then this attribute must be set to 7.

• The I/O operation (USE attribute). This value must be set to “IN” to read
records from the file.

• The conversion mode (EBCDIC attribute). Set this value to “IN” to convert
EBCDIC code to ASCII on input. Use this option only if the tape uses IBM
standard labels.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 46

Reading From a File on a Multiple-File Labeled
Tape Volume

3. Create the DEFINE using the DEFINEADD procedure.

The following example creates a DEFINE called =FILE^FIVE^READ. It describes the
fifth file on a labeled tape. This tape uses IBM labels.

!Turn on DEFINE mode:
NEW^VALUE := 1;
ERROR := DEFINEMODE(NEW^VALUE,
 OLD^VALUE);
IF ERROR > 0 THEN ...

!Set the CLASS attribute to TAPE:
ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "TAPE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the LABELS attribute to IBM:
ATTRIBUTE^NAME ':=' "LABELS ";
ATTRIBUTE^VALUE ':=' "IBM" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the VOLUME attribute to MYVOL:
ATTRIBUTE^NAME ':=' "VOLUME ";
ATTRIBUTE^VALUE ':=' "MYVOL" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILEID attribute to FILE^FIVE:
ATTRIBUTE^NAME ':=' "FILEID ";
ATTRIBUTE^VALUE ':=' "FILE^FIVE" -> @S^PTR;

ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILESEQ attribute to 5:
ATTRIBUTE^NAME ':=' "FILESEQ ";
ATTRIBUTE^VALUE ':=' "5";
ATTRIBUTE^LEN := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 47

Reading From a File on a Multiple-File Labeled
Tape Volume

 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the USE attribute to IN:
ATTRIBUTE^NAME ':=' "USE ";
ATTRIBUTE^VALUE ':=' "IN" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the EBCDIC attribute to IN:
ATTRIBUTE^NAME ':=' "EBCDIC ";
ATTRIBUTE^VALUE ':=' "IN" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Create the DEFINE:
DEFINE^NAME ':=' "=FILE^FIVE^READ ";
ERROR := DEFINEADD(DEFINE^NAME);
IF ERROR <> 0 THEN ...

Reading From the File
Use the DEFINE created above for reading from the file as described below.

1. Open the DEFINE using the FILE_OPEN_ procedure. If the file exists and the
DEFINE attributes match those on the tape label, then the file is opened. The
returned file number relates to the tape drive that the tape is mounted on.

2. Turn on buffered mode, if desired, using SETMODE function 99.

3. Read records from the file using the READ[X] procedure.

The following code fragment reads from the tape using the DEFINE created above.
Note that because the record block is four times the size of the record, the application
needs to separate each record block into four records before the application can make
use of the data.

LITERAL SPACE^FORWARD = 9,
 BUFFERED^MODE = 99,
 ON = 1;
 .
 .

!Open the tape file:
FILE^NAME ':=' "=FILE^FIVE^READ" -> @S^PTR;
ERROR := FILE_OPEN_(FILE^NAME:@S^PTR '-' @FILE^NAME,

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 48

Reading From a File on Multiple Labeled Tape
Volumes

 TAPE^NUM);
IF ERROR <> 0 THEN ...

!Set buffered mode:
CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,
 ON);
IF <> THEN ...
 .
 .

!Position the tape to the desired record block:
PHYSICAL^RECORD^ADVANCE := 36;
CALL CONTROL(TAPE^NUM,
 SPACE^FORWARD,
 PHYSICAL^RECORD^ADVANCE);

!Read a record block from the tape file into the input
!buffer:
RCOUNT := 2048;
CALL READ(TAPE^NUM,
 SBUFFER,
 RCOUNT,
 COUNT^READ);

!Deblock the input buffer into four records:
LOGICAL^BUFFER^1[0] ':=' SBUFFER[0] FOR 512;
LOGICAL^BUFFER^2[0] ':=' SBUFFER[512] FOR 512;
LOGICAL^BUFFER^3[0] ':=' SBUFFER[1024] FOR 512;
LOGICAL^BUFFER^4[0] ':=' SBUFFER[1536] FOR 512;
 .
 .

Reading From a File on Multiple Labeled Tape Volumes
The procedure for reading from a file that resides on multiple labeled tapes is similar to
the procedure for reading from a file on a single tape reel. Again you describe the file
and the type of operation you intend to perform in a DEFINE, open the DEFINE, and
read from the file associated with the returned file number.

The following paragraphs show how to create a DEFINE for this type of tape access,
then how to use the DEFINE for reading record blocks from a file on multiple reels of
labeled tape.

Creating the DEFINE
Create the DEFINE as follows:

1. Turn on DEFINEs by calling the DEFINEMODE procedure.

2. Create a working set for the DEFINE using successive calls to the
DEFINESETATTR procedure. The working set should include the following:

• The class of DEFINE (CLASS attribute). Set this value to “TAPE.”

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 49

Reading From a File on Multiple Labeled Tape
Volumes

• The type of labels used (LABELS attribute). Set this value to “ANSI” or “IBM.”

• The volume identifier (VOLUME attribute). This value should specify a list of
volume names starting with the first volume where the file resides.

• The file identifier (FILEID attribute). The file identifier must be the same as the
file identifier in the file label.

• The file sequence number (FILESEQ attribute). This value must be set to 1.

• The I/O operation (USE attribute). This value must be set to “IN” to read
records from the file.

• The conversion mode (EBCDIC attribute). Set this value to “IN” to convert
EBCDIC code to ASCII on input. Use this option only if the tape uses IBM
standard labels.

3. Create the DEFINE using the DEFINEADD procedure.

The following example creates a DEFINE called =THIRD^TAPE^READ. It describes
the third section of the file: that part contained on the third tape reel. This tape uses
standard ANSI labels.

!Turn on DEFINE mode:
NEW^VALUE := 1;
ERROR := DEFINEMODE(NEW^VALUE,
 OLD^VALUE);
IF ERROR > 0 THEN ...

!Set the CLASS attribute to TAPE:
ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "TAPE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the LABELS attribute to ANSI:
ATTRIBUTE^NAME ':=' "LABELS ";
ATTRIBUTE^VALUE ':=' "ANSI" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the VOLUME attribute to THIRD:
ATTRIBUTE^NAME ':=' "VOLUME ";
ATTRIBUTE^VALUE ':=' "THIRD" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 50

Reading From a File on Multiple Labeled Tape
Volumes

 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILEID attribute to 4_TAPEFILE:
ATTRIBUTE^NAME ':=' "FILEID ";
ATTRIBUTE^VALUE ':=' "4_TAPEFILE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILESEQ attribute to 1:
ATTRIBUTE^NAME ':=' "FILESEQ ";
ATTRIBUTE^VALUE ':=' "1";
ATTRIBUTE^LEN := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the REELS attribute to 4:
ATTRIBUTE^NAME ':=' "REELS ";
ATTRIBUTE^VALUE ':=' "4";
ATTRIBUTE^LEN := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the FILESECT attribute to 3:
ATTRIBUTE^NAME ':=' "FILESECT ";
ATTRIBUTE^VALUE ':=' "3";
ATTRIBUTE^LEN := 1;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 ATTRIBUTE^LEN,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the USE attribute to IN:
ATTRIBUTE^NAME ':=' "USE ";
ATTRIBUTE^VALUE ':=' "IN" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Create the DEFINE:
DEFINE^NAME ':=' "=THIRD^TAPE^READ ";
ERROR := DEFINEADD(DEFINE^NAME);
IF ERROR <> 0 THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 51

Reading From a File on Multiple Labeled Tape
Volumes

Reading From the File
Use the DEFINE created above for reading the file as described below. Note that the
DEFINE refers to the third tape of a four-tape file.

1. Open the DEFINE using the FILE_OPEN_ procedure. If the file section exists and
the DEFINE attributes match those on the tape label, then the tape file is opened.
The returned file number refers to the tape drive that the tape is mounted on.

2. Turn on buffered mode, if desired, using SETMODE function 99.

3. Read record blocks from the file using the READ[X] procedure.

The following code fragment reads record blocks from the tape using the DEFINE
created above. Note that because the record block is four times the size of the record,
the application needs to deblock each record block into four records.

LITERAL SPACE^FORWARD = 9,
 BUFFERED^MODE = 99,
 ON = 1;
 .
 .

!Open the tape file:
FILE^NAME ':=' "=THIRD^TAPE^READ" -> @S^PTR;
ERROR := FILE_OPEN_(FILE^NAME:@S^PTR '-' @FILE^NAME,
 TAPE^NUM);
IF ERROR <> 0 THEN ...

!Set buffered mode:
CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,
 ON);
IF <> THEN ...
 .
 .

!Position the tape to the desired record block:
PHYSICAL^RECORD^ADVANCE := 36;
CALL CONTROL(TAPE^NUM,
 SPACE^FORWARD,
 PHYSICAL^RECORD^ADVANCE);

!Read a record block from the tape file into the input
!buffer:
RCOUNT := 2048;
CALL READ(TAPE^NUM,
 SBUFFER,
 RCOUNT,COUNT^READ);

!Deblock the input buffer into four records:
LOGICAL^BUFFER^1[0] ':=' SBUFFER[0] FOR 512;
LOGICAL^BUFFER^2[0] ':=' SBUFFER[512] FOR 512;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 52

Accessing a Labeled Tape File: An Example

LOGICAL^BUFFER^3[0] ':=' SBUFFER[1024] FOR 512;
LOGICAL^BUFFER^4[0] ':=' SBUFFER[1536] FOR 512;

 .
 .

Accessing a Labeled Tape File: An Example
In this subsection, the program used in Section 5, Communicating With Disk Files, for
saving a daily log in an entry-sequenced disk file is modified. Now, because of the
sequential nature of the application, this example will be used to show communication
with magnetic tape.

This example uses a labeled tape file. The program itself works with standard ANSI
labels or standard IBM labels, so long as the label type specified in the DEFINE
matches the label type on the tape.

Preparing the Tape
Before running the program, the tape must have been prepared with appropriate tape
labels. A user with super-group user privilege must apply the labels to the tape using
the ADD TAPELABEL command of the MEDIACOM utility or the LABEL command of
the TAPECOM utility. For example, using the MEDIACOM utility:

1> MEDIACOM
MEDIACOM - T6028D20 (01JUN93)
Copyright Tandem Computers Incorporated 1993
MC>add tapelabel myvol,tapedrive $tape,unload off,override on
TAPE VOLUME MYVOL INITIALIZED

MC>exit

Using the TAPECOM utility:

1> TAPECOM
TAPECOM - T6985D00 (12DEC91) GUARDIAN 90
Copyright Tandem Computers Incorporated 1985-91
?label myvol, device $tape, nounload
STATUS 2501 - VOLUME MYVOL INITIALIZED

?exit

Refer to the DSM/TC Operator Interface (MEDIACOM) for details on the MEDIACOM
utility; refer to the Guardian Disk and Tape Utilities Reference Manual for details on the
TAPECOM utility.

Creating the DEFINE
The example given below uses a record-block size of 2048 bytes and a record size of
512 bytes. Each DEFINE that accesses the file has its BLOCKLEN attribute set to
2048, its RECLEN attribute set to 512, and its RECFORM attribute set to “F.” In
addition, the VOLUME and FILEID attributes must match those on the tape, and the

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 53

Writing the Program

FILESEQ attribute must be set to 1 because the file is the first and only file on the tape.
Therefore three DEFINEs are created as shown below.

The program opens the following DEFINE for reading from the tape:

1> SET DEFINE CLASS TAPE, LABELS ANSI, USE IN, VOLUME MYVOL,
 FILESEQ 1,FILEID FILE1

2> ADD DEFINE =READ^TAPE

For appending to the tape:

3> SET DEFINE CLASS TAPE, LABELS ANSI, USE EXTEND,
 VOLUME MYVOL, FILESEQ 1, FILEID FILE1, BLOCKLEN 2048,
 RECLEN 512, RECFORM F

4> ADD DEFINE =APPEND^TAPE

For creating the file and writing to the new file:

5> SET DEFINE CLASS TAPE, LABELS ANSI, USE OUT, VOLUME MYVOL,
 FILESEQ 1, FILEID FILE1, BLOCKLEN 2048, RECLEN 512,
 RECFORM F

6> ADD DEFINE =CREATE^FILE

Writing the Program
The sample program allows the user to read records from the file, append records to
the file, or create the file and write records to it. The program consists of the following
procedures:

• The LOGGER procedure is the MAIN procedure. It calls GET^COMMAND to
prompt the user to select a function (read, append, create, or exit), and then calls
the appropriate procedure.

• The INIT and SAVE^STARTUP^MESSAGE procedures save the Startup message
in the global data area and open the process IN file for terminal I/O. In addition,
the INIT procedure checks that labeled tape support has been turned on.

• The READ^RECORD procedure opens the file for reading and prompts the user
for a record number. The procedure calculates the record-block number by
dividing the record number by 4 and then reads the corresponding record block.
Using modulo division, the procedure calculates which of the four records
contained in the record block is required, and then it prints the date and
commentary text on the terminal.

After printing out the record, the procedure prompts the user to read the next
record. If the user declines, then the procedure returns control to LOGGER.
Otherwise, the program displays the next record. If the next record is part of a
different record block, then the procedure reads in the next record block from tape.

• The APPEND^RECORD procedure opens the file for appending. Once the tape
file is open, the procedure prompts the user to enter the date and commentary text.
The procedure then prompts the user to enter another record. If the user declines,

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 54

Writing the Program

the record is put into the tape buffer and written to tape as a partial record block. If
the user chooses to enter more records, the procedure blocks each record into the
tape buffer until either the buffer contains four records or the user declines to enter
more records. At this point the procedure writes the tape buffer to tape—one
record block.

• The OPEN^TAPE^FILE procedure is called from either the READ^RECORD or
APPEND^RECORD procedures to open the tape file using the CLASS TAPE
DEFINE appropriate for the selected function. If append is selected, this
procedure uses the =APPEND^TAPE DEFINE. If create is selected, this
procedure uses the =CREATE^TAPE DEFINE, which is like the =APPEND^TAPE
DEFINE except that it also writes new file labels to the tape. If read is selected,
this procedure uses the =READ^TAPE DEFINE.

This procedure also sets buffered mode for the tape file.

• The FILE^ERRORS and FILE^ERRORS^NAME procedures respond to file system
errors. They simply print out the error number and stop the program.

• Procedure ILLEGAL^COMMAND informs the user of an invalid command selection
and then returns to the LOGGER procedure to prompt for another function.

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $TOOLS.ZTOOLD04.ZSYSTAL
?LIST

LITERAL BUFSIZE = 512;
LITERAL TBUFSIZE = 2048;
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME;
LITERAL ABEND = 1;

STRING .SBUFFER[0:BUFSIZE]; !Buffer for terminal I/O
INT TERMNUM; !Terminal file number
INT TAPENUM; !Tape file number
STRING CMD; !Function executing
STRING .S^PTR; !String pointer

INT .TBUFFER[0:(TBUFSIZE/2 - 1)]; !Buffer for tape I/O
INT .LREC0 := @TBUFFER[0]; !Integer pointers to
INT .LREC1 := @TBUFFER[256]; ! records in tape
INT .LREC2 := @TBUFFER[512]; ! buffer
INT .LREC3 := @TBUFFER[768];

INT INDEX; !Index into record block
INT(32) RBLOCK; !Record block number

STRUCT .LOG^RECORD; !Record structure
BEGIN
 STRING DATE[0:7];
 STRING COMMENTS[0:503];
END;
INT .RECORD^POINTER := @LOG^RECORD[0];

STRUCT .CI^STARTUP; !Startup message

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 55

Writing the Program

BEGIN
 INT MSGCODE;
 STRUCT DEFAULT;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;

 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRING PARAM[0:529];
END;

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,
? FILE_OPEN_,WRITEREADX,WRITEX,PROCESS_STOP_,READX,CONTROL,
? DNUMOUT,FILE_GETINFO_,DNUMIN,SETMODE,LABELEDTAPESUPPORT,
? OLDFILENAME_TO_FILENAME_,FILE_CLOSE_)
?LIST

!--
! Here are some DEFINEs to make it easier to format and print
! messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 56

Writing the Program

 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 57

Writing the Program

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is mainly to be used when
! the file is not open, so there is no file number for it.
! FILE^ERRORS is to be used when the file is open.
!
! The procedure also stops the program after displaying the
! message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;

BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME FOR LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program

 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 58

Writing the Program

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and the error number are determined from the file
! number and FILE^ERRORS^NAME is then called to do the
! display.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS(FNUM);
INT FNUM;

BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

!--
! Procedure to write a message on the terminal and check for
! any error. If there is an error, it attempts to write
! a message about the error and the program is stopped.
!--

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 59

Writing the Program

!--
! Procedure to open a labeled tape file by opening the
! appropriate CLASS TAPE DEFINE.
!--

PROC OPEN^TAPE^FILE;
BEGIN
 INT ERROR;
 STRING .TAPE^NAME[0:MAXFLEN - 1];

! Select the CLASS TAPE DEFINE for the requested function:

 CASE CMD OF
 BEGIN
 "a", "A" -> TAPE^NAME ':=' "=APPEND^TAPE" -> @S^PTR;
 "c", "C" -> TAPE^NAME ':=' "=CREATE^TAPE" -> @S^PTR;
 "r", "R" -> TAPE^NAME ':=' "=READ^TAPE" -> @S^PTR;
 OTHERWISE -> ;
 END;

! Open the selected DEFINE with exclusive mode:

 ERROR := FILE_OPEN_(
 TAPE^NAME:@S^PTR '-' @TAPE^NAME,TAPENUM);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(
 TAPE^NAME:@S^PTR '-' @TAPE^NAME,ERROR);

! Set buffered mode:

 CALL SETMODE(TAPENUM,99,1);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 60

Writing the Program

!--
! This procedure executes when you press "r" in response to
! the function prompt in the main procedure. It prompts the
! user for the desired record, displays it on the terminal,
! then prompts for sequential reads.
!--

PROC READ^RECORD;
BEGIN
 INT COUNT^READ;
 INT(32) RECORD^NUM;
 STRING .EXT NEXT^ADDR;
 INT STATUS;
 INT ERROR;

! Open the tape DEFINE and set buffered mode:

 CALL OPEN^TAPE^FILE;

! Prompt the user to select a record:

PROMPT^AGAIN:
 PRINT^BLANK;
 SBUFFER ':=' "Enter Record Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 SBUFFER[COUNT^READ] := 0;

! Convert ASCII to numeric:

 @NEXT^ADDR := DNUMIN(SBUFFER,RECORD^NUM,10,STATUS);
 IF STATUS OR @NEXT^ADDR <> $XADR(SBUFFER[COUNT^READ])
 THEN
 BEGIN
 PRINT^STR("Error in the record number");
 GOTO PROMPT^AGAIN;
 END;

! Calculate record block number, assuming blocking
! factor of 4:

 RBLOCK := RECORD^NUM / 4D;

! Modulo divide to get record index:

 INDEX := RECORD^NUM '\' 4;

! Space tape forward to start of record block:

 CALL CONTROL(TAPENUM,9,$INT(RBLOCK));
 IF <> THEN CALL FILE^ERRORS(TAPENUM);

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 61

Writing the Program

! Execute loop if reading just selected, or user
! has requested to read an additional record.
! Exit loop if user declines to read next record:

 DO BEGIN

 PRINT^BLANK;

 ! Read a record block from the tape file:

 CALL READX(TAPENUM,TBUFFER,TBUFSIZE,COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPENUM,ERROR);
 IF ERROR = 1 THEN
 BEGIN
 PRINT^STR("No such record. ");
 RETURN;
 END
 ELSE CALL FILE^ERRORS(TAPENUM);
 END;

 DO BEGIN

 ! Extract the record:

 CASE INDEX OF
 BEGIN
 0 -> LOG^RECORD[0] ':=' LREC0[0] FOR 256;
 1 -> LOG^RECORD[0] ':=' LREC1[0] FOR 256;
 2 -> LOG^RECORD[0] ':=' LREC2[0] FOR 256;
 3 -> LOG^RECORD[0] ':=' LREC3[0] FOR 256;
 OTHERWISE -> CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;

 ! Check for incomplete record block. If this record
 ! is blank, set INDEX to 4 in preparation for reading
 ! the next record block:

 IF LOG^RECORD.DATE = " " THEN
 BEGIN
 INDEX := 4;
 SBUFFER[0] ':=' "Y";
 END
 ELSE

 ! Process the log record:

 BEGIN

 ! Display date from the record:

 CALL WRITEX(TERMNUM,LOG^RECORD.DATE,8);

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 62

Writing the Program

 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Display comments:

 CALL WRITEX(TERMNUM,LOG^RECORD.COMMENTS,504);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Increment record counter:

 INDEX := INDEX + 1;

 ! Prompt the user to read the next record:

 PRINT^BLANK;
 SBUFFER ':='
 "Do You Want To Read the Next Record (y/n) "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,
 @S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(ERROR);
 END;
 END
 UNTIL (NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y"))
 OR INDEX = 4;

 ! No more records in this record block. Reset record
 ! count to 0 and read next record, if requested:

 INDEX := 0;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");

! Close the tape file:

 CALL FILE_CLOSE_(TAPENUM);
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 63

Writing the Program

!--
! Procedure to append a record to the file
!--

PROC APPEND^RECORD;
BEGIN
 INT ERROR;
 INT COUNT^READ;
 INT SEQ^NUM := 0;

! Open the tape file and set buffered mode:

 CALL OPEN^TAPE^FILE;

! Blank tape buffer:

 TBUFFER[0] ':=' " ";
 TBUFFER[1] ':=' TBUFFER[0] FOR 1023;

! Initialize the index into the tape buffer:

 INDEX := 0;

! Write records to file. This loop prompts the user for
! each additional record to be written:

 DO BEGIN

 ! Blank the log record structure:

 RECORD^POINTER[0] ':=' " ";
 RECORD^POINTER[1] ':=' RECORD^POINTER[0] FOR 255;

 ! Prompt user for date:

 PROMPT^AGAIN:
 PRINT^BLANK;
 SBUFFER ':=' "Enter Today's Date (mmddyyyy): "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF COUNT^READ <> 8 THEN GOTO PROMPT^AGAIN;

 ! Put date into record structure:

 LOG^RECORD.DATE ':=' SBUFFER[0] FOR COUNT^READ;

 ! Prompt user for comments:

 SBUFFER ':=' "Please Enter Your Comments: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 64

Writing the Program

 ! Put comments into record structure:

 LOG^RECORD.COMMENTS ':=' SBUFFER[0] FOR COUNT^READ;

 ! Pack record into record block:

 CASE INDEX OF
 BEGIN
 0 -> LREC0 ':=' LOG^RECORD FOR 256;
 1 -> LREC1 ':=' LOG^RECORD FOR 256;
 2 -> LREC2 ':=' LOG^RECORD FOR 256;
 3 -> LREC3 ':=' LOG^RECORD FOR 256;
 OTHERWISE -> CALL PROCESS_STOP_;
 END;

 ! Prompt the user to enter additional records:

 PRINT^BLANK;
 SBUFFER ':='
 "Do You Wish to Enter Another Record (y/n)? "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Increment the index into the record block:

 INDEX := INDEX + 1;

 ! Send record block to tape process if no more records,
 ! or if record block full. Flush out to tape every 10
 ! writes to provide known point of consistency:

 IF INDEX = 4 OR
 (NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y")) THEN
 BEGIN
 CALL WRITEX(TAPENUM,TBUFFER,TBUFSIZE);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPENUM,ERROR);
 IF ERROR <> 1 THEN CALL FILE^ERRORS(TAPENUM);
 END;

 ! Increment the record block count and reset the
 ! index:

 SEQ^NUM := SEQ^NUM + 1;
 INDEX := 0;

 ! Blank tape buffer in case next record block is not
 ! full:

 TBUFFER[0] ':=' " ";
 TBUFFER[1] ':=' TBUFFER[0] FOR 1023;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 65

Writing the Program

 ! Flush to tape every 10 record blocks. Use modulo
 ! divide to detect tenth record. Buffered mode is
 ! already set, therefore SETMODE 99 forces to tape all
 ! records in tape buffer:

 IF $DBL(SEQ^NUM) '\' 10 = 0 THEN
 BEGIN
 CALL SETMODE(TAPENUM,99,1);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);
 END;
 END;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");

! Turn off buffered mode:

 CALL SETMODE(TAPENUM,99,0);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);

! Close the tape file:

 CALL FILE_CLOSE_(TAPENUM);

END;

!--
! Procedure to stop the program on request. As well as
! stopping the program, this procedure rewinds and unloads
! the tape.
!--

PROC EXIT^PROGRAM;
BEGIN

! Stop the program:

 CALL PROCESS_STOP_;
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 66

Writing the Program

!--
! Procedure to process an illegal command. The procedure
! informs the user that the selection was other than "r,"
! "a," "c," or "x."
!--

PROC ILLEGAL^COMMAND;

! If user selects other than r, a, c, or x:
BEGIN

 PRINT^BLANK;

! Inform the user that the selection was invalid
! then return to prompt again for a valid function:

 PRINT^STR("ILLEGAL COMMAND: " &
 "Type one of 'r,' 'a,' 'c,' or 'x.'");
END;

!--
! Procedure to prompt the user for the next function to be
! performed:
!
! "r" to read records
! "a" to append records
! "c" to create a file and append records
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' for Read Log, ");
 PRINT^STR(" 'a' for Append to Log, ");
 PRINT^STR(" 'c' for Create File and Append, ");
 PRINT^STR(" 'x' for Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 67

Writing the Program

!--
! Procedure to save Startup message in a global structure.
!--

PROC SAVE^STARTUP^MESSAGE(RUCB,START^DATA,MESSAGE,
 LENGTH, MATCH) VARIABLE;

INT .RUCB;
INT .START^DATA;
INT .MESSAGE;
INT LENGTH;
INT MATCH;

BEGIN

! Copy the Startup message into the CI^STARTUP structure:

 CI^STARTUP.MSGCODE ':=' MESSAGE[0] FOR LENGTH/2;
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 68

Writing the Program

!--
! Procedure to perform initialization for the program. It
! calls INITIALIZER to read and copy the Startup message
! into the global variables area and then opens the IN file
! specified in the Startup message. This procedure also
! checks whether labeled tape support is turned on.
!--

PROC INIT;
BEGIN
 INT OPEN^FLAG;
 INT ERROR;
 INT RETURNED^VALUE;
 INT .TERM^NAME[0:MAXFLEN - 1];
 INT TERMLEN;

! Read and save the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthrough!,
 SAVE^STARTUP^MESSAGE);

! Open IN file:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.INFILE.VOLUME,
 TERM^NAME:MAXFLEN,TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERMNUM);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);

! Check if labeled tape support is turned on. Print a
! message and stop the program if not:

 RETURNED^VALUE := LABELEDTAPESUPPORT;
 IF RETURNED^VALUE = 0 THEN
 BEGIN
 PRINT^STR("Labeled tape support is not enabled. ");
 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 69

Writing the Program

!--
! This is the main procedure.
!--

PROC LOGGER MAIN;
BEGIN

 CALL INIT;

! Loop indefinitely until user selects function x:

 WHILE 1 DO
 BEGIN

 ! Prompts for the function to perform:

 CMD := GET^COMMAND;

 ! Call function selected by user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^RECORD;

 "a", "A" -> CALL APPEND^RECORD;

 "c", "C" -> CALL APPEND^RECORD;

 "x", "X" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL ILLEGAL^COMMAND;
 END;
 END;
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 70

Working With Unlabeled Tapes

Working With Unlabeled Tapes
Any tape that does not have standard ANSI, IBM or TMF labels (or for a backup tape
either BACKUP or IBMBACKUP labels) is an unlabeled tape. Use the methods
described in this subsection for handling either tapes produced by other vendors that
don’t have IBM or ANSI labels or tapes produced on HP systems without using
standard labeled tape processing.

Accessing Unlabeled Tapes
You gain access to an unlabeled tape by opening the file name of the drive the tape is
mounted on. To do this, either:

• Open the tape-drive using a DEFINE, specifying the tape-file name in the DEVICE
attribute and setting the LABELS attribute to “OMITTED.”

• Pass the tape-drive name or logical device number to the FILE_OPEN_ procedure.

In either case, you need operator permission to open the file if labeled tape processing
is turned on and the operator has set NLCHECK permission using the MEDIACOM
utility or the TAPECOM utility. In this case, a message is sent to the operator to enable
the operation.

Using the DEFINE method, you can access a labeled tape as if it had no labels by
setting the LABELS attribute to “BYPASS.” You need operator permission to open the
file if labeled tape processing is turned on and the operator has set BLPCHECK
permission using the MEDIACOM utility or the TAPECOM utility. In this case, a
message is sent to the operator to enable the operation.

The following example creates a DEFINE for an unlabeled tape mounted on tape drive
$TAPE1:

!Turn on DEFINE mode:
NEW^VALUE := 1;
ERROR := DEFINEMODE(NEW^VALUE,
 OLD^VALUE);
IF ERROR > 0 THEN ...

!Set the CLASS attribute to TAPE:
ATTRIBUTE^NAME ':=' "CLASS ";
ATTRIBUTE^VALUE ':=' "TAPE" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the LABELS attribute to OMITTED:
ATTRIBUTE^NAME ':=' "LABELS ";
ATTRIBUTE^VALUE ':=' "OMITTED" -> @S^PTR;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 71

Accessing Unlabeled Tapes

ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Set the DEVICE attribute to \SYS2.$TAPE1:
ATTRIBUTE^NAME ':=' "DEVICE ";
ATTRIBUTE^VALUE ':=' "\SYS2.$TAPE1" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

!Create the DEFINE:
DEFINE^NAME ':=' "=TAPE1 ";
ERROR := DEFINEADD(DEFINE^NAME);
IF ERROR <> 0 THEN ...

To open the tape file, pass the DEFINE name to the FILE_OPEN_ procedure:

FILE^NAME ':=' "=TAPE1" -> @S^PTR;
ERROR := FILE_OPEN_(FILE^NAME:@S^PTR '-' @FILE^NAME,
 TAPE^NUM);
IF ERROR <> 0 THEN ...

If you open the tape drive without a DEFINE, then you simply pass the name or device
number of the tape drive to the FILE_OPEN_ call:

FILE^NAME ':=' "\SYS2.TAPE" -> @S^PTR;
ERROR := FILE_OPEN_(FILE^NAME:@S^PTR '-' @FILE^NAME,
 FILE^NUM);
IF ERROR <> 0 THEN ...

Once the tape drive is open, consider the following before performing read/write
operations to the tape:

• Should records be blocked for efficiency?

• If writing to the tape, what should the tape density be?

• What is the device mode and speed?

• Is code conversion necessary?

• Do you intend to use buffered mode?

The following paragraphs discuss the above considerations.

Note. The only DEFINE attributes that are allowed for unlabeled tape access are DENSITY,
DEVICE, LABELS, and MOUNTMSG. The following attributes are invalid for unlabeled tapes:
BLOCKLEN, EBCDIC, EXPIRATION, FILEID, FILESECT, FILESEQ, GEN, OWNER,
RECFORM, RECLEN, REELS, RETENTION, SYSTEM, USE, VERSION, VOLUME.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 72

Accessing Unlabeled Tapes

Blocking Tape I/O
There is no support for blocking records that are written to an unlabeled tape. If you
choose to do blocking, then your program must pack multiple records into one record
block before the record gets written to tape. Similarly, on reading records from the
tape, the program must do its own deblocking of record blocks back into records.

Blocking records in this way has the following advantages:

• It speeds up tape I/O because fewer write and read operations are required.

• It uses less tape because there are fewer records and thus fewer interrecord gaps.

Refer to Blocking Tape Records earlier in this section for details.

Specifying Tape Density
When writing to tape, you can specify the density with which you want to write to tape.
If you do not set the density, then the system will use the configured default density for
the drive. On reading from tape, it is not necessary to specify the density, because the
tape controller can calculate the tape density.

If you open the tape using a DEFINE, you can use the same DEFINE to select the tape
density by setting the DENSITY attribute. The following code fragment sets the density
to 1600 bits per inch:

!Set the DENSITY attribute to 1600 bpi:
ATTRIBUTE^NAME ':=' "DENSITY ";
ATTRIBUTE^VALUE ':=' "1600" -> @S^PTR;
ERROR := DEFINESETATTR(ATTRIBUTE^NAME,
 ATTRIBUTE^VALUE,
 @S^PTR '-' @ATTRIBUTE^VALUE,
 DEFAULT^NAMES);
IF ERROR <> 0 THEN ...

The tape density gets set when the tape device is opened using the DEFINE that
contains this attribute.

Alternatively, you can set the density using SETMODE function 66. parameter-1 of
the SETMODE procedure designates the density, as shown in Table 12-3.

Table 12-3. SETMODE 66 parameter-1 Settings for Tape Density

SETMODE
parameter
-1 Tape Density

 1 1600 bpi (PE)

 2 6250 bpi (GCR)

 3 As indicated by switches on the tape drive (D-series releases only)

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 73

Accessing Unlabeled Tapes

The following example also sets the tape density to 1600 bits per inch:

LITERAL TAPE^DENSITY = 66;
 .
 .
DENSITY := 1;
CALL SETMODE(TAPE^NUM,
 TAPE^DENSITY,
 DENSITY);
IF <> THEN ...

Here, the tape drive must already be open. The selected density becomes effective
immediately.

Selecting the Device Mode (D-Series Only)
On D-series releases only, if you are accessing a tape on a drive controlled by a
3209/5120 controller, you can access the cartridge in either start/stop or streaming
mode. If you are using this type of drive, you should therefore use SETMODE function
119 to specify the device mode. You set the device mode after opening the tape
device but before accessing the tape.

The following example sets the device mode to streaming mode.

LITERAL DEVICE^MODE = 119,
 START^STOP = 0,
 STREAMING = 1;
 .
 .
CALL SETMODE(TAPE^NUM,
 DEVICE^MODE,
 STREAMING);
IF <> THEN ...

A program can be designed to run for any type of tape drive/controller by using the
FILE_GETINFO_ procedure immediately after opening the tape file to determine the
subdevice type of the file. If the subdevice type is 5 (that is, the 3209 controller for a
5120 device), then you prompt the user for the mode and set the mode accordingly. If
the subdevice type is not 5, continue without setting the device mode.

Selecting the Conversion Mode
When reading information from an unlabeled tape written by another vendor’s
equipment or writing to an unlabeled tape that will be read by another vendor’s
equipment, you must consider whether the tape contains EBCDIC or ASCII code.

For an EBCDIC tape, you need to convert the data on input to ASCII. You can use a
FUP command to copy the data from tape to disk or another tape and convert the code
to ASCII at the same time. The following example copies an EBCDIC tape from device
$TAPE2 to $TAPE1:

FUP COPY $TAPE2,$TAPE1,EBCDICIN

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 74

Writing to a Single-File Unlabeled Tape

Similarly, you can convert ASCII code to EBCDIC for output as follows:

FUP COPY $TAPE1,$TAPE2,EBCDICOUT

Refer to the File Utility Program (FUP) Reference Manual for details on the FUP
COPY command.

Setting Buffered Mode
As with labeled tape, we recommend using buffered mode to increase throughput.
When you use buffered mode for writing to a tape, the application is allowed to
continue as soon as the tape process has received the write request. Without buffered
mode, the application must wait for each write to tape to finish before continuing.
When reading from tape in buffered mode, the tape process reads ahead in
anticipation of sequential read operations.

You turn on buffered mode using SETMODE function 99:

LITERAL BUFFERED^MODE = 99,
 ON = 1,
 OFF = 0;
 .
 .
CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,
 ON);
IF <> THEN ...

Always turn off buffered mode before closing the tape drive and unloading the tape:

CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,
 OFF);
IF <> THEN ...

For complete details on buffered mode operation, refer to Working in Buffered Mode,
earlier in this section.

Writing to a Single-File Unlabeled Tape
The following paragraphs describe how to write programs to do the following:

• Write a new file to a scratch tape.

• Append to the only file on an unlabeled tape.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 75

Writing to a Single-File Unlabeled Tape

Writing a New File to a Scratch Tape
Writing a file to magnetic tape involves two steps:

1. Write records to the tape device using the WRITE procedure; for example:

!Write record blocks to tape:
WHILE NOT DONE
BEGIN
 .
 .
 !Write one record to tape:
 CALL WRITEX(TAPE^NUM,
 SBUFFER,
 WCOUNT);
 IF <> THEN ...
 .
 .

 IF <no more to write> THEN DONE = 1;
END;

2. Terminate the file with an end-of-file mark and an indication of end of tape.
Because there is only one file on the tape, you could get away without a separate
convention for indicating the end of the tape. However, it is worth observing an
end-of-tape convention, regardless of how many files the tape contains. In addition
to providing consistency between multiple-file and single-file tapes, you will need
the end-of-tape convention if you add files to the tape later. Therefore we
recommend terminating this file with the HP end-of-tape convention: two end-of-
file marks.

The following code fragment writes two EOF marks to the tape:

LITERAL WRITE^EOF = 2;
 .
 .
!Write EOF mark to signify end of file:
CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
IF <> THEN ...

!Write another end-of-file mark to signify end of tape:
CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
IF <> THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 76

Writing to a Single-File Unlabeled Tape

Appending to the Only File on an Unlabeled Tape
To append to the only file on an unlabeled tape, your program must do the following:

1. Space forward one file. The tape stops immediately after the first EOF mark:

LITERAL SPACE^FWD^FILES = 7,
 SPACE^BACK^FILES = 8,
 WRITE^EOF = 2;
 .
 .
NUMBER^OF^FILES := 1;
CALL CONTROL(TAPE^NUM,
 SPACE^FWD^FILES,
 NUMBER^OF^FILES);
IF <> THEN ...

2. Space backward one file. The tape stops immediately before the same EOF mark:

NUMBER^OF^FILES := 1;
CALL CONTROL(TAPE^NUM,
 SPACE^BACK^FILES,
 NUMBER^OF^FILES);
IF <> THEN ...

3. Append records to the tape:

WHILE NOT DONE
BEGIN
 .
 .
 CALL WRITEX(TAPE^NUM,
 SBUFFER,
 WCOUNT);
 IF <> THEN ...
 .
 .

 IF <no more to write> THEN DONE = 1;
END;

4. Write two EOF marks to signify the end of the file and the end of the tape:

CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
IF <> THEN ...

CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
IF <> THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 77

Writing to a Multiple-File Unlabeled Tape

Writing to a Multiple-File Unlabeled Tape
Writing records to a multiple-file unlabeled tape reel is similar to writing to a single-file
tape reel except that you need to be sure that you write to the appropriate file on the
tape. You can add a file to the end of the tape or append records to the last file on the
tape. You can find the end of the last file on the tape by searching for two consecutive
EOF marks.

Adding Files to the End of a Multiple-File Tape
To append a file to the information already on an unlabeled tape, your program must
do the following:

1. Find the double EOF marks that denote the end of information on the tape. One
way of doing this is to keep spacing forward one file at a time, reading the first
record of each file. If the READ[X] call returns error number 1 (end-of-file
warning), then you have reached the end of the tape. The following code fragment
positions the tape immediately after the last EOF mark on the tape:

LITERAL SPACE^FWD^FILES = 7,
 SPACE^BACK^FILES = 8,
 WRITE^EOF = 2;
 .
 .
WHILE NOT END^OF^TAPE DO
BEGIN

 NUMBER^OF^FILES := 1;
 CALL CONTROL(TAPE^NUM,
 SPACE^FWD^FILES,
 NUMBER^OF^FILES);
 IF <> THEN ...

 READX(TAPE^NUM,
 SBUFFER,
 RCOUNT,
 COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPE^NUM,
 ERROR);
 IF ERROR = 1 THEN END^OF^TAPE := YES
 ELSE ... !other error
 END;
END;

2. Space backward one EOF mark to position the tape between the two EOF marks:

NUMBER^OF^FILES := 1;
CALL CONTROL(TAPE^NUM,
 SPACE^BACK^FILES,
 NUMBER^OF^FILES);
IF <> THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 78

Writing to a Multiple-File Unlabeled Tape

3. Write records to the tape:

WHILE DONE = 0;
BEGIN
 .
 .
CALL WRITEX(TAPE^NUM,
 SBUFFER,
 WCOUNT);
 IF <> THEN ...
 .
 .

 IF <no more to write> THEN DONE := 1;
END;

4. Write two EOF marks to the tape to signify the end of the new file and the new end
of information on the tape.

CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
IF <> THEN ...

CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
IF <> THEN ...

Appending Records to a Multiple-File Tape
Appending records to a multiple-file tape is the same as appending to a single-file tape
except that you need to space forward to the end of the last file on the tape. That is,
you must position the tape before the two EOF marks rather than between them. The
following sequence explains how to do this:

1. Find the double EOF marks that denote the end of information on the tape. Again,
you can do this by spacing forward one file at a time, reading the first record of
each file. If the READ[X] call returns error number 1 (end-of-file warning), then you
have reached the end of the tape. The following code fragment positions the tape
immediately after the two EOF marks that denote the end of the tape:

LITERAL SPACE^FWD^FILES = 7,
 SPACE^BACK^FILES = 8,
 WRITE^EOF = 2;
 .
 .
WHILE NOT END^OF^TAPE DO
BEGIN

 NUMBER^OF^FILES := 1;
 CALL CONTROL(TAPE^NUM,
 SPACE^FWD^FILES,
 NUMBER^OF^FILES);
 IF <> THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 79

Writing to a File on Multiple Unlabeled Tape Reels

 READX(TAPE^NUM,
 SBUFFER,
 RCOUNT,
 COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPE^NUM,
 ERROR);
 IF ERROR = 1 THEN END^OF^TAPE := YES
 ELSE ... !other error
 END;

END;

2. Space backward two EOF marks to position the tape at the end of the last file on
the tape:

NUMBER^OF^FILES := 2;
CALL CONTROL(TAPE^NUM,
 SPACE^BACK^FILES,
 NUMBER^OF^FILES);
IF <> THEN ...

3. Write records to the tape:

WHILE NOT DONE;
BEGIN
 .
 .
 CALL WRITEX(TAPE^NUM,
 SBUFFER,
 WCOUNT);
 IF <> THEN ...
 .
 .

 IF <no more to write> THEN DONE := 1;
END;

4. Write two EOF marks to the tape to signify the new end of the file and the new end
of information on the tape:

CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
IF <> THEN ...

CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
IF <> THEN ...

Writing to a File on Multiple Unlabeled Tape Reels
If your program must deal with files that are too large to fit on a single tape reel, then
your program must be able to recognize the end of the tape when writing and to
identify the mounted tape reel when reading.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 80

Writing to a File on Multiple Unlabeled Tape Reels

Writing Tape Headers
We recommend using tape headers to identify magnetic tape reels, especially where
tape files span multiple tapes. Because we recommend using two EOF marks to
denote the end of information on a tape, headers are needed to identify where a
multiple-reel file starts and stops. For example, when reading a tape sequentially, your
program encounters an EOF mark. The program needs to know whether this is the
end of the file or whether the file continues on another tape.

A tape header usually includes information such as an indication as to whether the
tape is part of a multiple-tape file, the order of the tape in the file, and the total number
of tape reels in the file. It is up to the application designer to choose what information
will go into the tape header.

As an alternative to writing your own tape headers, you can use labeled tapes. See
Working With Standard Labeled Tapes earlier in this section.

Checking for the End of the Tape
When writing out a multiple-reel file, you need to check for the end of the tape. You do
this by checking for the EOT sticker on the tape itself. There may be several records in
the buffers that will still be written out to tape after the EOT sticker is encountered.
Information can therefore be written beyond the EOT sticker. The program should treat
the EOT sticker as a warning that the end of the tape is near and send no more
records to the tape process for writing.

The following code fragment writes records to tape. It issues a SETMODE 120, which
causes the tape process to return error 150 if the EOT sticker is encountered on a
write operation. If EOT is encountered, the program stops writing records and sends
two EOF marks to the tape process to indicate the end of information on the tape.
Error 150 is expected following each of these write operations and is ignored. Finally,
the code fragment issues CONTROL operation 3 to rewind and unload the tape and
calls SETMODE to disable function 120.

LITERAL WRITE^EOF = 2,
 REWIND^AND^UNLOAD = 3,
 RETURN^ERROR^IF^EOT = 120,
 ON = 1,
 OFF = 0;
 .
 .

CALL SETMODE(TAPE^NUM,
 RETURN^ERROR^IF^EOT,
 ON);
IF <> THEN ...
WHILE NOT DONE
BEGIN
 .
 .
 CALL WRITEX(TAPE^NUM,
 SBUFFER,

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 81

Writing to a File on Multiple Unlabeled Tape Reels

 WCOUNT);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPE^NUM,
 ERROR);
 IF ERROR = 150
 BEGIN
 CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPE^NUM,
 ERROR);
 IF ERROR <> 150 THEN ...
 END;

 CALL CONTROL(TAPE^NUM,
 WRITE^EOF);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPE^NUM,
 ERROR);
 IF ERROR <> 150 THEN ...
 END;

 CALL CONTROL(TAPE^NUM,REWIND^AND^UNLOAD);
 IF <> THEN ...
 CALL SETMODE(TAPE^NUM,
 RETURN^ERROR^IF^EOT,
 OFF);
 IF <> THEN ...
 END;
 .
 .
 IF <no more to write> THEN DONE = 1;
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 82

Reading From a Single-File Unlabeled Tape

Reading From a Single-File Unlabeled Tape
When reading records from a tape reel containing one file, your program must do the
following:

1. Space forward or backward to the record that you intend to read. If you try to
space backward too far, the tape stops at the BOT sticker and the file system
returns error 154. If the program is allowed to continue, it will then read the first
record. If you try to space forward too far, the CONTROL procedure will return an
end-of-file error (error 1). For example:

LITERAL SPACE^FWD^RECORDS = 9;
 .
 .
NUMBER^OF^RECORDS := 27;
CALL CONTROL(TAPE^FILE,
 SPACE^FWD^RECORDS,
 NUMBER^OF^RECORDS);
IF <> THEN
BEGIN
 CALL FILE_GETINFO_(TAPE^FILE,
 ERROR);

 CASE ERROR OF
 BEGIN
 "1" -> ... !end of file
 "154" -> ... !BOT
 OTHERWISE -> ... !other error
 END;
END;

2. Read the record:

CALL READX(TAPE^FILE,
 SBUFFER,
 RCOUNT,
 COUNT^READ);
IF <> THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 83

Reading From a Multiple-File Unlabeled Tape

Reading From a Multiple-File Unlabeled Tape
Reading records from a multiple-file unlabeled tape reel is similar to the single-file case
except that your program must also space the tape forward or backward to the
appropriate file. The steps your program must perform are outlined below:

1. File space forward or backward to the appropriate file. If you try to space
backward too far, the tape will stop when you reach the BOT sticker. To guard
against spacing forward too far, however, your program should check for the pair of
EOF marks that terminate information on the tape. For example:

LITERAL SPACE^FWD^FILES = 7,
 SPACE^FWD^RECORDS = 9;
 .
 .
NUMBER^OF^FILES := 5;
CALL CONTROL(TAPE^NUM,
 SPACE^FWD^FILES,
 SPACE^FWD^RECORDS);
IF <> THEN ...

CALL READX(TAPE^NUM,
 SBUFFER,
 RCOUNT,COUNT^READ);
IF <> THEN
BEGIN
 CALL FILE_GETINFO_(TAPE^NUM,
 ERROR);
 IF ERROR = 1 THEN ... !end of tape reached
 ELSE ... !other error
END;

2. Record space forward to the record that you intend to read. If you try to space
forward too far, the CONTROL procedure returns an end-of-file error (error 1). For
example:

NUMBER^OF^RECORDS := 27;
CALL CONTROL(TAPE^FILE,
 SPACE^FWD^RECORDS,
 NUMBER^OF^RECORDS);
IF <> THEN
BEGIN
 CALL FILE_GETINFO_(TAPE^FILE,
 ERROR);
 IF ERROR = 1 THEN ... !end of file
 ELSE ... !other error
END;

3. Read the record:

CALL READX(TAPE^FILE,
 SBUFFER,RCOUNT,
 COUNT^READ);
IF <> THEN ...

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 84

Reading From a File on Multiple Unlabeled Tape
Reels

Reading From a File on Multiple Unlabeled Tape Reels
The technique for reading records from a multiple-reel file depends in part on what
information you have put in the tape header. Typically, your program is going to use
the header information to determine whether the current reel is the first or last reel in
the file. The program needs to know this to determine how to interpret the pair of EOF
marks at the end of the information on the tape or how to interpret the BOT sticker.

If your program is record spacing forward and encounters the two EOF marks, the
program should return a “record not found” message to the user if the current tape reel
is the last in the file. Otherwise, the program should issue CONTROL function 24 to
rewind the tape and request the next tape. Similarly, if the program encounters the
BOT sticker, it needs to know whether to request that the user mount the previous
tape.

Terminating Tape Access
You terminate access to a tape drive either by closing the device or by stopping the
application. The technique is the same for labeled and unlabeled tapes: you close a
tape device as you would any file, by issuing a FILE_CLOSE_ procedure call.

We recommend rewinding and unloading the tape before closing the file. You can do
this by specifying 0 (the default value) for the tape-disposition parameter of
FILE_CLOSE_. (You can also do it through the CONTROL procedure). You should
turn off buffered mode before closing the tape device to ensure that all data is written
to tape.

The following code fragment turns off buffered mode, rewinds and unloads the tape,
and closes the tape file:

LITERAL BUFFERED^MODE = 99,
 ON = 1,
 OFF = 0,
 REWIND^UNLOAD = 0;
 .
 .
CALL SETMODE(TAPE^NUM,
 BUFFERED^MODE,
 OFF);
IF <> THEN ...

ERROR := FILE_CLOSE_(TAPE^NUM,
 REWIND^UNLOAD);
IF ERROR <> 0 THEN ...

Note. With unlabeled tape, the application does not wait for the rewind-and-unload operation
to complete; with labeled tape, the application waits for the operation to complete.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 85

Recovering From Errors

Recovering From Errors
The tape process attempts automatic recovery for all tape I/O operations. However, it
is the application’s responsibility to ensure that the tape gets positioned correctly
following an error. For example, if a power failure or other hardware error occurs while
a tape read or write is taking place, it is indeterminate where the tape is positioned at
the point of failure. If, for example, an error is returned from a write request, you may
not know whether the write to tape started.

If an error is reported when operating in buffered mode the application cannot
determine which I/O operation caused the error. During a sequence of buffered writes,
for example, an error reported to the application by the tape process does not indicate
which of the previous write requests failed. Therefore, to recover from the error, the
application must reposition to the last known good record and resume writing from that
point.

In summary, your application must be able to respond to I/O errors depending on mode
of buffering as follows:

Reconsider the buffered-mode tape access example shown in Figure 12-3. Assume
that the application encounters an error because the tape drive is unloaded and offline.
Figure 12-4 shows what happens.

As described earlier in Working in Buffered Mode, two write requests are buffered by
the tape process while the first write request is passed to the tape device. This time,
however, the tape device replies with an error (error 100, for example). On receipt of
an error, the tape process discards the contents of its buffer. The application is not
notified of the error until the next time it passes a request to the tape process. In this
case, the third write request receives the error. A CONTROL or SETMODE request to
the tape process would also receive the error.

The application cannot tell from the information returned which write request caused
the error.

If you are using buffered mode... Then your program must...

 0 (no buffered mode) Retry the current record

 1 (buffered mode, no EOF mark
buffering)

Be able to reconstruct the file on tape

 2 (EOF mark buffering enabled) Be able to reconstruct all the data it has written to tape

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 86

Recovering From Errors

The most commonly encountered tape errors are listed in Table 12-4. See the
Guardian Procedure Errors and Messages Manual for a complete list of all file-system
errors.

The Guardian Procedure Errors and Messages Manual provides details on the cause
and effect of each of these errors, as well as the recommended action. For many of
these errors, the required action is to simply print a message or repeat the operation.
However, the following problems require special attention:

• “Device not ready” errors

• Power failure to the tape drive

• Path errors

Recovery from these problems is discussed in the following paragraphs.

Figure 12-4. Example of a WRITE Error in Buffered Mode

VST063.VSD

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 87

Recovering From “Device Not Ready” Errors

Recovering From “Device Not Ready” Errors
The system returns error 100 for several reasons: the tape unit is not powered up,
there is no tape on the drive, or the tape is currently rewinding. Your program should
retry the operation when the errant condition is fixed. Typically the fix requires human
intervention, so it would be appropriate to prompt the user before retrying the
operation.

Recovering From Tape Unit Power Failure
If the power to a magnetic tape unit fails and the application attempts a read, write, or
control operation, then one of the following errors is returned: file-system error 100

Table 12-4. Commonly Encountered Tape Errors

File System
Error Number Caused by...

 1 Read reached end of file (EOF) or write reached end of tape (EOT)

 2 Invalid operation for a tape drive

 21 Illegal count specified; attempt was made to transfer large data or not
enough data

 28 Too many outstanding nowait operations

 40 Operation timed out

 60 Device down or not open

 66 Device down

 100 Device not ready or controller not operational

 101 Tape write protection is on

 120 Data parity error, or attempt to access a tape whose density is higher
than the switch setting on the tape drive

 150 End of tape sticker detected

 151 Runaway tape condition or incorrect tape density

 153 Tape drive power on

 154 BOT encountered during backspace files or backspace records

 156 Tape command rejected

 188 Data lost, especially when buffering is on

 190 Device error; hardware problem

 193 Invalid or missing microcode file

 214 Channel timeout (hardware error)

 218 Interrupt timeout

 224 Controller error

 200 through 255 Path errors

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 88

Recovering From Path Errors

(device not ready) or error 218 (interrupt timeout). After power is restored and the tape
unit is again accessed, a subsequent call to FILE_GETINFO_ returns error 153 (tape
drive power on). It is the responsibility of the application to ensure the correct tape is
loaded following a power failure.

Tape units, if a tape is loaded, are automatically put back into an operating (ready)
state when power is restored.

The position of the tape following power restoration depends on the drive type. You
must therefore use care if you need to ensure that your code is device independent.
Vacuum drives, for example, will move the tape when the power is lost; these drives
automatically rewind the tape when power is restored. Some types of drives do not
move the tape when power is lost; for these drives you can continue without having to
reposition the tape.

Recovering From Path Errors
The system software usually corrects for path errors by finding an alternate path to the
device, unless it is the tape unit itself that has the problem.

Typically, your program will retry the operation. Exactly what else the program must
do, however, depends on whether the tape may have moved and on whether your
program is executing in buffered mode.

If error 200 or 201 is detected, the operation never got started. You can simply retry
the operation for an application that is not executing in buffered mode. If the
application is executing in buffered mode, there is no way to tell which operation
initiated the error. Your program must backtrack to a known point of consistency and
then play back all operations done since that time. Refer to Working in Buffered Mode,
earlier in this section.

If your application detects an error in the range 210 through 231, then the operation
failed at some indeterminate point. Tape motion may have occurred. These failures
cause the tape process to switch to its backup process, so the next operation is tried in
the alternate CPU.

There are several ways to handle path errors in the range 210 through 231:

• If a path error occurs during a write, space backward one record and read the
record. If a parity error occurs, then it is clear that the write had been partially
completed; backspace again and retry the write operation. If there is no parity
error, then the write finished successfully.

• Keep track of the number of records read or written. Then, if an error of this type
occurs, rewind the tape and space forward the appropriate number of records and
reinitiate the operation.

• If writing, write a sequence number as part of each record written. If one of these
errors occurs, retry the operation and continue. Then when reading the tape,
discard all but the last record containing duplicate sequence numbers.

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 89

Accessing an Unlabeled Tape File: An Example

² If you are reading and sequence numbers were written on tape, keep track of the
sequence number of the current record. Then if a path error occurs, retry the
operation. If the expected sequence number is not read, meaning that a record
was skipped over when the path error occurred, backspace the tape x records,
where x is the sequence number on tape minus the last known sequence number.
For example, assume the current sequence number is 3 and you issue another
read request:

The read request returns a path error. The tape may have moved forward one record
or it may have stayed where it was. Now retry the read request. If the request returns
the record with sequence number 4, then the tape did not move and you have the
record you wanted. If the read returns the record with sequence number 5, then the
tape did move. You now need to space the tape backward two records (5 minus 3) to
read the record with sequence number 4.

Accessing an Unlabeled Tape File: An
Example

This subsection shows a sample program that performs an application similar to the
labeled-tape program earlier in this section. The difference is that this program uses
unlabeled tape. Major coding differences are as follows:

• The program opens the magnetic tape device directly by name.

• The program must do its own file positioning. That is, the tape does not get
automatically positioned at the beginning or end of a file when opened. The
program must use CONTROL operations to position the tape.

• When writing to a scratch tape, the program can initialize the tape itself by simply
writing two EOF marks after the BOT sticker. A separate function selects
procedure SCRATCH^TAPE to do this.

• The program performs additional error checking following errors that might occur
during reading or writing the tape file. A sequence number included in each record
makes this possible. The following procedures provide this error checking:

• The TAPE^WRITE^ERRORS procedure is called by APPEND^RECORD
whenever an error occurs on writing to tape. This procedure displays a
message telling the user that an error has occurred and also prints the file-
system error number. Because the program uses buffered mode, however, the

064CDT .CDD

Read
Head

RecordRecord Record

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 90

Accessing an Unlabeled Tape File: An Example

program does not know which write operation caused the error. Therefore this
procedure backspaces the tape to the last correctly written record and displays
it. The user then has the option of reentering the data submitted since the
displayed record or exiting the program.

• The TAPE^READ^ERRORS procedure is called by READ^RECORD if an error
is encountered when a record block is read from tape. Here, the program does
not know whether the tape moved, so TAPE^READ^ERRORS reads the next
record block and examines the sequence number put on the tape when the
record was written. If the sequence number is one greater than the current
sequence number, then the tape did not move and the record just read is the
one the user wants. If the number is two greater, then the tape had moved; the
procedure discards the record just read, winds the tape back two records, and
reads again.

The code for the program follows.

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $TOOLS.ZTOOLD04.ZSYSTAL
?LIST

LITERAL BUFSIZE = 512;
LITERAL TBUFSIZE = 2048;
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME;
LITERAL ABEND = 1;

STRING .SBUFFER[0:BUFSIZE]; !Buffer for terminal I/O
INT TERMNUM; !Terminal file number
STRING .S^PTR;

INT .TBUFFER[0:(TBUFSIZE/2) - 1]; !Buffer for tape I/O
INT .LREC0 := @TBUFFER[0]; !Integer pointers to
INT .LREC1 := @TBUFFER[256]; ! records in tape
INT .LREC2 := @TBUFFER[512]; ! buffer
INT .LREC3 := @TBUFFER[768];

INT INDEX; !Index into record block
INT(32) RBLOCK; !Record block number
INT SEQ^NUM; !Record block sequence
 ! number
INT TAPENUM; !Tape file number

STRUCT .LOG^RECORD; !Record structure
BEGIN
 STRING DATE[0:7];
 INT SEQ^NUM;
 STRING COMMENTS[0:501];
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 91

Accessing an Unlabeled Tape File: An Example

INT .RECORD^POINTER := @LOG^RECORD[0];

STRUCT .CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULT;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRUCT OUTFILE;

 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRING PARAM[0:529];
END;

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,FILE_OPEN_,
? WRITEREADX,WRITEX,PROCESS_STOP_,READX,CONTROL,DNUMOUT,
? FILE_GETINFO_,DNUMIN,SETMODE,OLDFILENAME_TO_FILENAME_)
?LIST

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 92

Accessing an Unlabeled Tape File: An Example

!--
! Here are some DEFINEs to make it easier to format and print
! messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 93

Accessing an Unlabeled Tape File: An Example

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is mainly to be used when
! the file is not open, so there is no file number for it.
! FILE^ERRORS is to be used when the file is open.
!
! The procedure also stops the program after displaying the
! message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;

BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME FOR LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program

 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 94

Accessing an Unlabeled Tape File: An Example

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and the error number are determined from the file
! number and FILE^ERRORS^NAME is then called to do the
! display.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS(FNUM);
INT FNUM;

BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

!--
! Procedure to write a message on the terminal and check for
! any error. If there is an error, it attempts to write
! a message about the error and the program is stopped.
!--

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 95

Accessing an Unlabeled Tape File: An Example

!--
! Procedure for responding to errors incurred while reading
! from magnetic tape. This procedure tries the read again. If
! sequence numbers are inconsistent, then a read was skipped
! due to the error. The procedure compensates by backspacing
! over two records.
!--

PROC TAPE^READ^ERRORS(ERR^NO);
INT ERR^NO;

BEGIN
 INT COUNT^READ;

! Set up the buffer and display error number on terminal:

 PUT^STR
 ("Tape Read Error: File System Error Number Is: ");
 PUT^INT(ERR^NO);
 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Reissue the read call:

 CALL READX(TAPENUM,TBUFFER,TBUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Extract a record:

 LOG^RECORD[0] ':=' TBUFFER[0] FOR 256;

! Check the sequence number. If it is one greater than
! the current sequence number, then the program has read the
! intended record. If it is two greater, then the program
! skipped a record block on account of the error. In this
! case, the procedure backspaces two records and then reads
! again. If the sequence number is neither one nor two
! greater, then the program cannot establish the correct
! record by this means (this will happen, for example, if
! an error occurs during the first read after positioning
! the tape).

 IF LOG^RECORD.SEQ^NUM = (SEQ^NUM +1) THEN
 BEGIN
 END
 ELSE IF LOG^RECORD.SEQ^NUM = (SEQ^NUM + 2)
 THEN
 !Do nothing
 BEGIN
 CALL CONTROL(TAPENUM,10,2);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);
 CALL READX(TAPENUM,TBUFFER,TBUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);
 END
 ELSE

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 96

Accessing an Unlabeled Tape File: An Example

 BEGIN
 PRINT^STR("Read error: Unable to Verify sequence.");
 SBUFFER ':=' "Do You Wish to Continue? (y/n) "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y") THEN
 CALL PROCESS_STOP_;
 END;
END;

!--
! Procedure for responding to errors incurred when writing to
! magnetic tape. Because the program uses buffered mode, the
! program does not know which records have been written to
! tape. This procedure therefore backspaces the tape to the
! last record block that was correctly written to tape,
! then prompts the user to reenter missing messages.
!--

PROC TAPE^WRITE^ERRORS(ERR^NO);
INT ERR^NO;

BEGIN
 INT COUNT^READ;

! Set up the buffer and display error number on terminal:

 START^LINE;
 PUT^STR
 ("Tape Write Error: File System Error Number is: ");
 PUT^INT (ERR^NO);
 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Space the tape backward one record:

 CALL CONTROL(TAPENUM,10,1);

! Read the record. If the read returns an error, space back
! to the previous record and read that one. If that read
! returns an error, call FILE^ERRORS and stop the program:

 CALL READX(TAPENUM,TBUFFER,TBUFSIZE);
 IF <> THEN
 BEGIN
 CALL CONTROL(TAPENUM,10,2);
 CALL READX(TAPENUM,TBUFFER,TBUFSIZE);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);

 ! Get the last record in the retrieved record block:

 LOG^RECORD[0] ':=' LREC3[0] FOR 256;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 97

Accessing an Unlabeled Tape File: An Example

 ! Display date from last good record:

 CALL WRITEX(TERMNUM,LOG^RECORD.DATE,
 $LEN(LOG^RECORD.DATE));
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Display comments from last good record:

 CALL WRITEX(TERMNUM,LOG^RECORD.COMMENTS,
 $LEN(LOG^RECORD.COMMENTS));
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Prompt user to continue:

 SBUFFER ':=' "Do You Wish to Continue(y/n) "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! If the user indicates continue, prompt to reenter data,
 ! then return to APPEND^RECORD procedure:

 IF SBUFFER[0] = "y"
 THEN
 BEGIN
 SBUFFER ':=' "Please Reenter Your Data." -> @S^PTR;
 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Reset the sequence number so that subsequent
 ! records are correctly sequenced:

 SEQ^NUM := LOG^RECORD.SEQ^NUM;
 END

 ! If user declines to continue, stop the program:

 ELSE
 CALL PROCESS_STOP_;
 END;
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 98

Accessing an Unlabeled Tape File: An Example

!--
! Procedure to rewind the tape to BOT, checking that the
! tape is loaded. If not, then the rewind operation
! results in error 100. The user is prompted to load the
! tape before continuing.
!--

PROC LOAD^TAPE;
BEGIN
 INT ERROR;
 INT COUNT^READ;

CHECK^AGAIN:
 CALL CONTROL(TAPENUM,6);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPENUM,ERROR);
 IF ERROR = 100 THEN
 BEGIN
 SBUFFER ':=' ["Tape Not Ready. Press RETURN ",
 "When Ready to Continue: "] -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 GOTO CHECK^AGAIN;
 END
 ELSE CALL FILE^ERRORS(TERMNUM);
 END;
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 99

Accessing an Unlabeled Tape File: An Example

!--
! This procedure executes when you press "r" in response to
! the function prompt in the main procedure. It prompts the
! user for the desired record, displays it on the terminal,
! then prompts for sequential reads.
!--

PROC READ^RECORD;
BEGIN
 INT COUNT^READ;
 INT(32) RECORD^NUM;
 STRING .EXT NEXT^ADDR;
 INT STATUS;
 INT ERROR;

! Prompt the user to select a record:

PROMPT^AGAIN:
 PRINT^BLANK;
 SBUFFER ':=' "Enter Record Number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 SBUFFER[COUNT^READ] := 0;

! Convert ASCII to numeric:

 @NEXT^ADDR := DNUMIN(SBUFFER,RECORD^NUM,10,STATUS);
 IF STATUS OR @NEXT^ADDR <> $XADR(SBUFFER[COUNT^READ])
 THEN
 BEGIN
 PRINT^STR("Error in the record number");
 GOTO PROMPT^AGAIN;
 END;

! Calculate record block number, assuming blocking
! factor of 4:

 RBLOCK := RECORD^NUM / 4D;

! Modulo divide to get record index:

 INDEX := RECORD^NUM '\' 4;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 100

Accessing an Unlabeled Tape File: An Example

! Rewind tape to BOT, leave online. Since this might be the
! first access to tape, the code retries the operation for
! error 100. The call to FILE^ERRORS prompts the user to
! fix the problem before the retry:

 CALL LOAD^TAPE;

! Space tape forward to start of record block:

 CALL CONTROL(TAPENUM,9,$INT(RBLOCK));
 IF <> THEN CALL FILE^ERRORS(TAPENUM);

! Execute loop if reading just selected, or user
! has requested to read an additional record
! Exit loop if user declines to read next record:

 DO BEGIN

 PRINT^BLANK;

 ! Read a record block from the tape file:

 CALL READX(TAPENUM,TBUFFER,TBUFSIZE,COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPENUM,ERROR);
 IF ERROR = 1 THEN
 PRINT^STR("No such record. ")
 ELSE CALL TAPE^READ^ERRORS(ERROR);
 RETURN;
 END;

 ! Extract sequence number for record block from first
 ! record to help fix errors:

 LOG^RECORD ':=' TBUFFER[0] FOR 256;
 SEQ^NUM := LOG^RECORD.SEQ^NUM;

 DO BEGIN

 ! Extract the record:

 CASE INDEX OF
 BEGIN
 0 -> LOG^RECORD[0] ':=' LREC0[0] FOR 256;
 1 -> LOG^RECORD[0] ':=' LREC1[0] FOR 256;
 2 -> LOG^RECORD[0] ':=' LREC2[0] FOR 256;
 3 -> LOG^RECORD[0] ':=' LREC3[0] FOR 256;
 OTHERWISE -> CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 101

Accessing an Unlabeled Tape File: An Example

 ! Check for incomplete record block. If this record
 ! is blank, set INDEX 4 in preparation for reading
 ! the next record block. Also set SBUFFER to "Y" in
 ! case this is the first record selected:

 IF LOG^RECORD.SEQ^NUM = " " THEN
 BEGIN
 INDEX := 4;
 SBUFFER[0] ':=' "Y";
 END
 ELSE

 ! Process the log record:

 BEGIN

 ! Display date from the record:

 CALL WRITEX(TERMNUM,LOG^RECORD.DATE,8);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Display comments and increment the record
 ! counter:

 CALL WRITEX(TERMNUM,LOG^RECORD.COMMENTS,502);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 INDEX := INDEX + 1;

 ! Prompt the user to read the next record:

 PRINT^BLANK;
 SBUFFER ':='
 "Do You Want To Read the Next Record (y/n) "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,
 @S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(ERROR);
 END;
 END
 UNTIL (NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y"))
 OR INDEX = 4;

 ! No more records in this record block. Reset record
 ! count to 0 and read next record block, if requested:

 INDEX := 0;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 102

Accessing an Unlabeled Tape File: An Example

!--
! Procedure to append a record to the file.
!--

PROC APPEND^RECORD;
BEGIN
 INT ERROR;
 INT COUNT^READ;

! Rewind tape and position the tape to EOF. Since this might
! be the first access to tape, check whether the tape is
! ready by checking for error 100. If error 100 detected,
! call FILE^ERRORS to prompt the user to fix the problem,
! then retry the operation:

 CALL LOAD^TAPE;

! Position the tape to EOF:

 CALL CONTROL(TAPENUM,7,1);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);

 CALL CONTROL(TAPENUM,8,1);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);

! Space back one record and establish sequence number of
! last record written to tape:

 CALL CONTROL(TAPENUM,10,1);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPENUM,ERROR);
 IF ERROR = 154
 THEN SEQ^NUM := 0
 ELSE CALL FILE^ERRORS(TAPENUM);
 END
 ELSE
 BEGIN
 CALL READX(TAPENUM,TBUFFER,TBUFSIZE);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);

 LOG^RECORD ':=' TBUFFER[0] FOR 512;
 SEQ^NUM := LOG^RECORD.SEQ^NUM + 1;
 END;

! Blank tape buffer:

 TBUFFER[0] ':=' " ";
 TBUFFER[1] ':=' TBUFFER[0] FOR 1023;

! Initialize the index into the tape buffer:

 INDEX := 0;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 103

Accessing an Unlabeled Tape File: An Example

! Write records to file. This loop prompts the user for
! each additional record you want to write:

 DO BEGIN

 ! Blank the log record structure:

 RECORD^POINTER[0] ':=' " ";
 RECORD^POINTER[1] ':=' RECORD^POINTER[0] FOR 255;

 ! Prompt user for date:

 PROMPT^AGAIN:
 PRINT^BLANK;
 SBUFFER ':=' "Enter Today's Date (mmddyyyy): "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 IF COUNT^READ <> 8 THEN GOTO PROMPT^AGAIN;

 ! Put date into record structure:

 LOG^RECORD.DATE ':=' SBUFFER[0] FOR (COUNT^READ);

 ! Prompt user for comments:

 SBUFFER ':=' "Please Enter Your Comments: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Put comments into record structure:

 LOG^RECORD.COMMENTS ':=' SBUFFER[0] FOR COUNT^READ;

 ! Put sequence number in record structure:

 LOG^RECORD.SEQ^NUM := SEQ^NUM;

 ! Pack record into record block:

 CASE INDEX OF
 BEGIN
 0 -> LREC0 ':=' LOG^RECORD FOR 256;
 1 -> LREC1 ':=' LOG^RECORD FOR 256;
 2 -> LREC2 ':=' LOG^RECORD FOR 256;
 3 -> LREC3 ':=' LOG^RECORD FOR 256;
 OTHERWISE -> CALL PROCESS_STOP_;
 END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 104

Accessing an Unlabeled Tape File: An Example

 ! Prompt the user to enter additional records:

 PRINT^BLANK;
 SBUFFER ':='
 "Do You Wish to Enter Another Record (y/n)? "
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 ! Increment the index into the record block:

 INDEX := INDEX + 1;

 ! Send record block to tape process if no more
 ! records, or if record block full. Flush out to tape
 ! every 10 writes to provide known point of consistency:

 IF INDEX = 4 OR
 (NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y")) THEN
 BEGIN
 CALL WRITEX(TAPENUM,TBUFFER,TBUFSIZE);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(TAPENUM,ERROR);
 IF ERROR <> 1 THEN CALL TAPE^WRITE^ERRORS(ERROR);
 END;

 ! Increment record block sequence number and reset
 ! the index:

 SEQ^NUM := SEQ^NUM + 1;
 INDEX := 0;

 ! Blank tape buffer in case next record block is not
 ! full:

 TBUFFER[0] ':=' " ";
 TBUFFER[1] ':=' TBUFFER[0] FOR 1023;

 ! Flush to tape every 10 record blocks. Use modulo
 ! divide to detect tenth record. Buffered mode is
 ! already set, therefore SETMODE 99 forces to tape all
 ! records in tape buffer:

 IF $DBL(SEQ^NUM) '\' 10 = 0 THEN
 BEGIN
 CALL SETMODE(TAPENUM,99,1);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);
 END;
 END;
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 105

Accessing an Unlabeled Tape File: An Example

! Write EOF marks to end of tape:

 CALL CONTROL(TAPENUM,2);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);
 CALL CONTROL(TAPENUM,2);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);
END;

!--
! Procedure to initialize a scratch tape with two EOF marks.
!--

PROC SCRATCH^TAPE;

BEGIN

! Make sure tape is at BOT. Because this may be the first
! access to tape, check for error 100. If detected, call
! FILE^ERRORS to prompt user to fix the problem, then retry:

 CALL LOAD^TAPE;

! Write two EOF marks to tape:

 CALL CONTROL(TAPENUM,2);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);

 CALL CONTROL(TAPENUM,2);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);

! Rewind to BOT ready for writing records.

 CALL CONTROL(TAPENUM,6);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);
END;

!--
! Procedure to stop the program on request. As well as
! stopping the program, this procedure rewinds and unloads
! the tape.
!--

PROC EXIT^PROGRAM;
BEGIN

! Rewind and unload the tape:

 CALL CONTROL(TAPENUM,3);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);

! Stop the program:

 CALL PROCESS_STOP_;
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 106

Accessing an Unlabeled Tape File: An Example

!--
! Procedure to process an illegal command. The procedure
! informs the user that the selection was other than "r,"
! "a," "i," or "x."
!--

PROC ILLEGAL^COMMAND;

BEGIN

 PRINT^BLANK;

! Inform the user that the selection was invalid then
! return to prompt again for a valid function:

 PRINT^STR("ILLEGAL COMMAND: " &
 "Type one of 'r,' 'a,' 'i,' or 'x.'");
END;

!--
! Procedure to prompt the user for the next function to be
! performed:
!
! "r" to read records
! "a" to append records
! "i" to initialize a scratch tape
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' for Read Log, ");
 PRINT^STR(" 'a' for Append to Log, ");
 PRINT^STR(" 'i' for Initialize a Scratch Tape, ");
 PRINT^STR(" 'x' for Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 107

Accessing an Unlabeled Tape File: An Example

!--
! Procedure to save Startup message in a global structure.
!--

PROC SAVE^STARTUP^MESSAGE(RUCB,START^DATA,MESSAGE,
 LENGTH, MATCH) VARIABLE;

INT .RUCB;
INT .START^DATA;
INT .MESSAGE;
INT LENGTH;
INT MATCH;

BEGIN

! Copy the Startup message into the CI^STARTUP structure:

 CI^STARTUP.MSGCODE ':=' MESSAGE[0] FOR LENGTH/2;
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 108

Accessing an Unlabeled Tape File: An Example

!--
! Procedure to perform initialization for the program. It
! calls INITIALIZER to read and copy the Startup message
! into the global variables s area and then opens the IN file
! specified in the Startup message. This procedure also
! opens the tape file and sets buffered mode for tape access.
!--

PROC INIT;
BEGIN
 STRING .TAPE^NAME[0:MAXFLEN - 1];
 STRING .TERM^NAME[0:MAXFLEN - 1];
 INT TAPELEN;
 INT TERMLEN;
 INT OPEN^FLAG;
 INT ERROR;

! Read and save the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 SAVE^STARTUP^MESSAGE);

! Open IN file:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.INFILE.VOLUME,
 TERM^NAME:MAXFLEN,TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);

! Open the tape file for exclusive access:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.OUTFILE.VOLUME,
 TAPE^NAME:MAXFLEN,TAPELEN);
 IF ERROR <> 0
 THEN CALL FILE^ERRORS^NAME(TAPE^NAME:TAPENUM,ERROR);
 ERROR := FILE_OPEN_(TAPE^NAME:TAPELEN,TAPENUM,
 !access!,
 1);
 IF ERROR <> 0
 THEN CALL FILE^ERRORS^NAME(TAPE^NAME:TAPELEN,ERROR);

! Set buffered mode:

 CALL SETMODE(TAPENUM,99,1);
 IF <> THEN CALL FILE^ERRORS(TAPENUM);
END;

Communicating With Magnetic Tape

Guardian Programmer’s Guide — 421922-014
12 - 109

Accessing an Unlabeled Tape File: An Example

!--
! This is the main procedure
!--

PROC LOGGER MAIN;
BEGIN
 STRING CMD;

 CALL INIT;

! Loop indefinitely until user selects function x:

 WHILE 1 DO
 BEGIN

 ! Prompts for the next function to perform:

 CMD := GET^COMMAND;

 ! Call function selected by user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^RECORD;

 "a", "A" -> CALL APPEND^RECORD;

 "i", "I" -> CALL SCRATCH^TAPE;

 "x", "X" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL ILLEGAL^COMMAND;
 END;
 END;
END;

Guardian Programmer’s Guide — 421922-014
13 - 1

13 Manipulating File Names
This section describes how an application program can manipulate file names or the
names of entities, such as nodes or volumes, that make up parts of file names. See
Section 2, Using the File System, if you are unsure about the format of file names.

A typical use of the features described here is to manipulate file names or file-name
patterns presented to a program using a TACL command. You can use these features
to check or process the file names or patterns received in the Startup or Param
message. A program listing at the end of this section shows an example.

This section discusses how to perform the following operations on file names:

• Scan a string of characters to find out whether it contains a valid file name
(FILENAME_SCAN_ procedure).

• Resolve a file name into its fully qualified form (FILENAME_RESOLVE_
procedure).

• Reduce a file name to its shortest usable form by removing the default node name,
volume, or subvolume portions (FILENAME_UNRESOLVE_ procedure).

• Extract selected portions of a file name (FILENAME_DECOMPOSE_ procedure).

• Modify portions of a file name (FILENAME_EDIT_ procedure).

• Compare two file names to see whether they identify the same object
(FILENAME_COMPARE_ procedure).

• Search for file names using file-name patterns (FILENAME_FINDSTART_,
FILENAME_FINDNEXT_, FILENAME_FINDFINISH_, and FILENAME_MATCH_
procedures).

Overview
The procedures described in this section can manipulate file names for disk files and
device files alike. Process file names can also be manipulated by the procedures
listed above.

Many of the procedures listed above can also be used with DEFINE names, as
described later in this section.

Refer to Section 16, Creating and Managing Processes, for information about
procedures that manipulate process handles.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 2

Identifying Portions of File Names

Identifying Portions of File Names
Many of the procedures described in this section need to identify portions of file names
or names of other entities such as nodes, volumes, and subvolumes. For example, if
you want to change a subvolume name in a permanent disk-file name, you need a way
of specifying to a procedure that the string you supply is to replace the subvolume
name.

To describe how you identify portions of entity names to the procedures described
here, the following paragraphs introduce some terminology.

Defining a File-Name “Part”
A file-name part represents a portion of a file name either between two periods,
before the first period, or after the last period. Node name, file ID, process name,
process qualifier, and device name are all examples of file-name parts.

To identify a part of a file name, many procedures take a level parameter. The level
identifies the position of the part in the file name. The level can have a value between
-1 and +2 as follows:

Some examples of file names are listed below. The examples indicate the level
number of each part of the file name:

-1 Identifies a node name.

0 Identifies that part of a file name that immediately follows the node name in a
fully qualified file name; for example, a device name, volume name, or
unqualified portion of a process name. This part often has a dollar sign ($) as
the first character.

1 Identifies the first qualifier. For a disk file, this is the subvolume name. For a
process, this is the first process qualifier.

2 Identifies the second qualifier. For a disk file, this is the file ID. For a process
file, this is the second process qualifier.

Fully qualified permanent disk-file name: \SYSA.$OURVOL.MYSUB.PROGA

Level: -1 0 2

Partially qualified disk file: PROGA

Level: 2

Named process file name: $SERV.#Q1

Level: 0 1

Unnamed process descriptor: \SYSA.$:15:132:3

Level: -1 0

Printer file: $LP1

Level: 0

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 3

Working With File-Name Patterns

Defining a File-Name “Piece”
A piece of a file name contains one or more consecutive parts of a file name. Many
file-name manipulation procedures require a piece parameter. When a file-name
piece consists of just one part, the level parameter is enough to specify the desired
part.

You can supply a file-name suffix as a piece. Here, the piece consists of the part
identified by the level parameter plus all parts to the right of that part.

Similarly, you can specify a prefix as a file name piece. Here, the piece consists of
the part identified by the level parameter and all parts to the left of that part.

To specify the suffix or prefix, you use the options parameter of the procedure. The
following example shows the use of level numbers to identify file-name pieces:

Defining a File-Name “Subpart”
Some file-name parts split into smaller elements called subparts. This applies to
named and unnamed process descriptors. A subpart is an element of a part separated
from the next subpart by a colon (:). For example, the level 0 part of an unnamed
process descriptor is made up of a dollar sign ($), a IPU designator, a process
identification number (PIN), and a sequence number. These subparts are separated
by colons.

Some procedures, such as FILENAME_DECOMPOSE_, accept a subpart
parameter.

Working With File-Name Patterns
The procedures described in this section deal not only with file names, but also with
file-name patterns that contain asterisk (*) and question mark (?) wild-card characters.
These wild-card characters have the following meanings:

Wild-card characters can appear in any part of a name, as many times as there can be
characters in the part. Because an asterisk can match zero characters, the pattern of
a file-name part can be twice the size of the corresponding file-name part, including
ordinary characters and wild cards. For example, a subvolume pattern could be
16 characters long.

File name: \SYSA.$OURVOL.MYSUB.PROGA

Level 1 piece: MYSUB

Level 1 piece with suffix: MYSUB.PROGA

Level 1 piece with prefix: \SYSA.$OURVOL.MYSUB

* Matches zero or more letters, digits, dollar signs ($), or pound signs (#)

? Matches exactly one letter, digit, dollar sign ($), or pound sign (#)

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 4

Scanning, Resolving, and Unresolving File Names

The following examples show the use of wild-card characters:

Scanning, Resolving, and Unresolving File
Names

This subsection discusses the following operations on file names:

• How to use the FILENAME_SCAN_ procedure to test that a string contains a valid
file name or file-name pattern.

• How to use the FILENAME_RESOLVE_ procedure to expand a file name or
file-name pattern into a fully qualified file name using default values for the node,
volume, and subvolume names.

• How to use the FILENAME_UNRESOLVE_ procedure to remove any part of the
file name or file-name pattern that is currently part of the default values.

• How to use the FILENAME_DECOMPOSE_ procedure to extract elements of a file
name or file-name pattern; for example, to extract the volume name from a file
name.

Scanning a String for a Valid File Name
To check that a given character string contains a valid entity name (or name pattern),
you use the FILENAME_SCAN_ procedure. You typically do this before using a file
name in any other way. FILENAME_SCAN_ is the only procedure for manipulating file
names that completely checks the validity of an input file name.

Scanning file names checks that the sizes of file-name parts or file-name-pattern parts
are valid and that the tested substring is immediately followed by a character that is not
allowed in a file name or file-name pattern. Note that only the syntactic correctness of
the name is checked; no attempt is made to check for the existence of the named
entity.

Z Matches all file names containing the letter Z in the current subvolume

$S.* Matches all locations of the spooler on the current system

..* Matches all permanent files on the current system, as well as processes
with two qualifiers

*.$DATA Matches $DATA on all systems

* Matches all systems

Z? Matches all two-character file names in the current volume that start
with the letter Z

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 5

Scanning a String for a Valid File Name

You pass a string to the FILENAME_SCAN_ procedure for testing. If the file name or
pattern is valid, the procedure returns the following information:

• The length in bytes of the file name or pattern.

• An indication of the kind of object that the name or pattern identifies: file name,
file-name pattern, or DEFINE name.

• The level of the specified object, that is, whether the name identifies a network
node, device or process, subvolume, or disk-file name.

If the string does not contain a valid file name or file-name pattern, then the procedure
returns error value 13 (illegal file name).

Note that the FILENAME_SCAN_ procedure does not check the entire input string. If
the front part of the string contains a valid file name or pattern, then the rest of the
string is ignored. If you need to check that the entire string has been tested, you
should include a test that the string length is equal to the byte count returned by the
FILENAME_SCAN_ procedure.

In addition to the default action of scanning for a file name, the FILENAME_SCAN_
procedure is also able to scan for a valid subvolume name or for a name pattern. The
following paragraphs describe how.

Scanning File Names and Node Names
To scan a string for the existence of any kind of valid file name or node name, you use
the FILENAME_SCAN_ procedure without any options. The default action of the
FILENAME_SCAN_ procedure is to accept any syntactically valid file name (including
disk-file name, DEFINE name, process file name, or device name) or node name;
subvolume names are rejected, as are name patterns.

The following example scans a string in the first STRING^LENGTH bytes of
STRING^BUFFER. The value of STRING^LENGTH is compared to the returned value
of COUNT to verify that the entire string has been checked:

ERROR := FILENAME_SCAN_(STRING^BUFFER:STRING^LENGTH,
 COUNT,
 KIND,
 LEVEL);
IF ERROR <> 0 OR
 COUNT <> STRING^LENGTH THEN ... ! Error condition

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 6

Scanning a String for a Valid File Name

Scanning File-Name Patterns
To accept a file-name pattern in the input string of the FILENAME_SCAN_ procedure,
you need to set the accept-pattern flag (bit 15) in the options parameter to 1.
The options parameter goes at the end of the parameter list:

LITERAL ACCEPT^PATTERNS = %B0000000000000001;
 .
 .
OPTIONS := ACCEPT^PATTERNS;
ERROR := FILENAME_SCAN_(STRING^BUFFER:STRING^LENGTH,
 COUNT,KIND,
 LEVEL,
 OPTIONS);
IF ERROR <> 0 THEN ... ! Error condition

Scanning Subvolume Names
To accept subvolume names in the input string of the FILENAME_SCAN_ procedure,
you need to set the accept-subvol flag (bit 14) in the options parameter to 1:

LITERAL ACCEPT^SUBVOLS = %B0000000000000010;
 .
 .
OPTIONS := ACCEPT^SUBVOLS;
ERROR := FILENAME_SCAN_(STRING^BUFFER:STRING^LENGTH,
 COUNT,
 KIND,
 LEVEL,
 OPTIONS);
IF ERROR <> 0 THEN ... ! Error condition

Scanning File Names: Some Examples
The following examples list valid input strings, assuming that your program chooses to
accept file name patterns and subvolumes as valid input strings to the
FILENAME_SCAN_ procedure:

String Count Level Comments

\SYSA 6 -1 Valid form of node name

.$.* 6 1 Subvolume pattern

$VOLUME1.ACCOUNTS.OVERDUE,NAME 25 2 Last part of string
ignored

$SERV 5 0 Process file name

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 7

Resolving Names

Resolving Names
To resolve a name into its fully qualified form, you use the FILENAME_RESOLVE_
procedure. This procedure takes a string value containing a partially resolved name as
its input, uses the default values to replace any missing parts, and then returns the fully
qualified name.

In addition to the default action of resolving a file name, the FILENAME_RESOLVE_
procedure is able to resolve subvolume names; process and expand DEFINEs;
override the current network node, volume, and subvolume default values; use a
search DEFINE to find a name to resolve; or override the input file-name string with a
DEFINE. The following paragraphs explain how.

Resolving File Names
To resolve a partially qualified file name into its fully qualified form, you use the
FILENAME_RESOLVE_ procedure without any options. The default action of this
procedure is to expand any partially qualified file name provided in its input string.
Subvolume names are not resolved without using special options. Moreover, no
special processing of DEFINE names is done without the use of special options;
DEFINE names are returned without change.

The following example shows typical use of the FILENAME_RESOLVE_ procedure in
qualifying a file name checked by the FILENAME_SCAN_ procedure:

LITERAL MAXLEN = 256;
 .
 .
ERROR := FILENAME_SCAN_(STRING^BUFFER:STRING^LENGTH,
 COUNT,KIND,LEVEL);
IF ERROR <> 0 THEN ... ! Error condition
ELSE
BEGIN
 ERROR := FILENAME_RESOLVE_(STRING^BUFFER:COUNT,
 FULLNAME:MAXLEN,
 FULL^LENGTH);
 IF ERROR <> 0 THEN ... ! Error condition
END;

Here, the FILENAME_RESOLVE_ procedure takes its string input in
STRING^BUFFER and returns the fully qualified name in FULLNAME. The length of
the fully qualified name is returned in FULL^LENGTH.

Caution. Passing an invalid name or file-name pattern to the FILENAME_RESOLVE_
procedure can result in a signal, trap, or data corruption. To verify that a name is valid, use the
FILENAME_SCAN_ procedure.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 8

Resolving Names

The following examples show how the FILENAME_RESOLVE_ procedure expands
some file names. The examples assume default values of \SYSA.$OURVOL.MYSUB:

Overriding the Default Values
The FILENAME_RESOLVE_ procedure usually obtains the default values for the node
name, volume name, and subvolume name from the =_DEFAULTS DEFINE.
However, you can override these values by specifying the defaults parameter. This
parameter supplies the subvolume name itself and optionally the volume and node
names. (If the volume or node name is omitted, then the corresponding values from
the =_DEFAULTS DEFINE are used.) You can also use the defaults parameter to
specify an alternate defaults class DEFINE.

The following example uses alternate defaults. The name string or defaults DEFINE
would typically be a user-specified parameter to the program.

DEFAULTS ':=' PARAM2 FOR $LEN(PARAM2);
DEFAULTS^LENGTH := $LEN(PARAM2);

ERROR := FILENAME_RESOLVE_(PNAME:NAME^LENGTH,
 FULLNAME:MAXLEN,
 FULL^LENGTH,
 !options!,
 !override^name:length!,
 !search:length!,
 DEFAULTS:DEFAULTS^LENGTH);
IF ERROR <> 0 THEN ... !Error condition

Resolving Subvolume Names
You can treat the input string to the FILENAME_RESOLVE_ procedure as a
subvolume name by setting the subvol-resolve flag (bit 14) in the options
parameter to 1.

The following example checks the output of the FILENAME_SCAN_ procedure to see
whether it refers to a subvolume name. If so, the example sets the subvol-resolve
flag to 1 before calling FILENAME_RESOLVE_:

LITERAL MAXLEN = 256;
LITERAL ACCEPT^SUBVOLS = %B0000000000000010;
LITERAL RESOLVE^SUBVOL = %B0000000000000010;
 .
 .
OPTIONS := ACCEPT^SUBVOLS;
ERROR := FILENAME_SCAN_(STRING^BUFFER:STRING^LENGTH,
 COUNT,
 KIND,

Input File Name Output File Name

PROGA \SYSA.$OURVOL.MYSUB.PROGA

$THEIRVOL.OLDSUB.PROGA \SYSA.$THEIRVOL.OLDSUB.PROGA

\SYSB.$OURVOL.HERSUB.PROGA \SYSB.$OURVOL.HERSUB.PROGA

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 9

Resolving Names

 LEVEL,
 OPTIONS);
IF ERROR <> 0 THEN ... ! Error condition
ELSE
BEGIN
 IF LEVEL = 1
 THEN OPTIONS := RESOLVE^SUBVOL
 ELSE OPTIONS := 0;
 ERROR := FILENAME_RESOLVE_(STRING^BUFFER:COUNT,
 FULLNAME:MAXLEN,
 FULL^LENGTH,
 OPTIONS);
 IF ERROR <> 0 THEN ... ! Error condition
END;

Resolving DEFINE Names
The FILENAME_RESOLVE_ procedure does not normally modify DEFINE names. If
you supply a DEFINE name to this procedure, then the return string is usually the
same as the input string but with all uppercase letters. However, you can perform
some processing of DEFINEs by setting appropriate flags in the options parameter:

• options bit 12 is the DEFINE-simple-resolve flag, which resolves map
DEFINEs

• options bit 11 is the DEFINE-reduction flag, which resolves DEFINEs that
refer to a file name

• options bit 10 is the DEFINE-reject flag, which rejects DEFINEs that are not
resolved to a file name

The following paragraphs describe these options in detail. For general information
about DEFINEs, refer to Section 7, Using DEFINEs.

Resolving Map DEFINES

You can resolve a map DEFINE into the name contained in the DEFINE by setting the
DEFINE-simple-resolve flag (bit 12) in the options parameter to 1 before calling
the FILENAME_RESOLVE_ procedure. For any other class of DEFINE, the procedure
returns the DEFINE name.

The DEFINE-simple-resolve flag also causes the system to check for the
existence of the DEFINE. The FILENAME_RESOLVE_ procedure returns error 198
(unable to find DEFINE) if the DEFINE does not exist or error 13 (illegal file name) if
DEFINE mode is not turned on.

The following example resolves map DEFINEs and checks for errors:

LITERAL DEFINE^SIMPLE^RESOLVE = %B0000000000001000;
 .

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 10

Resolving Names

 .
OPTIONS := DEFINE^SIMPLE^RESOLVE;

ERROR := FILENAME_RESOLVE_(NAME:NAME^LENGTH,
 FULLNAME:MAXLEN,
 FULL^LENGTH,
 OPTIONS);
IF ERROR <> 0 THEN
CASE ERROR OF
BEGIN
 13 -> !DEFINE mode turned off
 198 -> !No such DEFINE
 OTHERWISE -> !Other error
END;

Resolving DEFINEs That Contain a File Name

Tape, spool, and map class DEFINEs that refer to file names can be reduced to the file
name that they refer to by setting the DEFINE-reduction flag (bit 11) in the
options parameter to 1. All other information contained in the DEFINE is unavailable
when the file name is used.

The DEFINE-reduction flag causes the FILENAME_RESOLVE_ procedure to return
the name of the file contained in the DEFINE (if there is one) or the DEFINE name if
there is none. If the DEFINE does not exist, then the procedure returns error 198. If
DEFINE mode is turned off, then error 13 is returned.

The following example returns the file name referred to in a tape, spool, or map
DEFINE.

LITERAL DEFINE^REDUCTION = %B0000000000010000;
 .
 .
OPTIONS := DEFINE^REDUCTION;
ERROR := FILENAME_RESOLVE_(NAME:NAME^LENGTH,
 FULLNAME:MAXLEN,
 FULL^LENGTH,
 OPTIONS);
IF ERROR <> 0 THEN
CASE ERROR OF
BEGIN
 13 -> !DEFINE mode turned off
 198 -> !No such DEFINE
 OTHERWISE -> !Other error
END;

Note that sort, catalog, defaults, and search DEFINEs cannot be resolved by this
option.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 11

Resolving Names

Rejecting DEFINEs That are not Resolved to a File Name

You have the option to reject any DEFINEs that are not resolved to a file name. You
set the DEFINE-reject flag (bit 10) in the options parameter to 1 to request this
feature. Instead of returning the name of such a DEFINE, FILENAME_RESOLVE_
returns error 13. This option can be used alone or with the preceding options.

The following example modifies the example given for the DEFINE-reduction flag
by rejecting DEFINEs that do not reference a file name:

LITERAL DEFINE^REDUCTION = %B0000000000010000;
LITERAL DEFINE^REJECT = %B0000000000100000;
 .
 .
OPTIONS := DEFINE^REDUCTION LOR DEFINE^REJECT;

ERROR := FILENAME_RESOLVE_(NAME:NAME^LENGTH,
 FULLNAME:MAXLEN,
 FULL^LENGTH,OPTIONS);
IF ERROR <> 0 THEN
CASE ERROR OF
BEGIN
 13 -> !DEFINE mode turned off, or
 ! no file name referenced
 198 -> !No such DEFINE
 OTHERWISE -> !Other error
END;

Searching and Resolving File Names
You can perform file-name resolution by searching a list of subvolumes contained in a
search DEFINE. You specify the DEFINE in the search parameter of the
FILENAME_RESOLVE_ procedure. Refer to Section 7, Using DEFINEs, for a
description of search DEFINEs.

If the specified search DEFINE exists and DEFINE mode is turned on, then the system
searches the subvolume list contained in the DEFINE for the file named in the input
string. Note that searching is done only if the input string contains only the file ID (last
part) of a file name.

The search proceeds as follows. The system searches the first subvolume listed in the
search DEFINE. If a match is found, then the file name is resolved using that
subvolume. If no match is found, the search continues with the next listed subvolume.
If the search finishes without finding a match, error 11 (file not in directory) is normally
returned.

The search is skipped without returning an error if one of the following conditions is
true:

• The input string does not contain just a valid file ID.

• The search DEFINE length is zero.

• The search DEFINE does not exist.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 12

Resolving Names

• DEFINE mode is turned off.

The following example searches the subvolume list in a search DEFINE named
=FINDIT. It looks for a file whose file ID is PROGA:

NAME ':=' "PROGA" -> @S^PTR;
NAME^LENGTH := @S^PTR '-' @NAME;
SEARCH^DEFINE ':=' "=FINDIT" -> @S^PTR;
S^DEFINE^LENGTH := @S^PTR '-' @SEARCH^DEFINE;
ERROR := FILENAME_RESOLVE_(NAME:NAME^LENGTH,
 FULLNAME:MAXLEN,
 FULL^LENGTH,
 !options!,
 !override^name:length!,
 SEARCH^DEFINE:S^DEFINE^LENGTH);
IF ERROR <> 0 THEN
CASE ERROR OF
BEGIN
 11 -> !File not found
 .
 .
 OTHERWISE -> !Other error
END;

You can force file-name resolution even though the search failed to find a match by
setting the search-fail-OK flag (bit 9) in the options parameter to 1 before calling
the FILENAME_RESOLVE_ procedure. The file ID will be qualified by the first
subvolume in the search DEFINE if no match is found.

Overriding the Input File Name With a DEFINE
Your program can give the user the ability to override the file name specified in the
input string by supplying the name of a DEFINE that contains an override file name. To
use this feature, your program must set the override parameter of the
FILENAME_RESOLVE_ procedure to the name of the DEFINE that provides the
override file name.

In the following example, the override name identifies a DEFINE named =MYDEFINE.
If the DEFINE exists, then the file named in the DEFINE overrides the file name
supplied in the input string in NAME. If the DEFINE does not exist, the input string in
NAME is used as in the normal case.

NAME ':=' "PROGA" -> @S^PTR;
NAME^LENGTH := @S^PTR '-' @NAME;
OVERRIDE^NAME ':=' "=MYDEFINE" -> @S^PTR;
ORIDE^NAME^LENGTH := @S^PTR '-' @OVERRIDE^NAME;
ERROR := FILENAME_RESOLVE_(NAME:NAME^LENGTH,
 FULLNAME:MAXLEN,
 FULL^LENGTH,
 !options!,
 OVERRIDE^NAME:ORIDE^NAME^LENGTH);
IF ERROR <> 0 THEN ... !Error condition

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 13

Truncating Default Parts of File Names

An alternative way to specify the override name is to use a map DEFINE with the same
name as the file ID in the input string, prefixed with an equal sign (=). You can do this
by setting the automatic-override flag (bit 8) in the options parameter to 1
before calling the FILENAME_RESOLVE_ procedure.

The following example resolves the file name in a DEFINE called =PROGA. If there is
no such DEFINE, the input string PROGA is used:

LITERAL AUTO^OVERRIDE = %B0000000010000000;
 .
 .
NAME ':=' "PROGA" -> @S^PTR;
NAME^LENGTH := @S^PTR '-' @NAME;
OPTIONS := AUTO^OVERRIDE;
ERROR := FILENAME_RESOLVE_(NAME:NAME^LENGTH,
 FULLNAME:MAXLEN,
 FULL^LENGTH,
 OPTIONS);
IF ERROR <> 0 THEN ... !Error condition

Truncating Default Parts of File Names
To truncate the applicable default values for node name, volume name, and subvolume
name from a file name, use the FILENAME_UNRESOLVE_ procedure. You may want
to do this, for example, before displaying file names to local users.

The default values used by the FILENAME_UNRESOLVE_ procedure may be all or
some of the current default values specified in the =_DEFAULTS DEFINE or they may
be specified in an alternate defaults DEFINE. The following paragraphs describe these
options.

Truncating All Current Default Values
The file-name elements removed by the FILENAME_UNRESOLVE_ procedure are
normally those that compare with the values set up in the =_DEFAULTS DEFINE.

The following example removes from a file name all elements that match the current
default. The file name to be unresolved is passed to the procedure in FNAME and is
returned, stripped of the default values, in SHORT^NAME:

LITERAL MAXLEN = 256;
 .
 .
ERROR := FILENAME_UNRESOLVE_(FNAME:LENGTH,
 SHORT^NAME:MAXLEN,
 SHORT^NAME^LENGTH);
IF ERROR <> 0 THEN ... !Error condition

Caution. Passing an invalid file name or file-name pattern to the FILENAME_UNRESOLVE_
procedure can result in a signal, trap, or data corruption. To verify that a file name is valid, use
the FILENAME_SCAN_ procedure.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 14

Truncating Default Parts of File Names

Truncating a Specified Subset of the Default Values
Alternatively, you can request that all default values to the left of a specified file-name
part be removed from the file name. Here, you need to use the level parameter to
specify the level of the first part of the name that will not be removed.

The following example selects the device (or process) level. Here, the node name will
be truncated from the file name if it matches the default node name. A device or
subvolume name, however, will not be truncated, even if it matches the default value:

LITERAL MAXLEN = 256;
LITERAL DEVICE^LEVEL = 0;
 .
 .
ERROR := FILENAME_UNRESOLVE_(FNAME:LENGTH,
 SHORT^NAME:MAXLEN,
 SHORT^NAME^LENGTH,
 DEVICE^LEVEL);
IF ERROR <> 0 THEN ... !Error condition

The level parameter can have one of the following values:

Truncating Alternate Default Values
Normally, the FILENAME_UNRESOLVE_ procedure compares parts of the input file
string with the default values specified in the =_DEFAULTS DEFINE. However, you
can specify alternate default values using the defaults parameter.

The defaults parameter can name the subvolume (and optionally the volume and
network node) directly or provide the name of a defaults DEFINE that contains the
alternate names.

The following example specifies alternate default values directly:

LITERAL MAXLEN = 256;
LITERAL DEVICE^LEVEL = 0;
 .
 .
ALT^DEFAULTS ':=' "\SYSA.$ARCHIVE.AUGUST";
ERROR := FILENAME_UNRESOLVE_(FNAME:LENGTH,
 SHORT^NAME:MAXLEN,
 SHORT^NAME^LENGTH,
 DEVICE^LEVEL,

-1 The first part always returned is the node name.

0 The first part always returned is the device name, process name, or logical
device name.

1 The first part always returned is the first qualifier of the file name. For
permanent disk files, this is the subvolume name.

2 This value refers to the second qualifier (or file ID for permanent disk files). No
default values are returned.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 15

Extracting Pieces of File Names

 ALT^DEFAULTS);
IF ERROR <> 0 THEN ... !Error condition

Truncating Default Parts of File Names: Some Examples
The following examples show how the FILENAME_UNRESOLVE_ procedure deals
with file names, given that the default values are \SYSA.$OURVOL.MYSUB:

Extracting Pieces of File Names
To extract pieces of file names, use the FILENAME_DECOMPOSE_ procedure. You
pass the file name to the procedure along with an indication of the piece of the file
name that you want to extract. The procedure returns the extracted piece. With
normal use, a partially qualified file name is implicitly resolved; parts of the file name
not specified in the input string can therefore be returned using the default values.

You can use the FILENAME_DECOMPOSE_ procedure to extract a single part of a file
name, a file-name suffix, a file-name prefix, or a subpart of a process descriptor.
Although file names are normally implicitly qualified, you can choose to extract file-
name pieces without implicit resolution. The following paragraphs describe these
options.

Extracting a File-Name Part
To extract one part of a file name, you need to supply the FILENAME_DECOMPOSE_
procedure with the file name and the level of the part you want to extract. No
additional options are necessary.

The following example extracts the subvolume name from a file name:

LITERAL MAXLEN = 16;
LITERAL SUBVOL^LEVEL = 1;
 .
 .

Input File Name
Leve
l Output File Name

\SYSA.$OURVOL.MYSUB.PROGB 0 $OURVOL.MYSUB.PROGB

\SYSB.$YOURVOL.HISSUB.FILEA 0 \SYSB.$YOURVOL.HISSUB.FILEA

\SYSA.$THEIRVOL.HERSUB.FILEB 0 $THEIRVOL.HERSUB.FILEB

\SYSA.$OURVOL.RECORDS.LOGFILE 2 RECORDS.LOGFILE

RECORDS.LOGFILE 0 RECORDS.LOGFILE

MYSUB.PROGA 1 MYSUB.PROGA

MYSUB.PROGA 2 PROGA

Caution. Passing an invalid file name or file-name pattern to the FILENAME_DECOMPOSE_
procedure can result in a signal, trap, or data corruption. To verify that a file name is valid, use
the FILENAME_SCAN_ procedure.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 16

Extracting Pieces of File Names

ERROR := FILENAME_DECOMPOSE_(FNAME:LENGTH,
 PART:MAXLEN,
 PART^LENGTH,
 SUBVOL^LEVEL);
IF ERROR <> 0 THEN ... !Error condition

Here, the file name is passed in FNAME. The subvolume name is returned in PART
and its length in PART^LENGTH. MAXLEN is set to 16 to allow for the maximum size
of a subvolume pattern.

The part that you want returned is specified in the level parameter (SUBVOL^LEVEL
in the previous example). It can have one of the following values:

Extracting a File-Name Suffix or a File-Name Prefix
In addition to returning the requested element, you can have the
FILENAME_DECOMPOSE_ procedure return all elements to the right of the requested
element by setting the extract-suffix flag (bit 15) in the options parameter to 1.
Similarly, you can return all elements to the left of the selected element as well as the
selected element itself by setting the extract-prefix flag (bit 14) in the options
parameter to 1 before calling the FILENAME_DECOMPOSE_ procedure.

The following example extracts a file-name suffix, the first part of which is the
subvolume name:

LITERAL MAXLEN = 32;
LITERAL SUBVOL^LEVEL = 2;
LITERAL EXTRACT^SUFFIX = %B0000000000000001;
 .
 .
OPTIONS := EXTRACT^SUFFIX;
ERROR := FILENAME_DECOMPOSE_(FNAME:LENGTH,
 SUFFIX^PIECE:MAXLEN,
 SUFFIX^LENGTH,
 SUBVOL^LEVEL,OPTIONS);
IF ERROR <> 0 THEN ... !Error condition

Extracting File-Name Pieces Without Implicit Resolution
You can exclude all default values from the returned shortened name by setting the
no-defaults flag (bit 13) in the options parameter to 1 before calling the
FILENAME_DECOMPOSE_ procedure. In other words, setting the no-defaults flag
turns off implicit resolution of partially qualified file names.

-1 Returns the node name.

0 Returns the device name, process name, or logical device name.

1 Returns the subvolume name for permanent disk files or returns the temporary
file ID for temporary files.

2 Returns the file ID for permanent disk files.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 17

Extracting Pieces of File Names

If, for example, the input string is “$OURVOL.MYSUB.PROGA” and you want the file-
name prefix returned up to and including the subvolume, then “$OURVOL.MYSUB” is
returned. The node name, although specified in the default values, is not returned.

The code to execute this example is shown below:

LITERAL MAXLEN = 256;
LITERAL SUBVOL^LEVEL = 2;
LITERAL EXTRACT^PREFIX = %B0000000000000010;
LITERAL NO^DEFAULTS = %B0000000000000100;
 .
 .
OPTIONS := EXTRACT^PREFIX LOR NO^DEFAULTS;
ERROR := FILENAME_DECOMPOSE_(FNAME:LENGTH,
 PREFIX^PIECE:MAXLEN,
 PREFIX^LENGTH,
 SUBVOL^LEVEL,OPTIONS);
IF ERROR <> 0 THEN ... !Error condition

Extracting Subparts of a Process Descriptor
If the name you are decomposing is a process descriptor, then you can divide the
name further to extract subparts of the process name or identifying part of an unnamed
process. To do this, you must include the subpart parameter in the procedure call.
This parameter occurs at the end of the parameter list and can have any of the
following values:

Values 1 and 2 apply only to unnamed processes. Value 4 applies only to named
processes. Values 0 and 3 apply to named and unnamed processes.

The following example returns only the process sequence number in the variable
SEQ^NUM:

LITERAL MAXLEN = 16;
LITERAL PROCESS^NAME = 0;
LITERAL EXTRACT^SEQ^NUM = 3;
 .
 .
LEVEL := PROCESS^NAME;
SUBPART := EXTRACT^SEQ^NUM;
ERROR := FILENAME_DECOMPOSE_(FNAME:LENGTH,
 SEQ^NUM:MAXLEN,SEQ^NUM^LENGTH,
 LEVEL,
 !options!,

0 Return the entire element (the default action).

1 Return only the CPU part of an unnamed process-file name.

2 Return only the PIN.

3 Return only the process sequence number.

4 Return only the name subpart.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 18

Modifying Portions of a File Name

 SUBPART);
IF ERROR <> 0 THEN ... !Error condition

Extracting Pieces of File Names: Some Examples
The following examples list some file names and the corresponding output from the
FILENAME_DECOMPOSE_ procedure. The examples assume that the current
default values are \SYS.$OURVOL.MYSUB:

Modifying Portions of a File Name
To modify a piece of a file name, use the FILENAME_EDIT_ procedure.

You must specify the piece of the file name you need to modify and the character string
that replaces that piece. If the replacement string is zero length, then the piece is
simply removed (leaving the correct number of part separator characters).

The input string contains the file name you need to modify. The name can be fully or
partially qualified. If the name is partially qualified, then the system applies the default
values from the =_DEFAULTS DEFINE. You can therefore edit any part of the fully
qualified name, even if the input string contained a partially qualified name. An invalid
input string might cause error 13 to be returned.

The piece of the file name that you replace can be a file-name part, a file-name suffix,
a file-name prefix, or a subpart of a process descriptor. The following paragraphs
show how.

Input Name
Leve
l

Option
s Subpart Output Element(s)

$YOURVOL.HISSUB.FILEA 0 $YOURVOL

$YOURVOL.HISSUB.FILEA 0 suffix $YOURVOL.HISSUB.FILEA

FILE1 0 $OURVOL

FILE1 0 suffix $OURVOL.MYSUB.FILE1

FILE1 0 prefix \SYS.$OURVOL

$P:4321.#A 0 $P:4321

$P:4321.#A 0 4 $P

Caution. Passing an invalid file name or file-name pattern to the FILENAME_EDIT_
procedure can result in a signal, trap, or data corruption. To verify that a file name is valid, use
the FILENAME_SCAN_ procedure.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 19

Modifying One Part of a File Name

Modifying One Part of a File Name
Use the level parameter to specify the part of the file name you want to change. The
following example replaces the volume name of the file name
\SYSA.$YOURVOL.RECORDS.LOGFILE:

LITERAL MAXLEN = 256;
LITERAL VOLUME^LEVEL = 0;
 .
 .
FNAME ':=' "\SYSA.$YOURVOL.RECORDS.LOGFILE" -> @S^PTR;
FNAME^LENGTH := @S^PTR '-' @FNAME;
NEW^PART ':=' "$OURVOL" -> @S^PTR;
PART^LENGTH := @S^PTR '-' @NEW^PART;
ERROR := FILENAME_EDIT_(FNAME:MAXLEN,
 FNAME^LENGTH,
 NEW^PART:PART^LENGTH,
 VOLUME^LEVEL);
IF ERROR <> 0 THEN ... !Error condition

In the example above, the name to be changed and its length are passed to the
FILENAME_EDIT_ procedure in FNAME and FNAME^LENGTH. The new value of the
volume part of the name and its length are passed in NEW^PART:PART^LENGTH.
The procedure uses this information to replace the volume part in the old file name
because the volume level (level 0) is specified in the level parameter.

The edited file name is returned in FNAME and its length in FNAME^LENGTH.

Replacing a File-Name Suffix or File-Name Prefix
To replace a file-name suffix of more than one part, you need to set the suffix flag
(bit 15) in the options parameter to 1. The level parameter identifies the start of
the suffix. The supplied replacement string is substituted for the part specified by the
level parameter and all parts to its right. Similarly, you can replace a file-name prefix
by setting the prefix flag (bit 14) in the options parameter to 1. The level
parameter identifies the last part of the prefix.

The following example changes the input file name from
\SYSA.$OURVOL.RECORDS.LOGFILE to \SYSA.$OURVOL.RECORDS1.ARCHIVE.
That is, the subvolume and file ID are replaced:

LITERAL MAXLEN = 256;
LITERAL SUBVOL^LEVEL = 1;
LITERAL SUFFIX = %B0000000000000001;
 .
 .
FNAME ':=' "\SYSA.$OURVOL.RECORDS.LOGFILE" -> @S^PTR;
FNAME^LENGTH := @S^PTR '-' @FNAME;
NEW^PIECE ':=' "RECORDS1.ARCHIVE" -> @S^PTR;
PIECE^LENGTH := @S^PTR '-' @NEW^PIECE;
ERROR := FILENAME_EDIT_(FNAME:MAXLEN,
 FNAME^LENGTH,
 NEW^PIECE:PIECE^LENGTH,

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 20

Replacing a Subpart of a Process ID

 SUBVOL^LEVEL,
 SUFFIX);
IF ERROR <> 0 THEN ... !Error condition

Replacing a Subpart of a Process ID
To replace any subpart of a process ID, you need to use the subpart parameter of
the FILENAME_EDIT_ procedure. The subpart parameter specifies which element
of the process identifier you intend to change. For named processes, you can modify
the process name or its sequence number. For unnamed processes, you can modify
the CPU number, PIN, or sequence number.

You set the subpart parameter according to the subpart you intend to replace as
follows:

The following example changes the name of the named process \SYSA.$P1:321 to
\SYSA.$P2:321:

LITERAL MAXLEN = 256;
LITERAL PROCESS^LEVEL = 0;
LITERAL PROCESS^NAME^SUBPART = 4;
 .
 .
FNAME ':=' "\SYSA.$P1:321" -> @S^PTR;
FNAME^LENGTH := @S^PTR '-' @FNAME;
NEW^SUBPART ':=' "$P2" -> @S^PTR;
NEW^SUBPART^LENGTH := @S^PTR '-' @NEW^SUBPART;
ERROR := FILENAME_EDIT_(FNAME:MAXLEN,FNAME^LENGTH,
 NEW^SUBPART:NEW^SUBPART^LENGTH,
 PROCESS^LEVEL,
 !options!,
 PROCESS^NAME^SUBPART);
IF ERROR <> 0 THEN ... !Error condition

Comparing File Names
To compare two file names, use the FILENAME_COMPARE_ procedure. This
procedure returns either 0 if two names refer to the same object or -1 if the names
differ.

0 Replace the entire element (the default action).

1 Replace only the CPU part of an unnamed process file name.

2 Replace only the PIN.

3 Replace only the process sequence number.

4 Replace only the name part.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 21

Searching For and Matching File-Name Patterns

The following example compares a permanent disk-file name with a map DEFINE
name:

FNAME1 ':=' "\SYSA.$OURVOL.MYSUB.PROGA" -> @S^PTR;
FNAME1^LENGTH := @S^PTR '-' @FNAME1;
FNAME2 ':=' "=MYPROG" -> S^PTR;
FNAME2^LENGTH := @S^PTR '-' @FNAME2;
STATUS := FILENAME_COMPARE_(FNAME1:FNAME1^LENGTH,
 FNAME2:FNAME2^LENGTH);

The procedure accepts partially qualified file names and implicitly expands them to
their fully qualified form before comparing.

Searching For and Matching File-Name
Patterns

You can use file-name patterns to search for files. For example, you may want a list of
all disk files on your network whose names begin with the letter Z. To do this, you start
a search for the file-name pattern *.*.*.Z*.

A search always involves the following procedure calls:

• FILENAME_FINDSTART_ establishes the start of a search by providing the file-
name pattern to search for.

• FILENAME_FINDNEXT_ is usually called repeatedly. On each call, this procedure
finds the next file name that matches the pattern established by
FILENAME_FINDSTART_.

• FILENAME_FINDFINISH_ releases resources used by the search. This procedure
is called when the search is complete.

This subsection describes how to use these procedures. The sample program at the
end of this section includes a procedure that searches for file-name patterns.

In addition to the system procedures listed above, this subsection also describes how
you can match a process qualifier string with a file-name pattern using the
FILENAME_MATCH_ procedure.

Establishing the Start of a File-Name Search
Use FILENAME_FINDSTART_ to set up a search for file names. You can search for
systems, devices, and named processes, or subvolumes, files, and subdevices.

In addition to setting up a pattern to search for, the FILENAME_FINDSTART_
procedure has several options that allow you to do the following: specify the level at
which the subsequent search reports file names, limit a search to device files only,

Caution. Passing an invalid file name to the FILENAME_COMPARE_ procedure can result in
a signal, trap, or data corruption. To verify that a file name is valid, use the
FILENAME_SCAN_ procedure.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 22

Establishing the Start of a File-Name Search

make special provisions when searching for process names, set up an asynchronous
search, and report specific kinds of system or device errors encountered during a
search. The following paragraphs describe these options.

Specifying the Search Pattern
To use the FILENAME_FINDSTART_ procedure, you must pass to it the file name
pattern to search for, along with its length. The procedure returns a search ID that you
use to identify this search to the FILENAME_FINDNEXT_ and
FILENAME_FINDFINISH_ procedures. This method allows you to have up to 16
searches concurrently active.

The following example sets up a search for a file named PROGA in any subvolume in
the current default volume:

SEARCH^PATTERN ':=' "*.PROGA" -> @S^PTR;
PATTERN^LENGTH := @S^PTR '-' @SEARCH^PATTERN;
ERROR := FILENAME_FINDSTART_(SEARCH^ID,
 SEARCH^PATTERN:PATTERN^LENGTH);
IF ERROR <> 0 THEN ... !Error condition

Setting the Resolution Level
You can specify the level at which file names are reported by the subsequent search.
To do this, you include the resolvelevel parameter in the FILENAME_FINDSTART_
procedure call. You set this value to the desired level as follows:

If, for example, the resolvelevel parameter is set to 0, then all file names found in
the subsequent search are resolved to the device, process, or logical device level.
That is, the resolved file names will not include the node name:

SEARCH^PATTERN ':=' "*.PROGA" -> @S^PTR;
PATTERN^LENGTH := @S^PTR '-' @SEARCH^PATTERN;
RESOLVE^LEVEL := 0;
ERROR := FILENAME_FINDSTART_(SEARCH^ID,
 SEARCH^PATTERN:PATTERN^LENGTH,
 RESOLVE^LEVEL);
IF ERROR <> 0 THEN ... !Error condition

Note that the resolve level must not be to the right of a part of the search pattern that
contains a wild-card character or error 590 (invalid parameter) occurs. For example, if
the resolve level is zero, then the search pattern must not contain wild-card characters
in the node name.

-1 Specifies the node name level

0 Specifies the device, process, or logical device level

1 Specifies the first qualifier (subvolume for a disk device)

2 Specifies the second qualifier (file ID for a disk device)

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 23

Establishing the Start of a File-Name Search

Setting Up a Search for a Specific Type of Device
The FILENAME_FINDSTART_ procedure allows you to restrict the output of a search
to files of a specified device type or subdevice type. In addition, if you set the
not-device-type flag (bit 14) or the not-subdevice-type flag (bit 13) in the
options parameter, you can restrict the report to all but the specified device type and
subdevice type.

You specify the device type you want in the devtype parameter. You specify the
subdevice in the subdevtype parameter.

These device-restricting options are most useful when restricting searches to disk files.
However, these options can also be used for devices other than disks, but with
restrictions as described below in Searching for Files Not on Disk. The following
paragraphs describe how to use the device-restricting options.

Searching for Disk Files

The recommended use of the device-restricting options is to limit a search to disk-file
names. You can significantly reduce the search time by not attempting to match a
pattern with the names of files not on disk if you know that the files you are searching
for are disk files.

By setting the devtype parameter to 3, you restrict the search to disk files:

SEARCH^PATTERN ':=' "$*.*.PROGA" -> @S^PTR;
PATTERN^LENGTH := @S^PTR '-' @SEARCH^PATTERN;
RESOLVE^LEVEL := 0;
DEVICE^TYPE := 3;
ERROR := FILENAME_FINDSTART_(SEARCH^ID,
 SEARCH^PATTERN:PATTERN^LENGTH,
 RESOLVE^LEVEL,DEVICE^TYPE);
IF ERROR <> 0 THEN ... !Error condition

Searching for Files Not on Disk

Searching for files that are not on disk is more complex because devices other than
disks can have subdevices with device types that are different from their parent device.
In addition, a process that simulates a device type may have process qualifiers
representing various device types. Note that neither of these restrictions apply to disk
files; disk files and subvolumes always have the same device type as their parent
volume, and, moreover, a process cannot simulate a disk device.

The implication of this is that you do not significantly reduce the search time by
restricting a search to a device type other than disk (although the list of matching files
may be shortened).

You can, however, eliminate the problem of processes that simulate devices by
avoiding searching for them. To do so, you need to set the no-device-simulation
flag (bit 10) in the options parameter to 1. These processes will then be regarded as
subtype 30 processes rather than the device type of the devices they simulate.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 24

Establishing the Start of a File-Name Search

Setting Up a Search for Process Qualifier Names
For the qualifier names of a process to be seen by the procedures that search for file
names, the process must indicate its ability to perform qualifier name searches. It
does so by issuing a PROCESS_SETINFO_ procedure call as follows:

LITERAL QUALIFIER^INFO = 49;
 .
 .
ATTVAL := 1;
ERROR := PROCESS_SETINFO_(!process^handle!,
 !specifier!,
 QUALIFIER^INFO,ATTVAL,1);

A process which does this must be prepared to service -107 system messages arriving
on $RECEIVE.

For processes that make their qualifiers known in this way, you can bypass process
qualifiers when searching for names. You do so by setting the no-subprocesses
flag (bit 11) in the options parameter to 1:

LITERAL NO^SUBPROCESSES = %B0000000000010000;
 .
 .
SEARCH^PATTERN ':=' "$L*.#*" -> @S^PTR;
PATTERN^LENGTH := @S^PTR '-' @SEARCH^PATTERN;
RESOLVE^LEVEL := 0;
OPTIONS := NO^SUBPROCESSES;
ERROR := FILENAME_FINDSTART_(SEARCH^ID,
 SEARCH^PATTERN:PATTERN^LENGTH,
 RESOLVE^LEVEL,
 !device^type!,
 !device^subtype!,
 OPTIONS);
IF ERROR <> 0 THEN ... !Error condition

Specifying a Name to Start Searching From
You can select a name at which the search will start. This feature might be useful, for
example, when restarting a search that has been interrupted.

You specify the name in the startname parameter of the FILENAME_FINDSTART_
procedure. This name should be somewhere in the sequence of names described by
the file-name pattern.

Normally, the search starts at the named file or at the next name in the sequence if the
named file does not exist. However, you can force the search to start at the name
following the named file, even if the name does exist, by setting the skip-if-same
flag (bit 15) in the options parameter to 1.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 25

Establishing the Start of a File-Name Search

The following example starts a search at the file following \SYSB.$ARCHIVE.S110189
for the file-name pattern *.*.*.*. The search is limited to disk files:

LITERAL SKIP^IF^SAME = %B0000000000000001;
 .
 .
SEARCH^PATTERN ':=' "*.*.*.*" -> @S^PTR;
PATTERN^LENGTH := @S^PTR '-' @SEARCH^PATTERN;
DEVICE^TYPE := 3;
OPTIONS := SKIP^IF^SAME;
START^NAME ':=' "\SYSB.$ARCHIVE.S110189" -> @S^PTR;
S^NAME^LENGTH := @S^PTR '-' @START^NAME;
ERROR := FILENAME_FINDSTART_(SEARCH^ID,
 SEARCH^PATTERN:PATTERN^LENGTH,
 !resolve^level!,
 DEVICE^TYPE,
 !device^subtype!,
 OPTIONS,
 START^NAME:S^NAME^LENGTH);
IF ERROR <> 0 THEN ... !Error condition

Note. For some file types, the search sequence might be alphabetic; for other file types, it
might not be. However, for a given file type, the search sequence is always the same for the
same release of the operating system.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 26

Finding the Next Matching File Name

Reporting Device or System Failures
You can choose to receive notification of failed or offline devices and systems
encountered during a search. To be sure that such errors are always reported, set the
report-off-line flag (bit 12) in the options parameter to 1 before calling
FILENAME_FINDSTART_.

The following example sets the report-off-line flag to 1:

LITERAL REPORT^OFFLINE = %B0000000000001000;
 .
 .
SEARCH^PATTERN ':=' "*.*.*.*" -> @S^PTR;
PATTERN^LENGTH := @S^PTR '-' @SEARCH^PATTERN;
OPTIONS := REPORT^OFFLINE;
ERROR := FILENAME_FINDSTART_(SEARCH^ID,
 SEARCH^PATTERN:PATTERN^LENGTH,
 !resolve^level!,
 !device^type!,
 !device^subtype!,
 OPTIONS);
IF ERROR <> 0 THEN ... !Error condition

Errors that are reported when the report-off-line flag is 1 that might otherwise
not be reported include:

If the report-off-line flag is zero, then devices or systems that are offline or in a
failed state are skipped over when encountered in a search if the device or node is
specified generically (that is, if the device or node part of the file name contains a wild-
card character or if the piece of the file-name pattern to the left of the device name
contains a wild-card character). For example:

When you explicitly specify a device in a file-name pattern, the system always reports
device errors whether the report-off-line flag is set or not.

Finding the Next Matching File Name
After setting up a search using the FILENAME_FINDSTART_ procedure, you can
search for the specified file-name pattern using calls to the FILENAME_FINDNEXT_
procedure.

Errors 62 to
66

Device off line

Error 250 System not connected

\SYSA.$OURVOL.* The node name and volume name are specified explicitly.
Neither is generic.

\SYSA.$*.* The node name is explicit, but the volume (or process) name
is generic.

*.$OURVOL The node name is generic and the volume name is generic
because the node name is.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 27

Finding the Next Matching File Name

The FILENAME_FINDNEXT_ procedure requires the search ID returned by the
FILENAME_FINDSTART_ procedure. From this parameter, the
FILENAME_FINDNEXT_ procedure can derive the pattern to search for.

The FILENAME_FINDNEXT_ procedure normally performs a waited search. If the
search was set up nowait, then the search proceeds asynchronously. The following
paragraphs describe how to program for both of these situations, as well as how you
can get file-characteristic information about the returned named entities and how to
handle some system errors that could occur during searching.

Performing a Waited Search
When the FILENAME_FINDNEXT_ procedure finds a match, it returns the name found
in its name parameter. Also, following a successful search, the error returned is 0. If
the system cannot find a matching name, then the error returned is 1.

The following example sets up a search for all files named PROGA on any subvolume
of the current volume of the current system. The search ID returned by the
FILENAME_FINDSTART_ procedure identifies the search to the
FILENAME_FINDNEXT_ procedure, which returns in NAME the first name that
matches the pattern:

SEARCH^PATTERN ':=' "*.PROGA" -> @S^PTR;
PATTERN^LENGTH := @S^PTR '-' @SEARCH^PATTERN;
ERROR := FILENAME_FINDSTART_(SEARCH^ID,
 SEARCH^PATTERN:PATTERN^LENGTH);
IF ERROR <> 0 THEN ... !Error condition

ERROR := FILENAME_FINDNEXT_(SEARCH^ID,
 NAME:MAXLEN,
 NAMELEN);
IF ERROR <> 0 THEN ... !Error condition

Performing a Nowait Search
To avoid having to wait for a user process to respond to a file-name search request,
you can search in a nowait manner. To do so, you must set the nowait flag (bit 9) in
the options parameter to 1.

The FILENAME_FINDNEXT_ procedure normally returns file names in a synchronous
way. By specifying the nowait option, your process can continue while the search for
the next match continues asynchronously. Instead of returning the found file name in
the FILENAME_FINDNEXT_ parameter, however, the file name is returned in a
message in $RECEIVE.

The returned message is system message -109 (Nowait FILENAME_FINDNEXT_
completion). The name of the returned entity starts in word 14 and has a length in

Note. The sequence in which names are returned by repeated calls to the
FILENAME_FINDNEXT_ procedure depends on the subsystem. The sequence might not be
in alphabetical order.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 28

Finding the Next Matching File Name

bytes given by the value in word 8. If the search returns an error, the error number is
returned in word 2.

If your program is running multiple concurrent searches, then you will also need to set
the tag parameter in the FILENAME_FINDNEXT_ procedure call. You can then check
which search is finishing by comparing words 9 and 10 of the FILENAME_FINDNEXT_
completion message with the tag supplied in the procedure call.

The following example performs asynchronous searching:

LITERAL NOWAIT = %B0000000001000000;

!Open $RECEIVE:
FILE^NAME ':=' "$RECEIVE" -> @S^PTR;
ERROR := FILE_OPEN_(FILE^NAME:@FILE^NAME '-' @S^PTR,
 RECV^NUM);
IF ERROR <> 0 THEN ...

!Set up the search:
SEARCH^PATTERN ':=' "$*" -> @S^PTR;
PATTERN^LENGTH := @S^PTR '-' @SEARCH^PATTERN;
OPTIONS := NOWAIT;
ERROR := FILENAME_FINDSTART_(SEARCH^ID,
 SEARCH^PATTERN:PATTERN^LENGTH,
 !resolve^level!,
 !device^type!,
 !device^subtype!,
 OPTIONS);
IF ERROR = 1 THEN ... !No match found
ELSE IF ERROR <> 0 THEN ... !Error condition

!Start searching:
ERROR := FILENAME_FINDNEXT_(SEARCH^ID);
IF ERROR <> 0 THEN ...
 .
 .

!Continue processing asynchronously
 .
 .

!Read $RECEIVE
READUPDATEX(RECV^NUM,SBUFFER,
 READ^COUNT);
IF <> THEN
BEGIN

 !Check if system message:
 CALL FILE_GETINFO_(RECV^NUM,
 ERROR);

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 29

Finding the Next Matching File Name

 IF ERROR = 6 THEN
 BEGIN

 !Continue processing based on message number:
 CASE BUFFER[0] OF
 BEGIN

 !If message is nowait return from
 !FILENAME_FINDNEXT_, check word 2 of message for
 !search error. If no error, move the name string
 !out of the message and into the NAME variable:
 -109 -> BEGIN
 IF BUFFER[2] = 0 THEN
 NAME ':=' BUFFER[14] FOR BUFFER[8];
 END;
 .
 .!Other system messages:

 OTHERWISE ->...
 END;
 END

 !Or if it is not a system message:
 ELSE ...
END;

For complete details on the Nowait FILENAME_FINDNEXT_ completion message,
refer to the Guardian Procedure Errors and Messages Manual.

Returning Characteristics of Found Entities
You can retrieve information about each entity returned by the
FILENAME_FINDNEXT_ procedure by supplying the entityinfo parameter—a
container for the returned information. Returning information in this way is often more
convenient than calling other procedures to retrieve the same information.

Information returned in the entityinfo parameter includes the following:

Word 0 Contains the device type of the entity. Device types are listed in the
Guardian Procedure Calls Reference Manual.

Word 1 Contains the device subtype of the entity. Device subtypes are listed in the
Guardian Procedure Calls Reference Manual.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 30

Finding the Next Matching File Name

For files that are not disk files, words 2, 3, and 4 are undefined.

The following example uses the entityinfo parameter to determine whether a
returned entity is a temporary file name or a subvolume name (they both have the
same format). Word 2 of the entityinfo parameter is -1 for a subvolume but will
have some other value for a disk file:

SEARCH^PATTERN ':=' "$OURVOL.*" -> @S^PTR;
PATTERN^LENGTH := @S^PTR '-' @SEARCH^PATTERN;
ERROR := FILENAME_FINDSTART_(SEARCH^ID,
 SEARCH^PATTERN:PATTERN^LENGTH);
IF ERROR <> 0 THEN ... !Error condition

ERROR := FILENAME_FINDNEXT_(SEARCH^ID,
 NAME:MAXLEN,
 NAMELEN,
 ENTITY^INFO);
IF ERROR = 1 THEN ... !No match found
ELSE IF ERROR <> 0 THEN ... !Error condition

IF ENTITY^INFO[2] = -1 THEN ... !subvolume
ELSE IF ENTITY^INFO[2] <> -1 THEN... !temporary file

Handling Search Errors
For a waited search, errors are returned in the error variable. For a nowait search,
errors may be returned either in the error variable when the search is initiated or in
word 2 of the Nowait FILENAME_FINDNEXT_ completion message when the search
finishes.

If generic offline errors are reported (see Establishing the Start of a File-Name Search
earlier in this section), you can still continue with the search. You can recognize these
errors by the fact that, even though an error is returned, a name is also returned. For
these errors, the name is that of the entity (node or device) associated with the error
and may be a name that is not in the form being searched for. You can use this name
for error reporting.

Word 2 For disks, contains the object type.
If > 0, then the returned name refers to an SQL object type.
If 0, then the returned name refers to a non-SQL file.
If -1, then the returned name refers to a subvolume or volume.

Word 3 For a disk file, contains the file type:
0 for an unstructured file
1 for a relative file
2 for an entry-sequenced file
3 for a key-sequenced file
-1 for a volume or subvolume

Word 4 For a disk file, contains the file code given to the file. For a subvolume or
volume, this word contains -1.

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 31

Terminating the File-Name Search

If you continue searching from one of these errors by issuing another call to the
FILENAME_FINDNEXT_ procedure, the set of names subordinate to the entity in error
is skipped and the search continues with the next entity at the same level as the
erroneous entity.

For errors that do not return a name, it is generally not worth retrying the search
because the condition causing the error is likely to recur.

Terminating the File-Name Search
Once you have completed a file-name search, you should release the system
resources allocated to the search. You do this by issuing a call to the
FILENAME_FINDFINISH_ procedure.

To identify the correct search to terminate, you must supply the
FILENAME_FINDFINISH_ procedure with the search ID that was returned by the
corresponding call to FILENAME_FINDSTART_:

ERROR := FILENAME_FINDFINISH_(SEARCH^ID);
IF ERROR <> 0 THEN ... !Error condition

File-Name Matching
To check qualifier strings against a file-name pattern, you can use the
FILENAME_MATCH_ procedure. This procedure can be used for process names and
file names, so long as they are fully qualified. The intent of this feature is to enable you
to support the use of wild-card characters on the qualifier names provided by your
processes to other users.

The result of a FILENAME_MATCH_ procedure call can indicate a complete match or
an incomplete match. The following paragraphs describe these outcomes.

Testing for a Complete Match
You provide the FILENAME_MATCH_ procedure with a pattern, a name, and their
corresponding lengths. Both the pattern and the name must have the same level of
left-hand qualification. A name containing a node name therefore matches only a
pattern that also has a node-name part. (Note that you can expand all names and
patterns to their fully qualified form using the FILENAME_RESOLVE_ procedure.)

The output of the FILENAME_MATCH_ procedure is a status value that simply
indicates whether the file name matches the pattern. For a complete match, the
procedure returns 2 in the status variable. A value of 0 indicates no match. A value
of 1 indicates an incomplete match (see below), and a value of less than zero indicates
an error.

The following example checks for a complete match:

STATUS := FILENAME_MATCH_(FULL^NAME:NAME^LENGTH,
 PATTERN:PATTERN^LENGTH);
CASE STATUS OF

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 32

File-Name Matching

BEGIN
 2 -> !Complete match
 1 -> !Incomplete match
 0 -> !No match
 OTHERWISE -> !Error
END;

Testing for an Incomplete Match
An incomplete match status value (1) is returned if the name under test matches the
left-hand portion of a pattern but not the entire pattern. For example, if the name under
test is \SYSA.$OURVOL and the pattern is *.*.*, then the procedure returns an
incomplete match.

The incomplete match can be useful in eliminating needless name searching where
large hierarchies are involved. For example, you can test the node name and volume
name for an incomplete match before going on to test for a match at the process and
process-qualifier level.

The following example extracts the volume prefix from a name and checks for an
incomplete match with the file-name pattern. If the match is successful, then the code
checks the entire string.

LITERAL MAXLEN := 256;
LITERAL VOLUME := 0;
LITERAL EXTRACT^PREFIX = %B0000000000000010;
 .
 .
!Scan the file name to check that it is valid:
ERROR := FILENAME_SCAN_(STRING:LENGTH,
 NAME^LENGTH);
IF ERROR <> 0 THEN ... ! Error condition
ELSE
BEGIN

 !Expand the file name to its fully qualified form:
 ERROR := FILENAME_RESOLVE_(STRING:NAME^LENGTH,
 FULLNAME:MAXLEN,
 FULL^LENGTH);
 IF ERROR <> 0 THEN ... !Error condition
END;

!Extract the volume-level prefix:
LEVEL := VOLUME;
OPTIONS := EXTRACT^PREFIX;
CALL FILENAME_DECOMPOSE_(FULLNAME:FULL^LENGTH,
 PREFIX:MAXLEN,
 PREFIX^LENGTH,
 LEVEL,
 OPTIONS);

PATTERN ':=' "*.*.*.*" -> @S^PTR;
PATTERN^LENGTH := @S^PTR '-' @PATTERN;

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 33

Manipulating File Names: An Example

!Check for an incomplete match between the volume level
!prefix and the complete file-name pattern:
STATUS := FILENAME_MATCH_(PREFIX:PREFIX^LENGTH,
 PATTERN:PATTERN^LENGTH);

CASE STATUS OF
BEGIN

 !Incomplete match:
 1 -> BEGIN

 !Check for a complete match
 STATUS := FILENAME_MATCH_(FULLNAME:FULL^LENGTH,
 PATTERN:PATTERN^LENGTH);
 CASE STATUS OF
 BEGIN
 2 -> !Complete match
 0 -> !No match
 OTHERWISE -> !Error condition
 END;
 END;

 !No match:
 0 ->

 !Error:
 OTHERWISE ->
END;

Matching File Names: Some Examples
The following examples show the result of comparing a name with a name pattern
using the FILENAME_MATCH_ procedure:

Manipulating File Names: An Example
This subsection presents a sample program that lists file names, resolved to their fully
qualified form. The program should be run from the TACL prompt. It expects one
parameter that specifies the names to be listed.

The user specifies one of the following in the command-line parameter:

• A single file name. This name can be partially or fully qualified. In either case, the
program displays the fully qualified name.

Name Pattern Result

$PROC1.#Q1 $P*1.* Complete match

$PROC1 $P*1.* Incomplete match

\SYSA.$PROC1.#Q1 $P*1.* No match

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 34

Manipulating File Names: An Example

• A map DEFINE. The name contained in the map DEFINE is expanded to its fully
qualified form and displayed.

• A name pattern. Every file name that matches the name pattern is displayed in its
fully qualified form.

Because the program reads and processes the Startup message, the user can specify
the input and output file names. For a detailed discussion of the Startup message,
refer to Section 8, Communicating With a TACL Process.

Some sample executions and their results are shown below. These examples assume
that the current default values are \SYSA.$OURVOL.MYSUB and that this subvolume
contains the following files: PROGA, PROGB, PROGC, ZPROGA, ZPROGB, and
ZPROGC:

 The last example assumes that =MYMAP is a currently active map DEFINE
containing the file name ZPROGA.

The program is made up of the following procedures:

• The INITIAL procedure is the main procedure. INITIAL calls the INITIALIZER
system procedure to read and process the Startup message and then processes
the parameter string supplied in the Startup message. It scans and resolves the
parameter string and then responds according to what the string contains:

² For a simple file name or a map DEFINE, it calls the PRINT^NAME procedure
to print the name.

² For a name pattern, it calls the FIND^FILES procedure to process each file
name that matches the pattern.

• The START^IT procedure is invoked through the INITIALIZER procedure to
process the Startup message.

• The INIT procedure opens the output file and returns the file number.

• The PRINT^NAME procedure simply writes the name of a file to the output file.

Command Input Result

> RESOLVE PROGA \SYSA.$OURVOL.MYSUB.PROGA

> RESOLVE PROGZ \SYSA.$OURVOL.MYSUB.PROGZ

> RESOLVE Z* \SYSA.$OURVOL.MYSUB.ZPROGA
\SYSA.$OURVOL.MYSUB.ZPROGB
\SYSA.$OURVOL.MYSUB.ZPROGC

> RESOLVE $ARCHIVE.RECORDS.* All file names in subvolume
\SYSA.$ARCHIVE.RECORDS

> RESOLVE *.*.*.* All permanent disk files and all processes with
two qualifiers on all systems in the network

> RESOLVE =MYMAP \SYSA.$OURVOL.MYSUB.ZPROGA

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 35

Manipulating File Names: An Example

• The FIND^FILES procedure searches for all file names that match a given pattern.
It calls PRINT^NAME for each match that it finds.

• The FILE^ERRORS procedure reports file-system errors by sending the error
number to the output file.

The TAL source code for this program follows.

? INSPECT, SYMBOLS, NOCODE, NOMAP
?NOLIST, SOURCE $TOOLS.ZTOOLD00.ZSYSTAL
?LIST

!Global parameters

LITERAL ACCEPT^PATTERNS =
 %B0000000000000001; !for FILENAME_SCAN_
LITERAL DEFINE^SIMPLE^RESOLVE =
 %B0000000000001000; !for FILENAME_RESOLVE_
LITERAL DEFINE^REJECT =
 %B0000000000100000; !for FILENAME_RESOLVE_
LITERAL MAXLEN =
 ZSYS^VAL^LEN^FILENAME; !maximum file-name length
LITERAL MAXPATTERN = 512; !maximum pattern length
INT ERROR; !error return
INT OUTNUM; !OUT file number
INT INNUM; !IN file number
STRING .S^PTR; !pointer to end of string

STRUCT .CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULTS;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRING PARAM[0:529];
END;

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 36

Manipulating File Names: An Example

INT PARAM^LEN; !length of PARAM string

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,
? FILE_OPEN_,FILENAME_SCAN_,FILENAME_RESOLVE_,
? FILENAME_FINDSTART_,FILENAME_FINDNEXT_,
? FILENAME_FINDFINISH_,WRITEX,PROCESS_STOP_,DNUMOUT,
? OLDFILENAME_TO_FILENAME_,FILE_GETINFO_)
? LIST

!--
! These DEFINEs help to format and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

!--
! Procedure to print file-system error numbers on the
! output file.
!--

PROC FILE^ERRORS(ERROR);
INT ERROR;
BEGIN
 STRING .SBUFFER[0:36]; !output buffer

 START^LINE;
 PUT^STR ("File System Error Number Is: ");

! Write error to output file:

 PUT^INT (ERROR);
 CALL WRITEX(INNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Stop the process:

 CALL PROCESS_STOP_;
END;

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 37

Manipulating File Names: An Example

!--
! Procedure to write a file name to the output file.
!--

PROC PRINT^NAME(NAME,LENGTH);
INT LENGTH;
STRING .NAME;

BEGIN

 CALL WRITEX(OUTNUM,NAME,LENGTH);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(OUTNUM,ERROR);
 CALL FILE^ERRORS(ERROR);
 END;
END;

!--
! Procedure to save the Startup message in a global
! structure.
!--

PROC START^IT(RUCB,START^DATA,MESSAGE,LENGTH,MATCH) VARIABLE;
INT .RUCB,.START^DATA,.MESSAGE,LENGTH,MATCH;

BEGIN

 CI^STARTUP.MSGCODE ':=' MESSAGE FOR LENGTH/2;
 PARAM^LEN := LENGTH - 66;

END;

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 38

Manipulating File Names: An Example

!--
! Procedure to perform initialization for the program.
!--

PROC INIT;

BEGIN
 STRING .OUT^NAME[0:MAXLEN - 1]; !string form of OUT file
 ! name
 INT OUTNAME^LEN; !length of OUT file

! Call INITIALIZER to read and save the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 START^IT);

! Convert the output file name:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.OUTFILE.VOLUME,
 OUT^NAME:MAXLEN,
 OUTNAME^LEN);
 IF ERROR <> 0 THEN CALL FILE^ERRORS(ERROR);

! Open the output file:

 ERROR := FILE_OPEN_(OUT^NAME:OUTNAME^LEN,OUTNUM);
 IF ERROR <> 0 THEN CALL FILE^ERRORS(ERROR);

END;

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 39

Manipulating File Names: An Example

!--
! Procedure to find all file names that match a given pattern
! and print each file name.
!--

PROC FIND^FILES(PATTERN,LENGTH);
INT LENGTH;
STRING .PATTERN;

BEGIN
 INT SEARCH^ID; !identifies a search
 STRING .NAME[0:MAXLEN - 1]; !found file-name string
 INT NAMELEN; !length of found file
 ! name

! Set up the search pattern:

 ERROR := FILENAME_FINDSTART_(SEARCH^ID,
 PATTERN:LENGTH);
 IF ERROR <> 0 THEN CALL FILE^ERRORS(ERROR);

! Loop until pattern ranges exhausted:

 WHILE ERROR <> 1 DO
 BEGIN

 ! Find the next file name that matches pattern:

 ERROR := FILENAME_FINDNEXT_(SEARCH^ID,
 NAME:MAXLEN,
 NAMELEN);
 IF ERROR > 1 THEN CALL FILE^ERRORS(ERROR)

 ! Write matching file name to output file:

 ELSE CALL PRINT^NAME(NAME,NAMELEN);
 END;

! Release resources held by search:

 ERROR := FILENAME_FINDFINISH_(SEARCH^ID);
 IF ERROR <> 0 THEN CALL FILE^ERRORS(ERROR);
END;

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 40

Manipulating File Names: An Example

!--
! Main procedure determines kind of file name or pattern,
! resolves the name, and calls either PRINT^NAME for file
! names or DEFINEs or FIND^FILES for a file-name pattern.
!--

PROC INITIAL MAIN;
BEGIN
 INT COUNT,KIND,LEVEL,OPTIONS; !parameters for
 ! FILENAME_SCAN_
 INT FULL^LENGTH; !length of resolved
 ! file name or pattern
 STRING .FULLNAME [0:MAXLEN - 1]; !resolved file name
 STRING .PATTERN [0:MAXPATTERN - 1];!resolved name pattern

! Read and save the Startup message and open the IN and OUT
! files:

 CALL INIT;

! Scan the file name or pattern returned from Startup
! message:

 OPTIONS := ACCEPT^PATTERNS;
 ERROR := FILENAME_SCAN_(CI^STARTUP.PARAM:PARAM^LEN,
 COUNT,
 KIND,
 LEVEL,
 OPTIONS);
 IF ERROR <> 0 THEN CALL FILE^ERRORS(ERROR);

! Switch depending on whether parameter string is a file
! name, a name pattern, or a DEFINE:

 CASE KIND OF
 BEGIN

 ! If it is a file name:

 0 -> BEGIN

 ! Resolve file name to fully qualified form:

 ERROR := FILENAME_RESOLVE_(
 CI^STARTUP.PARAM[0]:COUNT,
 FULLNAME:MAXLEN,
 FULL^LENGTH);
 IF ERROR <> 0 THEN CALL FILE^ERRORS(ERROR)

 ! Call PRINT^NAME to print the file name:

 ELSE CALL PRINT^NAME(FULLNAME,FULL^LENGTH);
 END;

Manipulating File Names

Guardian Programmer’s Guide — 421922-014
13 - 41

Manipulating File Names: An Example

 ! If it is a pattern:

 1 -> BEGIN

 ! Resolve pattern to fully qualified form:

 ERROR := FILENAME_RESOLVE_(
 CI^STARTUP.PARAM[0]:COUNT,
 PATTERN:MAXPATTERN,
 FULL^LENGTH);
 IF ERROR <> 0 THEN CALL FILE^ERRORS(ERROR)

 ! Call FIND^FILES to search for and print all file
 ! names that match this pattern:

 ELSE CALL FIND^FILES(PATTERN,FULL^LENGTH);
 END;

 ! If it is a DEFINE:

 2 -> BEGIN

 ! Accept only a map DEFINE, reject all others with
 ! error:

 OPTIONS := DEFINE^SIMPLE^RESOLVE LOR DEFINE^REJECT;

 ! Resolve to fully qualified form of file named by
 ! map DEFINE:

 ERROR := FILENAME_RESOLVE_(
 CI^STARTUP.PARAM[0]:COUNT,
 FULLNAME:MAXLEN,
 FULL^LENGTH,
 OPTIONS);
 IF ERROR <> 0 THEN CALL FILE^ERRORS(ERROR)

 ! Call PRINT^NAME to print the file name:

 ELSE CALL PRINT^NAME(FULLNAME,FULL^LENGTH);
 END;
 END;
END;

Guardian Programmer’s Guide — 421922-014
14 - 1

14 Using the IOEdit Procedures
The IOEdit package is made up of a set of routines that allow an application to read
and write EDIT files (files with file code 101). The procedure call interface to the
IO-Edit routines allows access to EDIT files from any supported language: TAL, C,
COBOL85, Pascal, and FORTRAN.

This section describes how to use the procedure-call interface to the IOEdit routines.
Specifically, it describes how to perform the following operations:

• Create, open, and initialize IOEdit files (OPENEDIT_ procedure)

• Read and write EDIT files (READEDIT[P] and WRITEEDIT[P] procedures)

• Pack and unpack text in an EDIT file line (PACKEDIT and UNPACKEDIT
procedures)

• Delete lines from an EDIT file (DELETEEDIT procedure)

• Renumber lines in an EDIT file (NUMBEREDIT procedure)

• Get and set the current-record pointer (GETPOSITIONEDIT and POSITIONEDIT
procedures)

• Handle “file full” errors (EXTENDEDIT procedure). The maximum edit file size is
128MB.

• Get and set the record number increment (GETINCREMENTEDIT and
INCREMENTEDIT procedures)

• Complete an IOEdit operation in an application that uses nowait I/O
(COMPLETEIOEDIT procedure)

• Compress an IOEdit file (COMPRESSEDIT procedure)

• Close an IOEdit file (CLOSEEDIT_ and CLOSEALLEDIT procedures)

When to Use and When Not to Use EDIT Files
Files in EDIT format are intended for text editing applications.

EDIT files are unsuitable for several kinds of applications. Specifically, you must
observe the following restrictions on the use of EDIT files:

• You cannot use EDIT files for database purposes.

• There is no locking available for EDIT files.

• NonStop TM/MP protection is not supported for EDIT files.

• You cannot use alternate keys with EDIT files.

• Checkpointing is not supported if your application uses IOEdit procedures.

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 2

Overview of IOEdit

If your application cannot satisfy all the above restrictions you must use Enscribe files
or NonStop SQL files.

Overview of IOEdit
Before discussing how you can use IOEdit to perform operations on EDIT files, some
of the major concepts of the IOEdit package will be introduced. This subsection
discusses:

• The types of files IOEdit can access

• How to choose between the various tools available for accessing EDIT files

• How lines are typically numbered in an EDIT file and how those line numbers
correlate to record numbers

• The purpose of the EDIT file segment (EFS)

When Should You Use IOEdit?
You can access EDIT files using any of the following sets of procedures:

• EDITREADINIT and EDITREAD procedures

• SIO procedures

• IOEdit procedures

EDITREADINIT and EDITREAD work for applications that need only to read EDIT files
sequentially. To do more than sequential reads, you should use SIO or IOEdit.

Use Tables 14-1 and 14-2 to establish whether to use IOEdit or SIO in your application
to access EDIT files.

Table 14-1 lists the advantages of IOEdit over SIO.

Table 14-1. Advantages of IOEdit Over SIO (page 1 of 2)

If you want to... Then IOEdit is better than SIO because...

Write a text editor. IOEdit allows files to be open for input and output
at the same time; SIO does not. IOEdit supports
deleting records, inserting records, replacing
records, backspacing over records, and
renumbering records in all or part of a file; SIO
supports none of these features.

Perform random access as well as
sequential access.

SIO supports only sequential access.

Use an extended data segment for
reference parameters.

IOEdit can use extended data segments; SIO
cannot.

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 3

When Should You Use IOEdit?

Sequentially read a file from its start to
its middle, then start writing, deleting
any existing records from that point;
that is, simulate a tape.

You can do this using IOEdit, but not using SIO.

Have faster throughput. IOEdit is faster because it does not need to
perform checksum operations; SIO does need to
perform periodic checksum operations to guard
against the user program inadvertently overwriting
the SIO buffers in the user data segment. IOEdit
buffers are protected in the EFS.

Read and write lines in a packed form;
for example, when writing a compiler to
copy input lines to a scratch file in
packed form, and to speed up the
scanning of source lines by not having
to skip over long strings of blanks one
character at a time.

IOEdit supports reading and writing of text lines in
packed as well as unpacked form; SIO supports
only unpacked records.

Avoid having to use space in the user
data segment for input and output
buffers.

IOEdit allocates all the space it needs in its own
program file segment; SIO uses at least 144 bytes
of the user data stack for reading and at least
1024 bytes for writing. For acceptable
performance, SIO often needs much larger
buffers.

Save disk space on smaller files. IOEdit assumes default extent sizes of one page
for both primary and secondary extents; SIO
assumes default sizes of 4 and 16 pages.

Specify sync depth when opening a file. IOEdit permits you to specify the sync depth; SIO
does not.

Have damaged files repaired when
opening (like text editors do).

IOEdit can repair damaged EDIT files; SIO
cannot.

Avoid having to set up special control
blocks for the files you are accessing.

IOEdit procedures need only the file number
returned by the FILE_OPEN_ procedure; SIO
requires that you set up a separate file control
block for each file and a common file block.

Table 14-1. Advantages of IOEdit Over SIO (page 2 of 2)

If you want to... Then IOEdit is better than SIO because...

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 4

Line Numbers and Records

Table 14-2 indicates when SIO works better than IOEdit.

See Section 15, Using the Sequential Input/Output Procedures, for details of using
SIO.

Line Numbers and Records
A line number identifies each line in an EDIT file. You can see the line numbers in an
EDIT file using the SHOWNUMBER EDIT command, for example:

1 ?INSPECT,SYMBOLS
1.001
1.1 ?NOLIST
2 ?SOURCE $SYSTEM.SYSTEM.EXTDECS0(WRITE,READ,FILE_OPEN_,
2.1 PROCESS_GETINFO_,WRITEREAD,NUMOUT)
3 ?LIST
4
5 PROC MYPROC MAIN;
6 BEGIN
6.003 STRING .TERM^NAME[0:ZSYS^VAL^LEN^FILENAME-1];
6.004 INT NAME^LEN;
6.01 INT TERM^NUM;
6.02 INT .BUFFER[0:127];
6.03 INT WCOUNT;
6.04 STRING .SBUFFER := @BUFFER '<<' 1;
6.05 INT .S^PTR;
6.06 INT ASCII[0:5];
6.07 INT NUM;
6.1
7 CALL PROCESS_GETINFO_(,,,,,TERM^NAME:ZSYS^VAL^LEN^FILENAME-1
 ,NAME^LEN);
8 CALL FILE_OPEN_(TERM^NAME:NAME^LEN,TERM^NUM);
 .
 .

Table 14-2. Advantages of SIO Over IOEdit

If you want to... Then SIO is better than IOEdit because...

Use an error file for reporting errors. SIO uses an error file; IOEdit does not.

Write long lines. SIO has a write-fold feature that allows a long line
to be divided into several shorter lines; IOEdit has
no such feature.

Perform I/O with file types other than
EDIT files and T-Text files.

SIO is able to access many device and file types;
IOEdit can access only EDIT and T-Text files.

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 5

Packed Line Format

Note that blank lines have a number. Inserted lines use up to three levels of index or
“point” numbers. An example of how point numbers might be applied is given below:

A record number is a line number multiplied by 1000. Line 1 in the previous example is
therefore contained in record 1000, line 1.1 in record 1100, and line 6.003 in record
6003. The relationship between the record number and the record itself is maintained
in a directory in the file. The record number therefore has a function similar to the key
value in an Enscribe key-sequenced file.

Packed Line Format
Lines are not saved character by character in an EDIT file as in an Enscribe file.
Instead, spaces within the line are compressed not only to take up less space on disk
but also to reduce the time needed to perform data transfers.

Most programs using IOEdit read and write text-line images in the normal unpacked
format; IOEdit converts each line image between the two formats. For efficiency
reasons, however, some programs read and write lines directly in the EDIT packed
format.

Figure 14-1 shows the format of a packed IOEdit line.

If a line is inserted
between...

Then the new line is
given line number...

lines 6 and 7 6.1

lines 6 and 6.1 6.01

lines 6 and 6.01 6.001

lines 6 and 6.001 6.001, and the original line 6.001 is renumbered

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 6

Packed Line Format

The first byte of the packed line is the header byte. It contains the length of the packed
line. If the line is blank, then the header byte contains 0 and there are no following line
segments.

If the header byte is nonzero, then one or more line segments follow. Each line
segment contains a header byte and from 0 through 15 nonblank characters. The
upper four bits of the header byte indicate the number of blank characters that precede
the nonblank characters in the unpacked line. The lower four bits represent the
number of nonblank characters in the line segment. A line segment can thus represent
up to 15 consecutive blank characters that can precede up to 15 consecutive nonblank
characters.

To represent more than 15 consecutive blanks, the packed line uses a single-byte line
segment that indicates 15 preceding blanks and no nonblank characters, followed by
another line segment indicating some more blanks before the nonblank characters
begin. Similarly, more than 15 consecutive nonblank characters are represented by a
line segment that indicates some preceding blanks and 15 nonblank characters,
followed by a line segment with no preceding blanks and some more nonblank
characters.

Figure 14-1. An IOEdit Packed Line

VST078.VSD

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 7

The EDIT File Segment

As an example, consider the following text line from a program source file (the pound
signs, #, represent blanks):

###CALL#FILE_OPEN_(FILE^NAME,FILE^NUM);#######!opens#the#file

The corresponding packed form contains seven line segments and a line header byte
as follows:

The EDIT File Segment
IOEdit uses a set of data structures in its own extended data segment known as the
EDIT file segment (EFS), which is analogous to the PFS used by the file system. This
storage area contains buffers that allow the IOEdit routines to read complete pages of
text from disk, perform read-ahead operations, and buffer output to the text file. In
addition to improving performance, this method also removes the need to use space in
the user data segment.

The EDIT file segment is automatically created when you issue an INITIALIZEEDIT
procedure call. This call is implied when you open an EDIT file with the OPENEDIT_
procedure. On opening your first EDIT file, you therefore automatically create the EFS.
On subsequent opens, you initialize data structures within the EFS for the new file.

IOEdit and Errors
When testing for errors following calls to IOEdit procedures, you need test only for
positive errors. IOEdit repairs the file following any negative errors. If you want to
handle damaged files directly, for example by sending a message to the user, you can
test for a negative error.

VST079.VSD

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 8

Creating, Opening, and Initializing an IOEdit File

Creating, Opening, and Initializing an IOEdit
File

Creating, opening, and initializing an EDIT file can all be done with one call to the
OPENEDIT_ procedure. Table 14-3 shows when OPENEDIT_ performs each of these
functions.

To create a file, the OPENEDIT_ procedure calls the FILE_CREATE_ procedure.

To open a file, the OPENEDIT_ procedure calls the FILE_OPEN_ procedure.

To initialize data structures in the EFS for the EDIT file, the OPENEDIT_ procedure
calls the INITIALIZEEDIT procedure. If the EFS does not yet exist, INITIALIZEEDIT
creates and allocates the EFS, and then initializes IOEdit data structures within the
EFS.

If the process already has the file open using another OPENEDIT_ or OPENEDIT
procedure call, then IOEdit flushes the buffers, including directory information, to disk.
Hence the file is always current when you open it. If, however, other processes have
the file open, then the file state could be inconsistent.

Opening an Already Existing File
If the EDIT file already exists, for example through use of the TEDIT program, then the
OPENEDIT_ procedure:

1. Opens the file by calling the FILE_OPEN_ procedure

2. Initializes IOEdit structures on behalf of the file in the EFS by calling the
INITIALIZEEDIT procedure

When opening a file with the OPENEDIT_ procedure, you must supply the name of the
file you want to open and a negative file number. The negative file number indicates to
IOEdit that the file is not yet open. When OPENEDIT_ finishes, the file number of the
open file is returned in the file-number parameter.

Other parameters for setting the access mode, exclusion mode, nowait mode, and
sync depth are all optional. Note that the default values and effects of some of these
parameters differ from the corresponding parameters in the FILE_OPEN_ call.

Table 14-3. Functions of the OPENEDIT_ Procedure

If the EDIT file... Then the OPENEDIT_ procedure call...

Does not yet exist Creates the file
Opens the file
Initializes data structures in the EFS for the file

Already exists but is not yet open Opens the file
Initializes data structures in the EFS for the file

Is already open by a call to FILE_OPEN_ Initializes data structures in the EFS for the file

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 9

Opening a Nonexistent File

² The access mode is read-only by default. Note that this is different from
FILE_OPEN_ which has a default access mode of read/write.

• The exclusion mode is shared by default, as for the FILE_OPEN_ procedure.

• Nowait I/O is implied by default. Note that this is different from the default mode
used by FILE_OPEN_. Moreover, the behavior of nowait I/O is different for IOEdit
than for Enscribe files.

IOEdit passes the nowait attribute to the FILE_OPEN_ procedure to open the EDIT
file for nowait I/O. Once the file is open, IOEdit buffers write operations until either
a full page of text has been entered or the application calls the CLOSEEDIT_
procedure. IOEdit then writes the entire page to disk with one nowait I/O operation
and immediately continues to fill the next page. If you specify waited I/O, then the
write to disk is done using waited I/O.

Whether the file is opened with waited or nowait I/O does not affect the way the
application functions: I/O operations return as soon as the access to the buffer in
the EFS is complete. Nowait I/O, however, results in improved performance
because of the ability to continue writing to the buffers while the last completed
page is being written to disk.

• The writethrough parameter causes write operations to go straight to disk,
without using the EFS buffers. Normally, this feature is turned off. Use it with care
because the writethrough feature reduces application performance.

The following example opens a text file called DIARY, accepting the default values of
shared, read-only access, and nowait I/O for writing out the buffers:

FILE^NAME ':=' "$USERVOL.MYSUBVOL.DIARY" -> @S^PTR;
NAME^LEN := @S^PTR '-' @FILE^NAME;
FILE^NUM := -1;
ERROR := OPENEDIT_(FILENAME:NAME^LEN,
 FILE^NUM,
 !access^mode!,
 !exclusion^mode!,
 !nowait^mode!,
 !sync^depth!,
 !writethrough!);
IF ERROR > 0 THEN ...

Opening a Nonexistent File
To open an EDIT file that does not yet exist, the OPENEDIT_ procedure:

1. Creates the EDIT file by calling the FILE_CREATE_ procedure

2. Opens the file by calling the FILE_OPEN_ procedure

3. Initializes the IOEdit data structures in the EFS by calling the INITIALIZEEDIT
procedure

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 10

Initializing an Already Open File

To create a new file, you must set the access mode to read/write. Otherwise, there is
no difference between calling OPENEDIT_ to open an existing file and calling
OPENEDIT_ to open a file that does not yet exist. The following example creates and
opens a file called MYFILE:

LITERAL READ^WRITE = 0;
 .
 .

FILE^NAME ':=' "$USERVOL.MYSUBVOL.MYFILE" -> @S^PTR;
NAME^LEN := @S^PTR '-' @FILE^NAME;
FILE^NUM := -1;
ACCESS^MODE := READ^WRITE;
ERROR := OPENEDIT_(FILENAME:NAME^LEN,
 FILE^NUM,
 ACCESS^MODE);
IF ERROR > 0 THEN ...

The OPENEDIT_ procedure returns file-system error 11 if the file is not open for
read/write access.

Initializing an Already Open File
If an EDIT file has already been opened using, for example, the FILE_OPEN_
procedure, then you can initialize the IOEdit data structures in the EFS by calling the
OPENEDIT_ procedure. The OPENEDIT_ procedure establishes that the file exists
and that it is an EDIT file and then calls the INITIALIZEEDIT procedure to perform the
initialization.

To initialize an already open file, you must supply OPENEDIT_ with the file number
returned by the FILE_OPEN_ procedure; for example:

FILE^NAME ':=' "$USERVOL.MYSUBVOL.DIARY" -> @S^PTR;
NAME^LEN := @S^PTR '-' @FILE^NAME;
ERROR := FILE_OPEN_(FILE^NAME:NAME^LEN,FILE^NUM);
IF ERROR <> 0 THEN ...
 .
 .
ERROR := OPENEDIT_(FILENAME:NAME^LEN,
 FILE^NUM);
IF ERROR > 0 THEN ...

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 11

Reading and Writing an IOEdit File

Reading and Writing an IOEdit File
This subsection discusses some of the operations you can perform that relate to I/O
with EDIT files. Specifically, it covers how to perform the following operations:

• Set the starting point for a sequential I/O operation using the POSITIONEDIT,
READEDIT, or WRITEEDIT procedure.

• Perform sequential reading.

• Perform sequential writing, including how to append lines to the end of a file, how
to insert lines into a file, and how to handle error 45, the File Full error.

• Delete lines from a file.

• Renumber lines in a file.

• Set and get the record number increment.

• Perform line backspacing, as required to support the FORTRAN BACKSPACE
statement.

Record Pointers
Like the Enscribe database record manager, IOEdit makes use of current-record and
next-record pointers when performing I/O with EDIT files.

The current-record pointer points to the record that the last I/O operation accessed;
that is, the last record read, the last record written to, or the record that precedes a set
of deleted records.

The next-record pointer points to the record that the next operation will be performed
on. For a read operation, the next record is the record in the file that immediately
follows the current record. For a write operation, the next record number is the current
record number plus the current record number increment. The record number
increment is explained later in this subsection.

In addition to record numbers that relate to line numbers as described earlier in this
section, there are some special values for a record number, as shown in Table 14-4:

Table 14-4. Record Numbers

Number Explanation

-1 The lowest-numbered line in the file

-2 The highest-numbered line in the file

-3 or
unspecified

The current record as indicated by the last I/O operation

0 or greater The desired line number times 1000

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 12

Selecting a Starting Point

Selecting a Starting Point
Most I/O operations involve reading or writing sequential data. However, unlike other
available methods of access to EDIT files, the IOEdit routines allow you to start your
read or write operation at any record in the file. This record can be:

• The beginning of the file (record number -1)

• The end of the file (record number -2)

• Any specified record number

• The record indicated by the next-record pointer (record number -3)

You can set the starting position for a series of one or more sequential I/O operations
using one of the following operations:

• Specify the record number in a call to the POSITIONEDIT procedure.

• Specify the record number directly in the call to READEDIT.

• Specify the record number directly in a call to WRITEEDIT.

Using the POSITIONEDIT Procedure
The following example sets the value of the next-record pointer to line 50 using the
POSITIONEDIT procedure:

RECORD^NUMBER := 50000D;
ERROR := POSITIONEDIT(FILE^NUM,RECORD^NUMBER);
IF ERROR > 0 THEN ...

Using the READEDIT Procedure
The following example sets the value of the next-record pointer to the first line in the
file by supplying -1D as the record number to the READEDIT procedure:

RECORD^NUMBER := -1D;
ERROR := READEDIT(FILE^NUM,RECORD^NUMBER,BUFFER,BUFFER^LEN,
 BYTES^READ);
IF ERROR > 0 THEN ...

If you supply the READEDIT procedure with a record number that does not exist, then
the next record is assumed to be the next-higher record number that does exist.

Using the WRITEEDIT Procedure
The following example sets the value of the next-record pointer to the end of the file
using the WRITEEDIT procedure:

RECORD^NUMBER := -2D;
ERROR := WRITEEDIT(FILE^NUM,RECORD^NUMBER,BUFFER,WCOUNT);
IF ERROR > 0 THEN ...

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 13

Performing Sequential Reading

The record number you supply to WRITEEDIT must not already exist; otherwise, error
10 is returned.

Performing Sequential Reading
Once you have established the starting point for a sequential read operation, you can
read each record in turn by repeated calls to either the READEDIT or READEDITP
procedure. READEDIT puts the text line in the application buffer in the unpacked
state; that is, IOEdit unpacks the record from the form in which it is stored on disk.

READEDITP returns packed text into the application buffer. You can unpack packed
text using the UNPACKEDIT procedure, if desired.

To read sequentially from an EDIT file, each successive READEDIT (or READEDITP)
operation must not specify the record number. By default, IOEdit reads the record that
is logically next in the file.

The following example sequentially reads an entire file:

LITERAL START^OF^FILE = -1;
 .
 .
RECORD^NUMBER := START^OF^FILE;
ERROR := POSITIONEDIT(FILE^NUM,RECORD^NUMBER);
IF ERROR > 0 THEN ...

WHILE ERROR > 1 DO
BEGIN
 ERROR := READEDIT(FILE^NUM,
 !record^number!, !unspecified
 BUFFER, !contains text read
 BUFFER^LEN, !length of input buffer
 BYTES^READ); !number of bytes read
 IF ERROR > 0 AND ERROR <> 1 THEN ...
 .
 .
END;

Performing Sequential Writing
Before you can write to a file, you must first open it for either write-only or read/write
access. By default, OPENEDIT_ opens a file with read-only access (unlike
FILE_OPEN_, which defaults to read/write). If you do open a file for write-only access,
IOEdit actually opens it for read/write access because IOEdit needs to read the file
directory.

Once you have established the start point for your sequential write operation, you can
issue repeated calls to WRITEEDIT or WRITEEDITP. WRITEEDIT causes IOEdit to
pack the line of text you are writing before copying it to the disk. WRITEEDITP
assumes that the line of text is already packed, for example by using the PACKEDIT
procedure.

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 14

Performing Sequential Writing

Typically, when you write lines to a file, you either append them to the end of the file or
insert them between existing lines in the file. The following paragraphs describe how
to perform these operations.

Appending to a File
To append new lines of text to the end of an EDIT file you must:

1. Position the next-record pointer to the end of the file.

2. Set the record increment to the desired value.

3. Issue repeated write operations, one for each line of text.

The record increment you set in Step 2 determines the difference in record numbers
between logically adjacent records as you add them to the file. For example, if the last
line in the file is line 60 (record 60000) and the record increment is 1000, then
successive records will have record numbers 61000, 62000, and so on.

The following example writes unpacked lines to the end of an EDIT file until the user
presses the F1 key. This example uses a record increment of 1000:

LITERAL LAST^RECORD = -2D,
 F1 = ...;

RECORD^NUMBER := LAST^RECORD;
ERROR := POSITIONEDIT(FILE^NUM,RECORD^NUMBER);
IF ERROR > 0 THEN ...

!Set the record number increment:
DELTA := 1000D;
CALL INCREMENTEDIT(FILE^NUM,DELTA);

!Read text line from terminal:
BUFFER ':=' "> ";
WCOUNT := 2;
RCOUNT := 80;
CALL WRITEREAD(TERM^NUM,BUFFER,WCOUNT,RCOUNT,BYTES^READ);

!If not function key 1, write to end of file and read next
!line. Repeat until user presses F1:
WHILE FIRST^BYTE <> F1 DO !FIRST^BYTE is a bytes
BEGIN ! pointer to BUFFER
 ERROR := WRITEEDIT(FILE^NUM,
 !record^number!,
 BUFFER,WCOUNT);
 BUFFER ':=' "> ";
 WCOUNT := 2;
 CALL WRITEREAD(TERM^NUM,BUFFER,RCOUNT,BYTES^READ);
END;

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 15

Setting and Getting the Record Number Increment

Inserting Lines
Typically, you insert text after the current line in the file. To do this, you need to choose
an ascending sequence of record numbers that are all greater than the current record
number and all less than the next record number. The following sequence outlines one
approach:

1. Determine the current record number using the GETPOSITIONEDIT procedure.

2. Determine the appropriate record number increment to use by checking the
increment between the current-record and next-record pointers.

For example, if the current position is record 5000 and the next record is record
5100, then a record increment of 10 is appropriate. Inserted lines then have record
numbers 5010, 5020, and so on.

Use the INCREMENTEDIT procedure to set the increment.

3. Start writing records.

4. If any write operation returns error 10, then you are trying to overwrite an existing
record. Return to Step 2 and use a smaller increment.

5. If a smaller increment is not available, you must renumber the subsequent text
line(s) to make room in the record-numbering scheme for the additional lines.

Setting and Getting the Record Number Increment
When you write or renumber records in an EDIT file, each record number differs from
the previous record number by the record number increment.

The INCREMENTEDIT and GETINCREMENTEDIT procedures allow you to control the
record number increment. The following example gets the current record number
increment:

INT(32) INCREMENT;
.
.
INCREMENT := GETINCREMENTEDIT(FILE^NUM);

The next example sets the record number increment to 100:

DELTA := 100D;
CALL INCREMENTEDIT(FILE^NUM,DELTA);

Renumbering Lines
When inserting lines into an EDIT file, you sometimes need to renumber some lines
because you have exhausted the possible record numbers in the range between the
record preceding the inserted text and the record that follows the inserted text. For
example, if you try to insert text between records 1001 and 1002, then record 1002 will
have to be renumbered.

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 16

Handling “File Full” Errors

To renumber lines, supply the NUMBEREDIT procedure with the range of lines you
need to have renumbered, the new record number for the start of the renumbered set
of lines, and the record number increment.

The following example renumbers records 51200 through 80000, starting the new
record number range at 60000 and with a record number increment of 10:

FIRST := 51200D;
LAST := 80000D;
START := 60000D;
INCREMENT := 10;
ERROR := NUMBEREDIT(FILE^NUM,FIRST,LAST,START,INCREMENT);
IF ERROR > 0 THEN ...

Handling “File Full” Errors
Error 45 (file full) can sometimes return from a write operation, indicating that all the
space allocated to the file has been used. You can use the EXTENDEDIT procedure
to increase the extent size of the file; for example:

ERROR := EXTENDEDIT(FILE^NUM);

EXTENDEDIT functions as follows:

1. Creates a new file with the extended extent size

2. Copies the contents of the old file into the new file

3. Deletes the old file

4. Names the new file with the same name as the old file

5. Returns the new file number in the file-number parameter

The new file retains the same line numbering as the old file unless you specify a
starting record number and record increment in the call to EXTENDEDIT. The
following example renumbers the lines in the file, starting at line number 1, with a
record number increment of 1000:

START := 1000D;
INCREMENT := 1000D;
ERROR := EXTENDEDIT(FILE^NUM,START,INCREMENT);

Deleting Lines
Another common operation performed on EDIT files is to delete lines of text. To do
this, you supply the DELETEEDIT procedure with the range of lines that you want to
delete. DELETEEDIT deletes all lines with record numbers greater than or equal to the
specified starting record and less than the specified last record.

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 17

Line Backspacing

The following example deletes the lines between two records obtained by calls to the
GETPOSITIONEDIT procedure:

START^DELETE := GETPOSITIONEDIT(FILE^NUM);
 .
 .
END^DELETE := GETPOSITIONEDIT(FILE^NUM):

ERROR := DELETEEDIT(FILE^NUM,START^DELETE,END^DELETE);
IF ERROR > 0 THEN ...

Line Backspacing
The BACKSPACEEDIT procedure performs the equivalent of a FORTRAN
BACKSPACE statement on the file.

The purpose of the BACKSPACEEDIT procedure is as follows. The ANSI FORTRAN
standard specifies that the ENDFILE statement writes an end-of-file record and that a
BACKSPACE statement backspaces over that record if it follows an ENDFILE
statement or a READ statement that returned the end-of-file status. The EDIT file
format does not provide an end-of-file marker; the logical end-of-file is immediately
after the highest-numbered line in the file.

To satisfy the ANSI requirement, the FORTRAN ENDFILE statement and READ
end-of-file will both set the file’s current record number to -2, indicating that a simulated
end-of-file record has just been read or written; in this case, the BACKSPACEEDIT
procedure clears the end-of-file status indication by setting the current record number
to that of the highest-numbered line in the file. Table 14-5 summarizes the effect of the
BACKSPACEEDIT procedure:

The procedure call takes the EDIT file number as its only parameter and returns a
file-system error code:

ERROR := BACKSPACEEDIT(FILE^NUM);
IF ERROR > 0 THEN ...

Table 14-5. Effects of the BACKSPACEEDIT Procedure

If the current record number is... Then the BACKSPACEEDIT Procedure...

-1 Does nothing

-2 Sets the current record number to the highest-
numbered record in the file, or to -1 if the file is empty

Greater than or equal to 0 Sets the current record number to the number of the
preceding record in the file, or to -1 if no such record
exists

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 18

Using Nowait I/O With IOEdit Files

Using Nowait I/O With IOEdit Files
If your program issues a call to AWAITIO with -1 specified for the file number (meaning
wait until any outstanding I/O request from this process is finished), you may get a
completion status for a nowait I/O operation previously started by IOEdit. If such an
AWAITIO call returns a file number that could be that of an IOEdit file, then your
program must use the COMPLETEIOEDIT procedure to inform IOEdit that the I/O
request is complete and pass to IOEdit the results that AWAITIO returned.

The COMPLETEIOEDIT procedure returns a function value of -1 if the file is being
managed by IOEdit; otherwise, it returns 0.

The following example checks the outcome of an AWAITIO call to see if the completing
I/O operation is managed by IOEdit or the file system:

CALL AWAITIO(FILE^NUM,BUFFER,BYTES^READ,TAG);
IF COMPLETEIOEDIT(FILE^NUM,BUFFER,BYTES^READ,TAG)
 THEN !IOEdit file
 ELSE !other file

See Section 4, Using Nowait Input/Output, for a detailed discussion of nowait I/O.

Compressing an IOEdit File
Compressing files is done to save disk space. Because of the way IOEdit manages its
files, areas of unused space may occur within the space allocated to the file.

You can compress an EDIT file using the COMPRESSEDIT procedure. This
procedure copies a file line by line, making each block as full as possible, thereby
minimizing the number of disk pages occupied by the file. You can do the same thing
using the PUT! command of the EDIT program.

On completion, COMPRESSEDIT returns the file number of the compressed file in the
file-number parameter. The old file gets deleted. The current-record pointer
identifies the first line in the new file (current record number -1).

You identify the file you want compressed by supplying the file-number parameter.
Optionally, you can also specify the record number of the first line of the new file and
the record number increment. If you do not supply these optional parameters, the line
numbering remains unchanged.

The following example compresses a file and renumbers the lines, starting at line 1,
with a record number increment of 1000:

START := 1000D;
INCREMENT := 1000D;
ERROR := COMPRESSEDIT(FILE^NUM,START,INCREMENT);
IF ERROR > 0 THEN ...

Using the IOEdit Procedures

Guardian Programmer’s Guide — 421922-014
14 - 19

Closing an IOEdit File

Closing an IOEdit File
This subsection discusses how to use the CLOSEEDIT_ and CLOSEALLEDIT
procedures. In addition to closing EDIT files, these procedures also cause the IOEdit
buffers in the EFS to be copied to disk.

Closing a Single File
You usually close EDIT files one at a time using the CLOSEEDIT_ procedure. You
supply the procedure with the file number; for example:

ERROR := CLOSEEDIT_(FILE^NUM);
IF ERROR > 0 THEN ...

IOEdit responds by closing the file and copying the buffers to disk.

Closing All EDIT Files
You can close all EDIT files that your process has open by issuing a call to the
CLOSEALLEDIT procedure. You might do this, for example, in a signal handler or trap
handler to save the file buffers before stopping the process. For example:

CALL CLOSEALLEDIT;

See Section 25, Debugging, Trap Handling, and Signal Handling, for a discussion of
trap handlers.

Caution. You must close EDIT files explicitly. If you allow EDIT files to be closed implicitly by
stopping the process, then you will lose the contents of the IOEdit buffers.

Guardian Programmer’s Guide — 421922-014
15 - 1

15
Using the Sequential Input/Output
Procedures

The sequential input/output (SIO) procedures provide a higher-level interface than the
interface provided by using the file system procedures directly. They are intended for
processing sequential I/O streams, particularly of displayable or printable text.
Specifically, they can be used for text that might be directed to or from a variety of text
sources or destinations, such as terminals, printers, spoolers, structured disk files, and
EDIT files. Files opened for SIO access are referred to as SIO files.

SIO procedures provide a convenient way of reading or writing EDIT files as text files,
ignoring such things as line numbers. EDIT files have a higher-level structure that the
file system does not understand but which SIO does understand. An alternative to
using SIO would be to use the IOEdit procedures as described in Section 14, Using the
IOEdit Procedures.

SIO is designed to work with the INITIALIZER, which allows redirection of SIO files
using the Startup message and Assigns.

This section shows how to use the SIO procedures in an application program. It
explains how to program the following operations:

• Initialize file control blocks (FCBs) for SIO files using TAL or pTAL DEFINEs.

• Open SIO files using the OPEN^FILE procedure.

• Retrieve information (such as the current file state and permissions) about SIO
files using the CHECK^FILE procedure.

• Read and write to an SIO file using the READ^FILE and WRITE^FILE procedures.

• Access files in EDIT format.

• Handle nowait input and output.

• Communicate with other processes.

• Handle system messages using SIO procedures.

• Handle the BREAK key.

• Handle errors that occur in response to an SIO procedure call.

• Close SIO files.

• Dynamically initialize FCBs for SIO files without using TAL or pTAL DEFINEs.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 2

An Introduction to the SIO Procedures

An Introduction to the SIO Procedures
An application process can use the following SIO procedures to sequentially access
files:

Refer to the Guardian Procedure Calls Reference Manual for complete details on the
procedures listed above.

Refer to the Guardian Procedure Errors and Messages Manual for details on specific
SIO errors. The SIO procedures may return these messages in addition to regular file-
system error messages.

FCBs for SIO Files
The SIO procedures access each file using a special file control block (FCB) in the
user’s data area. This FCB contains file information in addition to the information
contained in the FCB automatically created and managed by the file system. Each
SIO FCB must be programmatically created as described later in this section.

In addition to an FCB for each file, you also need a common FCB for the process. The
common FCB contains information common to all SIO files opened by the process.
This information includes the address of the FCB that receives error messages
generated by the SIO procedures.

CHECK^BREAK Checks whether the BREAK key has been pressed.

CHECK^FILE Retrieves characteristics and state information about SIO files.

CLOSE^FILE Closes a file that was opened for SIO.

GIVE^BREAK Disables BREAK processing by returning BREAK ownership to
the process that this process took the ownership from.

NO^ERROR Allows SIO processing of errors from non-SIO operations.

OPEN^FILE Opens a file for access by other SIO procedures. This
procedure can also assign file-transfer characteristics.

READ^FILE Reads a record into a read buffer from a file opened for SIO.

SET^FILE Sets or changes the characteristics of files accessed by the SIO
procedures. These characteristics include modes of access and
exclusion, file-transfer attributes, and mode of error processing.

TAKE^BREAK Enables BREAK processing by the process that issues the
TAKE^BREAK call. This call also disables BREAK processing
by the current BREAK owner.

WAIT^FILE Waits for the completion of an outstanding I/O operation initiated
on a file opened for nowait SIO.

WRITE^FILE Writes a record from a write buffer into a file opened for SIO.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 3

Steps for Writing a Program

For ease of programming, all structures and literals required by the SIO procedures,
including the FCB and the common FCB, are predefined in a file called GPLDEFS in
the $SYSTEM.SYSTEM subvolume. This file must be sourced into your program if
you intend to use the SIO procedures.

Steps for Writing a Program
To use the SIO procedures, your program must perform the sequence of operations
outlined below:

1. Initialize every FCB that your process will use. You must initialize one FCB for
each file to be accessed by SIO procedures, and a common FCB. You can do this
in one of the following ways:

² Using TAL or pTAL DEFINEs, you can allocate FCBs with some values already
initialized. Allocation is static and is done at compile time. The INITIALIZER
procedure provides further initial values for the FCBs, such as information
provided in ASSIGN commands. INITIALIZER also provides a convenient way
to complete FCB initialization without having to directly handle the $RECEIVE
file. The subsection Initializing SIO Files Using TAL or pTAL DEFINEs, later in
this section, provides details.

² You can allocate space for FCBs and initialize them by issuing SET^FILE
procedure calls. This method does not have the convenience of the
INITIALIZER procedure, but it gives you the flexibility to dynamically allocate
FCBs and is therefore appropriate if you do not know how many FCBs you will
need. The $RECEIVE file is handled directly. Initializing SIO Files Using TAL
or pTAL DEFINEs, later in this section, provides details.

² You can mix the above methods: you can allocate some FCBs using TAL or
pTAL DEFINEs and dynamically allocate additional FCBs and initialize them
using SET^FILE procedure calls.

2. Open each FCB required by the program. You must use the OPEN^FILE
procedure as described in the subsection Opening and Creating SIO Files, later in
this section.

3. Perform any other SIO operations as required by your application. These
operations may include reading or writing the SIO files or other operations such as
processing the BREAK key.

4. Close the SIO files as described in the subsection Closing SIO Files, later in this
section.

Differences Between TNS/R Native and TNS Procedures
Most of the SIO procedures can be called by either a TNS/R native caller or a TNS
caller with no changes. However, three of the procedure calls, the SET^FILE,

Note. TNS/R native callers cannot use TNS FCBs, nor can TNS callers use native FCBs.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 4

Differences Between TNS/R Native and
TNS Procedures

CHECK^FILE, and INITIALIZER calls, have different forms in the native and TNS
environments.

SET^FILE and CHECK^FILE Differences
The reason for the differences between the native and TNS forms of the SET^FILE
and CHECK^FILE procedure calls has to do with restrictions on the way address
parameters are passed and returned: in the TNS environment, address values can be
passed through a type INT parameter; however, this is not possible in the native
environment.

When non-address parameters are passed or returned by SET^FILE or CHECK^FILE,
the same form of the calls can be used in either environment. However, when an
address value is passed or returned, an additional parameter is required in native
mode. In this case, the native forms of the calls are:

CALL CHECK^FILE (FCB, OPERATION, ADDR)

ERROR := SET^FILE (FCB, OPERATION,,, ADDR)

where addr is a parameter of type WADDR.

For ease in writing programs to be executed in both the native and TNS environments,
two DEFINEs are provided in the $SYSTEM.SYSTEM.GPLDEFS file. These DEFINEs
call the correct version of SET^FILE or CHECK^FILE for operations that can return an
address, depending on which environment the program is compiled in.

The DEFINE for SET^FILE has the form:

CALL_SET^FILE_ADDRESS_ (ERROR, FCB, OPERATION, ADDR)

The DEFINE for CHECK^FILE has the form:

CALL_CHECK^FILE_ADDRESS_ (ERROR, FCB, OPERATION, ADDR)

INITIALIZER Differences
In the TNS environment, the INITIALIZER procedure requires that the RUCP and all
FCBs be contiguous. In TNS procedures, the RUCP and FCBs are always contiguous;
however, in native procedures, this cannot be guaranteed. Therefore, the requirement
has been lifted in the native environment. However, two additional parameters are
required when calling INITIALIZER from a native procedure to place information in the
FCBs.

For TNS callers, the basic INITIALIZER call has the form:

CALL INITIALIZER(CONTROL^BLOCK);

For native callers, the basic INITIALIZER procedure call has the form:

CALL INITIALIZER(CONTROL^BLOCK,,,,,,,NUM^FCBS,FCB^ARRAY);

where NUM^FCBS is an INT parameter specifying the number of FCBs and
FCB^ARRAY is an array of type WADDR containing pointers to the FCBs.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 5

Initializing SIO Files Using TAL or pTAL DEFINEs

For convenience in writing programs to run in both the native and TNS environments,
the native form of the INITIALIZER call can also be used in TNS procedures, in which
case it overrides the processing of contiguous FCBs.

See Using the INITIALIZER Procedure, later in this section, for more information about
calling INITIALIZER.

Initializing SIO Files Using TAL or
pTAL DEFINEs

A set of TAL and pTAL DEFINEs in the $SYSTEM.SYSTEM.GPLDEFS file enable you
to create and initialize an FCB for each SIO file, a common FCB, and a run-unit control
block (RUCB):

The INITIALIZER handles the Startup and Assign messages and places any relevant
information from these messages into the appropriate FCBs if the RUCB is passed:

• The Startup message provides the names of the input and output files typically
supplied by the user with the RUN command.

• Assign messages provide the actual file name as well as other file characteristics
such as access mode and record and block length. These messages result from
ASSIGN operations set up by the user before running the program.

The INITIALIZER procedure automatically reads and processes the Startup and Assign
messages. File characteristics provided by the program user through Assign
messages during process startup can also be provided programmatically using the
SET^FILE procedure.

To perform initialization using TAL or pTAL DEFINEs, your program must do the
following:

ALLOCATE^CBS Allocates and initializes the RUCB and common FCB. It
initializes the RUCB with the number of FCBs to be
processed by the INITIALIZER.

ALLOCATE^CBS^D00 Performs the same functions as ALLOCATE^CBS, but
allocates a larger common FCB. This DEFINE must be
used if any of the FCBs are allocated using
ALLOCATE^FCB^D00.

ALLOCATE^FCB Allocates space for and initializes an FCB with the default
file name. This DEFINE is typically used for FCBs other
than $RECEIVE and the common FCB.

ALLOCATE^FCB^D00 Performs the same functions as ALLOCATE^FCB, but
allocates a larger FCB. This DEFINE must be used for
the $RECEIVE file.

Note. The FCBs for a TNS/R native process use more memory than those for a TNS process.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 6

Setting Up the SIO Data Structures

1. Allocate space for the SIO data structures using TAL or pTAL DEFINEs provided in
the $SYSTEM.SYSTEM.GPLDEFS file. You need to allocate space for each FCB,
the RUCB, and the common FCB. The DEFINEs also provide initial values.

2. Assign a logical file name to each file that the SIO procedures will access
(optional).

3. Complete the initialization of the FCBs by calling the INITIALIZER procedure.
INITIALIZER uses information from the Startup and Assign messages to
supplement information already in the FCBs.

4. Set file characteristics such as access mode, block size, and extent size for each
SIO file (optional). These characteristics can supplement or override those already
written to the FCBs by the INITIALIZER procedure.

The following paragraphs describe how to perform these steps.

Setting Up the SIO Data Structures
Setting up the FCBs, the common FCB, and the RUCB for the INITIALIZER procedure
requires the use of some TAL or pTAL DEFINEs and literals that are described in the
$SYSTEM.SYSTEM.GPLDEFS file. To use these templates, you must source this file
into your program with a compiler directive as follows:

?NOLIST, SOURCE $SYSTEM.SYSTEM.GPLDEFS
?LIST

Setting Up the Run-Unit Control Block and the Common File
Control Block
Use a DEFINE named ALLOCATE^CBS to set up the RUCB and the common FCB.
You must specify the following information:

• The name of the RUCB. You will pass this name to the INITIALIZER procedure.

• The name of the common FCB. You will pass this name to the OPEN^FILE
procedure.

• The number of additional FCBs that the INITIALIZER procedure will prepare. This
number must be the total number of files that INITIALIZER will access.

The following example sets up an RUCB named CONTROL^BLOCK. It specifies a
common FCB named COMMON^FCB. The INITIALIZER procedure will set up two
additional FCBs:

LITERAL NUMBER^OF^FCBS = 2;
ALLOCATE^CBS(CONTROL^BLOCK,
 COMMON^FCB,
 NUMBER^OF^FCBS);

Note. The TNS/R native form of the INITIALIZER procedure call differs from the TNS form.
See "Using the INITIALIZER Procedure," later in this section, for more details.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 7

Setting Up the SIO Data Structures

Preparing the SIO File Control Blocks
Use a DEFINE named ALLOCATE^FCB or a DEFINE named ALLOCATE^FCB^D00 to
set up an FCB for each file that the SIO procedures will access.

Use ALLOCATE^FCB^D00 for $RECEIVE and the common FCB. The created FCB
will identify its opener by process handle.

Use ALLOCATE^FCB for all files other than $RECEIVE and the common FCB.

You must specify the following information each time you use a DEFINE to allocate an
FCB:

• The name of the FCB. This name is used to refer to the file in other SIO procedure
calls.

• A physical file name that the FCB will default to.

The physical file name is 12 words long. These 12 words can contain either a string
that is to be substituted or a complete file name. A string for substitution can be
replaced by the input file name from the Startup message, the output file name from
the Startup message, the home terminal name, or a temporary file name. The
following substitution strings are valid:

• To substitute the input file name from the Startup message, use the following
string:

• To substitute the output file name from the Startup message, use the following
string:

Note. These DEFINE calls must immediately follow the ALLOCATE^CBS^DOO DEFINE call,
and they must allocate space for exactly the number of DEFINES specified in the
ALLOCATE^CBS^D00 DEFINE call.

VST065.VSD

VST066.VSD

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 8

Setting Up the SIO Data Structures

• To substitute the home terminal name, use the following string:

• To substitute a temporary file name, use the following string:

To specify a complete file name, you also use exactly 12 words. The format of the
name depends on whether the file is a disk file, a process, or a device file. Figure 15-1
shows the valid formats. All fields must be padded with blanks to ensure that the name
consists of 24 bytes.

VST067.VSD

VST067.VSDVST068.VSD

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 9

Setting Up the SIO Data Structures

To access files across the network, you need to include the network number in the file
name. Indicate a network number by putting a backslash (\) in the first byte and the
system number in the second byte. The dollar sign ($) that normally starts the volume,
process, or device name is then omitted, leaving 6 bytes to identify the volume,
process, or device. This is one byte less than can be used for local names.

To obtain a system number, you use the LOCATESYSTEM procedure.

Figure 15-1. File-Name Conventions for SIO File

VST069.VSD

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 10

Assigning a Logical File Name

The following examples allocate space for two FCBs, one for the input file and one for
the output file. The default file names for the input and output files will be read from
the Startup message by the INITIALIZER procedure:

ALLOCATE^FCB(INFILE," #IN ");
ALLOCATE^FCB(OUTFILE," #OUT ");

The following example allocates space for an FCB for an explicitly named disk file:

ALLOCATE^FCB(DFILE,"$OURVOL MYSUBVOLDATA ");

Assigning a Logical File Name
To enable ASSIGN commands to set file characteristics through the INITIALIZER, you
must provide a logical file name for the FCB. This step is redundant if your program
will always set file characteristics using only the SET^FILE procedure.

To assign a logical file name, supply the SET^FILE procedure with the address of an
array. The first byte of the array indicates the number of characters in the name;
subsequent bytes contain the name, which can be up to seven characters long.

The following example provides logical file names for the FCBs allocated above.
Three versions of the example are shown: a pTAL version, a TAL version, and a
version that uses the CALL_SET^FILE_ADDRESS_ DEFINE to call the correct form of
SET^FILE in either environment. See Differences Between TNS/R Native and
TNS Procedures, earlier in this section, for details.

pTAL Example:

INT .BUF[0:11];
STRING .SBUF = BUF;
 .
 .
SBUF ':=' [5, "INPUT"]
CALL SET^FILE(INFILE,
 ASSIGN^LOGICALFILENAME,
 ,,
 @BUF);

SBUF ':=' [6, "OUTPUT"];
CALL SET^FILE(OUTFILE,
 ASSIGN^LOGICALFILENAME,
 ,,
 @BUF);

SBUF ':=' [5, "LFILE"];
CALL SET^FILE(DFILE,
 ASSIGN^LOGICALFILENAME,
 ,,
 @BUF);

Note. The TNS/R native form of the INITIALIZER procedure call differs from the TNS form.
See Using the INITIALIZER Procedure, later in this section, for more details.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 11

Assigning a Logical File Name

TAL Example:

INT .BUF[0:11];
STRING .SBUF := @BUF '<<' 1;
 .
 .
SBUF ':=' [5, "INPUT"];
CALL SET^FILE(INFILE,
 ASSIGN^LOGICALFILENAME,
 @BUF);

SBUF ':=' [6, "OUTPUT"];
CALL SET^FILE(OUTFILE,
 ASSIGN^LOGICALFILENAME,
 @BUF);

SBUF ':=' [5, "LFILE"];
CALL SET^FILE(DFILE,
 ASSIGN^LOGICALFILENAME,
 @BUF);

pTAL/TAL Example:

INT ERROR;
INT .BUF[0:11];
?IF PTAL !Begin pTAL statements
STRING .SBUF = BUF;
?ENDIF PTAL !End pTAL statements
?IFNOT PTAL !Begin TAL statements
STRING .SBUF := @BUF '<<' 1;
?ENDIF PTAL !End TAL statements
 .
 .
SBUF ':=' [5, "INPUT"]
CALL_SET^FILE_ADDRESS_(ERROR,
 INFILE,
 ASSIGN^LOGICALFILENAME,
 @BUF);

SBUF ':=' [6, "OUTPUT"];
CALL_SET^FILE_ADDRESS_(ERROR,
 OUTFILE,
 ASSIGN^LOGICALFILENAME,
 @BUF);

SBUF ':=' [5, "LFILE"];
CALL_SET^FILE_ADDRESS_(ERROR,
 DFILE,
 ASSIGN^LOGICALFILENAME,
 @BUF);

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 12

Using the INITIALIZER Procedure

Using the INITIALIZER Procedure
The INITIALIZER procedure sets up the SIO FCBs using information from the RUCB
and messages read from the $RECEIVE file as shown in Figure 15-2.

The actions of the INITIALIZER procedure are summarized as follows:

1. Reads the RUCB to establish the location of the common FCB (immediately after
the RUCB) and the number of FCBs that it will access. (For native callers, the
number of FCBs and an array of pointers to the FCBs are passed to INITIALIZER
as input parameters.) INITIALIZER verifies the number of FCBs. If the number of
FCBs specified when allocating the RUCB and the common FCB, or the number of
FCBs specified in the num^fcbs parameter, does not match the number of FCBs
actually allocated in the program, the process abends.

Figure 15-2. The INITIALIZER Process

VST070.VSD

Inititalizer

Common
FCB

RUCB

Common FCB

Number of File
FCBs

Startup Message

Input File Name
Output File Name
Default Values

Assign Message

Logical File Name
Access Mode

Assign Message

Logical File Name
Block Length

FCB

FCB

FCB

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 13

Using the INITIALIZER Procedure

2. Opens the $RECEIVE file and reads an Open message from the mom process. If
INITIALIZER receives an Open message from any process other than its mom
process, it replies with error 100. If it receives any other message from a process
other than its mom process, it replies with error 60.

3. Reads the Startup message from the $RECEIVE file:

The INITIALIZER process extracts the input and output file and term names from
the Startup message and substitutes them for physical file names in the FCBs
whose physical file names were initialized with strings containing #IN, #OUT and
#TERM, respectively. Partially qualified names are expanded using the default
values also provided in the Startup message.

4. Reads the Assign messages (optional):

For each Assign message, the INITIALIZER procedure searches each file FCB for
the logical file name provided in the Assign message. It then updates all matching
FCBs with the information provided in the message.

5. Closes the $RECEIVE file.

Reading Startup Sequence Messages
If your program calls the INITIALIZER procedure to read Assign messages, then it will
also read any Param message. However, no special processing of the Param
message is done for SIO files. If you want the INITIALIZER to process the Param
message, you must provide a procedure to do so, as described in Section 8,
Communicating With a TACL Process.

To call the INITIALIZER procedure and read any Assign or Param messages, you
provide the name of the RUCB.

For native callers, the basic INITIALIZER procedure call has the form:

CALL INITIALIZER(CONTROL^BLOCK,,,,,,,NUM^FCBS,FCB^ARRAY);

where NUM^FCBS is the number of FCBs and FCB^ARRAY is an array containing
pointers to the FCBs.

The following example shows how to call the INITIALIZER procedure from a native
program. The example initializes two FCBs. The example shows the statements
needed to set up the input for the INITIALIZER procedure:

LITERAL NUM^FCBS = 2; !Number of FCBs
ALLOCATE^CBS(CONTROL^BLOCK,COMMON^FCB,NUM^FCBS);
ALLOCATE^FCB(IN^FCB," #IN ");
ALLOCATE^FCB(OUT^FCB," #OUT ");
WADDR FCB^ARRAY[0:NUM^FCBS-1]; !Array to hold FCB pointers
.
.
FCB^ARRAY[0] := @IN^FCB; !Pointer to input FCB
FCB^ARRAY[1] := @OUT^FCB; !Pointer to output FCB
CALL INITIALIZER(CONTROL^BLOCK,,,,,,,NUM^FCBS,FCB^ARRAY);

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 14

Setting Up File Access

This form of the INITIALIZER call also works in TAL programs. However, because TAL
does not support the WADDR data type, you must include a declarative such as the
following in your TAL program:

DEFINE WADDR INT #;

For TNS callers, the basic INITIALIZER call has the form:

CALL INITIALIZER(CONTROL^BLOCK);

To call the INITIALIZER procedure without reading Assign or Param messages, use
the following call.

Native callers:

FLAGS := 0;
FLAGS.<11> := 1;
CALL INITIALIZER(CONTROL^BLOCK,
 !passthru!,
 !startupproc!,
 !paramsproc!,
 !assignproc!,
 FLAGS,
 !timelimit!,
 NUM^FCBS,
 FCB^ARRAY);

TNS callers:

FLAGS := 0;
FLAGS.<11> := 1;
CALL INITIALIZER(CONTROL^BLOCK,
 !passthru!,
 !startupproc!,
 !paramsproc!,
 !assignproc!,
 FLAGS);

Setting bit 11 of the flags parameter to 1 inhibits reading of the Assign and Param
messages.

Setting Up File Access
The following paragraphs describe how to set up the characteristics that control access
to an SIO file. You will learn how to set the access mode, exclusion mode, record
length, file code, extent sizes, and block length.

Note. When using INITIALIZER with SIO procedures, the setting up of FCBs with the
information contained in the Startup and Assign messages is automatic. You do not need to
provide user-written procedures to process the Startup and Assign messages as you would in
a non-SIO environment (see Section 8, Communicating With a TACL Process) unless you
want to perform additional processing of these messages.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 15

Setting Up File Access

You set file characteristics by putting information into the FCB. There are two ways to
do this:

• The user of your program can use ASSIGN commands to set file characteristics at
run time. Your program must call INITIALIZER to accept Assign messages and
give the file a logical file name using the ASSIGN^LOGICALFILENAME option of
the SET^FILE call.

• You can set the file characteristics programmatically using calls to SET^FILE. File
characteristics set this way override assignments made by reading Assign
messages if the SET^FILE call comes after the INITIALIZER call. Conversely,
Assign messages read by INITIALIZER override SET^FILE calls made before the
call to INITIALIZER.

If you perform any SET^FILE operation before opening the file and that SET^FILE
operation generates an error, then the process abends. The reason for the abend is
that you cannot turn off ABORT^XFERERR until you open the file.

Some SET^FILE operations are only accepted before the file is opened; these
operations will generate an error if performed after the file is opened. See the
Guardian Procedure Calls Reference Manual for a list of SET^FILE operations that can
be done only before opening the file.

Specifying the File Access Mode
You can specify the access mode for an SIO file as read/write, read only, or write only.

Use the ASSIGN command to set the file access mode at run time. You can specify
the access mode as read/write, read only, or write only by setting the access-spec
parameter to I-O, INPUT, or OUTPUT, respectively. The following example assigns
read-only access to the file with the logical name INPUT^FILE:

1> ASSIGN INPUT^FILE,,INPUT

Use the SET^FILE ASSIGN^OPENACCESS operation to programmatically set the
access mode. You set the access mode by setting the new-value parameter to
READWRITE^ACCESS, READ^ACCESS, or WRITE^ACCESS.

The following example sets the access mode to read only for the file associated with
the INFILE FCB:

CALL SET^FILE(INFILE,ASSIGN^OPENACCESS,READ^ACCESS);

Note. Setting these file characteristics is optional. The system provides default values.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 16

Setting Up File Access

If the access mode is not specified, its default value depends on the file type as
follows:

For more details about access modes, refer to Section 3, Coordinating Concurrent File
Access.

Specifying the Exclusion Mode
You can set the exclusion mode of a file to shared, exclusive, or protected.

Use the ASSIGN command to set the exclusion mode at run time. You specify the
exclusion mode by setting the exclusion-spec parameter to SHARED,
EXCLUSIVE, or PROTECTED. The following example assigns shared access to the
file associated with the logical name INPUT^FILE:

2> ASSIGN INPUT^FILE,,SHARED

Use the SET^FILE ASSIGN^OPENEXCLUSION operation to programmatically set the
exclusion mode. You set the exclusion mode by setting the new-value parameter to
SHARE, EXCLUSIVE, or PROTECTED. The following example sets the exclusion
mode to shared for the file associated with the INFILE FCB:

CALL SET^FILE(INFILE,ASSIGN^OPENEXCLUSION,SHARE);

If the exclusion mode is not specified, its default value depends on the access mode as
follows:

For more details about exclusion modes, refer to Section 3, Coordinating Concurrent
File Access.

File Type Access Mode

Operator
process

Read/write

Process Read/write

$RECEIVE Read/write

Disk file Read/write

Terminal Read/write

Printer Write

Magnetic tape Read/write

Access
Mode Exclusion Mode

Read only Shared mode for terminals, otherwise protected mode

Write only Shared mode for terminals, otherwise exclusive mode

Read/write Shared mode for terminals, otherwise exclusive mode

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 17

Setting Up File Access

Specifying the Logical-Record Length
Use the ASSIGN REC command to specify the logical-record length at run time. The
record-size parameter specifies the length. The following example specifies a
logical-record length of 256 bytes:

3> ASSIGN INPUT^FILE,,REC 256

Use the SET^FILE ASSIGN^RECORDLENGTH operation to programmatically set the
logical-record length. You set the new-value parameter to the number of bytes. The
following example sets a logical-record length of 256 bytes:

RECORD^LENGTH := 256;
CALL SET^FILE(INFILE,
 ASSIGN^RECORDLENGTH,
 RECORD^LENGTH);

If you do not specify the record length, the system provides a default value of 132
bytes for all file types except disk files. The default record length for a disk file is set
when you create the file.

Section 5, Communicating With Disk Files, discusses file records in detail.

Specifying the File Code
You can assign an application-dependent file code to a file. Setting the file code
affects the subsequent OPEN^FILE call as follows:

• If the file already exists, the specified file code must match the code of the existing
file or the open will fail.

• If the file does not already exist and the OPEN^FILE procedure is called with the
AUTO^CREATE flag set, then a file is created with the specified file code.

Codes in the range 100 through 999 are reserved.

Set the file code at run time using the ASSIGN CODE command. The file-code
parameter specifies the file code. The following example sets the file code to 101, the
code for an EDIT file:

4> ASSIGN LFILE,, CODE 101

Set the file code programmatically using the SET^FILE ASSIGN^FILECODE operation.
The following example also assigns code 101 to a file:

LITERAL EDIT^FILE = 101;
 .
 .
CALL SET^FILE(DFILE,
 ASSIGN^FILECODE,
 EDIT^FILE);

If you do not specify a file code, the system assigns a file code to the file. The
SIO-assigned file code is 101 if you have supplied a block buffer of at least 1024 bytes;
it is 0 otherwise.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 18

Setting Up File Access

Specifying Extent Sizes
For disk SIO files, you can set the primary and secondary extent sizes only if the
subsequent OPEN^FILE call will create the file (see Opening and Creating SIO Files,
later in this section). If the file already exists, then the new extent size is ignored. For
a general discussion of extents, refer to Section 2, Using the File System.

The size of primary and secondary extents can vary from 1 through 4000 pages in
increments of one page, where a page is 2048 bytes.

You can set the primary or secondary extent sizes at run time using the ASSIGN
command with the EXT option. The following example sets the primary extent to 8
megabytes and each of the secondary extents to one megabyte:

5> ASSIGN LFILE,,EXT(4000,500)

Set the extent sizes programmatically using the SET^FILE
ASSIGN^PRIMARYEXTENTSIZE and ASSIGN^SECONDARYEXTENTSIZE
operations. The following examples set primary and secondary extent sizes:

PRIMARY^EXTENT^SIZE := 4000;
SECONDARY^EXTENT^SIZE := 500;
CALL SET^FILE(DFILE,
 ASSIGN^PRIMARYEXTENTSIZE,
 PRIMARY^EXTENT^SIZE);

CALL SET^FILE(DFILE,
 ASSIGN^SECONDARYEXTENTSIZE,
 SECONDARY^EXTENT^SIZE);

If you do not specify extent sizes, the default values are 8 pages for the primary extent
and 32 pages for each secondary extent. The maximum number of extents is 500.

Specifying the Physical-Block Length
The physical-block length is the number of bytes transferred between the file and the
process in one I/O operation. You indicate blocking by setting the physical-block
length. You must set the physical-block length when accessing a file in EDIT format.

A physical block is made up of one or more records. If the block length is not exactly
divisible by the record length, then the portion of the block following the last record is
filled with blanks.

You can set the physical-block length at run time using the ASSIGN command with the
BLOCK option. The following example sets the block length to 2048 bytes:

6> ASSIGN LFILE,,BLOCK 2048

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 19

Reassigning a Physical File Name to a Logical File

You can also set the physical-block length programmatically using the SET^FILE
ASSIGN^BLOCKLENGTH operation. The following example also sets the block length
to 2048 bytes:

BLOCK^LENGTH := 2048;
CALL SET^FILE(DFILE,
 ASSIGN^BLOCKLENGTH,
 BLOCK^LENGTH);

If you do not specify a block length, then no blocking is performed.

Reassigning a Physical File Name to a Logical File
You can use an ASSIGN command to reassign a physical file name at run time. To do
this, you must have already associated a logical file name with the FCB as described
earlier in this section under Assigning a Logical File Name.

The following example reassigns the physical file name and sets the physical-block
size:

7> ASSIGN LFILE,DATA1,BLOCK 2048

If you do not reassign a physical file name, then the FCB retains its association with
the file name set up by the ALLOCATE^FCB or ALLOCATE^FCB^D00 DEFINE.

Sample Initialization
The following procedure performs initialization for some SIO files: the input file, the
output file, and an additional disk file.

The names of the input and output files are delivered to the process through the
Startup message. The procedure checks to see whether these names refer to the
same process or terminal file. If so, then the file is assigned read/write access. If the
input and output files are different, then the input file is assigned read-only access and
the output file write-only access.

The access mode of the disk file is not assigned. The user of the program can assign
the access mode using an ASSIGN command.

Note. This example is written to execute in both the native and the TNS environments. The
CALL_SET^FILE_ADDRESS_ and CALL_CHECK^FILE_ADDRESS_ DEFINEs are used to
select the appropriate SET^FILE and CHECK^FILE calls, respectively. The same form of the
INITIALIZER call is used for both environments.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 20

Sample Initialization

?INSPECT, SYMBOLS
?NOLIST, SOURCE $SYSTEM.SYSTEM.GPLDEFS
?LIST

!Allocate the RUCB and the common FCB:
ALLOCATE^CBS(RUCB,COMMON^FCB,3);

!Allocate an FCB for each SIO file:
ALLOCATE^FCB(INFILE," #IN ");
ALLOCATE^FCB(OUTFILE," #OUT ");
ALLOCATE^FCB(DFILE,"$OURVOL MYSUBVOLDATAFILE");

!The following DEFINE is required because TAL does not
!support type WADDR
?IFNOT PTAL
DEFINE WADDR INT # ;
?ENDIF PTAL

!Set up input for INITIALIZER call:
LITERAL NUM^FCBS = 2; !number of FCBs
WADDR FCB^ARRAY[O:NUM^FCBS-1]; !pointers to FCBs

LITERAL PROCESS = 0, !identify process file
 TERMINAL = 6; !identify terminal file

INT DEVICE^TYPE, !type of device
 PHYS^REC^LEN, !length of physical record
 INTERACTIVE; !set if input file same as
 !output file

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(SET^FILE,INITIALIZER,
? CHECK^FILE,DEVICEINFO,FNAMECOMPARE,
? PROCESS_STOP_)
?LIST

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 21

Sample Initialization

!--
!Procedure for initializing all SIO files used by this
!application.
!--

PROC INITIALIZE^FILES;
BEGIN

 INT .INFNAME; !Input file name
 INT .OUTFNAME; !Output file name
 INT ERR;
 INT .BUF[0:39]; !Contains logical file
 !name
 STRING .SBUF := @BUF '<<' 1; !String pointer to BUF

! Assign a logical file name to each SIO file:

 SBUF ':=' [5, "INPUT"];
 CALL_SET^FILE_ADDRESS_(ERR,INFILE,ASSIGN^LOGICALFILENAME,
 @BUF);

 SBUF ':=' [6,"OUTPUT"];
 CALL_SET^FILE_ADDRESS_(ERR,OUTFILE,ASSIGN^LOGICALFILENAME,
 @BUF);

 SBUF ':=' [4,"DATA"];
 CALL_SET^FILE_ADDRESS_(ERR,DFILE,ASSIGN^LOGICALFILENAME,
 @BUF);

! Initialize the FCBs:

 FCB^ARRAY[0] := @IN^FCB;
 FCB^ARRAY[1] := @OUT^FCB;
 CALL INITIALIZER(RUCB,,,,,,,NUM^FCBS,FCB^ARRAY);

! Get the physical file names for the input and output
! files:

 CALL_CHECK^FILE_ADDRESS(ERR,INFILE,FILE^FILENAME^ADDR,
 @INFNAME);
 CALL_CHECK^FILE_ADDRESS(ERR,OUTFILE,FILE^FILENAME^ADDR,
 @OUTFNAME);

! Find out whether the input and output files are the same
! and therefore used interactively. This may apply to a
! terminal or a process:

 CALL DEVICEINFO(INFNAME,DEVICE^TYPE,PHYS^REC^LEN);
 INTERACTIVE :=
 IF (DEVICE^TYPE.<4:9> = TERMINAL OR
 DEVICE^TYPE.<4:9> = PROCESS)
 AND NOT FNAMECOMPARE(INFNAME,OUTFNAME)
 THEN -1 ELSE 0;

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 22

Sample Initialization

! If interactive, then set up the access mode for the input
! file for reading and writing. There is no need to set
! the output file because it refers to the same file:

 IF INTERACTIVE THEN
 CALL SET^FILE(INFILE,ASSIGN^OPENACCESS,
 READWRITE^ACCESS)

! If the the input and output files are different, then set
! up the access mode for the input file as read only and
! the access mode of the output file as write only:

 ELSE BEGIN
 CALL SET^FILE(INFILE,ASSIGN^OPENACCESS,
 READ^ACCESS);
 CALL SET^FILE(OUTFILE,ASSIGN^OPENACCESS,
 WRITE^ACCESS);
 END;
END;

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 23

Opening and Creating SIO Files

15 Using the Sequential Input/Output Procedures

Opening and Creating SIO Files
This subsection shows how to use the OPEN^FILE procedure to open SIO files. In
addition to making files available to the SIO procedures that perform I/O, the
OPEN^FILE procedure also sets up many file characteristics. This subsection shows
how to perform the following functions:

• Open an SIO file

• Create the SIO file at the same time as opening it

• Enable block buffering and size the block buffer

• Purge the data of an SIO file on opening—you need write access to do this

In addition to the functions listed above, you can set many other file-transfer
characteristics while opening an SIO file. Later parts of this section show how to
perform many of these other operations, for example:

• Specify blank-padded records: see Reading and Writing SIO Files.

• Open a file for nowait I/O: see Handling Interprocess Messages.

• Specify the error file: see Handling SIO Errors.

Setting Flag Values in the OPEN^FILE Call
You set many of the file-transfer characteristics at file-open time using flag values
passed to the OPEN^FILE procedure. Two optional parameters, flags and
flags-mask, allow you to set or clear flag values. Each bit in the flags parameter
represents a flag value; each corresponding bit in flags-mask specifies whether the
supplied flag value should be assigned to the file. The GPLDEFS file provides literals
to make flag-setting easy.

To set a flag, set the corresponding bit in both flags and flags-mask. For example:

FLAGS := AUTO^TOF;
FLAGS^MASK := AUTO^TOF;
CALL OPEN^FILE(COMMON^FCB,
 OUTFILE,
 !block^buffer!,
 !block^bufferlen!,
 FLAGS,
 FLAGS^MASK);

Note. You must apply file characteristics to each file using the SET^FILE procedure before
each file open. If you close an SIO file and then reopen it without reapplying the file
characteristics, then the SIO routines set the default values for the characteristics.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 24

Opening SIO Files: Simplest Form

To clear a flag, set the flag bit in flags-mask but not in flags (because the flags
parameter defaults to 0). For example:

FLAGS^MASK := AUTO^TOF;
CALL OPEN^FILE(COMMON^FCB,
 OUTFILE,
 !block^buffer!,
 !block^bufferlen!,
 !flags!,
 FLAGS^MASK);

If AUTO^TOF is not specified in flags-mask, then the flag value for the file is
unchanged regardless of the value in flags. Refer to the Guardian Procedure Calls
Reference Manual for a complete list of flag values.

Opening SIO Files: Simplest Form
To open an SIO file, you supply the OPEN^FILE procedure with the names of the file
FCB and the common FCB. The operating system responds as follows:

• Opens the file specified by FCB name. The file attributes depend on how the
attributes were set in the FCB by the SET^FILE calls or Assign messages.

• Associates the file with the common FCB.

The following example shows the use of the OPEN^FILE procedure in its simplest form
to open the input file:

CALL OPEN^FILE(COMMON^FCB,
 INFILE);

Creating SIO Files
You can use the OPEN^FILE procedure to create and open a file. To do so you must
perform the following operations:

1. Set up the file FCB with write-only access.

2. Issue an OPEN^FILE procedure call with the AUTO^CREATE flag set. The
AUTO^CREATE flag is set by default.

The following example creates an SIO file:

CALL SET^FILE(OUTFILE,
 ASSIGN^OPENACCESS,
 WRITE^ACCESS);
.
.
FLAGS := AUTO^CREATE;
FLAGS^MASK := AUTO^CREATE;
CALL OPEN^FILE(COMMON^FCB,
 OUTFILE,
 !block^buffer!,
 !block^bufferlen!,
 FLAGS,FLAGS^MASK);

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 25

Block Buffering With SIO Files

If the file already exists, then the above open will proceed, ignoring the request to
create the file. You can, however, cause the open to fail if the file already exists by
setting the MUSTBENEW flag. If the MUSTBENEW flag is set when you attempt to
create a file, and if the file already exists, the OPEN^FILE call returns error 10:

CALL SET^FILE(OUTFILE,
 ASSIGN^OPENACCESS,
 WRITE^ACCESS);
.
.
FLAGS := AUTO^CREATE + MUSTBENEW;
FLAGS^MASK := AUTO^CREATE + MUSTBENEW;
ERROR := OPEN^FILE(COMMON^FCB,
 OUTFILE,
 !block^buffer!,
 !block^bufferlen!,
 FLAGS,
 FLAGS^MASK);

Note that the MUSTBENEW flag is effective only if the AUTO^CREATE flag is also set
and the file FCB is set up for write-only access. If either of these conditions is not true,
then the open proceeds.

By default, the AUTO^CREATE flag is set but the MUSTBENEW flag is not set.

To create a file with an access mode other than write only, you must create the file with
write-only access as described above, close the file, change the access permissions
with SET^FILE, and then reopen the file.

Block Buffering With SIO Files
You can specify a block buffer when you open an SIO file.

The use of the block buffer depends on the type of file you are opening:

• For structured Enscribe files, you use sequential block buffering to improve the
efficiency of read operations. You simply set the buffer size. See the Enscribe
Programmer’s Guide for details.

• For EDIT files, the block buffer must provide space for the EDIT file pages as they
are assembled or disassembled. See Accessing EDIT Files later in this section.

• For SIO files that are neither Enscribe files nor EDIT files, the buffer is used for
record blocking and unblocking. For record blocking and unblocking to happen,
your program must perform the following operations:

² Supply the block buffer name and length to the OPEN^FILE procedure call

² Size the block buffer to contain at least one logical record

² Set the access mode in the FCB to read only or write only

Caution. Do not mix regular Guardian procedure calls with SIO procedure calls on a file for
which you are providing a block buffer. You might corrupt your data.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 26

Purging Data When Opening

² If a block buffer is used in a TNS caller, it must be located in G[0:32767] of the
data area. This limitation does not apply to native callers. See Section 16,
Creating and Managing Processes, for details.

The following example specifies a block buffer named OUTBLKBUF that is 4096 bytes
long:

LITERAL OUTBUFLEN = 4096;
INT .OUTBLKBUF[0:OUTBUFLEN -1];
 .
 .
CALL OPEN^FILE(COMMON^FCB,
 OUTFILE,
 OUTBLKBUF,
 OUTBUFLEN);

Purging Data When Opening
You can delete all data from an SIO file when you open it by setting the PURGE^DATA
flag in the OPEN^FILE call. The file FCB must be set up for write-only access.

The following example purges the data from the file with FCB DFILE:

CALL SET^FILE(DFILE,
 ASSIGN^OPENACCESS,
 WRITE^ACCESS);
 .
 .

FLAGS := PURGE^DATA;
FLAGS^MASK := PURGE^DATA;
CALL OPEN^FILE(COMMON^FCB,
 DFILE,
 !block^buffer!,
 !block^bufferlen!,
 FLAGS,
 FLAGS^MASK);

Getting Information About SIO Files
Use the CHECK^FILE procedure to obtain information about a given SIO file. The
CHECK^FILE procedure gets its information from the FCB of the file and can include:

• File attributes set when the file was opened or explicitly set by the SET^FILE
procedure

• General status information about the file that is dynamically updated by the SIO
procedures that use the file

An example of retrieving attribute information might be to get the name of the file. The
FILE^FILENAME^ADDR operation returns the address of the name. Note that for
CHECK^FILE calls that return an address value, the TAL and pTAL forms of the call
differ.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 27

Reading and Writing SIO Files

pTAL example:

CALL CHECK^FILE(INFILE,
 FILE^FILENAME^ADDR,
 @INFNAME);

TAL example:

@INFNAME := CHECK^FILE(INFILE,
 FILE^FILENAME^ADDR);

One example of file status that you might want to retrieve is whether an I/O operation is
outstanding on a file. You may need this information, for example, before calling
WAIT^FILE to check for completion of an I/O operation. The FILE^LOGIOOUT
operation returns this information:

OUTSTANDING := CHECK^FILE(INFILE, FILE^LOGIOOUT);

In the above example, CHECK^FILE returns 1 in the integer variable OUTSTANDING if
there is an outstanding write operation and returns 2 if there is an outstanding read
operation on the file. If there is no I/O outstanding, CHECK^FILE returns 0. This
example is typical of the way CHECK^FILE returns status information.

Refer to the Guardian Procedure Calls Reference Manual for details on all operations
possible with the CHECK^FILE procedure call as well as syntax differences between
the TAL and pTAL versions.

Reading and Writing SIO Files
The READ^FILE procedure allows you to read records from an SIO file; the
WRITE^FILE procedure allows you to write records to a file. In addition, you can use
options to the SET^FILE and OPEN^FILE procedures to affect the way you perform I/O
with SIO procedures. This subsection explains how to use these procedures to
perform the following operations:

• Read records from an SIO file using the READ^FILE procedure.

• Write records to an SIO file using the WRITE^FILE procedure.

• Change the interactive read prompt using the OPEN^FILE, SET^FILE, or
READ^FILE procedure.

• Handle write operations that are longer than a logical record. Use either the
WRITE^FOLD flag of the OPEN^FILE procedure or the SET^WRITE^FOLD
operation of the SET^FILE procedure.

• Handle blank padding on reading and writing for records. Use either the
WRITE^PAD, WRITE^TRIM, or READ^TRIM flags of the OPEN^FILE procedure,
or the SET^WRITE^PAD, SET^WRITE^TRIM, or SET^READ^TRIM operations of
the SET^FILE procedure.

• Apply forms control to a printer using the forms-control-code parameter of the
WRITE^FILE procedure.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 28

Handling Basic I/O With SIO Files

Refer to Handling Nowait I/O, later in this section, for information about reading and
writing to SIO files opened for nowait I/O.

Refer to Handling Interprocess Messages for information on how to read and write to
the $RECEIVE file using SIO procedures.

Handling Basic I/O With SIO Files
The SIO routines permit only sequential access to files (except when reading files in
EDIT format). There is no support for positioning within a file to achieve random
access. The initial position for sequential access therefore depends on how the file
pointers are set up when the file is opened. The access mode determines the first
record accessed as follows:

• For read-only access, the initial position for sequential access is the first record in
the file. Successive read operations then step through the file one record at a
time. For key-sequenced files, record retrieval is in key sequence. For all other
file types, record retrieval is in physical-record order.

• For write-only access, the initial position is the end of the file. Each write operation
therefore appends a record to the file.

• For read/write access, the initial position is the first record in the file. If the first
access is a read operation, then the first record is read and the file pointers move
on to the second record for the next read or write operation. If the first access is a
write operation, then the first record gets overwritten and the file pointers move on
to the next record.

The following paragraphs describe how to use the READ^FILE and WRITE^FILE
procedures to perform I/O operations.

Reading Records With SIO Procedures
To read a record from a file, you must supply the READ^FILE procedure with the
names of the FCB of the file you wish to read from and of the buffer to receive the
record.

The following example reads one record from the input file. In addition to placing the
record into the read buffer, this call also returns the number of bytes read in the third
parameter:

CALL READ^FILE(INFILE,
 READ^BUFFER,
 BYTES^READ);

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 29

Changing the Interactive Read Prompt

Writing Records With SIO Procedures
To write a record to a file, you must supply the WRITE^FILE procedure with the name
of the FCB of the file to write to and of the buffer that contains the record to be written:

CALL WRITE^FILE(OUTFILE,
 WRITE^BUFFER,
 WRITE^COUNT);

Changing the Interactive Read Prompt
Normally, a READ^FILE call against a terminal file displays a question mark (?)
character on the terminal to prompt for input. (Internally, the SIO routine is actually
executing a WRITEREAD procedure call.) You can change the prompt to one of the
following:

• An alternate character specified in the prompt-char parameter of the
OPEN^FILE procedure

• An alternate character specified by a SET^FILE SET^PROMPT operation

• A string of characters supplied to the READ^FILE procedure

The following example uses the OPEN^FILE procedure to change the interactive
prompt to a colon:

PROMPT^CHAR ':=' ":";
CALL OPEN^FILE(COMMON^FCB,
 INPUT,
 INBLKBUF,
 INBLKLEN,
 !flags!,
 !flags^mask!,
 !max^recordlen!,
 PROMPT^CHAR);

The next example does the same using the SET^FILE procedure:

NEW^PROMPT ':=' ":";
CALL SET^FILE(INPUT,
 SET^PROMPT,
 NEW^PROMPT);

To issue a multiple-character prompt, you set the prompt in the read buffer and then
issue the READ^FILE procedure call. The prompt-count parameter specifies how
many characters to write to the terminal from the read buffer. For example:

BUFFER ':=' "Press 'y' or 'n': ";
PROMPT^COUNT := 18;
CALL READ^FILE(INPUT,
 BUFFER,RCOUNT,PROMPT^COUNT);

Note that the prompt is overwritten by the text returned in the read buffer.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 30

Handling Long Writes

Handling Long Writes
The OPEN^FILE and SET^FILE procedures provide options that allow write operations
that are longer than the logical-record length without losing any data.

The SIO routines normally truncate write operations that are longer than the logical-
record length, saving only that part of the write that fits into the logical record. In such
cases, the system does not issue an error. However, if you issue the OPEN^FILE
procedure with the WRITE^FOLD flag set or the SET^FILE procedure with the
SET^WRITE^FOLD operation, then the write operation will be split into as many logical
records as it needs.

The following example shows how you can use the OPEN^FILE procedure to write a
42-character buffer to a file whose logical-record length is 16 bytes. The data is saved
in the file in three logical records:

RECORD^LENGTH := 16;
CALL SET^FILE(DFILE,
 ASSIGN^RECORDLENGTH,
 RECORD^LENGTH);

CALL OPEN^FILE(COMMON^FCB,
 DFILE,
 !block^buffer!,
 !block^bufferlen!,
 WRITE^FOLD,
 WRITE^FOLD);
 .
 .
BUFFER ':=' "This write operation is more than 16 bytes"
 -> @S^PTR;
CALL WRITE^FILE(DFILE,
 BUFFER,
 @S^PTR '-' @SBUFFER);

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 31

Handling Padding Characters

The next example uses the SET^FILE procedure to permit long writes. Here, the write-
fold feature is turned on just before a record is written to the file. Then it is turned off
again after the record is written. Subsequent writes are then limited to one logical
record.

LITERAL ON = 1;
LITERAL OFF = 0;
RECORD^LENGTH := 16;
CALL SET^FILE(DFILE,
 ASSIGN^RECORDLENGTH,
 RECORD^LENGTH);

CALL OPEN^FILE(COMMON^FCB,
 DFILE);
 .
 .
BUFFER ':=' "This write operation is more than 16 bytes"
 -> @S^PTR;
CALL SET^FILE(DFILE,
 SET^WRITE^FOLD,
 ON);

CALL WRITE^FILE(DFILE,
 BUFFER,
 @S^PTR '-' @SBUFFER);

CALL SET^FILE(DFILE,
 SET^WRITE^FOLD,
 OFF);

By default, the write-fold feature is turned off.

When reading records that were written using the write-fold feature, you must issue
one READ^FILE procedure call for each logical record.

Handling Padding Characters
Several options to the OPEN^FILE and SET^FILE procedures can affect the way blank
padding is applied to records written and read by SIO procedures.

The SIO routines support the following operations:

• Trimming trailing blanks from a logical record before writing

• Padding short logical records with blanks before writing

• Trimming trailing blanks from logical records after reading

The following paragraphs explain how to accomplish these operations using SIO
procedures.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 32

Handling Padding Characters

Trimming Trailing Blanks Before Writing
Use the WRITE^TRIM flag with the OPEN^FILE procedure or the SET^FILE
SET^WRITE^TRIM operation to remove trailing blanks from a record before writing the
record to a file. By default, write-trailing-blank-trimming is turned on.

The following statement uses the OPEN^FILE procedure to turn off write-trailing-blank-
trimming because WRITE^TRIM is selected in the flag mask while the flags
parameter defaults to zeros:

CALL OPEN^FILE(COMMON^FCB,
 DFILE,
 !block^buffer!,
 !block^bufferlen!,
 !flags parameter!,
 WRITE^TRIM);

The following statement turns it back on again using SET^FILE:

LITERAL ON = 1;
CALL SET^FILE(DFILE,
 SET^WRITE^TRIM,
 ON);

In the following example, the WRITE^FILE procedure would write 24 bytes of data into
the logical record in the data file if write-trailing-blank-trimming was turned off.
However, because write-trailing-blank-trimming is turned on, trailing blanks are not
copied to the file. Therefore only 16 bytes are actually written:

LITERAL ON = 1;
RECORD^LENGTH := 24;
CALL SET^FILE(DFILE,
 ASSIGN^RECORDLENGTH,
 RECORD^LENGTH);

CALL OPEN^FILE(COMMON^FCB,
 DFILE,
 !block^buffer!,
 !block^bufferlen!,
 !flags parameter!,
 WRITE^TRIM);
 .
 .
CALL SET^FILE(DFILE,
 SET^WRITE^TRIM,
 ON);

WRITE^BUFFER[0] ':=' " ";
WRITE^BUFFER[1] := WRITE^BUFFER[0] FOR 23;
WRITE^BUFFER ':=' "This is a record";
CALL WRITE^FILE(DFILE,
 WRITE^BUFFER,
 RECORD^LENGTH);

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 33

Handling Padding Characters

Padding Short Records With Blanks When Writing
Use the WRITE^PAD flag with the OPEN^FILE procedure or the SET^FILE
SET^WRITE^PAD operation to pad a short record with blanks before writing the record
to a file. By default, write-blank-padding is turned on for disk files with fixed-length
records and turned off for all other files.

The following statement uses the OPEN^FILE procedure to turn on write-blank-
padding:

CALL OPEN^FILE(COMMON^FCB,
 DFILE,
 !block^buffer!,
 !block^bufferlen!,
 WRITE^PAD,
 WRITE^PAD);

The following statements have the same effect using SET^FILE:

LITERAL ON = 1;
 .
 .
CALL SET^FILE(DFILE,
 SET^WRITE^PAD,
 ON);

In the next example, the WRITE^FILE procedure would normally write 16 bytes of data
into the logical record in the data file of variable-length records. However, because the
WRITE^PAD flag is set in the OPEN^FILE call, the record gets padded with trailing
blanks up to the length of the logical record:

RECORD^LENGTH := 24;
CALL SET^FILE(DFILE,
 ASSIGN^RECORDLENGTH,
 RECORD^LENGTH);

VST071.VSD

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 34

Handling Padding Characters

CALL OPEN^FILE(COMMON^FCB,
 DFILE,
 !block^buffer!,
 !block^bufferlen!,
 WRITE^PAD,
 WRITE^PAD);
 .
 .
WRITE^BUFFER ':=' "This is a record" -> @S^PTR;
CALL WRITE^FILE(DFILE,
 WRITE^BUFFER,
 @S^PTR '-' @SWRITE^BUFFER);

Trimming Trailing Blanks on Reading
By default, trailing blanks are trimmed from records after reading. You can turn this
feature on or off using the READ^TRIM flag with the OPEN^FILE procedure or the
SET^FILE SET^READ^TRIM operation. When read-trailing-blank-trimming is turned
on and the READ^FILE procedure reads a record with trailing blanks, the entire record
is read into the read buffer, including the blanks. However, the count of bytes read
returned by the READ^FILE procedure counts only those characters that precede the
first of the trailing blanks.

If read-trailing-blank-trimming is turned off, the count of bytes read indicates the length
of the entire record.

The following statement uses the OPEN^FILE procedure to turn off read-trailing-blank-
trimming:

CALL OPEN^FILE(COMMON^FCB,
 DFILE,
 !block^buffer!,
 !block^bufferlen!,
 !flags parameter!,
 READ^TRIM);

VST072.VSD

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 35

Handling Padding Characters

The following statements turn it back on again using SET^FILE:

LITERAL ON = 1;
 .
 .
CALL SET^FILE(DFILE,
 SET^READ^TRIM,
 ON);

In the next example, the READ^FILE call with read-trailing-blank-trimming turned off
would indicate that 24 bytes have been read (the length of the record). However,
because read trailing-blank-trimming is turned on, the READ^FILE call returns a read
count of only 16 bytes:

LITERAL ON = 1;
RECORD^LENGTH := 24;
CALL SET^FILE(DFILE,
 ASSIGN^RECORDLENGTH,
 RECORD^LENGTH);

CALL OPEN^FILE(COMMON^FCB,
 DFILE,
 !block^buffer!,
 !block^bufferlen!,
 !flags parameter!,
 READ^TRIM);
 .
 .
CALL SET^FILE(DFILE,
 SET^READ^TRIM,
 ON);

CALL READ^FILE(DFILE,
 READ^BUFFER,
 BYTES^READ);

VST073.VSD

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 36

Writing to a Printer

Writing to a Printer
A program that uses SIO procedures can control or write to a printer in a way similar to
programs that use regular Guardian procedure calls. Such programs can use the
printer control language (PCL) as described in Section 11, Communicating With
Printers, and in the user guide for your printer.

A program can also enable level-3 spooling through SIO. Level-3 spooling uses the
spooler interface procedures to improve performance when writing to a spooler
collector by using buffered I/O. (Refer to the description of the OPEN^FILE procedure
in the Guardian Procedure Calls Reference Manual.)

Communicating with a printer using SIO procedure calls has some differences from
communicating using regular Guardian procedure calls. These differences affect the
following operations:

• Moving the printer automatically to the top of the form when you open it

• Accessing control functions through the WRITE^FILE procedure instead of the
CONTROL procedure

• Issuing PCL commands using the WRITE^FILE procedure

The following paragraphs explain how to perform these operations using SIO
procedure calls.

Opening a Printer and Issuing an Automatic Top of Form
To access a printer using SIO procedures, you must open the printer file using the
OPEN^FILE procedure. By default, the SIO routines position the printer at the top of
the form if it is opened for write access (but not read/write access):

CALL OPEN^FILE(COMMON^FCB,
 PFILE);

Use the AUTO^TOF flag in the flags mask without setting the corresponding bit in the
flags parameter if you do not want to be automatically moved to the top of the form:

CALL OPEN^FILE(COMMON^FCB,
 PFILE,
 !block^buffer!,
 !block^bufferlen!,
 !flags parameter!,
 AUTO^TOF);

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 37

Accessing EDIT Files

Issuing CONTROL Functions
Use the forms-control-code parameter of the WRITE^FILE procedure to provide
forms control for the printer. This parameter can take any value that is valid for the
second parameter of CONTROL operation 1. You should not, however, try to use the
CONTROL procedure; instead use WRITE^FILE.

The following example issues a form feed before writing the contents of the write buffer
to the file:

LITERAL FORM^FEED = 0;
 .
 .
CALL WRITE^FILE(PFILE,
 BUFFER,
 WCOUNT,
 !reply^error^code!,
 FORM^FEED);

Refer to the Guardian Procedure Calls Reference Manual for a complete list of values
for the second parameter to CONTROL operation 1.

Issuing PCL Commands
You can issue any given PCL command supported by a given printer using the
WRITE^FILE procedure call. You simply supply the appropriate escape sequence in
the write buffer. The following example sets the left and right margins:

WRITE^BUFFER ':=' [%33,"&a99m9L"] -> @S^PTR;
CALL WRITE^FILE(PFILE,
 WRITE^BUFFER,
 @S^PTR '-' @SWRITE^BUFFER);

Refer to Section 11, Communicating With Printers, for a description of PCL and some
commonly used escape sequences.

Accessing EDIT Files
SIO procedures provide one programmatic way to write to files in EDIT format. The
other way is to use the IOEdit procedures described in Section 14, Using the IOEdit
Procedures.

Using SIO procedures, access to an EDIT file is like access to any other SIO file, with
the following exceptions:

• You must open an EDIT file in either read-only or write-only mode; any attempt to
open an EDIT file in read/write mode will fail. In addition, the open must specify a
block buffer.

• When reading records in an EDIT file, you can save the current position and return
to it later.

The following paragraphs explain how to perform these operations.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 38

Opening an EDIT File

Opening an EDIT File
The way you open an EDIT file depends on whether you will read from the file or write
to the file. Specifically, the minimum size of the block buffer is different for reading and
for writing. The block buffer provides space for the EDIT file pages as they are
assembled or disassembled.

Writing to an EDIT File

To write to a file in EDIT format, you must open the file with a block buffer of at least
1024 bytes:

CALL SET^FILE(EDITFILE,
 ASSIGN^OPENACCESS,
 WRITE^ACCESS);

EDBLKLEN := 1024;
CALL OPEN^FILE(COMMON^FCB,
 EDITFILE,EDBLKBUF,EDBLKLEN);

Attempting to open an EDIT file for writing with a block buffer less than 1024 bytes long
causes SIO error 518, SIOERR^BUFTOOSMALL.

Reading From an EDIT File

To read from a file in EDIT format, you must open the file with a block buffer of at least
144 bytes:

CALL SET^FILE(EDFILE,
 ASSIGN^OPENACCESS,
 READ^ACCESS);

EDBLKLEN := 256;
CALL OPEN^FILE(COMMON^FCB,
 EDFILE,EDBLKBUF,EDBLKLEN);

Attempting to open an EDIT file for reading with a block buffer less than 144 bytes long
also causes an SIOERR^BUFTOOSMALL error (error 518).

Setting the Read Position
Use the SET^EDITREAD^REPOSITION operation of the SET^FILE procedure to read
from a specific position in an EDIT file.

Normally, you read from an EDIT file sequentially, just as from any other file. However,
a feature specific to EDIT files allows you to save the current position and then return
to it later.

The reposition mechanism works like this. While working on the file, you reach a
position that you may want to return to later.

1. Save the current position. You do this by saving the second through fourth words
of the block buffer you specified to the OPEN^FILE procedure. These words

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 39

Handling Nowait I/O

contain the current file position in an internal format. Note that the current position
points to the start of the record that sequentially follows the last record read.

2. Continue processing the EDIT file.

3. Later when you want to return to the saved position, you simply restore the three
words to the block buffer and then reposition the file pointer by issuing the
SET^FILE SET^EDITREAD^REPOSITION operation.

The following example demonstrates the above sequence:

!Save the current position to return to later:

RETURN^POSITION ':=' EDBLKBUF[1] FOR 3 WORDS;

CALL READ^FILE(EDFILE,
 READ^BUFFER,
 BYTES^READ);
 .
 .
!Additional I/O to the EDIT file moves the current
!file position:

CALL READ^FILE(EDFILE,
 READ^BUFFER,
 BYTES^READ);
 .
 .
!Reposition the file pointer to return to saved position:

EDBLKBUF[1] ':=' RETURN^POSITION FOR 3 WORDS;
CALL SET^FILE(EDFILE,
 SET^EDITREAD^POSITION);

!Read again the record that was read just after saving the
!position:

CALL READ^FILE(EDFILE,
 READ^BUFFER,
 BYTES^READ);

Handling Nowait I/O
SIO procedures can access files using waited or nowait I/O. With waited I/O, a
process waits for each I/O operation to finish before continuing. With nowait I/O, the
process initiates an I/O operation and then continues processing; your process then
executes in parallel with the I/O operation. Section 4, Using Nowait Input/Output,
provides a detailed discussion of waited and nowait I/O.

Waiting for One File
In its simplest form, a nowait I/O operation with SIO procedures consists of the
following steps:

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 40

Waiting for One File

1. Issue a single SIO operation against one file

2. Continue processing while the I/O takes place

3. Finish the I/O with a call to the WAIT^FILE procedure

Figure 15-3 shows nowait I/O applied to the READ^FILE procedure. The same model
also applies to the WRITE^FILE procedure.

To perform nowait I/O on a file, you must open that file specifically for nowait I/O. You
do so by setting the NOWAIT flag in the OPEN^FILE procedure call:

CALL OPEN^FILE(COMMON^FCB,
 DFILE,
 !block^buffer!,
 !block^bufferlen!,
 NOWAIT,
 NOWAIT);

The NOWAIT flag opens the file with a wait depth of 1. This means that you cannot
have more than one outstanding I/O operation against one file. Unlike regular
Guardian procedures, SIO procedures do not allow you to open files with a wait depth
greater than 1.

Figure 15-3. Nowait I/O Applied to a Single SIO File

Note. Unlike file system I/O, SIO allows you to perform waited I/O against a file that was
opened for nowait I/O. In the READ^FILE or WRITE^FILE procedure you specify a zero in the
nowait parameter or omit the parameter. However, you cannot request a nowait operation
against a file that is open for waited operations.

VST074.VSD

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 41

Waiting for One File

Once the file is open, you can issue an I/O operation against it, such as the
READ^FILE operation shown below. Note that the sixth parameter must contain a
positive number for a nowait operation:

CALL READ^FILE(DFILE,
 READ^BUFFER,
 BYTES^READ,
 !prompt^count!,
 !max^read^count!,
 1);

Nothing is returned at this point in either the read buffer or the count of bytes read,
because the I/O operation has not yet finished.

You complete the I/O operation by calling the WAIT^FILE procedure. You must supply
the FCB name, a variable to contain the read count, and a value for the time-out
parameter. The time-out parameter causes WAIT^FILE to respond in one of the
following ways:

• Wait indefinitely for the I/O to finish by omitting the time-out parameter or setting
it to -1D:

CALL WAIT^FILE(DFILE,
 BYTES^READ);

On return, BYTES^READ contains the number of bytes transferred by the I/O
operation. The buffer specified in the I/O call contains the transferred bytes.

• Return immediately whether the I/O finished or not by setting the time-out
parameter to zero. This option makes sense only if the WAIT^FILE call is in a loop
that gets executed repeatedly until the I/O finishes:

LITERAL RETURN^IMMEDIATELY = 0;
 .
 .
CALL WAIT^FILE(DFILE,
 BYTES^READ,
 RETURN^IMMEDIATELY);

You can use the FILE^LOGIOOUT operation of the CHECK^FILE procedure to
check for completion. If the return value is nonzero, then the I/O is still
outstanding. If the return value is zero, then the I/O has finished.

OUTSTANDING := CHECK^FILE(DFILE,
 FILE^LOGIOOUT);

• Wait until either the I/O finishes or the time-out value expires. You specify the time
in one-hundredths of a second. The following example times out after 30 seconds:

TIME^LIMIT := 3000D;
CALL WAIT^FILE(DFILE,BYTES^READ,TIME^LIMIT);

Again you can use the FILE^LOGIOOUT operation of the CHECK^FILE procedure
to find out whether the I/O finished.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 42

Waiting for Any File

15 Using the Sequential Input/Output Procedures

Waiting for Any File
You can use SIO procedures to concurrently apply nowait I/O to multiple files. In other
words, you can issue nowait I/O operations against more than one file and then wait for
any of the I/O operations to finish.

Here, you need to use the AWAITIO procedure as well as the WAIT^FILE procedure to
complete the I/O operation. The AWAITIO procedure responds to the first I/O to finish,
and then the WAIT^FILE procedure updates the file-state information. Figure 15-4
shows this model (excluding calls to the WAIT^FILE procedure).

A typical use for concurrent nowait operations is in a process that communicates with
more than one terminal. The process can issue prompts to several users without
having to wait for a reply. Instead, the process can continue processing requests from
active users. An inactive user can become active again simply by responding to the
prompt.

The important steps are outlined as follows:

1. Open each file for nowait I/O using the OPEN^FILE procedure with the NOWAIT
flag set. This step is the same as for the single-file model, except that you need to
do it once for each file.

2. Establish the file numbers of each of the open files. Nowait I/O applied to multiple
files is one of the few occasions when you would mix SIO procedures with regular

Figure 15-4. Nowait I/O Applied to Multiple SIO Files

VST075.VSD

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 43

Waiting for Any File

Guardian procedures on the same file. You therefore need to obtain the file
numbers to be able to access the files using the AWAITIO call.

3. Issue a nowait I/O operation against each file. Here, READ^FILE calls are issued.

4. Issue the AWAITIO call to receive the first I/O operation that finishes. You need to
set the file number to -1, indicating that a response from any file will do. On return
from the AWAITIO call, the file-number parameter indicates which I/O finished;
the count-returned parameter contains the number of bytes read, and the data
itself is in the buffer indicated in the originating READ^FILE call.

5. Check the file number returned by the AWAITIO call to see which I/O finished, and
execute the code appropriate for that file.

6. For the file established in the previous step, you must update the file-state
information in the FCB. You have to do this manually, because AWAITIO is not an
SIO procedure and therefore does none of this for you. You must update:

a. The I/O done flag

b. The number of bytes transferred

c. The error code

A combination of SET^FILE and WAIT^FILE procedure calls enables you to do
this.

The following TAL example provides skeletal code for waiting for I/O from more than
one SIO file:

!Open all terminals for nowait I/O:
CALL OPEN^FILE(COMMON^FCB,TERM1,
 !block^buffer!,
 !block^bufferlen!,
 NOWAIT,NOWAIT,
 !max^record^len!,
 !prompt^char!,
 OUTFILE);
CALL OPEN^FILE(COMMON^FCB,TERM2,
 !block^buffer!,
 !block^bufferlen!,
 NOWAIT,NOWAIT,
 !max^record^len!,
 !prompt^char!,
 OUTFILE);

!Establish the file numbers of the open terminal files. (We
!need these values later for getting information through the
!FILE_GETINFO_ procedure call):
@T1^FNUM := CHECK^FILE(TERM1,FILE^FNUM^ADDR);
@T2^FNUM := CHECK^FILE(TERM2,FILE^FNUM^ADDR);
 .
 .
!Start a read operation on each open terminal file:
CALL READ^FILE(TERM1,READ^BUFFER,BYTES^READ,

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 44

Waiting for Any File

 !prompt^count!,
 !max^read^count!,
 1);
CALL READ^FILE(TERM2,READ^BUFFER,BYTES^READ,
 !prompt^count!,
 !max^read^count!,
 1);

!Use the AWAITIO call to receive the first I/O to finish:
FNUM := -1;
CALL AWAITIO(FNUM,
 !buffer^address!,
 RCOUNT);

!If response received from terminal 1:
IF FNUM := T1^FNUM THEN
BEGIN

 !Establish the error value caused by AWAITIO:
 CALL FILE_GETINFO_(T1^FNUM,ERROR);

 !Update the FCB to indicate I/O complete:
 CALL SET^FILE(TERM1,SET^PHYSIOOUT,0);

 !Update the FCB with the number of bytes transferred:
 CALL SET^FILE(TERM1,SET^COUNTXFERRED,RCOUNT);

 !Update the FCB with the error number returned from
 !the FILE_GETINFO_ call following AWAITIO:
 CALL SET^FILE(TERM1,SET^ERROR,ERROR);

 !Update the file-state information:
 CALL WAIT^FILE(TERM1,BYTES^READ);
 !Process the read from terminal 1
 .
 .
END
ELSE

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 45

Handling Interprocess Messages

!Or if response came from terminal 2:
BEGIN

 !Establish the error value returned from AWAITIO:
 CALL FILE_GETINFO_(T2^FNUM,ERROR);

 !Update the FCB to indicate I/O complete:
 CALL SET^FILE(TERM2,SET^PHYSIOOUT,0);

 !Update the FCB with the number of bytes transferred:
 CALL SET^FILE(TERM2,SET^COUNTXFERRED,RCOUNT);

 !Update the FCB with the error number returned from the
 !FILE_GETINFO_ call following AWAITIO:
 CALL SET^FILE(TERM2,SET^ERROR,ERROR);

 !Update the file-state information:
 CALL WAIT^FILE(TERM2,BYTES^READ);
 !Process the read from terminal 2
 .
 .
END;

Handling Interprocess Messages
This subsection discusses how processes communicate with each other using SIO
procedures. The SIO procedures perform most of the functions provided by the
regular Guardian procedures.

As when working with file-system procedures directly, you send a message to another
process and wait for a reply. Typically, data is expected in the reply; see Passing
Messages and Reply Text Between Processes, later in this subsection. However, you
can use a simpler model for sending messages and receiving replies if the receiving
process will never send data in the reply; see Passing Messages Between Processes:
No Reply Data.

Refer to Section 6, Communicating With Processes, for details of interprocess
communication (IPC) features supported by Guardian procedures as well as a
conceptual discussion of IPC.

Passing Messages and Reply Text Between Processes
Typically, when one process sends a message to another process, the recipient
process sends some data back to the sender in a reply. This model of interprocess
communication is sometimes called two-way communication. Here, the requester
process sends a message to the server and then typically waits until the server reads
the message, processes the message, and sends a reply.

Either process can use nowait I/O or waited I/O. The example given later in this
subsection uses waited I/O. The application of nowait I/O to interprocess

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 46

Passing Messages and Reply Text
Between Processes

communication, however, is no different than for any other use of nowait I/O. Refer to
Handling Interprocess Messages earlier in this section.

Before sending and receiving messages, all processes involved must have initialized
file FCBs for each file accessed by SIO procedures and must also have initialized the
common FCB. Refer to Initializing SIO Files Using TAL or pTAL DEFINEs, earlier in
this section. Specifically, the requester process must initialize at least an FCB for the
server process file, and the server process file must initialize at least an FCB for the
$RECEIVE file.

Sending a Message to Another Process: Reply Data
Expected
To send a message to another process and receive reply data, the requester issues a
READ^FILE procedure call. This call uses the same buffer to send a message and
receive the reply.

The following example sends 40 bytes from the I/O buffer to the server process
(designated as the process’s OUT file) and waits for a reply. The reply returns in the
same buffer, and the count of bytes is returned in the third parameter:

CALL READ^FILE(OUTFILE,BUFFER,BYTES^READ,40,40);

Receiving and Replying to Messages
The server process receives the message from the requester process by issuing a
READ^FILE procedure call against its $RECEIVE file. If waited I/O is used, the server
process waits on this call for requests to come in from a requester:

CALL READ^FILE(RECEIVE^FILEFCB,
 BUFFER,
 BYTES^READ);

When the READ^FILE call finishes, the server processes the received message before
replying to the requester. The reply is done by issuing a WRITE^FILE procedure call
against the $RECEIVE file:

CALL WRITE^FILE(RECEIVE^FILEFCB,
 BUFFER,
 WCOUNT,
 ERROR);

By writing a message to $RECEIVE, the server process completes the READ^FILE
call issued by the requester. In addition to returning reply data and the length of the
reply, the WRITE^FILE procedure can also return an error indication to the server in
the reply-error-code parameter (the fourth parameter). You can use this
parameter to pass back to the requester an application-dependent error code. The
error number is picked up by the corresponding READ^FILE procedure in the
requester process in the error return.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 47

Passing Messages and Reply Text
Between Processes

Sending and Receiving Messages in Two-Way
Communication: An Example
Figure 15-5 shows an example of two-way communication between a requester
process and a server process. These processes pass data between terminal users in
both directions.

Each process reads some data from its input file and then sends the data to its output
file and waits for a response. On receiving the response, the server process sends the
response to its input file.

At run time, the requester process is assigned the server process as its output file; its
input file defaults to the home terminal. The server process takes $RECEIVE as its
input file and defaults its output file to its home terminal.

Data exchange between the requester and server processes takes place as follows:

1. The requester process prompts its terminal user for some data by issuing a
READ^FILE procedure call. The user’s response is returned in the read buffer.

2. The requester sends the user’s message to the server by issuing a READ^FILE
procedure call against the $SERV file. This call also waits for a response from the
server.

3. Meanwhile, the server has been waiting on the READ^FILE call for a message on
$RECEIVE. It now receives the message from the requester.

4. The server processes the message by sending it to its home terminal using a
READ^FILE procedure call. The READ^FILE procedure waits for a response from
the terminal user.

5. The server process sends the reply back to the requester by issuing a
WRITE^FILE procedure call against the $RECEIVE file.

Figure 15-5. Requester and Server Processes in Two-Way Communication

VST076.VSD

.

.
DO
BEGIN

CALL READ^FILE
(INFILE,BUFFER,COUNT,,40);

CALL READ^FILE
(OUTFILE,BUFFER,COUNT,40,40);

CALL WRITE^FILE
(INFILE,BUFFER,COUNT,ERROR);

END
UNTIL BUFFER = “EXIT”;
.
.

.

.
DO
BEGIN

CALL READ^FILE
(INFILE,BUFFER,COUNT,,40);

CALL READ^FILE
(OUTFILE,BUFFER,COUNT,,40);

CALL WRITE^FILE
(INFILE,BUFFER,COUNT,ERROR);

END
UNTIL BUFFER = “EXIT”;
.
.

Mes
sa

ge

Rep
ly

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 48

Passing Messages Between Processes:
No Reply Data

Passing Messages Between Processes: No Reply Data
If no data is expected in the reply from the server process, then the requester process
can send messages to the server by issuing WRITE^FILE calls instead of READ^FILE.
The reply is received as soon as the server reads the message, but it contains no data.
There is no need for the server to explicitly send a reply. The only acknowledgment
that the sender (requester) receives is to be assured that the recipient (server) read the
message. This design is sometimes called one-way communication.

As with two-way communication, you must initialize all FCBs and the common FCB in
both processes before trying to send messages between the processes. Refer to
Initializing SIO Files Using TAL or pTAL DEFINEs earlier in this section.

Sending a Message to Another Process: No Reply Data
With all FCBs initialized, you need to do the following to send a message to another
process:

• Open the server process using the OPEN^FILE procedure. You can use waited or
nowait I/O. The following example uses waited I/O:

CALL OPEN^FILE(COMMON^FCB,
 SERVER^FILE);

• Write the message to the server process using the WRITE^FILE procedure. This
example shows writing to a server opened with waited I/O:

BUFFER ':=' "Hello Server!" -> @S^PTR;
CALL WRITE^FILE(SERVER^FILE,
 BUFFER,
 @S^PTR '-' @SBUFFER);

Here, the WRITE^FILE procedure returns when the server process has read the
message from its $RECEIVE file.

Receiving Messages From Another Process: No Reply Data
Assuming that the server process has initialized a file FCB for each file that it will
access, you need to do the following to receive messages from a requester process:

• Open the $RECEIVE file. You can open this file for waited or nowait I/O. The
following example opens $RECEIVE for waited I/O:

CALL OPEN^FILE(COMMON^FCB,
 RECV^FCB);

• Read each message from $RECEIVE with a READ^FILE procedure call.
Following the read operation, the read buffer contains the message and the
count-returned parameter indicates the number of bytes read.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 49

Passing Messages Between Processes:
No Reply Data

The following example reads a message from $RECEIVE:

CALL READ^FILE(RECV^FCB,
 READ^BUFFER,
 BYTES^READ);

If you choose not to explicitly reply to the message, then on the next READ^FILE
call issued by the server against $RECEIVE, SIO will notice that the preceding
READ^FILE was never matched with a WRITE^FILE. SIO will then send a reply
for the preceding READ^FILE.

Sending and Receiving Messages in One-Way
Communication: An Example
The example shown in Figure 15-6 shows a client and a server process engaging in
one-way communication to pass messages from one terminal user to another. Note
that the code for each process is identical, but the input and output files assigned to
each process at run time are different.

Each process initializes an FCB for the input file and an FCB for the output file and
opens both files with read/write access. Each process then enters a loop that reads a
message from the input file and then copies the same message to the output file.

The differences between the two processes are in the input and output files that are set
up at run time. For the server process, the RUN command names the server $SERV
and designates $RECEIVE as its input file. The output file defaults to the home
terminal as specified in the Startup message.

The requester process takes its home terminal as its input file and $SERV as its output
file.

The combined action of the requester and server processes is as follows:

1. The requester process prompts the terminal user for a message using a call to the
READ^FILE procedure.

2. The requester sends the same message to the server process by issuing a
WRITE^FILE procedure call to $SERV. The requester then waits for the write to
finish.

3. The server process reads the message from its $RECEIVE file using the
READ^FILE procedure. The requester remains suspended while the server
processes the request.

4. The server writes the received message to its home terminal by issuing a
WRITE^FILE procedure call.

5. The requester is reactivated when the server issues the next READ^FILE call.

Both processes terminate when the user at the sending terminal types “EXIT.”

Figure 15-6 shows the code for the pTAL version of the program, and Figure 15-7
shows the code for the TAL version.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 50

Passing Messages Between Processes:
No Reply Data

Figure 15-6. Requester and Server Processes in One-Way Communication
(pTAL Version)

VST143.VSD

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 51

Passing Messages Between Processes:
No Reply Data

Figure 15-7. Requester and Server Processes in One-Way Communication
(TAL Version)

VST077.VSD

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 52

Communicating With Multiple Processes

Communicating With Multiple Processes
A server process can respond to messages from more than one requester process
using either the one-way or the two-way communication model. Normally, however,
SIO permits only one process pair to have the server process open at a time. To allow
multiple openers, you need to handle the Open and Close messages in your
application rather than let SIO handle them. This way, you can permit as many
openers as you wish. See Handling System Messages, later in this section, for details.

Because your server program needs to handle Open and Close messages itself, you
also need to inform SIO that the server has been opened. Otherwise, SIO will assume
that the server has not been opened and will reject messages received on $RECEIVE
by returning error 60. A procedure call such as the following prevents SIO from
rejecting messages:

CALL SET^FILE(RECV^FCB,SET^RCVOPENCNT,1);

When multiple openers are permitted, user messages are queued on $RECEIVE for
the server to read. The server simply reads the first message on $RECEIVE,
processes it, then reads the next message, and so on.

Note that servers that use SIO procedures cannot queue messages for multithreaded
processing like regular Guardian procedure calls can. This is because the OPEN^FILE
procedure always opens $RECEIVE with a receive depth of one; therefore, the server
process can work with only one message at a time. Refer to Section 6,
Communicating With Processes, for details on how to perform message queuing with
Guardian procedure calls.

Handling System Messages
SIO handles system messages automatically. However, you can use the SET^FILE
SET^SYSTEMMESSAGES or SET^SYSTEMMESSAGESMANY operation to select
messages to be returned to your program for processing. How your program should
handle system messages is described later in this subsection. First, this subsection
discusses the way SIO processes system messages.

SIO processes system messages to achieve the following:

• Keep track of openers

• Keep track of the BREAK key

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 53

Selecting or Masking System Messages

When keeping track of openers, SIO maintains a list of openers and limits the number
of openers to one process pair. If more processes attempt to open your process, the
SIO procedures reject the extra open attempts. To control attempts to open a process,
SIO monitors the following system messages:

If you need to allow more than one opener, your process must handle the above
messages.

To perform BREAK handling, SIO monitors system message -105 (or -20), the Break-
on-device message. This message signals the fact that the BREAK key was pressed.
SIO saves this information for processing by the CHECK^BREAK procedure. See
Handling BREAK Ownership, later in this section, for details.

The remainder of this subsection shows how to override automatic system-message
handling and process messages within your program. Specifically it shows how to
perform the following operations:

• Mask system messages that you want your program to accept

• Read system messages from the $RECEIVE file

Selecting or Masking System Messages
Use the SET^SYSTEMMESSAGESMANY operation of the SET^FILE procedure to
select which system messages you want your process to receive.

You specify a four-word mask with the SET^SYSTEMMESSAGESMANY operation.
Each system message that could be sent to the process has a bit position in the mask.

-2 (Processor down) If the list of openers includes a process from the
failing CPU, then SIO removes that process from the
list.

-100 (Remote processor
down)

If the list of openers includes a process from the
remote CPU that failed, then SIO removes that
process from the list.

-103 (Process open) SIO checks a list of openers to see whether another
process already has the current process open. If no
other process has the current process open, SIO
puts the process handle of the opener into the list of
openers and the open continues. If the current
process is already open, SIO rejects the open
request with an error code of 12 (file in use).

-104 (Process close) SIO removes the closing process from the list of
openers.

-110 (Loss of communication
with a network node)

If the list of openers includes a process from a CPU
on the failing network node, then SIO removes that
process from the list.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 54

Reading System Messages

If the bit is set to 1, then your process receives the corresponding system message. If
the bit is 0, then your process does not receive the message.

The following example accepts only messages that indicate an attempted open or
close of the current process. Bit 14 in the second word of the mask corresponds to the
Open message. The example shows both the native and TNS forms of the SET^FILE
call.

MASK[0] := %B0010000000000000;
MASK[1] := %B0000000000000011;
MASK[2] := 0;
MASK[3] := %B0000101000000000;
?IF PTAL !Begin pTAL statement
CALL SET^FILE(RECV^FILEFCB,
 SET^SYSTEMMESSAGESMANY,,,@MASK);
?ENDIF PTAL !End pTAL statement
?IFNOT PTAL !Begin TAL statement
CALL SET^FILE(RECV^SYSTEMMESSAGESMANY,@MASK)
?ENDIF PTAL !End TAL statement

Specifically, the process receives the following system messages:

Refer to the Guardian Procedure Calls Reference Manual for a complete list of all
system messages and mask-bit positions.

Reading System Messages
Use the READ^FILE procedure to read a system message from the $RECEIVE file. If
the message you read is a system message, then the READ^FILE procedure returns
error number 6, assuming you requested to receive this message using the SET^FILE
SET^SYSTEMMESSAGES[MANY] operation:

ERROR := READ^FILE(RECEIVE^FILE^FCB,BUFFER,BYTES^READ);
IF ERROR = 6 THEN
BEGIN
 !Process system message
END;

Handling BREAK Ownership
This subsection describes how to use the CHECK^BREAK, GIVE^BREAK, and
TAKE^BREAK procedures to manipulate BREAK ownership and respond to the
pressing of the BREAK key.

Word Bit Message

 0 2 (-2) Processor down

 1 14 (-103 or -30) Open

 1 15 (-104 or -31) Close

 3 4 (-110) Loss of communication with network node

 3 6 (-100) Remote Processor down

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 55

Taking BREAK Ownership

This subsection is concerned with handling the BREAK key on a terminal that is
initialized and opened as an SIO file. For details on how to handle the BREAK key for
terminal files opened with regular Guardian procedure calls, refer to Section 10,
Communicating With Terminals.

Briefly, the purpose of the BREAK key is to allow the program user to signal the
process. A common example of the use of the BREAK key is to signal the TACL
process to return to command-input mode when running an application. If your
program does its own BREAK handling, however, you can cause the BREAK key to
initiate some function of your choice.

The major BREAK-handling operations with SIO procedures are outlined below and
described in detail in the paragraphs that follow.

• Take BREAK ownership using the TAKE^BREAK procedure. The BREAK function
can be owned by only one process at a time. If you do not take BREAK
ownership, then the effect of pressing the BREAK key is determined by the
process that now owns the BREAK key.

• Check for the pressing of the BREAK key using the CHECK^BREAK procedure.

• Return BREAK ownership to the previous owner using the GIVE^BREAK
procedure. You do this when your program no longer needs to respond to the
BREAK key.

Using the SIO procedures to process the BREAK key is much simpler than using
regular Guardian procedures, because SIO hides the complexity of handling the
$RECEIVE file and checking for BREAK messages. However, use of the SIO
procedures does limit BREAK handling to one terminal per process and does not
support BREAK mode. If you need to handle the BREAK key across multiple
terminals, or if you need to make use of BREAK mode in your program, then you
should use the regular Guardian procedures as described in Section 10,
Communicating With Terminals.

Most of this subsection assumes that the $RECEIVE file is either initialized and open
as an SIO file or not open when you call CHECK^BREAK. If it is not open, then
CHECK^BREAK opens the file for you and checks for the Break message. A call to
GIVE^BREAK returns ownership of BREAK to the previous owner and closes
$RECEIVE if it was opened by CHECK^BREAK.

However, if you prefer to work with $RECEIVE in a regular Guardian environment while
handling the terminal as an SIO file, you can do so using the SET^FILE
SET^BREAKHIT operation. How to do this is described at the end of this subsection.

Taking BREAK Ownership
Use the TAKE^BREAK procedure to take ownership of the BREAK key. Doing so
allows the process to receive the Break message and respond to it. The previous
owner of BREAK will no longer receive Break messages.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 56

Checking for a Break Message

To take BREAK ownership, you must supply the FCB name for the terminal from which
your program will accept Break messages:

CALL TAKE^BREAK(TERM^FCB);

The effect of using TAKE^BREAK with an SIO file is like issuing a call to SETMODE
function 11 on a regular Guardian file, with parameter 2 of the SETMODE call equal
to 0.

When your process reads a Break message from its $RECEIVE file, the default action
is to return a carriage return/line feed combination of characters to the terminal. You
can turn off this feature either by calling the SET^CRLF^BREAK operation of the
SET^FILE procedure with the new-value parameter equal to zero or by turning off the
CRLF^BREAK flag when calling the OPEN^FILE procedure:

CALL SET^FILE(TERM^FCB,
 SET^CRLF^BREAK,
 0);

You resume this feature by turning the SET^CRLF^BREAK flag on again:

CALL SET^FILE(TERM^FCB,
 SET^CRLF^BREAK,
 1);

Checking for a Break Message
Use the CHECK^BREAK procedure to check for a pressed BREAK key.

Once you have taken ownership of the BREAK key, your process will receive a Break
message in its $RECEIVE file whenever the BREAK key is pressed on the terminal
indicated in the call to the TAKE^BREAK procedure. Using CHECK^BREAK to read
this message avoids having to read directly from $RECEIVE and having to check the
condition code. You simply supply CHECK^BREAK with the FCB name for the
terminal where you expect the BREAK key to be pressed:

CALL CHECK^BREAK(TERM^FCB);

If $RECEIVE is not open when you call CHECK^BREAK, SIO opens it for you and
checks for the Break message; $RECEIVE stays open until you subsequently call
GIVE^BREAK. If the file is already open by SIO, CHECK^BREAK checks for the
Break message and leaves the $RECEIVE file open. The $RECEIVE file must not be
open as a non-SIO file, or CHECK^BREAK returns an error indication.

Returning BREAK Ownership
Once you no longer need ownership of the BREAK key, you can return its ownership to
the previous owner by issuing the GIVE^BREAK procedure. You simply supply the

Note. For CHECK^BREAK to work, SIO should handle the Break message. You should
therefore not return the Break message to your program using the SET^FILE
SETSYSTEMMESSAGES[MANY] operation.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 57

Handling BREAK Ownership: An Example

procedure with the FCB name for the terminal from which you were accepting BREAK
ownership:

CALL GIVE^BREAK(TERM^FCB);

Handling BREAK Ownership: An Example
The following example responds to the BREAK key pressed at the terminal designated
as the input file in the Startup message. Under normal operation, the process
executes without interacting with the user. However, the process does periodically
check for the BREAK key by issuing a CHECK^BREAK procedure call within the main
loop of the program. If the process receives the Break message, then it calls the
BREAK^PRESSED procedure. If no Break message is received, the process carries
on executing.

The BREAK^PRESSED procedure first prompts the user for input. It then sends the
user’s response to the file designated as the output file in the Startup message. This
procedure also provides the user with the opportunity to exit the program by typing
“exit.”

Note that this example includes both the native (pTAL) and TNS (TAL) forms of the
INITIALIZER call. Conditional compilation directives are included to select the
appropriate form so that the example will execute in either environment. Alternatively,
the native form of the INITIALIZER call will work in a TNS procedure, but some
additional setup is required. See Using the INITIALIZER Procedure, earlier in this
section, for more information on calling the INITIALIZER procedure.

?INSPECT, SYMBOLS

!Source in the GPLDEFS file:

?NOLIST, SOURCE $SYSTEM.SYSTEM.GPLDEFS
?LIST

!Allocate the RUCB:

ALLOCATE^CBS(CONTROL^BLOCK,COMMON^FCB,2);

!Allocate FCBs for the input and output files:
ALLOCATE^FCB(INFILE," #IN ");
ALLOCATE^FCB(OUTFILE," #OUT ");

!Source in the system procedures including the SIO
!procedures.

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(DEBUG,INITIALIZER,
? OPEN^FILE,READ^FILE,WRITE^FILE,TAKE^BREAK,
? CHECK^BREAK,SET^FILE,CLOSE^FILE,
? PROCESS_STOP_)
?LIST
?NOMAP,NOCODE

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 58

Handling BREAK Ownership: An Example

!--
!Procedure called when CHECK^BREAK detects BREAK. It prompts
!the user for some input and then writes the input to the
!output file.
!--

PROC BREAK^PRESSED;
BEGIN
 INT .BUFFER[0:127],
 BYTES^READ;

 CALL READ^FILE(INFILE,BUFFER,BYTES^READ);
 CALL WRITE^FILE(OUTFILE,BUFFER,BYTES^READ);
 IF BUFFER = "exit" THEN
 BEGIN
 CALL GIVE^BREAK(INFILE);
 CALL CLOSE^FILE(COMMON^FCB);
 CALL PROCESS_STOP_;
 END;
END;

!--
!Main procedure initializes and opens files, then loops while
!waiting for the BREAK key. When the BREAK key is pressed,
!it calls the BREAK^PRESSED procedure.
!--

PROC TERMS MAIN;
BEGIN
 INT STATE,I,J;

?IF PTAL !Begin pTAL statements
 LITERAL NUM^FCBS = 2;
 WADDR FCB^ARRAY[0:NUM^FCBS-1];

! Initialize the terminal file:

 FCB^ARRAY[0] := @INFILE;
 FCB^ARRAY[1] := @OUTFILE;
 CALL INITIALIZER(CONTROL^BLOCK,,,,,,,NUM^FCBS,FCB^ARRAY);
?ENDIF PTAL !End pTAL statements

?IFNOT PTAL !Begin TAL statement
 CALL INITIALIZER(CONTROL^BLOCK);
?ENDIF TAL !End TAL statement

! Assign read/write access to the input file. This file
! will be used as the terminal file:

 CALL SET^FILE(INFILE,ASSIGN^OPENACCESS,
 READWRITE^ACCESS);

! Assign read/write access to the output file. This file
! will be used as the $RECEIVE file:

 CALL SET^FILE(OUTFILE,ASSIGN^OPENACCESS,READWRITE^ACCESS);

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 59

Handling BREAK Ownership With $RECEIVE
Handled as a Non-SIO File

! Open the input file:

 CALL OPEN^FILE(COMMON^FCB,INFILE);

! Open the output file:

 CALL OPEN^FILE(COMMON^FCB,OUTFILE);

! Take ownership of the BREAK key pressed at the terminal:

 CALL TAKE^BREAK(INFILE);

! Loop indefinitely:

 WHILE 1 = 1 DO
 BEGIN

 ! Check whether the BREAK key has been pressed. If so,
 ! call BREAK^PRESSED:

 STATE := CHECK^BREAK(INFILE);
 IF STATE = 1 THEN CALL BREAK^PRESSED;

 ! Main body of code. Executes repeatedly until BREAK
 ! key is pressed:

 J := 0;
 WHILE J < 2000 DO
 BEGIN
 I := 0;
 WHILE I < 2000 DO
 I := I + 1;
 J := J + 1;
 END;
 END;
END;

Handling BREAK Ownership With $RECEIVE Handled as a
Non-SIO File

So far, it has been assumed that the $RECEIVE file and the terminal file are both
opened as SIO files. However, you can open the terminal file as an SIO file while
having $RECEIVE accessed by regular Guardian procedure calls.

Because the terminal file is opened as an SIO file, TAKE^BREAK and GIVE^BREAK
operate as already described. CHECK^BREAK, however, does not work because it
needs $RECEIVE opened as an SIO file. You therefore need to check for the Break
message by reading messages from $RECEIVE directly.

When your program receives a Break message, you can inform the SIO environment
by using the SET^BREAKHIT operation of the SET^FILE procedure:

CALL SET^FILE(COMMON^FCB,
 SET^BREAKHIT);

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 60

Handling SIO Errors

The Break indication can then be picked up later by a CHECK^BREAK procedure call
after you have closed $RECEIVE. CHECK^BREAK can then open $RECEIVE as an
SIO file and check the indication set by the SET^FILE SET^BREAKHIT operation.

Handling SIO Errors
One of the advantages of using SIO procedures is that error handling is automatic. In
addition to providing automatic retry for certain classes of errors, SIO also reports
errors automatically by sending an ASCII error message to a designated error file. By
default, the error file is the home terminal of the process.

SIO treats all errors as either fatal or retryable. Fatal errors always result in a message
being sent to the error file (unless you suppress them as described below). Retryable
errors requiring operator intervention can also cause a message to be sent to the error
file.

SIO error messages give a brief description of the problem. For a complete description
of each message and recommended action, refer to the Guardian Procedure Errors
and Messages Manual.

Handling Error Messages
By default, SIO sends all error messages to the home terminal. The SIO procedures,
however, do enable you to turn off error reporting and to redirect error messages to
another file.

In addition to sending an error message to the error file, each SIO procedure can also
return an error number to your program for specific processing.

Suppressing Error-Message Reporting
You can suppress the printing of error messages either when opening the file or by a
SET^FILE operation on an open file. Each of these methods is described below.

Suppress error-message printing when opening the file by turning off the
PRINT^ERR^MSG flag for the home terminal as follows:

FLAGS := 0;
FLAGS^MASK := PRINT^ERR^MSG;
CALL OPEN^FILE(COMMON^FCB,
 INFILE,
 !block^buffer!,
 !block^bufferlen!,
 FLAGS,
 FLAGS^MASK);

Achieve the same effect using the SET^FILE SET^PRINT^ERR^MSG operation with
the new-value parameter set to 0:

NEW^VALUE := 0;
CALL SET^FILE(INFILE,

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 61

Handling Fatal Errors

 SET^PRINT^ERR^MSG,
 NEW^VALUE);

Redirecting Error Messages
You can redirect error messages to an alternate file. Again you have two choices: you
can specify redirection when you open a file or you can use SET^FILE.

Use the error-file-fcb parameter in the OPEN^FILE procedure to set the error-
message file while opening a file. The following example redirects error messages to
the output file:

CALL OPEN^FILE(COMMON^FCB,
 INPUT,
 !block^buffer!,
 !block^bufferlen!,
 !flags!,
 !flags^mask!,
 !max^record^len!,
 !prompt^char!,
 OUTPUT);

It does not matter which file you are opening when you redirect error messages. The
last error file specified is the one used for all SIO files. If you do not supply the
error-file-fcb parameter, then the error file does not change.

To use the SET^FILE procedure to set the error file, choose the SET^ERRORFILE
operation. You must specify the common FCB in the first parameter and the error-file
FCB in the third parameter. The following example redirects error messages to a file
with FCB name EFILE:

CALL SET^FILE(COMMON^FCB,
 SET^ERRORFILE,
 EFILE);

Handling Fatal Errors
There are two classes of fatal errors: errors that occur when an SIO file is opened and
errors that occur when the open file is accessed. For both classes of fatal error, you
have the option of letting the process automatically terminate or allowing the process to
continue in spite of the error.

Handling Open Errors
You can use the ABORT^OPENERR flag to choose whether to abort the process in
response to a fatal error returned by the OPEN^FILE call.

The effects of setting or clearing the ABORT^OPENERR flag are explained below:

• Setting the ABORT^OPENERR flag causes the system to respond to fatal open
errors by closing all files opened by the process, issuing an error message, and

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 62

Handling Fatal Errors

abnormally terminating the process. The following example sets the
ABORT^OPENERR flag:

FLAGS := ABORT^OPENERR;
FLAGS^MASK := ABORT^OPENERR;
CALL OPEN^FILE(COMMON^FCB,
 INFILE,
 !block^buffer!,
 !block^bufferlen!,
 FLAGS,
 FLAGS^MASK);

• Clearing the ABORT^OPENERR flag allows the process to continue, in spite of
fatal errors. If an error occurs, the open will not finish and an error message is
sent to the error file. The following example shows how to clear the
ABORT^OPENERR flag:

FLAGS^MASK := ABORT^OPENERR;
CALL OPEN^FILE(COMMON^FCB,
 INFILE,
 !block^buffer!,
 !block^bufferlen!,
 !flags!,
 FLAGS^MASK);

By default, the ABORT^OPENERR flag is set.

Handling I/O Errors
You can choose whether to terminate the process on receipt of a fatal I/O error or to
continue without completing the I/O operation. The error message is written to the
error file whether you choose to terminate or not.

Use the ABORT^XFERERR flag to choose whether to terminate the process in
response to a fatal error returned by a READ^FILE or WRITE^FILE procedure call.
The effects of setting or clearing the ABORT^XFERERR flag are as follows:

• If you set the ABORT^XFERERR flag, then a fatal I/O error causes the system to
close all SIO files opened by this process and to terminate the process.

• If you clear the ABORT^XFERERR flag, then SIO routines report the error to the
error file and the process continues. Your program can process the returned error
number if desired.

By default, the ABORT^XFERERR flag is set on.

You can set the ABORT^XFERERR flag when you open the file with the OPEN^FILE
procedure, or you can change the setting of the flag using the SET^FILE
SET^ABORT^XFERERR operation.

The following example sets the ABORT^XFERERR flag when the file is opened:

CALL OPEN^FILE(COMMON^FCB,
 INPUT,

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 63

Handling Retryable Errors

 !block^buffer!,
 !block^bufferlen!,
 ABORT^XFERERR,
 ABORT^XFERERR);
 .
 .
ERROR := READ^FILE(INPUT,BUFFER,RCOUNT);
IF ERROR <> 0 THEN ...
 !Process nonfatal error.

The next example clears the ABORT^XFERERR flag:

CALL SET^FILE(INFILE,
 SET^ABORT^XFERERR,
 0);
 .
 .
ERROR := READ^FILE(INPUT,
 BUFFER,
 RCOUNT);
IF ERROR <> O THEN ...
 !Process any error.

Handling Retryable Errors
There are several classes of retryable errors:

• Errors that require operator intervention

• Errors resulting from BREAK activity

• Errors that are retried after a delay

• Errors resulting from path or device failure

Errors That Require Operator Intervention
Errors that require operator intervention include the following:

For these errors, SIO sends an appropriate message to the error file. If the error file is
not the operator’s console ($0), then SIO expects a reply. The reply can be “S” or
“CTRL/Y” to stop the process, treating the error as fatal. Any other response causes
the process to retry the operation and then continue.

If the error file is on a different system than the device causing the original error, then
SIO sends an additional copy of the message to $0 on the system containing the
device needing intervention.

Error 100 Device not ready

Error 101 No write ring

Error 102 Paper out

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 64

Handling Retryable Errors

After sending the error message to one or more destinations, SIO retries the operation
that caused the error.

If the device in error is on the same system as the error file and if the error file is not
$0, SIO expects the user to make the device ready before responding to the message.
SIO therefore retries the operation immediately, and only once. If another of these
errors occurs, SIO reissues the error message and prompts the user to reply.

If the error file is $0 or if the error message is being written to $0 on a remote node
(because the error file is not on the same node as the device in error), then there is no
way to reply to the message. SIO will then retry the operation every six seconds to see
whether someone has made the device ready. In addition, SIO repeats the error
message every minute. If the device is not ready after 10 minutes, SIO treats the error
as fatal.

Errors Resulting From BREAK Activity
Errors resulting from BREAK activity are the following:

SIO makes an internal call to the CHECK^BREAK procedure to determine whether the
BREAK key was pressed for this device. If so, SIO ignores the error, because the
calling program is expected to check for BREAK by issuing a CHECK^BREAK
procedure call (see Handling BREAK Ownership, earlier in this section).

Otherwise, SIO retries the operation every two seconds. There is no limit on the
number of retries, because BREAK ownership may have been taken by another
process, which may return BREAK ownership at any time.

Errors resulting in BREAK activity do not generate error messages and are therefore
transparent to the user and the programmer.

Errors That Are Retried After a Delay
Errors that are retried after a delay include the following:

For each of these errors, SIO retries the operation after a two-second delay.

Error 110 Only BREAK mode requests accepted

Error 111 BREAK occurred on this request

Error 103 Disk not ready due to power failure

Error 112 READ or WRITEREAD preempted by operator message

Error 124 A line reset is in progress

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 65

Closing SIO Files

Errors Resulting From Path or Device Failure
Errors that result from a path or device failure include the following:

For error 201 (unable to communicate over this path), SIO retries the error once. For
the other errors, SIO retries the error if the type of operation and the type of device
suggest that a retry is appropriate. In all cases where no retry is performed, SIO treats
the error as fatal.

Closing SIO Files
Use the CLOSE^FILE procedure to close SIO files. You can close all SIO files by
specifying the common FCB:

CALL CLOSE^FILE(COMMON^FCB);

Closing the file with CLOSE^FILE flushes the buffers, thereby ensuring data integrity.
Terminating the process also closes any files that remain open; however, you would
lose any data that remains in the block buffers.

For SIO files open for nowait I/O, CLOSE^FILE waits for the completion of any
outstanding I/O operation and closes the file.

Initializing SIO Files Without TAL or
pTAL DEFINEs

You can set up FCBs for SIO files without using TAL or pTAL DEFINEs. The
advantage of initializing FCBs this way is that you can determine how many FCBs you
need at run time and dynamically allocate as many FCBs as you need. However, you
must write code to perform the initialization function; for example, if the process
receives its input and output files through the Startup message, then you must write
code to directly access the $RECEIVE file.

As when using TAL or pTAL DEFINEs, your program should make use of the
$SYSTEM.SYSTEM.GPLDEFS file to provide literals used in initialization. The
following compiler directives include the file in your code:

?NOLIST
?SOURCE $SYSTEM.SYSTEM.GPLDEFS
?LIST

Error 120 Data parity

Error 200 Device is owned by the other port

Error 201 through
231

Path error

Error 240 Line handler error; did not get started

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 66

Allocating FCBs

The following list introduces the steps involved in initializing SIO files without using TAL
or pTAL DEFINEs:

1. Allocate space for each FCB. This step is required.

2. Initialize an empty FCB for each file. This step is required.

3. Specify the physical file name for each FCB. This step is required.

4. Set up the file-access characteristics. This step is optional; if omitted, the system
uses default values.

The following paragraphs provide details on how your program can perform the above
steps. At the end of this subsection is a sample initialization.

Allocating FCBs
You must allocate space for each file FCB and the common FCB using a suitable
declaration. If your program will read the Startup message using SIO, then you must
also allocate space for an FCB for the $RECEIVE file.

The following declarations allocate space for an input file, an output file, an additional
data file, the $RECEIVE file, and the common FCB:

INT .INFILE[0:FCBSIZE - 1],
 .OUTFILE[0:FCBSIZE - 1],
 .DFILE[0:FCBSIZE - 1],
 .RECVFILE[0:FCBSIZE^D00 - 1],
 .COMMON^FCB[0:FCBSIZE^D00 - 1];

The literals FCBSIZE and FCBSIZE^D00 are defined in the GPLDEFS file. Note that
$RECEIVE and the common FCB are the only FCBs for which FCBSIZE^D00 is used.
FCBSIZE is preferred for the other FCBs because it uses less space.

Note. FCBs for native processes require more memory than those for TNS processes.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 67

Initializing FCBs

Initializing FCBs
You now need to associate each of the FCBs just allocated with a physical file. For
FCBs allocated with FCBSIZE, use the SET^FILE INIT^FILEFCB operation. For FCBs
allocated with FCBSIZE^D00, use the SET^FILE INIT^FILEFCB^D00 operation:

CALL SET^FILE(INFILE,
 INIT^FILEFCB);

CALL SET^FILE(OUTFILE,
 INIT^FILEFCB);

CALL SET^FILE(DFILE,
 INIT^FILEFCB);

CALL SET^FILE(RECVFILE,
 INIT^FILEFCB^D00);

CALL SET^FILE(COMMON^FCB,
 INIT^FILEFCB^D00);

Naming FCBs
Use the SET^FILE ASSIGN^FILENAME operation to associate an FCB with a physical
file. You must perform this operation once for each file that SIO procedures will
access, including the $RECEIVE file.

The following example assigns a name to the input file. Both the native (pTAL) and
TNS (TAL) forms of the SET^FILE call are shown.

pTAL:

CALL SET^FILE(INFILE,ASSIGN^FILENAME,,,@INFILENAME);

TAL:

CALL SET^FILE(INFILE,ASSIGN^FILENAME,@INFILENAME);

Note that the procedure call takes the address of the file name. In this case, the actual
name of the input file has already been read from the Startup message and placed into
a buffer named INFILENAME.

Setting Up File Access Without INITIALIZER
The following paragraphs describe how to set up the characteristics that control access
to an SIO file that is initialized without the use of the INITIALIZER procedure. These
paragraphs describe how to set the access mode, exclusion mode, record length, file
code, extent sizes, and block length.

Typically, you set file characteristics by putting information into the FCB of the file using
calls to the SET^FILE procedure. Because you are not using INITIALIZER, it is less
convenient to set the file-access characteristics by issuing ASSIGN commands before
running the program.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 68

Sample Initialization

When dynamically allocating FCBs, you can set parameters only by using the
SET^FILE procedure, not by using ASSIGNs. See Setting Up File Access earlier in
this section for details.

Sample Initialization
The following procedure performs the same operations as the sample initialization
shown earlier in this section under “Initializing SIO Files With the INITIALIZER
Procedure.” This example, however, does not use INITIALIZER.

The procedure works like this: The names of the input and output files are delivered to
the process through the Startup message. The procedure checks to see whether
these names refer to the same process or terminal file. If so, that file is assigned
read/write access. If the input and output files are different, then the input file is
assigned read-only access and the output file write-only access.

?INSPECT, SYMBOLS, NOCODE, NOMAP
?NOLIST
?SOURCE $SYSTEM.ZSYSDEFS.SZYSTAL
?SOURCE $SYSTEM.SYSTEM.GPLDEFS
?LIST

INT INTERACTIVE,
 ERROR,
 .COMMON^FCB[0:FCBSIZE^D00 - 1] := 0,
 .RCV^FILE[0:FCBSIZE^D00 - 1],
 .INFILE[0:FCBSIZE - 1],
 .OUTFILE[0:FCBSIZE - 1],
 .DFILE[0:FCBSIZE - 1],
 .BUFFER[0:99],
 .MOMSPHANDLE[0:ZSYS^VAL^PHANDLE^WLEN - 1],
 .MYPHANDLE[0:ZSYS^VAL^PHANDLE^WLEN - 1],
 DEVTYPE,
 LENGTH,
 JUNK;

 LITERAL PROCESS = 0,
 TERMINAL = 6;

?NOLIST
?SOURCE
$SYSTEM.SYSTEM.EXTDECS0(SET^FILE,OPEN^FILE,PROCESS_GETINFO_,
? READ^FILE,WAIT^FILE,CLOSE^FILE, DEVICEINFO,FNAMECOMPARE,
? PROCESS_STOP_, PROCESS_GETPAIRINFO_,
? PROCESSHANDLE_GETMINE_)
?LIST

Note. The following initialization procedure will execute in both the native and TNS
environments. The procedure uses the CALL_SET^FILE_ADDRESS_. DEFINE to select the
appropriate (pTAL or TAL) form of the SET^FILE procedure call in cases where the SET^FILE
call passes an address value.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 69

Sample Initialization

!--
!Procedure to initialize file control blocks for the input
!file and output file specified in the Startup message, as
!well as a separate data file.
!--

PROC INIT;
BEGIN

! Initialize the $RECEIVE file and common FCB:

?IF PTAL !Begin pTAL statements
 STRING .SBUF = BUFFER;
?ENDIF PTAL !End pTAL statements
?IFNOT PTAL !Begin TAL statements
 STRING .SBUF := @BUFFER '<<' 1;
?ENDIF PTAL !End TAL statements

 CALL SET^FILE(RCV^FILE,INIT^FILEFCB^D00);
 CALL SET^FILE(COMMON^FCB,INIT^FILEFCB^D00);
 SBUF ':=' "$RECEIVE ";

! The following statement calls a DEFINE which executes the
! appropriate (native or TNS) form of the SET^FILE
! call.

 CALL_SET^FILE_ADDRESS_(ERROR,RCV^FILE,ASSIGN^FILENAME,
 @BUFFER);

 CALL SET^FILE(RCV^FILE,ASSIGN^RECORDLENGTH,132);

! Open $RECEIVE for nowait I/O:

 CALL OPEN^FILE(COMMON^FCB,RCV^FILE,
 !block^buffer!,
 !block^bufferlen!,
 NOWAIT,NOWAIT);

! Allow Startup message from creator only:

 CALL PROCESSHANDLE_GETMINE_(MY^PHANDLE);
 ERROR := PROCESS_GETPAIRINFO_(MY^PHANDLE,
 !pair:maxlen!,
 !pair^len!,
 !primary^processhandle!,
 !backup^processhandle!,
 !search^index!,
 MOMS^PHANDLE);
 IF ERROR = 7 THEN CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxln!,
 !file^name^len!,

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 70

Sample Initialization

 !priority!,
 MOMS^PHANDLE);

! The following statement calls a DEFINE which executes the
! appropriate (native or TNS) form of the SET^FILE
! call.

 CALL_SET^FILE_ADDRESS_(ERROR,RCV^FILE,OPENERSPHANDLE,
 @MOMS^PHANDLE);

! Read the Startup message from the $RECEIVE file:

 DO
 BEGIN
 CALL READ^FILE(RCV^FILE,BUFFER,
 !count^returned!,
 !prompt^count!,
 !max^read^count!,
 1);

 DO ERROR := WAIT^FILE(RCV^FILE,LENGTH,6000D)
 UNTIL ERROR <> SIOERR^IORESTARTED;
 END
 UNTIL BUFFER = -1; !Startup message read

! Close the $RECEIVE file:

 CALL CLOSE^FILE(RCV^FILE);

! Check whether the process is being used interactively.
! That is, is the input file the same terminal file or
! process file as the output file?

 CALL DEVICEINFO(BUFFER[9],DEVTYPE,JUNK);
 INTERACTIVE :=
 IF (DEVTYPE.<4:9> = TERMINAL OR
 DEVTYPE.<4:9> = PROCESS) AND
 NOT FNAMECOMPARE (BUFFER[9],BUFFER[21]) THEN 1 ELSE 0;

! Initialize the input file:

 CALL SET^FILE(INFILE,INIT^FILEFCB);

! The following statement calls a DEFINE which executes the
! appropriate (native or TNS) form of the SET^FILE
! call.

 CALL_SET^FILE_ADDRESS_(ERROR,INFILE,ASSIGN^FILENAME,
 @BUFFER[9]);

 CALL SET^FILE(INFILE,ASSIGN^OPENACCESS,
 IF INTERACTIVE THEN READWRITE^ACCESS
 ELSE READ^ACCESS);

! If the process is run interactively, set the OUT file
! equal to the IN file:

 IF INTERACTIVE THEN

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 71

Using the SIO Procedures: An Example

 @OUTFILE := @INFILE
 ELSE

! If the process is not run interactively, initialize
! the output file:

 BEGIN
 CALL SET^FILE(OUTFILE,INIT^FILEFCB);

! The following statement calls a DEFINE which executes the
! appropriate (native or TNS) form of the SET^FILE
! call.

 CALL_SET^FILE_ADDRESS_(ERROR,OUTFILE,ASSIGN^FILENAME,
 @BUFFER[21]);

 CALL SET^FILE(OUTFILE,ASSIGN^OPENACCESS,
 WRITE^ACCESS);
 END;

! Initialize the data file:

 CALL SET^FILE(DFILE,INIT^FILEFCB);
 CALL SET^FILE(DFILE,ASSIGN^OPENACCESS,
 READWRITE^ACCESS);
END;

!--
!Main procedure
!--

PROC SIO^PROG MAIN;
BEGIN

 CALL INIT;
 .
 .

END;

Using the SIO Procedures: An Example
The TAL sample program given below uses SIO procedures to access data on disk.
The disk file can be any type of disk file: structured, unstructured, or an EDIT file. The
user of the home terminal accesses the data.

The program expects the names of the terminal and disk files to be supplied as the
input and output file names in the Startup message. Moreover, the program will fail if
the input file is not a terminal or the output file is not a disk file.

To run the program, use a RUN command such as the following:

1> RUN OBJ^FILE/OUT DATAFILE/

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 72

Using the SIO Procedures: An Example

You can create the data file using the FUP program. If the data file does not exist
when you run the program, the program will create it as an EDIT file.

Once you start the program, you can perform read and write operations against the
data file. The initial read operation always returns the first record in the file. Writes are
always appended to the file.

The program is made up of the following procedures:

• The main procedure calls the INITIALIZE^FILES procedure and displays a menu
for the user to select a function from. The program responds depending on the
function selected:

• For reading records, it calls the READ^RECORDS procedure.

• For appending records, it calls the WRITE^RECORDS procedure.

• For exiting the program, it calls the EXIT^PROGRAM procedure.

• For an invalid selection, it calls the INVALID^SELECTION procedure.

• The INITIALIZE^FILES procedure is called by the main procedure when the
program starts up. It uses the INITIALIZER procedure to initialize FCBs for the
input and output files and checks that the input file is a terminal and that the output
file is a disk file.

This procedure opens the input file and also opens the output file. It opens the
output file to obtain the file type (used by the OPEN^OUTPUT procedure) and to
create the file in EDIT format if it does not exist. The procedure closes the output
file before returning.

• The GET^COMMAND procedure prompts the user for the function to perform and
then returns the function to the main procedure.

• The OPEN^OUTPUT procedure is called by the READ^RECORDS or
WRITE^RECORDS procedure to open the output file. This procedure opens the
file for reading or for writing, and in some cases it provides a block buffer.

The OPEN^OUTPUT procedure receives the mode of access in its formal
parameter and then opens the output file accordingly. Remember that to append
to an SIO file, you must open the file in write-only mode. Therefore the file is
opened in write-only mode for writing or read-only mode for reading. For that
reason, opening the file is delayed until the user has selected a function.

The OPEN^OUTPUT procedure provides a block buffer for relative, entry-
sequenced, or key-sequenced files as well as for EDIT files. No block buffer is
provided for an unstructured file.

• The READ^RECORDS procedure is called by the main program when the user
selects reading from the main menu. This procedure calls the OPEN^OUTPUT
procedure to open the disk file for read-only access and then reads the first record
from the file and displays it on the terminal. It goes on to prompt the user to read

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 73

Using the SIO Procedures: An Example

additional records. The procedure returns when either the user declines to read
any more or the program reaches the end of the disk file.

• The WRITE^RECORDS procedure is similar to READ^RECORDS but appends
records to the data file instead of reading. This procedure is called by the main
program when the user selects appending from the main menu. First, it calls the
OPEN^OUTPUT procedure to open the disk file in write-only mode, which forces
writes to the end of the file. It goes on to prompt the user for the contents of the
record to be written, and then it writes the record to the disk file and prompts the
user to enter another record. The procedure returns when the user declines to
enter another record.

• The EXIT^PROGRAM procedure is called by the main procedure when the user
chooses to stop the program. This procedure uses the CLOSE^FILE procedure to
flush the buffer and close the files before stopping the process.

• The INVALID^SELECTION procedure is called by the main procedure when the
user makes an invalid selection from the menu. This procedure informs the user of
the invalid selection and then returns to the main procedure to display the menu
again.

• The WRITE^LINE procedure is called by several procedures to write a line to the
IN file.

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 74

Using the SIO Procedures: An Example

!This is a TAL example

?INSPECT, SYMBOLS, NOMAP
?NOLIST, SOURCE $SYSTEM.SYSTEM.GPLDEFS
?LIST

!Allocate the RUCB and the common FCB:
ALLOCATE^CBS(RUCB,COMMON^FCB,2);

!Allocate an FCB for each SIO file:
ALLOCATE^FCB(INFILE," #IN ");
ALLOCATE^FCB(OUTFILE," #OUT ");

LITERAL BUFSIZE = 128; !size of I/O buffer
LITERAL OUTBLKLEN = 4096; !size of output block
INT .OUTBLKBUF[0:OUTBLKLEN/2 -1]; !output block buffer
INT .BUFFER[0:BUFSIZE]; !read/write buffer
 ! (BUFSIZE + 1)
INT FILE^TYPE; !type of disk file
STRING .SBUFFER := @BUFFER[0] '<<' 1; !string pointer to
 ! read/write buffer
STRING .S^PTR; !pointer to end of
 ! string

?NOLIST,SOURCE $SYSTEM.SYSTEM.EXTDECS0(SET^FILE,INITIALIZER,
? CHECK^FILE,DEVICEINFO,FNAMECOMPARE,
? READ^FILE,WRITE^FILE,CLOSE^FILE,
? OPEN^FILE,PROCESS_STOP_)
?LIST

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 75

Using the SIO Procedures: An Example

!--
! The following DEFINEs make it easier to format and print
! messages.
!--

! Initialize a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(BUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(BUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

!--
! Procedure to write a message on the terminal.
!--

PROC WRITE^LINE(BUF,LEN);
INT .BUF;
INT LEN;
BEGIN
 CALL WRITE^FILE(INFILE,BUF,LEN);
END;

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 76

Using the SIO Procedures: An Example

!--
! Procedure to prompt the user for the next function to
! perform:
!
! "r" to read records
! "a" to append records
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user to read, append, or exit the program:

 PRINT^STR("Type 'r' for Read Log, ");
 PRINT^STR("Type 'a' for Append to Log, ");
 PRINT^STR("Type 'x' for Exit. ");
 PRINT^BLANK;

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL READ^FILE(INFILE,BUFFER,COUNT^READ,
 @S^PTR '-' @SBUFFER);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 77

Using the SIO Procedures: An Example

!--
! Procedure to open the input and output files. The
! procedure opens structured disk files with a block buffer.
! Unstructured disk files are given no block buffer. The
! output file is opened first with write-only access to
! create it if it does not already exist. The procedure
! closes the file then reopens it with read/write access.
!--

PROC OPEN^OUTPUT(ACCESS^MODE);
INT ACCESS^MODE;
BEGIN

! Set the access mode of the output file to read-only for
! read access or write-only for write access:

 CALL SET^FILE(OUTFILE,ASSIGN^OPENACCESS,ACCESS^MODE);

! For a structured file, reopen the file with a block
! buffer:

 IF FILE^TYPE.<0:3> = 1
 OR FILE^TYPE.<0:3> = 2
 OR FILE^TYPE.<0:3> = 3
 OR FILE^TYPE.<0:3> = 4
 THEN CALL OPEN^FILE(COMMON^FCB,OUTFILE,OUTBLKBUF,
 OUTBLKLEN);

! For an unstructured or odd unstructured file, do not use
! a block buffer:

 IF FILE^TYPE.<0:3> = 0
 OR FILE^TYPE.<0:3> = 8
 THEN CALL OPEN^FILE(COMMON^FCB,OUTFILE);
END;

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 78

Using the SIO Procedures: An Example

!--
! Procedure to read records from the data file and display
! them on the terminal. Additional records are prompted for.
!--

PROC READ^RECORDS;
BEGIN
 INT ERROR;
 INT COUNT^READ;

! Open the output file for reading:

 CALL OPEN^OUTPUT(READ^ACCESS);

! Loop until user declines to read another record:

 DO
 BEGIN

 PRINT^BLANK;

 ! Read the next record from the disk file:

 ERROR := READ^FILE(OUTFILE,BUFFER,COUNT^READ,
 !prompt^count!,
 BUFSIZE);
 IF ERROR = 1 THEN
 BEGIN

 ! Inform user of end-of-file and then return:

 SBUFFER ':='
 "There are no more records in this file. "
 -> @S^PTR;
 CALL WRITE^FILE(INFILE,BUFFER,@S^PTR '-' @SBUFFER);
 CALL CLOSE^FILE(OUTFILE);
 RETURN;
 END

 ELSE
 BEGIN

 ! Write the record to the terminal:

 CALL WRITE^FILE(INFILE,BUFFER,COUNT^READ);

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 79

Using the SIO Procedures: An Example

 ! Prompt the user to read another record:

 PRINT^BLANK;
 SBUFFER ':='
 "Do You Wish to Read Another Record (y/n)? "
 -> @S^PTR;
 CALL READ^FILE(INFILE,BUFFER,COUNT^READ,
 @S^PTR '-' @SBUFFER,BUFSIZE);
 END;
 END
 UNTIL NOT (SBUFFER = "y" OR SBUFFER = "Y");

! Close the output file:

 CALL CLOSE^FILE(OUTFILE);
END;

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 80

Using the SIO Procedures: An Example

!--
! Procedure to write a new record to the disk file.
!--

PROC WRITE^RECORDS;
BEGIN
 INT READ^OR^WRITE;
 INT COUNT^READ;

! Open the output file for writing:

 CALL OPEN^OUTPUT(WRITE^ACCESS);

 DO BEGIN

 PRINT^BLANK;

 ! Prompt the user to enter a record:

 SBUFFER ':=' "Type the New Record: " -> @S^PTR;
 CALL READ^FILE(INFILE,BUFFER,COUNT^READ,
 @S^PTR '-' @SBUFFER,BUFSIZE);

 ! Write the record to the disk file:

 CALL WRITE^FILE(OUTFILE,BUFFER,COUNT^READ);

 ! Prompt the user to write another record:

 PRINT^BLANK;
 SBUFFER ':='
 "Do You Wish to Write Another Record (y/n)? "
 -> @S^PTR;
 CALL READ^FILE(INFILE,BUFFER,COUNT^READ,
 @S^PTR '-' @SBUFFER,BUFSIZE);
 END
 UNTIL NOT (SBUFFER[0] = "y" OR SBUFFER[0] = "Y");

! Close the output file:

 CALL CLOSE^FILE(OUTFILE);
END;

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 81

Using the SIO Procedures: An Example

!--
! Procedure to exit the program.
!--

PROC EXIT^PROGRAM;
BEGIN

! Close all SIO files:

 CALL CLOSE^FILE(COMMON^FCB);

! Stop the program:

 CALL PROCESS_STOP_;
END;

!--
! Procedure to respond to an invalid function. Any function
! other than "a," "r," or "x" calls this procedure.
!--

PROC INVALID^SELECTION;
BEGIN

 PRINT^BLANK;

! Inform user of invalid selection and then return:

 PUT^STR
 ("Invalid Selection, you must type 'r,' 'a,' or 'x.' ");
END;

!--
! Procedure for initializing all SIO files used by this
! application.
!--

PROC INITIALIZE^FILES;
BEGIN

LITERAL DISK = 3; !identify process file
LITERAL TERMINAL = 6; !identify terminal file
LITERAL ABEND = 1; !to send Abend message on
 ! PROCESS_STOP_
INT DEVICE^TYPE; !type of device
INT PHYS^REC^LEN; !length of physical record
INT L^INFO[0:9]; !for device information
INT .INFNAME, !input file name
 .OUTFNAME; !output file name
INT .BUF[0:11]; !contains a logical file name
STRING .SBUF := @BUF '<<' 1; !string pointer to BUF

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 82

Using the SIO Procedures: An Example

! Assign a logical file name to each SIO file:

 SBUF ':=' [5,"INPUT"];
 CALL SET^FILE(INFILE,ASSIGN^LOGICALFILENAME,@BUF);
 SBUF ':=' [6,"OUTPUT"];
 CALL SET^FILE(OUTFILE,ASSIGN^LOGICALFILENAME,@BUF);

! Initialize the FCBs:

 CALL INITIALIZER(RUCB);

! Get the physical file names for the input and output
! files:

 @INFNAME := CHECK^FILE(INFILE,FILE^FILENAME^ADDR);
 @OUTFNAME := CHECK^FILE(OUTFILE,FILE^FILENAME^ADDR);

! Make sure that the input file is a terminal:

 CALL DEVICEINFO(INFNAME,DEVICE^TYPE,PHYS^REC^LEN);
 IF (DEVICE^TYPE.<4:9> <> TERMINAL)
 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);

! Open the input file for reading and writing:

 CALL SET^FILE(INFILE,ASSIGN^OPENACCESS,READWRITE^ACCESS);
 CALL OPEN^FILE(COMMON^FCB,INFILE);

! Make sure that the output file is a disk file:

 CALL DEVICEINFO(OUTFNAME,DEVICE^TYPE,PHYS^REC^LEN);
 IF (DEVICE^TYPE.<4:9> <> DISK) THEN
 BEGIN
 PRINT^STR ("Illegal Output File Name ");
 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;

! Open the output file with write-only access to create it
! if it does not exist. Also get the file type to know
! whether to use a block buffer when we reopen the file:
 CALL SET^FILE(OUTFILE,ASSIGN^OPENACCESS,WRITE^ACCESS);
 CALL OPEN^FILE(COMMON^FCB,OUTFILE,OUTBLKBUF,OUTBLKLEN);
 FILE^TYPE := CHECK^FILE(OUTFILE,FILE^FILEINFO);
 CALL CLOSE^FILE(OUTFILE);
END;

Using the Sequential Input/Output Procedures

Guardian Programmer’s Guide — 421922-014
15 - 83

Using the SIO Procedures: An Example

!--
! Main procedure prompts the user to enter a function to read
! or write to the disk file or exit the program.
!--

PROC LOG^PROG MAIN;
BEGIN
 STRING CMD;

! Initialize the SIO files:

 CALL INITIALIZE^FILES;

! Loop until user requests to exit:

 WHILE 1 = 1 DO
 BEGIN

 PRINT^BLANK;

 CMD := GET^COMMAND;

 ! Call procedure depending on function selected:

 CASE CMD OF
 BEGIN

 "r" -> CALL READ^RECORDS;

 "a" -> CALL WRITE^RECORDS;

 "x" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL INVALID^SELECTION;
 END;
 END;
END;

Guardian Programmer’s Guide — 421922-014
16 - 1

16
Creating and Managing Processes

This section shows how to use Guardian procedures to manage Guardian processes.
First, it describes how the operating system manages the process environment; then it
goes on to discuss how to perform the following operations in an application process:

• Create new Guardian processes, including naming the new process, running the
process in a waited or nowait manner, and setting the various attributes that a
process can have, including whether the process runs at a high PIN or low PIN
(PROCESS_LAUNCH_ and PROCESSNAME_CREATE_ procedures).

• Send the startup sequence of messages to a process.

• Monitor a child process to make sure that it is still running (CHILD_LOST_
procedure).

• Delete your own or some other process (PROCESS_STOP_ procedure) or control
which processes have the authority to delete your process (SETSTOP procedure).

• Suspend and activate processes (PROCESS_SUSPEND_ and
PROCESS_ACTIVATE_ procedures).

• Get and set information about specified processes (PROCESS_GETINFO[LIST]_,
PROCESS_SETINFO_, and PROCESS_SETSTRINGINFO_ procedures).

• Manipulate process identifiers, including retrieving information from a process
handle (PROCESSHANDLE_DECOMPOSE_ procedure) and converting between
process handles and process file names (FILENAME_TO_PROCESSHANDLE_,
PROCESSHANDLE_TO_FILENAME_, and PROCESSHANDLE_TO_STRING
procedures).

• Control the placement of processes onto IPUs (IPUAFFINITY_GET_,
IPUAFFINITY_SET_, and IPUAFFINITY_CONTROL_).

Refer to the Guardian Procedure Calls Reference Manual for complete details on the
procedure calls indicated above.

Process Management Overview
When any program runs on the system, it is called a process. The term “program”
refers to a static group of instruction codes and initialized data (like the output of a
compiler); the term “process” identifies the dynamically changing states of an executing
program.

The same program (whether an application or system program) can be concurrently
executing several times in the same CPU or in different CPUs. Each execution is
considered a separate process.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 2

Process Identifiers

A process consists of the following:

• Code areas in virtual memory that contain the instruction codes to be executed.
These code areas are shared by all processes in the same CPU that execute the
same program file. The instructions in the code areas in virtual memory are
derived from the code part of the program file on disk.

• Data areas in virtual memory that contain the program variables and temporary
storage that is private to the process. Even if other processes use the same code
areas, each process has its own private data areas. The disk part of the data area
is obtained from the Kernel-Managed Swap Facility (KMSF), or, in some cases,
from a designated swap file.

• A process control block (PCB) that is used by the operating system to control
process execution. The PCB contains pointers to the process code and data
areas, retains process context when the process is suspended, and contains
pointers to files opened by the process.

In addition to a PCB associated with every process, the operating system maintains
several other tables of information to keep track of processes. A collection of such
tables, known as the destination control table (DCT), contains information about all
named processes on the system. This table is a system-wide table and therefore
remains visible even if a CPU should fail.

Process Identifiers
A D-series system has an architectural limit of 64K processes that can concurrently run
on each CPU. The practical limit is significantly smaller than this number and is
constrained by memory and other resources. However, because you can have up to
16 CPU modules in a system and up to 256 such systems in a network, there is the
potential for many millions of processes. The operating system therefore provides the
following methods of identifying processes:

• Process file names

• Process handles

Process File Names
In the operating system, most objects are considered to be files. Just like disk files and
devices, a process can also be considered to be a file. The file name for a process is
known as a process file name; it can be used, for example, to open a process for
communication by passing it to the FILE_OPEN_ procedure.

A process descriptor is a process file name returned by a system procedure. A
process descriptor is always unqualified; that is, it cannot contain process qualifiers
like the named form of a process file name can.

See Section 2, Using the File System, for a complete discussion of process file names,
including syntax definitions and information about how to use process file names when
opening a process file.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 3

Programs and Processes

Process Handles
A process handle can be considered to be the address at which a process resides.
The process handle is 10 words long and contains the following information:

• The process identification number (PIN) which is unique among all current
processes on a given CPU. PIN values range from 0 to 65534. PINs 0 through
255 are called low PINs; PINs 256 through 65534 are called high PINs.
Processes on a D-series system can run at a high PIN or a low PIN. Processes
on a C-series system can run only at a low PIN.

Note that PIN 255 is a special-case low PIN that is used by high-PIN processes to
communicate with an unconverted C-series process. The range of usable low
PINs is therefore 0 through 254.

• The ID of the CPU on which the process runs.

• A verifier to uniquely identify a process over time.

• A process pair index that enables the operating system to find the other member of
a process pair.

• A type field that identifies whether the process is named or unnamed and whether
the system on which the process runs is a D-series system or a C-series system.

Like process file names, a process handle is returned by the system when you create a
process. Process handles, however, are not file names; they are used to identify the
process to other process-related procedure calls, such as PROCESS_ACTIVATE_ and
PROCESS_SUSPEND_.

To obtain the information contained in a process handle, you can use the
PROCESS_GETINFO_ procedure as described later in this section.

Programs and Processes
A program is a sequence of instructions and data that become a process when
executed.

A program file is an executable object file. It contains primarily executable code, but
may also contain other components such as initial or read-only data and linkage
information. Unlike other object files, a program file has a main procedure.

Object files are produced by compilers that translate the source program, written in a
language such as TAL or C, into object code. They are also produced by linkers, such
as the Binder and nld utilities (on TNS/R systems) or eld utilities (on TNS/E
systems) which link object files together. For execution, the code and some of the data
in the object file are mapped into the virtual memory of the CPU.

Kinds of Programs
These kinds of programs run on native CPUs. They are:

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 4

Programs and Processes

• TNS/E native programs

• TNS/R native programs

• TNS programs

• Accelerated programs

A native process—a process that runs in native mode—consists entirely of native-
compiled instructions. Those instructions are RISC instructions on a TNS/R system
and Itanium instructions on a TNS/E system. A native process is initiated by executing
a native program. Unlike TNS processes, native processes do not use or emulate TNS
architecture-specific constructs, such as TNS registers or 16-bit addressing.

Executable code for a TNS/E native process is contained in the following objects:

• The initial program of the process, called user code. This code is read from the
program file.

• Dynamic-link libraries (DLLs). These include:

° The system library, which contains system-related procedures and operating
system code that is accessible by the process using system procedure calls.
The system library consists of a set of implicit DLLs.

° Other DLLs supplied by HP, such as the C run-time library.

° User-created DLLs.

A TNS/R native program contains TNS/R native object code. Native object code is
produced by a native compiler and consists entirely of RISC instructions that have
been arranged to take full advantage of the RISC architecture. Refer to the C/C++
Programmer’s Guide and the pTAL Programmer’s Guide for information about native
compilers.

A TNS program contains TNS object code. TNS object code is produced by a compiler
that is not native. TNS object code executes TNS instructions facilitated by millicode.
Millicode is assembled program code, consisting of RISC instructions, that implements
various TNS low-level functions on a TNS/R CPU. Actual TNS CPUs do not support
D40 or later versions of the operating system.

An accelerated program contains accelerated object code. Accelerated object code is
produced by the Accelerator, a program that processes a TNS object file to run more
efficiently on a TNS/R CPU. An accelerated object file consists of Accelerator-
generated RISC instructions as well as the original TNS instructions. For more
information on using the Accelerator, see the Accelerator Manual.

The accelerated version of an object file almost always runs faster than the TNS
version; the native version of an object file almost always runs faster than the
accelerated version. The actual differences in execution speed between TNS,
accelerated, and native versions of the same program may vary, depending on the
constructs that are used in the source code.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 5

Process Organization

Kinds of Processes
A TNS/R native process is a process that is initiated by executing a TNS/R native
program. A native process executes in the native operating environment of the TNS/R
CPU.

A TNS process is a process that is initiated by executing a TNS or accelerated
program. A TNS process executes within an emulated TNS operating environment.

Process Organization
Executable code for a TNS/R process is contained in the following objects:

• The initial program of the process, called user code. This code is read from the
program file.

• A system library containing system-related procedures. This includes operating
system code that is accessible by the process using system procedure calls.

• Optionally, a user library containing code that can be shared among several
applications. This code is read from an object file containing the user-supplied
library.

• Optionally, for TNS/R native processes, one or more TNS/R native shared run-time
libraries (SRLs). An SRL functions similar to an extension of the system library
except that the System Library code is intercepted by the User Libraries. However,
the shared run-time libraries (SRLs) are not intercepted by the user libraries.

Executable code for a TNS/E native process is contained in the following objects:

• The initial program of the process, called user code. This code is read from the
program file.

• Dynamic-link libraries (DLLs). These include:

° The system library, which contains system-related procedures and operating
system code that is accessible by the process using system procedure calls.
The system library consists of a set of implicit DLLs.

° Other DLLs supplied by HP, such as the C run-time library.

° User-created DLLs.

When a process is created, it occupies space in virtual memory. The following
paragraphs discuss the basic organization of a process in terms of code spaces, which
are associated with the objects in the preceding list, and data spaces.

Code Spaces
A process has distinct code spaces that contain executable code. For TNS processes
the code spaces are designated as follows:

• UC (user code)

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 6

Process Organization

• UL (user library)

• SC (system code)

• SL (system library)

• SCr (system code RISC)

• SLr (system library RISC)

For TNS/R native processes the code spaces are:

• UCr (user code RISC)

• Native UL (user library)

• SRL (shared run-time libraries)

• SCr (system code RISC)

• SLr (system library RISC)

• Ordinary DLLs (G06.20 and later RVUs)

For TNS/E native processes the code spaces are:

• UC (user code)

• UL (DLL user library)

• Implicit DLLs (correspond to TNS/R SCr and SLr)

• public DLLs (correspond to public SRLs on TNS/R)

• ordinary DLLs

Many procedures in the SCr and SLr code spaces are associated with special shell
procedures, known as To-RISC shells, that make it possible to call them from
procedures in the TNS code spaces. Because these native procedures are accessible
by procedures in the TNS code spaces, the environment of a TNS process effectively
includes the SCr and SLr code spaces, in addition to the four TNS code spaces. The
term “system library” can refer collectively to the SC, SL, SCr, and SLr code spaces.

A native procedure (that is, a procedure in a native code space) cannot call a TNS
procedure (that is, a procedure in a TNS code space), so the TNS code spaces are not
part of a native process environment.

A procedure in a particular code space can make direct calls by name to other
procedures in the same code space. It can also make calls to procedures in other
code spaces as illustrated in Figure 16-1. Procedures in the user library or SRL
spaces cannot ordinarily call procedures in user code. Procedures in the system code
or system library spaces cannot ordinarily call procedures in the user library, SRL, or
user code spaces.

A procedure that might not have direct access to a procedure in another code space
can often call the other procedure indirectly by using a procedure pointer rather than a

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 7

Process Organization

procedure name. For example, the HEAPSORTX_ procedure in the system library
calls a comparison routine, typically in user code, that is passed as a procedure
parameter. However, such calls are not possible between TNS and native procedures
except where a TNS procedure is calling a native procedure via its To-RISC shell.

In general, variables defined in one code space are not accessible by name from other
code spaces, although they can be passed as parameters. Exceptions to this are SRL
and native UL instance data. SRLs and native ULs can have their own global variables
that are allocated their own data spaces called instance data. Items within the instance
data can be exported, making them visible to user code and to other SRLs.

There are two distinct sets of procedure names. All TNS and accelerated procedures
exist in the TNS name set and can be called only by TNS or accelerated procedures;
the Binder utility works with this set. All TNS/R native procedures exist in the native
name set and can be called from native procedures; the nld and noft utilities work
with this set. All TNS/E native procedures exist in the native name set and can be
called from native procedures; the eld and enoft utilities work with this set.

A To-RISC shell projects a native procedure name into the TNS name set so that TNS
and accelerated procedures can call it. A few system procedures, such as ARMTRAP,
are in only the TNS set and cannot be called from native procedures; a few others are
in only the native set and cannot be called from TNS or accelerated procedures. Most

Figure 16-1. TNS and Native Process Code Spaces

VST142.VSD

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 8

Process Organization

of the Guardian procedures are in both sets. Sometimes there are distinct TNS and
native procedures having the same name and basic function, but more often a To-
RISC shell lets the native code serve both kinds of caller.

The SYSTEMENTRYPOINT procedure accepts names from the TNS set and returns
16-bit labels for TNS procedures and To-RISC shells in the system library. The
SYSTEMENTRYPOINT_RISC_ procedure accepts names from the native set and
returns 32-bit addresses for native procedures in the system library. Both procedures
are described in the Guardian Procedure Calls Reference Manual.

Data Spaces for TNS Processes
When a process is created, several data segments are allocated for its use. A TNS
process has the following data segments:

• A user data segment, containing the program global data and the user data stack
for TNS procedures.

• A main stack segment, containing the stack for unprivileged native procedures.

• A priv stack segment, containing the stack for privileged native procedures.

• A process file segment (PFS), used by the operating system.

The user data stack, in the TNS user data segment, is where the stack frame, or
activation record, is dynamically managed for each TNS procedure that is called. This
means that information, including formal parameters, a return address, and local data,
is put on the stack for each TNS procedure that is called; this information is removed
from the stack when the procedure finishes.

When TNS code calls a native procedure through its To-RISC shell, execution
automatically switches either to the main stack, for an unprivileged native procedure, or
to the priv stack, for a privileged native procedure. Execution switches back to the
TNS user data stack when the native procedure finishes.

The TNS user data segment has a fixed size that you can specify, up to 128 kilobytes
(KB) of virtual memory. The lower 64 KB of this space, containing program global data
and the user data stack, is managed for you by the operating system. The remaining
64 KB is also available for use, but TAL and pTAL programs must manage the space
themselves. The Common Run-Time Environment (CRE) manages that area for
programs in other TNS languages.

If your TNS or accelerated program needs more than 128 KB of user data space, you
can add extended data segments to your process. Section 17, Managing Memory,
provides details on how to add segments and perform other memory-management
activities.

Note. In TNS and accelerated programs, some portion of the user data stack might be used
for managing data for system procedure calls. TNS and accelerated programs should allow at
least 700 bytes of the user data stack for use by system procedure calls.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 9

Process Organization

Data Spaces for Native Processes
A TNS/R native process has the following data segments:

• A globals-heap segment, containing program global data and, optionally, a heap.

• A main stack segment, containing the stack for unprivileged native procedures.

• A priv stack segment, containing the stack for privileged native procedures.

• Zero or more SRL data segments, used for optional global data owned by each
shared run-time library (SRL).

• A process file segment (PFS), used by the operating system.

A TNS/E native process has the following data segments:

• A globals-heap segment, containing program global data and, optionally, a heap.

• A main memory stack for nonprivileged TNS/E native procedures

• A privileged memory stack for privileged procedures

• A main register stack engine (RSE) backing store for nonprivileged procedures

• A privileged RSE backing store for privileged procedures

• Zero or more DLL data segments

• Zero or more private DLL code segments

• A process file segment (PFS), used by the operating system

• Optional program-allocated extended data segments (selectable or flat segments)

For native C and C++ programs, the native Common Run-Time Environment (CRE)
automatically manages a heap in the globals-heap segment. The heap is optional for
other programs.

The main stack segment contains the stack for unprivileged native procedure calls.
Execution automatically switches to the priv stack when a privileged procedure is
called, and switches back to the main stack when that privileged procedure finishes.
(An unprivileged procedure can call only selected privileged procedures, which have
the CALLABLE attribute.)

RISC and Itanium stack growth is as follows: (Note that TNS stacks grow upwards.)

• RISC stacks grow downwards (from higher to lower addresses)

• The Itanium RSE backing store grows upwards

• Itanium memory stacks grow downwards

On both TNS/R and TNS/E CPUs, the main stacks (main RISC stack on TNS/R, main
memory stack on TNS/E) and the heap grow automatically as needed, to a maximum
size. On the TNS/R platform, the default maximum stack size is 1 MB, and on the
TNS/E platform, the default maximum stack size is 2 MB. You can increase the

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 10

Process Security

maximum stack size via an eld or PROCESS_LAUNCH_ parameter up to a limit of
32MB.

Also on both platforms, the heap can grow to the maximum size of the globals-heap
segment less the size of the global data. On the TNS/R platform, the maximum
globals-heap size is 1.1 GB. On the TNS/E platform, the maximum globals-heap size is
1536 MB.

If your native program needs additional space for user data, you can add extended
data segments to your process. Section 17, Managing Memory, provides details on
how to add segments and perform other memory-management activities.

Process Security
The system provides many tools for managing processes on the system, both at the
command-interpreter level and the procedure-call level. To prevent users from using
these tools to interfere with another user’s process (for example, to delete someone
else’s process) or access privileged data, the operating system provides tools for
protecting processes from each other and for protecting data from indiscriminate
access.

Each Guardian process is assigned a creator access ID (sometimes known as the
CAID), a process access ID (or PAID), and a stop mode. The following paragraphs
describe how the creator access ID, process access ID, and stop mode work together
to provide process security.

Creator Access ID and Process Access ID
The creator access ID (CAID) identifies the user who initiated the creation of the
process. The process access ID, which is often the same as the creator access ID,
determines whether the process has the authority to make file accesses (see
Section 2, Using the File System, for a discussion of file-access permissions). The
process access ID is also used to determine whether restricted actions against a
process (such as stopping the process or invoking the debugger) are possible.

Normally, the creator access ID and process access ID are set to the same value as
the process access ID of the creating process. For example, if the TACL process with
process access ID 4,56 starts a process $P1, then $P1 has creator access ID 4,56 and
process access ID 4,56. Similarly, if process $P1 starts process $P2, process $P2 will
have a process access ID of 4,56 and a creator access ID of 4,56. Any of these
processes can then access any files belonging to user 4,56 and stop or invoke the
debugger on any process started by this user.

The general rule for file access or performing any of the above actions on a process is
that your process must have a process access ID equal to one of the following:

• The super ID (255, 255)

• The process access ID of the group manager of the target file or process

• The process access ID of the target process

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 11

Relationship With Other Processes

You can set the process access ID equal to the owner ID of the object file instead of to
the process access ID of the creator process. Doing so gives the new process the
access permissions of the file owner instead of the creator. The owner of the object file
must set up this feature, however, either by using the FUP SECURE PROGID
command or programmatically by using a call to the SETMODE procedure.

An example of the use of this feature might be in setting up a password file. Each user
needs to have the ability to set a password, but the password file and the program file
containing the code that updates the password file would typically be owned by the
super ID user. By securing the program file with FUP SECURE PROGID, the super ID
user gives every user the ability to change a password.

Stop Mode
Normally, the user that can stop a process is the user that started the process (creator
access ID), the user’s group manager, or the super ID user. However, you can change
this stop mode in a program using the SETSTOP procedure to enforce various levels
of security against stopping your process.

Stop mode can be set to restrict the ability to stop your process to one of the following:

• Any process on the system

• A process with process access ID equal to that of the super ID user, the group
manager of the target process, or the target process itself

• No process at all, except that your process can delete itself

Relationship With Other Processes
In many Guardian applications, the relationships among processes are critical to the
operation of the application. For a process to manage the processes it has created,
the creator process needs to be kept informed when one of its offspring is deleted.
Similarly, a process that manages a batch job needs to be kept informed about the
status of processes within the job.

So that process-deletion messages can be sent to the appropriate process, the system
keeps track of relationships between processes. The method the system uses to keep
track of these relationships depends on whether the process is named or unnamed
and on whether you have a single process or two processes running as a process pair.

Figure 16-2 shows the relationships between a process and named and unnamed
processes that the process has created.

Relationship With a Named Process
Figure 16-2 shows process $A creating two named processes: a single named process
$B and a named process pair $C.

Process $A is known as the ancestor of process $B. The relationship between $A
and $B is recorded in the destination control table (DCT). If $B is deleted, then the

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 12

Relationship With Other Processes

operating system uses the DCT entry to find out where to send the process-deletion
message (system message -101). Note that because the DCT is a system-wide table,
the operating system can find this information even if process $B was deleted because
of a CPU failure.

Process $A is also the ancestor of process $C. Because $C is a process pair,
process $A gets the deletion message only if both members of the process pair are
deleted. So long as either member of the process pair is running, process $A does not
need to be informed.

Relationship With an Unnamed Process
Referring again to Figure 16-2, process $A also creates an unnamed process. For
unnamed processes, the linkage to the creator process is provided in the mom field of
the PCB. The mom field contains the process handle of the creator process. If the
unnamed process is stopped, then the operating system uses the address in the mom
field to send a process-deletion message to the creator process. In this case, the
creator process is known as the mom process.

If the unnamed process is deleted because of a CPU failure, then the linkage
information in the PCB goes away with the CPU. The mom process therefore does not
receive the process-deletion message. It is up to the mom process to check for the
CPU down message. The mom process must have issued the MONITORCPUS
procedure call for the appropriate CPU, if the process will receive the CPU down
message.

Figure 16-2. Mom and Ancestor Processes

VST081.VSD

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 13

Relationship With Other Processes

Relationship of Processes Within a Job
A job is a collection of related processes that are grouped for batch processing. The
NetBatch utility identifies the job that a process belongs to by the job number held in
the PCB of each process; processes belonging to the same job have the same job
number.

A job ancestor is the process that started the first process in a job. For named and
unnamed processes, when a new process is started by a process within the job, two
job-related pieces of information are passed from the creator process to the new
process and saved in its PCB:

• The job ID for this job

• The process handle of the job ancestor

When a process that is part of a job gets deleted, the operating system sends a
process-deletion message to the job ancestor as well as to the deleted process’s
creator. In this way, the job ancestor can keep track of which processes are still
running.

Once again, because the linkage to the job ancestor is kept in the PCB of the process
being deleted, the job ancestor does not receive the Process deletion message if the
process is deleted because of a CPU failure. This is true even for named processes.
The job ancestor must therefore monitor all CPUs where it has processes running and
check for any CPU down messages.

Figure 16-3 shows job ancestor relationships.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 14

Relationship With a Home Terminal

Relationship With a Home Terminal
Associated with each process is its home terminal. The IN and OUT files for the
process is, by default, the home terminal.

The home terminal is usually the same as for the creator of the process; it is passed to
a new process when the process is created. However, you can specify the home
terminal in one of the following ways:

• Manually during process creation using the RUN command by specifying the
terminal in the TERM parameter

• Programmatically during process creation using the PROCESS_LAUNCH_ or
PROCESS_CREATE_ procedure

• Programmatically while the process is running using the
PROCESS_SETSTRINGINFO_ procedure

For details on the RUN command, see the TACL Reference Manual. Details for setting
the home terminal programmatically are given later in this section.

Figure 16-3. Job Ancestor Relationships

VST082.VSD

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 15

Process Subtype

16 Creating and Managing Processes

Process Subtype
The Guardian process subtype is an attribute that can be set at compile/bind time. A
terminal-simulation program, for example, needs to be assigned process subtype 30 to
allow it to assign itself a terminal-device type. See Section 24, Writing a Terminal
Simulator, for an example.

All HP compilers that are not native and the HP linkers let you set the process subtype.

The default process subtype is zero. Other process subtypes are either available for
your use or reserved as follows:

• Subdevice types 48 through 63 are available for your use.

• Subdevice types 1 through 47 are reserved. Extra protection is applied for
subdevice types 1 through 15. To assign a subdevice type in this range, you must
be the super ID user, be licensed, or have a PROGID that gives you super ID user
status. Any other access yields an illegal process subtype error.

Process Priority
All processes on a CPU share the same priority structure, including system processes
and application processes. It is therefore important that each process runs with a
priority that permits necessary system operations when needed.

For example, if an application process initiates a nowait I/O operation against a disk
file, it is important that the disk process runs with a higher priority than the application.
Otherwise, the disk process would not take control of the CPU until the application
process issues the AWAITIO procedure to wait for the completion of the I/O operation.

Table 16-1 provides an overview of suggested priority values for system and user
processes. System process priorities are set during system generation as described in
the System Generation Manual for D-series releases and in the System Generation
Manual for G-Series Releases for G-series releases; I/O processes (but not disk
processes) can also have their priorities dynamically changed using the Dynamic
System Configuration (DSC) utility as described in the Dynamic System Configuration
(DSC) Manual for D-series release systems; for G-series release systems, see the
Subsystem Control Facility (SCF) and the SCF reference manuals. Application
process priorities are set during process creation; see Creating Processes later in this
section.

CPU-bound processes may have their priority reduced automatically to allow other
processes to gain access to the IPU.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 16

Process Priority

The example in Figure 16-4 shows shows how CPU time is divided among three
processes executing in the same IPU.

Table 16-1. Priority Values for System and User Processes

System Process Priority User Process Priority

Disk I/O processes
TMF monitor
Memory manager

220
211
210

 .
 .
 .

Operator process, $NCP, monitor,
I/O processes other than disk,
and so on

209
 .
 .
200

 .
 .
 .
200

$TMP 190 TACL processes used to run
application processes

Application processes

199
 .
 .
150

Application processes and editors
used for program development
(Priority 149 is assigned
automatically by TACL processes
running at priority 150)

149
 .
 .
145

Spoolers used for program
development

144
 .
 .
140

Compilers and background
batch processing

139
 .
 .

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 17

Process Priority

Notice that CPU time alternates between the two processes with priority 199. When
one process is suspended for I/O, the other process runs.

The only time that the process with priority 150 executes is when both of the other
processes are suspended. Additionally, the lower-priority process is immediately
suspended when a higher-priority process becomes ready.

This example does not account for the effects of system processes, nor does it show
floating priorities.

Figure 16-4. Execution Priority Example

VST083.VSD

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 18

Process Execution

Process Execution
From creation to deletion, a process enters and leaves several process states.
Figure 16-5 shows the various process states that a process can be in.

The states shown in Figure 16-5 are described as follows:

Figure 16-5. Process States

Debug and
Inspect

Either the Debug or Inspect debugger has been invoked on the
process. The Debug and Inspect state has several substates:
memory access breakpoint (MAB), breakpoint (BKPT), trap
(TRAP), and request (REQ). The trap state applies when
debugging was entered because of a trap or signal. See
Section 25, Debugging, Trap Handling, and Signal Handling, for
information on process debugging.

Runnable All process resources are available. The process is executing,
ready to execute, or awaiting the services for the memory
manager (because of a page fault).

Saveabend The process is waiting for a SAVEABEND file to be created by
the Inspect program.

Starting This is a temporary state that occurs while the process is
starting up.

Stopping This is a temporary state that occurs while the process is being
deleted.

Suspended The process is waiting indefinitely as the result of a
PROCESS_SUSPEND_ call. The process remains in this state
until the PROCESS_ACTIVATE_ call makes the process
runnable again.

VST084.VSD

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 19

Creating Processes

The runnable state is of most interest. Only processes that are in the runnable state
are capable of using the CPU. Figure 16-6 shows the possible substates of a runnable
process.

The CPU is composed of one or more IPUs, each of which can execute a process.
Associated with each IPU is a list of READY processes to be run on that IPU which is
called a ready list. The process scheduler rearranges those lists occasionally for load-
balancing and responsiveness purposes.

An active process is a process which is currently using an IPU. On a CPU with 4 IPUs
there are four active processes. The process chosen to be the active process is the
one with the highest priority on the given IPU's ready list.

The active process goes into the waiting state when it can no longer use the CPU, for
example when waiting for an external event to complete such as an I/O operation. An
active process goes into the ready state if it is preempted by a higher priority ready
process.

Waiting processes that have satisfied their wait conditions go into the ready state.

The highest priority ready process in an IPU goes into the active state when

1) The active process on the IPU goes into the waiting state, or

2) The active process is of lower priority than the highest priority process in the
 given IPU's ready list.

Creating Processes
To programmatically create a Guardian process, you call the PROCESS_LAUNCH_ or
PROCESS_CREATE_ procedure and pass it the name of the program file containing
the program you want to execute. You can optionally supply a user library file
providing additional procedures. The PROCESS_LAUNCH_ and
PROCESS_CREATE_ procedures return a process handle that you can use to identify
the created process in subsequent procedure calls.

Figure 16-6. Runnable Processes

VST085.VSD

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 20

Creating Processes

The PROCESS_CREATE_ procedure does not allow you to specify values for some of
the attributes that are associated with TNS/R native processes. Because it has less
function than the PROCESS_LAUNCH_ procedure, PROCESS_CREATE_ is not
discussed further in this section. (However, PROCESS_CREATE_ continues to be
used in code examples in other sections of this guide.)

The PROCESS_SPAWN_ procedure allows you to create an Open System Services
(OSS) process on the local or a remote TNS/R CPU, but it does not create Guardian
processes.

To create processes interactively, you can use the RUN command. See the TACL
Reference Manual for details.

The process creation examples in this section use the PROCESS_LAUNCH_
procedure. The PROCESS_LAUNCH_ procedures takes several parameters. The
only required parameter is a structure that allows you to specify values establishing the
following properties of the process:

• Whether the process will be named or unnamed

• Whether the creation will be a waited or nowait operation

• Other process attributes, including:

• Whether the process will run at a high PIN or low PIN

• The home terminal of the process

• The size of the user data space (TNS processes only)

• The size of the process file segment (PFS)

• Any library file to be included in the process

• The amount of swap space to be guaranteed the process by the
Kernel-Managed Swap Facility (KMSF)

• The device subtype of the process

• The CPU where the process is to run

• The way DEFINEs are propagated to the new process

• The process priority

The following paragraphs describe how to create a process and, in doing so, how to
set the above attributes.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 21

Using the PROCESS_LAUNCH_ Procedure

Using the PROCESS_LAUNCH_ Procedure
The only required parameter to the PROCESS_LAUNCH_ procedure is a structure that
allows you to specify values establishing the attributes of the new process. In the
DLAUNCH file, which is located on $SYSTEM.SYSTEM, this structure is defined as
follows:

The DLAUNCH file also defines literals for the VERSION and LENGTH fields (the first
two fields of the structure) and includes an array of default values
(P_L_DEFAULT_PARMS) for initalizing the input parameter structure. The DLAUNCH
file is for use with TAL and pTAL programs. The DLAUNCHH file is provided for use
with C and C++ programs.

If the value of a pointer field is equal to NIL_ or if the corresponding length parameter
is equal to 0, the item is considered to be omitted. The literal NIL_ is defined in the
DLAUNCH and DLAUNCHH files.

Declarations supporting the PROCESS_LAUNCH_ procedure, including a definition of
the input parameter structure, are also contained in the ZSYSTAL file. For C and C++

STRUCT PROCESS_LAUNCH_PARMS_(*) FIELDALIGN(SHARED2);
BEGIN
INT VERSION; ! version of the structure
INT LENGTH; ! length of the structure
STRING .EXT PROGRAM_NAME;
INT(32) PROGRAM_NAME_LEN;
STRING .EXT LIBRARY_NAME;
INT(32) LIBRARY_NAME_LEN;
STRING .EXT SWAPFILE_NAME;
INT(32) SWAPFILE_NAME_LEN;
STRING .EXT EXTSWAPFILE_NAME;
INT(32) EXTSWAPFILE_NAME_LEN;
STRING .EXT PROCESS_NAME;
INT(32) PROCESS_NAME_LEN;
STRING .EXT HOMETERM_NAME;
INT(32) HOMETERM_NAME_LEN;
STRING .EXT DEFINES;
INT(32) DEFINES_LEN;
INT(32) NOWAIT_TAG;
INT(32) PFS_SIZE;
INT(32) MAINSTACK_MAX;
INT(32) HEAP_MAX;
INT(32) SPACE_GUARANTEE;
INT(32) CREATE_OPTIONS;
INT NAME_OPTIONS;
INT DEBUG_OPTIONS;
INT PRIORITY;
INT CPU;
INT MEMORY_PAGES;
INT JOBID;
INT END_NOV95[0:-1]; ! dummy, to determine size of
 ! current version of the struct
END;

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 22

Using the PROCESS_LAUNCH_ Procedure

programs, declarations are contained in the ZSYSC file. For further information about
using the ZSYS* files, refer to the subsection Using Parameter Declarations Files in
Section 1, Introduction to Guardian Programming.

The main output of the PROCESS_LAUNCH_ procedure is returned by a parameter
that is also formatted as a structure. Its format is identical to that of the nowait
PROCESS_LAUNCH_ or PROCESS_CREATE_ completion message (system
message -102). In the TAL ZSYSTAL file, the structure for this message is defined as
follows:

STRUCT ZSYS^DDL^SMSG^PROCCREATE^DEF (*)
 BEGIN
 INT Z^MSGNUMBER;
 INT(32) Z^TAG;
 STRUCT Z^PHANDLE;
 BEGIN
 STRUCT Z^DATA;
 BEGIN
 STRING ZTYPE;
 FILLER 19;
 END;
 INT Z^WORD[0:9] = Z^DATA;
 STRUCT Z^BYTE = Z^DATA;
 BEGIN STRING BYTE [0:19]; END;
 END;
 INT Z^ERROR;
 INT Z^ERROR^DETAIL;
 INT Z^PROCNAME^LEN;
 INT Z^RESERVED[0:3];
 STRUCT Z^DATA;
 BEGIN
 FILLER 50;
 END;
 STRUCT Z^PROCNAME = Z^DATA;
 BEGIN STRING BYTE [0:49]; END;
 END;

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 23

Creating an Unnamed Process

Creating an Unnamed Process
Remember that processes can be named or unnamed. To create an unnamed
process, you call the PROCESS_LAUNCH_ procedure with the NAME_OPTIONS field
set to 0 in the input parameter structure. To set the NAME_OPTIONS field, you can
use the ZSYS^VAL^PCREATOPT^NONAME literal from the ZSYSTAL file. All you
need to supply is the program file name.

The following example creates an unnamed process:

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(PROCESS_LAUNCH_);
?SOURCE $SYSTEM.SYSTEM.DLAUNCH(PROCESS_LAUNCH_DECS);
?SOURCE $SYSTEM.SYSTEM.ZSYSTAL;
?LIST
 .
 .

STRING PROG_NAME[0:ZSYS^VAL^LEN^FILENAME-1];
INT .EXT ERROR_DETAIL,
 OUTPUT_LIST_LEN;
STRUCT OUTPUT_LIST(ZSYS^DDL^SMSG^PROCCREATE^DEF);
STRUCT PARAM_LIST(PROCESS_LAUNCH_PARMS_);
 .
 .
PARAM_LIST ':=' P_L_DEFAULT_PARMS_; ! initialize param struct
PROG_NAME ':=' "PROGFILE" -> @S^PTR; ! program file name
@PARAM_LIST.PROGRAM_NAME := $XADR(PROG_NAME);
PARAM_LIST.PROGRAM_NAME_LEN := $DBL(@S^PTR '-' @PROG_NAME);
PARAM_LIST.NAME_OPTIONS := ZSYS^VAL^PCREATOPT^NONAME;
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

In this example, the OUTPUT_LIST structure returns the process handle and the
unnamed form of the process descriptor, which is suitable for supplying as the
file-name parameter to the FILE_OPEN_ procedure. See Section 2, Using the File
System, for a discussion of process file names.

Creating a Named Process
When creating a named process, you can either specify the process name yourself or
have the operating system assign a name for you.

Specifying a Process Name
The next example is in C. To specify a process name, you must set the name_options
field to 1 and supply the process name in the process_name field in the input
parameter structure. To set the name_options field, you can use the
ZSYS^VAL^PCREATOPT^NAMEINCALL literal.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 24

Creating a Named Process

The following example supplies a process name:

#include <dlaunch.h>
#include "$system.zsysdefs.zsysc(zsys_ddl_smsg_proccreate, \
 process_constant)"
#include <cextdecs(PROCESS_LAUNCH_)>
 .
 .
process_launch_parms_def paramList = P_L_DEFAULT_PARMS_;
zsys_ddl_smsg_proccreate_def outputList;
short error, errorDetail, outputListLen;
 .
 .
paramList.program_name = "PROGFILE";
paramList.program_name_len = sizeof("PROGFILE") - 1;
paramList.name_options = ZSYS_VAL_PCREATOPT_NAMEINCALL;
paramList.process_name = "$REQ";
paramList.process_name_len = sizeof("$REQ") - 1;
error = PROCESS_LAUNCH_(¶mList,
 &errorDetail,
 &outputList, sizeof(outputList),
 &outputListLen);

Here, the information returned in the outputList structure includes the named form of a
process descriptor. See Section 2, Using the File System, for a discussion of process
names and process descriptors.

Requesting a System-Generated Process Name
Use either of the following operations to make the system provide a name for your
process:

• Use the PROCESSNAME_CREATE_ procedure to create the name. You can
pass the name to the PROCESS_LAUNCH_ procedure the same way you would a
user-specified name.

• Call the PROCESS_LAUNCH_ procedure with the NAME_OPTIONS field of the
input parameter structure set to the value of the
ZSYS^VAL^PCREATOPT^NAMEDBYSYS literal.

If you need the system to create a process name before you create the corresponding
process, or if you need the system to create a remote long name (5 characters plus the
$ sign), then you must use the PROCESSNAME_CREATE_ procedure. Otherwise,
you can use PROCESS_LAUNCH_ with the NAME_OPTIONS field of the input
parameter structure set for a system-generated name. Each of these methods is
described in the following paragraphs.

Using the PROCESSNAME_CREATE_ Procedure

The PROCESSNAME_CREATE_ procedure gives you the option of returning a
6-character process name or a 5-character process name, and you have the option of
adding a node name. You use the name-type parameter to request the length of the

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 25

Creating a Named Process

name. You use the options parameter and, if appropriate, the nodename:length
parameter to specify whether you want to add a node name to the process name.

The following example requests a 6-character process name to include a node name.
The name is returned in the PROCESS^NAME parameter. This, and the remaining
examples are in TAL.

LITERAL SIX^CHARACTERS = 1,
 INCLUDE^NODENAME = 0;
 .
 .
MAX^LENGTH := ZSYS^VAL^LEN^PROCESSDECR;
NAME^TYPE := SIX^CHARACTERS;
NODENAME ':=' "\CENTRAL" -> @S^PTR;
NODENAME^LENGTH := @S^PTR '-' @NODENAME;
OPTIONS := INCLUDE^NODENAME;
CALL PROCESSNAME_CREATE_(PROCESS^NAME:MAX^LENGTH,
 NAME^LENGTH,
 NAME^TYPE,
 NODENAME:NODENAME^LENGTH,
 OPTIONS);

You can pass the name returned in PROCESS^NAME to the PROCESS_LAUNCH_
procedure as a user-supplied name.

Using the PROCESS_LAUNCH_ Procedure

To have the system supply a name without using the PROCESSNAME_CREATE_
procedure, you can call the PROCESS_LAUNCH_ procedure with the
NAME_OPTIONS field set equal to the ZSYS^VAL^PCREATOPT^NAMEDBYSYS
literal in the input parameter structure. The information returned in the output
parameter structure includes a process descriptor, suitable for passing to the
FILE_OPEN_ procedure, and the length of the descriptor.

The operating system supplies a name for a new process in the following example:

 .
 .
PROG_NAME ':=' "REQFILE" -> @S^PTR;
@PARAM_LIST.PROGRAM_NAME := $XADR(PROG_NAME);
PARAM_LIST.PROGRAM_NAME_LEN := $DBL(@S^PTR '-' @PROG_NAME);
PARAM_LIST.NAME_OPTIONS := ZSYS^VAL^PCREATOPT^NAMEDBYSYS;
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

Note. If the “run named" object-file flag is set (at compile or link time), then the system
generates a name even if the NAME_OPTIONS field in the input parameter structure is set
to 0.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 26

Creating a Process in a Nowait Manner

Creating a Process in a Nowait Manner
If you call the PROCESS_LAUNCH_ procedure with the NOWAIT_TAG field of the
input parameter structure set to any value other than -1, your process returns
immediately without waiting for completion of the operation. Instead, your process
receives notification with system message -102 (the nowait PROCESS_LAUNCH_ or
PROCESS_CREATE_ completion message) when the operation finishes.

The format of system message -102 was shown earlier as it is defined in the ZSYSTAL
file; its format is the same as that of the PROCESS_LAUNCH_ output parameter
structure. The structure of system message -102 is shown below as an array:

The following example creates a named process in a nowait manner. By setting the
NOWAIT_TAG field to 1 in the input parameter structure, the PROCESS_LAUNCH_
procedure returns immediately without returning any value for the process handle or
the process descriptor in the output parameter structure. Instead, these values are
retrieved from system message -102 by calling the READUPDATEX procedure on the
$RECEIVE file:

 .
 .
PROG_NAME ':=' "REQFILE" -> @S^PTR;
@PARAM_LIST.PROGRAM_NAME := $XADR(PROG_NAME);
PARAM_LIST.PROGRAM_NAME_LEN := $DBL(@S^PTR '-' @PROG_NAME);

PARAM_LIST.NAME_OPTIONS := ZSYS^VAL^PCREATOPT^NAMEINCALL;
PROC_NAME ':=' "$REQ" -> @S^PTR;
@PARAM_LIST.PROCESS_NAME := $XADR(PROC_NAME);
PARAM_LIST.PROCESS_NAME_LEN := $DBL(@S^PTR '-' @PROC_NAME);

PARAM_LIST.NOWAIT_TAG ':=' 1D;

Structure of the PROCESS_LAUNCH or PROCESS_CREATE_ completion
message (-102):

sysmsg[0] = -102
sysmsg[1] FOR 2 = Nowait tag supplied to
 process creation procedure
sysmsg[3] FOR 10 = Process handle of the new process
sysmsg[13] = Error
sysmsg[14] = Error detail
sysmsg[15] = Length of process descriptor for
 new process
sysmsg[16] FOR 4 = Reserved for future use
sysmsg[20] FOR sysmsg[15] = Process descriptor of new process

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 27

Analyzing Process-Creation Errors

ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL);

IF ERROR <> 0 THEN ...
 .
 .

CALL READUPDATEX(RCV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF <> THEN ...

IF BUFFER[0] = -102 THEN !Process create
BEGIN ! completion message
 IF BUFFER [13] <> 0 THEN ... !Error
 ELSE
 BEGIN
 NOWAIT^TAG := BUFFER[1] FOR 2;
 PROCESS^HANDLE ':='
 BUFFER[3] FOR ZSYS^VAL^PHANDLE^WLEN;
 PROCESS^DESCRIPTOR^LENGTH := BUFFER[15];
 PROCESS^DESCRIPTOR ':=' BUFFER[20] FOR
 PROCESS^DESCRIPTOR^LENGTH;
 END;
END;

The returned nowait tag enables you to match the message with the corresponding call
to PROCESS_LAUNCH_.

Analyzing Process-Creation Errors
If your process creation fails, you will receive an error indication in the returned error
value. An additional level of detail is returned in the error_detail parameter. For a
waited creation attempt, these variables are returned by the PROCESS_LAUNCH_
call. For a nowait creation attempt, the error variables are returned in system message
-102.

See the Guardian Procedure Errors and Messages Manual for a list of each possible
value of error and an interpretation of the associated error_detail value.

Waited Creation Errors
If you call PROCESS_LAUNCH_ in a waited manner, you can gather any error
information as soon as the call returns. In addition to the error value returned, you
also get an error_detail parameter. The information returned in error_detail
depends on the value in error. For example, if error is 1, then
PROCESS_LAUNCH_ encountered a file-system error; error_detail indicates
which file-system error.

The following example examines the error_detail parameter:

 .
 .
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 28

Specifying Process Attributes and Resources

 OUTPUT_LIST_LEN);
IF ERROR <> 0 THEN
BEGIN
 CASE ERROR OF
 BEGIN
 '1' -> CALL FILE^ERRORS(ERROR_DETAIL); !To process the
 ! file-system error

 '2' -> CALL PARAM^ERROR(ERROR_DETAIL); !To process the
 ! parameter error
 .
 .
 END;
END;

Nowait Creation Errors
If you call PROCESS_LAUNCH_ in a nowait manner, you need to check not only the
error return value of the procedure call but also the PROCESS_LAUNCH_ or
PROCESS_CREATE_ completion message. If the system is unable to initiate process
creation (for example, if you specified an invalid IPU number), then the system returns
the error with the procedure call. Other process-creation errors are reported in the
PROCESS_LAUNCH_ or PROCESS_CREATE_ completion message.

Specifying Process Attributes and Resources
The following paragraphs show how to set process attributes and resources when you
create a new process with the PROCESS_LAUNCH_ procedure.

Running a Process at a High PIN or a Low PIN
You can run a process at a high PIN (256 or greater) or low PIN (254 or less).
Whether to run processes at a high PIN or low PIN depends on how many PINs your
system will need. Although some HP processes will use high PINs, many will use low
PINs. Consequently, you should consider running application processes at high PINs,
because there are many more high PINs available than there are low PINs. The
danger of running a process at a low PIN is that if the system uses all the available low
PINs, you will not be able to run all the processes you want.

Whether a new process runs at a high PIN or a low PIN depends on:

• The force-low flag—bit 31 in the CREATE_OPTIONS field of the input parameter
structure of the PROCESS_LAUNCH_ procedure call

• The inherited force-low characteristic of the creator process

• The ignore force-low flag—bit 26 in the CREATE_OPTIONS field of the input
parameter structure of the PROCESS_LAUNCH_ procedure call

• The HIGHPIN attribute of the program file and the library file or SRL file, if there is
one

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 29

Specifying Process Attributes and Resources

Figure 16-7 summarizes how these conditions affect whether new processes run at a
high PIN. A description of each of these entities follows.

The Force-Low Flag

If you set bit 31 (the force-low flag) to 1 in the CREATE_OPTIONS field of the input
parameter structure when you call PROCESS_LAUNCH_, the new process will run at
a low PIN. (Note that processes started with the C-series NEWPROCESS procedure
always run at a low PIN.)

The Inherited Force-Low Characteristic

If the inherited force-low characteristic of your process is set, the new process normally
runs at a low PIN. This flag is contained within the PCB and is normally inherited from
the creator. A process has its inherited force-low characteristic set if one of the
following is true:

• The creator was created with bit 31 (the force-low flag) set to 1 in the
CREATE_OPTIONS field.

• The creator was created using the C-series NEWPROCESS procedure.

• The creator inherited the force-low characteristic from its creator.

The Ignore Force-Low Flag

To override the inherited force-low characteristic, you set bit 26 (the ignore force-low
flag) to 1 in the CREATE_OPTIONS field of the input parameter structure. As a result,
the new process can run at either a high PIN or a low PIN, depending upon the force-
low flag and the program, library, and SRL files. In addition, the new process does not
have its inherited force-low characteristic set.

The HIGHPIN Attribute

If the HIGHPIN attribute is set for the program file and for any library file or SRL file,
the new process can run at a high PIN. To do so, however, the process must not be
forced into a low PIN by either CREATE_OPTIONS.<31>, or the inherited force-low
characteristic.

The following example shows one way of setting the HIGHPIN file attribute, using the
BINDER program:

28> BIND CHANGE HIGHPIN ON IN tnsobj

The next example shows the use of the nld utility to perform the same action on an
existing TNS/R native object file:

29> nld -change highpin on natobj

Both utilities can also set attributes while creating the object file. The following
example shows how to set the HIGHPIN attribute while linking two native object files:

30> nld ofile1 ofile2 -set highpin on -o objfile

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 30

Specifying Process Attributes and Resources

The nld and Binder utilities only need to set this attribute once, either after building the
object file (using the CHANGE command) or while building the object file (using the
SET command).

Caution. Some C-series system procedures (such as MYPID) do not support high PINs. If
your program contains any such calls then the process will stop with a run-time error. By using
the D-series procedure calls described in this manual, and in the Guardian Procedure Calls
Reference Manual, your process will be able to run at a high PIN.

If your program does contain superseded C-series system procedure calls, see the Guardian
Application Conversion Guide for a description of how to enable the process to run at a high
PIN.

Figure 16-7. Running a Process at a High PIN or a Low PIN

VST086.VSD

Is CREATE_OPTIONS.<31>
(force-low flag) set?

Is HIGHPIN set in object
files?

Is CREATE_OPTIONS.<26>
(ignore force-low flag) set?

Is the inherited force-low
characteristic set?

Create a new process
at a high PIN.
Inherited force-low
characteristic is not
set.

Creates a new
process at a low PIN.
Inherited force-low
characteristic is same
as for the creator.

Creates a new
process at a low PIN.
Inherited force-low
characteristic is set.

Yes

No

Yes No

Yes

No

Yes No

Creator Process

New Process

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 31

Specifying Process Attributes and Resources

Starting a High-PIN Process Programmatically: An Example

The following code fragment creates a new process to run at a high PIN or low PIN
depending on the inherited force-low characteristic. Note that
CREATE_OPTIONS.<31> is set to 0 in the input parameter structure. This example
assumes that the HIGHPIN file attribute is set in the program file of the process that
you are creating:

 .
 .
PARAM_LIST.CREATE_OPTIONS:= 0D; !bits 26 and 31 both set to 0
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

Starting a High-PIN Process Interactively: Examples

The next example causes the TACL program to start any new processes at a high PIN:

3> SET HIGHPIN ON

The SET HIGHPIN ON command causes the TACL process to create any new process
with the force-low flag set to 0, allowing processes to be created at a high PIN, if the
HIGHPIN attribute is set in the object file being executed. (A TACL process always
runs with the ignore force-low flag set to 1.)

The following example uses the TACL run option to cause the program to run at a high
PIN, if possible.

20> RUN objfile /HIGHPIN ON/

Specifying the Home Terminal
By default, your process receives input from its home terminal and sends output to its
home terminal; that is, the home terminal name serves as the default value for the IN
and OUT parameters of the process Startup message (see Section 8, Communicating
With a TACL Process). Normally, the home terminal for a new process is the same as
for the creator process. However, you can choose a different home terminal for your
new process by supplying values for the HOMETERM_NAME and
HOMETERM_NAME_LEN fields of the input parameter structure when calling the
PROCESS_LAUNCH_ procedure.

The following example specifies the home terminal:

 .
 .
TERM_NAME ':=' "$TERM1" -> @S^PTR;
@PARAM_LIST.HOMETERM_NAME = $XADR(TERM_NAME);
PARAM_LIST.HOMETERM_NAME_LEN := $DBL(@S^PTR '-' @TERM_NAME);
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 32

Specifying Process Attributes and Resources

 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

Sizing the TNS User Data Area
If you are creating a TNS process, you can use any of the following methods to specify
the number of pages of user data area that your new process can occupy:

• The DATAPAGES compiler directive or pragma; see the appropriate compiler
manual for details.

• The Binder program; see the Binder Manual for details.

• The RUN command MEM option; see the TACL Reference Manual for details.

• The MEMORY_PAGES field of the input parameter structure of the
PROCESS_LAUNCH_ procedure.

The compiler or Binder value sets the minimum number of data pages. You can
increase this number using the RUN command or the PROCESS_LAUNCH_
procedure, but you cannot reduce this number. The number that you supply is in disk
pages, which are 2048 bytes each. The actual amount of memory allotted to the user
data area is rounded up to the nearest multiple of the memory page size for your
system, which is 4 KB (or two disk pages) for NSR-L CPUs, and 16 KB (or eight disk
pages) for all other CPU types.

The following example uses the PROCESS_LAUNCH_ procedure to create a process
with five user data pages:

 .
 .
PARAM_LIST.MEMORY_PAGES := 5;
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

On an NSR-L CPU (such as a K1000 system), 6*2048 bytes (or three memory pages)
will be allocated. For other CPUs, the memory page size is 16 KB, so 8*2048 bytes (or
one memory page) will be allocated.

The maximum number of data pages allowed is 64.

Sizing the Process File Segment
Another memory dimension you can set using the PROCESS_LAUNCH_ procedure is
the size of the PFS. You specify the PFS size in bytes using the PFS_SIZE field of the
input parameter structure.

One of the functions of the PFS is to provide space for managing files and DEFINEs.
The larger the PFS is, the more files the process can have open. The default PFS size
of 256 KB is enough for most processes. However, if you get a file system error 31 or

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 33

Specifying Process Attributes and Resources

34, or a DEFINE error 2052, then you need extra PFS space for your program to run.
You can create a PFS of up to one megabyte.

If you need to reduce the amount of virtual memory used by your process, you might
be able to reduce the PFS size to a minimum of 128 KB.

You can use a linker (either the Binder or the nld utility) to specify the size of the PFS.
(See the Binder Manual or the nld and noft Manual). The value set by the linker
becomes the default value for your process. To create a different-sized PFS in your
program, you must specify the PFS size in bytes. This value must change the PFS
size to something between one and eight unitary segments (131,072 to 1,048,576
bytes).

The following example sets the process file segment size to 524,288 bytes:

 .
 .
PARAM_LIST.PFS_SIZE := 524288D;
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

Specifying a User Library File
Use the LIBRARY_NAME and LIBRARY_NAME_LEN fields of the input parameter
structure of the PROCESS_LAUNCH_ procedure to specify a procedure library. This
library is a second object file containing user-written procedures called from the
program file. When a TNS process is created, the library file occupies the user library
space (UL). When a native process is created, the library file occupies the native UL
space.

The following example uses a library file named PROCLIB:

 .
 .
LIB_NAME ':=' "PROCLIB" -> @S^PTR;
@PARAM_LIST.LIBRARY_NAME := $XADR(LIB_NAME);
PARAM_LIST.LIBRARY_NAME_LEN := $DBL(@S^PTR '-' @LIB_NAME);
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

Specifying Swap Files
In a large majority of cases, it is unnecessary to specify a swap file for a new process,
whether by supplying a value in the SWAPFILE_NAME field or in the
EXTSWAPFILE_NAME field of the input parameter structure. In general, you should
simply allow the system to manage swap space.

For all processes, values supplied in the SWAPFILE_NAME and
SWAPFILE_NAME_LEN fields of the input parameter structure of the

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 34

Specifying Process Attributes and Resources

PROCESS_LAUNCH_ procedure are unused except for information purposes (that is,
to support programs that use the swap file name to determine the volume on which to
create temporary files). The actual swap space is handled by the Kernel-Managed
Swap Facility (KMSF), regardless of whether these fields are used.

If your TNS process uses a default extended data segment, you can use the
EXTSWAPFILE_NAME and EXTSWAPFILE_NAME_LEN fields of the input parameter
structure of the PROCESS_LAUNCH_ procedure to specify a swap file for that
segment. (These fields are ignored for TNS/R native processes.) Specifying a swap
file for a TNS process in this manner is supported for compatibility, but it is not
recommended. For best performance, you should allow the system to use KMSF to
manage swap space.

Requesting Guarantee of Swap Space From KMSF
Most swap space is handled by the Kernel-Managed Swap Facility (KMSF). For each
CPU, KMSF manages one or more swap files from which swap space is allocated for
the processes in that CPU.

A process is automatically allocated swap space by KMSF as needed. However, if you
want to ensure that a particular amount of swap space is available for your process,
you can specify a value (other than 0) in the SPACE_GUARANTEE field of the input
parameter structure when calling PROCESS_LAUNCH_. (You can also set the space
guarantee value using the nld utility; refer to the nld and noft Manual. However, you
cannot set this attribute in a TNS object file.) KMSF reserves the amount of space
specified in this field, in bytes, as swap space for the new process. The number of
bytes is rounded up to the page size of the CPU.

The space guarantee applies to space allocated for the stack, the globals-heap
segment, and any SRL data segments; it does not apply to space for extended data
segments. (For information on allocating space for an extended data segment, refer to
Allocating Extended Data Segments in Section 17, Managing Memory.) If KMSF
cannot guarantee the amount of space requested, PROCESS_LAUNCH_ returns error
55.

Most processes do not need to set the space guarantee attribute, because KMSF
allocates space as processes need it. Setting large guarantees on many processes
could have a detremental effect on swap space consumption. The guarantee
mechanism is provided for programs (such as some NonStop process pairs) that need
to ensure, when starting, that they will not later fail due to competition for resources.

For more information about KMSF, refer to the Kernel-Managed Swap Facility (KMSF)
Manual.

The following example specifies that 262,144 bytes of swap space (equivalent to two
segments) be reserved.

 .
 .
PARAM_LIST.SPACE_GUARANTEE := 262144D;
ERROR := PROCESS_LAUNCH_(PARAM_LIST,

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 35

Specifying Process Attributes and Resources

 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);
IF ERROR <> 0 THEN ...

Specifying a Device Subtype
You can assign a device subtype attribute to a process at compile or link time. (There
is no input parameter to PROCESS_LAUNCH_ for specifying a subtype attribute.)
One use for giving a process a device subtype is when creating a terminal simulation
process as described in Section 24, Writing a Terminal Simulator.

The HP linkers (the nld and Binder utilities) and the TNS compilers provide directives
that allow you to assign a device subtype to a program file. For details, see the
appropriate compiler manual; also see the nld and noft Manual or the Binder Manual.
For H-series software, see the nld Manual and the noft Manual as well as the Binder
Manual

Each subtype is an integer value. There are 64 possible values:

• Subtype zero is the default value.

• Subtypes 1 through 47 are reserved for HP use.

• Subtypes 48 through 63 are available for general use; you can create a named
process with a device subtype in this range.

Specifying a CPU
Normally, a new process runs on the same CPU as its creator process. However, you
can use the CPU field of the input parameter structure of the PROCESS_LAUNCH_
procedure to specify a CPU. The following example runs a new process on CPU
number 6:

 .
 .
PARAM_LIST.CPU ':=' 6;
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

Specifying a New Job
For applications that do batch processing, you can use the JOBID field of the input
parameter structure of the PROCESS_LAUNCH_ procedure to specify a new job.

For batch processing, you can group related processes into jobs by assigning the
same job number to each process. The job number is interpreted by the NetBatch
utility to establish the members of a given job.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 36

Specifying Process Attributes and Resources

When you start a job, you assign the job number to the first process in the job when
you create the first process. The process that calls the PROCESS_LAUNCH_
procedure with a value specified in the JOBID field is known as the job ancestor (also
known as the godmother or GMOM). When a process that is part of a job starts or
terminates, the job ancestor receives a system message -112 (Job process creation) or
a system message -101 (Process deletion), respectively. The job ancestor can use
these messages to manage the job.

To assign a job ID to a process, you simply supply an integer value (other than 0 or -1)
in the JOBID field of the input parameter structure of the PROCESS_LAUNCH_
procedure. The following example assigns a job ID of 1:

 .
 .
PARAM_LIST.JOBID := 1;
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

When a process within a job creates an additional process, the job ID is normally
passed on automatically to the additional process. For this to happen, the JOBID field
of the input parameter structure of PROCESS_LAUNCH_ must be set to -1. When the
additional process terminates, the system sends a death notification message to the
job ancestor as well as to the creator of the process.

A process that is part of a job can start a process that does not belong to the job by
issuing a PROCESS_LAUNCH_ procedure call with the JOBID field set to 0.
Termination of such a process does not result in a death notification message being
sent to the job ancestor, because the process is not a part of the job.

Propagating DEFINEs
Use the CREATE_OPTIONS and the DEFINES (and DEFINES_LEN) fields of the
input parameter structure to indicate which DEFINEs in the environment of the current
process should be propagated to the new process.

DEFINEs in the environment of the current process can be classified as:

• DEFINEs in the context of the process

• DEFINEs saved in a buffer by the process issuing the DEFINESAVE procedure call

Either or both of these groups of DEFINEs can be propagated to the new process. By
default, only DEFINEs in the context of the current process are propagated to the new
process; DEFINE mode in the new process is turned on or off as in the context of the
current process. To change either of these default settings, use bits 27, 28, 29, and 30
of the CREATE_OPTIONS field of the input parameter structure as described below.

Bits 27 and 28 of the CREATE_OPTIONS field specify which DEFINEs are
propagated.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 37

Specifying Process Attributes and Resources

• By default (bits 27 and 28 set to 0), only DEFINEs in the context of the current
process are propagated to the new process.

• Set bit 28 to 1 and bit 27 to 0 to propagate DEFINEs saved by the current process.
The address of the propagated DEFINE is passed in the DEFINES field of the input
parameter structure of the PROCESS_LAUNCH_ procedure call.

• Set bit 27 to 1 and bit 28 to 0 to propagate DEFINEs from the context of the calling
process and the DEFINEs listed in the DEFINES field of the input parameter
structure.

To override the default setting for the DEFINE mode of the new process, you need to
set bit 29 to 1 in the CREATE_OPTIONS field of the input parameter structure. The
DEFINE mode of the new process is then specified by bit 30: to enable DEFINEs in
the new process, set bit 30 to 1; to disable DEFINEs, set bit 30 to 0.

The following example turns on DEFINE mode for the new process and propagates the
DEFINEs saved in the DEFINE save buffer by a previous call to the DEFINESAVE
procedure.

 .
 .
PARAM_LIST.CREATE_OPTIONS.<27:28> := 2; !Propagate all
 ! DEFINEs
PARAM_LIST.CREATE_OPTIONS.<29> := 1; !Use bit 30
PARAM_LIST.CREATE_OPTIONS.<30> := 1; !Set DEFINE mode on

PARAM_LIST.DEFINE := <address of DEFINE save buffer>
 ! buffer contents supplied from call to DEFINESAVE
PARAM_LIST.DEFINE_LEN := <length of buffer>
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

When you create the new process, the DEFINE working set is initialized with the
default attributes of CLASS MAP.

See Section 7, Using DEFINEs, for details on how to use DEFINEs.

Distinguishing the Recipient of the Process Deletion
Message
Use the CREATE_OPTIONS field of the input parameter structure to specify whether
the system should exhibit D-series behavior (the default action) or C-series behavior
when delivering system message -101 (Process deletion) after the process you are
creating terminates.

Note. When the primary process of a process pair creates its backup, all DEFINEs in the
context of the primary process are propagated to the backup regardless of the settings of bits
in the CREATE_OPTIONS field of the input parameter structure. If a value is specified in the
DEFINE_NAME field, it is ignored.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 38

Sending the Startup Sequence to a Process

Set CREATE_OPTIONS.<25> to 0 to cause D-series behavior. With this option, the
Process-deletion message is sent only to the caller of PROCESS_LAUNCH_ or to the
instance of the process pair that contains the caller of PROCESS_LAUNCH_. An
“instance” is any process in an unbroken chain of primary and backup processes.
Every process that is part of an instance has the same sequence number.

Set CREATE_OPTIONS.<25> to 1 to cause C-series behavior. With this option, a
process with the same name as the caller of PROCESS_LAUNCH_ receives the
Process-deletion message.

The following example requests C-series behavior:

 .
 .
PARAM_LIST.CREATE_OPTIONS.<25> := 1;
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

Sending the Startup Sequence to a Process
Section 8, Communicating With a TACL Process, describes how the TACL process
sends a startup sequence to a new process that it has just created. Processes started
from a user-written process do not automatically receive a startup sequence. It is up to
you to determine what the sequence will be and how to do it.

If your new process expects the standard startup protocol (for example, if the new
process uses the INITIALIZER procedure), then you should issue a standard startup
sequence, with messages in the same format as issued by the TACL process. This
subsection describes how to do this.

When using the standard startup sequence, your program must perform the following
sequence:

1. Create the Startup message using a data structure in the form of a Startup
message. See Section 8, Communicating With a TACL Process, for details of the
Startup message format.

2. Create any Assign or Param messages you will send to the new process.

3. Create the new process using, for example, the PROCESS_LAUNCH_ procedure.

4. Open the new process.

5. Send the Startup message to the new process using the WRITE[X] procedure on
the open process file.

6. Optionally send Assign messages to the new process using the WRITE[X]
procedure on the open process file.

7. Optionally send a Param message to the new process using the WRITE[X]
procedure on the open process file.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 39

Sending and Receiving the Startup Message

8. Close the new process.

Sending and Receiving the Startup Message
The following example shows two processes. The first process creates the second
process and then sends it the Startup message.

The first program is an extension of the program shown in Section 8, Communicating
With a TACL Process, that receives the Startup message. This example first reads its
own Startup message by calling INITIALIZER. The INITIALIZER procedure then calls
the START^PROC procedure, which processes the Startup message and returns an
array containing the open file number of the IN file, the open file number of the OUT
file, the length of the Startup message, and the Startup message itself.

After returning from the INITIALIZER procedure, the first program creates the second
process, opens the second process, and then sends a Startup message to the second
process. In this case, the second process receives the same Startup message as the
first process.

The code for the first process appears on the following pages.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 40

Sending and Receiving the Startup Message

?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST

!Global parameters
LITERAL MAXLEN =
 ZSYS^VAL^LEN^FILENAME; !Maximum file-name length
INT OUTNUM; !OUT file number
INT INNUM; !IN file number
INT .S^PTR; !pointer to end of string (word address)

STRUCT .CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULTS;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRING PARAM[0:529];
END;
INT MESSAGE^LEN;

? NOLIST
? SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,FILE_OPEN_,
? WRITEX,PROCESS_LAUNCH_,PROCESS_STOP_,FILE_CLOSE_,
? OLDFILENAME_TO_FILENAME_,FILE_GETINFO_)
? SOURCE $SYSTEM.SYSTEM.DLAUNCH(PROCESS_LAUNCH_DECS);
? LIST

!--
! Procedure to save the Startup message in a global
! structure.
!--

PROC START^IT(RUCB,START^DATA,MESSAGE,LENGTH,MATCH) VARIABLE;
INT .RUCB,.START^DATA,.MESSAGE,LENGTH,MATCH;

BEGIN

 CI^STARTUP.MSGCODE ':=' MESSAGE FOR LENGTH/2;
 MESSAGE^LEN := LENGTH;

END;

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 41

Sending and Receiving the Startup Message

!--
! Procedure to perform initialization for the program.
!--

PROC INIT;

BEGIN
 STRING .IN^NAME[0:MAXLEN - 1]; !string form of IN file
 ! name
 INT INNAME^LEN; !length of IN file
 STRING .OUT^NAME[0:MAXLEN - 1]; !string form of OUT file
 ! name
 INT OUTNAME^LEN; !length of OUT file
 INT ERROR;

! Call INITIALIZER to read and save the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 START^IT);

! Convert 12-word file name from Startup message into a
! variable-length string:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.INFILE.VOLUME,
 IN^NAME:MAXLEN,
 INNAME^LEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the input file.

 ERROR := FILE_OPEN_(IN^NAME:INNAME^LEN,INNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Convert the output file name:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.OUTFILE.VOLUME,
 OUT^NAME:MAXLEN,
 OUTNAME^LEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the output file:

 ERROR := FILE_OPEN_(OUT^NAME:OUTNAME^LEN,OUTNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

END;

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 42

Sending and Receiving the Startup Message

!--
! Main procedure calls INIT to read and save the Startup
! message and open the IN and OUT files, creates a new
! process, then passes on its own Startup message to the
! new process.
!--

PROC INITIAL MAIN;
BEGIN

 STRUCT PARAM_LIST(PROCESS_LAUNCH_PARMS_);
 !PROCESS_LAUNCH_ input parameter struct
 STRUCT OUTPUT_LIST(ZSYS^DDL^SMSG^PROCCREATE^DEF);
 !PROCESS_LAUNCH_ output parameter struct
 INT .EXT ERROR_DETAIL;
 INT .EXT OUTPUT_LIST_LEN; !length of PROCESS_LAUNCH output
 ! parameter struct as returned
 INT F^NUM; !file number for process
 ! file
 INT ERROR;
 STRING PROGNAME[0:MAXLEN - 1]; !string form of program
 ! file name

! Read and save the Startup message and open the IN and OUT
! files:

 CALL INIT;

! Start the new process:

 PARAM_LIST ':=' P_L_DEFAULT_PARMS_; !initialize input
 ! parameter struct
 PROGNAME ':=' "$XCEED.DJCEGD10.ZNEW" -> @S^PTR;
 @PARAM_LIST.PROGRAM_NAME := $XADR(PROGNAME);
 PARAM_LIST.PROGRAM_NAME_LEN := $DBL(@S^PTR '-' @PROGNAME);
 PARAM_LIST.NAME_OPTIONS := ZSYS^VAL^PCREATOPT^NAMEDBYSYS;
 ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the new process:

 ERROR := FILE_OPEN_(
 OUTPUT_LIST.Z^PROCNAME:OUTPUT_LIST.Z^PROCNAME^LEN,
 F^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 43

Sending and Receiving the Startup Message

! Send the new process the Startup message. The receiving
! process reply with file-system error ZFIL^ERR^CONTINUE
! indicating that it is ready to receive Assign messages.

 CALL WRITEX(F^NUM,CI^STARTUP,MESSAGE^LEN);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(F^NUM,ERROR);
 IF ERROR <> ZFIL^ERR^CONTINUE THEN CALL PROCESS_STOP_;
 END;

! There are no Assign messages so close the new process:

 CALL FILE_CLOSE_(F^NUM);
END;

The new process receives the Startup message the same way as any process receives
a Startup message from the TACL process. The process simply opens its $RECEIVE
file and reads the message. The recommended way to do this is by calling the
INITIALIZER procedure.

?INSPECT, SYMBOLS, NOCODE, NOMAP
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST

!Global parameters
LITERAL MAXLEN =
 ZSYS^VAL^LEN^FILENAME; !Maximum file-name length
INT OUTNUM; !OUT file number
INT INNUM; !IN file number
STRING .S^PTR; !pointer to end of string

STRUCT .CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULTS;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRING PARAM[0:529];
END;
INT MESSAGE^LEN;

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 44

Sending and Receiving the Startup Message

? NOLIST
? SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,FILE_OPEN_,
? PROCESS_STOP_,OLDFILENAME_TO_FILENAME_)
? LIST

!--
! Procedure to save the Startup message in a global
! structure.
!--

PROC START^IT(RUCB,START^DATA,MESSAGE,LENGTH,MATCH) VARIABLE;
INT .RUCB,.START^DATA,.MESSAGE,LENGTH,MATCH;

BEGIN

 CI^STARTUP.MSGCODE ':=' MESSAGE FOR LENGTH/2;
 MESSAGE^LEN := LENGTH;

END;

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 45

Sending and Receiving the Startup Message

!--
! Procedure to perform initialization for the program.
!--

PROC INIT;

BEGIN
 STRING .IN^NAME[0:MAXLEN - 1]; !string form of IN file
 ! name
 INT INNAME^LEN; !length of IN file
 STRING .OUT^NAME[0:MAXLEN - 1]; !string form of OUT file
 ! name
 INT OUTNAME^LEN; !length of OUT file
 INT ERROR;

! Call INITIALIZER to read and save the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 START^IT);

! Convert 12-word file name from Startup message
! into a variable-length string:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.INFILE.VOLUME,
 IN^NAME:MAXLEN,
 INNAME^LEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the input file:

 ERROR := FILE_OPEN_(IN^NAME:INNAME^LEN,INNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Convert the output file name:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.OUTFILE.VOLUME,
 OUT^NAME:MAXLEN,
 OUTNAME^LEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open the output file:

 ERROR := FILE_OPEN_(OUT^NAME:OUTNAME^LEN,OUTNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

END;

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 46

Sending and Receiving Assign and Param
Messages

!--
! Main procedure calls INIT to read and save the Startup
! message and open the IN and OUT files, creates a new
! process, then passes on its own Startup message to the new
! process.
!--

PROC INITIAL MAIN;
BEGIN

! Read and save the Startup message and open the IN and OUT
! files:

 CALL INIT;
END;

Sending and Receiving Assign and Param Messages
You can send any number of Assign messages and a Param message to your new
process. You can do this using the standard startup sequence protocol, thereby
enabling your new process to read the Assign and Param messages with the
INITIALIZER procedure. However, note again that you can send this information any
way that you like, so long as the recipient process is able to interpret the format.

To use the standard startup protocol, your program must create messages in exactly
the format of the Assign or Param messages and then send them to the new process
using the WRITE[X] procedure. The recipient process reads these messages by
calling INITIALIZER with the parameters set for reading Assign and Param messages.
The action of the new process is identical to that taken by a process reading Assign or
Param messages from the TACL process.

For details of the contents of the Assign and Param messages and for details of how to
read Assign and Param messages, refer to Section 8, Communicating With a TACL
Process.

Monitoring a Child Process
Once you have created a child process, you often need to make sure that the child
process continues to run. You can check whether the child process has stopped by
reading messages from the $RECEIVE file. The following messages indicate that a
child process might have stopped:

-2 (Processor down message)
-100 (Remote processor down message)
-101 (Process deletion message)
-110 (Loss of communication with node)

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 47

Deleting Processes

A simple way to check whether the condition that caused one of these messages
caused a specific process to stop is to use the CHILD_LOST_ procedure. You supply
the CHILD_LOST_ procedure with the message read from $RECEIVE and the process
handle of the child process that you wish to monitor. For example:

INT BUFFER[0:511];
STRING .SBUFFER := @SBUFFER '<<' 1;
 .
 .
CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
CALL FILE_GETINFO_(RECV^NUM, ERROR);
IF (ZFILE^ERR^SYSMESS = ERROR) THEN
 BEGIN
 ...
 IF (BUFFER = -2) OR (BUFFER = -100) OR (BUFFER = -101)
 OR (BUFFER = -110) THEN
 BEGIN
 ERROR := CHILD_LOST_(SBUFFER:BYTES^READ,PROCESS^HANDLE);
 IF ERROR = 4 THEN ... !the specified process is lost
 IF ERROR = 0 THEN ... !the specified process is still
 ! running
 .
 .
 END;
END;

The returned value is 4 if the message identified the specified process as lost. This
value is 0 if the message did not indicate that the specified process was lost.

Deleting Processes
Use the PROCESS_STOP_ procedure to delete processes. PROCESS_STOP_
allows you to delete your own process or delete another process so long as you have
the authority to do so.

When you delete a process, the operating system sends a Process deletion message
(message number -101) to the creator process indicating that the process no longer
exists. If the process is part of a job, the operating system also sends the Process
deletion message to the job ancestor.

For an unnamed process, the operating system sends the system message to the
mom process as specified in the mom field in the PCB of the terminating process. For
a named process, the operating system sends the system message to the ancestor
process as indicated in the DCT.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 48

Deleting Your Own Process

The Process deletion message contains the following information:

Deleting Your Own Process
You can delete your own process by calling the PROCESS_STOP_ procedure without
any parameters. The following statement stops the current process:

CALL PROCESS_STOP_;

In addition to stopping your process, you can set parameters in the PROCESS_STOP_
procedure to return additional information in the Process deletion message. This
information includes whether the process was stopped normally or abnormally and

Structure of the Process deletion message:

sysmsg[0] -101
sysmsg[1] FOR 10 Process handle of terminated process
 WORDS
sysmsg[11] FOR 4 Process processor time in microseconds
 WORDS
sysmsg[15] Process job ID, 0 if the process is
not
 part of a job
sysmsg[16] Completion code
sysmsg[17] Termination information (0 if not
 supplied)
sysmsg[18] FOR 6 SPI subsystem ID
 WORDS
sysmsg[24] FOR 10 Process handle of external process
 WORDS causing termination (null if none)
sysmsg[34] Length in bytes of termination text
 (starting at sysmsg[41])
sysmsg[35] Offset in bytes (from beginning of
 message) of process file name of
 terminated named process
sysmsg[36] Length in bytes of process descriptor
of
 terminated named process (or process
 pair)
sysmsg[37].<0:14> Reserved
sysmsg[37].<15> Abend: death caused by abnormal
deletion
 if 1, otherwise by normal deletion
sysmsg[38] FOR 3 Reserved
 WORDS
sysmsg[41] FOR Termination text (up to 80 bytes),
zero
 sysmsg[34] WORDS length if no termination text supplied

sysmsg[] FOR Process file name of terminated named
 sysmsg[36] WORDS process, zero length for an unnamed
 process

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 49

Deleting Your Own Process

completion code information. Abnormal termination and completion codes are
described in the following paragraphs.

Abnormal Deletion
You can indicate abnormal deletion by setting the options parameter to 1 for
abnormal deletion. The operating system sends out the Process deletion message
with bit 15 of word 37 set to 1.

The following example deletes your process abnormally:

OPTIONS := 1;
CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 OPTIONS);

If the options parameter is zero or omitted, then the process terminates normally.
With normal termination, bit 15 of word 37 of the Process deletion message defaults to
zero.

Setting Completion Codes
When deleting your own process, you can return additional information in the Process
deletion message by setting completion codes.

The compl-code parameter takes an integer value that is reported in word 16 of the
Process deletion message for the recipient of the message to interpret. The number
assigned to this parameter overrides the default values of 0 for normal deletion and
various nonzero values for abnormal deletion. For more information on using
completion codes, see Appendix C in the Guardian Procedure Calls Reference
Manual.

If your process defines Subsystem Programmatic Interface (SPI) error numbers, your
process can use the termination-info, spi-ssid, and text:length
parameters of the PROCESS_STOP_ procedure to return detailed completion code
information in the system message:

• The termination-info parameter contains an integer representing the SPI
error number. This value is passed in word 17 of the system message.

• The spi-ssid parameter identifies the SPI subsystem. This information is
passed in words 18 through 23 of the system message.

• The text:length parameter contains up to 80 bytes of text to be read by the
message recipient. This information is passed in the system message beginning
at word 41. The length (in bytes) of the text message is specified in word 34.

The following statement sends completion code information in the Process deletion
message:

CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 !options!,

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 50

Deleting Other Processes

 COMPLETION^CODE,
 TERMINATION^INFO,
 SPI^SUBSYSTEM^ID,
 MESSAGE^TEXT:TEXT^LENGTH)

For details about SPI error numbers and SPI subsystem identifiers, refer to the SPI
Programming Manual.

Programs not using SPI can use the termination-info and text:length
parameters to report arbitrary integer and string values, respectively. TACL displays
nonzero termination-info and non-empty text for processes that it runs.

Deleting Other Processes
You can delete another Guardian process by supplying the process handle to the
PROCESS_STOP_ procedure. You are allowed to stop a user process if it has not
made itself unstoppable and if one of the following conditions is true:

• The process has called SETSTOP to set the stop mode to 0, making it stoppable
by anyone.

• A Safeguard access control list (ACL) associated with the process gives you
permission to stop the process.

• Your process is locally authenticated or the process you are stopping is remotely
authenticated, and one of the following conditions is true:

• You have the same process access ID or creator access ID as the process.

• You are the group manager for the process access ID or creator access ID of
the process.

• You are the super ID (255,255).

(Being locally authenticated on a system means either that the process has logged on
by successfully calling USER_AUTHENTICATE_ (or VERIFYUSER) on the system or
that the process was created by a process that had done so. A process is also
considered local if it is run from a program file that has the PROGID attribute set.)

When you delete another process, the operating system sets the completion code in
the Process deletion message to 6, indicating that the process was deleted by another
process.

The following example shows a process deleting a process that it previously created
(and which therefore has the same process access ID):

 .
 .
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);
IF ERROR <> 0 THEN ...

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 51

Using Stop Mode to Control Process Deletion

 .
 .

!Delete the process created earlier:
ERROR := PROCESS_STOP_(OUTPUT_LIST.Z^PHANDLE);
IF ERROR <> 0 THEN ...

In this case, the process issuing the PROCESS_STOP_ procedure call also receives
the Process-deletion message because it is the creator of the process.

Using Stop Mode to Control Process Deletion
You can use the SETSTOP procedure to determine who has the authority to delete
your process. This procedure sets the stop mode for the process as follows:

If the attempt to stop the process is rejected because of the stop mode, an error is
returned to the calling process and the stop request is queued until stop mode is
reduced to the level at which the stop request is accepted:

• If a stop request passes the security checks but the target process is at stop
mode 2, then the request is queued until the stop mode is reduced to 1 or 0. File-
system error 638 is returned to the calling process.

• If a stop request fails the security checks for a process running at either stop
mode 1 or stop mode 2, then the request is queued until the stop mode is reduced
to 0. File-system error 639 is returned to the calling process.

The following example uses the SETSTOP procedure to set the stop mode of the
calling process to 0;

LITERAL ANYONE^CAN^STOP^ME = 0;
 .
 .
CALL SETSTOP(ANYONE^CAN^STOP^ME);

A process can always stop itself, even if the stop mode is 2.

Reusing Resources Held by a Stopped Process
You need to be sure that a process has terminated before reusing any files the process
had exclusive access to. If the PROCESS_STOP_ procedure returned error 0, 638, or
639, then the process might not yet have terminated and will not have released the

0 Any other process can stop your process.

1 Only processes qualified as previously described can stop your process. This is
the default value.

2 No other process can stop your process. Only a privileged caller can set this
mode.

Caution. Any process using stop mode 2 when a trap or nondeferrable signal occurs will
cause a IPU halt. Such a halt occurs, for example, if an unmirrored disk that contains a swap
volume fails.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 52

Suspending and Activating Processes

files and devices it has exclusive access to. However, if the error returned is 0, then
the process will not execute any more code.

The best way to ensure that the process is terminated and its resources freed is to wait
for system message -101 (Process deletion), which is sent to its creator when the
process terminates.

Suspending and Activating Processes
Remember that a process can alternate between the suspended and runnable states.
You can cause a process to change from one state to the other either by issuing
commands at the TACL prompt or programmatically by issuing system procedure calls.

You can suspend a runnable process by issuing the SUSPEND command at the TACL
prompt; you can suspend a process programmatically by calling the
PROCESS_SUSPEND_ procedure. To activate a suspended process, you can issue
the TACL RESUME command, or you can activate a process programmatically by
calling the PROCESS_ACTIVATE_ procedure.

This subsection describes the system procedure calls that suspend and activate
processes. For a description of how to use TACL commands to suspend and activate
processes, refer to the Guardian User’s Guide or the TACL Reference Manual

Suspending Your Own Process
To suspend your own process, you issue a PROCESS_SUSPEND_ procedure call
without specifying any process. By default, the operating system selects your process
for suspension:

CALL PROCESS_SUSPEND_;

The process then remains in the suspended state until reactivated by the RESUME
command or the PROCESS_ACTIVATE_ procedure call from another process.

Suspending Other Processes
To suspend a process other than your own, you supply the PROCESS_SUSPEND_
procedure with the process handle of the process you want to suspend. The process
handle is that returned by the PROCESS_LAUNCH_ procedure when the process was
created. If you do not know the process handle, you can use the
FILENAME_TO_PROCESSHANDLE_ procedure to find out the process handle; see
Converting Between Process Handles and Process File Names later in this section.

The following example suspends a process identified by process handle:

ERROR := PROCESS_SUSPEND_(PROCESS^HANDLE);
IF ERROR <> 0 THEN ...

The process then remains in the suspended state until reactivated by the RESUME
command or the PROCESS_ACTIVATE_ procedure.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 53

Activating Another Process

If the process identified by PROCESS^HANDLE does not exist, then the
PROCESS_SUSPEND_ procedure returns error 14.

If your process does not have the authority to suspend the identified process, then the
PROCESS_SUSPEND_ procedure returns error 48. To have the authority to suspend
a process, your process must either have the same process access ID as the process
you want to suspend, be the group manager of that process access ID, or have the
process access ID of the super ID user.

Activating Another Process
To activate a suspended process, supply the PROCESS_ACTIVATE_ procedure with
the process handle of the process you want to activate.

ERROR := PROCESS_ACTIVATE_(PROCESS^HANDLE);
IF ERROR <> 0 THEN ...

The process then remains in the runnable state until suspended again by the
SUSPEND command or the PROCESS_SUSPEND_ procedure.

If the process identified by PROCESS^HANDLE does not exist, then the
PROCESS_ACTIVATE_ procedure returns error 14.

If your process does not have the authority to activate the identified process, then the
PROCESS_ACTIVATE_ procedure returns error 48. To have the authority to activate a
process, your process must either have the same process access ID as the process
you want to activate, be the group manager of that process access ID, or have the
process access ID of the super ID user.

Getting and Setting Process Information
You can use the PROCESS_GETINFO_, PROCESS_GETINFOLIST_,
PROCESS_GETPAIRINFO_, and PROCESSHANDLE_GETMINE_ procedures to
retrieve information about processes. The PROCESS_SETINFO_ and
PROCESS_SETSTRINGINFO_ procedures enable you to set process information.

This subsection provides examples of how to use the above procedures to retrieve
critical information. For complete details, refer to the Guardian Procedure Calls
Reference Manual.

Getting Process Information
To retrieve information about existing processes, you can use the
PROCESS_GETINFO_, PROCESS_GETINFOLIST_, PROCESS_GETPAIRINFO_, or
PROCESSHANDLE_GETMINE_ procedure. PROCESS_GETINFO_ is convenient for
retrieving specific information about a specific process, such as:

• The name of the home terminal

• The creator access ID and process access ID

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 54

Getting Process Information

• The process handle

• The process descriptor

• Information about related processes, such as the process handle of the job
ancestor, the job ID, and the process handle of the mom process

• The name and length of the program file

• The name and length of the swap file

• The execution priority

• Process timing information (see Section 18, Managing Time)

PROCESS_GETINFOLIST_ provides lists of more detailed information about a specific
process or about a list of processes that satisfy specified search criteria.

PROCESS_GETPAIRINFO_ provides information about a named process or process
pair, including:

• The process handles of the primary and backup processes

• The process handle of the ancestor process

• The name of a process identified by process handle

• Lists of process names identified by a search string

PROCESSHANDLE_GETMINE_ provides an efficient way of obtaining the process
handle of the calling process.

Using the PROCESS_GETINFO_ Procedure
Some examples of common uses of the PROCESS_GETINFO_ procedure follow. The
first example returns the home terminal name for the process. The returned name is
suitable for supplying to the FILE_OPEN_ procedure to open the terminal:

STRING HOME^TERM[0:ZSYS^VAL^LEN^FILENAME - 1]
 .
 .
ERROR := PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 HOME^TERM:ZSYS^VAL^LEN^FILENAME,
 HOME^TERM^LENGTH);
IF ERROR <> 0 THEN ...
 .
 .
ERROR := FILE_OPEN_(HOME^TERM:HOME^TERM^LENGTH,F^NUM);
IF ERROR <> 0 THEN ...

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 55

Getting Process Information

The next example returns the creator access ID and process access ID of the process
named $P2:

PROCESS^NAME ':=' "$P2" -> @S^PTR;
NAME^LENGTH := @S^PTR '-' @PROCESS^NAME;
ERROR := FILENAME_TO_PROCESSHANDLE_(PROCESS^NAME:NAME^LENGTH,
 PROCESS^HANDLE);
IF ERROR <> 0 THEN ...

ERROR := PROCESS_GETINFO_(PROCESS^HANDLE,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 !home^term:maxlen!,
 !home^term^len!,
 !process^time!,
 CREATOR^ACCESS^ID,
 PROCESS^ACCESS^ID,
 !gmoms^processhandle!,
 !jobid!,
 !program^file:maxlen!,
 !program^len!,
 !swap^file:maxlen!,
 !swap^len!,
 ERROR^DETAIL);

IF ERROR <> 0 THEN
BEGIN
 CASE ERROR OF
 2 -> ... !parameter error, ERROR^DETAIL
 ! contains parameter number in error

 3 -> ... !bounds error, ERROR^DETAIL contains
 ! contains parameter number in error

 4 -> ... !process does not exist

 OTHERWISE -> ... !other error
END;

In the example above, the FILENAME_TO_PROCESSHANDLE_ procedure returns
the process handle of process $P2. This process handle is then supplied to the
PROCESS_GETINFO_ procedure to refer to the desired process.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 56

Getting Process Information

Getting List Information About One Process
To use the PROCESS_GETINFOLIST_ procedure to get list information about one
process, you supply the procedure with an identifier of the process you want detailed
information about. The identifier can be the process handle or a combination of the
node name, CPU number, and PIN.

The following example returns this information about the process specified in the
processhandle parameter:

• Creator access ID

• Process access ID

• Home terminal name

• Process subtype

• Process execution time in microseconds

• Process state

! Instead of declaring the following literals, the program
! could also use the ones already declared in the
! PROCESS^ITEMCODES section of ZSYSDEFS.ZSYSTAL.

LITERAL CREATOR^ACCESS^ID^ATTR = 1,
 PROCESS^ACCESS^ID^ATTR = 2,
 HOME^TERM^NAME^ATTR = 5,
 PROCESS^SUBTYPE^ATTR = 8,
 PROCESS^TIME^ATTR = 30,
 PROCESS^STATE^ATTR = 32;
 .
 .
RETURN^ATTRIBUTE^LIST ':=' [CREATOR^ACCESS^ID^ATTR,
 PROCESS^ACCESS^ID^ATTR,
 HOME^TERM^NAME^ATTR,
 PROCESS^SUBTYPE^ATTR,
 PROCESS^TIME^ATTR,
 PROCESS^STATE^ATTR];
RETURN^ATTRIBUTE^COUNT := 6;
RETURN^VALUES^MAXLEN := 2048;
ERROR := PROCESS_GETINFOLIST_(!cpu!,
 !pin!,
 !nodename:length!,
 PROCESS^HANDLE,
 RETURN^ATTRIBUTE^LIST,
 RETURN^ATTRIBUTE^COUNT,
 RETURN^VALUES^LIST,
 RETURN^VALUES^MAXLEN,
 RETURN^VALUES^LEN);

CREATOR^ACCESS^ID^VALUE := RETURN^VALUES^LIST[0];
PROCESS^ACCESS^ID^VALUE := RETURN^VALUES^LIST[1];
 .
 .

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 57

Getting Process Information

In the example above, RETURN^ATTRIBUTE^LIST contains a list of integer values
that specify the information you want returned. The procedure returns the information
in one array: RETURN^VALUES^LIST. The attribute values are returned in the order
in which they were requested in RETURN^ATTRIBUTES^LIST.

The attribute values returned by PROCESS_GETINFOLIST_ can be of any valid data
type. For variable-length strings (such as the home terminal name), the procedure first
returns the number of bytes in the string, then the string itself. See the Guardian
Procedure Calls Reference Manual for a discussion of all possible attributes and their
data types.

Getting List Information About Multiple Processes
You can retrieve information about multiple processes from the
PROCESS_GETINFOLIST_ procedure by supplying the procedure with search criteria
information. You might, for example, want to retrieve information about all processes
of a given priority, all processes with a specified creator access ID, or all processes
started from a specified terminal.

The following example returns information about all processes with the same process
access ID as the current process. The example uses the PROCESS_GETINFO_
procedure to determine the current process access ID and then supplies this value as
the search criterion for the PROCESS_GETINFOLIST_ procedure.

CALL PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 !hometerm:maxlen!,
 !hometerm^len!,
 !process^time!,
 !creator^access^id!,
 PROCESS^ACCESS^ID);

PIN := 255;
RETURN^ATTRIBUTE^LIST ':=' (CREATOR^ACCESS^ID^ATTR
 PROCESS^ACCESS^ID^ATTR,
 HOME^TERM^NAME^ATTR,
 PROCESS^SUBTYPE^ATTR,
 PROCESS^TIME^ATTR,
 PROCESS^STATE^ATTR);
RETURN^ATTRIBUTE^COUNT := 6;
RETURN^VALUES^MAXLEN := 2048;
SEARCH^OPTION = 2;
SEARCH^ATTRIBUTE^LIST := PROCESS^ACCESS^ID^ATTR;
SEARCH^ATTRIBUTE^COUNT := 1;
SEARCH^VALUES^LIST := PROCESS^ACCESS^ID;
SEARCH^VALUES^LEN := 1;

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 58

Getting Process Information

ERROR := PROCESS_GETINFOLIST_(!cpu!,
 PIN,
 !nodename:length!,
 !process^handle!,
 RETURN^ATTRIBUTE^LIST,
 RETURN^ATTRIBUTE^COUNT,
 RETURN^VALUES^LIST,
 RETURN^VALUES^MAXLEN,
 RETURN^VALUES^LEN,
 ERROR^DETAIL,
 SEARCH^OPTION,
 SEARCH^ATTRIBUTE^LIST,
 SEARCH^ATTRIBUTE^COUNT,
 SEARCH^VALUES^LIST,
 SEARCH^VALUES^LEN);

The search-option parameter, when set to 2, causes the procedure to search all
processes with a PIN greater than or equal to the PIN specified in the pin parameter.
In this example, the search is therefore restricted to all processes running at a high PIN
(256 or greater).

Information for all processes identified in the search is returned in the
ret-values-list parameter. If the information for the first matched process
occupies n words, then information for the second process starts at
ret-values-list[n].

Using the PROCESS_GETPAIRINFO_ Procedure
Some examples of typical uses of the PROCESS_GETPAIRINFO_ procedure follow.
The first example returns the process handle and name of the ancestor process of the
calling process:

INT ANCESTOR^PROCESS^HANDLE[0:ZSYS^VAL^PHANDLE^WLEN - 1];

ANC^MAXLEN := ZSYS^VAL^LEN^FILENAME;
ERROR := PROCESS_GETPAIRINFO_(!process^handle!,
 !pair:maxlen!,
 !pair^length!,
 !primary^processhandle!,
 !backup^processhandle!,
 !search^index!,
 ANCESTOR^PROCESS^HANDLE,
 !nodename:length!,
 !options!,
 ANCESTOR^NAME:ANC^MAXLEN,
 ANCESTOR^NAMELEN);

The next example uses the search index to find all processes on the node \CENTRAL.
The setting of the options parameter includes I/O processes in the list.

MAXLEN := ZSYS^VAL^LEN^FILENAME^D00;
SEARCH^INDEX := 0D;
NODE^NAME ':=' "\CENTRAL" -> @S^PTR;
NODENAME^LENGTH := @S^PTR '-' @NODE^NAME;

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 59

Getting Process Information

OPTIONS := 1;

DO
BEGIN
 ERROR := PROCESS_GETPAIRINFO_(!process^handle!,
 PROCESS^NAME:MAXLEN,
 NAME^LENGTH,
 !primary^processhandle!,
 !backup^processhandle!,
 SEARCH^INDEX,
 !ancestor^processhandle!,
 NODE^NAME:NODENAME^LENGTH,
 OPTIONS);

 CASE ERROR OF
 BEGIN
 2 -> BEGIN
 ! Process parameter error
 .
 .
 END;
 3 -> BEGIN
 ! Process bounds error
 .
 .
 END;
 10 -> BEGIN
 ! Process error: unable to communicate with node
 .
 .
 END;
 OTHERWISE
 BEGIN
 IF ERROR <> 8 THEN
 BEGIN
 ! Process the name returned in NAME^LENGTH
 .
 .
 END;
 END;
END
UNTIL ERROR = 8;

Setting the search-index parameter to 0D causes the PROCESS_GETPAIRINFO_
procedure to search for a process name and return that name in PROCESS^NAME.
The next time through the loop, it returns the next process name, and so on, until it has
listed all process names on the specified node. The procedure returns an error value
of 8 when it has completed the search.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 60

Setting Process Information

Using the PROCESSHANDLE_GETMINE_ Procedure
A process can retrieve its own process handle by calling the
PROCESSHANDLE_GETMINE_ procedure. While you can achieve the same result
by passing a null process handle to the PROCESS_GETINFO_ procedure,
PROCESSHANDLE_GETMINE_ performs this task more efficiently and without the
need to initialize the process handle:

INT .MYPHANDLE[0:ZSYS^VAL^PHANDLE^WLEN - 1];
 .
 .
ERROR := PROCESSHANDLE_GETMINE_(MYPHANDLE);

Setting Process Information
In addition to setting attribute values when creating a process, you can change the
attribute values of existing processes using either the PROCESS_SETINFO_ or
PROCESS_SETSTRINGINFO_ procedures. This subsection shows some examples
of how to use these procedures. See the Guardian Procedure Calls Reference Manual
for complete details on these procedure calls.

Setting Nonstring Process Attributes
To change a nonstring attribute of an existing process, use the PROCESS_SETINFO_
procedure. This procedure allows you to change the following attributes and optionally
return the old value:

• Process priority.

• The process handle in the mom field in the PCB. Changing this value causes the
Process deletion message (system message -101) to be sent to the new mom
when the process terminates. This feature is useful only for unnamed process
pairs.

• The process file security for the process. This value determines the security used
for any file-creation attempt by the process following the call to
PROCESS_SETINFO_. You can use this option only on your own process.

• The primary attribute, which indicates whether the process is the primary or
backup of a process pair. You can set this value only for the calling process.

• The qualifier-info-available attribute, which determines whether qualifier-
name searches by the FILENAME_FIND_ procedure are valid. You can set this
value only for the calling process. See Section 13, Manipulating File Names, for
information about the FILENAME_FIND_ procedure.

To change the mom entry in the PCB or the priority of a process, your process must
have either the same process access ID as the process you want to change, the group
manager’s process access ID, or the process access ID of the super ID user. The
remaining attributes can be changed only in the current process.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 61

Manipulating Process Identifiers

For example, the following call to PROCESS_SETINFO_ sets the
qualifier-info-available attribute:

LITERAL QUALIFIER^INFO^AVAILABLE = 49;
 .
 .
SET^ATTRIBUTE^CODE := QUALIFIER^INFO^AVAILABLE;
SET^VALUE := 1;
SET^VALUE^LEN := 1;
CALL PROCESS_SETINFO_(!process^handle!,
 !specifier!,
 SET^ATTRIBUTE^CODE,
 SET^VALUE,
 SET^VALUE^LEN);

The set-attr-code parameter specifies the attribute to set; the set-value
parameter specifies the new value of the attribute.

Setting String Process Attributes
To set process attributes that are strings, you use the PROCESS_SETSTRINGINFO_
procedure. The only attribute that is currently settable using this procedure is the
home terminal name.

To set the home terminal name of a process, you supply the
PROCESS_SETSTRINGINFO_ procedure with the process handle of the process
whose home terminal you wish to change, the attribute code (5 for the home terminal),
the new terminal name, and the name length. You can use the
ZSYS^VAL^PINF^HOMETERM literal from the ZSYSTAL file to specify the attribute
code.

The following example sets the home terminal for the current process to $TERM1.
Note that for the current process, it is not necessary to provide the process handle.

SET^ATTRIBUTE^CODE := ZSYS^VAL^PINF^HOMETERM;
SET^ATTRIBUTE^VALUE ':=' "$TERM1" -> @S^PTR;
VALUE^LENGTH := @S^PTR '-' @SET^ATTRIBUTE^VALUE;
CALL PROCESS_SETSTRINGINFO_(
 !process^handle!,
 !specifier!,
 SET^ATTRIBUTE^CODE,
 SET^ATTRIBUTE^VALUE:VALUE^LENGTH);

To change the home terminal of a process, your process must have either the same
process access ID as the process you want to change, the group manager’s process
access ID, or the process access ID of the super ID user.

Manipulating Process Identifiers
This subsection describes system procedures that manipulate process handles. It
discusses how to use the PROCESSHANDLE_DECOMPOSE_ procedure to retrieve
information from a process handle as well as how to use the

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 62

Retrieving Information From a Process Handle

FILENAME_TO_PROCESSHANDLE_ and PROCESSHANDLE_TO_FILENAME_
procedures to convert between process handles and process file names.

Retrieving Information From a Process Handle
To retrieve information from a process handle, use the
PROCESSHANDLE_DECOMPOSE_ procedure. This procedure allows you to extract
the following information:

• CPU number (cpu parameter)

• PIN (pin parameter)

• Node number (nodenumber parameter)

• Node name (nodename parameter) and the node-name length (nlen parameter)

• Process name (procname parameter) and the process-name length (plen
parameter)

• Verification sequence number (seqno parameter)

To use the PROCESSHANDLE_DECOMPOSE_ procedure, you need to supply the
process handle that you want to take apart and return variables for the information you
need.

The following example retrieves all the above information from a process handle:

MAX^NODENAME^LEN := 8;
MAX^PNAME^LEN := 5;
ERROR := PROCESSHANDLE_DECOMPOSE_(PROCESS^HANDLE,
 CPU,
 PIN,
 NODE^NUMBER,
 NODENAME:MAX^NODENAME^LEN,
 NODENAME^LENGTH,
 PROCESS^NAME:MAX^PNAME^LEN,
 PROCESS^NAME^LENGTH,
 SEQUENCE^NUMBER);

Converting Between Process Handles and Process File Names
The following paragraphs describe how to use system procedure calls to convert
named or unnamed process file names into process handles and how to convert
process handles into process file names.

For a description of the syntax for a process file name, refer to Section 2, Using the
File System.

Converting a Process File Name Into a Process Handle
To convert a process file name into a process handle, use the
FILENAME_TO_PROCESSHANDLE_ procedure. This procedure works for named

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 63

Converting Between Process Handles and
Process File Names

and unnamed process file names. For a named process, the operating system looks
up the process handle in the DCT, and it returns error 14 (device does not exist) if the
process name does not exist.

For unnamed processes, the operating system does not check for the existence of the
process. It creates a process handle from the information provided in the process file
name.

To use the FILENAME_TO_PROCESSHANDLE_ procedure, you must supply the
procedure with the process file name and a return variable for the process handle. The
following example converts a named process file name into a process handle:

PROCESS^NAME ':=' "$SRV1" -> @S^PTR;
NAME^LENGTH := @S^PTR '-' @PROCESS^NAME;
ERROR := FILENAME_TO_PROCESSHANDLE_(PROCESS^NAME:NAME^LENGTH,
 PROCESS^HANDLE);
IF ERROR = 14 THEN
BEGIN
 SBUFFER ':=' "No Such Process " -> @S^PTR;
 WCOUNT := @S^PTR '-' @SBUFFER;
 CALL WRITEX(TERM^NUM,SBUFFER,WCOUNT);
END;

Converting a Process Handle Into a Process File Name
To convert a process handle into a process file name, use the
PROCESSHANDLE_TO_FILENAME_ procedure.

When using the PROCESSHANDLE_TO_FILENAME_ procedure, you must supply the
process handle. The procedure returns the process file name in the name parameter
and the name length in the namelen parameter.

If the process handle refers to a named process, then the procedure looks up the
process file name in the DCT. (For a process pair, the procedure returns the current
primary process.) If the process handle refers to an unnamed process, then the
procedure returns the unnamed process file name using information contained in the
process handle itself.

The PROCESSHANDLE_TO_FILENAME_ procedure returns the fully qualified
process name (including the node name). The sequence number is optional. By
setting bit 15 of the options parameter, you suppress the sequence number.

The following example converts a process handle into a fully qualified process file
name, without the sequence number:

LITERAL MAXLEN = ZSYS^VAL^LEN^FILENAME,
 NO^SEQNO = 1,
 SEQNO = 0;
 .
 .
OPTIONS := NO^SEQNO;
CALL PROCESSHANDLE_TO_FILENAME_(PROCESS^HANDLE,
 NAME:MAXLEN,

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 64

Controlling the IPU Affinity of Processes

 NAME^LENGTH,
 OPTIONS);

Converting a Process Handle Into a Process String
To convert a process handle into a string, use the PROCESSHANDLE_TO_STRING_
procedure. This procedure is useful for producing a more readable output than that
produced by the PROCESSHANDLE_TO_FILENAME_ procedure, particularly for
unnamed processes. For example, a process file name returned by
PROCESSHANDLE_TO_FILENAME_ could be “$:2:137:987654321.” The equivalent
output from PROCESSHANDLE_TO_STRING_ would be “2,137.”

To use the PROCESSHANDLE_TO_STRING_ procedure, you must supply the
process handle in the processhandle parameter and return variables for the string
and string length in the pstring and pstringlen parameters.

The following example converts a process handle into a string:

LITERAL MAXLEN = ZSYS^VAL^LEN^FILENAME;
 .
 .
CALL PROCESSHANDLE_TO_STRING_(PROCESS^HANDLE,
 PROCESS^STRING:MAXLEN,
 STRING^LENGTH);

The above example returns either the process name if one exists or the CPU and PIN
if no name exists. The above example also places the system name at the beginning
of the output string.

Controlling the IPU Affinity of Processes
In multi-core CPUs, a process runs in a specific IPU of the CPU. The IPU to which a
process is assigned is referred to as the IPU affinity of the process. By default the IPU
affinity can be dynamically changed by the process scheduler for load-balancing or
responsiveness purposes. You can override this for a specific process, binding it to a
specific IPU via the IPUAFFINITY_SET_ procedure. The current IPU affinity of a
process can be obtained via the IPUAFFINITY_GET_ procedure.

The IPUAFFINITY_CONTROL_ procedure can be used to override the process
scheduler controls more generally to turn off dynamic load-balancing on all soft-affinity
processes (see the definition of "soft affinity" below) or on all DP2 processes in the
specified CPU.

The binding between IPUs and processes can only be done after the process is
created, as it is not a process creation option.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 65

Controlling the IPU Affinity of Processes

IPU Affinity Classes
A process has one of the following types of IPU affinity, known as its IPU affinity class:

• Hard - the process can only be run on a specific IPU and is not subject to any kind
of movement.

• Group - only applies to DP2 process groups (the one to eight processes that
compose a disk volume). The group as a whole can be moved from IPU to IPU but
only as the whole group.

• Dynamic - only applies to system processes known as Interrupt Processes (IPs)
and Auxiliary Processes (APs). All of these processes other than the TSMSGIP,
TSCOMIP, and TSSTRIP can run on any IPU as selected by the low level software
for optimum response time, and are not subject to user control of the IPU
placement. The TSMSGIP, TSCOMIP, and TSSTRIP processes are the only
dynamic affinity processes that are subject to user control of their IPU affinity.

• Soft - all user processes and any other processes which do not fall into one of the
other categories.

• Soft Bind - Soft Affinity processes whose IPU affinity has been set via the
IPUAFFINITY_SET_ procedure.

The IPU affinity class of a process can be obtained via PROCESS_GETINFOLIST_
attribute 136.

IPU Affinity Control
The IPUAFFINITY_SET_ procedure is used to bind a process to an IPU. Once set the
process will only run on the associated IPU. This procedure can be used on all user
processes and many system processes. In particular it can be used on the ServerNet
Interrupt Processes (TSMSGIP, TSCOMIP, and TSSTRIP), $TMP and DP2 process
groups. The procedure is also used to disassociate a process from an IPU, thereby
allowing the process scheduler to control any subsequent IPU assignments of the
process.

Note. Beginning with the J06.12 and H06.23 RVUs, there are two instances of the TSMSGIP
process active on each CPU on quad-core (4-IPU) systems, both of which by default are
assigned to IPU 0. However, prior to J06.14 and H06.25, only the first instance is active and
available to do work.

The TSMSGIP process handles interrupts generated by inter-CPU Message System traffic.
Starting with J06.14 and H06.25, you can reassign one of the TSMSGIP instances to another
IPU using the IPUAFFINITY_SET_ procedure. This is beneficial for certain workloads with
high levels of inter-CPU Message System traffic.

Creating and Managing Processes

Guardian Programmer’s Guide — 421922-014
16 - 66

Controlling the IPU Affinity of Processes

The IPUAFFINITY_GET_ procedure can be used to get the current IPU a process
associated with, as well as an indicator if the process can be the target of an
IPUAFFINITY_SET call.

The IPUAFFINITY_CONTROL_ procedure is used to control Process Scheduler
characteristics. It can cause the process scheduler to stop scheduling (that is
changing) all processes with soft affinity or all DP2 processes (group affinity
processes). It can also be used to disassociate all bindings that were created via
IPUAFFINITY_SET_.

It is very important to remember that using IPUAFFINITY_SET_ and
IPUAFFINITY_CONTROL_ restrict the function of the process scheduler to keep the
CPU (that is all its IPUs) in balance. Much care should be exercised when utilizing
these functions as an inappropriate choice can cause severe performance problems.

Guardian Programmer’s Guide — 421922-014
17 - 1

17 Managing Memory

An Introduction to Memory-Management
Procedures

The following system procedures are available for managing memory from your
application:

ADDRESS_DELIMIT_ Returns information about a particular area of the
user’s logical address space, including the
addresses of the first and last bytes in that area.

GETPOOL_PAGE Obtains a block of memory from a buffer pool.

HEADROOM_ENSURE_ Checks to make sure enough memory has been
allocated for a process’s main and priv stacks, and
allocates more memory as needed. Can be called
only from a native process.

MOVEX Transfers data from one selectable segment to
another.

POOL_CHECK_ Returns memory pool error information.

POOL_DEFINE_ Defines the bounds of a memory pool in an
extended data segment or in the user data segment
(TNS processes) or globals area (TNS/R native
processes).

POOL_GETINFO_ Returns information about a memory pool.

POOL_GETSPACE_ Obtains a block of storage from a memory pool.

POOL_GETSPACE_PAGE Obtains a block of memory from a buffer pool.

POOL_PUTSPACE_ Returns a block of storage to a memory pool.

POOL_RESIZE_ Changes the size of an existing memory pool.

PROCESS_CREATE_ In addition to creating a process, specifies the size
of the user data segment for a TNS process.

PROCESS_LAUNCH_ Same as PROCESS_CREATE_, but provides
additional parameters for specifying attributes
associated with native processes.

RESIZESEGMENT Changes the size of an existing data segment.

SEGMENT_ALLOCATE_ Allocates virtual memory space to an extended data
segment (a flat segment or a selectable segment).

SEGMENT_DEALLOCATE_ Deallocates an extended data segment.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 2

Managing the User Data Areas

Managing the User Data Areas
The structure of the areas of memory used by a process for user data differs for TNS
processes and native processes.

Managing the TNS User Data Segment
In a TNS process, the user data segment provides up to 128K bytes of data storage for
global variables, local variables, and return information for procedure calls. The lower
64K bytes of the user data segment are managed for you as a data stack by the
operating system. To access the upper 64K bytes, you manage the data yourself if
your program is written in TAL. Other languages use the upper 64K bytes for run-time
environments. Refer to the Common Run-Time Environment (CRE) Programmer’s
Guide for details.

Figure 17-1 shows the user data segment.

It is possible for your TNS program to use more than 128K bytes of memory. See
Using (Extended) Data Segments later in this section for details.

SEGMENT_GETINFO_ Returns information about an allocated extended
data segment. The information returned may
include the size of the extended data segment or the
name of the associated swap file.

SEGMENT_USE_ Makes a selectable segment current. The current
selectable segment is the only selectable segment
that your process can access. (A flat segment need
not be made current; your process can access all
allocated flat segments.)

SETMODE Option 141 can be used to speed large transfers of
data between an extended data segment and a file.

Figure 17-1. The User Data Segment

VST087.VSD

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 3

Managing the TNS User Data Segment

Specifying the Size of the TNS User Data Segment
You can specify the size of the user data segment to be any number of data pages of
2048 bytes each, up to a maximum of 128K bytes. You can set this size either by
using the compiler or Binder program or when you call the PROCESS_CREATE_ or
PROCESS_LAUNCH_ procedure.

To supply the size of the user data segment at compile/bind time, you set the compiler
directive for the appropriate high-level language. For example, in TAL you would set
the ?DATAPAGES directive. Refer to the appropriate compiler manual or your Binder
Manual for details.

To specify the size of the user data segment using the PROCESS_CREATE_ or
PROCESS_LAUNCH_ procedure, you must supply the memory-pages parameter.
This parameter specifies a number of 2K-byte data pages.

The following example uses the PROCESS_CREATE_ procedure to create an
unnamed process with six user data pages:

OBJFILE ':=' "PROGFILE" -> @S^PTR;
OBJFILENAME^LENGTH := @S^PTR '-' @OBJFILE;
NAME^OPTION := 0;
MEMORY^PAGES := 6;
ERROR := PROCESS_CREATE_(OBJFILE:OBJFILENAME^LENGTH,
 !library^file:lib^file^len!,
 !swap^file:swap^file^len!,
 !ext^swap^file:ext^swap^file^len!,
 !priority!,
 !processor!,
 PROCESS^HANDLE,
 !error^detail!,
 NAME^OPTION,
 !name:length!,
 PROCESS^DESCRIPTOR:MAXLEN,
 PROCESS^DESCRIPTOR^LENGTH,
 !nowait^tag!,
 !hometerm:length!,
 MEMORY^PAGES);

If you specify the number of data pages both as a compiler or Binder directive and as a
parameter to the PROCESS_CREATE_ or PROCESS_LAUNCH_ procedure, the
system uses the larger of the two values.

Using the Data Stack
The data stack occupies the first 64K bytes of the user data segment. It contains
global data, local data for the main procedure, and dynamic local data for other TNS
procedures.

Figure 17-2 shows how the data stack is used.

Figure 17-2(a) shows the stack before the main procedure starts to execute. Note that
immediately after the global data is a zero entry called the dummy stack marker. The

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 4

Managing the TNS User Data Segment

S (stack) register points to the last entry in the stack; in this case, it points to the
dummy stack marker.

When the main procedure executes, its local variables get added to the stack as
shown in Figure 17-2(b). The S register points to the last location of the local
variables.

When the main procedure calls another procedure (procedure 1 in Figure 17-2), the
parameters for the new procedure are placed on the data stack followed by the
contents of the P (program counter) register, E (environment) register, and L (local data
address) register. Then the new procedure’s local variables are placed on the stack
(see Figure 17-2(c)). The S register points to the last location of the local variables of
the new procedure.

Figure 17-2(d) shows what happens when procedure 1 calls procedure 2. Again the
parameters for the new procedure are placed on the stack followed by the contents of
the P register, E register, and L register. The S register is advanced to the last location
of the local variables of procedure 2. Additional procedures can be nested in this way.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 5

Managing the TNS User Data Segment

Figure 17-2(e) shows what happens when procedure 2 returns. The process continues
in the calling procedure at the program address immediately following the call to the
procedure that just returned. It does this by restoring the saved values for the
P register, E register, and L register. The S register moves back to the end of the local
variables for procedure 1.

Figure 17-2(f) shows what happens when procedure 1 returns control to the main
procedure. Again the P register, E register, and L register values are restored using

Figure 17-2. The Data Stack

VST088.VSD

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 6

Managing the Native User Data Areas

the values saved on the stack so that processing continues at the address immediately
following the call to the procedure that just returned. The S register points to the last
location of the local variables of the main procedure.

The TNS user space also includes a main stack and a priv stack, which are used
when a TNS procedure calls a TNS/R native procedure. When a nonprivileged native
procedure is called, execution switches to the main stack. When a privileged native
procedure is called, execution switches to the priv stack. The main and priv stacks are
described later in this section under Managing the Native User Data Areas.

See the appropriate system description manual for a complete description of how the
data stack, main stack, and priv stack work.

Using the Upper 64K Bytes of the Data Segment
Only the first 64K bytes of the user data segment can be used by the data stack. To
access the upper 64K bytes, you must manage the space yourself using 16-bit
memory pointers.

For example, in an application written in TAL, you could access an array starting at the
beginning of the upper 64K bytes as follows:

INT .A := %100000;
 .
 .
X := A[4];

X is assigned the value of the fifth word of the upper 64K bytes.

Managing the Native User Data Areas
Data for TNS/R native processes is allocated in the following data segments:

• A globals-heap segment, containing global data and, for C and C++ programs, a
user heap. This segment provides up to 128 megabytes of data storage.

• A main stack segment, containing the stack frames for nonprivileged procedure
calls.

• A priv stack segment, containing the stack frames for privileged procedure calls.

• Zero or more SRL data segments used for global data owned by shared run-time
libraries (SRLs). Each SRL owns an SRL data segment.

• A process file segment (PFS), used by the operating system for file buffers and
other internal data.

Data for a TNS/E native process is allocated into the following data segments:

• A globals-heap segment, containing program global data and, optionally, a heap

• A main memory stack for nonprivileged TNS/E native procedures

• A privileged memory stack for privileged procedures

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 7

Managing the Native User Data Areas

• A main register stack engine (RSE) backing store for nonprivileged procedures

• A privileged RSE backing store for privileged procedures

• Zero or more DLL data segments

• Zero or more private DLL code segments

• A process file segment (PFS), used by the operating system

• Optional program-allocated extended data segments (selectable or flat segments)

Figure 17-3 shows the layout of the data segments for a native process.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 8

Managing the Native User Data Areas

Note that the heap grows from lower to higher addresses, while the main and priv
stacks grow from higher to lower addresses.

Also on both platforms, the heap can grow to the maximum size of the globals-heap
segment less the size of the global data. On the TNS/R platform, the maximum

Figure 17-3. Data Segments for TNS/R Native Processes

VST144.vsd

Global-
Heap

Segment
Address%h08000000

Address%h6CB00000

Direction of growth

Address
%h60000000

Global Variables

Heap (C, C++ programs)

Area used for flat segments and
growth of heap and main stack

Alt PFS

Priv Stack

Public DLL Data

PFS

Data Stack
Address

%h70000000

Direction of growth

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 9

Managing the Native User Data Areas

globals-heap size is 1.1 GB. On the TNS/E platform, the maximum globals-heap size is
1536 MB.

If your program needs data areas in addition to the area provided by the globals-heap
segment, you can allocate one or more flat segments or selectable segments, as
described later in this section under Using (Extended) Data Segments.

How the Main and Priv Stacks Are Used
The main and priv stacks for a process are made up of stack frames, each of which
contains the activation record for a procedure called during process execution: the
main stack contains the stack frames for nonprivileged procedure calls, and the priv
stack contains the stack frames for privileged procedure calls. When a nonprivileged
process begins execution, a main stack and priv stack are created. Execution
automatically switches to the priv stack when a privileged procedure is called and back
to the main stack when that procedure finishes.

Contents of a stack frame include local variables, saved registers, and parameters to
called procedures. The frame size is variable, depending on the number of registers,
variables, and parameters. As shown in Figure 17-3, both the main stack and the priv
stack begin at fixed addresses and grows from higher to lower addresses as additional
space is needed. Use the HEADROOM_ENSURE procedure to ensure the priv stack
has sufficient room to grow.

Figure 17-4 shows an example of a main stack for a native process.

When the main procedure starts to execute a stack frame is created for it and its local
variables are added to the stack frame as shown in Figure 17-4(a). The sp (stack
pointer) register points to the last (lowest-addressed) byte in the stack frame.

When the main procedure calls another procedure (procedure 1 in Figure 17-4), the
main procedure places up to four parameters (in the TNS/R environment) or 8
parameters (in the TNS/E environment) into stacked registers and stores any
additional parameters into an area within the stack frame known as the callout area.
The instruction that transfers control to the called procedure also stores the return
address into the ra (return address) register.

The called procedure (procedure 1) then does the following:

• Decrements the sp register to allocate its own stack frame, with room for local
variables, saved registers, and enough callout space for parameters to be passed
to any procedures it calls.

• Stores registers (including the return address and any of the saved registers that it
will use) into its stack frame.

• Stores the parameter registers into their reserved locations in the main procedure’s
callout area. This area is also referred to as the called procedure's callin area
because the called procedure can access this area as part of its own stack frame.

(Note that if any of these operations are not needed, they might be eliminated by
optimization.)

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 10

Managing the Native User Data Areas

Figure 17-4(c) shows what happens when procedure 1 calls procedure 2. Again the
calling procedure places up to four parameters into registers, stores any additional
parameters into its callout area (which becomes the callin area for procedure 2), and
stores the return address into the ra register. Additional procedures can be called in
this way.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 11

Managing the Native User Data Areas

Figure 17-4(d) and 17-4(e) show how the main stack contracts as the called
procedures return control to the calling procedures. When a called procedure returns
control to a calling procedure, the called procedure:

• Restores the registers it saved, including the return address

• Increments the sp register to delete its stack frame

• Jumps to the location in the ra register

The sp register always points to the current stack tip; that is, the lowest-addressed byte
in the stack frame of the currently active procedure.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 12

Managing the Native User Data Areas

Figure 17-4. Native Main Stack

VST145.VSD

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 13

Managing the Native User Data Areas

Changing the Maximum Size of the Heap
The heap is managed by the Common Run-Time Environment (CRE). It is created at
a system-defined initial size and is increased automatically as needed during process
execution. For pre-G05 systems, the maximum allowable size of the heap defaults to
the difference between 128 megabytes (the maximum combined size of the heap and
globals area) and the size of the globals area (fixed at process creation time). In case
of G05 and later systems, the default maximum allowable heap size of native process
(the total of user heap, global variables, and flat segments) is 1120 MB and 1532 in all
H-series and later RVUs.

You can change the maximum size of the heap through either the
PROCESS_LAUNCH_ procedure or the native static loader (nld in the TNS/R
environment and eld in the TNS/E environment). However, there is little reason to do
so, since you can currently change it only to a smaller value. You might want to do this
for debugging purposes; for example, to force a process to terminate with a heap
overflow condition.

To set the maximum size for the heap through the PROCESS_LAUNCH_ procedure,
specify the heap^max parameter in the procedure call or specify the heap_max option
when invoking nld or eld. This sets the value of the HEAP^MAX process attribute,
which defines the upper limit of the heap.

Changing the Maximum Size of the Main Stack
The size of the main stack increases automatically as needed during process
execution up to a default limit of 1 megabyte in the TNS/R environment or 2 megabytes
in the TNS/E environment. You can increase this limit up to a maximum of
32 megabytes either by calling the PROCESS_LAUNCH_ procedure or by using nld (in
the TNS/R environment) or eld (in the TNS/E environment).

RISC and Itanium stack growth is as follows: (Note that TNS stacks grow upward.)

• RISC stacks grow downward (from higher to lower addresses)

• The Itanium RSE backing store grows upward

• Itanium memory stacks grow downward

On both TNS/R and TNS/E CPUs, the main stacks (main RISC stack on TNS/R, main
memory stack on TNS/E) and the heap grow automatically as needed, to a maximum
size. On the TNS/R platform, the default maximum stack size is one MB, and on the
TNS/E platform, the default maximum stack size is two MB. You can increase the
maximum stack size via an eld or PROCESS_LAUNCH_ parameter up to a limit of
32MB.

To set the maximum size for the main stack through the PROCESS_LAUNCH_
procedure, specify the mainstack^max parameter in the procedure call. This sets the
value of the MAINSTACK^MAX attribute, which defines the maximum size, in bytes, of
the main stack. The following example calls PROCESS_LAUNCH_ to create an

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 14

Managing the Native User Data Areas

unnamed process and set the upper bound of the main stack to 10 megabytes. The
example sets the mainstack^max parameter to 10000000D.

STRING PROG_NAME[0:ZSYS^VAL^LEN^FILENAME-1];
INT .EXT ERROR_DETAIL,
 OUTPUT_LIST_LEN;
STRUCT OUTPUT_LIST(ZSYS^DDL^SMSG^PROCCREATE^DEF);
STRUCT PARAM_LIST(PROCESS_LAUNCH_PARAMS);
.
.
PARAM_LIST ':=' P_L_DEFAULT_PARMS_; !initialize param struct
PROG_NAME ':=' "PROGFILE" -> @S^PTR; !program file name
@PARAM_LIST.PROGRAM^NAME := $XADR(PROG_NAME);
PARAM_LIST.PROGRAM^NAME^LEN := $DBL(@S^PTR '-' @PROG_NAME);
PARAM_LIST.NAME^OPTIONS := ZSYS^VAL^PCREATOPT^NONAME;
PARAM_LIST.MAINSTACK^MAX := 10000000D;
ERROR := PROCESS_LAUNCH_(PARAM_LIST,
 ERROR_DETAIL,
 OUTPUT_LIST:$LEN(OUTPUT_LIST),
 OUTPUT_LIST_LEN);

See Section 16, Creating and Managing Processes, for more information about calling
PROCESS_LAUNCH_.

To set the main stack size using NLD, specify the mainstack_max option when
invoking NLD. The following example uses NLD to set the maximum size of the main
stack to 10 megabytes:

NLD -SET MAINSTACK_MAX 10000000

Increasing the Size of the Main and Priv Stacks
The main and priv stacks are assigned an initial size by the operating system at
process creation time. The main stack then grows as needed during process
execution, up to the value of the MAINSTACK^MAX process attribute. Because the
main stack is managed for you, you seldom need to be concerned about the amount of
stack space available at any given time. However, in cases where stack space is a
concern, you can use the HEADROOM_ENSURE_ procedure to ensure that there is
enough space, or “headroom,” in the stack for the needs of your process.

The priv stack is not adjusted automatically, but because it is used only by system
library procedures, a nonprivileged procedure generally has no need to call
HEADROOM_ENSURE_ to increase the size of the priv stack.

When calling HEADROOM_ENSURE_, you specify the number of bytes you think you
will need in the stack. (The current size of the main stack is contained in the
MAINSTACK^SIZE attribute, which you can check by calling the
PROCESS_GETINFOLIST_ procedure.) HEADROOM_ENSURE_ then checks the
size of the stack, attempts to enlarge it if necessary, and returns one of the following
values:

• A value of zero indicates that either there was already enough room or the stack
was enlarged to make enough room.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 15

Checking the Bounds of Your Data Areas

• A nonzero value indicates that there was not enough room and the stack could not
be enlarged. The value also indicates the reason why the stack could not be
enlarged (for example, the maximum allowable stack size would be exceeded, or
memory or swap space could not be allocated).

If called from a nonprivileged procedure, HEADROOM_ENSURE_ operates on the
main stack; if called from a privileged procedure, it operates on the priv stack.

You might want to use HEADROOM_ENSURE_ in the following cases:

• If your application uses unusually large local arrays or structs, or has many nested
procedure calls, it can use HEADROOM_ENSURE_ to test whether the stack size
is near the limit. You can then take appropriate action. (A stack overflow signal or
trap results if a process attempts to increase the stack size beyond the limit.)

• If your application contains privileged procedures with unusually large stack
requirements, it might need to call HEADROOM_ENSURE_, because the priv
stack does not automatically increase as it is used.

Refer to the Guardian Procedure Calls Reference Manual for details on the
HEADROOM_ENSURE_ procedure.

Reserving Swap Space
The SPACE^GUARANTEE process attribute establishes an amount of disk space to
be used for all virtual memory requested by a process. This includes the globals-heap
segment, the main stack, all the SRL data segments, and any flat segments allocated
with default swapping. You can specify a value for this attribute in the
PROCESS_LAUNCH_ procedure call or through NLD. Supplying this attribute allows
a process to reserve enough memory and swap space when the process starts to
ensure that execution will not be impacted by lack of swap space.

The value of the SPACE^INUSE process attribute indicates the amount of swap space
currently available to a process. You can find out the current value of this attribute by
calling the PROCESS_GETINFOLIST_ procedure and specifying the space_inuse
parameter.

Checking the Bounds of Your Data Areas
You can use the ADDRESS_DELIMIT_ procedure to obtain the addresses of the first
and last bytes of a particular area of your logical address space, such as your user
data segment (TNS processes) or your globals-heap segment (native processes), and
of your main and priv stacks. Knowing the bounds of your data area allows you, for
example, to check parameter addresses.

You supply an address contained within the address area of interest, passing it to
ADDRESS_DELIMIT_ in the value parameter address. You can also use the

Note. Using the SPACE^GUARANTEE attribute to guarantee swap space is necessary only in
unusual circumstances.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 16

Using (Extended) Data Segments

address-descriptor output parameter to obtain a set of flags that describe the
area.

The following example can be run in both the native and TNS environments. In the
TNS environment, the address of a local variable contained in the user data segment is
passed to ADDRESS_DELIMIT_. The procedure returns the addresses of the first
byte (HIGH^ADDR) and last byte (LOW^ADDR) of the user data segment, which are then
used to determine its size.

In the TNS/R native environment, the address of a local variable contained in the main
stack is passed to ADDRESS_DELIMIT_. The procedure returns the following:

• The address of the last byte in the main stack in HIGH^ADDR. This is equal to
MAINSTACK^ORIGIN - 1D, where the MAINSTACK^ORIGIN process attribute
indicates the starting byte address of the main stack.

• The current stack limit (the lowest-addressed byte allocated in the main stack
segment) in LOW^ADDR. (This limit can change as the stack grows during
execution.)

This example shows that the output addresses can be assigned either to a simple
variable (HIGH^ADDR) or to a pointer variable (LOW^ADDR).

INT LOCAL^VARIABLE;
STRING .EXT LOW^ADDR;
INT(32) HIGH^ADDR;
INT ERROR,
 ERROR^DETAIL;
INT(32) SIZE;
 .
 .
 .
ERROR := ADDRESS_DELIMIT_ ($XADR(LOCAL^VARIABLE),
 @LOW_ADDR,
 HIGH^ADDR,
 ! address^descriptor ! ,
 ! segment^ID ! ,
 ERROR^DETAIL);

IF ERROR <> 0 THEN CALL ERROR^HANDLER;

SIZE := HIGH^ADDR - @LOW^ADDR + 1D; ! size in bytes of
 ! user data segment

Using (Extended) Data Segments
The term "extended" is significant only in the context of TNS processes. The only
nonextended data segment in user address space is the TNS user data segment, and
there are no nonextended data segments in a native process.

When the user data segment (TNS processes) or globals area (native processes) does
not provide enough data space for your process, you can make additional virtual
memory available to the process. Virtual memory is allocated as one or more

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 17

Overview of Selectable Segments

extended data segments. There are two types of extended data segments: flat
segments and selectable segments. A flat segment can be any size up to 128
megabytes on G04.00 and all earlier G-series releases and all D-series releases; a
selectable segment can be any size up to 127.5 megabytes on G04.00 and all earlier
G-series releases and all D-series releases. A flat segment or a selectable segment
can be up to 1120 megabytes on G05.00 and all subsequent G-series releases and
1536 megabytes on TNS/E. TNS and native processes can allocate both types of
segments.

Throughout the remainder of this section, whenever a reference is made to an
extended data segment, the information applies to both selectable segments and flat
segments.

This subsection describes how to access extended data segments using Guardian
procedures. It describes how to perform the following operations:

• Allocate an extended data segment using the SEGMENT_ALLOCATE_ procedure.

• Establish the current selectable segment using the SEGMENT_USE_ procedure.

• Determine the base address of a flat segment using the SEGMENT_USE_
procedure.

• Force a flat segment to be allocated at a specific address using the
SEGMENT_ALLOCATE_ procedure.

• Pass data in an extended data segment to procedures that accept extended
pointers, such as the READX and WRITEX procedures.

• Move data between selectable data segments using the MOVEX procedure.

• Move data between flat segments using assignment statements.

• Determine the size of an extended data segment using the SEGMENT_GETINFO_
procedure.

• Deallocate an extended data segment using the SEGMENT_DEALLOCATE_
procedure.

• Share an extended data segment.

Overview of Selectable Segments
You can allocate space for multiple selectable segments; however, at most, one
selectable segment is accessible at a time. It is called the current selectable segment.

A selectable segment starts at an address that is returned by the
SEGMENT_ALLOCATE_ procedure. This address is %2000000 (%h00080000), and
is the same for all selectable segments. Note that the selectable segment is not
contiguous with the user data segment.

Figure 17-5 shows the location of selectable segments relative to the user data
segment and main stack segment.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 18

Overview of Selectable Segments

Figure 17-5. Relative Location of Selectable Segments

Other
Allocated

Selectable
Segments

Current
Selectable
Segment

Address Octal
377777 (128K

Bytes)

Selectable
Segment Base
Address =Octal
2000000 (0.5
megabytes)

Maximum Address
= Octal 777777777
(128 megabytes)

VST146.vsd

User Data Segment

Main Stack Segment

Address 0

Process Private Space/
Non-global addresses

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 19

Overview of Flat Segments

17 Managing Memory

Overview of Flat Segments
The second type of extended data segment is the flat segment. You can allocate
space for multiple flat segments, and all are accessible to the process that allocated
them. Each flat segment is allocated at a different starting address on a 32-megabyte
boundary (G04.00 and earlier G-series releases and all D-series releases; there is no
boundary. In G05.00 and later G-series releases, only a limit of 1120 megabytes. In all
H-series and J-series releases the limit is 1536 megabytes), and they do not overlap.
All flat segments are accessible at the same time; unlike selectable segments, you
need not make a flat segment the current segment in order to access it.

When you allocate a flat segment, you will generally allow the
SEGMENT_ALLOCATE_ procedure to determine and return its starting address. You
can optionally specify the starting address for a flat segment, but under most
circumstances, this is not recommended.

For flat segments in a native mode process, the address space used for flat segments
is also used for the heap (which is used by C / C++ applications). Flat segments (when
allocated by Guardian) are assigned starting at the highest address and going
downward. The heap starts at the lowest address and grows upward. This means, for
native mode programs, the maximum segment size is not 1120 MB. It depends on
how much heap space the program uses. At best, a native mode program has 1119
MB available for flat segments (it could have less available if the heap has grown to
greater than 1 MB). An attempt to allocate an 1120 MB segment in a native program
results in an error 15.

Figure 17-6 shows addressable areas of virtual memory for user data in a native
process. Note that at any given time, a process can address all of the following:

• All flat segments

• One selectable segment (the current one)

• Global data

• The heap

• The main stack

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 20

Which Type of Segment Should You Use?

Which Type of Segment Should You Use?
Selectable segments are a carryover from earlier architectures. They will continue to
be supported on newer systems. However, programs written for newer CPUs should
use flat segments for the following reasons:

• Flat segments provide a performance advantage. Unlike selectable segments, all
flat segments allocated within a process are accessible to the process at the same
time. You need not make a special call to the SEGMENT_USE_ procedure to
make the flat segment the current segment before accessing it. In addition, you
can move data between flat segments by using assignment statements or move

Figure 17-6. Relative Location of Flat Segments

Flat Segment A

Flat Segment B

Flat Segment C

Main Stack Segment

Globals-Heap
Segment

Used by TNS
processes

and selectable
segments

Address
%h08000000

Address 0

VST147.VSD

Process Private
Space/Non-global

Addresses

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 21

Using Selectable Segments in TNS Processes

statements; use of the MOVEX procedure is not required. Depending on the
number of SEGMENT_USE_ and MOVEX calls in your program, removing them
can provide a significant performance enhancement.

• Flat segments provide access to more virtual memory and enable you to access
areas of memory that were previously inaccessible.

• Flat segments are more convenient from a programming standpoint, because
programs do not need calls to SEGMENT_USE_ or MOVEX.

• If you have more than one selectable segment, you should use flat segments to
prevent performance degradation when switching between selectable segments,
because only one selectable segment is visible at a time. Flat segments are
always visible.

• TNS processes using the automatic extended data segment should avoid selecting
other segments; see the following section.

You might still want to use selectable segments to simplify migration to newer systems
or for programs to be executed on both older and newer systems.

Using Selectable Segments in TNS Processes
Many TNS processes use an automatic extended data segment, a selectable segment
with ID 1024. It is created implicitly by the TNS C, Fortran and Pascal compilers when
using the large-memory model (XMEM, often called the LARGE or WIDE model in TNS
C). The TAL compiler also creates the automatic extended segment if any aggregate
variables (structures and arrays) are declared with extended indirection (.EXT). By
default, C places the heap, most global and static variables, and local aggregate
variables in the extended segment; the default can be overridden through use of the
_lowmem storage specifier. The automatic segment is selected when the process
starts, and remains selected unless some other segment is selected.

HP recommends against explicitly calling SEGMENT_USE_ or USESEGMENT to
select other selectable segments in TNS processes that use the automatic extended
data segment. Explicit segment selection is possible, but fraught with difficulty: When
the program selects some other segment, the automatic segment becomes invisible,
so the heap and many variables become inaccessible. Any reference to one of these
areas becomes a reference to the same address in the currently selected segment,
leading to incorrect program behavior and likely data corruption. Therefore, the
programmer must avoid making any such references while the other segment is
selected. Also, the program must avoid calling any functions that depend on the heap.
That set of functions is not explicitly documented, but includes many common ones,
such as printf(). If explicit segment selection is necessary, limit the duration of the
selection to as few statements as possible, and ensure that those statements refer only
to local scalar variables or variables qualified by the _lowmem storage specifier; avoid
calling most run-time library functions. Immediately reinstate the automatic segment
by selecting the previously selected segment, using the ID returned via the old-
segment-id parameter to SEGMENT_USE_.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 22

Accessing Data in Extended Data Segments

The program can safely create or share a selectable segment without selecting it,
instead using the MOVEX procedure to copy data between it and the normal program
environment.

Accessing Data in Extended Data Segments
You can access data in flat segments and selectable segments by using Guardian
procedures. In addition, you can access data in selectable segments by using
extended indirect arrays from an application written in TAL or other languages
supported by the TNS environment.

• To access data in an extended data segment using Guardian procedures, you must
first allocate the segments you need using the SEGMENT_ALLOCATE_
procedure. If the segment is a selectable segment, you must then specify the
segment you want to use by calling the SEGMENT_USE_ procedure. (If the
segment is a flat segment, you need not call SEGMENT_USE_.) For all segments,
this method lets you allocate as many extended data segments as you need up to
a total of:

• 480 megabytes on G04.00 and earlier G-series releases and all D-series
releases

• 1120 megabytes on G05.00 and subsequent G-series releases

• 1536 megabytes on all H-series and J-series releases

 For selectable segments, you can use only one segment at a time. For flat
segments, you can access any of the allocated segments.

• To access data in a selectable segment using extended indirect arrays, you can
simply declare the array using the .EXT keyword. TAL automatically allocates an
extended data segment for your program:

INT .EXT MYDATA[0:99];

This example declares a 100-word array.

Extended indirect arrays, although easy to use, provide access to only one
selectable segment.

For a TNS C program using the Large or Wide model, or a COBOL, FORTRAN, or
Pascal program, the compiler can also place data in a selectable data segment,
which also typically contains the heap.

The native compilers do not create selectable segments. In pTAL, the preceding
example would place MYDATA in the globals segment or, for a local declaration, in
the stack frame.

When accessing selectable segments in a TNS program, you should choose one
method or the other. You should not mix the two methods.

For more details on how to use indirect extended arrays, see the TACL Reference
Manual or the pTAL Reference Manual.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 23

Attributes of Extended Data Segments

Attributes of Extended Data Segments
Normally, an extended data segment is private to the process that owns it, allows both
read and write access, and is created with its intended size. However, you can create
extended data segments with special properties that permit them to be:

• Extensible, allowing dynamic allocation of disk space to the swap file

• Shared with another process on the same CPU

• Read-only, to keep the contents from being altered, which permits sharing across
CPUs

The following paragraphs describe the data segment attributes.

Extensible Data Segments
The system allocates extents to the swap file for an extensible data segment when
needed. Initially, the swap file might have no extents assigned to it for a private
extended data segment. If the data segment is to be shared, then one extent is initially
assigned to the swap file.

Shared Data Segments
For processes that share data, you can use shared data segments. You specify
sharing when allocating the segment. You can do so either by specifying the segment
ID of the segment and the PIN of an existing process you want to share data with or by
specifying the same swap file as an existing extended data segment. See Sharing an
Extended Data Segment, later in this section for details on how to do this.

Because the part of the shared data segment that is in memory can contain written
information that has not yet been copied to the swap file, you cannot share data
segments across CPUs. All processes sharing the same data segment must run on
the same CPU, unless the segment is read-only, as explained below.

Read-Only Data Segments
The contents of a read-only data segment cannot be altered and its data pages are not
copied to the swap file. Being read-only makes it possible to share segment contents
across CPUs.

Read-only segments cannot be extensible.

Allocating Extended Data Segments
To allocate an extended data segment, use the SEGMENT_ALLOCATE_ procedure.

Note. Most procedure calls with the “SEGMENT_” prefix return an error-detail parameter
as well as a return code in the error variable.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 24

Allocating Extended Data Segments

Allocating a Selectable Segment
Using the SEGMENT_ALLOCATE_ procedure call, you can allocate one or more
selectable segments. Each selectable segment can be as many as:

• 127.5 megabytes long on G04.00 and earlier G-series releases and all D-series
releases

• 1120 megabytes long on G05.00 and all subsequent G-series releases

• 1536 megabytes long on all H-series and J-series releases

To allocate a selectable segment, you specify a segment ID, which is any number in
the range 0 through 1023, in the segment-ID parameter of the
SEGMENT_ALLOCATE_ procedure. You use the segment ID later when you make
the segment current.

You also specify the size of the segment in bytes and a variable to receive the address
of the segment base. The size and base address must be specified as 32-bit integers.

The following example allocates four selectable segments of 100,000 bytes each.
These selectable segments are identified by segment IDs 0 through 3:

FOR I := 0 TO 3 DO
BEGIN
 SEGMENT^ID[I] := I;
 SIZE := 100000D;
 ERROR := SEGMENT_ALLOCATE_(SEGMENT^ID[I],
 SIZE,
 !swap^file^name:length!,
 ERROR^DETAIL,
 !pin!,
 !segment^type!,
 BASE^ADDRESS[I]);
 IF ERROR <> 0 THEN CALL ERROR^HANDLER;
END;

The base-address output parameter returns the address of the start of the allocated
segment. This address is the same for all selectable segments.

The preceding example also specifies the optional error-detail parameter. This
parameter returns a value if the returned error parameter is nonzero. The
error-detail parameter qualifies the error value.

Allocating a Flat Segment
Using the SEGMENT_ALLOCATE_ procedure call, you can allocate one or more flat
segments. To allocate a flat segment, specify, at minimum, the following parameters in
the SEGMENT_ALLOCATE_ procedure call:

• A unique segment ID, which is any number in the range 0 through 1023, in the
segment-ID parameter.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 25

Allocating Extended Data Segments

• The size of the segment in bytes. The maximum size of a flat segment is
1120 megabytes in the TNS/R environment and 1536 megabytes in the TNS/E
environment. In case of native mode C / C++ applications, the maximum size of a
flat segment may not be 1120 MB since the address space used for flat segments
is also used for the heap.

• The base-address parameter. You can specify this parameter as either an
output parameter or an input parameter. If you specify it as an output parameter,
the base address of the flat segment is determined internally and returned in the
variable you specify. The base address value is different for each allocated
segment. If you specify an address as an input value in the base-address
parameter (not recommended), the segment is allocated using that address as a
base address, if possible.

• The options parameter with bit 14 set to 1. This parameter tells the
SEGMENT_ALLOCATE_ procedure to allocate a flat segment. The default setting
of bit 14 is 0, which specifies a selectable segment. If you are specifying the
base-address parameter as an input parameter, you must also set bit 15 to 1.

Note that for compatibility with legacy applications, a selectable segment is the default
allocation on TNS/R systems. If you omit the options parameter, a selectable
segment is allocated.

In most cases, you should specify the base-address parameter as an output
parameter and allow the SEGMENT_ALLOCATE_ procedure to designate the starting
address of the flat segment. In particular, library procedures that allocate flat segments
should not specify a base address, because the allocation might be incompatible with
other segments within the same process.

However, you might want to designate a starting address for a flat segment to ensure
that the same address is used in a backup and primary process pair. The base
address you specify:

• Must be within the address range in which flat segments can be allocated. (This
address is subject to change.)

• Must not cause the allocated segment to overlap a flat segment that has already
been allocated by the process.

• Must be a multiple of 128K bytes.

If you specify the base-address parameter as an input parameter, you must set bit
15 of the options parameter to 1.

If you specify a base address for a flat segment and that address range is not
available, an error is returned.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 26

Allocating Extended Data Segments

Example of Allocating Extended Data Segments
The following example allocates four flat segments of 100,000 bytes each. These flat
segments are identified by segment IDs 0 through 3:

OPTIONS := 0;
OPTIONS.<14> := 1;
FOR I := 0 TO 3 DO
BEGIN
 SEGMENT^ID[I] := I;
 SIZE := 100000D;
 ERROR := SEGMENT_ALLOCATE_(SEGMENT^ID[I],
 SIZE,
 !swap^file^name:length!,
 ERROR^DETAIL,
 !pin!,
 !segment^type!,
 BASE^ADDRESS[I],
 !max^size!,
 OPTIONS);
 IF ERROR <> 0 THEN CALL ERROR^HANDLER;
END;

The base-address output parameter receives the starting address of each allocated
segment.

The preceding example also supplies the optional error-detail parameter. This
parameter returns a value if the returned error parameter is nonzero. The
error-detail parameter provides more information about the error.

Managing Swap Space
Data pages in physical memory are regularly swapped to a disk file to release memory
for other needs. By default, swap space for an extended data segment is handled by
the Kernel-Managed Swap Facility (KMSF). (This is the preferred way to handle swap
space for an extended data segment.) For each CPU, KMSF manages one or more
swap files from which swap space is allocated for the processes in that CPU. For
more information about KMSF, refer to the Kernel-Managed Swap Facility (KMSF)
Manual.

Alternatively, you can specify that an extended data segment have its own swap file,
which can be a temporary file or a permanent file. You specify a swap file by supplying
the filename:filename-length parameter to the SEGMENT_ALLOCATE_
procedure. If you supply a file name that includes a file ID part, and if a file with that
name does not already exist, then the system creates a permanent swap file with that
name. You can also specify just the volume part of the file name, in which case the
system creates a temporary swap file on the specified volume.

If you specify the name of an existing file to use as a swap file, you must have read
access to the file if it is to be used for a read-only segment, or read/write access
otherwise.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 27

Allocating Extended Data Segments

The difference between the temporary swap file and the permanent swap file is that
when the extended data segment is later deallocated, the permanent swap file remains
on disk and can be accessed after the segment is deallocated. It can be used, for
example, to set the initial data in another segment that later uses it as a swap file; thus,
it can serve as a record of a past state. In contrast, the data in a temporary swap file is
lost once you deallocate the extended data segment.

The following example allocates a flat segment with a permanent swap file:

SEGMENT^ID := 4;
SIZE := 8000D;
OPTIONS.<14> := 1;
FILENAME ':=' "$PROGRAM.SWPFILES.MYPROG" -> @S^PTR;
FILENAME^LENGTH := @S^PTR '-' @FILENAME;
ERROR := SEGMENT_ALLOCATE_(SEGMENT^ID,
 SIZE,
 FILENAME:FILENAME^LENGTH,
 ERROR^DETAIL,
 !pin!,
 !segment^type!,
 BASE^ADDRESS,
 !max^size!,
 OPTIONS);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;

You must specify a file name if you intend to use the file-name method of segment
sharing.

Specifying the Attributes of the Extended Data Segment
So far this section has described how to allocate extended data segments with default
attributes: that is, private, read/write, and nonextensible. If you need segments that
are shared with another process, are read-only, or are extensible, then you need to
specify the segment-type parameter. The following example specifies an extensible
data segment. The value for the segment-type parameter,
ZSYS^VAL^SEGALLOCTYPE^EXTENSBL, is taken from the ZSYSTAL file:

SEGMENT^ID := 0;
SIZE := 8000D;
SEGMENT^TYPE := ZSYS^VAL^SEGALLOCTYPE^EXTENSBL;
ERROR := SEGMENT_ALLOCATE_(SEGMENT^ID,
 SIZE,
 !swap^file^name:length!,
 ERROR^DETAIL,
 !pin!,
 SEGMENT^TYPE,
 BASE^ADDRESS);
IF ERROR <> 0 THEN ...

For a complete list of segment-type values and other details about the
SEGMENT_ALLOCATE_ procedure, see the Guardian Procedure Calls Reference
Manual.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 28

Checking Whether an Extended Data Segment Is
Selectable or Flat

Checking Whether an Extended Data Segment Is Selectable or
Flat

Use the SEGMENT_GETINFO_ procedure to check whether a previously allocated
extended data segment is a selectable segment or flat segment. Given the
segment-id of an extended data segment, the SEGMENT_GETINFO_ procedure
returns an option flag indicating whether the segment is a flat segment or selectable
segment: if bit 9 of the usage-flags parameter is 1, the segment is a flat segment; if
bit 9 is 0, the segment is a selectable segment. This check is useful when writing
transportable programs for earlier systems.

Alternatively, you can check whether a segment is flat or selectable by testing the
base-address value returned by SEGMENT_ALLOCATE_. If the value is %2000000
(%H00080000), the segment is a selectable segment; otherwise, the segment is a flat
segment.

The following example checks the usage-flags parameter to determine the segment
type of extended data segment 1:

SEGMENT^ID := 1;
ERROR := SEGMENT_GETINFO_(SEGMENT^ID,
 SIZE,
 !swap^file:maxlength!,
 !filename^length!,
 ERROR^DETAIL,
 BASE^ADDRESS,
 USAGE^FLAGS);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;
IF USAGE^FLAGS.<9> = 1 THEN
<Processing for flat segment>
ELSE
<Processing for selectable segment>

Making a Selectable Segment Current
Before you can access an allocated selectable segment, you must make the selectable
segment current by issuing a SEGMENT_USE_ procedure call. Your program can
refer only to the current selectable segment, and only one selectable segment can be
current at any time.

You specify the selectable segment you want to make current in the segment-id
parameter of the SEGMENT_USE_ procedure call. This segment ID must be the
same as the segment ID you supplied to the SEGMENT_ALLOCATE_ procedure. If
the segment ID is invalid, the SEGMENT_USE_ procedure returns an error 4.

With successful completion of the SEGMENT_USE_ procedure call, the procedure
returns the previous value of the current segment ID in the optional old-segment-id
parameter. If no selectable segment was in use before the call to SEGMENT_USE_,
the procedure returns -1.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 29

Referencing Data in an Extended Data Segment

You can also specify the optional base-address output parameter to return the
address of the start of the allocated segment, along with the optional error-detail
parameter to return a value giving more information about any nonzero error value.

The following example allocates four selectable segments and specifies that the first of
these (segment ID 0) is to be the current selectable segment:

FOR I := 0 TO 3 DO
BEGIN
 SEGID[I] := I;
 SIZE := 100000D;
 ERROR := SEGMENT_ALLOCATE_(SEGID[I],
 SIZE,
 !swap^file:length!,
 ERROR^DETAIL,
 !pin!,
 !segment^type!,
 BASE^ADDRESS[I]);
 IF ERROR <> 0 THEN CALL ERROR^HANDLER;
END;

NEW^SEGMENT^ID := 0;
ERROR := SEGMENT_USE_(NEW^SEGMENT^ID,
 OLD^SEGMENT^ID,
 @SEG^PTR,
 ERROR^DETAIL);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;

After your program calls the SEGMENT_USE_ procedure, all references to selectable
segments access the selectable segment that was specified in the SEGMENT_USE_
call. Although the other selectable segments cannot be accessed by your process
(unless SEGMENT_USE_ is called), they remain allocated; data in the other segments
is therefore retained. The MOVEX procedure can be used to copy data into or out of a
selectable segment that is not currently in use.

Referencing Data in an Extended Data Segment
Once you have allocated an extended data segment and, if it is a selectable segment,
made it current, you can refer directly to locations in that extended data segment. You
do this by using extended pointers in TAL or pTAL.

An extended pointer is a 32-bit address of an extended data segment. (An extended
pointer can also contain the address of a TNS user data segment storage location; see
Using the Data Stack earlier in this section.)

You declare an extended pointer using the .EXT keyword. The following examples
show extended pointers used to access selectable and flat segments.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 30

Referencing Data in an Extended Data Segment

Referencing Data in a Selectable Segment
Following are extended pointers for STRING, INT, and INT(32) data types. The
pointers will be used to access a selectable segment.

INT(32) BASE^ADDR;
STRING .EXT STR^PTR;
INT .EXT INT^PTR;
INT(32) .EXT INT32^PTR;

@STR^PTR := BASE^ADDR;
@INT^PTR := BASE^ADDR + %H20%D;
@INT32^PTR := BASE^ADDR + %H40%D;

In the above statements, BASE^ADDR is the byte address of the first location in the
selectable segment and was returned either by the call to SEGMENT_ALLOCATE_
that allocated this segment or by a call to the SEGMENT_GETINFO_ procedure.

Figure 17-7 shows the effect of the pointers declared above.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 31

Referencing Data in an Extended Data Segment

Figure 17-7. Referencing a Selectable Segment

VST090.VSD

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 32

Referencing Data in an Extended Data Segment

Referencing Data in a Flat Segment
Following are extended pointers for STRING and INT data types. The pointers will be
used to access data in two flat segments.

INT(32) BASE^ADDR^A;
STRING .EXT STR^PTR^A;
INT .EXT INT^PTR^A;

INT(32) BASE^ADDR^B
STRING .EXT STR^PTR^B;
INT .EXT INT^PTR^B;

@STR^PTR^A := BASE^ADDR^A ;
@INT^PTR^A := BASE^ADDR^A + %H20%D;

@STR^PTR^B := BASE^ADDR^B ;
@INT^PTR^B := BASE^ADDR^B + %H20%D;

In the above statements, BASE^ADDR^A and BASE^ADDR^B are the byte addresses
of the first locations in the extended data segments and were returned either by the call
to SEGMENT_ALLOCATE_ that allocated these segments or by a call to the
SEGMENT_GETINFO_ procedure.

Figure 17-8 shows the effect of the pointers declared above.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 33

Referencing Data in an Extended Data Segment

Figure 17-8. Referencing Flat Segments

VST141.VSD

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 34

Checking the Size of an Extended Data Segment

Checking the Size of an Extended Data Segment
To determine the size of a flat segment or a selectable segment (regardless of whether
or not the selectable segment is currently in use), supply the SEGMENT_GETINFO_
procedure with the appropriate segment ID.

The following statement returns the size of extended data segment 3 in the variable
SEGMENT^SIZE:

SEGMENT^ID := 3;
ERROR := SEGMENT_GETINFO_(SEGMENT^ID,SEGMENT^SIZE);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;

The variable to contain the returned segment size value must be a 32-bit integer. The
size of the segment is expressed in bytes.

Changing the Size of an Extended Data Segment
You can alter the size of an extended data segment by calling the RESIZESEGMENT
procedure. You supply the procedure with the segment ID and the new segment size.
The following example allocates a selectable segment and enlarges it from 8000 bytes
to 20000 bytes:

SEGMENT^ID := 1;
SIZE := 8000D;
ERROR := SEGMENT_ALLOCATE_(SEGMENT^ID,
 SIZE,
 !swap^file:length!,
 ERROR^DETAIL,
 !pin!,
 !segment^type!,
 BASE^ADDRESS
 MAX^SIZE);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;
 .
 .
NEW^SEGMENT^SIZE := 20000D;
ERROR := RESIZESEGMENT(SEGMENT^ID, NEW^SEGMENT^SIZE);
IF ERROR <> 0 THEN ...

If a flat segment will be resized, the maximum segment size (1120 megabytes in the
TNS/R environment and 1536 megabytes in the TNS/E environment) should be
declared in the SEGMENT_ALLOCATE_ procedure call that allocates the segment.
This prevents other flat segments from allocating the same space before the resizing is
performed. To reserve the maximum segment size, use the max-size parameter in
the SEGMENT_ALLOCATE_ procedure call. The max-size parameter defines the
upper limit of the new-segment-size parameter of the RESIZESEGMENT
procedure. The following example allocates an 8000-byte flat segment and specifies a
maximum segment size of 64000 bytes. Later in the program, the segment is resized
to its maximum size.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 35

Transferring Data Between an Extended Data
Segment and a File

SEGMENT^ID := 1;
SIZE := 8000D;
MAX^SIZE := 64000D;
ERROR := SEGMENT_ALLOCATE_(SEGMENT^ID,
 SIZE,
 !swap^file:length!,
 ERROR^DETAIL,
 !pin!,
 !segment^type!,
 BASE^ADDRESS[I],
 MAX^SIZE);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;
 .
 .
ERROR := RESIZESEGMENT (SEGMENT^ID, MAX^SIZE);
IF ERROR <> 0 THEN ...

See the Guardian Procedure Calls Reference Manual for complete details of the
RESIZESEGMENT procedure.

Transferring Data Between an Extended Data Segment and a File
Transferring data between extended data segments and a file is like transferring data
between the TNS user data segment and a file. However, you must use only
procedures with the suffix “X” (for example, READX or WRITEX).

To improve the performance of I/O that involves extended data memory, you can use
SETMODE function 141 to transfer larger blocks of data at once.

The following paragraphs discuss both the procedures that perform I/O with extended
data segments and SETMODE 141. For complete details on these procedures, see
the Guardian Procedure Calls Reference Manual.

Using I/O Procedure Calls With Extended Data Segments
I/O procedures such as READ, READUPDATE, WRITE, and so on cannot access data
outside the TNS user data segment or, in native processes, the globals-heap and stack
segments. To transfer data between extended data segments and disk files or
processes, you must use the I/O procedures whose names end with the letter “X.”

The I/O procedures that can access extended data segments are READX,
READUPDATEX, REPLYX, WRITEX, WRITEREADX, WRITEUPDATEX,
READLOCKX, WRITEUPDATEUNLOCKX, and AWAITIOX. These procedures are
similar in function to their counterparts for nonextended data segments; however, these
procedures allow the I/O buffer to be in either an extended data segment or the TNS
user data segment.

Note. RESIZESEGMENT is a resource-intensive procedure. You should therefore avoid
frequent calls to this procedure. A general guideline is to call RESIZESEGMENT only when
changing the size of a segment by more than 128 K bytes. Resizing a segment by less than
20% should also be avoided.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 36

Transferring Data Between an Extended Data
Segment and a File

For example, the following statements transfer 10 bytes of data from the beginning of
the extended data segment to the terminal:

INT(32) .EXT EXT^PTR := BASE^ADDRESS;
 .
 .
WCOUNT := 10;
CALL WRITEX(TERM^NUM,EXT^PTR,WCOUNT);

In the above example, BASE^ADDRESS is the byte address of the beginning of the
extended data segment. This value was returned either by the call to
SEGMENT_ALLOCATE_ that allocated this segment or by a call to the
SEGMENT_GETINFO_ or SEGMENT_USE_ procedure.

Transferring Large Buffers Quickly
It is usually safer to handle large buffers in an extended data segment (or in the upper
half of the TNS user data segment) than it would be to buffer such data in the data
stack itself; you avoid running the risk of filling up the data stack with your large buffer.
To help perform data transfers to such buffers efficiently, you can use SETMODE
function 141.

SETMODE function 141 enables and disables transfers of larger blocks of data
between extended data segments and a disk file. Using SETMODE function 141 with
other I/O procedures, you can transfer up to 56K bytes of data between extended data
segments and a DP2 disk file that has been opened for unstructured access. (See
Section 5, Communicating With Disk Files, for a discussion of unstructured file
access.) The amount of data transferred must be a multiple of 2048 bytes.

To enable large transfers, call the SETMODE procedure as follows:

LITERAL LARGE^TRANSFERS = 141,
 ENABLE = 1,
 DISABLE = 0;
 .
 .
CALL SETMODE(FILE^NUMBER,
 LARGE^TRANSFERS,
 ENABLE);

After the call to SETMODE function 141, the only I/O procedure calls permitted against
the file are calls to READX, READUPDATEX, WRITEX, and WRITEUPDATEX. These
procedures can then transfer up to 56K bytes at once.

Transferring Large Buffers Using Nowait I/O
You can perform nowait I/O when large buffers are enabled. However, your program
must not refer to data in the I/O buffer until the I/O operation is complete.

Note. Some Expand connections only support up to 30K bytes of data for a transfer between
extended data segments and a DP2 disk file that has been opened for unstructured access.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 37

Moving Data Between Extended Data Segments

To check for completion of a nowait operation on an extended data segment, use the
AWAITIOX procedure.

Moving Data Between Extended Data Segments
The method to use for transferring data between two extended data segments
depends on whether the segments are selectable segments or flat segments.

To move data between flat segments, or between a flat segment and the current
selectable segment, no special procedure call is needed; you can use normal
assignment or move statements. To move data between segments where at least one
of the segments is a not-current selectable segment, use the MOVEX procedure.
(When using the MOVEX procedure, it does not matter whether either the source or
target selectable segment is currently in use.)

Note, however, that MOVEX is a time-consuming procedure, and you should therefore
avoid using it wherever possible.

When calling the MOVEX procedure, you must specify where you want to move data
from, where you want to move data to, and how much data you want to move. You
specify the source and target addresses of the move by indicating the segment ID and
the starting address. You specify the amount of data you want to move as a number of
bytes.

The following example allocates four selectable segments and moves 512 bytes from
the beginning of segment 0 to the beginning of segment 1:

FOR I := 0 TO 3 DO
BEGIN
 SEGID[I] := I;
 SIZE := 100000D;
 ERROR := SEGMENT_ALLOCATE_(SEGID[I],
 SIZE,
 !swap^file:length!,
 ERROR^DETAIL,
 !pin!,
 !segment^type!,
 BASE^ADDRESS[I]);
 IF ERROR <> 0 THEN CALL ERROR^HANDLER;
END;
 .
 .
BYTE^COUNT :=512D;
SOURCE^SEGMENT^ID := 0;
TARGET^SEGMENT^ID := 1;
@SOURCE^PTR := BASE^ADDRESS[0];
@TARGET^PTR := BASE^ADDRESS[1];
ERROR := MOVEX(SOURCE^SEGMENT^ID,
 SOURCE^PTR,
 TARGET^SEGMENT^ID,
 TARGET^PTR,
 BYTE^COUNT);

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 38

Checking Address Limits of an Extended Data
Segment

If the MOVEX call was successful, then the call returns an error value of 0. Any other
value indicates an error. Typical causes of error are a nonexistent data segment
(error 2) or an out-of-bounds address (error 22).

The following example uses assignment statements to perform a similar move between
flat segments:

INT(32) BASE^ADDR1;
INT(32) BASE^ADDR2;
INT(32) .EXT SOURCE^PTR;
INT(32) .EXT TARGET^PTR;
OPTIONS.<14> := 1; !SET OPTION BIT FOR FLAT SEGMENT!
FOR I := 0 TO 9 DO
BEGIN
 SEGID[I] := I;
 SIZE := 8000D;
 ERROR := SEGMENT_ALLOCATE_(SEGID[I],
 SIZE,
 !swap^file:length!,
 ERROR^DETAIL,
 !pin!,
 !segment^type!,
 BASE^ADDRESS[I],
 !max^size!,
 OPTIONS);
 IF ERROR <> 0 THEN CALL ERROR^HANDLER;
END;
 .
 .
@SOURCE^PTR := BASE^ADDR1;
@TARGET^PTR := BASE^ADDR2;
TARGET^PTR ":=" SOURCE^PTR FOR 512 BYTES;

Checking Address Limits of an Extended Data Segment
You can use the ADDRESS_DELIMIT_ procedure to obtain the addresses of the first
and last bytes of a particular area of your logical address space such as a flat segment
or a current selectable segment.

You supply an address contained within the address area of interest, passing it to
ADDRESS_DELIMIT_ in the value parameter address. You can use the
segment-id output parameter to obtain the segment ID of the area if it is an extended
data segment. You can also use the address-descriptor output parameter to
obtain a set of flags that describe the area.

In the following example, an address contained in an extended data segment is passed
to ADDRESS_DELIMIT_. The procedure returns the address of the last byte of the
segment and also the segment ID.

INT .EXT MY^EXT^DATA[0:99];
INT(32) HIGH^ADDR;
INT ERROR,
 ERROR^DETAIL,
 SEGMENT^ID;

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 39

Sharing an Extended Data Segment

 .
 .

ERROR := ADDRESS_DELIMIT_ (@MY^EXT^DATA,
 ! low^address !,
 HIGH^ADDR,
 ! address^descriptor ! ,
 SEGMENT^ID,
 ERROR^DETAIL);

IF ERROR <> 0 THEN CALL ERROR^HANDLER;

Sharing an Extended Data Segment
Processes that share data can choose to share extended data segments. You do this
by setting appropriate parameters in the SEGMENT_ALLOCATE_ procedure call.

There are two ways an application process can share segments:

• Using the PIN method

• Using the file-name method

The method you choose will depend on the information your process knows about the
process that originally allocated the data segment:

• If your process knows the PIN of the process that allocated the extended data
segment and the segment ID that was allocated, then your process can use the
PIN method.

• If your process knows the swap-file name that the other process assigned to the
extended data segment, then your process can use the file-name method.

The following paragraphs describe each method.

Using the PIN Method
Your process can use the PIN method to share an extended data segment with
another process if all the following are true:

• Your process is in the same CPU as the process that allocated the extended data
segment.

• Your process knows the PIN of the process that allocated the extended data
segment.

• Your process knows the segment ID of the extended data segment.

• Your process has any of the following:

• The same process access ID as the process that allocated the data segment

Note. Processes that share extended data segments must be in the same CPU, unless the
segments are read-only, in which case they can be shared across CPUs.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 40

Sharing an Extended Data Segment

• The process access ID of the group manager for the process access ID of the
process that allocated the extended data segment

• The super ID

To specify sharing using the PIN method, your process must call the
SEGMENT_ALLOCATE_ procedure and specify the PIN of the process that allocated
the extended data segment, along with the segment ID known by the process that
allocated the extended data segment. The process that allocated the segment can
determine its own PIN and pass it to the process that calls SEGMENT_ALLOCATE_.

The following example specifies sharing of segment 3 using the PIN method:

SEGMENT^ID := 3;
ERROR := SEGMENT_ALLOCATE_(SEGMENT^ID,
 !segment^size!,
 !swap^file:name!,
 !error^detail!,
 PIN);

Note that the segment size must not be specified when sharing by the PIN method.

Using the File-Name Method
Your process can use the file-name method to share the extended data segment of
another process if all the following are true:

• Your process is in the same CPU as the process that allocated the extended data
segment.

• Your process knows the swap-file name that the process that allocated the
extended data segment assigned to it. (The Kernel-Managed Swap Facility swap
file, the default, cannot be used for this purpose.)

• Your process has appropriate Guardian security to access the file. See Managing
Swap Space earlier in this section.

To specify sharing using the file-name method, your process must call the
SEGMENT_ALLOCATE_ procedure and specify the swap-file name of the extended
data segment. You must also set the segment-type parameter to specify sharing by
file name. You can do this using the ZSYS^VAL^SEGALLOCTYPE^DEFFNAME literal
from the ZSYSTAL file.

The following example specifies segment sharing using the file-name method:

SWAP^FILENAME ':=' "$PROGRAM.SWPFILES.MYPROG" -> @S^PTR;
SWAP^FILENAME^LEN := @S^PTR '-' @SWAP^FILENAME;
SEGMENT^TYPE := ZSYS^VAL^SEGALLOCTYPE^DEFFNAME;
ERROR := SEGMENT_ALLOCATE_(SEGMENT^ID,
 !segment^size!,
 SWAP^FILENAME:SWAP^FILENAME^LEN,
 !error^detail!,
 !pin!,

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 41

Determining the Starting Address of a Flat Segment

 SEGMENT^TYPE);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;

Note that it is not necessary to specify the segment size, because the segment already
exists.

Considerations for Sharing a Flat Segment
Flat segments can be shared only with flat segments allocated with specific segment
IDs.

If you do not specify a base address, by default the system attempts to map the shared
segment starting at the base address specified in the original
SEGMENT_ALLOCATE_call (if that process still has the segment allocated, if not then
the address is selected from one of the other processes that shares the segment). If
the range of the requested segment is partially or completely overlapped in the current
process, then an error is returned. If option bit <9> is set to one and the base address
is not specified, then the system behaves the same as the default. However, instead
of returning an error if the range of the requested segment is partially or completely
overlapped in the current process, the system will attempt to allocate the segment at
any address within the flat segment space.

Considerations for Sharing a Selectable Segment
Selectable segments can be shared only with selectable segments.

HP recommends against using explicit selectable segments in TNS processes that use
the automatic compiler-generated selectable segment, especially in C, Fortran or
Pascal programs that use the (default) XMEM memory model. See Using Selectable
Segments in TNS Processes.

Determining the Starting Address of a Flat Segment
In certain situations, you may want to find out the starting address of a previously
allocated flat segment. For example, you may have a library routine that needs the
starting address of a flat segment that was allocated in a previous invocation of the
routine.

The starting address of a flat segment is returned by the SEGMENT_ALLOCATE_
procedure call that allocates the segment. To find out the starting address later in a
program, use the SEGMENT_GETINFO_ procedure. The following example returns
the base address of flat segment 3:

INT(32) .EXT SEG^PTR;
.
.
.
SEGMENT^ID := 3;
ERROR := SEGMENT_GETINFO_(SEGMENT^ID,
 !segment^size!,
 !filename:maxlen!,

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 42

Deallocating an Extended Data Segment

 !length!,
 ERROR^DETAIL,
 @SEG^PTR);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;

Deallocating an Extended Data Segment
When you have finished accessing an extended data segment, you can deallocate it by
supplying the appropriate segment ID to the SEGMENT_DEALLOCATE_ procedure.
The SEGMENT_DEALLOCATE_ procedure returns an error value of 0 if the
deallocation was successful; any other value indicates that the operation was
unsuccessful.

The following example deallocates extended data segments:

FOR I := 0 TO 9 DO
BEGIN
 ERROR := SEGMENT_DEALLOCATE_(I,
 !flags!,
 ERROR^DETAIL);
 IF ERROR <> 0 THEN...
END;

Once the segment is deallocated, the segment no longer exists in physical memory.
The swap file, however, retains the segment data if it is a permanent file. If a
temporary file is used as the swap file, or if the Kernel-Managed Swap Facility (KMSF)
managed the swap space, then the swap data is discarded.

Using Memory Pools
Memory pools provide a mechanism to help you manage extended data segments. A
memory pool is an area of an extended data segment, user data segment (TNS
processes), or globals-heap segment (TNS/R native processes) that your process
allocates and from which your process can obtain and release blocks of storage.

To use memory pools in extended data segments, you must perform the following
steps:

1. Allocate an extended data segment and, if the segment is a selectable segment,
make it the current segment. (SEGMENT_ALLOCATE_ and SEGMENT_USE_
procedures). (A flat segment does not need to be made current.)

2. Define all or a contiguous part of that extended data segment to be part of a
memory pool (POOL_DEFINE_ procedure).

3. Obtain blocks of storage from the memory pool when needed
(POOL_GETSPACE_ procedure or POOL_GETSPACE_PAGE_ procedure) and
return those storage blocks to the memory pool when no longer needed
(POOL_PUTSPACE_ procedure). You can later extend the pool with the
POOL_RESIZE_ procedure.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 43

Defining a Memory Pool

For information on segment allocation and specifying a current segment, see Read-
only segments cannot be extensible. and Making a Selectable Segment Current,
earlier in this section. The following paragraphs describe how to define a memory pool
and how to obtain storage from a memory pool.

Defining a Memory Pool
Use the POOL_DEFINE_ procedure to define a memory pool. You must supply the
POOL_DEFINE_ procedure with the address in the current extended data segment or
user data area where the pool is to begin and with the size in bytes of the pool.

A header is automatically allocated at the beginning of every memory pool. The
header, which may vary in length, contains information used by the operating system to
manage the pool; it is not intended to be accessed by user programs. In addition, a
small portion of the memory pool is used for system overhead. Thus, the total size of
the pool available to user programs is somewhat less than the defined size of the pool.

The POOL_DEFINE_ procedure allows you to specify the alignment of the memory
pool. Possible alignments are 4-byte, 8-byte, or 16-byte alignment. The default is
16-byte alignment, but you may want to specify a different alignment for efficiency or
performance reasons.

The POOL_DEFINE_ procedure returns an error status value that indicates whether
the operation was successful. A status value of 0 is returned for a successful
operation.

Figure 17-9 shows how a memory pool is allocated from an extended data segment.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 44

Defining a Memory Pool

Figure 17-9. Defining a Memory Pool

VST091.VSD

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 45

Defining a Memory Pool

The following example sets up the memory pool shown in Figure 17-9. The example
allocates an extended data segment, makes that segment current, and defines a pool
within that segment:

INT ERROR;
INT OPTIONS;
INT SEGMENT^ID;
INT OLD^SEGMENT^ID;
INT(32) SEGMENT^SIZE;
INT ERROR^DETAIL;
INT(32) BASE^ADDRESS;
INT .EXT BASE^PTR := BASE^ADDRESS;
INT .EXT POOL^START;
INT(32) MAX^POOLSIZE;
 .
 .
!Allocate a flat segment of 4000 bytes.
OPTIONS.<14> := 1;
SEGMENT^ID := 0;
SEGMENT^SIZE := 4000D;
ERROR := SEGMENT_ALLOCATE_(SEGMENT^ID,
 SEGMENT^SIZE,
 !swap^file:length!,
 ERROR^DETAIL,
 !pin!,
 !segment^type!,
 BASE^ADDRESS,
 !max^size!,
 OPTIONS);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;

!Make the segment current (if a selectable segment).
SEGMENT^ID := 0;
ERROR := SEGMENT_USE_(SEGMENT^ID,
 OLD^SEGMENT^ID,
 @BASE^PTR,
 ERROR^DETAIL);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;

!Define a 1536-byte memory pool starting 1024 words into the
!extended data segment.
@POOL^START := @BASE^PTR[1024];
MAX^POOLSIZE := 1536D;
ERROR := POOL_DEFINE_(POOL^START,MAX^POOLSIZE);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;
.
.

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 46

Getting Space in a Memory Pool

Getting Space in a Memory Pool
After defining a pool, your process can obtain blocks of space from that pool by calling
the POOL_GETSPACE_ procedure. You must specify the pool from which you want to
obtain blocks by indicating the starting address of the pool. You must also specify the
size of the block you require in bytes.

The POOL_GETSPACE_ procedure allocates the first block of contiguously available
memory of the size requested that lies within the memory pool. The
POOL_GETSPACE_ procedure then returns the address of the block of memory
allocated. You can assign this address to an extended pointer so that you can use it to
refer to locations in the block. If an error (such as insufficient space left in the memory
pool) occurs, then the procedure returns NIL_ instead of an address.

Figure 17-10 shows how a block of storage is obtained from a memory pool.

In the following example, the POOL_GETSPACE_ procedure obtains a 64-byte block
of memory from the memory pool defined in the example under Defining a Memory
Pool; the address of that block is stored in BLK^PTR (as shown in Figure 17-8), which
is then used to refer to locations in the block.

 .
 .
!Obtain a 64-byte storage block from the memory pool.
BLK^SIZE := 64D;

Figure 17-10. Getting Space in a Memory Pool

VST092.VSD

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 47

Returning Memory Pool Space

@BLK^PTR := POOL_GETSPACE_ (POOL^START,
 BLK^SIZE,
 ERROR);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;
 .
 .
BLK^PTR[4] := 12;

Returning Memory Pool Space
When your process no longer needs a block of space it obtained from a memory pool,
your process can return the block to the memory pool by calling the
POOL_PUTSPACE_ procedure. Once a block of data is returned to the memory pool,
that storage space becomes available for assignment to other storage blocks.

You must supply the POOL_PUTSPACE_ procedure with the starting address of the
pool from which the block of memory was obtained. You must also supply the starting
address of the block you are returning.

In the following example, the POOL_PUTSPACE_ procedure returns the block pointed
to by BLK^PTR to the memory pool:

ERROR := POOL_PUTSPACE_ (POOL^START,BLK^PTR);

Changing the Size of a Memory Pool
When you define a memory pool, you specify the size of that memory pool. You can
later change the size of a pool by calling the POOL_RESIZE_ procedure.

To change the size of a memory pool, you must supply the POOL_RESIZE_ procedure
with the starting address of the pool. You must also specify the new size of the
memory pool in bytes.

The POOL_RESIZE_ procedure returns an error status. If the error status is zero, then
the operation was successful. If a nonzero value is returned, then the operation failed.
Some reasons for failure are that the requested size would shrink the pool so much
that allocated storage blocks would no longer remain within the pool (error 4), or that
the new size would cause a bounds error, such as expanding the pool beyond the end
of the extended data segment (error 3).

The following example changes the size of the pool identified by POOL^START. After
the change, the memory pool size is 2048 bytes.

INT(32) NEW^POOLSIZE;
INT .EXT POOL^START;
 .
 .
NEW^POOLSIZE := 2048D;
ERROR := POOL_RESIZE_ (POOL^START,NEW^POOLSIZE);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;

Note that the POOL_RESIZE_ procedure does not move the pool; it only adds
neighboring addresses to the pool. The preceding example assumes that the

Managing Memory

Guardian Programmer’s Guide — 421922-014
17 - 48

Getting Information About a Memory Pool

additional space exists in the segment and is not occupied by other data. If the pool is
defined at the end of its segment (that is, there is no room to resize the pool), the
RESIZESEGMENT procedure can be used to extend the segment before calling
POOL_RESIZE_.

Getting Information About a Memory Pool
Use the POOL_GETINFO_ procedure to return information about a memory pool.
Information returned includes error information, pool size, and the number of bytes
currently allocated.

To get information about a memory pool, you must supply the POOL_GETINFO_
procedure with the starting address of the pool. You must also supply output
parameters for the values to be returned.

The following example returns the size of the pool pointed to by POOL^START. (The
size returned will be less than the size specified in the POOL_DEFINE_ procedure
because of the space occupied by the pool header.)

ERROR := POOL_GETINFO_(POOL^START,
 !error^detail!,
 POOL^SIZE);

See the Guardian Procedure Calls Reference Manual for details on other information
returned by POOL_GETINFO_.

Debugging a Memory Pool
The POOL_CHECK_ procedure returns information to help diagnose errors that occur
when using memory pools. You typically call POOL_CHECK_ after an error has been
returned by one of the other pool-management procedures. Specific information
returned by POOL_CHECK_ depends on the particular error. Returned information
can include:

• Address of the block of space within the pool where the error occurred.

• Address of the valid block closest to the block where the error occurred.

• Size of the last valid block allocated before the error occurred.

See the Guardian Procedure Calls Reference Manual for details on the information
returned by POOL_CHECK_.

Guardian Programmer’s Guide — 421922-014
18 - 1

18 Managing Time
Time management involves two related concepts:

• Creating and manipulating timestamps—that is, finding out what the time is

• Performing timing operations—that is, finding out how much time it takes to
perform a given task

This section begins by describing how timestamps are generated, what kind of
timestamps are available, and the different ways in which the time of day can be
represented; see How the System Keeps Time. The subsection Using the Time
Management Procedures introduces the system procedures that you can use to
manipulate timestamps. The subsection Time and Date Manipulation goes on to
describe the procedures that form the programmatic interface to system timekeeping.

Timing information is described in Timing in Elapsed Time and Timing in Process Time.
This subsection explains the difference between elapsed time and process time and
describes the tasks you can perform with the related procedures.

The last subsection, Managing System Time, describes the procedures you can use to
manipulate system timekeeping. Specifically, this includes getting and setting the
system time.

How the System Keeps Time
The basis of all timing performed on the system is a hardware clock that increments
every clock cycle. This clock represents the number of microseconds since the last
time the node was cold loaded. All other time values are derived from this clock.

Clock Averaging and System Time
Each CPU in the system has its own CPU clock that keeps the time for that CPU.
Typically, each CPU clock in the system runs at a slightly different speed. The system
determines system time by taking the average of the various CPU times; it then
establishes an adjustment value for each CPU clock. The adjustment value, which is
periodically updated, enables each CPU to provide the correct system time when
queried. Thus, when you ask for a timestamp, what you get is the CPU time corrected
by the adjustment value, In this way, the CPU clocks are effectively synchronized.

While the clock-averaging algorithm keeps CPU clocks synchronized with each other, it
does not necessarily keep system time consistent with the real time of day. For this
purpose, the SYSTEMCLOCK_SET_ or SETSYSTEMCLOCK procedure provides a
means for periodically adjusting the system time, adjusting the system time rate, or
setting the system time. Managing System Time at the end of this section provides
details.

Synchronizing system time to any standard time requires some program, such as a
Network Time Protocol (NTP) client, to set or adjust the time and clock rate to match

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 2

Time Zones and Daylight Saving Time

an external reference clock. Typically a reference clock is associated with an NTP
server on the LAN or WAN.

HP NonStop™ Time Synchronization (TimeSync) synchronizes the NonStop system
clocks for all current NonStop and Neoview systems. It has the ability to act as an NTP
client, an NTP server, or both simultaneously. For more information about TimeSync,
see the Time Synchronization User’s Guide.”

Time Zones and Daylight Saving Time
Timestamps generated by the system can be presented in any of the standard time
representations listed below:

• GMT or Greenwich mean time. This term is obsolete; its value was a popular
basis for calculating time throughout the world, based on the mean solar time for
the meridian at Greenwich, England. The standard replacement is UTC,
Coordinated Universal Time, based on many atomic clocks throughout the world.
To preserve the relationship of UTC to solar time, an occasional leap second is
added. The NonStop kernel does not implement leap seconds, so HP NonStop
documentation still refers to GMT.

• LST or local standard time. This value represents time in the local time zone,
without any adjustment for daylight saving time. LST is GMT plus an offset that
depends on the time zone.

• LCT or local civil time. This value represents time in the local time zone, including
any adjustment for daylight saving time (DST). LCT is LST plus a DST offset.

128-Bit, 64-Bit, and 48-Bit Timestamps
The operating system provides three kinds of timestamps: 64-bit Julian timestamps
and 48-bit timestamps in the TNS and native environments. All H-series and J-series
RVUs contain procedure calls using the 128-bit timestamp.128-bit timestamps provide
timestamps that can be used as unique identifiers across all CPUs in a node.

All 64-bit Julian timestamp and 48-bit timestamp procedure calls and information can
be used on TNS/E systems.

• The TNS/E environment supports a 128-bit unique timestamp that returns a unique
value on every call within a single EXPAND network. This 128-bit timestamp
(returned by the TS_UNIQUE_CREATE_ procedure is based on the following
properties:

• This timestamp is monotonically increasing when accessed on the same CPU.

• The 128-bit timestamp is globally unique; it will never be the same as any other
timestamp returned by the TS_UNIQUE_CREATE_ procedure in any CPU in
the same EXPAND network.

• A 64-bit Julian timestamp (returned by the JULIANTIMESTAMP procedure) is a
quantity equal to the number of microseconds since January 1, 4713 B.C.,

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 3

128-Bit, 64-Bit, and 48-Bit Timestamps

12:00 (noon) Greenwich mean time (Julian proleptic calendar). This timestamp
can represent either Greenwich mean time (GMT), local standard time (LST), or
local civil time (LCT). There is no way to examine a Julian timestamp and
determine which time it represents.

Related to the Julian timestamp is a 32-bit Julian day number, giving the number of
days since January 1, 4713 B.C.

• 48-bit timestamps (returned by the TIMESTAMP procedure) measure the
difference between the current local civil time and midnight at the start of
December 31, 1974. These timestamps are measured in units of 0.01 second.

Use 64-bit Julian timestamps, rather than 48-bit timestamps when developing new
applications on TNS and TNS/R systems. When developing new applications on
TNS/E systems, use 64-bit timestamps unless you need a unique timestamp, in which
case you should use 128-bit timestamps. Both 64-bit and 128-bit timestamps have a
microsecond resolution..

Note. The RCLK instruction ($READCLOCK in TAL) is another source of 64-bit timestamps. It
returns a value representing the local civil time in microseconds since midnight (00:00) on 31
December 1974. Note that this is not a Julian timestamp and therefore it is not transferable
across HP systems. Applications should avoid using the RCLK instruction except where
necessary.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 4

Using the Time Management Procedures

Using the Time Management Procedures
The system provides several procedures that you can use to manipulate 128-bit
timestamps, 64-bit timestamps. or 48-bit timestamps. These procedures can convert
timestamps into other representations of date and time and perform further
manipulations of these representations.

A 128-bit timestamp can:

• Extract the Julian timestamp from the 128-bit timestamp using the
TS_UNIQUE_CONVERT_TO_JULIAN_ procedure. Use the results returned from
this procedure to compare timestamps generated in different CPUs or on different
systems in the same EXPAND network.

• Compare two Unique timestamps generated in the same EXPAND network using
the TS_UNIQUE_COMPARE_ procedure. Comparisons are represented as a
relative ordering of when the two timestamps were generated.

• Return a value (in nanoseconds) representing the time since coldload using the
TS_NANOSECS_ procedure. HP recommends using this procedure only when you
need a very fine granularity of time.

A 64-bit timestamp can be converted to

• An eight-word array containing a Gregorian representation of the date and time;
that is, the year, month, day of the month, and the time of day down to the number
of microseconds. Time in this representation can be either GMT, LST, or LCT.

• A Julian day number.

• An integer value representing the day of the week.

A 48-bit timestamp can be converted to a seven-word array containing a Gregorian
representation of the date and time (LCT) in millisecond resolution.

In addition to converting and manipulating timestamps, you can use time management
procedures to create and interpret 64-bit intervals. These time intervals measure time
in microseconds. Time intervals can simply be a comparison of two 64-bit Julian
timestamps, or they can be a measure of CPU time (CPUTIMES procedure), or
process time (PROCESSTIME procedure or MYPROCESSTIME procedure).

A time interval can also be represented by five words containing the number of hours,
minutes, seconds, milliseconds, and microseconds.

Figure 18-1 shows the relationships between the various representations of time, time
intervals, and the system procedures that manipulate them for TNS and TNS/R
systems. Use the TS_UNIQUE_CONVERT_ procedure to manipulate a 128-bit
timestamps.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 5

Using the Time Management Procedures

Figure 18-1. Time Management Procedures

VST125.VSD

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 6

Time and Date Manipulation

Time and Date Manipulation
This subsection describes how to use the system procedures that obtain or manipulate
Julian timestamps (64 bits) or 48-bit timestamps. These operations include:

• Obtaining timestamps

• Computing a time interval

• Converting between timestamps and a Gregorian representation of the date and
the time of day

Working With 64-Bit Julian Timestamps
You should use a Julian timestamp whenever you need to measure a time interval or
apply a timestamp to an event.

When you measure a time interval, you need to be sure that no clock adjustments are
made during the interval. The Julian timestamp is not affected by daylight saving time.

When applying a timestamp to an event (such as updating a record), you need a
common basis for all such timestamps. Again you should use the GMT Julian
timestamp not only to avoid confusion during daylight saving transition but also to
provide a standard that can be used in different time zones. The following tasks
involve Julian timestamps:

• Obtain a Julian timestamp from your local node or from a remote node in the
network (JULIANTIMESTAMP procedure).

• Time an interval using Julian timestamps (JULIANTIMESTAMP procedure).

• Convert a Julian timestamp into a Gregorian date and time of day
(INTERPRETTIMESTAMP procedure).

• Convert a Gregorian date and time of day into a Julian timestamp
(COMPUTETIMESTAMP procedure).

• Convert Julian timestamps between local time and GMT (CONVERTTIMESTAMP
procedure).

• Convert a period of time specified in microseconds into a number of hours,
minutes, seconds, milliseconds, and microseconds (INTERPRETINTERVAL
procedure).

The following paragraphs describe how to perform these tasks.

Obtaining a Julian Timestamp: Local Node
To obtain a Julian timestamp, you call the JULIANTIMESTAMP procedure. This
procedure can return GMT for the current time, GMT at the last system cold load, GMT

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 7

Working With 64-Bit Julian Timestamps

at the last system generation, or the number of microseconds since the last cold load.
You choose the timestamp you want by setting the type parameter as follows:

The current GMT is the default timestamp.

The following example returns the current GMT and the GMT at the last cold load:

LITERAL COLD^LOAD = 1,
 SYSGEN^GMT = 2,
 SINCE^COLD^LOAD = 3;
FIXED GMT^TIME,
 COLD^LOAD^TIME;
INT TYPE;
 .
 .
GMT^TIME := JULIANTIMESTAMP;
TYPE := COLD^LOAD;
COLD^LOAD^TIME := JULIANTIMESTAMP(TYPE);

Timing an Interval Using Julian Timestamps
To time an interval you should use the Julian timestamp because it is important that
daylight saving time is not adjusted during the interval. However, comparing two GMT
timestamps does not ensure that no clock adjustments have been made. The system
time could have been reset by the SETTIME command or the SYSTEMCLOCK_SET_
or SETSYSTEMCLOCK procedure between the two measurements.

Using the JULIANTIMESTAMP procedure with the type parameter set to 3 returns the
number of microseconds since cold load (instead of a GMT Julian timestamp). This
value is not affected by setting the system time. Comparing this kind of timestamp at
the start of the interval with the same kind of timestamp at the end of the interval
always yields the length of the interval in microseconds. For example:

LITERAL COLD^LOAD = 1,
 SYSGEN^GMT = 2,
 SINCE^COLD^LOAD = 3;
FIXED TIME1,
 TIME2,
 INTERVAL;
INT TYPE;
 .
 .

0 The current GMT

1 GMT at the last system cold load

2 GMT at the last system generation

3 Microseconds since cold load

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 8

Working With 64-Bit Julian Timestamps

TYPE := SINCE^COLD^LOAD;
TIME1 := JULIANTIMESTAMP(TYPE);
 .
 .
TYPE := SINCE^COLD^LOAD;
TIME2 := JULIANTIMESTAMP(TYPE);

INTERVAL := TIME2 - TIME1;

Obtaining a Julian Timestamp: Remote Node
If you are dealing with timestamps on a remote node, then the relevant Julian
timestamp is the one that is generated on that node. This is because system time on
the remote node may be different from system time on the local node; the operating
system makes no attempt to synchronize clocks between nodes.

If, for example, you want to know how much time has passed since a specific file on a
remote node was last updated, you would find out using the last update timestamp on
the file and the current timestamp from the remote node.

When establishing the current time on a remote node, you should attempt to
compensate for the time it takes to send the message containing the timestamp to the
local node. You find this out using the following sequence:

1. Call the JULIANTIMESTAMP procedure for the local node to return the number of
microseconds since cold load.

2. Call the JULIANTIMESTAMP procedure for the remote node.

3. Call the JULIANTIMESTAMP procedure for the local node to return the number of
microseconds since cold load.

4. Compute the difference between the timestamps returned in Steps 1 and 3. This is
the time taken to send a message from the local node to the remote node and then
to send a message back to the local node from the remote node.

5. Divide the time delay indicated in Step 4 by 2 to get the time to send a message in
one direction.

6. Add the delay indicated in Step 5 to the remote timestamp returned in Step 2. The
result is a current timestamp for the remote node.

The following example calculates the time since the last update of a file named DFILE
on a remote node named \SYS2.

LITERAL GET^TIME^OF^LAST^UPDATE = 144,
 CURRENT^GMT = 0,
 SINCE^COLD^LOAD = 3;

INT .RESULT[0:3],

Note. The above algorithm yields an approximate result. The error in the result can be as
large as the value computed in Step 5.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 9

Working With 64-Bit Julian Timestamps

 ITEM^LIST;

INT LENGTH,
 NUMBER^OF^ITEMS,
 RESULTMAX,
 ERROR,
 NODE^NAME[0:3],
 NODE^NUMBER,REMOTE^ERROR,
 .S^PTR;
FIXED TIME^OF^LAST^UPDATE = RESULT;
FIXED TIME^BEFORE,
 REMOTE^TIME,
 TIME^AFTER,
 DELAY^TIME,
 REMOTE^GMT,
 TIME^SINCE^LAST^UPDATE;

STRING FILENAME[0:ZSYS^VAL^LEN^FILENAME - 1];
 .
 .
!Get time of last update:
FILENAME ':=' "\SYS2.$APPLS.FILES.DFILE" -> @S^PTR;
LENGTH := @S^PTR '-' @FILENAME;
ITEM^LIST := GET^TIME^OF^LAST^UPDATE;
NUMBER^OF^ITEMS := 1;
RESULTMAX := 8;
ERROR := FILE_GETINFOLISTBYNAME_(FILENAME:LENGTH,
 ITEMLIST,NUMBER^OF^ITEMS,
 RESULT,RESULTMAX);
IF ERROR <> 0 THEN CALL ERROR^HANDLER;

!Get remote node number:
NODE^NAME ':=' "\SYS2 ";
CALL LOCATESYSTEM(NODE^NUMBER,
 NODE^NAME);

!Get time on local node:
TIME^BEFORE := JULIANTIMESTAMP(SINCE^COLD^LOAD);

!Get time on remote node:
REMOTE^TIME := JULIANTIMESTAMP(CURRENT^GMT,
 !time^update^id!,
 REMOTE^ERROR,NODE^NUMBER);
IF REMOTE^ERROR <> 0 THEN CALL ERROR^HANDLER;

!Get time again on local node:
TIME^AFTER := JULIANTIMESTAMP(SINCE^COLD^LOAD);

!Compute remote timestamp:
IF TUID1 = TUID2 THEN
BEGIN
 DELAY^TIME := TIME^AFTER - TIME^BEFORE;
 REMOTE^GMT := REMOTE^TIME + (DELAY^TIME/2F);

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 10

Working With 64-Bit Julian Timestamps

 !Compute time since last update:
 TIME^SINCE^LAST^UPDATE := REMOTE^GMT - TIME^OF^LAST^UPDATE;
END;

Converting Between a Julian Timestamp and a Gregorian
Date and Time
To obtain a Gregorian date and the time of day from a Julian timestamp, you supply the
INTERPRETTIMESTAMP procedure with the Julian timestamp. The procedure returns
the Gregorian date and the time of day (in Greenwich mean time) in the
date-and-time parameter, as well as the Julian day number in the returned value.
The following statement shows an example:

INT DATE^AND^TIME[0:7];
FIXED JULIAN^TIMESTAMP;
INT(32) JULIAN^DAY^NUMBER;
 .
 .
JULIAN^TIMESTAMP := JULIANTIMESTAMP(CURRENT^GMT);
JULIAN^DAY^NUMBER := INTERPRETTIMESTAMP(JULIAN^TIMESTAMP,
 DATE^N^TIME);

The eight-word date-and-time parameter contains the information shown below.
Values in parentheses indicate the range of valid values:

DATE^AND^TIME[0] !Gregorian year such as 1990 (1-4000)
DATE^AND^TIME[1] !Gregorian month (1-12)
DATE^AND^TIME[2] !Gregorian day of the month (1-31)
DATE^AND^TIME[3] !Hour of the day (0-23)
DATE^AND^TIME[4] !Minute of the hour (0-59)
DATE^AND^TIME[5] !Second of the minute (0-59)
DATE^AND^TIME[6] !Millisecond of the second (0-999)
DATE^AND^TIME[7] !Microsecond of the millisecond (0-999)

To obtain a Julian timestamp from a Gregorian date and the time of day, you supply the
COMPUTETIMESTAMP procedure with the eight-word Gregorian date and time of day
in the date-n-time parameter. The following example converts the date April 11,
1990, at 1:43 p.m. into a 64-bit Julian timestamp:

DATE^AND^TIME[0] := 1990; !year
DATE^AND^TIME[1] := 4; !month
DATE^AND^TIME[2] := 11; !day
DATE^AND^TIME[3] := 13; !hour
DATE^AND^TIME[4] := 43; !minute
DATE^AND^TIME[5] := 0; !second
DATE^AND^TIME[6] := 0; !millisecond
DATE^AND^TIME[7] := 0; !microsecond
JULIAN^TIMESTAMP := COMPUTETIMESTAMP(DATE^N^TIME,
 ERROR^MASK);
IF ERROR^MASK <> 0 THEN CALL INVALID^DATE;

The above example uses the errormask parameter to check the validity of the input.
If any part of the Gregorian date or time is outside the valid range, then the
corresponding bit is set in the errormask parameter. For example, if the year is

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 11

Working With 64-Bit Julian Timestamps

outside the range 1 through 4000, then bit 0 (the most significant bit) is set to 1; if the
month is specified outside the range 1 through 12, then bit 1 is set; and so on.

Converting a GMT Timestamp Into Local Time
To convert a Julian timestamp representing GMT into a Julian timestamp representing
local time, or to convert a local Julian timestamp into a GMT Julian timestamp, you can
use the CONVERTTIMESTAMP procedure. The local time used by this procedure can
be local standard time (no adjustment made for daylight saving time) or local civil time
(time adjusted for daylight saving time). Moreover, the CONVERTTIMESTAMP
procedure can work with local time on any network node.

The following example converts GMT into LCT for the local node:

LITERAL GMT^TO^LCT = 0,
 GMT^TO^LST = 1,
 LCT^TO^GMT = 2,
 LST^TO^GMT = 3;
INT NODE^NUMBER,
 NODE^NAME[0:3];

LOCAL^CIVIL^TIME := CONVERTTIMESTAMP(JULIAN^GMT^TIMESTAMP,
 GMT^TO^LCT);

The next example converts the LCT on the network node named \SYS3 into GMT:

NODE^NAME ':=' "\SYS3 ";
CALL LOCATESYSTEM(NODE^NUMBER,NODE^NAME);
GREENWICH^MEAN^TIME := CONVERTTIMESTAMP(LOCAL^CIVIL^TIME,
 LCT^TO^GMT,
 NODE^NUMBER);

Converting Microseconds Into Days, Hours, Minutes,
Seconds, Milliseconds, and Microseconds
You can convert a time period into a number of days, hours, minutes, seconds,
milliseconds, and microseconds using the INTERPRETINTERVAL procedure. For
example, you can compute the difference between two Julian timestamps and then
convert the result into a more readable form as follows:

LITERAL SINCE^COLD^LOAD = 3;

INT(32) DAYS;
INT HOURS,
 MINUTES,
 SECONDS,
 MILLISECS,
 MICROSECS;
FIXED TIME1,
 TIME2,
 INTERVAL;
 .
 .

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 12

Working With Julian Day Numbers

TIME1 := JULIANTIMESTAMP(SINCE^COLD^LOAD);
 .
 .

TIME2 := JULIANTIMESTAMP(SINCE^COLD^LOAD);

INTERVAL := TIME2 - TIME1;

DAYS := INTERPRETINTERVAL(INTERVAL,HOURS,
 MINUTES,SECONDS,
 MILLISECS,MICROSECS);

Working With Julian Day Numbers
For operations that require the date but not necessarily the time of day, you can
measure time using Julian day numbers. A Julian day number is the number of days
since January 1, 4713 B.C.

You can use system procedures to perform the following operations on Julian day
numbers:

• Obtain the Julian day number from a Julian timestamp (INTERPRETTIMESTAMP
procedure)

• Convert Julian day numbers into Gregorian dates (INTERPRETJULIANDAYNO
procedure)

• Compute the Julian day number from a Gregorian date
(COMPUTEJULIANDAYNO procedure)

• Determine the day of the week that corresponds to a Julian day number
(DAYOFWEEK procedure)

The following paragraphs describe how to perform these operations.

Obtaining the Julian Day Number
You use the INTERPRETTIMESTAMP procedure to establish the Julian day number.
You have already seen how this procedure converts a Julian timestamp into a
Gregorian date and time. Here, however, you will examine the return value that
contains the Julian timestamp. For example:

JULIAN^TIMESTAMP := JULIANTIMESTAMP(CURRENT^GMT);
JULIAN^DAY^NUMBER := INTERPRETTIMESTAMP(JULIAN^TIMESTAMP,
 DATE^AND^TIME);

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 13

Working With 48-Bit Timestamps

Converting Between Julian Day Numbers and Gregorian
Dates
To convert a Julian day number into a Gregorian date, you supply the
INTERPRETJULIANDAYNO procedure with the Julian day number. The procedure
returns the Gregorian date in the parameters year, month, and day. The Julian day
number must be greater than or equal to 1,721,119, and no greater than 3,182,395,
which refers to December 31, year 4000 of the Gregorian calendar. The following
example returns the current Gregorian date:

JULIAN^TIMESTAMP := JULIANTIMESTAMP(CURRENT^GMT);
JULIAN^DAY^NUMBER := INTERPRETTIMESTAMP(JULIAN^TIMESTAMP,
 DATE^AND^TIME);

CALL INTERPRETJULIANDAYNO(JULIAN^DAY^NUMBER,
 YEAR,MONTH,DAY);

To convert a Gregorian date into a Julian day number, you supply the
COMPUTEJULIANDAYNO procedure with the Gregorian year, month, and day of the
month. The procedure returns the Julian day number. For example:

YEAR := 1952;
MONTH := 11;
DATE := 9;
JULIANDAYNO := COMPUTEJULIANDAYNO(YEAR,MONTH,DAY,ERROR^MASK);
IF ERROR^MASK <> 0 THEN CALL BAD^DATE;

The errormask parameter provides the result of validity checking of the Gregorian
date. Bit 0 (the most significant bit) of the errormask parameter is set to 1 if the year
is outside the range 1 through 4000; bit 1 is set to 1 if the month is outside the range
1 through 12; and bit 2 is set if the day of the month is outside the range 1 through 31
for a month that has 31 days or outside the range 1 through 30 for a month that has
30 days. For the month of February, bit 2 is set if the date is outside the range
1 through 28 if it is not a leap year, or 1 through 29 if it is a leap year.

Converting a Julian Day Number Into a Day of the Week
You can find out the day of the week of a specified Julian day number using the
DAYOFWEEK procedure. You need to supply the DAYOFWEEK procedure with the
Julian day number; the procedure returns the day of the week represented by an
integer value: 0 represents Sunday, 1 represents Monday, and so on. For example:

DAY := DAYOFWEEK(JULIAN^DAY^NUMBER);

Working With 48-Bit Timestamps
A 48-bit timestamp measures the time since the start of December 31, 1974. All dates
and times are in local civil time, and the unit of measurement is 0.01 second.

You can use a 48-bit timestamp when you are only concerned with LCT. Such a
timestamp should not be compared with other timestamps nor referred to from a

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 14

Working With 48-Bit Timestamps

network node in another time zone. Such a timestamp could be used for displaying the
local time.

When working with 48-bit timestamps, you can perform the following operations:

• Obtain a 48-bit timestamp (TIMESTAMP procedure)

• Convert a 48-bit timestamp into a Gregorian date and time (CONTIME procedure)

The following paragraphs describe how to perform these operations.

Obtaining a 48-Bit Timestamp
You obtain a 48-bit timestamp using the TIMESTAMP procedure. This procedure
returns the time in 0.01-second units since 00:00 on December 31, 1974, in a three-
word array in the interval-clock parameter:

INT INTERVAL^CLOCK[0:2];
 .
 .
CALL TIMESTAMP(INTERVAL^CLOCK);

Converting a 48-Bit Timestamp Into a Gregorian Date and
the Time of Day
You can convert a 48-bit timestamp into a 7-word Gregorian date and the time of day
using the CONTIME procedure. The 7-word array that contains the date and time has
the following format:

DATE^AND^TIME[0] Gregorian year (for example, 1990)
DATE^AND^TIME[1] Month of the year (1 to 12)
DATE^AND^TIME[2] Day of the month (1 to 31)
DATE^AND^TIME[3] Hour of the day (0 to 23)
DATE^AND^TIME[4] Minute of the hour (0 to 59)
DATE^AND^TIME[5] Second of the minute (0 to 59)
DATE^AND^TIME[6] Hundredth of the second (0 to 99)

The following example converts a 48-bit timestamp generated by the TIMESTAMP
procedure into the integer form of the Gregorian date and time of day:

INT INTERVAL^CLOCK[0:2],
 DATE^AND^TIME[0:6];
 .
 .
CALL TIMESTAMP(INTERVAL^CLOCK);

CALL CONTIME(DATE^AND^TIME,
 INTERVAL^CLOCK[0],
 INTERVAL^CLOCK[1],
 INTERVAL^CLOCK[2]);

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 15

Timing in Elapsed Time and Timing in Process Time

Timing in Elapsed Time and Timing in Process
Time

This subsection describes how to start and cancel process timers and perform other
timing functions. You can time processes in elapsed time or in process time. Elapsed
time is time as measured by the CPU clock, independent of the state of any process.

Process time is the time that a process is active. That is, process time includes the
time that the process is executing, whether in user code, system code, or library code.
Process time does not include time spent by other processes acting on behalf of your
process, nor does it include time spent suspended or waiting for external events.
Software interrupts also stop the process timer, but microcode interrupts do not.

Because many processes must share the same CPU, process time and elapsed time
will usually be different. Figure 18-2 shows the difference between elapsed time and
process time.

You can use time-related operations for setting and canceling timers or for reporting
statistical data. A program that sets a timer, however, must also check for timeout; you
do this by reading a system message from the $RECEIVE file.

In typical use, you can set a timer to expire if a specific operation does not complete
within a period of elapsed time or a period of process time. You can cancel the timer if
the operation finishes in time.

An example of a timing function that gathers statistical data is finding out the total
process time for a given process.

You can use system procedure calls to perform the following time-out operations on
processes. The procedures used here work in 0.01-second units, with an accuracy of
plus or minus 0.01 of a second:

• Set a timer to time out after a specific length of elapsed time (SIGNALTIMEOUT
procedure in the TNS and native environments. Use the TIMER_START_

Figure 18-2. Elapsed Time and Process Time

VST093.VSD

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 16

Setting and Canceling Timers: Elapsed Time

procedure in the TNS/E environment for time granularity reflected in microseconds
instead of centiseconds.)

• Cancel a timer that runs in elapsed time (CANCELTIMEOUT procedure in the TNS
and native environments. Use the TIMER_STOP_ procedure in the TNS/E
environment for time granularity reflected in microseconds instead of
centiseconds.)

• Set a timer to time out after a specific length of process time
(SIGNALPROCESSTIMEOUT procedure)

• Cancel a timer that runs in process time (CANCELPROCESSTIMEOUT
procedure)

In addition to the procedures indicated above, several other system procedures, such
as AWAITIO and DELAY, take timeout values as parameters. These procedures are
supported internally by the timing mechanism discussed above.

The following group of operations reports total process time. These procedures work
in units of 1 microsecond (.000001 of a second).

• Establish how much process time your process has used (MYPROCESSTIME
procedure)

• Establish how much process time any process has used (PROCESS_GETINFO_
procedure)

• Convert a number of microseconds of process time into a number of hours,
minutes, seconds, milliseconds, and microseconds (CONVERTPROCESSTIME
procedure)

The following paragraphs describe how to perform these operations.

Setting and Canceling Timers: Elapsed Time
You can set a timer to time out after a specified period of elapsed time using the
SIGNALTIMEOUT procedure in the TNS and native environments and the
TIMER_START_ procedure in the TNS/E environment. Using SIGNALTIMEOUT, your
process will receive system message -22 (the Time signal message) when the timer
expires.

You can use the CANCELTIMEOUT or TIMER_STOP_ procedures to cancel a timer
started by the SIGNALTIMEOUT or TIMER_START_ procedures. For example, to
check that an operation is completed within a certain time, you could start the timer
and then start the operation. If the operation finishes within the desired time, you no
longer have a need for the timer; you therefore cancel the timer.

To start the timer, supply the SIGNALTIMEOUT procedure with the time period in 0.01-
second units. Supply the TIMER_START_ procedure with the time period in 0.000001
second units. You can also supply these procedures with values that will allow the
timer to be identified in the message read from $RECEIVE. The SIGNALTIMEOUT or
TIMER_START_ procedures return a value in the tag parameter for passing to the

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 17

Setting and Canceling Timers: Process Time

CANCELTIMEOUT or TIMER_STOP_ procedures. CANCELTIMEOUT or
TIMER_STOP_ uses this value to distinguish between multiple timers.

The Time signal message received from $RECEIVE when the timer expires has the
following format:

The following example starts a timer to expire in one minute. The example uses the
parameter-1 parameter to supply an identifier that will be returned in word 1 of the
system message. The SIGNALTIMEOUT procedure returns a value in the tag
parameter for passing to the CANCELTIMEOUT procedure, which will use it to identify
this timer.

TIMEOUT^VALUE := 6000D;
PARAMETER^1 := 1;
CALL SIGNALTIMEOUT(TIMEOUT^VALUE,PARAMETER^1,
 !parameter^2!,
 TAG^1);

Note that parameter-2 is not supplied in this case. The purpose of parameter-2 is
the same as parameter-1, but parameter-2 allows you to use a 32-bit value
instead of a 16-bit value. If used, the value of parameter-2 is returned in word 2 of
the Time signal message.

To cancel the timer set above, supply the CANCELTIMEOUT procedure with the tag
value that was returned by the SIGNALTIMEOUT procedure:

CALL CANCELTIMEOUT(TAG^1);

For details on how to read system messages from the $RECEIVE file, see Section 6,
Communicating With Processes. You can identify the timer by checking word 1 of the
Time signal message; in this case, its value will be equal to parameter-1.

Setting and Canceling Timers: Process Time
Setting and canceling timers of process time is like setting and canceling timers of
elapsed time, except that the time period measured is limited to the number of
milliseconds that the process is active.

You start a process timer using the SIGNALPROCESSTIMEOUT procedure and
cancel the timer using the CANCELPROCESSTIMEOUT procedure. Your process will

Format of system message -22 (Time signal message):

sysmsg[0] = -22
sysmsg[1] = First parameter supplied by SIGNALTIMEOUT;
 default value 0
sysmsg[2] FOR 2 = Second parameter supplied by SIGNALTIMEOUT;
 default value 0D

Note. There are special considerations when using timers to measure long intervals of
elapsed time, such as several hours or more. For information on this topic, refer to the
subsection Measuring Long Time Intervals.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 18

Setting and Canceling Timers: Process Time

receive system message -26 (the Process time signal message) in its $RECEIVE file
when the timer expires.

To start the process timer, supply the SIGNALPROCESSTIMEOUT procedure with the
time period in 0.01-second units. You can also supply this procedure with values that
will allow the timer to be identified in the message read from $RECEIVE. The
SIGNALPROCESSTIMEOUT procedure returns a value in the tag parameter for
passing to the CANCELPROCESSTIMEOUT procedure.
CANCELPROCESSTIMEOUT uses this value to distinguish among multiple timers.

The Process time signal message received from $RECEIVE when the timer expires
has the following format:

The following example starts a process timer to expire after 30 seconds of active
processing time. The example uses the parameter-1 parameter to supply an
identifier that will be returned in word 1 of the system message. The
SIGNALPROCESSTIMEOUT procedure returns a value in the tag parameter for
passing to the CANCELPROCESSTIMEOUT procedure, which will use it to identify
this timer.

TIMEOUT^VALUE := 3000D;
PARAMETER^1 := 2;
CALL SIGNALPROCESSTIMEOUT(TIMEOUT^VALUE,
 PARAMETER^1,
 !parameter^2!,
 TAG^1);

Note that parameter-2 is not supplied in this case. The purpose of parameter-2 is
the same as parameter-1, but parameter-2 allows you to use a 32-bit tag instead
of a 16-bit tag. If used, the value of parameter-2 is returned in word 2 of the system
message.

To cancel the timer set above, supply the CANCELPROCESSTIMEOUT procedure
with the tag value that was returned by the SIGNALPROCESSTIMEOUT procedure:

CALL CANCELPROCESSTIMEOUT(TAG^1);

For details on how to read system messages from the $RECEIVE file, see Section 6,
Communicating With Processes. You can identify the timer by checking word 1 of the
Process time signal message; in this case, its value will be equal to PARAMETER^1.

Format of system message -26 (Process time signal message):

sysmsg[0] = -26
sysmsg[1] = First parameter supplied by
 SIGNALPROCESSTIMEOUT;
 default value 0
sysmsg[2] FOR 2 = Second parameter supplied by
 SIGNALPROCESSTIMEOUT;
 default value 0D

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 19

Timing Your Process

Timing Your Process
To find out how much processing time your process has used, you can call the
MYPROCESSTIME procedure. This procedure returns the number of microseconds
that the process has been active. For example:

FIXED PROCESS^TIME;
 .
 .
PROCESS^TIME := MYPROCESSTIME;

Timing Another Process
To find out how much processing time has been used by a process other than your
own, you can use the PROCESS_GETINFO_ procedure and supply the
process-time parameter. This procedure returns the time in microseconds. For
example:

FIXED PROCESS^TIME;
 .
 .
ERROR := PROCESS_GETINFO_(PROCESS^HANDLE,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 !hometerm:maxlen!,
 !hometerm^len!,
 PROCESS^TIME);

The procedure returns information about the process identified by the
process-handle parameter. If the process handle is zero or omitted, then the
procedure returns information about the current process.

For details about process handles, refer to Section 16, Creating and Managing
Processes.

Converting Process Time Into a Readable Form
You can use the CONVERTPROCESSTIME procedure to convert a 64-bit process-
time period returned from a call to MYPROCESSTIME or PROCESS_GETINFO_ into
a number of hours, minutes, seconds, milliseconds, and microseconds.

The following example converts a 64-bit representation of a period of time:

FIXED PROCESS^TIME;
 .
 .
PROCESS^TIME := MYPROCESSTIME;

CALL CONVERTPROCESSTIME(PROCESS^TIME,HOURS,MINUTES,SECONDS,
 MILLISECONDS,MICROSECONDS);

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 20

Measuring Long Time Intervals

Measuring Long Time Intervals
The SIGNALTIMEOUT procedure measures elapsed time according to the internal
clock of the CPU in which the calling process is executing. Typically, the CPU clocks in
a system run at slightly different speeds. Recall that the system determines system
time by taking the average of all the CPU times in the system, and then establishes
adjustment values for the various CPU clocks in order to synchronize them.

Elapsed time, which is measured by a CPU clock, is not synchronized with system
time; that is, the adjustment value is not used. When measuring short intervals of
elapsed time, the difference between CPU time and system time is negligible.
However, when measuring long intervals of elapsed time (such as several hours or
more), the difference can be noticeable. Because of this possible “clock drift,” it is not
recommended that you make just one call to the SIGNALTIMEOUT procedure to
measure a long interval of elapsed time when you need a precise measurement that is
synchronized with system time. Instead, you should use a sequence of two or more
calls. The same applies to other procedures, such as DELAY, that also measure time
by a CPU clock.

For example, suppose that you want your application to be notified at a specific system
time, say 12:00 noon. Your program could compare Julian timestamps to compute the
interval between the current system time and 12:00 noon, and then set a timer for that
interval by calling the SIGNALTIMEOUT procedure. However, if 12:00 noon is several
hours away, the timer might miss it by a noticeable amount because of clock drift.
Instead, you could use the SIGNALTIMEOUT procedure to set a timer to expire shortly
before 12:00 noon. When the timer expires (that is, when the Time signal message is
delivered to $RECEIVE), your application could compute the remaining time (again, by
comparing Julian timestamps), and then set another timer for the short interval that
remains.

However, because the possibility of a discrepancy due to clock drift becomes greater
as the interval being timed becomes longer, it is even safer to measure a long time
interval by dividing it into a series of relatively short intervals. One method is to
compute the interval between the current time and the desired time and set a timer to
expire after half that interval. When the timer expires, compute the remaining time and
set another timer to expire after half that interval, and so on, approaching the desired
time by progressively smaller steps. The code example in the following subsection
uses this method.

A Sample Long-Range Timer
The following program, written in C, allows the user to specify a time of day, according
to system time, at which a timer will expire. The program uses Julian timestamps to
compute the interval between the current system time and the desired system time,
and then uses the SIGNALTIMEOUT procedure to set a timer to expire after half of that
interval. After that expiration, the program computes the time remaining and sets
another timer to expire after half that time, continuing this process reiteratively. The
program is able to wait for as little as one interval unit (0.01 second) if the

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 21

A Sample Long-Range Timer

JULIANTIMESTAMP procedure shows that the desired system time has not yet been
reached.

The user can run the program with no parameters to see the current system time. For
example,

10> RUN TIMER

causes the program to display the system time, in both GMT and LCT, and then to
terminate. The user can set a timer by specifying a time of day in the form
hour minute. A 24-hour clock is always used. For example, to specify the time
14:35, enter the command

11> RUN TIMER 14 35

If it is already past the specified time of day, the timer is set for that time on the
following day. The program then displays the desired system time, in both GMT and
LCT, and displays the number of interval units (0.01 second each) until the halfway
point. At the halfway point, the program displays an indication that there has been a
“timer pop” (timer expiration), displays the time of the timer pop, and displays the
number of interval units until the next interim point. It continues in this manner until it
indicates that the desired system time has been reached.

The main() function contains the main processing loop. It calls the TargetGMT()
function to compute the GMT of the desired system time, and calls the
SetupTimeout() function to implement the “series of intervals” algorithm. For each
timer that is set, the main() function reads $RECEIVE to receive the timeout
message and then calls the SetupTimeout() function again to check if the target has
been reached and, if not, to set a timer for the next interval.

The code for the program follows:

#include <cextdecs>
#include <ktdmtyp.h>
#include <tal.h>
#include <stdio.h>
#include <stdlib.h>

#define GET_GMT 0
#define GMT_TO_LCT 0
#define LCT_TO_GMT 2
#define MY_NODE -1
#define ELAPSED_TIME_TIMEOUT -22
#define SYSTEM_MSG_RECVD 6
#define MAX_TIMEOUT_CENTISECS 0x7FFFFFFF

void showTime(int64 jt, char *txt)
{
 int16 err;
 int16 DT[8];

 INTERPRETTIMESTAMP(jt,DT);
 printf("GMT: %d/%02d/%02d %02d:%02d:%02d.%03d%03d",
 DT[0],DT[1],DT[2],DT[3],DT[4],DT[5],DT[6],DT[7]);

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 22

A Sample Long-Range Timer

 jt = CONVERTTIMESTAMP(jt,0,,&err);
 INTERPRETTIMESTAMP(jt,DT);
 if (err) printf(" *** error: %d",err);
 else
 printf(" LCT: %d/%02d/%02d %02d:%02d:%02d.%03d%03d",
 DT[0],DT[1],DT[2],DT[3],DT[4],DT[5],DT[6],DT[7]);
 printf(" %s\n",txt);
}

/*
 * Computes the Greenwich mean time (GMT) at the next local
 * civil time (LCT) occurrence of the specified hour and
 * minute. If the time has already passed today, the GMT is
 * computed for the target time tomorrow. Returns 0 if
 * successful.
 */
int TargetGMT(uint16 hour, uint16 minute, int64 *target)
{
 int16 err;
 int16 DateTime[8];
 int64 jts_current, jts_target;

 /* Get GMT at time of call; convert to LCT */

 jts_current = JULIANTIMESTAMP(GET_GMT);
 jts_current = CONVERTTIMESTAMP(jts_current, GMT_TO_LCT,
 MY_NODE, &err);
 if (err) return err;

 /*
 * Convert the LCT time to a Gregorian date and time. Then
 * adjust the fields of the Gregorian timestamp to get the
 * desired target time.
 */

 INTERPRETTIMESTAMP(jts_current, DateTime);
 DateTime[3] = hour;
 DateTime[4] = minute;
 DateTime[5] = DateTime[6] = DateTime[7] = 0;

*
 * Convert the target time from Gregorian to Julian LCT.
 * If target time is before current time-of-day, add a
 * day's worth of microseconds to make the timer pop at the
 * target time tomorrow.
 *\

 jts_target = COMPUTETIMESTAMP(DateTime, &err);
 if (err) return -1; /* bad hour or minute */

 if (jts_target < jts_current)
 jts_target += 24*3600*1000000LL;

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 23

A Sample Long-Range Timer

 /* Convert target LCT to GMT */

 *target = CONVERTTIMESTAMP(jts_target, LCT_TO_GMT, MY_NODE,
 &err);
 return err;
}

/*
 * Checks if the target has been reached. If not, sets a timer
 * for half the remaining interval. Returns 0 when target time
 * has been reached, -1 otherwise.
 *
 * N.B: This function rounds *up* the interval, so when the
 * target is reached it might overshoot up to 0.01 second.
 * Rounding *down* the interval will produce the opposite
 * effect--undershooting up to 0.01 second.
 */
int SetupTimeout(int64 jts_gmt_target)
{
 int64 jts_current, interval;

 jts_current = JULIANTIMESTAMP(GET_GMT);

 /*
 * Compute half of the interval, convert it from microseconds
 * to centiseconds (0.01 second each), and round up to the
 * closest centisecond.
 */

 interval = (jts_gmt_target - jts_current) / 2;
 interval = (interval + 9999) / 10000;

 if (interval <= 0)
 return 0;

 /*
 * The timeout value can be a maximum of (2^31 - 1)
 * centiseconds, or about 248 days.
 */

 if (interval > MAX_TIMEOUT_CENTISECS)
 interval = MAX_TIMEOUT_CENTISECS;

 printf("timeout for interval = %u\n\n", (int32) interval);
 SIGNALTIMEOUT((int32) interval);
 return -1;
}

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 24

A Sample Long-Range Timer

void main(int argc, char **argv)
{
 int64 jts_gmt_target;
 int business_day;
 short recv_num;
 int16 read_data;
 int hour, min;
 short err, last_err, status;

 if (argc < 2)
 { showTime(JULIANTIMESTAMP(0), "time now"); STOP(); }
 hour = atoi(argv[1]);
 min = atoi(argv[2]);

 /*
 * Get the file number for $RECEIVE. System messages
 * and waited I/O are enabled by default.
 */

 err = FILE_OPEN_("$RECEIVE", 8, &recv_num);

 TargetGMT(hour, min, &jts_gmt_target);
 showTime(jts_gmt_target, "target time");
 business_day = SetupTimeout(jts_gmt_target);

 while (business_day)
 {

 /*
 * Perform a waited read on $RECEIVE. For real
 * applications, nowaited reads should be used so that
 * processing can be done between the timer pops.
 */
 status = READX(recv_num, (char*) &read_data, 2);
 if (_status_gt(status))
 {
 FILE_GETINFO_(recv_num, &last_err);

 if ((last_err == SYSTEM_MSG_RECVD) &&
 (read_data == ELAPSED_TIME_TIMEOUT))
 {
 showTime(JULIANTIMESTAMP(0), "timer pop");
 business_day = SetupTimeout(jts_gmt_target);
 }
 }
 }
 showTime(JULIANTIMESTAMP(0), "day ended!");
}

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 25

Managing System Time

Managing System Time
This subsection describes system-clock functions such as setting the system clock and
checking the system clock.

Remember that system time is the result of periodically synchronizing the clocks in the
system using a clock-averaging algorithm. By taking the average value of the various
CPU clocks, the system creates the concept of system time. When you obtain the
system time, you are really obtaining the time in the local CPU, corrected by an
adjustment value that is periodically updated by the clock-averaging algorithm.

The system time contains four adjustments:

• Average time adjustment, to align the time on this processor with the average time.
The operating system makes this adjustment automatically and periodically, by
circulating a message among the processors.

• Average rate adjustment, to make the time on this processor advance at the same
rate as the average time. The operating system makes this adjustment
automatically from successive observations of the time adjustment.

• External time adjustment, to align the system time with an external reference
source. This adjustment is specified by a call to the SYSTEMCLOCK_SET_ or
SETSYSTEMCLOCK procedure.

• External rate adjustment, to make the system time advance at the same rate as
the external source. This adjustment has been zero on all operating systems
delivered since 2001, until the J06.14 and H06.25 RVUs. As of these RVUs, it is
specified by a call to the SYSTEMCLOCK_SET_ or SETSYSTEMCLOCK
procedure.

The operations you can perform on system time are:

• Check the system time (TIME procedure)

• Set or adjust the system time or system clock rate
(SYSTEMCLOCK_SET_/SETSYSTEMCLOCK procedure)

• Add a transition to the daylight-saving-time (DST) transition table
(ADDDSTTRANSITION procedure, which is superseded by the
DST_TRANSITION_ADD_ procedure on G05.00 and later G-series release
systems)

• You can perform the following operations on G05.00 and later G-series release
systems:

• Add a transition to the daylight-saving-time (DST) transition table
(DST_TRANSITION_ADD_ procedure)

• Delete a transition from the DST table (DST_TRANSITION_DELETE_
procedure)

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 26

Checking the System Clock

• Modify an existing transition in the DST table (DST_TRANSITION_MODIFY_
procedure)

• Query a transition from the DST table (DST_GETINFO_ procedure)

The following paragraphs describe how to perform these operations.

Checking the System Clock
You can check the system time either by issuing the TIME command at the command-
interpreter prompt or by calling the TIME procedure.

The TIME command displays the date and time on the terminal as follows:

1> TIME
April 13, 1990 9:43:03

The TIME procedure returns the date and time in integer variables representing the
year, month, day, hour, minute, second, and fraction of a second in 0.01-second units.
For example:

INT DATE^AND^TIME[0:6];
 .
 .
CALL TIME(DATE^AND^TIME);

On return from the TIME procedure, DATE^AND^TIME contains the following
information:

DATE^AND^TIME[0] Gregorian year (for example, 1990)
DATE^AND^TIME[1] Month of the year (1 to 12)
DATE^AND^TIME[2] Day of the month (1 to 31)
DATE^AND^TIME[3] Hour of the day (0 to 23)
DATE^AND^TIME[4] Minute of the hour (0 to 59)
DATE^AND^TIME[5] Second of the minute (0 to 59)
DATE^AND^TIME[6] Hundredth of the second (0 to 99)

The time displayed by the TIME command or returned by the TIME procedure is the
local civil time as given by the CPU in which the command or procedure runs. It is
because of the clock-averaging algorithm discussed above that this value can be
equated with system time.

Setting the System Clock
All RVUs support the SETSYSTEMCLOCK procedure. Beginning with the J06.14 and
H06.25 RVUs, the SYSTEMCLOCK_SET_ procedure is supported, and called by the
SETSYSTEMCLOCK procedure. The only difference between the old and new
interface is the way errors are reported. SETSYSTEMCLOCK returns a condition
code (< or = in TAL, a _cc_status value in C/C++); SYSTEMCLOCK_SET_ returns
an integer, with a unique value for each error. However, for callers in native C/C++, the
_cc_status value is actually an int; the same distinct error codes are available
through SETSYSTEMCLOCK. Only TNS or pTAL programs need to call
SYSTEMCLOCK_SET_ explicitly to see the distinct error results. For details of the

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 27

Setting the System Clock

error codes, see SYSTEMCLOCK_SET_ in the Guardian Procedure Calls Reference
Manual. SETSYSTEMCLOCK has the advantage that it is implemented in all RVUs;
on any RVU that supports both procedures, it accepts all the same parameter values
as SYSTEMCLOCK_SET_, so it can be used with identical effect.

You can set the system clock either programmatically using the SETSYSTEMCLOCK
procedure or interactively from the TACL prompt using the SETTIME command. TACL
also has a built-in function, #SETSYSTEMCLOCK, to call the SETSYSTEMCLOCK
procedure, but it accepts only mode values 0 through 3. A utility program like the
example below can be used to invoke SETSYTEMCLOCK interactively. You must
have an ID in the SUPER.* group (group ID = 255) to use either the
SETSYSTEMCLOCK procedure or the SETTIME command.

Using the SYSTEMCLOCK_SET_ or SETSYSTEMCLOCK
Procedure
You typically use the SETSYSTEMCLOCK procedure to synchronize the system clock
with an external clock. To provide a timestamp with finer tolerance, you can connect
an external clock to your system, typically using the Network Time Protocol (NTP) or
Simple NTP (SNTP). You need to regularly compare the timestamps issued on your
own system with a timestamp issued by the external clock. System action depends on
the value of the mode parameter along with the amount that the call to
SETSYSTEMCLOCK intends to change the time.

All systems support nine modes for SETSYSTEMCLOCK to adjust or set the system
time to an absolute value or by a relative value. As of the J06.14 and H06.25 RVUs,
SYSTEMCLOCK_SET_ and SETSYSTEMCLOCK support two additional modes to
adjust the clock rate (frequency). For details, see the Guardian Procedure Calls
Reference Manual.

The SCLOCK program distributed with your system is an example of a program that
synchronizes your system clock with an external clock connected by an asynchronous
line. This program uses the SETSYSTEMCLOCK procedure to adjust the system
clock.

The following example is a simple utility program to call SETSYSTEMCLOCK
interactively. On J06.14, H06.25, and subsequent RVUs, it reports distinct negative
integers for each error; on earlier RVUs all errors are reported as –1. The most useful
mode for making gradual adjustments to the system time is mode 6. Mode 5 is useful
to correct the time immediately, but should be used only when no software is running
that is sensitive to abrupt or negative changes in successive timestamp values. As of
J06.14 and H06.25, mode 9 can be used to adjust the clock rate.

#include <stdio.h> nolist
#include <stdlib.h> nolist
#include <errno.h>
#include <cextdecs(SETSYSTEMCLOCK)>
int main (int argc, char *argv[])
{
 short mode, tuid;

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 28

Setting the System Clock

 unsigned long t;
 long long JulianGMT;
 char *p;
 int result;
 puts("SSCK: SETSYSTEMCLOCK utility\n"
 "(c) Copyright 2012 Hewlett-Packard Development "
 "Company, L.P.\n");
 if (argc < 2 || argc > 4) {
 puts("Provide one to three parameters:\n"
 " 1st is mode (short, required)\n"
 " 2nd is 'julianGMT' (long long, depends on mode, "
 "sometimes opt)\n"
 " 3rd is TUID (short, optional)");
 return (argc > 4);
 }
 t = strtoul(argv[1], &p, 10);
 if (*p || t == 0 && errno || t > 999)
 return printf("Invalid mode: %s\n", argv[1]), 1;
 mode = (short)t;
 if (argc > 2) {
 JulianGMT = strtoll(argv[2], &p, 10);
 if (*p || JulianGMT == 0 & errno)
 return printf("Invalid JulianGMT: %s\n", argv[2]), 1;
 if (argc > 3) {
 t = strtoul(argv[3], &p, 10);
 if (*p || t == 0 && errno || t > 65535)
 return printf("Invalid TUID: %s\n", argv[3]), 1;
 tuid = (short)t;
 }
 }
 printf("SETSYSTEMCLOCK(");
 if (argc > 2) printf("%lld", JulianGMT);
 printf(", %d", mode);
 if (argc > 3) printf(", %d", tuid);
 result = SETSYSTEMCLOCK(_optional(argc > 2, JulianGMT),
 mode,
 _optional(argc > 3, tuid));
 printf(") => %d\n", result);
}

This example can be copied to a file named ssckc and compiled with TNS/E native C
as follows:

ccomp /in ssckc/ssck;suppress,extensions,symbols,runnable

Using the SETTIME Command
You rarely need to use the SETTIME command. For most systems, you need to use
SETTIME only when the system is first cold loaded. Only on older hardware is it
necessary to reset the system time following each cold load or power failure.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 29

Interacting With the DST Transition Table

Interacting With the DST Transition Table
The daylight-saving-time (DST) transition table provides a way of indicating the time
and date at which transitions to and from daylight saving time will be made. On D-
series systems, you can set the DAYLIGHT_SAVING_TIME entry in the configuration
file to NONE, USA66, or TABLE during system generation. See the System Generation
Manual for details about the configuration file.

You can use the Subsystem Control Facility (SCF) to change the
DAYLIGHT_SAVING_TIME setting on your machine. The “SCF info subsys $zzkrn"
command shows the current setting for DAYLIGHT_SAVING_TIME (as well as the
TIME_ZONE_OFFSET). The "SCF alter subsys $zzkrn, DAYLIGHT_SAVING_TIME
TABLE" command changes the setting to TABLE. The change will take effect only at
the next system cold load. See the SCF Reference Manual for the Kernel Subsystem
for more information.

The following shows the result of setting the DAYLIGHT_SAVING_TIME entry to one of
the three available options:

For G04.00 and earlier G-series and D-series releases of the system, you can fill out
the DST transition table either interactively using the ADDDSTTRANSITION TACL
command, or programmatically using the ADDDSTTRANSITION procedure. You must
be a super-group user (255, n) to set information in the DST transition table.

For G05.00 and later G-series release systems, you can also delete an entry, modify
an entry, or get information about an entry in the DST table using the following
procedures: DST_TRANSITION_DELETE_, DST_TRANSITION_MODIFY_ and
DST_GETINFO_. For a description of the various error values returned by these
procedures, refer to the Guardian Procedure Calls Reference Manual.
DST_TRANSITION_ADD_ supersedes the ADDDSTTRANSITION procedure.

You must a super-group user(255, n) to use ADDDSTTRANSITION,
DST_TRANSITION_ADD_, DST_TRANSITION_DELETE_ or
DST_TRANSITION_MODIFY_.

 If you choose to use the TABLE option, you must consider the following:

• You must have at least one transition date that is less than the current date and
time, and at least two transition dates that are later than the current date and time.

• Your first DST transition must be earlier than any date that will be referenced by
the BACKUP utility, any other utility, or application program.

NONE DST does not apply.

USA66 The system automatically follows the rules for daylight-saving-
time set for the United States by the Uniform Time Act of 1966.

TABLE You need to put entries into the DST transition table.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 30

Interacting With the DST Transition Table

Using the ADDDSTTRANSITION Procedure
You supply the ADDDSTTRANSITION procedure with two Julian timestamps and an
offset. The timestamps specify the beginning and the end of a time period. The
offset specifies the number of seconds that the LCT offsets the LST for the specified
period. The following example sets three transitions.

Note that successive calls to ADDDSTTRANSITION must load the DST table in time
sequence with no gaps. Every call to ADDDSTTRANSITION except the first call must
have the low-gmt parameter equal to the high-gmt parameter of the previous call.
These restrictions do not apply on G05.00 and later G-series release systems.

!First DST period; April 14, 1991 through October 20, 1991:

DATE^AND^TIME[0] := 1991; !year
DATE^AND^TIME[1] := 4; !month
DATE^AND^TIME[2] := 14; !day
DATE^AND^TIME[3] := 2; !hour
DATE^AND^TIME[4] := 0; !minute
DATE^AND^TIME[5] := 0; !second
DATE^AND^TIME[6] := 0; !millisecond
DATE^AND^TIME[7] := 0; !microsecond
LOW^GMT := COMPUTETIMESTAMP(DATE^AND^TIME,
 ERROR^MASK);
IF ERROR^MASK <> 0 THEN CALL INVALID^DATE;

DATE^AND^TIME[0] := 1991; !year
DATE^AND^TIME[1] := 10; !month
DATE^AND^TIME[2] := 20; !day
DATE^AND^TIME[3] := 2; !hour
DATE^AND^TIME[4] := 0; !minute
DATE^AND^TIME[5] := 0; !second
DATE^AND^TIME[6] := 0; !millisecond
DATE^AND^TIME[7] := 0; !microsecond
HIGH^GMT := COMPUTETIMESTAMP(DATE^AND^TIME,
 ERROR^MASK);
IF ERROR^MASK <> 0 THEN CALL INVALID^DATE;

OFFSET := SECONDS^IN^HOUR;
CALL ADDDSTTRANSITION(LOW^GMT,HIGH^GMT,OFFSET);

!Second DST period; October 20, 1991 through April 12, 1992:

LOW^GMT := HIGH^GMT;
DATE^AND^TIME[0] := 1992; !year
DATE^AND^TIME[1] := 4; !month
DATE^AND^TIME[2] := 12; !day
DATE^AND^TIME[3] := 2; !hour
DATE^AND^TIME[4] := 0; !minute
DATE^AND^TIME[5] := 0; !second
DATE^AND^TIME[6] := 0; !millisecond
DATE^AND^TIME[7] := 0; !microsecond

HIGH^GMT := COMPUTETIMESTAMP(DATE^AND^TIME,

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 31

Interacting With the DST Transition Table

 ERROR^MASK);
IF ERROR^MASK <> 0 THEN CALL INVALID^DATE;

OFFSET := 0;
CALL ADDDSTTRANSITION(LOW^GMT,HIGH^GMT,OFFSET);

!Third DST period; April 12, 1992 through October 18, 1992:

LOW^GMT := HIGH^GMT;
DATE^AND^TIME[0] := 1992; !year
DATE^AND^TIME[1] := 10; !month
DATE^AND^TIME[2] := 18; !day
DATE^AND^TIME[3] := 2; !hour
DATE^AND^TIME[4] := 0; !minute
DATE^AND^TIME[5] := 0; !second
DATE^AND^TIME[6] := 0; !millisecond
DATE^AND^TIME[7] := 0; !microsecond
HIGH^GMT := COMPUTETIMESTAMP(DATE^AND^TIME,
 ERROR^MASK);
IF ERROR^MASK <> 0 THEN CALL INVALID^DATE;

OFFSET := SECONDS^IN^HOUR;
CALL ADDDSTTRANSITION(LOW^GMT,HIGH^GMT,OFFSET);
 .
 .

Note that the second call to ADDDSTTRANSITION, where zero offset is specified, is
not required on G05.00 and later G-series systems.

Using the ADDDSTTRANSITION Command
The ADDDSTTRANSITION TACL command has the same effect as calling the
ADDDSTTRANSITION or the DST_TRANSITION_ADD_ procedures. Again you
supply two Julian timestamps that mark the beginning and end of the period and an
offset in hours and minutes. The following example uses ADDDSTTRANSITION
commands to achieve the same effect as the ADDDSTTRANSITION procedure calls in
the previous example:

1> ADDDSTTRANSITION 14 APR 1991, 2:00 GMT, 20 OCT 1991, 2:00 GMT, 1:00
2> ADDDSTTRANSITION 20 OCT 1991, 2:00 GMT, 12 APR 1992, 2:00 GMT, 0:00
3> ADDDSTTRANSITION 12 APR 1992, 2:00 GMT, 18 OCT 1992, 2:00 GMT, 1:00

Note that the second ADDDSTTRANSITION command is not necessary on G05.00
and later G-series systems, because zero offset is specified. Also, note that the
ADDDSTTRANSITION command allows you to specify LST instead of GMT.

Using the DST_TRANSITION_ADD_ Procedure
You supply the DST_TRANSITION_ADD_ procedure with a pointer to the
zsys_ddl_dst_entry_def structure with its fields filled in. The z_lowgmt and z_highgmt
fields are Julian timestamps that specify the beginning and the end of a time period,
respectively. The z_offset field specifies the number of seconds that the LCT offsets
the LST for the specified time period. The z_version field must be set to
DST_VERSION_SEP1997.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 32

Interacting With the DST Transition Table

Note the following rules when adding entries to the DST table:

#include <zsysc>

#include <cextdecs(COMPUTETIMESTAMP,DST_TRANSITION_ADD_)>

zsys_ddl_dst_entry_def DSTEntry;
short error, dateAndTime[8], errorMask;
long long timeStampLow, timeStampHigh;

/* First DST period; April 14, 1991 through October 20, 1991,
 Offset = 1 hour */

dateAndTime[0] = 1991; /* year */
dateAndTime[1] = 4; /* month */
dateAndTime[2] = 14; /* day */
dateAndTime[3] = 2; /* hour */
dateAndTime[4] = 0; /* minute */
dateAndTime[5] = 0; /* second */
dateAndTime[6] = 0; /* millisecond */
dateAndTime[7] = 0; /* microsecond */
timeStampLow = COMPUTETIMESTAMP(dateAndTime, &errorMask);

if (errorMask != 0) errorExit();

dateAndTime[0] = 1991; /* year */
dateAndTime[1] = 10; /* month */
dateAndTime[2] = 20; /* day */
dateAndTime[3] = 2; /* hour */
dateAndTime[4] = 0; /* minute */
dateAndTime[5] = 0; /* second */
dateAndTime[6] = 0; /* millisecond */
dateAndTime[7] = 0; /* microsecond */
timeStampHigh = COMPUTETIMESTAMP(dateAndTime, &errorMask);

if (errorMask != 0) errorExit();

DSTEntry.z_lowgmt = timeStampLow;
DSTEntry.z_highgmt = timeStampHigh;
DSTEntry.z_offset = 3600; /* seconds in 1 hour */
DSTEntry.z_version = DST_VERSION_SEP1997;
error = DST_TRANSITION_ADD_(&DSTEntry);

1. The z_lowgmt and z_highgmt fields must have values between 1/1/1 and
12/31/10000.

2. There must be no existing entry in the DST table for which both of the following
are true:

• The entry has a nonzero offset

• The entry overlaps the time period bounded by z_lowgmt and z_highgmt
fields.

3. The DST table stores entries with nonzero offset. The entries with zero offset are
deduced from the gaps in the table. Hence, if z_offset is zero and rules (1) and
(2) are satisfied, the operation does not affect the contents of the table. This
means that only entries with nonzero offset need to be added to the table.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 33

Interacting With the DST Transition Table

if (error != ZSYS_VAL_DST_OK) errorExit();

/* Second DST period; October 20, 1991 through April 12, 1992,
 Offset = 0 */
/* Since Offset = 0, there is no need to explicitly add this
 entry.*/
/* Third DST period; April 12, 1992 through October 18, 1992,
 Offset = 1 hour */
dateAndTime[0] = 1992; /* year */
dateAndTime[1] = 4; /* month */
dateAndTime[2] = 12; /* day */
dateAndTime[3] = 2; /* hour */
dateAndTime[4] = 0; /* minute */
dateAndTime[5] = 0; /* second */
dateAndTime[6] = 0; /* millisecond */
dateAndTime[7] = 0; /* microsecond */
timeStampLow = COMPUTETIMESTAMP(dateAndTime, &errorMask);

if (errorMask != 0) errorExit();

dateAndTime[0] = 1992; /* year */
dateAndTime[1] = 10; /* month */
dateAndTime[2] = 18; /* day */
dateAndTime[3] = 2; /* hour */
dateAndTime[4] = 0; /* minute */
dateAndTime[5] = 0; /* second */
dateAndTime[6] = 0; /* millisecond */
dateAndTime[7] = 0; /* microsecond */
timeStampHigh = COMPUTETIMESTAMP(dateAndTime, &errorMask);

if (errorMask != 0) errorExit();

DSTEntry.z_lowgmt = timeStampLow;
DSTEntry.z_highgmt = timeStampHigh;
DSTEntry.z_offset = 3600; /* seconds in 1 hour */
DSTEntry.z_version = DST_VERSION_SEP1997;
error = DST_TRANSITION_ADD_(&DSTEntry);

if (error != ZSYS_VAL_DST_OK) errorExit();
.
.
.
.

Using the DST_TRANSITION_DELETE_ Procedure
You supply the DST_TRANSITION_DELETE_ procedure with a pointer to the
zsys_ddl_dst_entry_def structure with its fields filled in. The fields describe an existing
entry in the DST table.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 34

Interacting With the DST Transition Table

The following rules have to be kept in mind while deleting entries from the DST table:

#include <zsysc>

#include <cextdecs(COMPUTETIMESTAMP,DST_TRANSITION_DELETE_)>

zsys_ddl_dst_entry_def DSTEntry;

short error, dateAndTime[8], errorMask;

long long timeStampLow, timeStampHigh;

/* Delete the third transition added by the DST_TRANSITION_ADD_
 procedure above */

dateAndTime[0] = 1992; /* year */
dateAndTime[1] = 4; /* month */
dateAndTime[2] = 12; /* day */
dateAndTime[3] = 2; /* hour */
dateAndTime[4] = 0; /* minute */
dateAndTime[5] = 0; /* second */
dateAndTime[6] = 0; /* millisecond */
dateAndTime[7] = 0; /* microsecond */
timeStampLow = COMPUTETIMESTAMP(dateAndTime, &errorMask);

if (errorMask != 0) errorExit();

dateAndTime[0] = 1992; /* year */
dateAndTime[1] = 10; /* month */
dateAndTime[2] = 18; /* day */
dateAndTime[3] = 2; /* hour */
dateAndTime[4] = 0; /* minute */
dateAndTime[5] = 0; /* second */
dateAndTime[6] = 0; /* millisecond */
dateAndTime[7] = 0; /* microsecond */
timeStampHigh = COMPUTETIMESTAMP(dateAndTime, &errorMask);

if (errorMask != 0) errorExit();

DSTEntry.z_lowgmt = timeStampLow;
DSTEntry.z_highgmt = timeStampHigh;
DSTEntry.z_offset = 3600; /* seconds in 1 hour */
DSTEntry.z_version = DST_VERSION_SEP1997;
error = DST_TRANSITION_DELETE_(&DSTEntry);
if (error != ZSYS_VAL_DST_OK) errorExit();
.
.
.
.

1. Only transitions that already exist in the table can be deleted. Deleting an entry
that has a zero offset has no effect and the table remains unaltered.

2. An attempt to delete the entry that is currently in effect is not allowed when the
offset field of that entry has a nonzero value. The DST_TRANSITION_MODIFY_
procedure may be used to delete such an entry. See rule (2) of Using the
DST_TRANSITION_MODIFY_ Procedure.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 35

Interacting With the DST Transition Table

Using the DST_TRANSITION_MODIFY_ Procedure
You supply the DST_TRANSITION_MODIFY_ procedure with pointers to two
zsys_ddl_dst_entry_def structures with their fields filled in. The first of these structures
describes an existing entry in the DST table that has to be modified. The second
structure describes a new entry that will replace the entry that needs to be modified.

The following rules have to be kept in mind while modifying entries from the DST table:

#include <zsysc>

#include <cextdecs(COMPUTETIMESTAMP,DST_TRANSITION_MODIFY_)>

zsys_ddl_dst_entry_def oldDSTEntry, newDSTEntry;

short error, dateAndTime[8], errorMask;

long long timeStampLow, timeStampHigh;

/* Modify the third transition added by the DST_TRANSITION_ADD_
 procedure above */

dateAndTime[0] = 1992; /* year */
dateAndTime[1] = 4; /* month */
dateAndTime[2] = 12; /* day */
dateAndTime[3] = 2; /* hour */
dateAndTime[4] = 0; /* minute */
dateAndTime[5] = 0; /* second */
dateAndTime[6] = 0; /* millisecond */
dateAndTime[7] = 0; /* microsecond */
timeStampLow = COMPUTETIMESTAMP(dateAndTime, &errorMask);

if (errorMask != 0) errorExit();

dateAndTime[0] = 1992; /* year */
dateAndTime[1] = 10; /* month */
dateAndTime[2] = 18; /* day */
dateAndTime[3] = 2; /* hour */
dateAndTime[4] = 0; /* minute */
dateAndTime[5] = 0; /* second */
dateAndTime[6] = 0; /* millisecond */

1. Existing transitions with nonzero offsets can be modified if the new values will
not overlap other existing transitions that have nonzero offsets.

2. Calling the DST_TRANSITION_MODIFY_ procedure with the z_offset field set
to zero in the second structure deletes the entry described by the first structure.

WARNING. If the entry that is currently in effect is modified and the offset value is changed,
then you should be aware that there will be jumps in the Local Civil Time. If your applications
cannot tolerate such jumps, then you should not attempt to modify the entry that is currently in
effect.

Managing Time

Guardian Programmer’s Guide — 421922-014
18 - 36

Interacting With the DST Transition Table

dateAndTime[7] = 0; /* microsecond */
timeStampHigh = COMPUTETIMESTAMP(dateAndTime, &errorMask);

if (errorMask != 0) errorExit();

oldDSTEntry.z_lowgmt = timeStampLow;
oldDSTEntry.z_highgmt = timeStampHigh;

oldDSTEntry.z_offset = 3600; /* seconds in 1 hour */
oldDSTEntry.z_version = DST_VERSION_SEP1997;
newDSTEntry.z_lowgmt = timeStampLow;
newDSTEntry.z_highgmt = timeStampHigh;
newDSTEntry.z_offset = 7200; /* seconds in 2 hours */
newDSTEntry.z_version = DST_VERSION_SEP1997;
error = DST_TRANSITION_MODIFY_(&oldDSTEntry, &newDSTEntry);

if (error != ZSYS_VAL_DST_OK) errorExit();
.
.
.
.

Using the DST_GETINFO_ Procedure
You supply a Julian timestamp and a pointer to the zsys_ddl_dst_entry_def structure.
DST_GETINFO_ fills in the fields of the zsys_ddl_dst_entry_def structure with
information about the DST entry that was, is, or will be in effect at the time specified by
the Julian timestamp.

#include <zsysc>

#include <cextdecs(COMPUTETIMESTAMP,DST_GETINFO_)>

zsys_ddl_dst_entry_def oldDSTEntry, newDSTEntry;

short error, dateAndTime[8], errorMask;

long long timeStampLow, timeStampHigh;

/* Use the DST_GETINFO_ procedure to print the contents of the
DST
 transition table */

DSTEntry.z_version = ZSYS_VAL_DST_VERSION_SEP1997;

/* Calling DST_GETINFO_ with -1 for timestamp returns the first
 nonzero DST transition */

error = DST_GETINFO_(-1, &DSTEntry);
while (error == 0)
{
 printDSTEntry(&DSTEntry);
 error = DST_GETINFO_(DSTEntry.z_highgmt, &DSTEntry);
}

Guardian Programmer’s Guide — 421922-014
19 - 1

19
Formatting and Manipulating
Character Data

This section describes how to use the character formatting and editing capabilities of
the operating system. Included here are discussions of the following:

• How to use the formatter (FORMATCONVERT[X] and FORMATDATA[X]
procedures) for presenting data in an organized way, such as for displaying
tabulated data. Using the Formatter provides details.

• How to perform operations on character strings such as changing the case of
alphabetic characters (SHIFTSTRING procedure), converting numeric data
between ASCII representation and binary numbers (NUMIN, NUMOUT, DNUMIN,
and DNUMOUT procedures), editing a character string (FIXSTRING procedure), or
sorting characters (HEAPSORT[X_] procedure). See Manipulating Character
Strings for details.

• How to manipulate multibyte character sets such as those used for representing
the Japanese, Chinese, and Korean languages (MBCS_* procedures). See
Programming With Multibyte Character Sets for details.

Using the Formatter
The formatter enables you to arrange lists of data items on output or input. The way
you arrange data can be format-directed or list-directed:

• Format-directed formatting arranges data items according to a sequence of edit
descriptors that specify a format. Using the edit descriptors, you can specify how
and where data items are displayed and you can specify the data type; the system
will do any necessary conversion for you (such as converting numeric data into
ASCII). Format-directed formatting is used mostly in formatting data on output to
display it in a readable way.

• List-directed formatting does not use a specified format but formats data using
data-type information that is entered as an attribute of the data item. This method
is less powerful than format-directed formatting for arranging data. Its major use is
in interpreting free-format input and then storing that input in a compact form.

This subsection discusses format-directed formatting and list-directed formatting and
describes several of the more common formatting tasks that you can perform.
Specifically, it discusses the FORMATCONVERT[X] and FORMATDATA[X] procedures,
which perform the formatting.

The FORMATCONVERT and FORMATCONVERTX procedures are identical except
that FORMATCONVERT requires that all of its reference parameters be 16-bit
addresses, while FORMATCONVERTX accepts extended (32-bit) addresses for all of
its reference parameters.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 2

Format-Directed Formatting

The FORMATDATA and FORMATDATAX procedures are also identical except that
FORMATDATA requires that all of its reference parameters be 16-bit addresses, while
FORMATDATAX accepts extended (32-bit) addresses for all of its reference
parameters.

The FORMATCONVERT procedure is used in combination with FORMATDATA, while
the FORMATCONVERTX conversion is used in combination with FORMATDATAX.

The direction of the format conversion—format directed or list directed, input or
output—is determined by the flags parameter passed to the FORMATDATA[X]
procedure.

This subsection does not describe every available edit descriptor, nor does it describe
all aspects of every edit descriptor that it mentions. For complete details on all edit
descriptors, refer to the Guardian Procedure Calls Reference Manual.

Format-Directed Formatting
Format-directed formatting works by providing the FORMATDATA[X] procedure with a
sequence of edit descriptors that specify how data is to be formatted. You specify
format-directed formatting by setting bit 2 of the flags parameter to zero (the default
value) when calling the FORMATDATA[X] procedure.

You can apply a format to output data or input data as follows:

• When formatting output, you supply the data to be formatted in an internal form.
The FORMATDATA[X] procedure converts the data into an external form according
to the specified format.

• When formatting input, you supply data in external form. The FORMATDATA[X]
procedure converts the input into internal form according to the specified format.

The following paragraphs describe output formatting and input formatting in detail and
discuss some of the more common formatting operations.

Note. TNS/R native programs that perform formatting must use FORMATCONVERTX and
FORMATDATAX rather than FORMATCONVERT and FORMATDATA.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 3

Format-Directed Formatting

Formatting Output
Figure 19-1 shows the role of the FORMATCONVERT[X] and FORMATDATA[X]
procedures in formatting data for output according to a specified format.

Setting bit 15 of the flags parameter to zero specifies that the FORMATDATA[X]
procedure will perform output formatting. Setting bit 2 to zero specifies format-directed
formatting.

You provide the format as a series of edit descriptors in external form (as an ASCII
string) to the FORMATCONVERT[X] procedure. This procedure converts the edit
descriptors into an internal form understood by the FORMATDATA[X] procedure.

The list of data descriptors describes the data to be converted. Each data descriptor is
made up of an array that describes one data item or sequence of data items that
corresponds to one edit descriptor.

Figure 19-1. Format-Directed Formatting

VST094.VSD

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 4

Format-Directed Formatting

The FORMATDATA[X] procedure takes the data items pointed to by the data
descriptors and formats them according to the internal format provided by the
FORMATCONVERT[X] procedure. FORMATDATA[X] places the output in the I/O
buffers.

The FORMATDATA[X] procedure reads the edit descriptors from left to right and
retrieves data descriptors from the top of the data descriptor list when required by the
edit descriptor. Note that while every data descriptor has a corresponding edit
descriptor, not every edit descriptor has a corresponding data descriptor. Some edit
descriptors, for example, provide tabulation information and therefore move a pointer
to a specific location without accessing any data.

Formatting Input
Figure 19-2 shows the role of the FORMATCONVERT[X] and FORMATDATA[X]
procedures in formatting input data according to a specified format.

For input formatting, bit 15 of the flags parameter supplied to the FORMATDATA[X]
procedure must be set to 1. Bit 2 is set to zero for format-directed formatting.

Again, the format is specified as a sequence of edit descriptors that you supply to the
FORMATCONVERT[X] procedure in external form. The FORMATCONVERT[X]
procedure converts the input string into an internal form suitable for passing to the
FORMATDATA[X] procedure.

You supply the input data in the I/O buffer (typically in ASCII code). The list of data
descriptors describes the placeholders that will contain the internal form of the data
when it has been converted by the FORMATDATA[X] procedure.

The FORMATDATA[X] procedure uses the format supplied by the
FORMATCONVERT[X] procedure to format the data supplied in the I/O buffer. The
formatted data gets stored in the variables as described by the list of data descriptors.
Note that the list of data elements is actually unchanged on output, but the variables
now contain formatted data.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 5

Format-Directed Formatting

Figure 19-2. Formatting Input

VST095.VSD

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 6

Format-Directed Formatting

Introduction to Edit Descriptors
As indicated previously, for both input formatting and output formatting you need to
supply the FORMATCONVERT[X] procedure with a sequence of edit descriptors that
specify how the FORMATDATA[X] procedure will format the data. This sequence of
edit descriptors must be supplied in an external (ASCII) format to
FORMATCONVERT[X].

The external format consists of a sequence of edit descriptors separated by commas.
Edit descriptors can be repeatable or nonrepeatable as described below:

• Repeatable edit descriptors include all edit descriptors that require data.
Repeatable edit descriptors include all kinds of numbers and ASCII characters.
They are called repeatable because the edit descriptor can specify multiple
occurrences of the data type. The corresponding data descriptor must point to an
array of multiple data elements that will satisfy the repeated edit descriptor.

The following are examples of repeatable edit descriptors:

• Nonrepeatable edit descriptors do not correspond to data. They contain all the
information needed for formatting. Nonrepeatable edit descriptors include literals,
tabulation descriptors, and buffer-control characters. They are called
nonrepeatable edit descriptors because one edit descriptor cannot represent
multiple data items.

The following are examples of nonrepeatable edit descriptors:

Each edit descriptor can have its properties changed using special character
sequences called modifiers or decorations:

• A modifier is a code used to alter the results of the formatting prescribed by the
edit descriptor to which it belongs. Modifiers include left and right justification and
fill-character specification.

The following example uses the “LJ” modifier to left-justify a 12-character string:

[LJ]A12

• A decoration specifies alphanumeric strings that can be added to a field either
before formatting begins or after it has finished.

The following example uses the “MA” decoration to print the text “negative number”
before a fixed-point number if the number is negative:

[MA"negative number"]F10.3

I5 A five-numeric integer

10(A12) A 12-character alphanumeric string repeated 10 times

TR8 Moves the buffer pointer eight character positions to the right of the
current position

EIGHT The literal “EIGHT”

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 7

Format-Directed Formatting

Several examples of common uses of edit descriptors are given throughout the
remainder of this subsection. For a description of every edit descriptor, modifier, and
decoration, see the Guardian Procedure Calls Reference Manual.

Introduction to Data Descriptors
Each data descriptor describes an internal data item as shown in Figure 19-3:

The data pointer points to the item of data. The data pointer is one word if the data
item is in the user data segment or two words if the data item is in an extended data
segment.

The scale factor is one byte long and is normally zero, but it can adjust the position of
the implied decimal point: a positive value moves the implied decimal point to the right;
a negative number moves it to the left.

The data type is also one byte long and indicates the type of data that the data item
contains; for example, the data type for a string is 0 and the data type for a signed
integer is 2. For a complete list of data types, see the FORMATDATA[X] procedure in
the Guardian Procedure Calls Reference Manual.

The subelement length gives the length in bytes of each element in the data item. For
example, if the corresponding edit descriptor specifies a six-character text item, then
the subelement length is 6.

The number of occurrences indicates the number of repetitions of the element in the
data item. For example, if the corresponding edit descriptor specifies a six-character
text item repeated 10 times, then the number of occurrences is 10. In this case, the
actual length of the data item is 60 characters.

The null pointer is the byte address of the null value if used. If the data item is in the
user data segment, then this value is one word in length. If the data item is in an
extended data segment, then this value is two words long.

Figure 19-3. Contents of a Data Descriptor

VST096.VSD

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 8

Format-Directed Formatting

Formatting Numbers, Text, and Other Data Items
There are several edit descriptors that you can use to process and format data for
output:

The edit descriptors listed above are known as repeatable edit descriptors because the
edit descriptor can be applied repeatedly to several data items in an array pointed to by
the list data element. To repeat an edit descriptor, you enclose the edit descriptor in
parentheses and precede it with a number indicating the number of repetitions. The
following example reserves six character positions on output for a logical data item and
repeats three times:

3(L6)

In this case, the corresponding data descriptor points to an array with at least three
entries in it. The output indicates logical values for the first three values in the array.

For example:

Array values: 27, 6789.3, 0

Output: " T T F"

A Formats ASCII-coded text; the input is usually a string type but could also be
numeric—the binary numbers are interpreted as ASCII characters.

B Converts a number from its internal representation into ASCII code for output as
a binary number according to a specified format.

D Is identical to the E edit descriptor.

E Converts a binary floating-point number into ASCII code for output as a decimal
number according to a specified format.

F Converts a binary fixed-point number into ASCII code for output as a decimal
number according to a specified format.

G Converts a binary fixed-point or floating-point number into ASCII code for output
as a decimal number according to a specified format.

I Converts a binary number into an integer for output according to a specified
format. The output is in ASCII code and can be in any specified numeric base
from 2 to 16, inclusive.

L Processes the input value and returns a true or false indication: “T” if the value
is nonzero, “F” if the value is zero.

M Edits alphanumeric or numeric data according to an editing pattern or mask.

O Converts a number from its internal representation into ASCII code for output as
an octal number according to a specified format.

Z Converts a number from its internal representation into ASCII code for output as
a hexadecimal number according to a specified format.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 9

Format-Directed Formatting

The code fragment shown below processes some alphanumeric characters and some
numeric characters.

The first part of the code fragment sets up the edit descriptors for seven alphanumeric
data items to be retrieved using the first data descriptor and displayed with five
characters each, and for seven integer data items to be retrieved from the array
pointed to by the second data descriptor and displayed in five character positions each.
The FORMATCONVERT procedure returns an internal form of the edit descriptors in
the IFORMAT variable.

The code fragment sets up two arrays: one to contain the seven items of alphanumeric
data (DAYS^ARRAY) and one to contain numeric data (INT^ARRAY). Two data
descriptors point to these arrays: VLIST[0] points to DAYS^ARRAY, and VLIST[1]
points to INT^ARRAY. In addition to the pointers, these data descriptors also indicate
the scale factor, the size of each data element, and the number of occurrences.

Finally, the code fragment calls the FORMATDATA procedure. The major input
parameters to this procedure are the data descriptors in the VLIST array and the
internal format in WFORMAT. Note that WFORMAT is a word pointer to the string
array returned by the FORMATCONVERT procedure in IFORMAT.

!Set up the edit descriptors and convert to internal form:
EFORMAT ':=' "7(A5),7(I5)";
SCALES := 0;
CONVERSION := 1;
ERROR := FORMATCONVERT(IFORMAT,
 IFORMATLEN,
 EFORMAT,
 EFORMATLEN,
 SCALES,
 SCALE^COUNT,
 CONVERSION);
IF ERROR <= 0 THEN ...

!Set up arrays for the days of the week and the date:
DAYS^ARRAY ':=' ["MON","TUE","WED","THU","FRI","SAT","SUN"];
INT^ARRAY ':=' [1,2,3,4,5,6,7];

!Set up list elements that point to the above arrays:
VLIST^LEN := 2;
FLAGS := 0;
VLIST[0].ELEMENT^PTR := @DAYS^ARRAY;
VLIST[0].ELEMENT^SCALE := 0;
VLIST[0].ELEMENT^TYPE := 0;
VLIST[0].ELEMENT^LENGTH := 4;
VLIST[0].ELEMENT^OCCURS := 1;
VLIST[1].ELEMENT^PTR := @INT^ARRAY;
VLIST[1].ELEMENT^SCALE := 0;
VLIST[1].ELEMENT^TYPE := 2;
VLIST[1].ELEMENT^LENGTH := 2;
VLIST[1].ELEMENT^OCCURS := 7;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 10

Format-Directed Formatting

!Format the data:
ERROR := FORMATDATA(BUFFERS,
 BUFFER^LENGTH,
 NUM^BUFFERS,
 BUFFER^ELEMENTS,
 WFORMAT,
 VLIST,
 VLIST^LEN,
 FLAGS);
IF ERROR <> 0 THEN ...

Figure 19-4 shows the operation of the FORMATDATA procedure for this example.
(For simplicity the FORMATCONVERT procedure is omitted from this figure.)

Figure 19-4. Formatting Numbers and Text

VST097.VSD

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 11

19 Formatting and Manipulating Character Data

Using Buffer Control
It is often convenient to use multiple buffers for output from the FORMATDATA[X]
procedure. In addition to making it easier to handle larger amounts of output data,
multiple buffers also help format data into lines for output, because you can then issue
one WRITE procedure call for each buffer.

To terminate a buffer and start a new one, you put a slash (/) character in the edit
descriptor string. When using multiple buffers, the buffer parameter to the
FORMATDATA[X] procedure must identify a series of contiguous buffers.

The following code fragment expands the previous example by inserting two new-
buffer characters between the edit descriptors that correspond to the day of the week
and the edit descriptors that correspond to the date. The code fragment is expanded
to use 11 buffers, where one buffer contains the data for one line of a printed calendar.

!Set up the edit descriptors and convert to internal form:
EFORMAT ':=' ["7(A5)//7(I5)//7(I5)//7(I5)//7(I5)//7(I5)"];
SCALES := 0;
CONVERSION := 1;
ERROR := FORMATCONVERT(IFORMAT,IFORMATLEN,EFORMAT,
 EFORMATLEN,SCALES,SCALE^COUNT,
 CONVERSION);
IF ERROR <= 0 THEN ...

!Set up arrays for month, year, and date values:
DAYS ':=' " MON TUE WED THU FRI SAT SUN"
INT^ARRAY1 ':=' [1,2,3,4,5,6,7];
INT^ARRAY2 ':=' [8,9,10,11,12,13,14];
INT^ARRAY3 ':=' [15,16,17,18,19,20,21];
INT^ARRAY4 ':=' [22,23,24,25,26,27,28];
INT^ARRAY5 ':=' [29,30];

!Set up list elements that point to the above arrays:
VLIST^LEN := 6;
FLAGS := 0;
VLIST[0].ELEMENT^PTR := @DAYS;
VLIST[0].ELEMENT^SCALE := 0;
VLIST[0].ELEMENT^TYPE := 0;
VLIST[0].ELEMENT^LENGTH := 38;
VLIST[0].ELEMENT^OCCURS := 1;
VLIST[1].ELEMENT^PTR := @INT^ARRAY1;
VLIST[2].ELEMENT^PTR := @INT^ARRAY2;
VLIST[3].ELEMENT^PTR := @INT^ARRAY3;
VLIST[4].ELEMENT^PTR := @INT^ARRAY4;
I := 1;
WHILE I < VLIST^LEN DO
BEGIN
 VLIST[I].ELEMENT^SCALE := 0;
 VLIST[I].ELEMENT^TYPE := 2;
 VLIST[I].ELEMENT^LENGTH := 2;
 VLIST[I].ELEMENT^OCCURS := 7;
 I := I + 1;
END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 12

VLIST[5].ELEMENT^PTR := @INT^ARRAY5;
VLIST[5].ELEMENT^OCCURS := 2;

!Format the data:
ERROR := FORMATDATA(BUFFERS,BUFFER^LENGTH,NUM^BUFFERS,
 BUFFER^ELEMENTS,WFORMAT,VLIST,VLIST^LEN,
 FLAGS);
IF ERROR <> 0 THEN ...

Figure 19-5 shows how the code fragment presented above works.

Figure 19-5. Buffer Control

VST098.VSD

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 13

Formatting Literals
You can include literals in your edit-descriptor string by enclosing each literal in single
quotation marks. The FORMATDATA[X] procedure copies these literals directly to the
output buffers without accessing a data descriptor.

The following example produces the same output as the previous example. However,
because the days of the week are constant values whatever the month, these values
can be expressed as literals. Note that now one less data descriptor is needed.

!Set up the edit descriptors and convert to internal form:
EFORMAT ':=' ["' SUN MON TUE WED THU FRI SAT'//,",
 "7(I5)//7(I5)//7(I5)//7(I5)//7(I5)"];
SCALES := 0;
CONVERSION := 1;
ERROR := FORMATCONVERT(IFORMAT,IFORMATLEN,EFORMAT,
 EFORMATLEN, SCALES,SCALE^COUNT,
 CONVERSION);
IF ERROR <= 0 THEN ...

!Set up arrays for date of the month values:
INT^ARRAY1 ':=' [1,2,3,4,5,6,7];
INT^ARRAY2 ':=' [8,9,10,11,12,13,14];
INT^ARRAY3 ':=' [15,16,17,18,19,20,21];
INT^ARRAY4 ':=' [22,23,24,25,26,27,28];
INT^ARRAY5 ':=' [29,30];

!Set up list elements that point to the above arrays:
VLIST^LEN := 5;
FLAGS := 0;
VLIST[0].ELEMENT^PTR := @INT^ARRAY1;
VLIST[1].ELEMENT^PTR := @INT^ARRAY2;
VLIST[2].ELEMENT^PTR := @INT^ARRAY3;
VLIST[3].ELEMENT^PTR := @INT^ARRAY4;
I := 0;
WHILE I < VLIST^LEN DO
BEGIN
 VLIST[I].ELEMENT^SCALE := 0;
 VLIST[I].ELEMENT^TYPE := 2;
 VLIST[I].ELEMENT^LENGTH := 2;
 VLIST[I].ELEMENT^OCCURS := 7;
 I := I + 1;
END;
VLIST[4].ELEMENT^PTR := @INT^ARRAY5;
VLIST[4].ELEMENT^OCCURS := 2;

!Format the data:
ERROR := FORMATDATA(BUFFERS,BUFFER^LENGTH,NUM^BUFFERS,
 BUFFER^ELEMENTS,WFORMAT,
 VLIST,VLIST^LEN,
 FLAGS);
IF ERROR <> 0 THEN ...

Figure 19-6 shows the effect of the above code fragment.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 14

Figure 19-6. Formatting Literals

VST099.VSD

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 15

Tabulating Data
You can tabulate data by including tabulation edit descriptors in the edit-descriptor
string. Any of the following are valid forms of tabulation descriptor:

Each of these edit descriptors alters the current position but has no other effect.

The following example enhances the previous example by adding a line at the
beginning of the output to include the name of the month in the middle of the line and
the year number at the beginning and end of the line. The example uses tabulation
descriptors to accomplish this. Note that the example also uses tabulation descriptors
to locate each day of the week in the third buffer.

!Set up the edit descriptors and convert to internal form:
EFORMAT ':=' ["TR17,A8,TL22,2(I4,TR28),//,",
 "TR3,'SUN',TR2,'MON',TR2,'TUE',TR2,'WED',",
 "TR2,'THU',TR2,'FRI',TR2,'SAT'//,",
 "7(I5)//7(I5)//7(I5)//7(I5)//7(I5)"];
SCALES := 0;
CONVERSION := 1;
ERROR := FORMATCONVERT(IFORMAT,
 IFORMATLEN,
 EFORMAT,
 EFORMATLEN,
 SCALES,
 SCALE^COUNT,
 CONVERSION);
IF ERROR <= 0 THEN ...

!Set up arrays for month, year, and date values:
MONTH ':=' "APRIL";
INT^YEAR ':=' [1990,1990];
INT^ARRAY1 ':=' [1,2,3,4,5,6,7];
INT^ARRAY2 ':=' [8,9,10,11,12,13,14];
INT^ARRAY3 ':=' [15,16,17,18,19,20,21];
INT^ARRAY4 ':=' [22,23,24,25,26,27,28];
INT^ARRAY5 ':=' [29,30];

Tn Transmission of a character to or from a buffer is to occur at the nth
character position in the buffer. The first character in the buffer is numbered
1.

TLn Transmission of the next character to or from a buffer is to occur at n
character positions to the left of the current position.

TRn Transmission of the next character to or from a buffer is to occur at n
character positions to the right of the current position.

nX This edit descriptor is identical to TRn.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 16

!Set up list elements that point to the above arrays:
VLIST^LEN := 7;
FLAGS := 0;
VLIST[0].ELEMENT^PTR := @MONTH;
VLIST[0].ELEMENT^SCALE := 0;
VLIST[0].ELEMENT^TYPE := 0;
VLIST[0].ELEMENT^LENGTH := 10;
VLIST[0].ELEMENT^OCCURS := 1;
VLIST[1].ELEMENT^PTR := @INT^YEAR;
VLIST[1].ELEMENT^SCALE := 0;
VLIST[1].ELEMENT^TYPE := 2;
VLIST[1].ELEMENT^LENGTH := 2;
VLIST[1].ELEMENT^OCCURS := 2;
VLIST[2].ELEMENT^PTR := @INT^ARRAY1;
VLIST[3].ELEMENT^PTR := @INT^ARRAY2;
VLIST[4].ELEMENT^PTR := @INT^ARRAY3;
VLIST[5].ELEMENT^PTR := @INT^ARRAY4;
I := 2;
WHILE I < VLIST^LEN DO
BEGIN
 VLIST[I].ELEMENT^SCALE := 0;
 VLIST[I].ELEMENT^TYPE := 2;
 VLIST[I].ELEMENT^LENGTH := 2;
 VLIST[I].ELEMENT^OCCURS := 7;
 I := I + 1;
END;
VLIST[6].ELEMENT^PTR := @INT^ARRAY5;
VLIST[6].ELEMENT^OCCURS := 2;

!Format the data:
ERROR := FORMATDATA(BUFFERS,
 BUFFER^LENGTH,
 NUM^BUFFERS,
 BUFFER^ELEMENTS,
 WFORMAT,
 VLIST,
 VLIST^LEN,
 FLAGS);
IF ERROR <> 0 THEN ...

The above code fragment is shown again at the end of this subsection as a complete
program including all data declarations and relevant error checking.

Figure 19-7 shows the function of the above code fragment.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 17

Figure 19-7. Tabulating Data

VST100.VSD

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 18

Applying a Scale Factor
You can apply a scale factor to move the position of the decimal point in a fixed-point
or floating-point number. Once you set a scale factor, it remains in effect until you
change it.

The scale factor descriptor has the format Pn, where n is the number of places by
which the implied decimal point moves.

This edit descriptor affects all subsequent D, E, F, and G edit descriptors. Compare
the following two sets of examples. The first set shows the results of formatting a
fixed-point number and a floating-point number without a scale factor; the second set
shows the same numbers formatted with a scale factor of 3:

Without a scale factor:

With a scale factor of 3:

Applying Optional Plus Control
You can control whether the formatter precedes positive numbers transmitted into the
output buffer with a plus sign. By default, positive numbers on output are not preceded
by a plus sign.

You can use the SP edit descriptor to cause FORMATDATA[X] to put the plus signs
into the output buffer. Once you specify plus signs, every positive number is displayed
with a plus sign until you turn off the plus by using the S or SS edit descriptor.

The following example shows the use of the edit descriptors used in plus control,
assuming that plus control is initially turned off:

Format: F10.4,E12.3

Data
values:

123.4567,123.4567

Output: 123.4567 0.123E+03

Format: P3,F10.4,E12.3

Data
values:

123.4567,123.4567

Output: 123456.7 0.123E+06

Format: I4,SP,I4,I4,SS,I4

Data
values:

34,45,56,67

Output: 34 +45 +56 67

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 19

Sample Program: Formatting Output
The following sample program is a complete program for printing the calendar page as
illustrated in Figure 19-7. This example shows all data declarations and includes error
checking for the FORMATCONVERT and FORMATDATA procedures.

The last lines of the example print out the contents of the buffers on the home terminal.

?INSPECT,SYMBOLS, NOLIST
?SOURCE $TOOLS.ZTOOLD04.ZSYSTAL
?LIST

!Global literals and variables:

LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME;

INT ERROR;
INT TERM^NUM;

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(FORMATCONVERT,FORMATDATA,
? PROCESS_GETINFO_,FILE_OPEN_,WRITEX,
? INITIALIZER,DNUMOUT,DEBUG,PROCESS_STOP_)
?LIST

!--
! Here are some DEFINEs to make it a little easier to
! format and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @ERROR^BUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put and integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(ERROR^BUFFER,
 @S^PTR '-' @ERROR^BUFFER) #;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 20

!--
! Procedure to write a line on the terminal.
!--

PROC WRITE^LINE (BUF, LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERM^NUM,BUF,LEN);
 IF <> THEN CALL PROCESS_STOP_;
END;

!--
! Procedure to display formatted data on the terminal.
!--

PROC DISPLAY^MONTH;
BEGIN

! Literals and variables used by FORMATCONVERT:

 LITERAL EFORMATMAXLEN = 256; !max length of external
 ! edit descriptors
 STRING .EFORMAT[0:EFORMATMAXLEN - 1]; !array for external
 ! edit descriptors
 INT EFORMATLEN; !length of external
 ! edit descriptor
 ! string
 LITERAL IFORMATLEN = 512; !max length of internal
 ! edit descriptors
 INT .WFORMAT[0:IFORMATLEN/2]; !word array for edit
 ! descriptors passed to
 ! FORMATDATA
 STRING .IFORMAT := @WFORMAT '<<' 1;!string array for
 ! edit descriptors
 ! created by
 ! FORMATCONVERT
 INT SCALES, !scale factor for
 ! decimal point
 SCALE^COUNT, !number of scales
 ! arrays
 CONVERSION; !type of conversion

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 21

! Literals and variables used by FORMATDATA:

 LITERAL BUFFER^LENGTH = 80; !length of one output
 ! buffer
 STRUCT BUF^REF(*); !data structure for an
 BEGIN ! output buffer
 STRING BYTES[0:BUFFER^LENGTH - 1];
 END;

 LITERAL NUM^BUFFERS = 13; !max number of output
 ! buffers
 STRUCT .BUFFERS(BUF^REF) [0:NUM^BUFFERS - 1]; !Data
 ! structures for output
 ! buffers
 INT .BUFFER^ELEMENTS [0:NUM^BUFFERS - 1]; !array to
 ! contain sizes of
 ! each output buffer

 STRUCT VLE^REF(*); !data structure for a
 BEGIN ! list element and
 INT ELEMENT^PTR; ! element attributes
 STRING ELEMENT^SCALE,ELEMENT^TYPE;
 INT ELEMENT^LENGTH,ELEMENT^OCCURS;
 END;
 STRUCT .VLIST(VLE^REF) [0:6]; !arrays for each list
 ! element
 INT VLIST^LEN; !number of list
 ! elements
 INT(32) .INT^ARRAY1[0:6]; !array for list
 ! elements
 INT(32) .INT^ARRAY2[0:6]; !array for second list
 INT(32) .INT^ARRAY3[0:6]; !array for third list
 INT(32) .INT^ARRAY4[0:6]; !array for fourth list
 INT(32) .INT^ARRAY5[0:1]; !array for fifth list

 INT(32) .INT^YEAR[0:1]; !variable for year
 ! number
 STRING MONTH[0:9]; !month name
 INT FLAGS; !flag values for
 ! FORMATDATA

! Other variables:

 INT I; !count
 STRING .S^PTR; !string pointer
 STRING .ERROR^BUFFER[0:40]; !buffer for error
 ! messages

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 22

! Set up the edit descriptors and convert to internal form:

 EFORMAT ':=' ["TR17,A8,TL22,2(I4,TR28),//,",
 "TR3,'SUN',TR2,'MON',TR2,'TUE',TR2,'WED',",
 "TR2,'THU',TR2,'FRI',TR2,'SAT'//",
 "7(I5)//7(I5)//7(I5)//7(I5)//7(I5)"]
 -> @S^PTR;
 SCALES := 0;
 CONVERSION := 1;
 EFORMATLEN := @S^PTR '-' @EFORMAT;
 ERROR := FORMATCONVERT(IFORMAT,IFORMATLEN,EFORMAT,
 EFORMATLEN, SCALES, SCALE^COUNT,
 CONVERSION);
 IF ERROR <= 0 THEN
 BEGIN
 START^LINE;
 IF ERROR = 0 THEN
 PUT^STR("Internal Format Buffer Too Short")

 ELSE
 BEGIN
 PUT^STR("Format Error at Byte Position ");
 ERROR := -ERROR;
 PUT^INT(ERROR);
 END;
 PRINT^LINE;
 CALL PROCESS_STOP_;
 END;

! Set up arrays for month, year, and date values:

 MONTH ':=' "APRIL";
 INT^YEAR ':=' [1990D,1990D];
 INT^ARRAY1 ':=' [1D,2D,3D,4D,5D,6D,7D];
 INT^ARRAY2 ':=' [8D,9D,10D,11D,12D,13D,14D];
 INT^ARRAY3 ':=' [15D,16D,17D,18D,19D,20D,21D];
 INT^ARRAY4 ':=' [22D,23D,24D,25D,26D,27D,28D];
 INT^ARRAY5 ':=' [29D,30D];

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 23

! Set up list elements that point to the above arrays:

 VLIST^LEN := 7;
 FLAGS := 0;
 VLIST[0].ELEMENT^PTR := @MONTH;
 VLIST[0].ELEMENT^SCALE := 0;
 VLIST[0].ELEMENT^TYPE := 0;
 VLIST[0].ELEMENT^LENGTH := 10;
 VLIST[0].ELEMENT^OCCURS := 1;
 VLIST[1].ELEMENT^PTR := @INT^YEAR;
 VLIST[1].ELEMENT^SCALE := 0;
 VLIST[1].ELEMENT^TYPE := 4;
 VLIST[1].ELEMENT^LENGTH := 4;
 VLIST[1].ELEMENT^OCCURS := 2;
 VLIST[2].ELEMENT^PTR := @INT^ARRAY1;
 VLIST[3].ELEMENT^PTR := @INT^ARRAY2;
 VLIST[4].ELEMENT^PTR := @INT^ARRAY3;
 VLIST[5].ELEMENT^PTR := @INT^ARRAY4;

 I := 2;
 WHILE I < VLIST^LEN DO
 BEGIN
 VLIST[I].ELEMENT^SCALE := 0;
 VLIST[I].ELEMENT^TYPE := 4;
 VLIST[I].ELEMENT^LENGTH := 4;
 VLIST[I].ELEMENT^OCCURS := 7;
 I := I + 1;
 END;
 VLIST[6].ELEMENT^PTR := @INT^ARRAY5;
 VLIST[6].ELEMENT^OCCURS := 2;

! Format the data:

 ERROR := FORMATDATA(BUFFERS, !an array of output
 ! buffers
 BUFFER^LENGTH, !length of one output
 ! buffer
 NUM^BUFFERS, !number of output
 ! buffers
 BUFFER^ELEMENTS,!array for size of
 ! each output buffer
 WFORMAT, !internal format
 ! definition
 VLIST, !array of list
 ! elements
 VLIST^LEN, !number of list
 ! elements
 FLAGS); !flags for procedure

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 24

! Check for errors:

 IF ERROR <> 0 THEN
 BEGIN
 START^LINE;
 CASE ERROR OF
 BEGIN
 267 -> PUT^STR("Buffer Overflow");
 268 -> PUT^STR("No Buffer");
 270 -> PUT^STR("Format Loopback");
 271 -> PUT^STR("EDIT Item Mismatch");
 272 -> PUT^STR("Illegal Input Character");
 273 -> PUT^STR("Bad Format");
 274 -> PUT^STR("Numeric Overflow");
 OTHERWISE -> PUT^STR("Unexpected Error");
 END;
 PRINT^LINE;
 CALL PROCESS_STOP_;
 END;

! Print the contents of the buffers on the terminal:

 I := 0;
 WHILE I < NUM^BUFFERS AND BUFFER^ELEMENTS[I] >= 0 DO
 BEGIN
 CALL WRITEX(TERM^NUM,BUFFERS[I],BUFFER^ELEMENTS[I]);
 I := I + 1;
 END;
END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 25

List-Directed Formatting

!--
! Main procedure performs initialization.
!--

PROC CALENDAR MAIN;
BEGIN
 STRING .TERM^NAME[0:MAXFLEN - 1];
 INT TERMLEN;

! Read the Startup message:

 CALL INITIALIZER;

! Open the home terminal:

 ERROR := PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERM^NAME:MAXFLEN,
 TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;
 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERM^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Call the DISPLAY^MONTH procedure:

 CALL DISPLAY^MONTH;

END;

List-Directed Formatting
List-directed formatting provides the data-conversion capabilities of the formatter
without needing a specified format. The FORMATDATA[X] procedure determines the
details of the data conversion based on the data types specified in the data descriptors.

List-directed formatting can be applied to input or output as follows:

• Applied to input, the rules for list-directed formatting permit free-format input of
data values rather than require fixed fields as you would need for format-directed
formatting. The FORMATDATA[X] procedure converts the input data according to
the data types specified in the data descriptor list and stores the converted values
as indicated by the data descriptor.

• Applied to output, list-directed formatting has fewer advantages because without a
specified format, the output is not necessarily in a conveniently readable form.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 26

List-Directed Formatting

Formatting List-Directed Input
Figure 19-8 shows how list-directed formatting works for input.

To specify list-directed formatting, you need to set bit 2 of the flags parameter to 1.
To specify input, you set bit 15 of the flags parameter to 1.

Here, the FORMATDATA[X] procedure takes data values from the input buffers and
matches them with data descriptors from the data descriptor list. The first data value is
matched with the first data descriptor, and so on. The format of the data descriptor is
the same as that for format-directed formatting and is shown in Figure 19-3.

Data values provided in the input buffers are usually separated by either commas or
any number of spaces. You can also separate data values using the slash character
(/), which causes all subsequent values to be ignored and treated as null values.

Figure 19-8. List-Directed Formatting

Note. Be sure to terminate the last value in your input buffer with a value-separation character.
Failure to do so causes the FORMATDATA[X] procedure to read beyond your intended input
and either successfully read the wrong data or return error 272 (illegal input character).

VST101.VSD

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 27

List-Directed Formatting

In addition to the value-separation characters described earlier, you also need to be
aware of the following rules and special values:

• Data to be saved as character strings must be enclosed in single quotation marks
in the input buffer; otherwise, the FORMATDATA[X] procedure will return error 272
(illegal input character). Any other special characters, such as spaces, commas,
slashes, and asterisks, can appear in the string. For example:

'This is a string'

• You can specify repeated data items in the input buffers using the asterisk (*)
character. For example, to repeat the number 57 ten times, you would put the
following in the input buffer:

10*57

To repeat a string of characters:

5*'TANDEM'

• You can specify a null value by placing two consecutive commas in the input buffer,
optionally separated by spaces:

, ,

You can also specify a series of null values with a special use of the * operator.
The following example specifies seven consecutive null values:

7*

A null value has no effect on the corresponding data item.

FORMATDATA[X] converts the data value as specified by the data type and places the
converted value in the variable indicated by the data pointer in the data descriptor.

Sample Program: Formatting List-Directed Input
The following sample program formats input using a list of data descriptors. The
program prompts the user for input, converts the input to internal format, and then
stores the converted form.

Specifically, the code prompts the user twice: once to enter a date and once to enter a
name. The user responds to the first prompt by entering the month, day of the month,
and year. The user can enter this information in free format, separating each value
from the next either by a comma or by one or more spaces. Note that the value
representing the month is a character string and must therefore be enclosed in single
quotation marks. For example:

Enter 'month' date year:
'May' 3 1990

The program puts the input values into the first buffer. Note that because the program
fills the buffer with blanks before reading from the terminal, there is no need for the
user to type a value-separating character after typing the year number.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 28

List-Directed Formatting

The user responds to the second prompt by typing a name. The name is a character
string and must be enclosed in single quotation marks:

Enter your name (up to 20 characters):
'Tom Sawyer'

The program puts the name into the second of the input buffers. Once again, the
program fills the buffer with blanks before reading from the terminal, eliminating the
need to type a value-termination character after the name.

The program calls the FORMATDATA procedure to convert the data in the input
buffers. FORMATDATA reads the buffers left-to-right, starting with the first buffer.

FORMATDATA uses the first data descriptor (VLIST[0]) in the list of data descriptors to
format the first value: the month. Note that the data type is specified by the data
descriptor as type 0 (character data). If the value in the input buffer is enclosed in
quotation marks, then FORMATDATA places that value into a 10-element string array
pointed to by @MONTH. If the input value is not in single quotation marks, then
FORMATDATA returns error 272 (illegal input character).

Similarly, FORMATDATA reads the second value in the input buffer and processes it
using data descriptor VLIST[1], and so on.

When handling potential errors, this program prompts you to enter your data again if
the error is of a type that is caused by entering incorrect data. For nonrecoverable
errors, the program prints a diagnostic message and exits.

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST

!Global literals and variables:

LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !max file-name
 ! length
LITERAL BUFSIZE = 512; !size of I/O buffer
INT TERM^NUM; !file number for terminal
INT ERROR; !returned by system procedures
STRING .S^PTR; !string pointer
STRING .SBUFFER[0:511]; !buffer for terminal I/O

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(FORMATDATA,PROCESS_GETINFO_,
? PROCESS_STOP_,WRITEX,WRITEREADX,FILE_OPEN_,
? INITIALIZER)
?LIST

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 29

List-Directed Formatting

!--
! Here are a few DEFINEs to make it a little easier to
! format and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER, 0) #;

!--
! Procedure to print text on the terminal.
!--

PROC WRITE^LINE (BUF, LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERM^NUM,BUF,LEN);
 IF <> THEN CALL PROCESS_STOP_;
END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 30

List-Directed Formatting

!--
! Procedure to format list-directed input.
!--

PROC FORMAT^INPUT;

BEGIN

! Literals and variables used by FORMATDATA:

 LITERAL BUFFER^LENGTH = 80; !length of one input buffer
 STRUCT BUF^REF(*); !structure definition for
 BEGIN ! an input buffer
 STRING BYTES[0:BUFFER^LENGTH - 1];
 END;
 LITERAL NUM^BUFFERS = 2; !max number of input
 ! buffers
 STRUCT .BUFFERS(BUF^REF) [0:NUM^BUFFERS - 1];!data
 INT .BUFFER^ELEMENTS [0:NUM^BUFFERS - 1]; ! structures
 ! for input buffers

 STRUCT VLE^REF(*); !data structure definition
 BEGIN ! for a list element and
 INT ELEMENT^PTR; ! its attributes
 STRING ELEMENT^SCALE,ELEMENT^TYPE;
 INT ELEMENT^LENGTH,ELEMENT^OCCURS;
 END;
 STRUCT .VLIST(VLE^REF) [0:3]; !arrays for each data
 ! descriptor
 INT VLIST^LEN; !number of data descriptors
 INT WFORMAT; !dummy internal format
 INT FLAGS; !flag values for FORMATDATA

! The list elements:

 STRING .MONTH[0:9], !month name
 .NAME[0:19]; !user name
 INT DATE, !date of month
 YEAR; !year number

! Other variables:

 INT BYTES^READ; !used by I/O procedures
 INT I; !count

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 31

List-Directed Formatting

! Initialize variables for month, date, year, and name:

 MONTH ':=' " ";
 DATE := 0;
 YEAR := 0000;
 NAME ':=' [10 * [" "]];

! Set up data descriptors that point to the above
! variables:

 VLIST[0].ELEMENT^PTR := @MONTH;
 VLIST[0].ELEMENT^SCALE := 0;
 VLIST[0].ELEMENT^TYPE := 0;
 VLIST[0].ELEMENT^LENGTH := 10;
 VLIST[0].ELEMENT^OCCURS := 1;

 VLIST[1].ELEMENT^PTR := @DATE;
 VLIST[1].ELEMENT^SCALE := 0;
 VLIST[1].ELEMENT^TYPE := 2;
 VLIST[1].ELEMENT^LENGTH := 2;
 VLIST[1].ELEMENT^OCCURS := 1;

 VLIST[2].ELEMENT^PTR := @YEAR;
 VLIST[2].ELEMENT^SCALE := 0;
 VLIST[2].ELEMENT^TYPE := 2;
 VLIST[2].ELEMENT^LENGTH := 2;
 VLIST[2].ELEMENT^OCCURS := 1;

 VLIST[3].ELEMENT^PTR := @NAME;
 VLIST[3].ELEMENT^SCALE := 0;
 VLIST[3].ELEMENT^TYPE := 0;
 VLIST[3].ELEMENT^LENGTH := 20;
 VLIST[3].ELEMENT^OCCURS := 1;

! Specify number of data descriptors:

 VLIST^LEN := 4;

! Set flags for list-directed formatting and for input:

 FLAGS.<2> := 1;
 FLAGS.<15> := 1;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 32

List-Directed Formatting

! Repeat formatting loop if erroneous input:

PROMPT^AGAIN:

! Blank the buffers:

 I := 0;
 WHILE I < NUM^BUFFERS DO
 BEGIN
 BUFFERS[I] ':=' [40 * [" "]];
 I := I + 1;
 END;

! Prompt for input and copy into buffers:

 SBUFFER ':=' "Enter 'month' date year: "
 -> @S^PTR;
 CALL WRITEREADX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,BYTES^READ);
 IF <> THEN CALL PROCESS_STOP_;
 BUFFERS[0] ':=' SBUFFER FOR BYTES^READ BYTES;

 SBUFFER ':=' "Enter 'name' (up to 20 characters): "
 -> @S^PTR;
 CALL WRITEREADX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,BYTES^READ);
 IF <> THEN CALL PROCESS_STOP_;
 BUFFERS[1] ':=' SBUFFER FOR BYTES^READ BYTES;

! Format the data:

 ERROR := FORMATDATA(BUFFERS, !an array of input
 ! buffers
 BUFFER^LENGTH, !length of one input
 ! buffer
 NUM^BUFFERS, !number of input
 ! buffers
 BUFFER^ELEMENTS,!unused
 WFORMAT, !internal format
 ! definition (= 0)
 VLIST, !array of data
 ! descriptors
 VLIST^LEN, !number of data
 ! descriptors
 FLAGS); !flags for
 ! procedure

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 33

List-Directed Formatting

! Check for errors. If invalid input then retry, otherwise
! stop:

 IF ERROR <> 0 THEN
 BEGIN
 START^LINE;
 CASE ERROR OF
 BEGIN
 267 -> PUT^STR("Buffer Overflow");
 272 -> PUT^STR("Illegal Input Character");
 OTHERWISE -> BEGIN
 CASE ERROR OF
 BEGIN
 268 -> PUT^STR("No Buffer");
 270 -> PUT^STR("Format Loopback");
 271 -> PUT^STR("EDIT Item Mismatch");
 273 -> PUT^STR("Bad Format");
 274 -> PUT^STR("Numeric Overflow");
 OTHERWISE -> PUT^STR("Unexpected Error" &
 "Number");
 END;
 PRINT^LINE;
 CALL PROCESS_STOP_;
 END;
 END;
 PRINT^LINE;
 START^LINE;
 PUT^STR("Reenter Your Data ");
 PRINT^LINE;
 PRINT^BLANK;
 GOTO PROMPT^AGAIN;
 END;
END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 34

List-Directed Formatting

!--
! Main procedure provides initialization
!--

PROC INIT MAIN;
BEGIN

 STRING .TERM^NAME[0:MAXFLEN - 1];
 INT TERMLEN;

! Read the Startup message:

 CALL INITIALIZER;

! Open the home terminal:

 ERROR := PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERM^NAME:MAXFLEN,
 TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERM^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Call the FORMAT^INPUT procedure:

 CALL FORMAT^INPUT;

END;

Formatting List-Directed Output
List-directed output works like list-directed input in reverse. Here, the
FORMATDATA[X] procedure takes data from variables addressed by a list of data
descriptors and writes them to an output buffer in a format that depends on the data
type specified in the data descriptor.

For example, if the data type is character, then the stored information is interpreted as
ASCII code. If the data type is 16-bit integer, then each stored word is treated as an
integer value, converted to ASCII code, and written to the output buffer.

You specify list-directed output by setting bits in the flags parameter supplied to the
FORMATDATA[X] procedure. Set bit 15 to 0 to specify output. Set bit 2 to 1 to specify
list-directed formatting.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 35

Manipulating Character Strings

Manipulating Character Strings
Without using the formatter, there are several operations that you can perform on
character strings:

• Convert a string of ASCII numeric characters into a binary number (NUMIN and
DNUMIN procedures) or convert a binary number into an ASCII string for output
(NUMOUT and DNUMOUT procedures). See Converting Between Strings and
Integers later in this subsection.

• Change lowercase alphabetic characters into uppercase or change uppercase
alphabetic characters into lowercase (SHIFTSTRING procedure). Case Shifting
Character Strings describes how to do this.

• Edit a string (FIXSTRING procedure). See Editing a Character String.

• Sort characters in memory (HEAPSORT[X_] procedure). See Sorting Characters.

Converting Between Strings and Integers
Numeric input and output to a terminal is done using standard 7-bit ASCII codes.
Internally, numeric representation takes the form of binary numbers. You therefore
need to convert from ASCII to binary numeric representation on input and from binary
to ASCII representation on output.

One way of converting between ASCII and binary numeric representation is to use the
formatter as described in the previous subsection. The formatter can perform this
conversion for any numeric type. For single-length and double-length integers,
however, you can use the NUMIN, DNUMIN, NUMOUT, and DNUMOUT procedures.
The following paragraphs describe how.

Converting a Numeric ASCII String Into a Binary Number
To convert a numeric ASCII string into a binary number, you use either the NUMIN or
DNUMIN procedure. For a 16-bit result, you use the NUMIN procedure. For a 32-bit
result, use the DNUMIN procedure.

You must supply the ASCII number that you want to convert, along with the numeric
base of the ASCII number. The numeric base must be in the range 2 through 10 for
NUMIN or 2 through 36 for DNUMIN. NUMIN or DNUMIN recognizes the end of the
numeric string by the first nonnumeric or zero character in the input buffer.

The NUMIN procedure returns the signed 16-bit result and a status indication showing
whether the conversion was successful. DNUMIN provides the same information as
NUMIN except that the result is 32 bits. Both procedures also return the address of the
first character after the input string. You can use this value to check that the procedure
converted the expected number of characters.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 36

Case Shifting Character Strings

The following example reads some ASCII input from a terminal. The input is expected
to be numeric data so the DNUMIN procedure is used to convert the number from
ASCII representation into a binary number.

BASE := 10;

!Read from the terminal into the input buffer:
CALL READX(TERMNUM,SBUFFER,BUFSIZE,COUNT^READ);
IF <> THEN ... !file-system error

!Set the next byte in the buffer to zero to make sure that
!DNUMIN recognizes the end of the numeric string
SBUFFER[COUNT^READ] := 0;
@NEXT^ADDR := DNUMIN(SBUFFER, !numeric ASCII code
 SIGNED^RESULT, !32-bit result
 BASE, !numeric base of input
 STATUS); !status of conversion

!Check that the value of STATUS is zero and that DNUMIN
!converted the expected number of characters:
IF STATUS OR @NEXT^ADDR <> @SBUFFER[COUNT^READ]
 THEN ... !invalid number

Converting a Binary Number Into an ASCII String
To convert a binary number into an ASCII string, you use either the NUMOUT or
DNUMOUT procedure. For a 16-bit integer, you use the NUMOUT procedure. For a
32-bit integer, you use the DNUMOUT procedure.

To use the NUMOUT procedure, you must supply the 16-bit binary integer that you
want to convert, along with the numeric base you require for the ASCII number and the
maximum number of characters you permit in the output. The numeric base must be in
the range 2 through 10. The NUMOUT procedure returns the ASCII result. An
example follows:

BASE := 10;
WIDTH := 4;
CALL NUMOUT(ASCII^RESULT, !output string
 UNSIGNED^INTEGER, !binary input
 BASE, !numeric base of output
 WIDTH); !maximum number of
 !characters in output

Case Shifting Character Strings
You should use the SHIFTSTRING procedure to perform all case-shifting operations on
alphabetic characters. This procedure enables you to perform case shifting from
lowercase to uppercase and from uppercase to lowercase.

The standard ASCII character set allows you to shift case by inverting the fifth bit from
the right of any alphabetic character. However, not every local character set uses this
mechanism for case shifting. You are therefore encouraged to use the SHIFTSTRING
procedure, which is configured to work with the locally supported character set.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 37

Editing a Character String

Upshifting a Character String
To upshift a character string, you supply the SHIFTSTRING procedure with the string
to be upshifted and the length of the string. To specify upshifting, you must set bit 15
of the casebit parameter to 0 (the default value). The following example converts an
input string to all uppercase letters:

STRING ':=' INPUT^BUFFER FOR 10;
STRING^LENGTH := 10;
CASE^BIT.<15> := 0;
CALL SHIFTSTRING(STRING,
 STRING^LENGTH,
 CASE^BIT);

Any nonalphabetic characters in the input string remain unchanged. Uppercase
alphabetic characters in the input string also remain unchanged.

Downshifting a Character String
To downshift any uppercase alphabetic characters in a string, you should use the
SHIFTSTRING procedure with bit 15 of the casebit parameter set to 1. For
example:

CASE^BIT.<15> := 1;
CALL SHIFTSTRING(STRING,
 STRING^LENGTH,
 CASE^BIT);

Editing a Character String
The FIXSTRING procedure edits a string based on commands provided in a template.
The FIXSTRING procedure is commonly used in an interactive process to implement a
command that edits command strings. For example, the FC command uses the
FIXSTRING procedure to edit any other command; see the Guardian User’s Guide for
details. Likewise, the FC command in Debug uses the FIXSTRING procedure; see the
Inspect Manual for details.

The FIXSTRING procedure works by supplying the ASCII string you want to edit and a
template containing the edit commands. The ASCII string can be any sequence of
ASCII characters whose length can be limited by supplying the max-data-len
parameter. The template contains commands for replacing, deleting, and inserting
characters.

The following TAL statement shows an example of the FIXSTRING procedure:

CALL FIXSTRING(TEMPLATE, !string array of edit commands
 TEMPLATE^LEN, !length of template
 DATA, !string to edit
 DATA^LENGTH, !length of string
 MAX^DATA^LEN); !maximum length of edited
 ! string

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 38

Editing a Character String

Note that the data parameter contains the string to be edited on input and the edited
string on output.

Using the FIXSTRING Template
You can supply any of the following three commands in the FIXSTRING template:

• R or r replaces characters in the string

• D or d deletes characters in the string

• I or i inserts characters in the string

The R or r command in the template causes all characters that follow the R or r
command to replace the corresponding characters in the string. The following example
shows use of the R command to replace text in the character string:

Note that the R command is implied if no other command is specified. For example,
the following template achieves the same result:

The implied replace command works only if the first character of the template is not a
command name (D, d, I, or i).

To delete characters in a string, the template must contain a D or d at the position
where you want a character deleted. For example:

To insert characters into a string, the template must contain an i or I character at the
corresponding character position, followed by the text to be inserted:

Before string: fup dup filea.fileb

Template: R,filec

After string: fup dup filea,filec

Before string: fup dup filea.fileb

Template: ,filec

After string: fup dup filea,filec

Before string: fup dup filea,fileb,filec

Template: DDDDDD

After string: fup dup filea,filec

Before string: fup filea,filec

Template: I dup

After string: fup dup filea,filec

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 39

Editing a Character String

You can supply multiple commands in the same template by separating the commands
with two slashes. For example:

Editing Commands: An Example
The following sample program features a command interpreter with the ability to accept
an FC command typed by the user. By typing “FC,” the user is given the opportunity to
edit the last command entered.

The example is made up of three procedures:

• The main procedure simply calls the INITIALIZE^TERMINAL procedure to open
the terminal and then calls the COMMAND^INTERPRETER procedure.

• The INITIALIZE^TERMINAL and SAVE^STARTUP^MESSAGE procedures read
the Startup message, save it in a global data structure, and then open the file
specified as the IN file in the Startup message.

• The COMMAND^INTERPRETER procedure prompts the user to enter a
command, which can be up to eight characters long. The procedure converts any
lower-case alphabetic characters to upper case, and then processes the command
itself. If no such command exists, then the program displays a diagnostic
message.

If the user types the FC command, then the COMMAND^INTERPRETER
procedure calls the FC procedure to edit the previous command. The FC
procedure returns 1 after successfully editing the command and the
COMMAND^INTERPRETER procedure executes the edited command. If FC
returns 0 (without successfully editing the command), then the
COMMAND^INTERPRETER procedure prompts the user for another command.

The COMMAND^INTERPRETER procedure exits only when the user types the
EXIT command.

• The FC procedure is called by the COMMAND^INTERPRETER procedure when
the user types the FC command. The FC procedure displays the previous
command and prompts the user to enter a template that the FIXSTRING procedure
will use to edit the command. If the user types just two slash characters, then FC
returns 0 to the COMMAND^INTERPRETER. Otherwise the FC procedure edits
the command according to the input.

Once FIXSTRING has edited the command, the FC procedure repeats, offering the
user the chance to edit the new command. The user refuses by pressing carriage
return in response to the FC prompt, which causes the FC procedure to return 1 to
the COMMAND^INTERPRETER procedure.

Before string: fup filea,filrv

Template: idup // rec

After string: fup dup filea,filec

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 40

Editing a Character String

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $SYSTEM.SYSTEM.ZSYSTAL;
?LIST

!Global literals and variables:

INT TERM^NUM; !open terminal file number

STRUCT .CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULT;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRING PARAM[0:529];
END;

LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME;
LITERAL ABEND = 1;

?NOLIST
?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(WRITEX,WRITEREADX,
? FILE_OPEN_,FIXSTRING,PROCESS_STOP_,INITIALIZER,
? SHIFTSTRING,OLDFILENAME_TO_FILENAME_)
?LIST

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 41

Editing a Character String

!--
! Integer procedure edits the command buffer and returns 1
! if edited command should be executed. This procedure
! allows the user a change of mind about editing the command
! by returning 0.
!--

INT PROC FC(COMMAND,LAST^COMMAND,NUM,SAVE^NUM);
STRING .COMMAND;
STRING .LAST^COMMAND;
INT .NUM;
INT .SAVE^NUM;

BEGIN
 STRING .TEMPLATE^ARRAY[0:71]; !template used for edit
 ! changes
 INT TEMPLATE^LENGTH; !length of template
 INT MAX^LEN := 8; !maximum length of edited
 ! command
 STRING .BUFFER[0:71]; !I/O buffer
 STRING .S^PTR; !pointer to end of text
 ! string

! Set command prompt to "< ":

 COMMAND[-2] ':=' "< ";

! Set NUM equal to size of previous command:

 NUM := SAVE^NUM;

! Put previous command in command buffer:

 COMMAND ':=' LAST^COMMAND FOR NUM;

! Edit the command each time through the loop. The loop
! enables the user to check the results of an edit and then
! edit again if necessary:

 DO
 BEGIN

 ! Write the command to be edited to the terminal:

 CALL WRITEX(TERM^NUM,COMMAND[-2],NUM + 2);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 42

Editing a Character String

 ! Set the FC prompt to " ." and read template typed by
 ! user:

 TEMPLATE^ARRAY ':=' " .";
 CALL WRITEREADX(TERM^NUM,TEMPLATE^ARRAY,2,72,
 TEMPLATE^LENGTH);

 ! If WRITEREADX returns an error, or if the template
 ! contains exactly two slashes, then return with no
 ! changes:

 IF > OR TEMPLATE^LENGTH = 2
 AND TEMPLATE^ARRAY = "//" THEN
 BEGIN
 NUM := SAVE^NUM;
 COMMAND ':=' LAST^COMMAND FOR NUM;
 RETURN 0;
 END;

 ! Otherwise call FIXTRING to alter the command according
 ! to the instructions in the template:

 CALL FIXSTRING(TEMPLATE^ARRAY,TEMPLATE^LENGTH,
 COMMAND,NUM,MAX^LEN);
 IF > THEN
 BEGIN

 ! The replacement string is greater than MAX^LEN, so
 ! print a diagnostic message and return to beginning
 ! of loop:

 BUFFER ':=' "Replacement string too long "
 -> @S^PTR;
 CALL WRITEX(TERM^NUM,BUFFER,@S^PTR '-' @BUFFER);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END
 ELSE IF < THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);

 ! Upshift all characters in the edited command in case
 ! any characters were typed in lowercase:

 CALL SHIFTSTRING(COMMAND,NUM,0);
 END

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 43

Editing a Character String

! Loop until user responds to FC prompt with a carriage
! return only:

 UNTIL NOT TEMPLATE^LENGTH;

! Return to command interpreter to execute edited command:

 RETURN 1;

END;

!--
! Procedure prompts the user for a command and then processes
! the command. This procedure loops indefinitely until the
! user types the EXIT command.
!--

PROC COMMAND^INTERPRETER;
BEGIN
 STRING .LAST^COMMAND[0:7]; !buffer for last command
 INT NUM; !number of bytes
 ! transferred
 INT SAVE^NUM; !previous number of bytes
 ! transferred
 STRING .COMMAND[-2:7] := "< "; !command buffer
 STRING .BUFFER[0:71]; !I/O buffer
 STRING .S^PTR; !string pointer

 INT REPEAT := 0; !when 0, prompt for new
 ! command; when 1,
 ! execute fixed command

! Loop until user types "EXIT":

 WHILE 1 DO
 BEGIN

 ! If repeat not set, prompt user for a new command:

 IF NOT REPEAT THEN
 BEGIN
 COMMAND[0] := " ";
 COMMAND[1] ':=' COMMAND[0] FOR 7;
 COMMAND ':=' "< ";
 CALL WRITEREADX(TERM^NUM,COMMAND,2,9,NUM);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;

 ! Upshift the command in case user typed lowercase:

 CALL SHIFTSTRING(COMMAND,NUM,0);

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 44

Editing a Character String

 ! If the command is "FC" then call the FC procedure,
 ! returning 1 if the fix is accepted or 0 if it is not.
 ! If the command is EXIT, then stop the program.
 ! If the command is any other valid command, then process
 ! the command (this program simply displays the command
 ! name). If an illegal command, then print a diagnostic
 ! message:

 IF COMMAND = "FC"
 THEN REPEAT := FC(COMMAND,LAST^COMMAND,NUM,SAVE^NUM)

 ELSE BEGIN
 IF COMMAND = "EXIT" THEN CALL PROCESS_STOP_

 ELSE IF COMMAND = "COMMAND1" THEN
 CALL WRITEX(TERM^NUM,COMMAND,NUM)

 ELSE IF COMMAND = "COMMAND2" THEN
 CALL WRITEX(TERM^NUM,COMMAND,NUM)

 ELSE BEGIN
 BUFFER ':=' COMMAND FOR 8;
 BUFFER[8] ':=' ": Illegal Command " -> @S^PTR;
 CALL WRITEX(TERM^NUM,BUFFER,@S^PTR '-' @BUFFER);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;

 ! Reset the repeat flag:

 REPEAT := 0;
 END;

 ! If the command length is nonzero, then save it in the
 ! LAST^COMMAND array for possible editing by a subsequent
 ! FC command:

 IF NUM THEN
 BEGIN
 SAVE^NUM := NUM;
 LAST^COMMAND ':=' COMMAND FOR SAVE^NUM;
 END;
 END;
END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 45

Editing a Character String

!--
! Procedure to save the Startup message in a global
! structure.
!--

PROC SAVE^STARTUP^MESSAGE(RUCB,START^DATA,MESSAGE,LENGTH,
 MATCH) VARIABLE;
INT .RUCB,
 .START^DATA,
 .MESSAGE,
 LENGTH,
 MATCH;

BEGIN

! Copy the Startup message into the CI^STARTUP structure:

 CI^STARTUP.MSGCODE ':=' MESSAGE[0] FOR LENGTH/2;

END;

!--
! Procedure to open the terminal file specified in the IN
! file of the Startup message.
!--

PROC INITIALIZE^TERMINAL;
BEGIN

 STRING .TERM^NAME[0:MAXFLEN - 1];
 INT TERMLEN;
 INT ERROR;

! Read and save the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 SAVE^STARTUP^MESSAGE);

! Open the IN file:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.INFILE.VOLUME,
 TERM^NAME:MAXFLEN,TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERM^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 46

Sorting Characters

!--
! Main procedure initializes the IN file and then calls the
! command interpreter.
!--

PROC INITIALIZE MAIN;
BEGIN

! Initialize the IN file:

 CALL INITIALIZE^TERMINAL;

! Call the command interpreter:

 CALL COMMAND^INTERPRETER;

END;

Sorting Characters
Use the HEAPSORT[X_] procedure to sort an array in memory. You can use the
HEAPSORT procedure only to sort arrays in the user data segment; you cannot use it
to sort arrays in extended memory. You can use HEAPSORTX_ to sort arrays that are
either in the user data segment or in an extended data segment.

To use the HEAPSORT[X_] procedure, you must supply it with the array you want to
sort, the number of elements in the array, the size of each element, and the name of
the user-supplied procedure that will do the actual comparison. HEAPSORTX_ also
has an optional parameter that allows you to specify an array of pointers. This array of
pointers can help speed up the sort by allowing HEAPSORTX_ to sort a list of pointers
instead of the data elements themselves; the pointer array is particularly useful if the
sort involves a large number of elements or a large element size.

CALL HEAPSORTX_(ARRAY,
 NUMBER^OF^ELEMENTS,
 ELEMENT^SIZE,
 ASCENDING, !Name of procedure to do
 ! comparison
 POINTER^ARRAY);

The following sample program sorts some strings into alphabetical order. The program
is made up of three procedures:

• The main procedure provides initialization and calls the SORTING procedure.

• The SORTING procedure supplies a list of strings to the HEAPSORTX_ procedure
for sorting. On return from HEAPSORTX_, the SORTING procedure displays the
sorted list on the home terminal.

• The ASCENDING procedure is called by HEAPSORTX_ to compare pairs of
strings. This procedure returns 1 if the first string is less than the second string or
0 if the second string is less than the first string. HEAPSORTX_ calls this
procedure as many times as it needs to sort the entire list of strings.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 47

Sorting Characters

?INSPECT,SYMBOLS
?NOLIST, SOURCE $TOOLS.ZTOOLD04.ZSYSTAL;
?LIST

!Literals:

LITERAL ELEMENT^SIZE = 6;
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME;

!Global variables:

INT TERM^NUM;
INT ERROR;

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(HEAPSORTX_,PROCESS_GETINFO_,
? WRITEX,PROCESS_STOP_,INITIALIZER,FILE_OPEN_)
?LIST

!--
! Procedure to sort two strings A and B. Returns 1 if A less
! than B, returns 0 if B less than or equal to A.
!--

INT PROC ASCENDING(A,B);
INT .EXT A;
INT .EXT B;

BEGIN
 RETURN IF A < B FOR ELEMENT^SIZE THEN 1 ELSE 0;
END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 48

Sorting Characters

!--
! Procedure to initialize an array with string values and
! then call HEAPSORTX_ to sort them. By calling ASCENDING,
! it sorts them into ascending order.
!--

PROC SORTING;
BEGIN
 INT I; !counting variable
 INT(32) NUMBER^OF^ELEMENTS; !size of array to be
 ! sorted

 STRUCT ARRAY^REF(*); !structure defining an
 BEGIN ! array element
 STRING ELEMENT[0:11];
 END;

 STRUCT .ARRAY(ARRAY^REF)[0:9]; !array with 10 elements

! Initialize array for sorting. For simplicity the array
! is initialized statically. In practice, the array would
! typically be read from another file or entered
! interactively at the terminal:

 ARRAY[0] ':=' "BUSH ";
 ARRAY[1] ':=' "REAGAN ";
 ARRAY[2] ':=' "CARTER ";
 ARRAY[3] ':=' "FORD ";
 ARRAY[4] ':=' "NIXON ";
 ARRAY[5] ':=' "JOHNSON ";
 ARRAY[6] ':=' "KENNEDY ";
 ARRAY[7] ':=' "EISENHOWER ";
 ARRAY[8] ':=' "TRUEMAN ";
 ARRAY[9] ':=' "WASHINGTON ";

! Sort the array:

 NUMBER^OF^ELEMENTS := 10D;
 ERROR := HEAPSORTX_(ARRAY,
 NUMBER^OF^ELEMENTS,ELEMENT^SIZE,
 ASCENDING);

! Print the array in sorted order:

 I := 0;
 WHILE $DBL(I) < NUMBER^OF^ELEMENTS DO
 BEGIN
 CALL WRITEX(TERM^NUM,ARRAY[I],(ELEMENT^SIZE * 2));
 I := I + 1;
 END;
END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 49

Programming With Multibyte Character Sets

!--
! Main procedure performs initialization
!--

PROC SORTER MAIN;
BEGIN
 STRING .TERM^NAME[0:MAXFLEN - 1];
 INT TERMLEN;

! Read the Startup message:

 CALL INITIALIZER;

! Open the home terminal:

 ERROR := PROCESS_GETINFO_(!process^handle!,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERM^NAME:MAXFLEN,
 TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;
 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERM^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Call the SORTING procedure to initialize the sort array:

 CALL SORTING;
END;

Programming With Multibyte Character Sets
The operating system provides support for national languages whose character set
cannot be represented by a single-byte character set such as ASCII code. To support
languages with larger character sets, such as Japanese, Korean, and Chinese, HP
provides multibyte character sets.

Specifically, HP provides internal representations of the following character sets for use
with terminals that support multibyte character sets:

• Tandem Kanji

• Tandem Hangul

• Tandem Chinese Big 5

• Tandem Chinese PC

• Tandem KSC5601

The operating system supports text strings that can contain codes from one of the
above character sets and standard ASCII codes within the same string.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 50

Programming With Multibyte Character Sets

In addition to the character sets listed above, HP also provides external support for the
following character sets:

• IBM Kanji

• IBM Kanji Mixed

• JEF (Fujitsu) Kanji

• JEF (Fujitsu) Kanji Mixed

• NEC Kanji

• JIS Kanji

The operating system provides procedures that convert between each of the above
character sets and internal Tandem Kanji codes.

This subsection describes some of the operations that an application may need to
perform with multibyte character sets:

• How to check whether multibyte support is available on your system
(MBCS_CODESETS_SUPPORTED_ procedure). Checking for Multibyte
Character-Set Support provides details.

• How to find out which of the multibyte character sets is the current default set
(MBCS_DEFAULTCHARSET_ procedure). See Determining the Default Character
Set for details.

• How to identify multibyte characters (MBCS_CHAR_ procedure). See Analyzing a
Multibyte Character String for details.

• How to deal with fragments of multibyte characters that occur in the last byte of a
read or write operation (MBCS_TRIMFRAGMENT_ procedure). Dealing With
Fragments of Multibyte Characters provides details.

• How to handle multibyte blank characters used as word delimiters
(MBCS_REPLACEBLANK_ procedure). See Handling Multibyte Blank Characters.

• How to find out the character size of a multibyte character set
(MBCS_CHARSIZE_ procedure). See Determining the Character Size of a
Multibyte Character Set.

• How to perform case-shift operations on multibyte characters (SHIFTSTRING and
MBCS_SHIFTSTRING_ procedures). See Case Shifting With Multibyte
Characters for details.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 51

Checking for Multibyte Character-Set Support

This subsection does not cover the procedures that were written primarily to support
other HP subsystems, although these procedures are nonprivileged and available to all
users. These procedures include:

• The MBCS_CHARSTRING_ procedure used by the SCOBOL compiler for testing
a text string to see whether it contains only multibyte characters.

• The MBCS_EXTERNAL_TO_TANDEM_ procedure used by SNAX and Pathway
for converting external multibyte character representation into the equivalent
internal character set.

• The MBCS_TANDEM_TO_EXTERNAL_ procedure used by SNAX and Pathway to
convert internal multibyte character representation into an external character set.

• The MBCS_FORMAT_ITI_BUFFER_ procedure used by SNAX to format line
records for specific display devices.

• The MBCS_FORMAT_CRT_FIELD_ procedure used by SNAX to format line
records for specific display devices operating in block mode.

For details on these procedures, refer to the Guardian Procedure Calls Reference
Manual.

Checking for Multibyte Character-Set Support
Use the MBCS_CODESETS_SUPPORTED_ procedure to find out which multibyte
character sets your system supports:

RESULT := MBCS_CODESETS_SUPPORTED_;

The 32-bit result indicates which internal and external multibyte character sets are
supported; each supported character set is indicated by a 1 in the bit position:

If the result is zero, then there is no support for multibyte character sets.

bit 1 Tandem Kanji

bit 2 IBM Kanji

bit 3 IBM Kanji Mixed

bit 4 JEF (Fujitsu) Kanji

bit 5 JEF (Fujitsu) Kanji Mixed

bit 6 NEC Kanji

bit 7 JIS Kanji

bit 9 Tandem Hangul

bit 10 Chinese Big 5

bit 11 Chinese PC

bit 12 Tandem KSC5601

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 52

Determining the Default Character Set

If the result indicates support for one or more external character sets, then it will also
indicate support for the corresponding internal character set. For example, if IBM Kanji
is supported, then Tandem Kanji is also supported. Support for an external character
set also indicates that the appropriate conversion and formatting routines are available
on your system.

Determining the Default Character Set
Use the MBCS_DEFAULTCHARSET_ procedure to find out which of the supported
internal character sets is the default set. This value is hard coded and can therefore
be changed only by reconfiguring the system using a different object module of the
multibyte character-set library.

Call the MBCS_DEFAULTCHARSET_ procedure as follows:

RESULT := MBCS_DEFAULTCHARSET_;

The result indicates the default character set as follows:

Analyzing a Multibyte Character String
Because the operating system supports mixtures of a multibyte character set and a
single-byte character set, you cannot be sure without testing whether a given byte is a
single-byte character, the beginning of a multibyte character, or part of a multibyte
character that is not the first byte. It is important to be able to recognize the first byte
of a character to make sure that string operations start on a character boundary.

To establish the identity of a character, you use the MBCS_CHAR_ procedure. To use
the MBCS_CHAR_ procedure, you must supply it with a pointer to a text string and the
identity of a multibyte character set. The procedure returns with an indication whether
the specified byte is the start of a multibyte character or a single-byte character. The
procedure also indicates whether the character belongs to the specified multibyte
character set.

When you use MBCS_CHAR_ on a text string for the first time, you should set up the
pointer to the first byte in the string. The first byte will always be either a single-byte
character or the first byte of a multibyte character. Once the character is identified, you
should advance the pointer by the length of the identified character and then test
again. This way, the pointer always points to the first byte of a character.

0 No multibyte character set configured

1 Tandem Kanji

9 Tandem Hangul

1
0

Tandem Chinese Big 5

11 Tandem Chinese PC

1
2

Tandem KC5601

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 53

Analyzing a Multibyte Character String

Any value that the pointer attains is a valid starting point for any other multibyte
operation.

The following example shows the intended use of the MBCS_CHAR_ procedure:

!Set up the pointer to address the first byte of the text
!string:
@TESTMBCSCHAR := @TEXT^STRING[0];

!Loop, checking each character, as long as you are processing
!a mixed text string:
WHILE... !while processing mixed text string
DO
BEGIN

 !Indicate the number of bytes remaining in the text
 !string:
 CHARSIZE := number of bytes remaining in text string

 !Check whether the pointer addresses a single-byte
 !character or a multibyte character:
 IF MBCS_CHAR_(TESTMBCSCHAR,CHARSET,CHARSIZE)
 THEN

 !Process the multibyte character and advance the pointer
 !by length of character:
 BEGIN

 !add code for processing a multibyte character
 .
 .

 !advance the pointer:
 @TESTMBCSCHAR := @TESTMBCSCHAR + $DBL(CHARSIZE.<8:15>);
 END;
 ELSE

 !Process single-byte character and advance pointer by one
 !byte:
 BEGIN

 !add code for processing single-byte character
 .
 .

 !Advance the pointer:
 @TESTMBCSCHAR := @TESTMBCSCHAR + 1D;
 END;
END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 54

Dealing With Fragments of Multibyte Characters

Dealing With Fragments of Multibyte Characters
If a read operation of a text string of multibyte characters finishes when the specified
read count is satisfied, then you cannot be sure whether the last byte read is the last
byte of a character or the first byte of a multibyte character. If it is the first byte of a
multibyte character, then its meaning is lost without the trailing byte. You should
therefore call the MBCS_TRIMFRAGMENT_ procedure, which checks the validity of
the last byte read and truncates it if it is the first byte of a multibyte character.

To use the MBCS_TRIMFRAGMENT_ procedure, you must supply it with a pointer to
the text string and the length of the text string in bytes. For example:

INT BUFFER[0:79]; !input buffer
STRING SBUFFER := @BUFFER '<<' 1; !byte pointer to input
 ! buffer
 .
 .

CALL READ(BUFFER,RCOUNT,BYTES^READ);
IF <> THEN CALL DEBUG;

IF BYTES^READ = RCOUNT THEN
CALL MBCS_TRIMFRAGMENT_(@SBUFFER,
 BYTES^READ);

On return, the bytes-read parameter specifies the number of bytes in the text string
after the multibyte fragment is removed.

Handling Multibyte Blank Characters
Many applications expect an ASCII blank character (%H20) as a word delimiter in text
strings. Multibyte character sets typically use a multibyte character to represent a
blank. Some conversion therefore needs to be done if an application written for
standard ASCII input is to work for multibyte character sets. This conversion is done
using the MBCS_REPLACEBLANK_ procedure.

To use the MBCS_REPLACEBLANK_ procedure, you must supply it with a pointer to
the text string to be converted and the length of the text string as follows:

CALL MBCS_REPLACEBLANK_(@SBUFFER,
 BYTES^READ);

On return, the text buffer contains the same text as input except that any multibyte
blank characters are converted to pairs of ASCII blanks. An application that expects
ASCII blank characters can now process the text string correctly. At the same time,
the integrity of the text string structure is maintained by using two ASCII blank
characters to keep the text string the same length.

Determining the Character Size of a Multibyte Character Set
All currently supported multibyte character sets have two bytes per character. To
prepare your programs for future expansion, however, you may need to know the

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 55

Case Shifting With Multibyte Characters

character size. To find the character size of a multibyte character set, use the
MBCS_CHARSIZE_ procedure.

To use the MBCS_CHARSIZE_ procedure, you must supply it with the number of the
character set (as returned by the MBCS_CODESETS_SUPPORTED_ procedure).
You receive the number of bytes per character in the return value:

RESULT := MBCS_CHARSIZE_(CHARACTER^SET);

Case Shifting With Multibyte Characters
Usually you can use the SHIFTSTRING procedure (or CASECHANGE or
STRING_UPSHIFT_) to upshift or downshift a string of multibyte characters or
multibyte characters mixed with single-byte (ASCII) characters. The following example
upshifts a string provided in the TEXT^STRING buffer:

CASE^BIT := 0; !zero for upshifting
CALL SHIFTSTRING(TEXT^STRING,
 BYTE^COUNT,
 CASE^BIT);

As with all string-manipulation operations that involve multibyte characters, you must
start your upshift or downshift operation on the first byte of a character. You can arrive
at a first byte either by pointing to the first byte of a string or by using an
MBCS_CHAR_ procedure call.

The SHIFTSTRING, CASECHANGE, or STRING_UPSHIFT_ procedures will work with
multibyte characters, because your system is configured with versions of these
procedures that work for your default character set. If you need to apply a string-shift
operation to a string of text that does not belong to the default character set, you must
instead use the MBCS_SHIFTSTRING_ procedure. The following call does the same
thing as the SHIFTSTRING example above but for a different character set:

CASE^BIT := 0; !zero for upshifting
CHAR^SET := 9; !Tandem Hangul
CALL MBCS_SHIFTSTRING_(@TEXT^STRING, !string to upshift
 BYTE^COUNT, !number of bytes
 CASE^BIT,
 CHAR^SET);

Testing for Special Symbols
It is possible that special symbols used in a single-byte character set may appear as
one byte of a multibyte character. It would be a mistake to interpret these bytes as
single-byte special symbols. You should therefore test such a byte to see if it is part of
a multibyte character.

To test for special symbols that are part of multibyte characters, you can use the
MBCS_TESTBYTE_ procedure. First, you would scan the string for the special
symbol, then call MBCS_TESTBYTE_ to check whether the byte is a single-byte
character or part of a multibyte character.

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 56

Sample Program

To use the MBCS_TESTBYTE_ procedure, you must supply it with the buffer
containing the string to be tested, the length of the buffer, and an index into the buffer
identifying the byte to be tested. The following example scans a text string searching
for a special character, then checks whether that byte is part of a multibyte character
set:

SCAN SBUFFER UNTIL SPECIAL -> @SPECIAL^CHARACTER;

TEST^INDEX := @SPECIAL^CHARACTER - @SBUFFER;
RESULT := MBCS_TESTBYTE_(BUFFER,
 BUFFER^LENGTH,
 TEST^INDEX);

The value returned in RESULT indicates what happened:

The testindex parameter contains the byte index to the first byte of the character.

Sample Program
The following program uses many of the system procedures that support multibyte
characters. The program is similar to the program shown earlier in this section to
illustrate the use of the FIXSTRING procedure. This example, however, implements
an FC command for an environment that uses multibyte characters.

The enhancements made to the program shown below are as follows:

• The INITIALIZE^TERMINAL procedure uses the
MBCS_CODESETS_SUPPORTED_ procedure to check whether multibyte code
sets are supported. If not, then the program stops.

• The COMMAND^INTERPRETER procedure uses the MBCS_TRIMFRAGMENT_
procedure to check that the last bytes of the entered command are not a fragment
of a multibyte character, and then uses the MBCS_REPLACEBLANK_ procedure
to convert any multibyte blanks into double ASCII blank characters.

• The FC procedure also uses the MBCS_TRIMFRAGMENT_ and
MBCS_REPLACEBLANK_ procedures to process the string again after editing.

If RESULT is... Then the byte identified by the test-index parameter is...

 0 A single-byte character

 1 The first byte of a multibyte character

 2 An intermediate byte (neither first or last byte) of a multibyte character

 3 The last byte of a multibyte character

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 57

Sample Program

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST

!Global literals and variables:

INT TERM^NUM; !open terminal file number

STRUCT .CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULT;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRING PARAM[0:529];
END;

LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME;
LITERAL ABEND = 1;

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(WRITEX,WRITEREADX,
? FILE_OPEN_,FIXSTRING,PROCESS_STOP_,INITIALIZER,
? SHIFTSTRING,MBCS_CODESETS_SUPPORTED_,MBCS_TRIMFRAGMENT_,
? MBCS_REPLACEBLANK_,OLDFILENAME_TO_FILENAME_)
?LIST

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 58

Sample Program

!--
! Integer procedure edits the command buffer and returns 1
! if edited command should be executed. This procedure
! allows the user a change of mind about editing the command
! by returning 0.
!--

INT PROC FC(COMMAND,LAST^COMMAND,NUM,SAVE^NUM);
STRING .COMMAND;
STRING .LAST^COMMAND;
INT .NUM;
INT .SAVE^NUM;

BEGIN
 STRING .TEMPLATE^ARRAY[0:71]; !template used for edit
 ! changes
 INT TEMPLATE^LENGTH; !length of template
 INT MAX^LEN := 8; !maximum length of edited
 ! command
 STRING .BUFFER[0:71]; !I/O buffer
 STRING .S^PTR; !pointer to end of text
 ! string

! Set command prompt to "< ":

 COMMAND[-2] ':=' "< ";

! Set NUM equal to size of previous command:

 NUM := SAVE^NUM;

! Put previous command in command buffer:

 COMMAND ':=' LAST^COMMAND FOR NUM;

! Edit the command each time through the loop. The loop
! enables the user to check the results of an edit and then
! edit again if necessary:

 DO
 BEGIN

 ! Write the command to be edited to the terminal:

 CALL WRITEX(TERM^NUM,COMMAND[-2],NUM + 2);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 59

Sample Program

 ! Set the FC prompt to " ." and read template typed by
 ! user:

 TEMPLATE^ARRAY ':=' " .";
 CALL WRITEREADX(TERM^NUM,TEMPLATE^ARRAY,2,72,
 TEMPLATE^LENGTH);

 ! If WRITEREADX returns an error, or if the template
 ! contains exactly two slashes, then return with no
 ! changes:

 IF > OR TEMPLATE^LENGTH = 2
 AND TEMPLATE^ARRAY = "//" THEN
 BEGIN
 NUM := SAVE^NUM;
 COMMAND ':=' LAST^COMMAND FOR NUM;
 RETURN 0;
 END;

 ! Otherwise call FIXTRING to alter the command according
 ! to the instructions in the template:

 CALL FIXSTRING(TEMPLATE^ARRAY,TEMPLATE^LENGTH,COMMAND,
 NUM,MAX^LEN);
 IF > THEN
 BEGIN

 ! The replacement string is greater than MAX^LEN, so
 ! print a diagnostic message and return to beginning
 ! of loop:

 BUFFER ':=' "Replacement string too long "
 -> @S^PTR;
 CALL WRITEX(TERM^NUM,BUFFER,@S^PTR '-' @BUFFER);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END
 ELSE IF < THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);

 ! Trim multibyte fragments from end of string:

 CALL MBCS_TRIMFRAGMENT_(@COMMAND,NUM);

 ! Replace multibyte blanks with two ASCII blank
 ! characters:

 CALL MBCS_REPLACEBLANK_(@COMMAND,NUM);

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 60

Sample Program

 ! Upshift all characters in the edited command in case
 ! any characters were typed in lowercase (assumes default
 ! multibyte character set; otherwise you would need to
 ! use MBCS_CHAR_ and MBCS_SHIFTSTRING_):

 CALL SHIFTSTRING(COMMAND,NUM,0);
 END

! Loop until user responds to FC prompt with a carriage
! return only:

 UNTIL NOT TEMPLATE^LENGTH;

! Return to command interpreter to execute edited command:

 RETURN 1;

END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 61

Sample Program

!--
! Procedure prompts the user for a command and then processes
! the command. This procedure loops indefinitely until the
! user types the EXIT command.
!--

PROC COMMAND^INTERPRETER;
BEGIN
 STRING .LAST^COMMAND[0:7]; !buffer for last command
 INT NUM; !number of bytes
 ! transferred
 INT SAVE^NUM; !previous number of bytes
 ! transferred
 STRING .COMMAND[-2:7] := "< "; !command buffer
 STRING .BUFFER[0:71]; !I/O buffer
 STRING .S^PTR; !string pointer

 INT REPEAT := 0; !when 0, prompt for new
 ! command; when 1,
 ! execute repaired command

! Loop until user types "EXIT":

 WHILE 1 DO
 BEGIN

 ! If repeat not set, prompt user for a new command:

 IF NOT REPEAT THEN
 BEGIN
 COMMAND[0] := " ";
 COMMAND[1] ':=' COMMAND[0] FOR 7;
 COMMAND ':=' "< ";
 CALL WRITEREADX(TERM^NUM,COMMAND,2,9,NUM);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;

 ! Trim multibyte fragments from end of string:

 CALL MBCS_TRIMFRAGMENT_(@COMMAND,NUM);

 ! Replace multibyte blanks with two ASCII blank
 ! characters:

 CALL MBCS_REPLACEBLANK_(@COMMAND,NUM);

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 62

Sample Program

 ! Upshift all characters in the edited command in case
 ! any characters were typed in lowercase (again assuming
 ! default multibyte character set:

 CALL SHIFTSTRING(COMMAND,NUM,0);

 ! If the command is "FC" then call the FC procedure,
 ! returning 1 if the fix is accepted or 0 if it is not.
 ! If the command is EXIT, then stop the program.
 ! If the command is any other valid command, then process
 ! the command (this program simply displays the command
 ! name). If an illegal command, then print a diagnostic
 ! message:

 IF COMMAND = "FC"
 THEN REPEAT := FC(COMMAND,LAST^COMMAND,NUM,SAVE^NUM)

 ELSE BEGIN
 IF COMMAND = "EXIT" THEN CALL PROCESS_STOP_

 ELSE IF COMMAND = "COMMAND1"
 THEN CALL WRITEX(TERM^NUM,COMMAND,NUM)

 ELSE IF COMMAND = "COMMAND2"
 THEN CALL WRITEX(TERM^NUM,COMMAND,NUM)

 ELSE BEGIN
 BUFFER ':=' COMMAND FOR 8;
 BUFFER[8] ':=' ": Illegal Command " -> @S^PTR;
 CALL WRITEX(TERM^NUM,BUFFER,@S^PTR '-' @BUFFER);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;

 ! Reset the repeat flag:

 REPEAT := 0;
 END;

 ! If the command length is nonzero, then save it in the
 ! LAST^COMMAND array for possible editing by a subsequent
 ! FC command:

 IF NUM THEN
 BEGIN
 SAVE^NUM := NUM;
 LAST^COMMAND ':=' COMMAND FOR SAVE^NUM;
 END;
 END;
END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 63

Sample Program

!--
! Procedure to save the Startup message in a global
! structure.
!--

PROC SAVE^STARTUP^MESSAGE(RUCB,START^DATA,
 MESSAGE,LENGTH,MATCH) VARIABLE;
INT .RUCB,
 .START^DATA,
 .MESSAGE,
 LENGTH,
 MATCH;

BEGIN

! Copy the Startup message into the CI^STARTUP structure:

 CI^STARTUP.MSGCODE ':=' MESSAGE[0] FOR LENGTH/2;

END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 64

Sample Program

!--
! Procedure to open the terminal file specified in the IN
! file of the Startup message and check that multibyte
! character sets are supported. The program stops if
! multibyte character sets are not supported.
!--

PROC INITIALIZE^TERMINAL;
BEGIN

 INT(32) RESULT;
 STRING .S^PTR;
 STRING .BUFFER[0:71];
 STRING .TERM^NAME;
 INT TERMLEN;
 INT ERROR;

! Read and save the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 SAVE^STARTUP^MESSAGE);

! Open the IN file:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.INFILE.VOLUME,
 TERM^NAME:MAXFLEN,TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERM^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);

! Check that multibyte characters are supported:

 RESULT := MBCS_CODESETS_SUPPORTED_;
 IF RESULT = 0D THEN
 BEGIN
 BUFFER ':=' "Character Set Not Supported" -> @S^PTR;
 CALL WRITEX(TERM^NUM,BUFFER,@S^PTR '-' @BUFFER);
 IF <> THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;

END;

Formatting and Manipulating Character Data

Guardian Programmer’s Guide — 421922-014
19 - 65

Sample Program

!--
! Main procedure initializes the IN file and then calls the
! command interpreter.
!--

PROC INITIALIZE MAIN;
BEGIN

! Initialize the IN file:

 CALL INITIALIZE^TERMINAL;

! Call the command interpreter:

 CALL COMMAND^INTERPRETER;

END;

Guardian Programmer’s Guide — 421922-014
20 - 1

20
Interfacing With the ERROR
Program

The ERROR process returns error-message text associated with a file-system error
number. You can access the ERROR process in one of the following ways:

• By typing the ERROR command and a file-system error number in response to the
command-interpreter prompt. The ERROR process responds by displaying the
error number and associated text on the terminal or designated OUT file.

• Programmatically by sending the error-message number to the ERROR process in
an interprocess message.

For details on using the ERROR program with the TACL program, refer to the
Guardian User’s Guide. The remainder of this section discusses how to
programmatically interact with the ERROR process from your own application.

To obtain the message text for a file-system error number, your program must execute
the following sequence:

1. Start an ERROR process using the PROCESS_CREATE_ procedure.

2. Open the ERROR process.

3. Send a Startup message to the ERROR process using the WRITE procedure. In
this Startup message, you must specify $RECEIVE as the OUT file and the ASCII
code for the error number in the parameter string.

4. Read and process the error message. Use the WRITEREAD procedure for
reading message text.

5. Close and delete the ERROR process.

The following subsections describe each of the above operations in detail. The sample
program at the end of this section shows one way of writing an application to access
error-message text. Advanced readers may prefer to go straight to the sample
program.

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 2

Creating an ERROR Process

Creating an ERROR Process
To create the ERROR process, you can use the PROCESS_CREATE_ procedure.
You can create the process in a waited or nowait manner. The following example
creates a named ERROR process and waits for the creation to finish:

LITERAL MAXPDLEN = ZSYS^VAL^LEN^PROCESSDESCR;
STRING OBJFILENAME; !object file name
INT .PROCESS^HANDLE[0:9], !process handle of ERROR
 ! process
 OBJFILENAME^LENGTH, !length of ERROR file name
 NAME^OPTION; !specifies want process
 ! named by system
STRING .PROCESS^DESCR[0:MAXPDLEN -1],!process descriptor
INT PROCESS^DESCR^LEN, !length of process
 ! descriptor
 ERROR, !error return from
 ! PROCESS_CREATE_
 .
 .

OBJFILENAME ':=' "$SYSTEM.SYSTEM.ERROR" -> @S^PTR;
OBJFILENAME^LENGTH := @S^PTR '-' @OBJFILENAME;
NAME^OPTION := ZSYS^VAL^PCREATOPT^NAMEDBYSYS;
ERROR := PROCESS_CREATE_(OBJFILENAME:OBJFILENAME^LENGTH,
 !library^filename:library^file^len!,
 !swap^filename:swap^file^len!,
 !ext^swap^file^name:ext^swap^len!,
 !priority!,
 !processor!,
 PROCESS^HANDLE,
 !error^detail!,
 NAME^OPTION,
 !name:length!,
 PROCESS^DESCR:MAXPDLEN,
 PROCESS^DESCR^LEN);
IF ERROR^RETURN <> 0 THEN ...

The following example creates an ERROR process, initiating the creation in a nowait
manner. The Process create message (message -102) is delivered to the $RECEIVE
file when the creation is complete. This message contains the process handle and
process descriptor of the created process.

INT .BUFFER[0:BUFSIZE];
STRING .SBUFFER ':=' @BUFFER '<<' 1;

OBJFILENAME ':=' "$SYSTEM.SYSTEM.ERRORX" -> @S^PTR;
OBJFILENAME^LENGTH := @S^PTR '-' @OBJFILENAME;
NAME^OPTION := ZSYS^VAL^PCREATOPT^NAMEDBYSYS;
NOWAIT^TAG := 1D;

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 3

Opening an ERROR Process

ERROR := PROCESS_CREATE_(OBJFILENAME:OBJFILENAME^LENGTH,
 !library^filename:library^file^len!,
 !swap^filename:swap^file^len!,
 !ext^swap^file^name:ext^swap^len!,
 !priority!,
 !processor!,
 PROCESS^HANDLE,
 !error^detail!,
 NAME^OPTION,
 !name:length!,
 PROCESS^DESCR:MAXPDLEN,
 PROCESS^DESCR^LEN,
 NOWAIT^TAG);
IF ERROR <> 0 THEN ...
 .
 .

CALL READUPDATEX(RCV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF <> THEN ...

IF BUFFER[0] = -102 THEN !process create
BEGIN ! completion message
 IF BUFFER [13] <> 0 THEN ... !error
 ELSE
 BEGIN
 NOWAIT^TAG := BUFFER[1] FOR 2;
 PROCESS^HANDLE ':=' BUFFER[3] FOR 10;
 PROCESS^DESCRIPTOR^LENGTH := BUFFER[15];
 PROCESS^DESCRIPTOR ':=' BUFFER[20] FOR
 PROCESS^DESCRIPTOR^LENGTH;
 END;
END;

For more details on creating processes and on the PROCESS_CREATE_ completion
message, refer to Section 16, Creating and Managing Processes.

Opening an ERROR Process
You open an ERROR process as you would any process by passing the process name
or process descriptor to the FILE_OPEN_ procedure:

CALL FILE_OPEN_(PROCESS^NAME:PROCESS^NAME^LENGTH,
 PROCESS^FILE^NUMBER);

See Section 2, Using the File System, for details on opening process files.

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 4

Sending an ERROR Process a Startup Message

Sending an ERROR Process a Startup
Message

After opening the ERROR process file, you must use the WRITE[X] procedure to send
the ERROR process a Startup message. This Startup message must contain the
following information:

• -1 in the first word to identify the message as the Startup message.

• The $RECEIVE file as the OUT file. Doing so causes the ERROR process to send
its output to your process (the process that opened it).

• The error number in ASCII code in the parameter string. The ERROR process
expects to find the error number to process in the parameter string.

The Startup message sent to the ERROR process will therefore be similar to the
following:

Note that the default volume and subvolume and IN file information are not required by
the ERROR program.

Once you have formed the Startup message, send it to the ERROR process using the
WRITE[X] procedure and the file number returned when you opened the ERROR
process:

BUFFER := -1;
BUFFER[21] ':=' ["$RECEIVE", 8 * [" "]];!OUT file
BUFFER[33] := ERROR^NUMBER; !parameter string
BUFFER[34] := 0;

CALL WRITEX(PROCESS^FILENUMBER,SBUFFER,70);

VST102.VSD

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 5

Reading and Processing Error-Message Text

Reading and Processing Error-Message Text
To read the error-message text, you issue a WRITEREAD[X] procedure call against the
ERROR process. Because most messages need more than one line of information,
you need to issue the WRITEREAD[X] procedure several times to read the entire
message text. The ERROR process returns an end-of-file indication when you reach
the end of the message, causing WRITEREAD[X] to return a greater than (>) condition
code.

The arrival of a user message on $RECEIVE is enough to tell the ERROR process to
reply with the next line of the message. Therefore, you need to send only a zero
length string with each WRITEREAD[X] call.

Once you have read the message text, you can process it in any way you like.
Typically, you will print the message text on the terminal or possibly save it in a log file.

The following code fragment reads a message from the ERROR process and prints it
on the home terminal:

!Loop while ERROR process still sending text:
EOF := 0;
WHILE NOT EOF DO
BEGIN

 !Read the error message text into the buffer:
 CALL WRITEREADX(PROCESS^FILENUMBER,SBUFFER,0,132,
 BYTES^READ);

 !Set flag if end of message text:
 IF > THEN EOF := 1;

 !Print buffer if not end of message text:
 ELSE
 BEGIN
 CALL WRITEX(TERM^NUM,SBUFFER,BYTES^READ);
 IF <> THEN ...;
 END;
END;

Refer to Section 16, Creating and Managing Processes, for more details on sending
and receiving the Startup message, or to Section 8, Communicating With a TACL
Process, for a detailed discussion of the structure of the Startup message.

Closing and Deleting an ERROR Process
Once you have read the error-message text, you can close an ERROR process file
with the FILE_CLOSE_ procedure and stop an ERROR process with the
PROCESS_STOP_ procedure. For example:

CALL FILE_CLOSE_(PROCESS^FILENUMBER);

CALL PROCESS_STOP_(PROCESS^HANDLE);

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 6

Using the ERROR Process: An Example

Using the ERROR Process: An Example
The following sample program interfaces with the ERROR process to print file-system
error messages on the home terminal. The example is made up of the following
procedures:

• The PRINT^ERROR procedure is called by the FILE^USER (main) procedure
whenever a file-system error occurs. This procedure takes one formal parameter:
the file number of the file against which the error occurred. PRINT^ERROR
obtains the corresponding error number using the FILE_GETINFO_ procedure and
then passes that number to the ERROR process. Finally, it displays the returned
text on the home terminal.

• FILE^USER is the main procedure. It calls the INIT procedure to initialize the
terminal and then calls the PRINT^ERROR procedure, passing it a file number.

• The INIT and SAVE^STARTUP^MESSAGE procedures open the IN file as
specified in the Startup message.

?INSPECT,SYMBOLS,NOMAP,NOCODE
?NOLIST, SOURCE $TOOLS.ZTOOLD04.ZSYSTAL
?LIST

LITERAL BUFSIZE = 128;
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME;
LITERAL MAXPDLEN = ZSYS^VAL^LEN^PROCESSDESCR;
LITERAL ABEND = 1;

!Global variables:
INT TERMNUM; !terminal file number
INT FNUM; !generic file number
STRING .S^PTR;
STRING SBUFFER[0:BUFSIZE];

STRUCT .CI^STARTUP; !Startup message, used not only
BEGIN ! to receive Startup message
 INT MSGCODE; ! from creator but also to
 STRUCT DEFAULT; ! send Startup message to
 BEGIN ! ERROR process and receive
 INT VOLUME[0:3]; ! reply
 INT SUBVOL[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 7

Using the ERROR Process: An Example

 STRING PARAMS[0:529];
END;
STRING .S^STARTUP := @CI^STARTUP[0] '<<' 1;

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,FILE_OPEN_,
? PROCESS_CREATE_,WRITEX,WRITEREADX,PROCESS_STOP_,
? FILE_CLOSE_,OLDFILENAME_TO_FILENAME_,FILE_GETINFO_)
?LIST

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 8

Using the ERROR Process: An Example

!--
! Procedure to print error text on the home terminal. Runs
! and opens the error program, sends it an error number and
! receives the error-message text.
!--

PROC PRINT^ERROR(FNUM);
INT FNUM; !file number of file with
 ! error against it

BEGIN
 INT .PROCESS^HANDLE[0:9]; !process handle of ERROR
 ! process
 STRING .OBJ^FNAME[0:MAXFLEN - 1];!object file name
 INT NAME^OPTION := 2; !specifies a system-named
 ! process
 STRING .PROC^DESCR[0:MAXPDLEN - 1];!process descriptor
 INT PROC^DESCR^LEN; !length of process
 ! descriptor
 INT PROCNUM; !process file number
 INT ERROR^RETURN; !error return from
 ! PROCESS_CREATE_
 INT EOF; !indicates end of message
 ! text
 INT COUNT^READ;
 INT ERROR^NUMBER; !number of file-system
 ! error to display!
 INT ERROR; !local file-system error

! Get the file-system error to display:

 CALL FILE_GETINFO_(FNUM,ERROR^NUMBER);

! Create the ERROR process:

 OBJ^FNAME ':=' "$SYSTEM.SYSTEM.ERRORX" -> @S^PTR;
 ERROR^RETURN := PROCESS_CREATE_(
 OBJ^FNAME:@S^PTR '-' @OBJ^FNAME,
 !library^filename:library^file^len!,
 !swap^filename:swap^file^len!,
 !ext^swap^file^name:ext^swap^len!,
 !priority!,
 !processor!,
 PROCESS^HANDLE,
 !error^detail!,
 NAME^OPTION,
 !name:length!,
 PROC^DESCR:MAXPDLEN,
 PROC^DESCR^LEN);

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 9

Using the ERROR Process: An Example

 IF ERROR^RETURN <> 0 THEN
 BEGIN
 SBUFFER ':=' "Unable to create Error process. "
 -> @S^PTR;
 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);
 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;

! Open the ERROR process:

 ERROR := FILE_OPEN_(PROC^DESCR:PROC^DESCR^LEN,PROCNUM);
 IF ERROR <> 0 THEN
 BEGIN
 SBUFFER ':=' "Unable to open Error process. "
 -> @S^PTR;
 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);
 CALL PROCESS_STOP_(PROCESS^HANDLE,
 !specifier!,
 ABEND);
 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;

! Blank the Startup message:

 CI^STARTUP.MSGCODE[0] ':=' " ";
 CI^STARTUP.MSGCODE[1] ':=' CI^STARTUP.MSGCODE[0] FOR 34;

! Format the Startup message:

 CI^STARTUP.MSGCODE := -1;
 CI^STARTUP.OUTFILE.VOLUME ':='
 ["$RECEIVE", 8 * [" "]]; !OUT file
 ! parameter string
 CI^STARTUP.MSGCODE[33] := ERROR^NUMBER;
 CI^STARTUP.PARAMS[2] := 0;
 CI^STARTUP.PARAMS[3] := 0;

! Send Startup message to ERROR program:

 CALL WRITEX(PROCNUM,S^STARTUP,70);

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 10

Using the ERROR Process: An Example

! Loop while ERROR program still sending text:

 EOF := 0;
 WHILE NOT EOF DO
 BEGIN

 ! Read the error-message text into the buffer:

 CALL WRITEREADX(PROCNUM,S^STARTUP,0,132,COUNT^READ);

 !Set flag if end of message text:
 IF > THEN EOF := 1;

 !Print buffer if not end of message text:

 ELSE
 BEGIN
 CALL WRITEX(TERMNUM,S^STARTUP,COUNT^READ);
 IF <> THEN
 BEGIN
 SBUFFER ':='
 "Unable to communicate with Error process. "
 -> @S^PTR;
 CALL WRITEX(TERMNUM,SBUFFER,
 @S^PTR '-' @SBUFFER);
 CALL PROCESS_STOP_(PROCESS^HANDLE,
 !specifier!,
 ABEND);
 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 END;
 END;
 END;

! Close the ERROR process file:

 CALL FILE_CLOSE_(PROCNUM);

! Stop the ERROR process:

 CALL PROCESS_STOP_(PROCESS^HANDLE);
END;

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 11

Using the ERROR Process: An Example

!--
! Procedure to copy the Startup message into a global
! structure.
!--

PROC SAVE^STARTUP^MESSAGE(RUCB,START^DATA,MESSAGE,
 LENGTH,MATCH)VARIABLE;
INT .RUCB;
INT .START^DATA;
INT .MESSAGE;
INT LENGTH;
INT MATCH;

BEGIN

! Copy the Startup message into the CI^STARTUP structure:

 CI^STARTUP.MSGCODE ':=' MESSAGE[0] FOR LENGTH/2;
END;

!--
! Procedure to perform initialization for the program. It
! calls INITIALIZER to read and copy the Startup message into
! the global data area and then opens the IN file specified
! in the Startup message.
!--

PROC INIT;
BEGIN
 STRING .TERM^NAME[0:MAXFLEN - 1];
 INT TERMLEN;
 INT ERROR;

! Read and save the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 SAVE^STARTUP^MESSAGE);

! Open the IN file:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.INFILE.VOLUME,
 TERM^NAME:MAXFLEN,TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
END;

Interfacing With the ERROR Program

Guardian Programmer’s Guide — 421922-014
20 - 12

Using the ERROR Process: An Example

!--
! Main procedure initializes the home terminal and calls the
! PRINT^ERROR procedure.
!--

PROC FILE^USER MAIN;
BEGIN

! Read Startup message:

 CALL INIT;
 .
 .

! If file-system error:

 CALL PRINT^ERROR(FNUM);

END;

Guardian Programmer’s Guide — 421922-014
21 - 1

21 Writing a Requester Program
Recall from Section 1, Introduction to Guardian Programming, that a requester/server
design has several advantages over the monolithic or unified program approach.
Specifically, requesters and servers provide modularity by allowing the requester
program to handle terminal I/O, while a server process provides database service.
Such a model makes it easy to provide additional service by adding a new server
process or to support a larger user community by duplicating requesters.

This section describes the various functions that are usually performed by a requester
program. A programming example at the end of this section illustrates these functions
using many of the procedures and techniques described in Sections 2 through 20 of
this manual. This section thereby provides a summary.

This section should be read with Section 22, Writing a Server Program, which provides
information about writing a server program. Section 22 provides three sample server
programs that interact with the requester described in this section.

Functions of a Requester
In a typical requester/server application, the requester handles all terminal I/O while
leaving the “back-end” database handling to a server process. The job of such a
requester process can be broken down into the following functions (see Figure 21-1):

• Terminal interface

• Field validation

• Data mapping

• Application control

The following paragraphs describe each of these functions.

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 2

Terminal Interface

Terminal Interface
The terminal interface deals with writing information to the terminal and reading
information typed at the terminal. In its simplest form, the terminal interface consists of
a series of prompts and user responses (using the WRITEREAD[X] procedure) to find
out what the user wants the application to do. After the application has processed a
request, the terminal-interface code usually displays the result on the terminal (using
the WRITE[X] procedure).

Interaction with the terminal can be in conversational mode or block mode. See
Section 10, Communicating With Terminals, for details.

Figure 21-1 shows a requester interface with just one terminal. To work with more than
one terminal, either you can create duplicate requester processes, your requester can
be programmed to interface with more than one terminal, or your requester can
communicate with a terminal-simulation process that controls several terminals.
Section 24, Writing a Terminal Simulator, discusses terminal-simulation processes.

Field Validation
The field-validation part of the requester checks the credibility of data entered at the
terminal. For example, it might check that a person's name consists of alphabetic
characters or that a person’s age is not more than 150 years.

Data Mapping
Data mapping involves conversion and structuring of input data into a form suitable for
processing by the server process. For example, numeric ASCII input gets converted
into signed binary numbers (using the NUMIN procedure) or the formatter converts

Figure 21-1. Functions of a Requester Process

VST103.VSD

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 3

Application Control

input into a specific format for processing. See Section 19, Formatting and
Manipulating Character Data, for details.

For the convenience of the server, the input data is usually placed in a data structure
that enables the server to receive the data in known format.

Similarly, the requester usually needs to perform data mapping on information sent to
the requester by the server before printing it on the terminal. Here, the requester
usually receives the information in the form of a data structure. The requester must
extract the information it needs from the data structure and, if necessary, convert it into
a humanly readable form before writing it to the terminal.

Application Control
Application control is the part of the requester that interacts with the server process.
This part of the requester can provide the following functions:

• Selection of a specific server process to do a specific job

• Selection of a generic context-free server

• Transaction control through the use of procedure calls to the TMF subsystem

The following paragraphs describe these functions.

Selecting a Server by Function
Typically, the application-control part of the requester process selects a server process
to carry out a task dependent on the input provided by the user. For example, the
requester could select one server process to print out a bank statement or a different
server process to transfer money between accounts. Figure 21-2 shows another
example.

Figure 21-2. Server Selection by Function

VST104.VSD

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 4

File System I/O Synchronization

The requester establishes communication with the server of its choice by sending it the
message that was formulated during the data-mapping phase. Usually, the requester
expects a reply from the server and therefore sends the message to the server using
the WRITEREAD[X] procedure. If no reply data is expected, you can use the
WRITE[X] procedure. Section 6, Communicating With Processes, provides details on
how to do this.

Selecting a Generic Server
Your requester process may choose from several functionally identical servers. For
example, if a server process is heavily used, your application may share the load by
running several functionally identical servers. In this kind of design, however, the
servers must be context free so that the requester can select any available server.
Figure 21-3 shows the model.

See Section 22, Writing a Server Program, for a discussion of context-free servers.

Transaction Control Using TM/MP
The NonStop Transaction Manager/MP (TM/MP) provides the ability to control
transactions against a database from the requester process. These techniques ensure
data integrity by controlling access to the database from the requester process. See
the Introduction to NonStop Transaction Manager/MP (TM/MP) for an overview or the
NonStop TM/MP Application Programmer’s Guide for programming information.

File System I/O Synchronization
The Guardian file system provides a synchronization mechanism for detecting lost or
duplicate interprocess messages. This mechanism becomes important when dealing

Figure 21-3. Selecting From Functionally Identical Servers

VST105.VSD

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 5

Sync-Depth

with nonretryable I/Os that are not audited (protected by TMF transactions).
Synchronization is done by the participating processes; however, the file system might
automate the path-failure handling for the requester.

Note that processes that open $RECEIVE and other files are considered both
requesters and servers in the context of this discussion.

• A process is a server while processing a message received through $RECEIVE.

• A process is a requester while performing I/O on other files it has opened.

The FILE_OPEN_ parameter sync-depth is used to tell the file system and the server
important information about how an opened file must be accessed.

Sync-Depth
The sync-depth parameter has several functions, depending on the device type, but its
most important function is to tell the server how many responses it needs to save.

Each opened process file has a 32-bit sync ID value that the file system automatically
increments by one for each nonretryable operation issued (for example, in WRITE or
WRITEREAD operations). Each I/O request has a sync ID value that enables the
server to detect duplicate requests. A server can retrieve the sync ID by calling
FILE_GETRECEIVEINFO_. For each opener, the server saves the result and the sync
ID of the last request that was successfully processed. When a new request is read
from $RECEIVE, the server compares the sync ID value with its last processed sync
ID. If the new sync ID is less than or equal to the value of the saved sync ID value, the
request is a duplicate.

Servers must be written to handle sync depth and sync ID values. For example, a
request is too old if the new sync ID minus the saved sync ID is greater than or equal
to the sync depth value. This situation can occur as a result of an application error,
which the server must be coded to handle. Some high-level languages, like COBOL85,
handle sync depth processing automatically. A new request always has a sync ID
value that is equal to the saved sync ID value plus 1.

Sync-depth value Description

0 Any error is immediately returned with no retry attempted.
WRITE operations of disk files are not checkpointed.

> 0 (greater than 0) Enables the file system to automatically retry any path error that
might occur (file-system errors 200 through 211). Path error
retries are transparent to the requester. For disk files, checkpoints
of WRITE operations are enabled.

n The number of nonretryable operations the requester might
perform between file sync block checkpoints. To handle this, the
server must “remember” or save the n most recent responses.
The server must handle a duplicate request that is up to n
requests old by immediately returning a saved response
corresponding to the original request.

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 6

Sync-Depth in Practice

Sync-Depth in Practice
The following is the sequence of events that occurs for a path error retry, which is
performed automatically if the sync depth value is greater than 0.

• The requester sends an I/O to the server. The file system increments the sync ID
for the file and locates the server using the process handle determined at open
time. The request is then sent to the server process.

• Consider a scenario where the request fails with a path error because the server
switched to its backup process. The switch causes the process pair’s PPD entry to
be updated, because the primary server process stopped and the backup server
process assumed the primary role. In this case, the following occurs:

• The request is sent to the server.

• A path error occurs because the server’s primary process fails. This causes the
server to switch to its backup process.

• The file system checks the sync depth and determines that the request must
be retried automatically (sync depth value is greater than 0). If sync depth
value is 0, the path error is returned to the requester.

• Because the sync depth value is greater than 0, the file system resends the
request, this time to the backup process, which has taken over. The sync ID is
not incremented.

• The server uses sync IDs to determine how to handle the request:

• If the sync depth value is less than the sync ID minus the last saved sync
ID, then the request is too old. The server returns an error indicating that
the request is too old.

• If the sync ID is otherwise less than or equal to the last saved sync ID, then
it is a duplicate request. The corresponding saved result is returned
immediately. If the server is multithreaded, the original request might not
be completed, in which case the old request tag is released and replaced
with the new request tag.

• If the sync ID is greater than the last saved sync ID, then it is a new
request. The request is processed normally. When the response occurs, it
is saved together with the sync ID.

• The first time the server received the request, it was treated as a new request.
The second time the same request is received, it might be a duplicate request
or a new request, depending on at which point the server’s backup process
resumed processing. If it is a duplicate request, the server replies with the
saved response, indicating a successful I/O completion.

• The requester I/O finishes.

Because the sync depth value is greater than 0, there is no indication in the requester
that a path retry has been performed.

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 7

File Sync Block Checkpoints (Example)

File Sync Block Checkpoints (Example)
Assume that a requester is a process pair. The process pair opens a disk file or a
process with sync depth value of 3. This causes the server to allocate three status
blocks for the saved results with the opener control block.

In its main loop, the requester performs a single CHECKPOINT call, including the file
sync block. The call to CHECKPOINT is followed by three WRITE operations on the
file. This is repeated for each iteration of the loop in the requester. The server saves
the results of the WRITE operations in its three consecutive status blocks. Note that if
the requester issues a fourth WRITE operation without an intervening file sync block
checkpoint, the server no longer retains information about the first WRITE operation
(the requester is violating its sync depth). The server cannot detect this error during
normal processing. The error is detected only if the requester fails while performing its
fourth WRITE operation, because the sync ID of the first WRITE operation is too old for
a retry.

If the requester’s primary process fails, the backup process takes over at the most
current checkpoint, which is just before the three WRITE operations, no matter where
the primary process actually was executing at the time of the failure. The backup
process becomes the primary process. As the process reiterates up to and past the
actual point of failure it might redo all or none of these WRITEs. The server might
receive duplicate requests. There are four possible outcomes:

• No WRITE operations were processed by the primary process. In this case, no
duplicates are detected by the server. Processing continues normally.

• WRITE 1 was processed by the primary process. The server recognizes the
duplicate request. (Its last sync ID is that of the first WRITE executed by the
primary process before it failed.) The result is returned without reexcuting the
WRITE operation in the server. When the new primary process executes WRITE 2,
it becomes a new request and it is processed normally by the server. The same is
true for WRITE 3.

• WRITEs 1 and 2 were processed by the primary process. These WRITE
operations are recognized and handled as duplicates. WRITE 3 becomes a new
request.

• All three WRITE operations were successfully processed by the primary process
before the failure occurred. The new primary process gets the saved responses
from the server. On the next iteration of the main loop, the sync ID values tell the
server that these are new requests.

Thus, the server process ensures that any failure in the requester does not result in
WRITE operations being executed more than once by the server.

I/O Synchronization in Requester
Normally, there are minimal synchronization requirements on the requester side, as
long as the requester is not a process pair. As a rule of thumb, set the values for
nowait-depth and sync-depth as follows:

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 8

File Sync Block Checkpoints (Example)

• Nowait-depth to either 0 or 1, depending on your choice of waited or no-waited I/O.

• Sync-depth to 1. Sync-depth can be set to 0, but this requires the requester to
handle path retries.

If the requester is a process pair, it is important to ensure that any I/O that is resent on
a takeover is using the same sync ID as the original request. Requester process pairs
might also use sync depth values greater than 1 to optimize checkpointing.

I/O Synchronization in Server
On the server side, there are no automatic recovery mechanisms for path failures.
Servers are responsible for keeping track of their requests, except in COBOL85
programs. COBOL85 has Guardian-specified extensions that allow it to effectively
handle openers and I/O synchronization.

This problem can be avoided by writing context free servers and using the TMF
transactions for retries.

Path failures normally cause requesters to resend pending requests. In servers, these
resends must be detected as duplicate requests. The following are typical path failure
scenarios that servers must handle:

• If the server is a process pair, it must handle duplicate requests whenever it
switches processing to its backup process.

• If a requester (opener) is a process pair, the server might receive a duplicate
request at any time, because the requester backup process took over.

• If any of the requesters are in other systems, messages might be resent because
of communication failures between systems.

The information needed to track openers and requests is found in the OPEN system
messages and in data returned by FILE_GETRECEIVEINFO_ calls. The data is
normally collected into an open control block for each opener.

The server needs to manage each opener separately and save responses for up to the
greater of the open’s nowait depth and sync depth values, in order for it to be fault
tolerant. Note that a process pair normally maintains two opens for any given file, one
from the primary process and one from the backup process. The primary process first
opens the file and then instructs the backup process to do the same through a call to
FILE_OPEN_CHKPT_. This is known as a paired or a logical open.

The server must call MONITORCPUS (and MONITORNET if requesters reside in other
systems) to detect failing CPUs. If a requester resides in a failing CPU, no close
message is received. Instead, when a “processor down” system message is received,
the server must check all open control blocks for requesters in that CPU and implicitly
close those opens.

In order to properly manage an opener, the server needs an open control block
containing the following information:

• The requesters’ process name

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 9

Writing a Requester Program: An Example

• The requesters’ primary process handle

• The requesters’ backup process handle

• The file numbers the requester used for the opens (each open has a distinct file
number, although normally the backup’s file number is the same as the primary’s
file number)

• The sync-depth value of the open

• The last sync ID value received

• Buffers to store responses (sync ID, error code, reply size, and reply data)

The primary and backup process handles are subject to change during the lifetime of
the open. The process handles can change if one or more of the following occurs:

• CPU or process failures. If the primary CPU fails, the backup’s process handle
must be copied into the primary’s process handle slot and the backup’s process
handle must be reset. If the backup CPU fails, its process handle must be reset.
Notification of CPU failures are obtained using the MONITORCPUS and the
MONITORNET procedures. Process failures cause a close to be received from
either the primary process or the backup process. Note that a request can be
received from the backup process before you receive a close from the primary
process or a CPU failure message, depending on the timing.

• Voluntary switches in the requester process. If a requester calls CHECKSWITCH,
the next request comes from the backup process. The process handles for the
primary and backup’s processes need to swap places.

• File close.

Call FILE_GETRECEIVEINFO_ each time a request is read from $RECEIVE. The
process handle and file number must match an opener table entry. If no match is
found, reply with error 60 (ZFIL_ERR_WRONGID). This error indicates that the
requester had a server with the same name open, that server terminated, and a new
server with the same name was started. The OPEN in the requester is still valid, which
is why messages might be received even if no preceding OPEN message has been
received. You can perform requester error recovery by closing the server file and
opening it again, which causes the allocation of a new open control block in the server.

Writing a Requester Program: An Example
The sample requester program given here forms part of a sales-ordering application
involving some inventory control and order processing. This part of the application
performs three functions:

• Queries the inventory database to find out how much of a given item is on hand.

• Processes an order by updating the inventory database and creating an order
record.

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 10

User Interface

• Queries the status of an existing order to find out who placed the order, when the
order was placed, and whether the order has been shipped.

User Interface
When the application starts up, it displays the main menu on the terminal as follows:

Type 'r' to read a part record
 'p' to process an order
 'q' to query an order
 'x' to exit the program
Choice:

When the user selects “r” from the main menu, the application prompts the user for a
part number and then displays inventory information about the specified item.

When the user selects “p” from the main menu, the application prompts the user for
information to fill out an order request. First it prompts for a part number and displays
inventory information. Then it prompts the user to specify the quantity, the name and
address of the customer, and the customer’s credit-card number. Once the application
has processed the order, it displays an order number on the terminal.

When the user selects “q” from the main menu, the application prompts for an order
number. The application responds by displaying information about the order.

When the user selects “x” from the main menu, the process stops and the command-
interpreter prompt returns.

Application Overview
The application database is made up of part records and order records. The part
records are contained in the inventory file and the order records in the orders file.

The Inventory File
The inventory file contains one record for each item that the store carries. A part
record contains the following information about a given part:

• The part number

• A brief description of the item

• The quantity of the item currently on hand

• The unit price of the item

• The name of the supplier

• If an order has been placed with the supplier, the quantity ordered and the
expected delivery date

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 11

Application Overview

The Orders File
The orders file contains one order record for each item ordered by a customer. The
orders file contains the following information:

• The part number of the item ordered

• A brief description of the item ordered

• The quantity ordered

• The name, address, and credit-card number of the customer

• The date when the order was placed

• The date that the order was shipped (if it has been shipped)

• The status of the order, indicating whether the order has been shipped, paid for,
and so on

The Role of the Requester in the Application
Figure 21-4 shows the role of the requester in the application.

The requester chooses the server to send a request to depending on the function
requested by the user:

• If the user requests to query a part record, then the requester obtains the part
record by sending a request to the part-query server ($SER1). The $SER1

Figure 21-4. The Requester in the Example Application

VST106.VSD

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 12

Application Overview

process obtains the information from the inventory file and returns it to the
requester.

• If the user requests to process an order, the requester sends a message to the
process-order server ($SER2). This server uses the information it receives to
update the inventory level in the inventory file and to create an order record and
put it in the orders file.

• If the user wants to query an existing order record, then the requester sends a
message to the order-query server ($SER3), which queries the orders file.

See Section 22, Writing a Server Program, for a detailed description of each type of
server process.

Enhancements to the Application
Note that for a typical mail-order or telephone-order company, the application is
incomplete. The following functions would also usually be required:

• A means for the receiving department to update the inventory file when new
shipments of goods are received.

• A means for the billing department to interrogate the orders file to find out to whom
to send the invoice.

• A means for the shipping department to examine the orders file to find out to whom
to send goods.

Before Running the Application
Before you run the application you need to create the inventory file and the orders file
and set up some CLASS MAP DEFINEs required by the application.

You can use the FUP utility to create the inventory and orders files as follows:

1> FUP
-SET TYPE K
-SET BLOCK 2048
-SET REC 100
-SET IBLOCK 2048
-SET KEYLEN 10
-SHOW
 TYPE K
 EXT (1 PAGES, 1 PAGES)
 REC 100
 BLOCK 2048
 IBLOCK 2048
 KEYLEN 10
 KEYOFF 0
 MAXEXTENTS 16
-CREATE \SYS.$APPLS.DATA.PARTFILE
CREATED - \SYS.$APPLS.DATA.PARTFILE
-SET TYPE K

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 13

Application Overview

-SET BLOCK 2048
-SET REC 240
-SET IBLOCK 2048
-SET KEYLEN 10
-SHOW
 TYPE K
 EXT (1 PAGES, 1 PAGES)
 REC 240
 BLOCK 2048
 IBLOCK 2048
 KEYLEN 10
 KEYOFF 0
 MAXEXTENTS 16
-CREATE \SYS.$APPLS.DATA.ORDERS

CREATED - \SYS.$APPLS.DATA.ORDERS
-EXIT
2>

You need to set up a CLASS MAP DEFINE for each of the following files:

• The inventory file

• The orders file

• The program file for the requester

• The program file for each of the servers

You can execute an obey file similar to the following to create these DEFINEs:

3> O DEFFILE
add define =ser1, class map, file $APPLS.PROGS.zser1
add define =ser2, class map, file $APPLS.PROGS.zser2
add define =ser3, class map, file $APPLS.PROGS.zser3
add define =inv^fname, class map, file $APPLS.DATA.partfile
add define =ord^fname, class map, file $APPLS.DATA.orders
4>

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 14

Coding the Requester Program

21 Writing a Requester Program

Coding the Requester Program
The requester program shown at the end of this section consists of several
procedures, as shown in Figure 21-5.

In addition to the procedures shown in Figure 21-5, the error handling procedures
FILE^ERRORS and FILE^ERRORS^NAME provide file-system error handling for most
of the other procedures. The WRITE^LINE procedure helps simplify terminal display.

The following paragraphs describe the major procedures in detail.

The Initialization Procedures
The Initialization procedures include the REQUESTER (MAIN), INIT, and
GET^COMMAND procedures. These procedures perform two functions: application
initialization and main-menu handling.

The INIT procedure performs application initialization. It reads the Startup message,
opens the home terminal, and calls the CREATE^AND^OPEN^SERVER procedure
once for each server process.

The GET^COMMAND procedure displays the main menu on the terminal, allowing the
user to choose the database operation to be performed or to exit the program.

Figure 21-5. Relationship Between Major Procedures in the Requester Program

VST107.VSD

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 15

Coding the Requester Program

GET^COMMAND passes the result back to the requester procedure which calls the
appropriate procedure in response to the user’s selection as follows:

• To read a part record, it calls the READ^PART procedure

• To process an order, it calls the PROCESS^ORDER procedure

• To read an order record, it calls the READ^ORDER procedure

• To stop the requester, it calls the EXIT^PROGRAM procedure

After executing the READ^PART, PROCESS^ORDER, or READ^ORDER procedure,
control returns to the REQUESTER procedure, which calls GET^COMMAND again.

The OPEN^SERVER Procedure
The CREATE^AND^OPEN^SERVER procedure works with the OPEN^SERVER
procedure to create and open server processes. It is called by the REQUESTER
procedure once for each server process. The actions of
CREATE^AND^OPEN^SERVER depend on whether the server is already running.
The first thing this procedure does is to call the PROCESS_GETPAIRINFO_ system
procedure to see whether the server process already exists.

If the server already exists, then CREATE^AND^OPEN^SERVER calls
OPEN^SERVER to try to open it. The attempt to open succeeds unless the server
rejects the attempt because its opener table is full. If the open is rejected, then the
OPEN^SERVER procedure prompts the user to try again to open the server; you can
either keep trying or choose to quit and exit the program. If the procedure succeeds in
opening the server, control returns to the REQUESTER procedure.

If the server does not exist, then CREATE^AND^OPEN^SERVER calls the
PROCESS_CREATE_ system procedure to create it. Following the normal startup
protocol, the procedure then calls OPEN^SERVER to open the server, sends it a
Startup message, closes the server, and then opens it again. If either open fails, then
the OPEN^SERVER procedure again allows the user to retry the operation.

The READ^PART Procedure
The READ^PART procedure interacts with the part-query server ($SER1) to read a
part record given a part number. It is called from the REQUESTER procedure when
the user types “r” in response to the main-menu prompt.

On input, the terminal-interface phase of this procedure prompts the user for a part
number. The procedure expects a 10-digit number in reply.

The field-validation phase checks that the part number is 10 digits long and consists
entirely of numeric characters. If either of these conditions is not met, then the
procedure prompts the user to enter another part number.

The input is already in the form that the server expects it (a 10-digit number string),
therefore no data-mapping phase is required on input.

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 16

Coding the Requester Program

The application-control phase sends the 10-digit number string to the $SER1 server
process and waits for the response.

For an existing part number, the server returns a data structure containing the part
record and the READ^PART procedure displays the information on the terminal. Date
information contained in the returned data structure is in the form of a 48-bit numeric
timestamp. The READ^PART procedure converts this information first into a 16-bit
integer representing the Gregorian date and time and then converts the numbers into
ASCII characters for output.

If the part number does not exist, the server returns an error and the READ^PART
procedure prompts the user for another part number.

The PROCESS^ORDER Procedure
The PROCESS^ORDER procedure communicates with the process-order server
($SER2) to process a customer order. It is called from the REQUESTER procedure
when the user types “p” in response to the main-menu prompt.

This procedure prompts the terminal operator to enter the part number of the item to be
ordered, the quantity, and the customer’s name, address, and credit-card number.

This procedure first calls the READ^PART procedure to prompt for the part number
and provide the operator with inventory information to see whether the store can satisfy
the order.

The field-validation phase enforces the following:

• The quantity requested must be numeric.

• The customer’s first name and last name must be alphabetic and have from 1
through 20 characters. The middle initial should be a single character or omitted.

• The customer’s street address must contain up to 48 alphabetic and numeric
characters.

• The city name can be up to 24 characters long, all of which must be alphabetic.

• The zip code (for the purpose of this example) must consist of seven characters:
the first two characters must be alphabetic, and the remaining five must be
numeric.

• The customer’s credit-card number must be 16 numeric characters.

The PROCESS^ORDER procedure prompts the user to reenter any part of the above
information that does not meet the stated requirements.

The data-mapping phase involves converting the ASCII input for the quantity into a
numeric value and then packing all input into a data structure to send to the server.

Application control involves selecting the server to send the data structure to. In this
case, the server is the $SER2 process. The PROCESS^ORDER procedure then waits
for the reply.

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 17

Coding the Requester Program

If the server process successfully processes the order, then the reply record contains
the new stock level on hand and an order record number for the newly created order.
This number is 28 digits long and is made up of a timestamp and the part number. The
PROCESS^ORDER procedure displays the order number on the terminal.

If the reply structure returns a negative quantity on hand, then the PROCESS^ORDER
procedure informs the user that the order cannot be satisfied.

If the server process cannot process the order for any reason other than inadequate
inventory, then an error condition is returned.

The READ^ORDER Procedure
The READ^ORDER procedure interacts with the order-query server ($SER3) to read
an order record given an order number. It is called from the REQUESTER procedure
when the user types “q” in response to the main-menu prompt.

On input, the terminal-interface phase of this procedure prompts the user for an order
number. The procedure expects a 28-digit number in reply.

The field-validation phase checks that the order number is 28 digits long and consists
entirely of numeric characters. If either of these conditions is not met, then the
procedure prompts the user to enter another order number.

The input is already in the form that the server expects (a 28-digit number string),
therefore no data-mapping phase is required on input.

The application-control phase sends the 28-digit number string to the $SER3 process
and waits for the response.

For an existing order number, the server returns a data structure containing the order
record and the READ^ORDER procedure displays the information on the terminal. As
with the READ^PART procedure, date information is converted for output.

If the order number does not exist, the server returns an error and the READ^ORDER
procedure prompts the user for another order number.

The EXIT^PROGRAM Procedure
The EXIT^PROGRAM procedure simply calls the FILE_CLOSE_ procedure for each
server (allowing each server to delete an entry from its opener table) and then calls the
PROCESS_STOP_ procedure to stop the requester.

The ERROR^HANDLER Procedure
The ERROR^HANDLER procedure gets called from several procedures in the
requester to handle file-system errors. This procedure interfaces with the ERROR
program to print a brief description of the file-system error. The interface with the
ERROR process is described in detail in Section 20, Interfacing With the ERROR
Program.

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 18

Coding the Requester Program

The Code for the Sample Requester Program
The rest of this section lists the code for the sample requester program.

?INSPECT, SYMBOLS, NOCODE
!NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?NOLIST, SOURCE $TOOLS.ZTOOLD04.ZSYSTAL
?LIST

!---------------
!Literals:
!---------------

LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME;
LITERAL BUFSIZE = 512;

!----------------
!Data structures
!----------------

!Startup message data structure:

STRUCT .START^UP^MESSAGE; !Startup message to send to
BEGIN ! server
 INT MSG^CODE; !-1 for Start-Up message
 STRUCT DEFAULT; !default file name
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 END;
 STRUCT INFILE; !INFILE name
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILENAME[0:3];
 END;
 STRUCT OUTFILE; !OUTFILE name
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILENAME[0:3];
 END;
 STRING PARAM[0:529]; !parameter string
END;
INT MESSAGE^LEN; !length of Startup message

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 19

Coding the Requester Program

!Message to send to $SER1 to request inventory information
!about a specified item:

STRUCT PART^REQUEST;
BEGIN
 STRING PART^NUMBER[0:9]; !10-digit part number
END;

!Message to send to $SER2 to process an order:

STRUCT .ORDER^REQUEST;
BEGIN
 STRUCT NAME; !name of customer
 BEGIN
 STRING LAST[0:19];
 STRING FIRST[0:19];
 STRING INITIAL[0:1];
 END;
 STRING ADDRESS[0:47]; !address of customer
 STRING CITY[0:23]; !city
 STRING ZIP[0:7]; !customer's zip code
 STRING CCN[0:15]; !customer's credit card number
 STRING PART^NUMBER[0:9]; !part number for part ordered
 STRING PART^DESC[0:47]; !description of part ordered
 INT QTY^ORDERED; !quantity ordered
END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 20

Coding the Requester Program

!Data structure send to $SER3 to request information about a
!specified order:

STRUCT .ORDER^QUERY;
BEGIN
 STRING ORDER^NUMBER[0:27];
END;

!Message returned by $SER1. It contains a part record:

STRUCT .PART^REC;
BEGIN
 STRING PART^NUMBER[0:9]; !10-digit part number
 STRING PART^DESC[0:47]; !part description
 STRING SUPPLIER[0:23]; !name of part supplier
 INT QUANTITY^ON^HAND; !quantity of parts on hand
 INT UNIT^PRICE; !price of part
 INT ORDER^PLACED[0:2];!date order placed with supplier
 INT SHIPMENT^DUE[0:2];!date order due from supplier
 INT QUANTITY^ORDERED; !quantity of part on order from
END; ! supplier

!Message returned by $SER2. After processing
!an order request, $SER2 returns this data structure
!containing the stock balance of the item ordered,
!and the order number:

STRUCT .ORDER^REPLY;
BEGIN
 INT QUANTITY^ON^HAND; !quantity after order satisfied
 STRING ORDER^NUMBER[0:27];!28-digit order number
END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 21

Coding the Requester Program

!Message returned by $SER3. It contains the order record
!the corresponds to the order number sent in the request
!to $SER3:

STRUCT .ORDER^REC;
BEGIN
 STRING ORDER^NUMBER[0:27];!order number
 STRUCT NAME; !name of customer
 BEGIN
 STRING LAST[0:19];
 STRING FIRST[0:19];
 STRING INITIAL[0:1];
 END;
 STRING ADDRESS[0:47]; !address of customer
 STRING CITY[0:23]; !city
 STRING ZIP[0:7]; !customer's zip code
 STRING CCN[0:15]; !customer's credit card number
 STRING PART^NUMBER[0:9]; !part number for part ordered
 STRING PART^DESC[0:47]; !description of part ordered
 INT QTY^ORDERED; !quantity ordered
 INT DATE^ORDERED[0:2];!date when customer placed order
 INT DATE^SHIPPED[0:2];!date when shipped to customer
 STRING SHIPPING^STATUS[0:1];!status of order; shipped,
END; ! not shipped...

!-----------------------
!Other global variables:
!-----------------------

STRING PART^NUMBER[0:9]; !10-digit part number
INT SERV1^NUM; !file number for $SER1
INT SERV2^NUM; !file number for $SER2
INT SERV3^NUM; !file number for $SER3
INT DATE^AND^TIME[0:6]; !converted 48-bit time stamp

INT TERM^NUM; !file number for home terminal
STRING .SBUFFER[0:BUFSIZE]; !I/O buffer
STRING .S^PTR; !string pointer

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(FILE_OPEN_,FILE_CLOSE_,
? PROCESS_CREATE_,PROCESS_GETPAIRINFO_,
? PROCESS_STOP_,FILE_GETINFO_,CONTIME,
?
NUMIN,INITIALIZER,OLDFILENAME_TO_FILENAME_,
? DNUMOUT,WRITEX,WRITEREADX)
?LIST

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 22

Coding the Requester Program

!--
! Here are a few DEFINEs to make it a little easier to
! format and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 23

Coding the Requester Program

!--
! Procedure for displaying file system error numbers on the
! terminal. The parameters are the file name and its length
! and the error number. This procedure is used when the
! file is not open, so there is no file number for it.
! FILE^ERRORS is used when the file is open.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER);

 START^LINE;
 PUT^STR("occurred in requester program ");
 CALL WRITEX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program:

 CALL PROCESS_STOP_;
END;

!--
! Procedure for displaying file system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number.
! FILE^ERRORS^NAME is called to display the information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 24

Coding the Requester Program

!---
! Procedure to write a message on the terminal and check
! for any error. If there is an error, this procedure
! attempts to write a message about the error and then
! stops the program.
!---

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERM^NUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERM^NUM);
END;

!--
! Procedure to prompt the user for the next function to be
! performed:
!
! "r" to read a part record
! "p" to process an order
! "q" to query an order
! "x" to exit the program
!
! The selection made is returned as a result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT COUNT^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type 'r' to read a part record, ");
 PRINT^STR(" 'p' to process an order, ");
 PRINT^STR(" 'q' to query an order, ");
 PRINT^STR(" 'x' to exit. ");

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERM^NUM);

 SBUFFER[COUNT^READ] := 0;
 RETURN SBUFFER[0];
END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 25

Coding the Requester Program

!--
! Procedure to read a part record from the $SER1 process.
! This procedure prompts the user for a part number, which it
! checks for validity before sending it to the $SER1 server
! process. The $SER1 process returns the corresponding part
! record (if there is one) from the inventory file and then
! this procedure prints the record on the terminal.
!
! This procedure is called from the main procedure when the
! user selects "r" from the main menu. It is also called
! from the PROCESS^ORDER procedure to display stock-level
! information before processing the order.
!--

PROC READ^PART;
BEGIN
 INT COUNT^READ;
 INT ERROR;
 INT I;

! Repeat until a valid part number entered:

REPEAT:

! Request a part number from the terminal user:

 START^LINE;
 PUT^STR("Enter Part Number: ");
 CALL WRITEREADX(TERM^NUM,SBUFFER,
 @S^PTR '-' @SBUFFER,BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERM^NUM);

! Check that part number contains 10 characters. Request
! another part number if not:

 IF COUNT^READ <> 10 THEN
 BEGIN

 ! Print diagnostic for failed test:

 PRINT^LINE;
 PRINT^STR("Part Number Must Contain 10 Characters");
 PRINT^STR("Please type another part number ");
 PRINT^BLANK;
 GOTO REPEAT;
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 26

Coding the Requester Program

! Check if part number all numeric. Request another part
! number if not:

 I := 0;
 WHILE I < 10 DO
 BEGIN
 IF SBUFFER[I] < "0" OR SBUFFER[I] > "9" THEN
 BEGIN

 ! Print diagnostic for failed test:

 PRINT^BLANK;
 PRINT^STR("Part Number Must Be Numeric ");
 PRINT^STR("Please type another part number ");
 PRINT^BLANK;
 GOTO REPEAT;
 END;
 I := I + 1;
 END;

! Send part number to server:

 CALL WRITEREADX(SERV1^NUM,SBUFFER,$LEN(PART^REQUEST),
 BUFSIZE,COUNT^READ);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(SERV1^NUM,ERROR);
 CASE ERROR OF
 BEGIN

 ! If server could not find a record with supplied key
 ! (part number) print message and request another part
 ! number:

 11 -> BEGIN

 ! Print diagnostic:

 PRINT^BLANK;
 PRINT^STR("No Such Part Number ");
 PRINT^STR("Please Type Another Part Number ");
 PRINT^BLANK;
 GOTO REPEAT;
 END;

 OTHERWISE -> BEGIN

 ! Other error, call FILE^ERRORS to display error
 ! and exit the process:

 CALL FILE^ERRORS(TERM^NUM);
 END;
 END;
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 27

Coding the Requester Program

! Print two blank lines on the terminal:

 PRINT^BLANK;
 PRINT^BLANK;

! Print returned information on the terminal:

 PART^REC ':=' SBUFFER FOR ($LEN(PART^REC));
 PRINT^STR("INVENTORY PROFILE: ");

! Print the part number:

 PRINT^STR("Part number: " &
 PART^REC.PART^NUMBER FOR 10);

! Print the part description:

 PRINT^STR("Part description: " &
 PART^REC.PART^DESC FOR 48);

! Print the quantity on hand:

 START^LINE;
 PUT^STR("Quantity on Hand: ");
 PUT^INT(PART^REC.QUANTITY^ON^HAND);
 PRINT^LINE;

! Print the unit price:

 START^LINE;
 PUT^STR("Unit Price: $");
 PUT^INT(PART^REC.UNIT^PRICE);
 PRINT^LINE;

 PRINT^BLANK;

! Print out any reorder information:

 PRINT^STR("REORDER INFORMATION:");

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 28

Coding the Requester Program

! Print the supplier's name:

 PRINT^STR("Supplier Name: " &
 PART^REC.SUPPLIER FOR 24);

! Print date when last order placed with supplier:

 CALL CONTIME(DATE^AND^TIME,PART^REC.ORDER^PLACED[0],
 PART^REC.ORDER^PLACED[1],PART^REC.ORDER^PLACED[2]);
 START^LINE;
 PUT^STR("Order Placed: ");
 PUT^INT(DATE^AND^TIME[1]);
 PUT^STR("-");
 PUT^INT(DATE^AND^TIME[2]);
 PUT^STR("-");
 PUT^INT(DATE^AND^TIME[0]);
 PRINT^LINE;

! Print date when next shipment is due from the supplier:

 START^LINE;
 PUT^STR("Shipment Due: ");
 CALL CONTIME(DATE^AND^TIME,PART^REC.SHIPMENT^DUE[0],
 PART^REC.SHIPMENT^DUE[1],PART^REC.SHIPMENT^DUE[2]);
 PUT^INT(DATE^AND^TIME[1]);
 PUT^STR("-");
 PUT^INT(DATE^AND^TIME[2]);
 PUT^STR("-");
 PUT^INT(DATE^AND^TIME[0]);
 PRINT^LINE;

! Print quantity ordered from supplier:

 START^LINE;
 PUT^STR("Quantity Ordered: ");
 PUT^INT(PART^REC.QUANTITY^ORDERED);
 PRINT^LINE;

 PRINT^BLANK;
 PRINT^BLANK;
END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 29

Coding the Requester Program

!--
! Procedure to process an order. The procedure puts together
! a request for an order from information entered in response
! to a series of prompts. After extensive checking, sends
! the request to the $SER2 server process which does the
! following:
!
! -- Updates the corresponding PART^REC
! -- Places an order record in the orders file
! -- Returns a reply record to this procedure
!
! The reply record contains an indication of the new stock
! level,and a 28-digit order number made up from a converted
! time stamp and the part number. This procedure prints the
! order number on the terminal.
!--

PROC PROCESS^ORDER;
BEGIN
 INT COUNT^READ;
 INT BASE;
 INT STATUS;
 INT I;

! Blank the order-request message structure:

 ORDER^REQUEST ':=' ($LEN(ORDER^REQUEST) / 2) * [" "];

!----------------------------
! Prompt for and process the
! part number.
!----------------------------

! Call the READ^PART procedure to prompt for the part number
! and find out if enough stock is on hand:

 CALL READ^PART;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 30

Coding the Requester Program

!----------------------------
! Prompt for and process the
! quantity requested
!----------------------------

! Repeat until valid quantity entered:

REPEAT^QTY:

! Prompt for the quantity required:

 PRINT^BLANK;
 START^LINE;
 PUT^STR("Enter Quantity: ");
 CALL WRITEREADX(TERM^NUM,SBUFFER,
 @S^PTR '-' @SBUFFER,BUFSIZE,COUNT^READ);

! Check that input is numeric:

 I := 0;
 WHILE I < COUNT^READ DO
 BEGIN
 IF SBUFFER[I] < "0" OR SBUFFER[I] > "9" THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Quantity must be numeric");
 GOTO REPEAT^QTY;
 END;
 I := I + 1;
 END;

! Convert input from a numeric string to a number, and place
! it in the ORDER^REQUEST message:

 BASE := 10;
 CALL NUMIN(SBUFFER[0],ORDER^REQUEST.QTY^ORDERED,
 BASE,STATUS);

! If status indicates an error, print diagnostic and prompt
! again for the quantity:

 IF STATUS <> 0 THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Invalid input ");
 PRINT^STR("Please enter a valid number ");
 GOTO REPEAT^QTY;
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 31

Coding the Requester Program

! Check that there is enough stock on hand to satisfy the
! order:

 IF ORDER^REQUEST.QTY^ORDERED > PART^REC.QUANTITY^ON^HAND
 THEN
 BEGIN
 PRINT^BLANK;
 START^LINE;
 PUT^STR("Current Stock on Hand is Only ");
 PUT^INT(PART^REC.QUANTITY^ON^HAND);
 PRINT^LINE;
 RETURN;
 END;

!----------------------------
! Prompt for and process the
! customer's last name
!----------------------------

! Repeat until valid last name entered:

REPEAT^LASTNAME:

! Prompt user for last name:

 PRINT^BLANK;
 START^LINE;
 PUT^STR("Enter Customer's Last Name: ");
 CALL WRITEREADX(TERM^NUM,SBUFFER,
 @S^PTR '-' @SBUFFER,BUFSIZE,COUNT^READ);

! If name is greater than 20 characters or less than one
! character, prompt user to enter a name of valid length:

 IF COUNT^READ > 20 OR COUNT^READ < 1 THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Last Name Must Be 1 to 20 Characters");
 PRINT^STR("Please Enter a Valid Name ");
 GOTO REPEAT^LASTNAME;
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 32

Coding the Requester Program

! If name contains nonalphabetic characters, prompt user to
! reenter name:

 I := 0;
 WHILE I < COUNT^READ DO
 BEGIN
 IF SBUFFER[I] < "A" OR SBUFFER[I] > "z" OR
 (SBUFFER[I] > "Z" AND SBUFFER[I] < "a") THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Name Must Be Alphabetic ");
 PRINT^STR("Please Enter an Alphabetic Last Name");
 GOTO REPEAT^LASTNAME;
 END;
 I := I + 1;
 END;

! Put last name in order-request message:
 ORDER^REQUEST.NAME.LAST ':=' SBUFFER FOR COUNT^READ;

!----------------------------
! Prompt for and process the
! customer's first name
!----------------------------

! Repeat until valid first name entered:

REPEAT^FIRSTNAME:

! Prompt user for first name:

 PRINT^BLANK;
 START^LINE;
 PUT^STR("Enter Customer's First Name: ");
 CALL WRITEREADX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);

! If name is greater than 20 characters or less than one
! character, prompt the user to enter a name of valid
! length:

 IF COUNT^READ > 20 OR COUNT^READ < 1 THEN
 BEGIN

 PRINT^BLANK;
 PRINT^STR("First Name Must Be 1 to 20 Characters ");
 PRINT^STR("Please Enter a Valid name ");
 GOTO REPEAT^FIRSTNAME;
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 33

Coding the Requester Program

! If first name contains nonalphabetic characters, prompt
! user to reenter name:

 I := 0;
 WHILE I < COUNT^READ DO
 BEGIN
 IF SBUFFER[I] < "A" OR SBUFFER[I] > "z" OR
 (SBUFFER[I] > "Z" AND SBUFFER[I] < "a") THEN
 BEGIN
 PRINT^STR("Name Must Be Alphabetic ");
 PRINT^STR("Please Enter an Alphabetic First Name ");
 GOTO REPEAT^FIRSTNAME;
 END;
 I := I + 1;
 END;

! Put first name in order-request message:

 ORDER^REQUEST.NAME.FIRST ':=' SBUFFER[0] FOR COUNT^READ;

!----------------------------
! Prompt for and process the
! customer's middle initial
!----------------------------

! Repeat until valid middle initial entered:

REPEAT^INITIAL:

! Prompt user for middle initial:

 PRINT^BLANK;
 START^LINE;
 PUT^STR("Enter Customer's Middle Initial: ");
 CALL WRITEREADX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);

! If middle initial is greater than 1 character, prompt
! user to issue a single character:

 IF COUNT^READ > 1 THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Middle Initial Must Be 1 or 0 Characters");
 PRINT^STR("Please enter a single character ");
 GOTO REPEAT^INITIAL;
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 34

Coding the Requester Program

! If middle initial is nonalphabetic, and not blank, prompt
! user to reenter middle initial:

 IF COUNT^READ = 1 THEN
 BEGIN
 IF SBUFFER[0] < "A" OR SBUFFER[0] > "z" OR
 (SBUFFER[0] > "Z" AND SBUFFER[0] < "a") AND
 SBUFFER[0] <> " " THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Middle Initial Must Be Alphabetic ");
 PRINT^STR("Please Enter an Alphabetic Character");
 GOTO REPEAT^INITIAL;
 END;
 END;

! Put middle initial in order-request message:

 ORDER^REQUEST.NAME.INITIAL ':=' SBUFFER[0] FOR COUNT^READ;

!---------------------------
! Prompt for and process the
! customer's street address
!---------------------------

! Repeat until valid address entered:

REPEAT^ADDR:

! Prompt user for address:

 PRINT^BLANK;
 START^LINE;
 PUT^STR("Enter Customer's Street Address: ");
 CALL WRITEREADX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);

! If address is greater than 48 characters or less than one
! character, prompt user to enter a valid address:

 IF COUNT^READ > 48 OR COUNT^READ < 1THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Address Must Be 1 to 48 Characters ");
 PRINT^STR("Please Enter a Valid Address");
 GOTO REPEAT^ADDR;
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 35

Coding the Requester Program

! Put street address in order-request message:

 ORDER^REQUEST.ADDRESS ':=' SBUFFER[0] FOR COUNT^READ;

!----------------------------
! Prompt for and process the
! customer's city name
!----------------------------

! Repeat until valid city name entered:

REPEAT^CITY:

! Prompt user for city name:

 PRINT^BLANK;
 START^LINE;
 PUT^STR("Enter City Name: ");
 CALL WRITEREADX(TERM^NUM,SBUFFER,
 @S^PTR '-' @SBUFFER,BUFSIZE,
 COUNT^READ);

! If name is greater than 24 characters, prompt user to
! issue a shorter city name:

 IF COUNT^READ > 24 OR COUNT^READ < 1 THEN
 BEGIN

 PRINT^BLANK;
 PRINT^STR("City Name Must Be 1 To 24 Characters");
 PRINT^STR("Please Enter a Valid city name");
 GOTO REPEAT^CITY;
 END;

! If city name contains nonalphabetic characters, prompt
! user to reenter city name:

 I := 0;
 WHILE I < COUNT^READ DO
 BEGIN
 IF SBUFFER[I] < "A" OR SBUFFER[I] > "z" OR
 (SBUFFER[I] > "Z" AND SBUFFER[I] < "a") THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("City Name Must Be Alphabetic");
 PRINT^STR("Please Enter an Alphabetic City Name");
 GOTO REPEAT^CITY;
 END;
 I := I + 1;
 END;

! Put city name in order-request message:
 ORDER^REQUEST.CITY ':=' SBUFFER[0] FOR COUNT^READ;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 36

Coding the Requester Program

!----------------------------
! Prompt for and process the
! customer's zip code
!----------------------------

! Repeat until valid zip code entered:

REPEAT^ZIP:

! Prompt user for zip code:

 PRINT^BLANK;
 START^LINE;
 PUT^STR("Enter Zip Code: ");
 CALL WRITEREADX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);

! If zip code does not have exactly 7 characters, prompt
! user to issue another zip code:

 IF COUNT^READ <> 7 THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Zip Code Must Have Exactly 7 Characters ");
 PRINT^STR("Please Enter a Valid Zip Code ");
 GOTO REPEAT^ZIP;
 END;

! If either of the first two characters of the zip code is
! nonalphabetic, reenter the zip code:

 I := 0;
 WHILE I < 2 DO
 BEGIN
 IF SBUFFER[I] < "A" OR SBUFFER[I] > "z" OR
 (SBUFFER[I] > "Z" AND SBUFFER[I] < "a") THEN
 BEGIN
 PRINT^STR("First Two Characters Must Be ” &
 "Alphabetic ");
 PRINT^STR("Please Enter an Alphabetic Characters ");
 GOTO REPEAT^ZIP;
 END;
 I := I + 1;
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 37

Coding the Requester Program

! If any of the last five characters of the zip code is
! nonnumeric, reenter the zip code:

 I := 2;
 WHILE I < 7 DO
 BEGIN
 IF SBUFFER[I] < "0" OR SBUFFER[I] > "9" THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Last Five Characters Must Be Numeric");
 PRINT^STR("Please Enter Numeric Characters ");
 GOTO REPEAT^ZIP;
 END;
 I := I + 1;
 END;

! Put zip code in order-request message:

 ORDER^REQUEST.ZIP ':=' SBUFFER[0] FOR COUNT^READ;

!-------------------------------
! Prompt for and process the
! customer's credit card number
!-------------------------------

! Repeat until valid credit-card number entered:

REPEAT^CCN:

! Prompt user for credit-card number:

 PRINT^BLANK;
 START^LINE;
 PUT^STR("Enter Customer's Credit-Card Number: ");
 CALL WRITEREADX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);

! If credit-card number not exactly 16 characters,
! prompt user to enter a valid credit-card number:

 IF COUNT^READ <> 16 THEN
 BEGIN

 PRINT^BLANK;
 PRINT^STR("Credit-Card Number Must be 16 Characters ");
 PRINT^STR("Please Enter a Valid Credit-Card Number ");
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 38

Coding the Requester Program

! Check that credit-card number is all numeric:

 I := 0;
 WHILE I < 16 DO
 BEGIN
 IF SBUFFER[I] < "0" OR SBUFFER[I] > "9" THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Credit Card Number Must Be All Numeric");
 PRINT^STR("Please Enter Valid Credit-Card Number");
 GOTO REPEAT^CCN;
 END;
 I := I + 1;
 END;

! Put credit-card number in order-request message:
 ORDER^REQUEST.CCN ':=' SBUFFER[0] FOR COUNT^READ;

!---------------------------
! Prepare part of order
! request that does not
! need user input
!---------------------------

! Copy part number from PART^REC:

 ORDER^REQUEST.PART^NUMBER ':=' PART^REC.PART^NUMBER
 FOR 10;

! Copy part description from PART^REC:

 ORDER^REQUEST.PART^DESC ':=' PART^REC.PART^DESC FOR 48;

!---------------------------
! Process the request
!---------------------------

! Put request record into I/O buffer:

 SBUFFER ':=' ORDER^REQUEST for ($LEN(ORDER^REQUEST) / 2);

! Send request to server:

 CALL WRITEREADX(SERV2^NUM,SBUFFER,$LEN(ORDER^REQUEST),
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(SERV2^NUM);

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 39

Coding the Requester Program

! Copy reply from server into ORDER^REPLY structure:

 ORDER^REPLY ':=' SBUFFER FOR $LEN(ORDER^REPLY);

! If stock depleted since checking, inform user and return:

 IF ORDER^REPLY.QUANTITY^ON^HAND < 0 THEN
 BEGIN
 PRINT^BLANK;
 PRINT^STR("Insufficient Stock for this Order ");
 RETURN;
 END;

! Prepare the order number for printing in blocks of
! 6 characters separated by spaces:

 PRINT^BLANK;
 START^LINE;
 PUT^STR("Order Number is: ");
 PUT^STR(ORDER^REPLY.ORDER^NUMBER[0] FOR 6);
 PUT^STR(" ");
 PUT^STR(ORDER^REPLY.ORDER^NUMBER[6] FOR 6);
 PUT^STR(" ");
 PUT^STR(ORDER^REPLY.ORDER^NUMBER[12] FOR 6);
 PUT^STR(" ");
 PUT^STR(ORDER^REPLY.ORDER^NUMBER[18] FOR 6);
 PUT^STR(" ");
 PUT^STR(ORDER^REPLY.ORDER^NUMBER[24] FOR 4);

! Print order number on the terminal:

 PRINT^LINE;
END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 40

Coding the Requester Program

!--
! Procedure to read an order record from the $SER3 process.
! This procedure prompts the user for an order number, which
! it checks for validity before sending it to the $SER3
! server process. The $SER3 process returns the order record
! (if there is one) from the corresponding the order file and
! then this procedure prints the record on the terminal.
!
! This procedure is called from the main procedure when the
! user selects "q" from the main menu.
!--

PROC READ^ORDER;
BEGIN

 INT COUNT^READ;
 INT ERROR;
 INT I;

 !-----------------------------
 ! Prompt for and validate an
 ! order record number.
 !-----------------------------

 REPEAT:

 ! Request an order number from the terminal user:

 START^LINE;
 PUT^STR("Enter Order Number: ");
 CALL WRITEREADX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,COUNT^READ);
 IF <> THEN CALL FILE^ERRORS(TERM^NUM);

 ! Check that order number contains 28 characters. Request
 ! another order number if not:

 IF COUNT^READ <> 28 THEN
 BEGIN

 ! Print diagnostic for failed test:

 PRINT^BLANK;
 PRINT^STR ("Order Number Must Have 28 Characters");
 PRINT^STR ("Please Type Another Order Number");
 PRINT^BLANK;
 GOTO REPEAT;
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 41

Coding the Requester Program

 ! Check whether order number all numeric. Request
 ! another order number if not:

 I := 0;
 WHILE I < 28 DO
 BEGIN
 IF SBUFFER[I] < "0" OR SBUFFER[I] > "9" THEN
 BEGIN

 ! Print diagnostic for failed test:

 PRINT^BLANK;
 PRINT^STR("Order Number Must Be Numeric");
 PRINT^STR("Please Type Another Order Number");
 PRINT^BLANK;
 GOTO REPEAT;
 END;
 I := I + 1;
 END;

 !------------------------------
 ! Get the order record from
 ! the server.
 !------------------------------

 ! Send order number to server:

 CALL WRITEREADX(SERV3^NUM,SBUFFER,$LEN(ORDER^QUERY),
 BUFSIZE);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(SERV3^NUM,ERROR);
 CASE ERROR OF
 BEGIN

 ! If server could not find a record with supplied
 ! key (order number), print message and request
 ! another order number:

 11 -> BEGIN

 ! Print diagnostic:

 PRINT^BLANK;
 PRINT^STR("No Such Order Number");
 PRINT^STR("Please Type Another Order Number");
 PRINT^BLANK;
 END;

 ! Other error, call FILE^ERRORS to display error
 ! and exit the process:

 OTHERWISE -> CALL FILE^ERRORS(SERV3^NUM);
 END;
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 42

Coding the Requester Program

!---------------------------------
! Print the contents of the order
! record on the terminal.
!---------------------------------

 PRINT^BLANK;
 PRINT^BLANK;

! Copy returned information into ORDER^REC structure:

 ORDER^REC ':=' SBUFFER FOR ($LEN(ORDER^REC));
 PRINT^STR("ORDER RECORD INFORMATION");

! Print the order number in groups of 6 characters,
! separated by spaces:

 PRINT^STR("Order Number: " &
 ORDER^REC.ORDER^NUMBER[0] FOR 6 & " " &
 ORDER^REC.ORDER^NUMBER[6] FOR 6 & " " &
 ORDER^REC.ORDER^NUMBER[12] FOR 6 & " " &
 ORDER^REC.ORDER^NUMBER[18] FOR 6 & " " &
 ORDER^REC.ORDER^NUMBER[24] FOR 4);

! Print the customer's name:

 PRINT^BLANK;
 PRINT^STR("Customer Name: " &
 ORDER^REC.NAME.LAST FOR 20 &
 ORDER^REC.NAME.FIRST FOR 20 &
 ORDER^REC.NAME.INITIAL FOR 1);

! Print the customer's address:
 PRINT^STR("Customer's Address: " &
 ORDER^REC.ADDRESS FOR 48);

! Print the customer's city:

 PRINT^STR(" " &
 ORDER^REC.CITY FOR 24);

! Print the customer's zip code:

 PRINT^STR(" " &
 ORDER^REC.ZIP[0] FOR 2 & " " &
 ORDER^REC.ZIP[2] FOR 5);

! Print credit-card number in groups of 4 characters,
! separated by spaces:

 PRINT^BLANK;
 PRINT^STR("Credit-Card Number: " &
 ORDER^REC.CCN[0] FOR 4 &
 " " & ORDER^REC.CCN[4] FOR 4 &
 " " & ORDER^REC.CCN[8] FOR 4 &
 " " & ORDER^REC.CCN[12] FOR 4);

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 43

Coding the Requester Program

! Print the part number:

 PRINT^BLANK;
 PRINT^STR("Part Number: " &
 ORDER^REC.PART^NUMBER FOR 10);

! Print the part description:

 PRINT^STR("Part description: " &
 ORDER^REC.PART^DESC FOR 48);

! Print the quantity ordered:

 START^LINE;
 PUT^STR("Quantity Ordered: ");
 PUT^INT(ORDER^REC.QTY^ORDERED);
 PRINT^LINE;

! Print date ordered:

 CALL CONTIME(DATE^AND^TIME,ORDER^REC.DATE^ORDERED[0],
 ORDER^REC.DATE^ORDERED[1],
 ORDER^REC.DATE^ORDERED[2]);
 START^LINE;
 PUT^STR("Date Ordered: ");
 PUT^INT(DATE^AND^TIME[1]);
 PUT^STR("-");
 PUT^INT(DATE^AND^TIME[2]);
 PUT^STR("-");
 PUT^INT(DATE^AND^TIME[0]);
 PRINT^LINE;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 44

Coding the Requester Program

! Print date shipped to customer:

 START^LINE;
 PUT^STR("Date Shipped: ");
 IF ORDER^REC.DATE^SHIPPED = 0 THEN
 PUT^STR("Order Not Yet Shipped ")
 ELSE
 BEGIN
 CALL CONTIME(DATE^AND^TIME,PART^REC.SHIPMENT^DUE[0],
 PART^REC.SHIPMENT^DUE[1],
 PART^REC.SHIPMENT^DUE[2]);
 START^LINE;
 PUT^INT(DATE^AND^TIME[1]);
 PUT^STR("-");
 PUT^INT(DATE^AND^TIME[2]);
 PUT^STR("-");
 PUT^INT(DATE^AND^TIME[0]);
 END;
 PRINT^LINE;

! Print shipping status:

 PRINT^STR("Shipping Status: " &
 ORDER^REC.SHIPPING^STATUS FOR 2);

 PRINT^BLANK;
 PRINT^BLANK;
END;

!--
! Procedure closes all servers opened by this process and
! then exits. This procedure is called from the main
! procedure when the user selects "x" from the main menu.
!--

PROC EXIT^PROGRAM;
BEGIN
 CALL FILE_CLOSE_(SERV1^NUM);
 CALL FILE_CLOSE_(SERV2^NUM);
 CALL FILE_CLOSE_(SERV3^NUM);
 CALL PROCESS_STOP_;
END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 45

Coding the Requester Program

!--
! Procedure opens a server process. Prompts the user to try
! again if the open fails.
!--

PROC OPEN^SERVER(PROCESS^NAME,PROCESS^NAMELEN,SERVER^NUM);
STRING .PROCESS^NAME;
INT PROCESS^NAMELEN;
INT .SERVER^NUM;

BEGIN
 INT ERROR;

TRY^AGAIN:

 ERROR := FILE_OPEN_(PROCESS^NAME:PROCESS^NAMELEN,
 SERVER^NUM);
 IF ERROR <> 0 THEN
 BEGIN
 PRINT^STR("Could not open server");
 SBUFFER ':=' "Do you wish to try again? (y/n): "
 -> @S^PTR;
 CALL WRITEREADX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE);
 IF (SBUFFER[0] = "n") OR (SBUFFER[0] = "N") THEN
 CALL PROCESS_STOP_
 ELSE GOTO TRY^AGAIN;
 END;
END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 46

Coding the Requester Program

!--
! Procedure handles creating and opening servers. If the
! server already exists it calls OPEN^SERVER to open it. If
! it does not exist, it creates the server and sends it the
! standard process initialization sequence.
!--

PROC CREATE^AND^OPEN^SERVER(SERVER^NUM,SERVER^OBJECT^NAME,
 OBJFILE^NAMELEN,PROCESS^NAME,
 PROCESS^NAMELEN);

INT .SERVER^NUM; !file number of server process
STRING .SERVER^OBJECT^NAME; !name of server object file
INT OBJFILE^NAMELEN;
STRING .PROCESS^NAME; !name of server process
INT PROCESS^NAMELEN;

BEGIN
 INT ERROR;
 INT ERROR^DETAIL;

! Check whether process already running. If so, open it.
! If not, create it and open it:

 ERROR := PROCESS_GETPAIRINFO_(
 !process^handle!,
 PROCESS^NAME:PROCESS^NAMELEN);

! If the process exists, open the server:

 CASE ERROR OF
 BEGIN

 0, 4 -> BEGIN

 ! The process already exists; open it:

 CALL OPEN^SERVER(PROCESS^NAME,PROCESS^NAMELEN,
 SERVER^NUM)

 END;

 9 -> BEGIN

 ! The process does not exist; create it and open it,
 ! send it a Startup message, close it, and then reopen
 ! it:

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 47

Coding the Requester Program

 ! Create process:

 ERROR := PROCESS_CREATE_(
 SERVER^OBJECT^NAME:OBJFILE^NAMELEN,
 !library^filename:library^file^len!,
 !swap^filename:swap^file^len!,
 !ext^swap^file^name:ext^swap^len!,
 !priority!,
 !processor!,
 !process^handle!,
 ERROR^DETAIL,
 ZSYS^VAL^PCREATOPT^NAMEINCALL,
 PROCESS^NAME:PROCESS^NAMELEN);
 IF ERROR <> 0 THEN
 BEGIN
 PRINT^STR("Unable to create server process");
 CALL PROCESS_STOP_;
 END;

 ! Open the new server process:

 CALL OPEN^SERVER(PROCESS^NAME,PROCESS^NAMELEN,
 SERVER^NUM);

 ! Send the server a Startup message:

 START^UP^MESSAGE.MSG^CODE := -1;
 CALL WRITEX(SERVER^NUM,START^UP^MESSAGE,
 MESSAGE^LEN);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(SERVER^NUM,ERROR);
 IF ERROR <> 70 THEN
 BEGIN
 START^LINE;
 PUT^STR("Could not write Startup message");
 PUT^STR(" to server");
 PRINT^LINE;
 CALL PROCESS_STOP_;
 END;
 END;

 ! Close the server:

 ERROR := FILE_CLOSE_(SERVER^NUM);

 ! Reopen the server:

 CALL OPEN^SERVER(PROCESS^NAME,PROCESS^NAMELEN,
 SERVER^NUM);
 END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 48

Coding the Requester Program

 OTHERWISE -> BEGIN

 ! Unexpected error return from PROCESS_GETPAIRINFO_:

 PRINT^STR("Unexpected error ");
 END;

 END;
END;

!--
! Procedure to process an invalid command. The procedure
! informs the user that the selection was other than "r,"
! "p," "q," or "x."
!--

PROC INVALID^COMMAND;
BEGIN

 PRINT^BLANK;

! Inform the user that the selection was invalid and then
! return to prompt again for a valid function:

 PRINT^STR ("INVALID COMMAND: " &
 "Type either 'r,' 'p,' 'q,' or 'x'");
END;

!--
! Procedure to save the Startup message
!--

PROC START^IT(RUCB,START^DATA,MESSAGE,
 LENGTH,MATCH) VARIABLE;

INT .RUCB,
 .START^DATA,
 .MESSAGE,
 LENGTH,
 MATCH;

BEGIN

! Copy the Startup message into the START^UP^MESSAGE
! structure and save the message length:

 START^UP^MESSAGE.MSG^CODE ':=' MESSAGE[0] FOR LENGTH/2;
 MESSAGE^LEN := LENGTH;
END;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 49

Coding the Requester Program

!---
! Procedure to initialize the program. It calls
! INITIALIZER to save the Startup message. It opens the
! terminal using the IN file from the Startup message and
! calls CREATE^AND^OPEN^SERVER to create and open each of
! the server processes.
!---

PROC INIT;
BEGIN
 STRING .OBJECT^FILE[0:MAXFLEN - 1]; !server object file
 ! name
 INT OBJFILELEN;
 STRING .SERVER^NAME[0:MAXFLEN - 1]; !process name for
 ! servers
 INT SERVERLEN;
 STRING .TERM^NAME[0:MAXFLEN - 1]; !file name for
 ! terminal
 INT TERMLEN;
 INT ERROR;

! Read and process Startup message:

 CALL INITIALIZER(!rucb!,
 !specifier!,
 START^IT);

! Open the home terminal. Convert the IN file from the
! Startup message into a D-series file name, and then open
! it:

 !try with this temporary code

 ERROR := OLDFILENAME_TO_FILENAME_(START^UP^MESSAGE.INFILE,
 TERM^NAME:MAXFLEN,
 TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;
 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERM^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open $SER1, create it if it does not already exist:

 SERVER^NAME ':=' "$SER1" -> @S^PTR;
 SERVERLEN := @S^PTR '-' @SERVER^NAME;
 OBJECT^FILE ':=' "=SER1" -> @S^PTR;
 OBJFILELEN := @S^PTR '-' @OBJECT^FILE;
 CALL CREATE^AND^OPEN^SERVER(SERV1^NUM,OBJECT^FILE,
 OBJFILELEN,SERVER^NAME,SERVERLEN);

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 50

Coding the Requester Program

! Open $SER2, create it if it does not already exist:

 SERVER^NAME ':=' "$SER2" -> @S^PTR;
 SERVERLEN := @S^PTR '-' @SERVER^NAME;
 OBJECT^FILE ':=' "=SER2" -> @S^PTR;
 OBJFILELEN := @S^PTR '-' @OBJECT^FILE;
 CALL CREATE^AND^OPEN^SERVER(SERV2^NUM,OBJECT^FILE,
 OBJFILELEN,SERVER^NAME,SERVERLEN);

! Open $SER3, create it if it does not already exist:

 SERVER^NAME ':=' "$SER3" -> @S^PTR;
 SERVERLEN := @S^PTR '-' @SERVER^NAME;
 OBJECT^FILE ':=' "=SER3" -> @S^PTR;
 OBJFILELEN := @S^PTR '-' @OBJECT^FILE;
 CALL CREATE^AND^OPEN^SERVER(SERV3^NUM,OBJECT^FILE,
 OBJFILELEN,SERVER^NAME,SERVERLEN);
END;

!--
! This is the main procedure. It calls the INIT procedure to
! initialize and then goes into a loop calling GET^COMMAND
! to get the next user request and then calls a procedure
! to carry out the selected request.
!--

PROC REQUESTER MAIN;
BEGIN
 STRING CMD;

! Perform initialization:

 CALL INIT;

! Loop indefinitely until user selects function "x":

 WHILE 1 DO
 BEGIN

 ! Prompt for the next command:

 CMD := GET^COMMAND;

Writing a Requester Program

Guardian Programmer’s Guide — 421922-014
21 - 51

Coding the Requester Program

 ! Call the function selected by user:

 CASE CMD OF
 BEGIN

 "r", "R" -> CALL READ^PART;

 "p", "P" -> CALL PROCESS^ORDER;

 "q", "Q" -> CALL READ^ORDER;

 "x", "X" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL INVALID^COMMAND;
 END;
 END;
END;

Guardian Programmer’s Guide — 421922-014
22 - 1

22 Writing a Server Program
This section describes programming techniques that are useful when writing server
programs. With Section 21, Writing a Requester Program, this section summarizes
many of the techniques and procedures described earlier in this manual. You should
be familiar with the information contained in Sections 1 through 20 before reading this
section.

In addition to introducing the functions of a server process and some of the more
common programming models, this section also describes how to add security to your
requester/server application by limiting the number of requesters that can open a
server and keeping track of which requesters have the server open.

The last part of this section provides sample server programs that form part of an
application with the requester program described and shown in Section 21, Writing a
Requester Program.

Functions of a Server Process
The most common use for server processes is in database applications, where a
server process provides a database service. This service is usually to perform some
application-dependent function on the database, such as reading a record or updating
an account.

Sections 2 through 5 of this guide describe how to access data files using Guardian
and Enscribe procedure calls. How a server reads requests from the requester using
the $RECEIVE file is described in Section 6, Communicating With Processes.

Multithreaded and Single-Threaded Servers
Servers can be single-threaded or multithreaded. In the single-threaded case, the
server process reads a message from $RECEIVE, processes it, replies to it, and then
reads the next message.

In a multithreaded server, the server process can read several messages and process
them concurrently. To reply to the correct message, the server uses message tags.

Figure 22-1 shows the difference between single-threaded and multithreaded servers.
For details of multithreaded servers, see Section 6, Communicating With Processes.

Note. Not all servers are database servers. The requester/server application design model is
general and can be used wherever it is desirable to separate functions of the application into
different processes.

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 2

Receive-Depth

Receive-Depth
The receive-depth parameter is used by servers for opening $RECEIVE. This
parameter determines how many times the server can call READUPDATE before it has
to call REPLY.

Figure 22-1. Single-Threaded and Multithreaded Servers

Receive-depth value Description

0 Indicates that no calls to READUPDATE can be made. The server
must use READ to receive messages. REPLY is not allowed (the
file system completes the message exchange as soon as the
message is read).

1 Is used for single-threaded servers (only one message is
processed at a time by the server). In this case, if the requester
has an active TMF transaction at the time the message is sent,
the transaction is automatically made current in the server. When
REPLY is called, the transaction is reset.

> 1 (greater than 1) Is used for multithreaded servers (multiple messages are
processed simultaneously by the server). If a multithreaded
server is used by requesters with active TMF transactions, the
server must call ACTIVATERECEIVETRANSID and pass the
message tag value returned by FILE_GETRECEIVEINFO_, in
order to make a previous TMF transaction current. Note that even
though the server can have up to receive-depth messages
queued internally, it can have only one current TMF transaction at
a time.

VST108.VSD

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 3

Context-Free Servers

Note that COBOL85 programs do not support multithreaded servers. You cannot open
$RECEIVE with receive-depth value greater than 1 unless you use the ENTER verb to
call the file system FILE_OPEN_ procedure directly. (This is not recommended,
because it might adversely interfere with the COBOL85 RTL I/O mechanisms.) See
the COBOL85 Manual for details.

 If you use a multithreaded server as a pathway serverclass, make sure that the value
of TCP SERVER LINKDEPTH is less than or equal to the receive-depth value. Note
that the LINKDEPTH value must be 1 in all other cases. For single-threaded servers, a
LINKDEPTH value greater than 1 disturbs the automatic load balancing feature in
Pathway.

Context-Free Servers
Generally, you should design your server processes to be context free. Such servers
have special advantages in application design. If the server retains no context, then
each requester can request service from a given server without concern for what the
server has previously done. Moreover, if multiple servers with identical function are
available, then a requester can ask for service from any such server.

Maintaining an Opener Table
You can provide security to a server process by using an opener table. This table is
maintained by the server and contains a list of all processes that have the server open.
This table provides two functions:

• It allows you to know the number of processes that have the server open.

• It allows you to check that each message received originated from a process that
has the server open

The Opener Table
An opener table typically consists of a sequence of 22-word entries. Each 22-word
entry either is null or contains, in the first 10 words, the process handle of a requester
that has this server open. If the process handle of a requester is present, the entry
also contains the file number that the requester is using for the open. (Using a file
number allows a requester to open a server more than once.) Associated with the
opener table is an integer variable indicating the current number of openers (entries in
the table).

The following declaration describes a typical opener table. Here, the maximum length
of the table is set by the literal MAX^OPENERS:

INT NUMBER^OF^OPENERS; !number of requesters that
 ! have the server open

!Opener table contains information about who has the server
!open:
STRUCT .OPENER^TABLE[1:MAX^OPENERS];

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 4

Getting Message Information

BEGIN
 INT PROCESS^HANDLE [0:9]; !process handle of opener
 INT RESERVED^HANDLE [0:9]; !reserved, filled with -1; this
 ! field is required for
OPENER_LOST_
 INT FILE^NUMBER; !file number used by opener
 INT RESERVED^FILE^NUMBER; !for use with NonStop pairs
END;

An opener table entry can have other fields defined in addition to those shown above.
For example, to support full NonStop operation with opens from process pairs, the
opener table entry would use fields, where the reserved areas are shown, for the
backup open from a process pair; it would also have a field for the sync ID value.
However, if neither NonStop operation nor opener context is to be supported, it is
simpler to use only the two fields defined above, which can support backup opens by
treating them as independent opens. The examples in this section use this simpler
approach.

Getting Message Information
Before referring to your opener table, you first need to analyze the message read from
$RECEIVE to determine what to do:

• If the message read from $RECEIVE is an Open message, you need to add the
process handle of the requester to the opener table.

• If the message read from $RECEIVE is a Close message, you need to remove the
process handle of the requester from the opener table.

• If the message read from $RECEIVE is a user request message, you need to
check that the process handle of the requester is in the opener table before
processing the request.

You can determine whether the received message is a system message or a user
message by calling the FILE_GETINFO_ procedure immediately after reading from
$RECEIVE. If the error number returned by FILE_GETINFO_ is 6, then the message
is a system message. If the error number is 0, then the message is a user message.

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT);
CALL FILE_GETINFO_(RECV^NUM,ERROR);
IF ERROR = 6 THEN... !system message
IF ERROR = 0 THEN... !user message

In addition to checking for a system message, you should also get the process handle
and file number of the process that sent the message. You will use the process handle
and file number for adding an entry to the opener table or for comparing with entries
that already exist in the opener table.

You can determine the process handle and file number of the message sender by
calling the FILE_GETRECEIVEINFO_ procedure. This procedure returns 17 words of

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 5

Adding a Requester to the Opener Table

information about the message. Words 6 through 15 of the returned information
contain the process handle of the message sender; word 3 contains the file number:

CALL FILE_GETRECEIVEINFO_(RECEIVE^INFO);
PROCESS^HANDLE ':=' RECEIVE^INFO[6] for 10;
FILE^NUMBER := RECEIVE^INFO[3];

Adding a Requester to the Opener Table
If the message received on $RECEIVE is an Open message (system message -103),
then your program must try to add the requester to the opener table. First, you must
scan the table, looking for a blank entry; then you can write the process handle into
that space.

If the table is full, then you should reject the open attempt by returning error 12 to the
requester process.

The following code attempts to add a process handle to the opener table. It assumes
that a blank entry in the opener table contains -1 in each word.

!For an Open message (using literal from ZSYSTAL file):
IF BUFFER[0] = ZSYS^VAL^SMSG^OPEN THEN
BEGIN

 !Return "file in use" error if opener table is full:
 ERROR^NUMBER := 12;

 !Put the process ID into the opener table at the first
 !empty location and increment the count of openers. Note
 !that you need check only the first word of the process
 !handle entry in the table; if it is -1, then the entry is
 !empty:
 I := 1;
 DONE := 0;
 WHILE I <= MAX^OPENERS AND DONE = 0 DO
 BEGIN
 IF OPENER^TABLE[I].PROCESS^HANDLE[0] = -1 THEN
 BEGIN
 OPENER^TABLE[I].PROCESS^HANDLE[0] ':='
 CALLING^PROCESS^PID FOR 10 WORDS;
 OPENER^TABLE[I].FILE^NUMBER := CALLING^PROCESS^FNUM;
 NUMBER^OF^OPENERS :=
 NUMBER^OF^OPENERS + 1;
 ERROR^NUMBER := 0;
 DONE := -1;
 END;
 I := I + 1;
 END;

 WCOUNT := 0;
 CALL REPLY(BUFFER,
 WCOUNT,
 !count^written!,
 !message^tag!,

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 6

Checking a Request Against the Opener Table

 ERROR^NUMBER);
END;

Checking a Request Against the Opener Table
If the message received on $RECEIVE is a user message, then you need to check that
the sender of the message has the server open. To do this, you scan each entry of the
opener table looking for a match with the process handle and file number of the
message sender. If no match is found, then you should reject the user request with
error number 60. If a match is found, process the message.

The following example checks the opener table for a match:

I := 1;
WHILE I <= MAX^OPENERS DO
BEGIN
 IF RECEIVE^INFO[6] '='
 OPENER^TABLE[I].PROCESS^HANDLE[0] FOR 10 WORDS
 AND RECEIVE^INFO[3] = OPENER^TABLE[I].FILE^NUMBER THEN
 BEGIN

 !Process the user message
 .
 .
 .
 ERROR^NUMBER := 0;
 RETURN;
 END;
 I := I + 1;
END;
ERROR^NUMBER := 60;

Deleting a Requester From the Opener Table
The server process must delete the requester from its opener table whenever a
requester no longer needs the service. The following situations can cause this:

• The requester closes the server.

• The CPU on which a requester is running fails.

• The network connection between the requester and server fails.

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 7

Deleting a Requester From the Opener Table

When the Requester Closes the Server
When a requester process closes a server, the server receives a Close message
(system message -104). On receipt of this message, the server must delete the
corresponding entry from the opener table. It does this by finding the process handle
and file number in the opener table and then deleting the entry by writing -1 over each
word.

When a CPU or Network Connection Fails
To be able to delete an entry from the opener table when the CPU of an opener fails or
when the network connection between the requester and server fails, your server
process must do the following:

• Call the MONITORCPUS procedure so that the server will receive CPU down
messages (system message -2) on $RECEIVE

• Call the MONITORNET procedure so that the server will receive Remote CPU
down (system message -100) and Node Down (system message -110) messages

• Check $RECEIVE periodically for receipt of the CPU down, Remote CPU down, or
Node down message

• On receipt of a CPU down, Remote CPU down, or Node down message, scan the
opener table for openers that were running on the failed CPU

• Delete the opener from the opener table

The following example performs these tasks. It uses the OPENER_LOST_ procedure
to check system messages for information about lost openers. It deletes openers from
the opener table if the received message is a processor down (system message -2),
Remote processor down (system message -100), or Node Down (system message -
110) message.:

!Check for processor down messages from all local processor
!modules:
CPU^MASK.:= -1;
CALL MONITORCPUS(CPU^MASK);

!Check for failure of a remote processor or a remote node, or
!for failure to communicate with the remote node:
CALL MONITORNET(1);
 .
 .

!Read from $RECEIVE:
CALL READX(RECV^NUM,BUFFER,BUFSIZE,COUNT^READ);
IF <> THEN
BEGIN
 CALL FILE_GETINFO_(RECV^NUM,ERROR);
 IF ERROR = 6 THEN !system message received
 BEGIN
 .

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 8

Writing a Server Program: An Example

 !Check for lost openers:
 INDEX := -1;

 DO
 BEGIN
 STATUS := OPENER_LOST_(BUFFER:COUNT^READ,
 OPENER^TABLE[1],
 INDEX,
 MAX^OPENERS,
 $LEN(OPENER^TABLE[1]));
 IF STATUS = 6 THEN
 NUMBER^OF^OPENERS := NUMBER^OF^OPENERS - 1;
 END
 UNTIL STATUS = 0 OR STATUS = 2
 OR STATUS = 3 OR STATUS = 7;
 .
 .
 !Process other system messages.
 .
 .
 END;

Writing a Server Program: An Example
The sample server programs given in this section provide service to the requester
program described in Section 21, Writing a Requester Program. The servers and the
requester together provide the following application functions:

• Queries the database to find out how much of a given item is on hand.

• Processes an order by updating the inventory database and creating an order
record.

• Queries the status of an existing order to find out who placed the order, when the
order was placed, and whether the order has been shipped.

A separate server process provides database service for each of the above functions.

Application Overview
The application database is made up of part records and order records. The part
records are contained in the inventory file and the order records in the orders file.

The Inventory File
The inventory file contains one record for each item that the store carries. A part
record contains the following information about a given part:

• The part number

• A brief description of the item

• The quantity of the item currently on hand

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 9

Application Overview

• The unit price of the item

• The name of the supplier

• If an order has been placed with the supplier, the quantity ordered and the
expected delivery date

The Orders File
The orders file contains one order record for each item ordered by a customer. The
orders file contains the following information:

• The part number of the item ordered

• A brief description of the item ordered

• The quantity ordered

• The name, address, and credit-card number of the customer

• The date when the order was placed

• The date that the order was shipped (if it has been shipped)

• The status of the order, indicating whether the order has been shipped, paid for,
and so on

The Role of the Server Processes in the Application
Figure 22-2 shows the role of server processes in the application.

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 10

The Part-Query Server ($SER1)

The requester chooses the server to send a request to depending on the function
requested by the user:

• If the user requests to query a part record, then the requester obtains the part
record by sending a request to the part-query server ($SER1). The $SER1
process obtains the information from the inventory file and returns it to the
requester.

• If the user requests to process an order, the requester sends a message to the
process-order server ($SER2). This server uses the information it receives to
update the inventory level in the inventory file and to create an order record and
put it in the orders file. The server returns the order number to the requester.

• If the user wants to query an existing order record, then the requester sends a
message to the order-query server ($SER3), which queries the orders file and then
sends the corresponding order record back to the requester.

See Section 21, Writing a Requester Program, for a detailed description of the
requester process.

The Part-Query Server ($SER1)
Figure 22-3 shows the internal function of the part-query server, in terms of its major
procedures.

Figure 22-2. Server Processes in the Example Application

VST109.VSD

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 11

The Part-Query Server ($SER1)

The following paragraphs describe the major procedures in detail.

The SERVER Procedure
The SERVER procedure is the main procedure for the part-query server. It provides
three main functions:

• Calls INIT to perform server initialization

• Calls a procedure based on messages received on $RECEIVE

• Replies to the message read from $RECEIVE

The server-initialization phase performed by INIT involves reading the Startup
message, opening the home terminal, and opening the inventory file.

The rest of the SERVER procedure responds to messages read from $RECEIVE. If
the message is a system message, then the procedure calls the
PROCESS^SYSTEM^MESSAGE procedure. If the message received is a user
message, then the procedure calls the PROCESS^USER^REQUEST procedure.
Before calling either of these procedures, the SERVER procedure calls the
FILE_GETRECEIVEINFO_ system procedure to get the process handle of the process
that sent the message. This process handle is used later for controlling access to the
server.

Figure 22-3. Relationship Between Major Procedures in the Part-Query Server

VST110.VSD

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 12

The Part-Query Server ($SER1)

On return from either the PROCESS^SYSTEM^MESSAGE or
PROCESS^USER^REQUEST procedure, the SERVER procedure replies to the
message. For a user message, the reply consists of a part record or an error
indication. For a system message, the reply consists of an error indication: 0 for a
successful operation or some positive number for an unsuccessful operation.

Procedures for Handling System Messages
Procedures for handling system messages include the
PROCESS^SYSTEM^MESSAGE, PROCESS^OPEN^MESSAGE,
PROCESS^CLOSE^MESSAGE, and PROCESS^OTHER^MESSAGE procedures.
The PROCESS^SYSTEM^MESSAGE procedure is called from the SERVER
procedure whenever the server reads a system message from the $RECEIVE file.
PROCESS^SYSTEM^MESSAGE calls one of the other procedures for handling
system messages, depending on whether the system message is an Open message, a
Close message, or some other system message.

• If the system message is an Open message, then
PROCESS^SYSTEM^MESSAGE calls the PROCESS^OPEN^MESSAGE
procedure. This procedure tries to add an entry to the server’s opener table. It
checks each 10-word entry in turn until it finds a blank entry (consisting of a -1 in
each word). The procedure then copies the process handle of the requester into
the blank entry and returns to the SERVER procedure with error number zero.

If the opener table is full, then the process returns error 12 to the SERVER
procedure.

• If the system message is a Close message, then PROCESS^SYSTEM^MESSAGE
calls the PROCESS^CLOSE^MESSAGE procedure to check that the process
handle of the sending process exists in the opener table and to remove the entry.
If the process handle exists in the opener table, then error number zero is returned
to the SERVER process; otherwise, error 60 is returned.

• If the system message is any system message other than Open or Close, then
PROCESS^SYSTEM^MESSAGE calls the PROCESS^OTHER^MESSAGE
procedure to make updates to the opener table if the message concerns a network
connection or CPU failure.

The PROCESS^USER^REQUEST Procedure
The PROCESS^USER^REQUEST procedure is called by the SERVER procedure
when a user message is read from the $RECEIVE file. Its function is to read a
specified record from the inventory file.

First, the PROCESS^USER^REQUEST procedure checks each entry in the opener
table to see whether the sender of the user message has this server open. If not, then
the procedure returns error number 60 to the SERVER procedure.

If the requesting procedure is in the server’s opener table, then the
PROCESS^USER^REQUEST procedure uses the part number provided in the user

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 13

The Part-Query Server ($SER1)

message as a key to the inventory file to access the desired record. If the record
exists, then the record is returned to the SERVER procedure with an error condition of
zero. If the record does not exist, then the file-system error number is returned without
a part record.

The Code for the Part-Query Server ($SER1)
The code for the part-query server program appears on the following pages.

?INSPECT, SYMBOLS, NOCODE
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST

!-----------------------
!Literals:
!-----------------------

LITERAL MAX^OPENERS = 2, !maximum number of openers
 ! allowed
 EXACT = 2, !for exact key positioning
 MAXFLEN = ZSYS^VAL^LEN^FILENAME,
 !maximum length for file name
 BUFSIZE = 512; !size of I/O buffer

!------------------------
!Global data structures:
!------------------------

!Data structure for Startup message:

STRUCT .START^UP^MESSAGE;
BEGIN
 INT MSG^CODE;
 STRUCT DEFAULT;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 END;
 STRUCT INFILE; !IN file name
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 INT FILENAME[0:3];
 END;
 STRUCT OUTFILE; !OUT file name
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 INT FILENAME[0:3];
 END;
 STRING PARAM[0:529]; !parameter string
END;
INT MESSAGE^LEN; !length of Startup message

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 14

The Part-Query Server ($SER1)

!Message received from requester. Contains a part number:

STRUCT PART^REQUEST;
BEGIN
 STRING PART^NUMBER[0:9]; !10-digit part number
END;

!Message returned to requester. Contains part record
!information obtained from the inventory file:

STRUCT .PART^REC;
BEGIN
 STRING PART^NUMBER[0:9]; !10-digit part number
 STRING PART^DESC[0:47]; !description of part
 STRING SUPPLIER[0:23]; !name of part supplier
 INT QUANTITY^ON^HAND; !how many of this part on
 ! hand
 INT UNIT^PRICE; !cost of one part in dollars
 INT ORDER^PLACED[0:2]; !date when part last ordered
 ! from supplier
 INT SHIPMENT^DUE[0:2]; !date shipment due from
 INT QUANTITY^ORDERED; !how many ordered from
END; ! supplier

!Data structure for the opener table:

STRUCT .OPENER^TABLE; !information about who has
BEGIN ! the server open
 INT CURRENT^COUNT; !how many requesters have
 ! this server open
 STRUCT OCB[1:MAX^OPENERS]; !one entry for each opener
 BEGIN

 !Process handle of an opener:

 INT PROCESS^HANDLE[0:9]; !process handle of opener
 INT RESERVED^HANDLE[0:9]; !reserved, filled with -1
 INT FILE^NUMBER; !file number used by opener
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 15

The Part-Query Server ($SER1)

!------------------------
!Other global variables:
!------------------------

STRING .S^PTR; !pointer to end of string

INT TERM^NUM; !file number for terminal
INT .BUFFER[0:BUFSIZE/2 - 1];!I/O buffer
STRING .SBUFFER := @BUFFER[0] '<<' 1; !string pointer to I/O
 ! buffer
INT REPLY^ERROR; !error value returned to
 ! requester
INT INV^FNUM; !file number for inventory
 ! file
INT REPLY^LEN; !length of reply buffer
INT RECV^NUM; !file number for $RECEIVE
INT .RECEIVE^INFO[0:16]; !returned by
 ! FILE_GETRECEIVEINFO_

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,FILE_OPEN_,
? FILE_GETINFO_,PROCESS_STOP_,
? FILE_GETRECEIVEINFO_,KEYPOSITION,DNUMOUT,
? WRITEX,OLDFILENAME_TO_FILENAME_,READUPDATEX,
? REPLYX)
?LIST

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 16

The Part-Query Server ($SER1)

!--
! Here are a few DEFINEs to make it a little easier to
! format and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END; #;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 17

The Part-Query Server ($SER1)

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name and its length
! and the error number. This procedure is used when the
! file is not open, so there is no file number for it.
!
! The procedure also stops the program after displaying the
! error message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error from $SER1 ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME FOR LEN);

 CALL WRITEX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program:

 CALL PROCESS_STOP_;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 18

The Part-Query Server ($SER1)

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number,
! and FILE^ERRORS^NAME is then called to display the
! information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN-1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

!---
! Procedure to write a message on the terminal and check
! for any error. If there is an error, this procedure
! attempts to write a message about the error and then
! stops the program.
!---

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERM^NUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERM^NUM);
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 19

The Part-Query Server ($SER1)

!--
! Procedure to process a request for a part record. This
! procedure checks that the process that sent the message is
! in the opener table before retrieving the part record from
! the inventory file using the key supplied in the part
! number.
!--

PROC PROCESS^USER^REQUEST;

BEGIN
 INT POSITIONING^MODE; !used by KEYPOSITION
 INT COUNT^READ;
 INT COUNT;
 INT J;
 INT I;

! Check that the process handle of the requester is in the
! opener table:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 J := 0;
 COUNT := 0;
 WHILE J <= (ZSYS^VAL^PHANDLE^WLEN - 1) DO
 BEGIN
 IF RECEIVE^INFO[J + 6] =
 OPENER^TABLE.OCB[I].PROCESS^HANDLE[J]
 THEN COUNT := COUNT + 1;
 J := J + 1;
 END;
 IF COUNT = ZSYS^VAL^PHANDLE^WLEN AND
 RECEIVE^INFO[3] = OPENER^TABLE.OCB[I].FILE^NUMBER THEN
 BEGIN

 ! Copy user message from requester into data
 ! structure:

 PART^REQUEST.PART^NUMBER ':=' SBUFFER[0] FOR 10;

 ! Position pointers to appropriate record, based on
 ! the key value supplied in the request:

 POSITIONING^MODE := EXACT;
 CALL KEYPOSITION(INV^FNUM,
 PART^REQUEST.PART^NUMBER,
 !key^specifier!,
 !length^word!,
 POSITIONING^MODE);
 IF <> THEN CALL FILE^ERRORS(INV^FNUM);

 ! Read the record from the inventory file:

 CALL READUPDATEX(INV^FNUM,SBUFFER,BUFSIZE,COUNT^READ);

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 20

The Part-Query Server ($SER1)

 ! If unable to position to the requested key, return
 ! the error number. This error occurs when the key is
 ! not in the inventory file.

 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(INV^FNUM,REPLY^ERROR);
 RETURN;
 END;

 ! Clear the REPLY^ERROR variable if the read is
 ! successful:

 REPLY^LEN := $LEN(PART^REC);
 REPLY^ERROR := 0;
 RETURN;
 END;

 ! Check next entry in the opener table:
 I := I + 1;
 END;

! Requester not in opener table:
 REPLY^ERROR := 60;
END;

!--
! Procedure to process an Open system message (-103). It
! places the process handle of the requester in the opener
! table, if there is room. If the table is full, it
! rejects the open.
!--

PROC PROCESS^OPEN^MESSAGE;

BEGIN
 INT I;
 INT J;
 INT COUNT;

! Check if opener table full. Return "file in use" error if
! it is full:

 IF OPENER^TABLE.CURRENT^COUNT >= MAX^OPENERS THEN

 BEGIN
 REPLY^ERROR := 12;
 RETURN;
 END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 21

The Part-Query Server ($SER1)

! Put the process handle into the opener table at the first
! empty location and increment the count of openers:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 J := 0;
 COUNT := 0;
 WHILE J <= (ZSYS^VAL^PHANDLE^WLEN - 1) DO
 BEGIN
 IF OPENER^TABLE.OCB[I].PROCESS^HANDLE[J] = -1
 THEN COUNT := COUNT + 1;
 J := J + 1;
 END;
 IF COUNT = ZSYS^VAL^PHANDLE^WLEN THEN
 BEGIN
 OPENER^TABLE.OCB[I] ':='
 RECEIVE^INFO[6] FOR ZSYS^VAL^PHANDLE^WLEN;
 OPENER^TABLE.OCB[I].FILE^NUMBER := RECEIVE^INFO[3];
 OPENER^TABLE.CURRENT^COUNT :=
 OPENER^TABLE.CURRENT^COUNT + 1;
 REPLY^LEN := 0;
 REPLY^ERROR := 0;
 RETURN;
 END;
 I := I + 1;
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 22

The Part-Query Server ($SER1)

!--
! Procedure to process a Close system message. It removes
! the requester from the opener table.
!--

PROC PROCESS^CLOSE^MESSAGE;

BEGIN
 INT I;
 INT J;
 INT COUNT;

! Check that the closing process is in the opener table.
! If so, remove the entry from the opener table and
! decrement the count of openers:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 J := 0;
 COUNT := 0;
 WHILE J <= (ZSYS^VAL^PHANDLE^WLEN - 1) DO
 BEGIN
 IF RECEIVE^INFO[J + 6] =
 OPENER^TABLE.OCB[I].PROCESS^HANDLE[J]
 THEN COUNT := COUNT + 1;
 J := J + 1;
 END;
 IF COUNT = ZSYS^VAL^PHANDLE^WLEN AND
 RECEIVE^INFO[3] = OPENER^TABLE.OCB[I].FILE^NUMBER THEN
 BEGIN
 OPENER^TABLE.OCB[I].PROCESS^HANDLE ':='
 ZSYS^VAL^PHANDLE^WLEN * [-1];
 OPENER^TABLE.CURRENT^COUNT :=
 OPENER^TABLE.CURRENT^COUNT - 1;
 REPLY^LEN := 0;
 REPLY^ERROR := 0;
 RETURN;
 END;
 I := I + 1;
 END;

! If calling process not in opener table, return error 60:

 REPLY^ERROR := 60;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 23

The Part-Query Server ($SER1)

!--
! Procedure to process a system message other than Open or
! Close.
!--

PROC PROCESS^OTHER^MESSAGE;

BEGIN

INT INDEX, STATUS;
INDEX := -1;
 DO BEGIN
 STATUS := OPENER_LOST_(BUFFER:COUNT^READ,
 OPENER^TABLE.OCB[1], INDEX,
 MAX^OPENERS, $LEN(OPENER^TABLE.OCB[1]));
 IF STATUS = 6 THEN
 OPENER^TABLE.CURRENT^COUNT :=
 OPENER^TABLE.CURRENT^COUNT - 1;
 END
 UNTIL STATUS = 0 OR STATUS = 2 OR STATUS 3 OR STATUS = 7;
 REPLY^ERROR := 0;
 REPLY^LEN := 0;

END;

!--
! Procedure to process a system message.
!--

PROC PROCESS^SYSTEM^MESSAGE;

BEGIN
 CASE BUFFER[0] OF
 BEGIN

 -103 -> CALL PROCESS^OPEN^MESSAGE;

 -104 -> CALL PROCESS^CLOSE^MESSAGE;

 OTHERWISE -> CALL PROCESS^OTHER^MESSAGE;
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 24

The Part-Query Server ($SER1)

!--
! Procedure to save the Startup message.
!--

PROC START^IT(RUCB,START^DATA,MESSAGE,LENGTH,
 MATCH) VARIABLE;
INT .RUCB,
 .START^DATA,
 .MESSAGE,
 LENGTH,
 MATCH;

BEGIN

! Copy the Startup message into the START^UP^MESSAGE
! structure and save the message length:

 START^UP^MESSAGE.MSG^CODE ':=' MESSAGE[0] FOR LENGTH/2;
 MESSAGE^LEN := LENGTH;
END;

!--
! Procedure to perform initialization. It calls INITIALIZER
! to read the Startup message then opens the IN file, the
! inventory file, and $RECEIVE, and then initializes the
! opener table.
!--

PROC INIT;
BEGIN
 STRING .TERM^NAME[0:MAXFLEN - 1]; !terminal file name
 INT TERMLEN;
 STRING .RECV^NAME[0:MAXFLEN - 1]; !$RECEIVE file name
 STRING .INV^FNAME[0:MAXFLEN - 1]; !data file name
 INT INV^FLEN;
 INT RECV^DEPTH; !receive depth
 INT I;
 INT ERROR;

! Read the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 START^IT);

! Open the home terminal (IN file);

 ERROR := OLDFILENAME_TO_FILENAME_(START^UP^MESSAGE.INFILE,
 TERM^NAME:MAXFLEN,
 TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERM^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 25

The Part-Query Server ($SER1)

! Open $RECEIVE with a receive depth of 1 and to accept
! system messages (the default):

 RECV^NAME ':=' "$RECEIVE" -> @S^PTR;
 RECV^DEPTH := 1;
 ERROR := FILE_OPEN_(RECV^NAME:@S^PTR '-' @RECV^NAME,
 RECV^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 RECV^DEPTH);

! Instruct the operating system to send status change messages
! for processors in both local and remote systems.

 CALL MONITORCPUS(-1);
 CALL MONITORNET(1);

! Open the INVENTORY file:

 INV^FNAME ':=' "=INV^FNAME" -> @S^PTR;
 INV^FLEN := @S^PTR '-' @INV^FNAME;
 ERROR := FILE_OPEN_(INV^FNAME:INV^FLEN,INV^FNUM);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(INV^FNAME:INV^FLEN,ERROR);

! Initialize the opener table:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 OPENER^TABLE.OCB[I].PROCESS^HANDLE ':='
 [ZSYS^VAL^PHANDLE^WLEN * [-1]];
 OPENER^TABLE.OCB[I].RESERVED^HANDLE ':='
 [ZSYS^VAL^PHANDLE^WLEN * [-1]];
 I := I + 1;
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 26

The Part-Query Server ($SER1)

!--
! Main procedure calls INIT to perform initialization and
! then goes into a loop in which it reads the $RECEIVE file.
! It calls the appropriate procedure depending on whether the
! message read was a system message, a user message, or
! whether the read operation generated an error.
!--

PROC SERVER MAIN;
BEGIN
 INT COUNT^READ;
 INT ERROR;

! Initialize files and opener table:

 CALL INIT;

! Loop forever:

 WHILE 1 DO
 BEGIN

 ! Read a message from $RECEIVE and check for an error:

 CALL READUPDATEX(RECV^NUM,SBUFFER,BUFSIZE,COUNT^READ);
 CALL FILE_GETINFO_(RECV^NUM,ERROR);

 ! Get the process handle of the requesting process:

 CALL FILE_GETRECEIVEINFO_(RECEIVE^INFO);

 ! Select a procedure depending on the results of the
 ! read operation:

 CASE ERROR OF
 BEGIN

 ! For a user message, call the PROCESS^USER^REQUEST
 ! procedure:

 0 -> CALL PROCESS^USER^REQUEST;

 ! For a system message, call the
 ! PROCESS^SYSTEM^MESSAGE procedure:

 6 -> CALL PROCESS^SYSTEM^MESSAGE;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 27

The Part-Query Server ($SER1)

 ! For any other error return, call the FILE^ERRORS
 ! procedure:

 OTHERWISE -> CALL FILE^ERRORS(RECV^NUM);
 END;

 ! Reply to the message:

 CALL REPLYX(SBUFFER,
 REPLY^LEN,
 !count^written!,
 !message^tag!,
 REPLY^ERROR);
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 28

The Process-Order Server ($SER2)

22 Writing a Server Program

The Process-Order Server ($SER2)
Figure 22-4 shows the function of each procedure in the process-order server and the
relationships among the procedures.

As you can see from Figure 22-4, the structure of the process-order server is similar to
that of the part-query server. The SERVER procedure and the procedures for handling
system messages are the same as for the part-query server. The differences are in
the PROCESS^USER^REQUEST procedure.

The user message read by the SERVER procedure contains information needed to
process an order request. This information includes the part number and quantity of
the requested item, and the name, address, and credit-card number of the customer.

If the requester process is in the opener table, then the PROCESS^USER^REQUEST
procedure modifies the application database as follows:

• It retrieves the part record from the inventory file and checks that there are enough
items in stock to satisfy the request. If so, the PROCESS^USER^REQUEST
procedure updates the part record with the new stock level. If there is not enough
stock to satisfy the request, then the procedure returns to the SERVER procedure

Figure 22-4. Relationship Between Major Procedures in the Process-Order
Server

VST111.VSD

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 29

The Process-Order Server ($SER2)

with the new (negative) stock level; the inventory file does not get updated
because the requester process uses the negative number to reject the order
request.

• If there is enough stock on hand to satisfy the request, then the
PROCESS^USER^REQUEST procedure creates an order record out of the
information sent by the requester, adds the date of the order to the structure, and
then writes the new record to the orders file.

The Code for the Process-Order Server ($SER2)
The code for the process-order server program appears on the following pages.

?INSPECT, SYMBOLS, NOCODE
?NOLIST, SOURCE $TOOLS.ZTOOLD04.ZSYSTAL
?LIST

!-----------------------
!Literals:
!-----------------------

LITERAL MAX^OPENERS = 2, !maximum number of openers
 ! allowed
 EXACT = 2, !for exact key positioning
 MAXFLEN = ZSYS^VAL^LEN^FILENAME,
 !maximum length for file name
 BUFSIZE = 512;

!------------------------
!Global data structures:
!------------------------

!Data structure for Startup message:

STRUCT .START^UP^MESSAGE;
BEGIN
 INT MSG^CODE;
 STRUCT DEFAULT;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 END;
 STRUCT INFILE; !IN file name
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 INT FILENAME[0:3];
 END;
 STRUCT OUTFILE; !OUT file name
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 INT FILENAME[0:3];
 END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 30

The Process-Order Server ($SER2)

 STRING PARAM[0:529]; !parameter string
END;
INT MESSAGE^LEN; !length of Startup message

!Message received from requester. Contains order
!request information:

STRUCT .ORDER^REQUEST;
BEGIN
 STRUCT NAME; !customer's name
 BEGIN
 STRING LAST[0:19];
 STRING FIRST[0:19];
 STRING INITIAL[0:1];
 END;
 STRING ADDRESS[0:47]; !customer's street address
 STRING CITY[0:23]; !city name
 STRING ZIP[0:7]; !customer's zip code
 STRING CCN[0:15]; !customer's credit-card
 ! number
 STRING PART^NUMBER[0:9]; !part number of item ordered
 STRING PART^DESC[0:47]; !description of item ordered
 INT QTY^ORDERED; !quantity of item ordered
END;

!Record to access orders file. Contains information
!about an order:

STRUCT .ORDER^RECORD;
BEGIN
 STRING ORDER^NUMBER[0:27]; !28-digit order number
 STRUCT NAME; !customer's name
 BEGIN
 STRING LAST[0:19];
 STRING FIRST[0:19];
 STRING INITIAL[0:1];
 END;
 STRING ADDRESS[0:47]; !customer's street address
 STRING CITY[0:23]; !city name
 STRING ZIP[0:7]; !customer's zip code
 STRING CCN[0:15]; !customer's credit-card
 ! number
 STRING PART^NUMBER[0:9]; !part number of item ordered
 STRING PART^DESC[0:47]; !description of item ordered
 INT QTY^ORDERED; !quantity of item ordered
 INT DATE^ORDERED[0:2]; !date that the order was
 ! placed
 INT DATE^SHIPPED[0:2]; !date order shipped to
 ! customer
 STRING SHIPPING^STATUS[0:1]; !status of order

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 31

The Process-Order Server ($SER2)

END; ! supplier

!Message returned to requester. Contains the new stock
!level and the new order number:

STRUCT .ORDER^REPLY;
BEGIN
 INT QUANTITY^ON^HAND;
 STRING ORDER^NUMBER[0:27];
END;

!Record to access inventory file. It contains information
!about a part record:

STRUCT .PART^REC;
BEGIN
 STRING PART^NUMBER[0:9]; !10-digit part number
 STRING PART^DESC[0:47]; !description of part
 STRING SUPPLIER[0:23]; !name of part supplier
 INT QUANTITY^ON^HAND; !how many of this part on
 ! hand
 INT UNIT^PRICE; !cost of one part in dollars
 INT ORDER^PLACED[0:2]; !date when part last ordered
 ! from supplier
 INT SHIPMENT^DUE[0:2]; !date shipment due from
 ! supplier
 INT QUANTITY^ORDERED; !how many ordered from
END; ! supplier

!Data structure for the opener table:

STRUCT .OPENER^TABLE; !information about who has
BEGIN ! the server open
 INT CURRENT^COUNT; !how many requesters have
 ! this server open
 STRUCT OCB[1:MAX^OPENERS]; !one entry for each opener
 BEGIN

 !Process handle of an opener:

 INT PROCESS^HANDLE[0:9]; !process handle of opener
 INT RESERVED^HANDLE[0:9]; !reserved, filled with -1
 INT FILE^NUMBER; !file number used by opener
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 32

The Process-Order Server ($SER2)

!------------------------
!Other global variables:
!------------------------

STRING .S^PTR; !pointer to end of string

INT TERM^NUM; !file number for terminal
INT .BUFFER[0:BUFSIZE/2 - 1];!I/O buffer
STRING .SBUFFER := @BUFFER[0] '<<' 1; !string pointer to I/O
 ! buffer
INT REPLY^LEN; !length of reply buffer
INT REPLY^ERROR; !error value returned to
 ! requester
INT ORD^FNUM; !file number for orders file
INT INV^FNUM; !file number for inventory
 ! file
INT RECV^NUM; !file number for $RECEIVE file
INT .RECEIVE^INFO[0:16]; !returned by
 ! FILE_GETRECEIVEINFO_

?NOLIST
?SOURCE
$SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,FILE_OPEN_,FILE_GETINFO_,
? PROCESS_STOP_,FILE_GETRECEIVEINFO_,
? KEYPOSITION,DNUMOUT,WRITEX,NUMOUT,
? OLDFILENAME_TO_FILENAME_,TIMESTAMP,
? REPLYX,READUPDATELOCKX,
? WRITEUPDATEUNLOCKX,UNLOCKREC,
? INTERPRETTIMESTAMP,JULIANTIMESTAMP,
? READUPDATEX)
?LIST

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 33

The Process-Order Server ($SER2)

!--
! Here are a few DEFINEs to make it a little easier to
! format and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END; #;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 34

The Process-Order Server ($SER2)

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name and its length
! and the error number. This procedure is used when the
! file is not open, so there is no file number for it.
!
! The procedure also stops the program after displaying the
! error message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error from $SER1 ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME FOR LEN);

 CALL WRITEX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program:

 CALL PROCESS_STOP_;
END;

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to display the
! information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN-1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 35

The Process-Order Server ($SER2)

!---
! Procedure to write a message on the terminal and check
! for any error. If there is an error, this procedure
! attempts to write a message about the error and then
! stops the program.
!---

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERM^NUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERM^NUM);
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 36

The Process-Order Server ($SER2)

!--
! Procedure to process an order request. This procedure
! checks that the process that sent the message is in the
! opener table before updating the part record with the new
! quantity on hand and creating an order record and writing
! it to the orders file.
!--

PROC PROCESS^USER^REQUEST;

BEGIN
 INT J^DATE^AND^TIME[0:7]; !for Gregorian date and time
 INT(32) JD^NUMBER; !Julian day number
 FIXED J^TIME; !Julian timestamp
 INT BASE, WIDTH; !for NUMOUT procedure
 INT POSITIONING^MODE; !used by KEYPOSITION
 INT COUNT^READ;
 INT COUNT;
 INT I, J, K, L; !counters

! Check that the process handle of the requester is in the
! opener table:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 J := 0;
 COUNT := 0;
 WHILE J <= (ZSYS^VAL^PHANDLE^WLEN - 1) DO
 BEGIN
 IF RECEIVE^INFO[J + 6] =
 OPENER^TABLE.OCB[I].PROCESS^HANDLE[J]
 THEN COUNT := COUNT + 1;
 J := J + 1;
 END;

 ! If there is a match, set I to a value that will exit
 ! the loop:

 IF COUNT = ZSYS^VAL^PHANDLE^WLEN
 AND RECEIVE^INFO[3] = OPENER^TABLE.OCB[I].FILE^NUMBER THEN
 I := MAX^OPENERS;

 ! Check if last entry has just failed to match:

 IF (COUNT <> ZSYS^VAL^PHANDLE^WLEN
 OR RECEIVE^INFO[3] <> OPENER^TABLE.OCB[I].FILE^NUMBER)
 AND I = MAX^OPENERS THEN

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 37

The Process-Order Server ($SER2)

 ! Requester not in opener table:

 BEGIN
 REPLY^LEN := 0;
 REPLY^ERROR := 60;
 RETURN
 END;
 I := I + 1;
 END;

! Proceed because the requester is in the opener table.

!-----------------------------
!Update inventory record with
!new quantity on hand and
!prepare the reply structure
!with new quantity information
!-----------------------------

! Copy user message from requester into data
! structure:

 ORDER^REQUEST.NAME.LAST ':=' SBUFFER[0] FOR
 $LEN(ORDER^REQUEST);

! Position pointers to appropriate record, based on
! the key value supplied in the request:

 POSITIONING^MODE := EXACT;
 CALL KEYPOSITION(INV^FNUM,ORDER^REQUEST.PART^NUMBER,
 !key^specifier!,
 !length^word!,
 POSITIONING^MODE);
 IF <> THEN CALL FILE^ERRORS(INV^FNUM);

! Read the record from the inventory file:

 CALL READUPDATELOCKX(INV^FNUM,SBUFFER,BUFSIZE,
 COUNT^READ);

! If unable to position to the requested key, return
! the error number. This error occurs when the key is
! not in the orders file.

 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(INV^FNUM,REPLY^ERROR);
 REPLY^LEN := 0;
 RETURN;
 END;

! Copy the contents of the buffer into the part record
! structure:

 PART^REC.PART^NUMBER ':=' SBUFFER FOR $LEN(PART^REC);

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 38

The Process-Order Server ($SER2)

! Check that there is still enough stock on hand to satisfy
! the order:

 ORDER^REPLY.QUANTITY^ON^HAND := PART^REC.QUANTITY^ON^HAND
 - ORDER^REQUEST.QTY^ORDERED;

! If not enough stock, unlock the record and return with
! negative stock indication:

 IF ORDER^REPLY.QUANTITY^ON^HAND < 0 THEN
 BEGIN
 CALL UNLOCKREC(INV^FNUM);
 SBUFFER[0] ':=' ORDER^REPLY FOR $LEN(ORDER^REPLY);
 REPLY^LEN := $LEN(ORDER^REPLY);
 REPLY^ERROR := 0;
 RETURN;
 END;

! If there is enough stock, update the inventory record:

 PART^REC.QUANTITY^ON^HAND := ORDER^REPLY.QUANTITY^ON^HAND;
 CALL WRITEUPDATEUNLOCKX(INV^FNUM,PART^REC,$LEN(PART^REC));

!------------------------------
!Add new order record to orders
!file and prepare reply message
!with new order number.
!------------------------------

! Blank the ORDER^RECORD structure:

 ORDER^RECORD.ORDER^NUMBER ':='
 ($LEN(ORDER^RECORD) / 2) * [" "];
 ORDER^RECORD.QTY^ORDERED := 0;
 K := 0;
 WHILE K < 3 DO
 BEGIN
 ORDER^RECORD.DATE^ORDERED[K] := 0;
 ORDER^RECORD.DATE^SHIPPED[K] := 0;
 K := K + 1;
 END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 39

The Process-Order Server ($SER2)

! Create an order number based on a Julian timestamp and
! the part number. The INTERPRETTIMESTAMP procedure
! converts the timestamp into a Gregorian date and time,
! which subsequent calls to NUMOUT convert into strings.
! Note that in the year part, the first 2 digits are
! truncated:

 J^TIME := JULIANTIMESTAMP;
 JD^NUMBER := INTERPRETTIMESTAMP(J^TIME,J^DATE^AND^TIME);
 L := 0;
 BASE := 10;
 WIDTH := 2;
 WHILE L < 6 DO
 BEGIN
 CALL NUMOUT(ORDER^RECORD.ORDER^NUMBER[L * 2],
 J^DATE^AND^TIME[L],
 BASE,WIDTH);
 L := L + 1;
 END;
 WIDTH := 3;
 CALL NUMOUT(ORDER^RECORD.ORDER^NUMBER[12],
 J^DATE^AND^TIME[6],
 BASE,WIDTH);
 CALL NUMOUT(ORDER^RECORD.ORDER^NUMBER[15],
 J^DATE^AND^TIME[7],
 BASE,WIDTH);

 ORDER^RECORD.ORDER^NUMBER[18] ':='
 ORDER^REQUEST.PART^NUMBER FOR 10;

! Copy customer information from order record into
! order request:

 ORDER^RECORD.NAME.LAST ':=' ORDER^REQUEST FOR
 ($LEN(ORDER^REQUEST) / 2);

! Get the date ordered (today's date) and put it into the
! order record:

 CALL TIMESTAMP(ORDER^RECORD.DATE^ORDERED);

! Assign "NO" (new order) as the shipping status:

 ORDER^RECORD.SHIPPING^STATUS ':=' "NO";

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 40

The Process-Order Server ($SER2)

! Write the order record to the orders file:

 CALL WRITEX(ORD^FNUM,ORDER^RECORD,$LEN(ORDER^RECORD));
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(ORD^FNUM,REPLY^ERROR);
 RETURN;
 END;

! Complete the order reply:

 ORDER^REPLY.ORDER^NUMBER ':='
 ORDER^RECORD.ORDER^NUMBER FOR 28;
 SBUFFER[0] ':=' ORDER^REPLY FOR $LEN(ORDER^REPLY);

 REPLY^LEN := $LEN(ORDER^REPLY);
 REPLY^ERROR := 0;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 41

The Process-Order Server ($SER2)

!--
! Procedure to process an Open system message (-103). It
! places the process handle of the requester in the opener
! table, if there is room. If the table is full, it
! rejects the open.
!--

PROC PROCESS^OPEN^MESSAGE;

BEGIN
 INT I;
 INT J;
 INT COUNT;

! Check if opener table full. Return "file in use" error if
! it is full:

 IF OPENER^TABLE.CURRENT^COUNT >= MAX^OPENERS THEN
 BEGIN
 REPLY^LEN := 0;
 REPLY^ERROR := 12;
 RETURN;
 END;

! Put the process handle into the opener table at the first
! empty location and increment the count of openers:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 J := 0;
 COUNT := 0;
 WHILE J <= (ZSYS^VAL^PHANDLE^WLEN - 1) DO
 BEGIN
 IF OPENER^TABLE.OCB[I].PROCESS^HANDLE[J] = -1
 THEN COUNT := COUNT + 1;
 J := J + 1;
 END;
 IF COUNT = ZSYS^VAL^PHANDLE^WLEN THEN
 BEGIN
 OPENER^TABLE.OCB[I] ':='
 RECEIVE^INFO[6] FOR ZSYS^VAL^PHANDLE^WLEN;
 OPENER^TABLE.OCB[I].FILE^NUMBER := RECEIVE^INFO[3];
 OPENER^TABLE.CURRENT^COUNT :=
 OPENER^TABLE.CURRENT^COUNT + 1;
 REPLY^LEN := 0;
 REPLY^ERROR := 0;
 RETURN;
 END;
 I := I + 1;
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 42

The Process-Order Server ($SER2)

!--
! Procedure to process a Close system message. This
! procedure removes the requester from the opener table.
!--

PROC PROCESS^CLOSE^MESSAGE;

BEGIN
 INT I;
 INT J;
 INT COUNT;

! Check that the closing process is in the opener table.
! If so, remove the entry from the opener table and
! decrement the count of openers:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 J := 0;
 COUNT := 0;
 WHILE J <= (ZSYS^VAL^PHANDLE^WLEN - 1) DO
 BEGIN
 IF RECEIVE^INFO[J + 6] =
 OPENER^TABLE.OCB[I].PROCESS^HANDLE[J]
 THEN COUNT := COUNT + 1;
 J := J + 1;
 END;
 IF COUNT = ZSYS^VAL^PHANDLE^WLEN AND
 RECEIVE^INFO[3] = OPENER^TABLE.OCB[I].FILE^NUMBER THEN
 BEGIN
 OPENER^TABLE.OCB[I].PROCESS^HANDLE ':='
 ZSYS^VAL^PHANDLE^WLEN * [-1];
 OPENER^TABLE.CURRENT^COUNT :=
 OPENER^TABLE.CURRENT^COUNT - 1;
 REPLY^ERROR := 0;
 RETURN;
 END;
 I := I + 1;
 END;

! If calling process not in opener table, return error 60:

 REPLY^ERROR := 60;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 43

The Process-Order Server ($SER2)

!--
! Procedure to process a system message other than Open or
! Close.
!--

PROC PROCESS^OTHER^MESSAGE;

BEGIN

INT INDEX, STATUS, COUNT^READ;
INDEX := -1;
 DO BEGIN
 STATUS := OPENER_LOST_(BUFFER:COUNT^READ,
 OPENER^TABLE.OCB[1], INDEX,
 MAX^OPENERS, $LEN(OPENER^TABLE.OCB[1]));
 IF STATUS = 6 THEN
 OPENER^TABLE.CURRENT^COUNT :=
 OPENER^TABLE.CURRENT^COUNT - 1;
 END
 UNTIL STATUS = 0 OR STATUS = 2 OR STATUS 3 OR STATUS = 7;
 REPLY^ERROR := 0;
 REPLY^LEN := 0;

END;

!--
! Procedure to process a system message.
!--

PROC PROCESS^SYSTEM^MESSAGE;

BEGIN
 CASE BUFFER[0] OF
 BEGIN

 -103 -> CALL PROCESS^OPEN^MESSAGE;

 -104 -> CALL PROCESS^CLOSE^MESSAGE;

 OTHERWISE -> CALL PROCESS^OTHER^MESSAGE;
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 44

The Process-Order Server ($SER2)

!--
! Procedure to save the Startup message.
!--

PROC START^IT(RUCB,START^DATA,MESSAGE,LENGTH,
 MATCH) VARIABLE;
INT .RUCB,
 .START^DATA,
 .MESSAGE,
 LENGTH,
 MATCH;

BEGIN

! Copy the Startup message into the START^UP^MESSAGE
! structure and save the message length:

 START^UP^MESSAGE.MSG^CODE ':=' MESSAGE[0] FOR LENGTH/2;
 MESSAGE^LEN := LENGTH;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 45

The Process-Order Server ($SER2)

!--
! Procedure to perform initialization. It calls INITIALIZER
! to read the Startup message then opens the IN file, the
! inventory file, and $RECEIVE, and then initializes the
! opener table.
!--

PROC INIT;
BEGIN
 STRING .TERM^NAME[0:MAXFLEN - 1]; !terminal file name
 INT TERMLEN;
 STRING .RECV^NAME[0:MAXFLEN - 1]; !$RECEIVE file name
 STRING .ORD^FNAME[0:MAXFLEN - 1]; !orders file name
 INT ORD^FLEN;
 STRING .INV^FNAME[0:MAXFLEN - 1]; !inventory file name
 INT INV^FLEN;
 INT RECV^DEPTH; !receive depth
 INT I;
 INT ERROR;

! Read the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 START^IT);

! Open the home terminal (IN file);

 ERROR := OLDFILENAME_TO_FILENAME_(START^UP^MESSAGE.INFILE,
 TERM^NAME:MAXFLEN,
 TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERM^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open $RECEIVE with a receive depth of 1 and to accept
! system messages (the default):

 RECV^NAME ':=' "$RECEIVE" -> @S^PTR;
 RECV^DEPTH := 1;
 ERROR := FILE_OPEN_(RECV^NAME:@S^PTR '-' @RECV^NAME,
 RECV^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 RECV^DEPTH);

! Instruct the operating system to send status change messages
! for processors in both local and remote systems.

 CALL MONITORCPUS(-1);
 CALL MONITORNET(1);

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 46

The Process-Order Server ($SER2)

! Open the orders file:

 ORD^FNAME ':=' "=ORD^FNAME" -> @S^PTR;
 ORD^FLEN := @S^PTR '-' @ORD^FNAME;
 ERROR := FILE_OPEN_(ORD^FNAME:ORD^FLEN,ORD^FNUM);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(ORD^FNAME:ORD^FLEN,ERROR);

! Open the inventory file:

 INV^FNAME ':=' "=INV^FNAME" -> @S^PTR;
 INV^FLEN := @S^PTR '-' @INV^FNAME;
 ERROR := FILE_OPEN_(INV^FNAME:INV^FLEN,INV^FNUM);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(INV^FNAME:INV^FLEN,ERROR);

! Initialize the opener table:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 OPENER^TABLE.OCB[I].PROCESS^HANDLE ':='
 [ZSYS^VAL^PHANDLE^WLEN * [-1]];
 OPENER^TABLE.OCB[I].RESERVED^HANDLE ':='
 [ZSYS^VAL^PHANDLE^WLEN * [-1]];
 I := I + 1;
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 47

The Process-Order Server ($SER2)

!--
! Main procedure calls INIT to perform initialization and
! then goes into a loop in which it reads the $RECEIVE file.
! It calls the appropriate procedure depending on whether the
! message read was a system message, a user message, or
! whether the read operation generated an error.
!--

PROC SERVER MAIN;
BEGIN
 INT COUNT^READ;
 INT ERROR;

! Initialize files and opener table:

 CALL INIT;

! Loop forever:

 WHILE 1 DO
 BEGIN

 ! Read a message from $RECEIVE and check for an error:

 CALL READUPDATEX(RECV^NUM,SBUFFER,BUFSIZE,COUNT^READ);
 CALL FILE_GETINFO_(RECV^NUM,ERROR);

 ! Get the process handle of the requesting process:

 CALL FILE_GETRECEIVEINFO_(RECEIVE^INFO);

 ! Select a procedure depending on the results of the
 ! read operation:

 CASE ERROR OF
 BEGIN

 ! For a user message, call the PROCESS^USER^REQUEST
 ! procedure:

 0 -> CALL PROCESS^USER^REQUEST;

 ! For a system message, call the
 ! PROCESS^SYSTEM^MESSAGE procedure:

 6 -> CALL PROCESS^SYSTEM^MESSAGE;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 48

The Order-Query Server ($SER3)

 ! For any other error return, call the FILE^ERRORS
 ! procedure:

 OTHERWISE -> CALL FILE^ERRORS(RECV^NUM);
 END;

 ! Reply to the message:

 CALL REPLYX(SBUFFER,
 REPLY^LEN,
 !count^written!,
 !message^tag!,
 REPLY^ERROR);
 END;
END;

The Order-Query Server ($SER3)
Figure 22-5 shows the function of each procedure in the order-query server and the
relationships among the procedures.

As you can see from Figure 22-5, the structure of the order-query server is similar to
that of the part-query and process-order servers. The SERVER procedure and the
procedures for handling system messages are the same as for the part-query and
process-order servers. The differences are in the PROCESS^USER^REQUEST
procedure.

Figure 22-5. Relationship Between Major Procedures in the Order-Query Server

VST112.VSD

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 49

The Order-Query Server ($SER3)

The user message read by the SERVER procedure contains a 28-digit order number
used to refer to the desired order record.

If the requester process is in the opener table, then the PROCESS^USER^REQUEST
procedure uses the 28-digit order number provided in the message read by the
SERVER procedure as a primary key to the orders file. After reading the record from
the file, the procedure saves the record for the SERVER procedure to send back to the
requester.

The Code for the Order-Query Server ($SER3)
The code for the order-query server program appears on the following pages.

?INSPECT, SYMBOLS, NOCODE
?NOLIST, SOURCE $TOOLS.ZTOOLD04.ZSYSTAL
?LIST

!-----------------------
!Literals:
!-----------------------

LITERAL MAX^OPENERS = 2, !maximum number of openers
 ! allowed
 EXACT = 2, !for exact key positioning
 MAXFLEN = ZSYS^VAL^LEN^FILENAME,
 !maximum length for file name
 BUFSIZE = 512;

!------------------------
!Global data structures:
!------------------------

!Data structure for Startup message:

STRUCT .START^UP^MESSAGE;
BEGIN
 INT MSG^CODE;
 STRUCT DEFAULT;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 END;
 STRUCT INFILE; !IN file name
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 INT FILENAME[0:3];
 END;
 STRUCT OUTFILE; !OUT file name
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOLUME[0:3];
 INT FILENAME[0:3];
 END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 50

The Order-Query Server ($SER3)

 STRING PARAM[0:529]; !parameter string
END;
INT MESSAGE^LEN; !length of Startup message

!Message received from requester. Contains a part number:

STRUCT ORDER^QUERY;
BEGIN
 STRING ORDER^NUMBER[0:27]; !28-digit order number
END;

!Message returned to requester. Contains order record
!information obtained from the orders file:

STRUCT .ORDER^REC;
BEGIN
 STRING ORDER^NUMBER[0:27]; !28-digit order number
 STRUCT NAME; !customer's name
 BEGIN
 STRING LAST[0:19];
 STRING FIRST[0:19];
 STRING INITIAL[0:1];
 END;
 STRING ADDRESS[0:47]; !customer's street address
 STRING CITY[0:23]; !city name
 STRING ZIP[0:7]; !customer's zip code
 STRING CCN[0:15]; !customer's credit-card
 ! number
 STRING PART^NUMBER[0:9]; !part number of item ordered
 STRING PART^DESC[0:47]; !description of item ordered
 INT QTY^ORDERED; !quantity of item ordered
 INT DATE^ORDERED[0:2]; !date that the order was
 ! placed
 INT SHIPPED[0:2]; !date order shipped to
 ! customer
 STRING SHIPPING^STATUS[0:1]; !status of order
END; ! supplier

!Data structure for the opener table:

STRUCT .OPENER^TABLE; !information about who has
BEGIN ! the server open
 INT CURRENT^COUNT; !how many requesters have
 ! this server open
 STRUCT OCB[1:MAX^OPENERS]; !one entry for each opener
 BEGIN

 !Process handle of an opener:

 INT PROCESS^HANDLE[0:9]; !process handle of opener
 INT RESERVED^HANDLE[0:9]; !reserved, filled with -1
 INT FILE^NUMBER; !file number used by opener

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 51

The Order-Query Server ($SER3)

 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 52

The Order-Query Server ($SER3)

!------------------------
!Other global variables:
!------------------------

STRING .S^PTR; !pointer to end of string

INT TERM^NUM; !file number for terminal
INT .BUFFER[0:BUFSIZE/2 - 1];!I/O buffer
STRING .SBUFFER := @BUFFER[0] '<<' 1; !string pointer to I/O
 ! buffer
INT REPLY^LEN; !length of reply string
INT REPLY^ERROR; !error value returned to
 ! requester
INT ORD^FNUM; !file number for orders
 ! file
INT RECV^NUM; !file number for $RECEIVE file
INT .RECEIVE^INFO[0:16]; !returned by
 ! FILE_GETRECEIVEINFO_

?NOLIST
?SOURCE
$SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,FILE_OPEN_,FILE_GETINFO_,
? PROCESS_STOP_,FILE_GETRECEIVEINFO_,
? KEYPOSITION,DNUMOUT,WRITEX,
? OLDFILENAME_TO_FILENAME_,READUPDATEX,
? REPLYX)
?LIST

!--
! Here are a few DEFINEs to make it a little easier to
! format and print messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 53

The Order-Query Server ($SER3)

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END; #;

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name and its length
! and the error number. This procedure is used when the
! file is not open, so there is no file number for it.
!
! The procedure also stops the program after displaying the
! error message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error from $SER1 ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME FOR LEN);

 CALL WRITEX(TERM^NUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program:

 CALL PROCESS_STOP_;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 54

The Order-Query Server ($SER3)

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to display the
! information.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN-1];
 INT FLEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,FLEN);
 CALL FILE^ERRORS^NAME(FNAME:FLEN,ERROR);
END;

!---
! Procedure to write a message on the terminal and check
! for any error. If there is an error, this procedure
! attempts to write a message about the error and then
! stops the program.
!---

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERM^NUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERM^NUM);
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 55

The Order-Query Server ($SER3)

!--
! Procedure to process a request for an order record. This
! procedure checks that the process that sent the message is
! in the opener table before retrieving the order record from
! the orders file using the key supplied in the order
! number.
!--

PROC PROCESS^USER^REQUEST;

BEGIN
 INT POSITIONING^MODE; !used by KEYPOSITION
 INT COUNT^READ;
 INT COUNT;
 INT J;
 INT I;

! Check that the process handle of the requester is in the
! opener table:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 J := 0;
 COUNT := 0;
 WHILE J <= (ZSYS^VAL^PHANDLE^WLEN - 1) DO
 BEGIN
 IF RECEIVE^INFO[J + 6] =
 OPENER^TABLE.OCB[I].PROCESS^HANDLE[J]
 THEN COUNT := COUNT + 1;
 J := J + 1;
 END;
 IF COUNT = ZSYS^VAL^PHANDLE^WLEN AND
 RECEIVE^INFO[3] = OPENER^TABLE.OCB[I].FILE^NUMBER THEN
 BEGIN

 ! Copy user message from requester into data
 ! structure:

 ORDER^QUERY.ORDER^NUMBER ':=' SBUFFER[0] FOR 28;

 ! Position pointers to appropriate record, based on
 ! the key value supplied in the request:

 POSITIONING^MODE := EXACT;
 CALL KEYPOSITION(ORD^FNUM,
 ORDER^QUERY.ORDER^NUMBER,
 !key^specifier!,
 !length^word!,
 POSITIONING^MODE);
 IF <> THEN CALL FILE^ERRORS(ORD^FNUM);

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 56

The Order-Query Server ($SER3)

 ! Read the record from the orders file:

 CALL READUPDATEX(ORD^FNUM,SBUFFER,BUFSIZE,
 COUNT^READ);

 ! If unable to position to the requested key, return
 ! the error number. This error occurs when the key is
 ! not in the orders file.

 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(ORD^FNUM,REPLY^ERROR);
 REPLY^LEN := 0;
 RETURN;
 END;

 ! Clear the REPLY^ERROR variable and set the reply
 ! string length to the length of the orders
 ! record if the read is successful:

 REPLY^LEN := $LEN(ORDER^REC);
 REPLY^ERROR := 0;
 RETURN;
 END;

 ! Check next entry in the opener table:
 I := I + 1;
 END;

! Requester not in opener table:
 REPLY^LEN := 0;
 REPLY^ERROR := 60;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 57

The Order-Query Server ($SER3)

!--
! Procedure to process an Open system message (-103). It
! places the process handle of the requester in the opener
! table, if there is room. If the table is full, it
! rejects the open.
!--

PROC PROCESS^OPEN^MESSAGE;

BEGIN
 INT I;
 INT J;
 INT COUNT;

! Check if opener table full. Return "file in use" error if
! it is full:

 IF OPENER^TABLE.CURRENT^COUNT >= MAX^OPENERS THEN
 BEGIN
 REPLY^LEN := 0;
 REPLY^ERROR := 12;
 RETURN;
 END;

! Put the process handle into the opener table at the first
! empty location and increment the count of openers:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 J := 0;
 COUNT := 0;
 WHILE J <= (ZSYS^VAL^PHANDLE^WLEN - 1) DO
 BEGIN
 IF OPENER^TABLE.OCB[I].PROCESS^HANDLE[J] = -1
 THEN COUNT := COUNT + 1;
 J := J + 1;
 END;
 IF COUNT = ZSYS^VAL^PHANDLE^WLEN THEN
 BEGIN
 OPENER^TABLE.OCB[I] ':='
 RECEIVE^INFO[6] FOR ZSYS^VAL^PHANDLE^WLEN;
 OPENER^TABLE.OCB[I].FILE^NUMBER := RECEIVE^INFO[3];
 OPENER^TABLE.CURRENT^COUNT :=
 OPENER^TABLE.CURRENT^COUNT + 1;
 REPLY^LEN := 0;
 REPLY^ERROR := 0;
 RETURN;
 END;
 I := I + 1;
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 58

The Order-Query Server ($SER3)

!--
! Procedure to process a Close system message. This
! procedure removes the requester from the opener table.
!--

PROC PROCESS^CLOSE^MESSAGE;

BEGIN
 INT I;
 INT J;
 INT COUNT;

! Check that the closing process is in the opener table.
! If so, remove the entry from the opener table and
! decrement the count of openers:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 J := 0;
 COUNT := 0;
 WHILE J <= (ZSYS^VAL^PHANDLE^WLEN - 1) DO
 BEGIN
 IF RECEIVE^INFO[J + 6] =
 OPENER^TABLE.OCB[I].PROCESS^HANDLE[J]
 THEN COUNT := COUNT + 1;
 J := J + 1;
 END;
 IF COUNT = ZSYS^VAL^PHANDLE^WLEN AND
 RECEIVE^INFO[3] = OPENER^TABLE.OCB[I].FILE^NUMBER THEN
 BEGIN
 OPENER^TABLE.OCB[I].PROCESS^HANDLE ':='
 ZSYS^VAL^PHANDLE^WLEN * [-1];
 OPENER^TABLE.CURRENT^COUNT :=
 OPENER^TABLE.CURRENT^COUNT - 1;
 REPLY^ERROR := 0;
 RETURN;
 END;
 I := I + 1;
 END;

! If calling process not in opener table, return error 60:

 REPLY^ERROR := 60;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 59

The Order-Query Server ($SER3)

!--
! Procedure to process a system message other than Open or
! Close.
!--

PROC PROCESS^OTHER^MESSAGE;

BEGIN

INT INDEX, STATUS;
INDEX := -1;
 DO BEGIN
 STATUS := OPENER_LOST_(BUFFER:COUNT^READ,
 OPENER^TABLE.OCB[1], INDEX,
 MAX^OPENERS, $LEN(OPENER^TABLE.OCB[1]));
 IF STATUS = 6 THEN
 OPENER^TABLE.CURRENT^COUNT :=
 OPENER^TABLE.CURRENT^COUNT - 1;
 END
 UNTIL STATUS = 0 OR STATUS = 2 OR STATUS 3 OR STATUS = 7;
 REPLY^ERROR := 0;
 REPLY^LEN := 0;

END;

!--
! Procedure to process a system message.
!--

PROC PROCESS^SYSTEM^MESSAGE;

BEGIN
 CASE BUFFER[0] OF
 BEGIN

 -103 -> CALL PROCESS^OPEN^MESSAGE;

 -104 -> CALL PROCESS^CLOSE^MESSAGE;

 OTHERWISE -> CALL PROCESS^OTHER^MESSAGE;
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 60

The Order-Query Server ($SER3)

!--
! Procedure to save the Startup message.
!--

PROC START^IT(RUCB,START^DATA,MESSAGE,LENGTH,
 MATCH) VARIABLE;
INT .RUCB,
 .START^DATA,
 .MESSAGE,
 LENGTH,
 MATCH;

BEGIN

! Copy the Startup message into the START^UP^MESSAGE
! structure and save the message length:

 START^UP^MESSAGE.MSG^CODE ':=' MESSAGE[0] FOR LENGTH/2;
 MESSAGE^LEN := LENGTH;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 61

The Order-Query Server ($SER3)

!--
! Procedure to perform initialization. It calls INITIALIZER
! to read the Startup message then opens the IN file, the
! inventory file, and $RECEIVE, and then initializes the
! opener table.
!--

PROC INIT;
BEGIN
 STRING .TERM^NAME[0:MAXFLEN - 1]; !terminal file name
 INT TERMLEN;
 STRING .RECV^NAME[0:MAXFLEN - 1]; !$RECEIVE file name
 STRING .ORD^FNAME[0:MAXFLEN - 1]; !data file name
 INT ORD^FLEN;
 INT RECV^DEPTH; !receive depth
 INT I;
 INT ERROR;

! Read the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 START^IT);

! Open the home terminal (IN file);

 ERROR := OLDFILENAME_TO_FILENAME_(START^UP^MESSAGE.INFILE,
 TERM^NAME:MAXFLEN,
 TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

 ERROR := FILE_OPEN_(TERM^NAME:TERMLEN,TERM^NUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open $RECEIVE with a receive depth of 1 and to accept
! system messages (the default):

 RECV^NAME ':=' "$RECEIVE" -> @S^PTR;
 RECV^DEPTH := 1;
 ERROR := FILE_OPEN_(RECV^NAME:@S^PTR '-' @RECV^NAME,
 RECV^NUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 RECV^DEPTH);

! Instruct the operating system to send status change messages
! for processors in both local and remote systems.

 CALL MONITORCPUS(-1);
 CALL MONITORNET(1);

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 62

The Order-Query Server ($SER3)

! Open the orders file:

 ORD^FNAME ':=' "=ORD^FNAME" -> @S^PTR;
 ORD^FLEN := @S^PTR '-' @ORD^FNAME;
 ERROR := FILE_OPEN_(ORD^FNAME:ORD^FLEN,ORD^FNUM);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(ORD^FNAME:ORD^FLEN,ERROR);

! Initialize the opener table:

 I := 1;
 WHILE I <= MAX^OPENERS DO
 BEGIN
 OPENER^TABLE.OCB[I].PROCESS^HANDLE ':='
 [ZSYS^VAL^PHANDLE^WLEN * [-1]];
 OPENER^TABLE.OCB[I].RESERVED^HANDLE ':='
 [ZSYS^VAL^PHANDLE^WLEN * [-1]];
 I := I + 1;
 END;
END;

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 63

The Order-Query Server ($SER3)

!--
! Main procedure calls INIT to perform initialization and
! then goes into a loop in which it reads the $RECEIVE file.
! It calls the appropriate procedure depending on whether the
! message read was a system message, a user message, or
! whether the read operation generated an error.
!--

PROC SERVER MAIN;
BEGIN
 INT COUNT^READ;
 INT ERROR;

! Initialize files and opener table:

 CALL INIT;

! Loop forever:

 WHILE 1 DO
 BEGIN

 ! Read a message from $RECEIVE and check for an error:

 CALL READUPDATEX(RECV^NUM,SBUFFER,BUFSIZE,COUNT^READ);
 CALL FILE_GETINFO_(RECV^NUM,ERROR);

 ! Get the process handle of the requesting process:

 CALL FILE_GETRECEIVEINFO_(RECEIVE^INFO);

 ! Select a procedure depending on the results of the
 ! read operation:

 CASE ERROR OF
 BEGIN

 ! For a user message, call the PROCESS^USER^REQUEST
 ! procedure:

 0 -> CALL PROCESS^USER^REQUEST;

 ! For a system message, call the
 ! PROCESS^SYSTEM^MESSAGE procedure:

 6 -> CALL PROCESS^SYSTEM^MESSAGE;

 ! For any other error return, call the FILE^ERRORS
 ! procedure:

 OTHERWISE -> CALL FILE^ERRORS(RECV^NUM);
 END;

 ! Reply to the message:

Writing a Server Program

Guardian Programmer’s Guide — 421922-014
22 - 64

The Order-Query Server ($SER3)

 CALL REPLYX(SBUFFER,
 REPLY^LEN,
 !count^written!,
 !message^tag!,
 REPLY^ERROR);
 END;
END;

Guardian Programmer’s Guide — 421922-014
23 - 1

23
Writing a Command-Interpreter
Monitor ($CMON)

A command-interpreter monitor process ($CMON) controls the operation of TACL
processes. When a TACL process receives certain commands from a terminal user, it
sends a request message to the $CMON process to have the request verified.

A $CMON process controls the following kinds of requests:

• Command-interpreter configuration requests

• Logon and logoff requests (LOGON and LOGOFF commands)

• Attempts to change user passwords (PASSWORD and REMOTEPASSWORD
commands)

• Requests to create processes (implicit or explicit RUN commands)

• Requests to change process priority (ALTPRI command)

• Requests to add or delete users (ADDUSER and DELUSER commands)

The $CMON process receives requests from TACL processes by reading messages
from its $RECEIVE file. $CMON processes each message and then sends a reply to
the requesting TACL process. The $CMON process functions in the same way as any
server process.

When replying to a command-interpreter request, $CMON can either accept the
request, with or without modification, or reject the request and supply some display text
giving the reason for the rejection.

This section describes how you can write your own $CMON process. Your $CMON
process can either provide static replies that are hard coded into the $CMON program
or perform run-time control, allowing the operator to set reply information such as the
text displayed at logon or the set of CPUs that a process is able to run in.

Although the examples given in this section are written in TAL, there is no need to use
TAL to write a $CMON process. You can use any supported programming language:
for example, COBOL, C, or Pascal.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 2

Communicating With TACL Processes

Communicating With TACL Processes
Figure 23-1 shows the relationships between the $CMON process and the TACL
processes.

Each TACL process opens the $CMON process the first time that it receives a
command that causes a request to be sent to $CMON. If, for any reason, the TACL
process is unable to open the $CMON process, then the command-interpreter process
goes ahead and processes the command as if $CMON had accepted the request.

Once the TACL process has $CMON open, it communicates with $CMON as any
requester process communicates with a server process. On receipt of an ALTPRI,
LOGOFF, LOGON, or implicit or explicit RUN command, the TACL process sends the
appropriate command-interpreter message to the $CMON process. The $CMON
process reads the message from its $RECEIVE file using a call to the READUPDATE
procedure. Section 6, Communicating With Processes, provides details of reading
messages from $RECEIVE.

Figure 23-1. Relationships Between TACL Processes and $CMON

VST113.VSD

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 3

Communicating With TACL Processes

When the user issues an ADDUSER command, the ADDUSER process sends the
ADDUSER message directly to the $CMON process (it does not come from the TACL
process). Similarly, the DELUSER message is received from the DELUSER program,
the PASSWORD message is received from the PASSWORD program, and the
REMOTEPASSWORD message from the RPASSWRD program. For convenience, as
well as historical consistency, these messages are still referred to as command-
interpreter messages.

After processing a command-interpreter message, $CMON sends a reply back to the
TACL process (or other process that sent the message) using a call to the REPLY
procedure. Each of the command-interpreter messages that contains a request has a
specific reply format that the TACL process expects. Some of the reply messages
have two possible formats; which one you choose usually depends on whether your
$CMON process accepts or rejects the request. This section describes with examples
the responses that a $CMON process can take for each of these messages. The
Guardian Procedure Errors and Messages Manual also describes these messages,
arranged numerically for ease of reference.

The following actions are also taken by the TACL process while communicating with
the $CMON process:

• The TACL process sends all requests on a nowait basis; if a message cannot be
sent, or if $CMON does not reply, the TACL process closes the $CMON file and
proceeds to execute the command as if $CMON did not exist.

• If the BREAK key is pressed while a message is outstanding to $CMON and the
user logged on to the TACL process is not the super ID (255, 255), the message
is canceled and the command is aborted. If the BREAK key is pressed while a
message is outstanding and the user logged on to the TACL process is the super
ID, the message is canceled and the command is executed.

• If the TACL process encounters an I/O error when communicating with $CMON, it
closes the $CMON file and abandons the current request. The TACL process tries
to reopen $CMON and attempts communication when the next monitored
command is issued.

Note. Do not confuse command-interpreter messages with system messages; their message
numbers do overlap. Command-interpreter messages are user messages supplied in a
specific format. Unlike system messages, you do not get an error condition on reading a
command-interpreter message.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 4

Controlling the Configuration of a TACL Process

Controlling the Configuration of a TACL
Process

If a user is attempting to log on to an interactive TACL process from the logged-off
state, or if a noninteractive TACL process is starting, the TACL process sends a
Config^msg message to the $CMON process so it can verify or change the default
parameters. If the REQUESTCMONUSERCONFIG configuration parameter is set to a
nonzero value, the TACL process also sends a Config^msg message to the $CMON
process after a logon is performed so it can obtain the user configuration and change
the parameters accordingly; it does this after a logon from either the logged-off state or
the logged-on state and after use of the #CHANGEUSER built-in function.

After processing a Config^msg message, the $CMON process replies with either a
Config^text^reply message to keep the default configuration values as they are, or a
Config^reply message, causing the TACL process to change the configuration
parameters.

The Config^msg message has the message number -60 in its first word. The format of
the message is given below:

Format of command-interpreter message -60 (Config^msg message):

STRUCT CONFIG^MSG;
BEGIN
 INT MSGCODE; ![0] value -60
 INT USERID; ![1] current user ID of TACL
 ! process.
 ! Value is 0 if logged off
 ! or logged on as
 ! NULL.NULL (0,0)
 INT CIPRI; ![2] current priority of TACL
 ! process
 INT CIINFILE[0:11]; ![3] IN file of TACL process
 INT CIOUTFILE[0:11]; ![15] OUT file of TACL process
 INT CONFIG_REQUEST_TYPE; ![27] configuration request type
 ! 0 = send default
 ! configuration
 ! 1 = send user
configuration
END;

Note. If the $CMON process intends to access the CONFIG_REQUEST_TYPE field of the
Config^msg message, it should first check the length of the message (bytes read). Some
processes, including earlier TACL versions, might not include this field with the message. In
general, $CMON should be flexible about allowing callers to add new fields at the end of
existing messages.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 5

Controlling the Configuration of a TACL Process

The configuration parameters are described below:

AUTOLOGOFFDELAY

if greater than zero, specifies the maximum number of minutes that the TACL
process is to wait at a prompt. If that time is exceeded, the TACL process
automatically logs off.

The default value is -1 (disabled).

BLINDLOGON

if not zero, specifies that the LOGON command, whether in the logged-off state or
the logged-on state, prohibits the use of the comma, requiring the password to be
entered at its own prompt while echoing is disabled. The setting does not change
the behavior of the #CHANGEUSER built-in function.

The default value is 0.

CMONREQUIRED

if not zero, specifies that all operations requiring approval by $CMON are denied if
$CMON is not available or is running too slowly. Approval of $CMON is not
required if the TACL process is already logged on as the super ID (255, 255).

Use care when setting this flag. Note that if you set this flag on in the operator’s
TACL process, the operator will not be able to log on to the system if $CMON is
not running or is running slowly.

The default value is 0.

CMONTIMEOUT

specifies the number of seconds that the TACL process is to wait for any $CMON
operation.

The default value is 30.

LOGOFFSCREENCLEAR

if not zero, specifies that if the TACL process is interactive and the IN file is a 65xx
terminal, then the terminal is cleared at logoff unless the NOCLEAR option is
supplied. The CLEAR and NOCLEAR options always override the automatic
operation.

The default value is -1.

NAMELOGON

if not zero, specifies that the LOGON command, in both the logged-off and logged-
on states, and the #CHANGEUSER built-in function do not accept user numbers
but require that user names be used.

The default value is 0.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 6

Controlling the Configuration of a TACL Process

NOCHANGEUSER

if zero, the #CHANGEUSER built-in function is enabled; users can log on from a
terminal at which someone is already logged on. If -1, the #CHANGEUSER built-in
function is disabled; users cannot log on from an already logged on terminal.

The default value is 0.

REMOTECMONREQUIRED

if not zero, specifies that all operations requiring approval by a remote $CMON are
denied if that remote $CMON is unavailable or running too slowly. $CMON
approval is not needed if the TACL process is already logged on as the super ID
(255, 255).

The default value is 0.

REMOTECMONTIMEOUT

specifies the number of seconds that the TACL process is to wait for any $CMON
operation involving a remote $CMON.

The default value is 30.

REMOTESUPERID

if zero, specifies that if the TACL process is started remotely, then any attempt to
log on (or use the #CHANGEUSER built-in function) as the super ID (255, 255)
results in an illegal logon.

The default value is -1 (disabled).

REQUESTCMONUSERCONFIG

if not zero, specifies that TACL send a Config^msg message to $CMON to retrieve
the configuration data for the new user after a logon. (This is to be done after a
logon from either the logged-off state or the logged-on state and after use of the
#CHANGEUSER built-in function.) If zero, the Config^msg message is not sent to
$CMON after logging on. (TACL sends a Config^msg message to $CMON before
each logon from the logged-off state, or when a noninteractive TACL is starting,
regardless of the value of this parameter.)

The default value is 0.

STOPONFEMODEMERR

if not zero, specifies that TACL stop when error 140 (FEMODEMERR) is
encountered on its input. Control then returns to its parent process and the parent
process receives a process termination message for the TACL process that
stopped. If the TACL process was started with the PORTTACL startup parameter,
this TACL configuration setting is ignored; in that case TACL goes to a logged off
state and waits for a modem connect when error 140 is encountered.

The default value is 0 (TACL goes to a logged-off state and waits for a modem
connect when error 140 is encountered).

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 7

Retaining Default Values

Retaining Default Values
Your $CMON process can reply to the Config^msg message by returning a text
message to the TACL process and accepting the default parameter values as they are.
Here, $CMON returns the Config^text^reply structure as follows:

The following code fragment returns the Config^text^reply message without any text
message. To do this, you simply set the length of the reply to two bytes and return a
nonzero value in the reply code:

CONFIG^TEXT^REPLY.REPLY^CODE := -1;
CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
BEGIN
 REPLY^LEN := 2;
 CALL REPLYX(CONFIG^TEXT^REPLY,REPLY^LEN);
END;

Setting Configuration Parameters
To change the configuration parameters, $CMON must reply with the Config^reply
structure:

Format of Config^text^reply structure:

STRUCT CONFIG^TEXT^REPLY;
BEGIN
 INT REPLYCODE; ![0] <> 0
 STRING REPLYTEXT[0:n]; ![1] display message; maximum
 ! 132 characters
END;

Format of Config^reply structure:

STRUCT CONFIG^REPLY;
BEGIN
 INT REPLYCODE; ![0] value 0
 INT COUNT; ![1] number of integer
parameters
 INT AUTOLOGOFFDELAY; ![2]
 INT LOGOFFSCREENCLEAR; ![3]
 INT REMOTESUPERUSERID; ![4]
 INT BLINDLOGON; ![5]
 INT NAMELOGON; ![6]
 INT CMONTIMEOUT; ![7]
 INT CMONREQUIRED; ![8]
 INT REMOTECMONTIMEOUT; ![9]
 INT REMOTECMONREQUIRED; ![10]
 INT NOCHANGEUSER; ![11]
 INT STOPONFEMODEMERR; ![12]
 INT REQUESTCMONUSERCONFIG; ![13]
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 8

Controlling Logon and Logoff

When you reply with the Config^reply message, you need to specify every value you
return. For example, if you want to change only one or two values and leave the
remaining values unchanged, you must specify the current values in the fields that
remain unchanged. An exception is when replying with a short message: for example,
if you want to change only the NAMELOGON parameter, then you could reply with a
message that is just seven words long; the AUTOLOGOFFDELAY,
LOGOFFSCREENCLEAR, REMOTESUPERUSERID, and BLINDLOGON parameters
must contain the current values, but the CMONTIMEOUT, CMONREQUIRED,
REMOTECMONTIMEOUT, REMOTECMONREQUIRED, NOCHANGEUSER,
STOPONFEMODEMERR, and REQUESTCMONUSERCONFIG parameters need not
be returned.

The following code fragment sets the values for AUTOLOGOFFDELAY (5 minutes) and
CMONTIMEOUT (40 seconds):

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -60 THEN
BEGIN

! Set the reply code to zero:

 CONFIG^REPLY.REPLYCODE := 0;

! Set the new parameter values:

 CONFIG^REPLY.AUTLOGOFFDELAY := 5;
 CONFIG^REPLY.CMONTIMEOUT := 40;

! Set default values for other parameters:

 CONFIG^REPLY.LOGOFFSCREENCLEAR := -1;
 CONFIG^REPLY.REMOTESUPERUSERID := -1;
 CONFIG^REPLY.BLINDLOGON := 0;
 CONFIG^REPLY.NAMELOGON := 0;
 CONFIG^REPLY.CMONREQUIRED := 0;
 CONFIG^REPLY.REMOTECMONTIMEOUT := 30;
 CONFIG^REPLY.REMOTECMONREQUIRED := 0;

 CONFIG^REPLY.COUNT := 9;

 CALL REPLYX(CONFIG^REPLY,$LEN(CONFIG^REPLY));
END;

Controlling Logon and Logoff
Your $CMON process can control attempts at logging on by accepting or rejecting
logon attempts and by having messages displayed. $CMON can also cause a
message to be displayed following either logoff or a failed attempt to log on.

The following paragraphs describe how to apply controls to attempts to log on, log off,
and failed attempts to log on.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 9

Controlling Logon

Controlling Logon
When a user attempts to log on to the system, the TACL process sends two messages
to the $CMON process: the Prelogon^msg message and the Logon^msg message.

The Prelogon^msg Message
In addition to providing the user ID of the user logging on and information about the
TACL process, the Prelogon^msg message provides the name of the user and
information about whether the user is already logged on. Using this information,
$CMON can invoke additional security, such as requiring a user to log on under one ID
before logging on under another. The Prelogon^msg message has the following
structure:

After processing the Prelogon^msg message, the $CMON process replies with a
Prelogon^reply structure in the format given below. The $CMON process has the
option of accepting or rejecting the request and of sending a display message back to

Structure of command-interpreter message -59 (Prelogon^msg message):

STRUCT PRELOGON^MSG;
BEGIN
 INT MSGCODE; ![0] value -59
 INT USERID; ![1] user ID of user logging on.
 ! Value is 0 if user is
 ! logged off or logged on as
 ! NULL.NULL (0,0).
 INT CIPRI; ![2] current priority of command
 ! interpreter
 INT CIINFILE[0:11]; ![3] TACL process IN file
 INT CIOUTFILE[0:11]; ![15] TACL process OUT file
 INT LOGGEDON; ![27] value is 0 if command
 ! interpreter is currently
 ! logged off, or nonzero if
 ! TACL process is already
 ! logged on
 INT USERNAME[0:7]; ![28] internal user name through
 ! which the user wants to
 ! log on
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 10

Controlling Logon

the TACL process. The display message is typically used to give a reason for the
rejection.

The following code fragment checks a flag value before deciding whether to accept the
prelogon request. On rejection, this example returns the generic text “Prelogon
rejected” to the TACL process; a typical response would indicate the reason for
rejection:

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -59 THEN
BEGIN
 IF ACCEPT^PRELOGON = YES THEN
 BEGIN
 PRELOGON^REPLY.REPLYCODE := 0;
 REPLY^LEN := 2;
 END
 ELSE
 BEGIN
 PRELOGON^REPLY.REPLYCODE := 1;
 PRELOGON^REPLY.REPLYTEXT ':=' ["Prelogon rejected",0];
 SCAN PRELOGON^REPLY.REPLYTEXT[0] UNTIL 0 -> @LAST;
 REPLY^LEN := 2 + @LAST - @PRELOGON^REPLY.REPLYTEXT[0];
 END;
 CALL REPLYX(PRELOGON^REPLY,REPLY^LEN);
END;

The Logon^msg Message
The Logon^msg message is sent to $CMON every time a user attempts to log on,
giving $CMON the opportunity to accept or reject the logon. Note that this message
does not contain information regarding whether the user is already logged on; that

Format of a Prelogon^reply structure:

STRUCT PRELOGON^REPLY;
BEGIN
 INT REPLYCODE; ![0] if 0, proceed to VERIFYUSER;
 ! if 1, disallow logon
 STRING REPLYTEXT[0:n]; ![1] optional display text;
 ! maximum length is 132 bytes
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 11

Controlling Logon

information was sent in the Prelogon^msg message. The Logon^msg message has
the following structure:

After processing the Logon^msg message, the $CMON process replies with an
indication of whether the user is allowed to log on. The reply can also contain display
text. The structure of the reply message is as follows:

The following code fragment checks a flag value before deciding whether to accept the
logon request:

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -50 THEN
BEGIN
 IF ACCEPT^LOGON = YES THEN
 BEGIN
 LOGON^REPLY.REPLYCODE := 0;
 LOGON^REPLY.REPLYTEXT ':=' ["Welcome!",0];
 END;

 ELSE
 BEGIN
 LOGON^REPLY.REPLYCODE := 1;
 LOGON^REPLY.REPLYTEXT ':=' ["Logon rejected",0];
 END;
 SCAN LOGON^REPLY.REPLYTEXT[0] UNTIL 0 -> @LAST;
 REPLY^LEN := 2 + @LAST - @LOGON^REPLY.REPLYTEXT;
 CALL REPLYX(LOGON^REPLY,REPLY^LEN);
END;

Format of command-interpreter message -50 (Logon^msg message):

STRUCT LOGON^MSG;
BEGIN
 INT MSGCODE; ![0] value -50
 INT USERID; ![1] user ID of user logging on
 INT CIPRI; ![2] current priority of command
 ! interpreter
 INT CIINFILE[0:11]; ![3] name of command file of
 ! TACL process
 INT CIOUTFILE[0:11]; ![15] name of list file for the
 ! TACL process
END;

Format of Logon^reply structure:

STRUCT LOGON^REPLY;
BEGIN
 INT REPLYCODE; ![0] if 0, proceed to VERIFYUSER;
 ! if 1, disallow logon
 STRING REPLYTEXT[0:n]; ![1] optional display text;
 ! maximum length is 132 bytes
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 12

Controlling Logoff

Controlling Logoff
The TACL process sends a Logoff^msg message to $CMON whenever a user logs off
either explicitly by issuing a LOGOFF command or implicitly by logging on without first
logging off. This message gives $CMON the option of displaying message text on
logging off. The $CMON process is not able to reject a request to log off.

The format of the Logoff^msg message is given below:

The $CMON process replies using a Logoff^reply structure in the format shown below.
Note that the reply code in this case is ignored by the TACL process because $CMON
cannot reject a logoff request:

The following code fragment returns a message to the TACL process after receiving a
logoff request:

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -51 THEN
BEGIN
 LOGOFF^REPLY.REPLYTEXT ':=' ["Logging off...Bye!",0];
 SCAN LOGOFF^REPLY.REPLYTEXT UNTIL 0 -> @LAST;
 REPLY^LEN := 2 + @LAST - @LOGOFF^REPLY.REPLYTEXT;
 CALL REPLYX(LOGON^REPLY,REPLY^LEN);
END;

Format of command-interpreter message -51 (Logoff^msg message):

STRUCT LOGOFF^MSG;
BEGIN
 INT MSGCODE; ![0] value -51
 INT USERID; ![1] user ID of user logging off
 INT CIPRI; ![2] current priority of
 ! TACL process
 INT CIINFILE[0:11]; ![3] name of the command file
 ! for the TACL process
 INT CIOUTFILE[0:11]; ![15] name of the list file for
 ! the TACL process
END;

Format of Logoff^reply structure:

STRUCT LOGOFF^REPLY;
BEGIN
 INT REPLYCODE; ![0] ignored by TACL process
 STRING REPLYTEXT[0:n];![1] optional display text;
 ! maximum length is 132 bytes
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 13

Controlling Illegal Logon

Controlling Illegal Logon
After the user has failed two consecutive times to log on to the system, the TACL
process sends an Illegal^logon^msg message to $CMON on each subsequent failed
logon attempt. The $CMON process replies with some message text to be displayed.
$CMON cannot reject the Illegal^logon^msg message.

The Illegal^logon^msg message has the following structure:

After processing the Illegal^logon^msg message, the $CMON process sends an
Illegal^logon^reply structure back to the TACL process. The format of this message is
as follows:

Format of command-interpreter message -53 (Illegal^logon^msg message):

STRUCT ILLEGAL^LOGON^MSG;
BEGIN
 INT MSGCODE; ![0] value -53
 INT USERID; ![1] user ID of user trying to
 ! log on
 INT CIPRI; ![2] initial priority of command
 ! interpreter
 INT CIINFILE[0:11]; ![3] name of command file of
 ! TACL process
 INT CIOUTFILE[0:11]; ![15] name of list file for the
 ! TACL process
 INT LOGONSTRING[0:n]; ![27] the attempted LOGON command
 ! string; maximum 132 bytes
END;

Format of Illegal^logon^reply structure:

STRUCT ILLEGAL^LOGON^REPLY;
BEGIN
 INT REPLYCODE; ![0] ignored by TACL process
 STRING REPLYTEXT[0:n]; ![1] optional display text;
 ! maximum length is 132 bytes
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 14

Controlling Passwords

The following code fragment returns a display message to the TACL process following
receipt of an Illegal^logon^msg message:

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -53 THEN
BEGIN
 ILLEGAL^LOGON^MSG ':=' BUFFER FOR BYTES^READ;
 ILLEGAL^LOGON^REPLY.REPLYTEXT ':='
 "Invalid logon string: ";
 ILLEGAL^LOGON^REPLY.REPLYTEXT[11] ':='
 [ILLEGAL^LOGON^MSG.LOGONSTRING FOR
 BYTES^READ - 54,0];
 SCAN ILLEGAL^LOGON^REPLY.REPLYTEXT[0] UNTIL 0 -> @LAST;
 REPLY^LEN := 2 + @LAST - @ILLEGAL^LOGON^REPLY.REPLYTEXT;
 CALL REPLYX(LOGON^REPLY,REPLY^LEN);
END;

Controlling Passwords
A $CMON process can control the ability of a user to change passwords. This
subsection describes how $CMON can provide this control for local passwords and
remote passwords.

When the User Requests to Change a Local Password
When a user requests to change a local password by issuing a PASSWORD
command, the PASSWORD process sends a Password^msg message to the $CMON
process. The $CMON reply indicates whether the user’s password can be changed
and contains optional display text.

The format of the Password^msg message is as follows:

Format of command-interpreter message -57 (Password^msg message):

STRUCT PASSWORD^MSG;
BEGIN
 INT MSGCODE; ![0] value -57
 INT USERID; ![1] user ID of user requesting
 ! a change of local password
 INT CIPRI; ![2] initial priority of command
 ! interpreter
 INT CIINFILE[0:11]; ![3] name of command file of
 ! TACL process
 INT CIOUTFILE[0:11]; ![15] name of list file for the
 ! TACL process
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 15

When the User Requests to Change a
Remote Password

After processing the Password^msg message, $CMON sends a Password^reply
message back to the TACL process. The format of this structure is as follows:

The following code fragment checks a flag value to see whether password changes are
allowed, then returns a display message to the TACL process, depending on the
setting of the flag:

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -57 THEN
BEGIN
 IF CHANGE^PASSWORD = YES THEN
 BEGIN
 PASSWORD^REPLY.REPLYCODE := 0;
 PASSWORD^REPLY.REPLYTEXT ':='
 ["Password change approved",0];
 END
 ELSE
 BEGIN
 PASSWORD^REPLY.REPLYCODE := 1;
 PASSWORD^REPLY.REPLYTEXT ':='
 ["Password change rejected",0];
 END;
 SCAN PASSWORD^REPLY.REPLYTEXT[0] UNTIL 0 -> @LAST;
 REPLY^LEN := 2 + @LAST - @PASSWORD^REPLY.REPLYTEXT;
 CALL REPLYX(PASSWORD^REPLY,REPLY^LEN);
END;

When the User Requests to Change a Remote Password
When a user requests to change a remote password by issuing a
REMOTEPASSWORD command, the RPASSWRD process sends a
Remotepassword^msg message to the $CMON process. This message is like the
Password^msg message, except that it also contains the name of the node on which
the user wants to change the password. The $CMON reply indicates whether the
user’s password can be changed and contains optional display text.

Format of Password^reply structure:

STRUCT PASSWORD^REPLY;
BEGIN
 INT REPLYCODE; ![0] if 0, allows the password
 ! to be changed; if 1,
 ! disallows a change of
 ! password
 STRING REPLYTEXT[0:n]; ![1] optional display text;
 ! maximum length is 132 bytes
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 16

When the User Requests to Change a
Remote Password

The format of the Remotepassword^msg message is as follows:

After processing the Remotepassword^msg message, $CMON sends a
Remotepassword^reply structure back to the TACL process. The format of this
structure is as follows:

Format of command-interpreter message -58 (Remotepassword^msg message):

STRUCT REMOTEPASSWORD^MSG;
BEGIN
 INT MSGCODE; ![0] value -58
 INT USERID; ![1] user ID of user requesting
 ! a change of remote password
 INT CIPRI; ![2] initial priority of command
 ! interpreter
 INT CIINFILE[0:11]; ![3] name of command file of
 ! TACL process
 INT CIOUTFILE[0:11]; ![15] name of list file for the
 ! TACL process
 INT SYSNAME[0:3]; ![27] change the remote password
 for this system
END;

Format of Remotepassword^reply structure:

STRUCT REMOTEPASSWORD^REPLY;
BEGIN
 INT REPLYCODE; ![0] if 0, allows the password
 ! to be changed; if 1,
 ! disallows a change of
 ! password
 STRING REPLYTEXT[0:n]; ![1] optional display text;
 ! maximum length is 132 bytes
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 17

Controlling Process Creation

The following code fragment checks a flag value to see whether remote password
changes are allowed, then returns display text to the TACL process, depending on the
setting of the flag:

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -58 THEN
BEGIN
 IF CHANGE^REMOTE^PASSWORD = YES THEN
 BEGIN
 REMOTEPASSWORD^REPLY.REPLYCODE := 0;
 REMOTEPASSWORD^REPLY.REPLYTEXT ':='
 ["Password change approved",0];
 END
 ELSE
 BEGIN
 REMOTEPASSWORD^REPLY.REPLYCODE := 1;
 REMOTEPASSWORD^REPLY.REPLYTEXT ':='
 ["Password change rejected",0];
 END;
 SCAN REMOTEPASSWORD^REPLY.REPLYTEXT[0] UNTIL 0 -> @LAST;
 REPLY^LEN := 2 + @LAST - @REMOTEPASSWORD^REPLY.REPLYTEXT;
 CALL REPLYX(REMOTEPASSWORD^REPLY,REPLY^LEN);
END;

Controlling Process Creation
When a user attempts to create a new process explicitly by issuing a RUN command,
implicitly by typing an object-file name, or by using the #NEWPROCESS built-in
function, the TACL process sends a Processcreation^msg message to the $CMON
process to request verification of the process. The $CMON process may reject the
request, or it may accept the request but optionally perform the following controls:

• Change the CPU in which the new process will execute

• Change the priority of the new process

• Change the program-file name from what was requested by the user

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 18

Controlling Process Creation

The structure of the Processcreation^msg message is as follows:

Format of command-interpreter message -52 (Processcreation^msg message):

STRUCT PROCESSCREATION^MSG;
BEGIN
 INT MSGCODE; ![0] value -52
 INT USERID; ![1] user ID or user logged on
 INT CIPRI; ![2] initial priority of command
 ! interpreter
 INT CIINFILE[0:11]; ![3] name of command file for
 ! TACL process
 INT CIOUTFILE[0:11]; ![15] name of list file for
 ! TACL process
 INT PROGNAME[0:11]; ![27] program-file name
 INT PRIORITY; ![39] priority specified in RUN
 ! command if supplied;
 ! otherwise -1
 INT PROCESSOR; ![40] processor number specified
in
 ! RUN command if supplied;
 ! otherwise -1
 INT PROGINFILE[0:11]; ![41] the expanded IN file RUN
 ! parameter if supplied;
 ! otherwise the default IN
 ! file
 INT PROGOUTFILE[0:11]; ![53] the expanded OUT file RUN
 ! parameter if supplied;
 ! otherwise the default OUT
 ! file
 INT PROGLIBFILE[0:11]; ![65] the expanded LIB file RUN
 ! parameter if supplied;
 ! otherwise blanks
 INT PROGSWAPFILE[0:11]; ![77] the expanded SWAP file RUN
 ! parameter if supplied;
 ! otherwise blanks
 INT PARAM_LEN; ![89] length of PARAM in bytes.
 STRING PARAM[0:MAX^PARAM - 1];
 ![90] parameter string of the RUN
 ! command, which is up to
528
 ! bytes in length including
2
 ! null bytes at the end of
the
 ! string.
END;

Note. The CIIN file name supplied in the process creation message is in local format even if
the TACL process is remote. This means that the file name does not contain the node number.
The $CMON process can get the node number of the CIIN file by calling LASTRECEIVE (or
RECEIVEINFO) to get the process ID of the TACL that sent the process creation message; the
process ID contains the node number of the TACL, which is the same as the node number of
the CIIN file.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 19

Controlling Process Creation

To allow process creation, $CMON returns the Processcreation^accept structure with
the reply code set to 0. This structure also contains the name of the program file to
run, the priority at which the process will run, and the number of the CPU in which the
process will run. $CMON can change any of these values from those that it received in
the Processcreation^msg message.

The format of the Processcreation^accept structure for allowing process creation is
shown below:

To reject a request to create a process, $CMON returns the Processcreation^reject
message to the TACL process with the reply code set to 1 and the remainder of the

Format of Processcreation^accept structure:

STRUCT PROCESSCREATION^ACCEPT;
BEGIN
 INT REPLY^CODE; ![0] 0 to allow process creation
 INT PROGNAME[0:11]; ![1] expanded name of program
 ! file to be run
 INT PRIORITY; ![13] execution priority of the
 ! new process.
 ! 0 = PRI option specified
by
 ! user. If no PRI option
 ! is specified, then
TACL
 ! priority minus 1.
 ! >0 = execution priority
 ! <0 = PRI option specified
by
 ! user plus negative
 ! priority offset
returned
 ! in this field.
 ! If no PRI option is
 ! specified by user,
then
 ! TACL priority minus 1
 ! plus negative priority
 ! offset returned in
this
 ! field. For example,
 ! PRI = 150,
 ! priority = -5,
priority
 ! used = 145).
 INT PROCESSOR; ![14] processor where the new
 ! process is to run or -1.
 ! If -1, then the processor
 ! in which the TACL process
 ! is running is used.
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 20

Controlling the Priority of a New Process

message containing optional display text. The structure for rejecting a process-
creation request is as follows:

Controlling the Priority of a New Process
The PROCESSCREATION^MSG.PRIORITY variable in the request received by
$CMON contains the priority requested by the user for the new process. If the user
does not specify a priority, then this variable contains -1; a priority of -1 is interpreted
as a priority of 1 less than that of the TACL process.

To accept the user’s request for priority, $CMON either copies the requested (positive)
priority into the PROCESSCREATION^ACCEPT.PRIORITY variable, or assigns a
value of 0 to the variable (to indicate no change), and then sends the reply. To change
the priority requested by the user, $CMON can either put the new value into the reply
message, or it can put a negative value into the reply message; a negative value is
added to the requested value, resulting in a reduced priority.

In the following example, the user’s choice for priority is accepted unless the user
requests a priority greater than 175. Here, $CMON reduces the priority to 175. The
values for the program-file name and CPU number are returned unchanged:

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -52 THEN
BEGIN
 PROCESSCREATION^MSG ':=' SBUFFER FOR
 $LEN(PROCESSCREATION^MSG);
 IF PROCESSCREATION^MSG.PRIORITY > 175
 THEN PROCESSCREATION^ACCEPT.PRIORITY := 175
 ELSE PROCESSCREATION^ACCEPT.PRIORITY := 0;

 PROCESSCREATION^ACCEPT.PROGNAME ':='
 PROCESSCREATION^MSG.PROGNAME FOR 12;
 PROCESSCREATION^ACCEPT.PROCESSOR :=
 PROCESSCREATION^MSG.PROCESSOR;

 CALL REPLYX(PROCESSCREATION^ACCEPT,
 $LEN(PROCESSCREATION^ACCEPT));
END;

Format of Processcreation^reject structure:

STRUCT PROCESSCREATION^REJECT;
BEGIN
 INT REPLYCODE; ![0] 1 to reject process creation
 STRING REPLYTEXT[0:n]; ![1] optional message to be
 ! displayed; maximum 132
 ! bytes
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 21

Controlling the CPU of a New Process

Controlling the CPU of a New Process
The user’s choice of the CPU in which to run the new process is received by the
$CMON process in the PROCESSCREATION^MSG.PROCESSOR variable. If the
user did not specify a CPU, then this value contains -1.

The $CMON process can set the CPU number in the reply to any valid process
number or -1 for the CPU in which the primary process of the TACL process is running.

The following example shows how $CMON can segregate processes into those that
require priority response and those for which response time is not critical. Priority-
response processes will run in CPUs 0, 2, and 4; other processes will run in CPUs 1, 3,
and 5.

To keep the example simple, the requested priority is used to determine the speed of
response required. A typical $CMON process might, for example, use a list of program
names that run as priority-response processes. In this example, those processes with
a requested priority greater than 150 are priority-response processes. Once the group
of CPUs is established for a given process, the specific CPU is chosen on a round-
robin basis.

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -52 THEN
BEGIN
 PROCESSCREATION^MSG ':=' SBUFFER FOR
 $LEN(PROCESSCREATION^MSG);

! Limit process priority to 175:

 IF PROCESSCREATION^MSG.PRIORITY > 175
 THEN PROCESSCREATION^ACCEPT.PRIORITY := 175
 ELSE PROCESSCREATION^ACCEPT.PRIORITY := 0;

! Sort processes into priority and nonpriority response
! and allocate to priority response and nonpriority
! response processors:

 IF PROCESSCREATION^MSG.PRIORITY > 150
 THEN
 BEGIN
 PRIORITY^CPU := PRIORITY^CPU + 2;
 IF PRIORITY^CPU = 6 THEN PRIORITY^CPU := 0;
 PROCESSCREATION^ACCEPT.PROCESSOR := PRIORITY^CPU;
 END
 ELSE
 BEGIN
 NONPRIORITY^CPU := NONPRIORITY^CPU + 2;
 IF NONPRIORITY^CPU = 7 THEN NONPRIORITY^CPU := 1;
 PROCESSCREATION^ACCEPT.PROCESSOR := NONPRIORITY^CPU;
 END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 22

Controlling Change of Process Priority

! Do not change the program-file name:

 PROCESSCREATION^ACCEPT.PROGNAME ':='
 PROCESSCREATION^MSG.PROGNAME FOR 12;

! Reply to the TACL process:

 CALL REPLYX(PROCESSCREATION^ACCEPT,
 $LEN(PROCESSCREATION^ACCEPT));
END;

Alternatively, you can prohibit use of certain CPUs that normally perform critical
processing. Here, you could check the incoming request for a request to use the
forbidden CPU and then either allocate some other CPU, again using a round-robin
algorithm, or simply reject the request.

Controlling Change of Process Priority
When a user requests to change the priority of an existing process using the ALTPRI
command, the TACL process sends an Altpri^msg message to $CMON to verify the
request. The $CMON process can either accept the request as it is or reject it.

Note that for the user to change the priority of a process, one of the following must be
true:

• The process has the same process access ID as the user.

• The user is the group manager of the process access ID of the process.

• The user is the super ID (255, 255).

If none of the above is true, then the user cannot change the priority, regardless of
$CMON.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 23

Controlling Change of Process Priority

The format of the Altpri^msg message is as follows:

The $CMON process must respond to an Altpri^msg message with an Altpri^reply
structure; the reply code must be either 0 to allow the priority change or 1 to reject the
priority change. The reply may also contain display text.

The format of the Altpri^reply structure is as follows:

Format of command-interpreter message -56 (Altpri^msg message):

STRUCT ALTPRI^MSG;
BEGIN
 INT MSGCODE; ![0] value -56
 INT USERID; ![1] user ID of user requesting
 ! change of priority
 INT CIPRI; ![2] current priority of command
 ! interpreter
 INT CIINFILE[0:11]; ![3] name of command file of
 ! TACL process
 INT CIOUTFILE[0:11]; ![15] name of list file for the
 ! TACL process
 INT CRTPID[0:3]; ![27] process ID of process whose
 ! priority is to be altered
 INT PROGNAME[0:11]; ![31] expanded program file name
of
 the process whose priority
is
 to be altered
 INT PRIORITY; ![43] new priority
 INT PROCESS^HANDLE[0:9];![44] process handle of process
 ! whose priority is to be
 ! altered
END;

Note. The Altpri^msg message includes both the process ID (CRTPID field) and the process
handle of the target process. The process ID field is retained for compatibility with C-series
systems. A $CMON process running on a D-series system should always use the process-
handle field to identify the target process.

Format of Altpri^reply structure:

STRUCT ALTPRI^REPLY;
BEGIN
 INT REPLYCODE; ![0] if 0, allows the priority to
 ! be changed; if 1, rejects the
 ! attempt to change priority
 STRING REPLYTEXT[0:n]; ![1] optional display text;
 ! maximum length is 132 bytes
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 24

Controlling Adding and Deleting Users

The following code fragment allows the priority to be reduced but not increased:

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -56 THEN
BEGIN
 ALTPRI^MSG ':=' SBUFFER FOR BYTES^READ;
 ERROR := PROCESS_GETINFO_(ALTPRI^MSG.PROCESS^HANDLE,
 !file^name:maxlen!,
 !file^name^len!,
 PRIORITY);
 IF ERROR <> 0 THEN
 BEGIN
 ALTPRI^REPLY.REPLYCODE = 1;
 END
 ELSE
 BEGIN
 IF PRIORITY > ALTPRI^MSG.PRIORITY
 THEN ALTPRI^REPLY.REPLYCODE = 0
 ELSE ALTPRI^REPLY.REPLYCODE = 1;
 END;
 REPLY^LEN := 2;
 CALL REPLYX(ALTPRI^REPLY,REPLY^LEN);
END;

Controlling Adding and Deleting Users
Attempts to add or delete users can be controlled by the $CMON process. The
ADDUSER or DELUSER process asks $CMON for verification when a user issues an
ADDUSER or DELUSER command.

Controlling Adding a User
When a user attempts to add a user to the system using the ADDUSER command, the
ADDUSER process sends an Adduser^msg message to the $CMON process to verify
the request. $CMON can either accept the request as it is or reject it.

Note that for a user to add a new user to the system, one of the following must be true:

• The user issuing the command is the group manager (n, 255) of the new user.

• The user issuing the command is the super ID (255, 255).

If neither of the above is true, then the user cannot add a new user, regardless of
$CMON.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 25

Controlling Adding a User

The format of the Adduser^msg message is as follows:

The $CMON process must respond to an Adduser^msg message with an
Adduser^reply structure; the reply code must be 0 to allow the new user or 1 to reject
the new user. The reply may also contain display text.

The format of the Adduser^reply structure is as follows:

Format of command-interpreter message -54 (Adduser^msg message):

STRUCT ADDUSER^MSG;
BEGIN
 INT MSGCODE; ![0] value -54
 INT USERID; ![1] user ID of user making the
 ! request
 INT CIPRI; ![2] initial priority of command
 ! interpreter
 INT CIINFILE[0:11]; ![3] name of command file of
 ! TACL process
 INT CIOUTFILE[0:11]; ![15] name of list file for the
 ! TACL process
 INT GROUPNAME[0:3]; ![27] the group name of the user
 ! being added
 INT USERNAME[0:3]; ![31] name of the user being added
 INT GROUP^ID; ![35] the group number of the user
 ! being added
 INT USER^ID[0:3]; ![36] the user number of the user
 ! being added
END;

Format of Adduser^reply structure:

STRUCT ADDUSER^REPLY;
BEGIN
 INT REPLYCODE; ![0] if 0, allows the user to
 ! be added; if 1, rejects the
 ! attempt to add a user
 STRING REPLYTEXT[0:n]; ![1] optional display text;
 ! maximum length is 132 bytes
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 26

Controlling Deleting a User

The following code fragment rejects any attempt to add a user except by a super-group
user (255, n):

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -54 THEN
BEGIN
 REQUESTING^GROUP^ID := ADDUSER^MSG.USERID.<0:7>;
 IF REQUESTING^GROUP^ID = 255
 THEN ADDUSER^REPLY.REPLY^CODE := 0
 ELSE ADDUSER^REPLY.REPLY^CODE := 1;
 REPLY^LEN := 2;
 CALL REPLYX(ADDUSER^REPLY,REPLY^LEN);
END;

Controlling Deleting a User
When a user attempts to delete another user from the system using the DELUSER
command, the DELUSER process sends a Deluser^msg message to $CMON to verify
the request. The $CMON process can either accept the request as it is or reject it.

Note that for the user to delete a user from the system, one of the following must be
true:

• The user issuing the command is the group manager (n, 255) of the user to be
deleted.

• The user issuing the command is the super ID (255, 255).

If neither of the above is true, then the requesting user cannot perform the deletion,
regardless of $CMON.

The format of the Deluser^msg message is as follows:

Format of command-interpreter message -55 (Deluser^msg message):

STRUCT DELUSER^MSG;
BEGIN
 INT MSGCODE; ![0] value -55
 INT USERID; ![1] user ID of user requesting
 ! to delete
 INT CIPRI; ![2] initial priority of command
 ! interpreter
 INT CIINFILE[0:11]; ![3] name of command file of
 ! TACL process
 INT CIOUTFILE[0:11]; ![15] name of list file for the
 ! TACL process
 INT GROUPNAME[0:3]; ![27] the group name of the user
 ! being deleted
 INT USERNAME[0:3]; ![31] name of the user being
 ! deleted
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 27

Controlling $CMON While the System Is Running

The $CMON process must respond to a Deluser^msg message with a Deluser^reply
structure; the reply code must be 0 to allow the deletion or 1 to reject the deletion. The
reply may also contain display text.

The format of the Deluser^reply structure is as follows:

The following code fragment rejects any attempt to delete a user except by a
super-group user (255, n):

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = -55 THEN
BEGIN
 REQUESTING^GROUP^ID := DELUSER^MSG.USERID.<0:7>;
 IF REQUESTING^GROUP^ID = 255
 THEN DELUSER^REPLY.REPLY^CODE := 0
 ELSE DELUSER^REPLY.REPLY^CODE := 1;
 REPLY^LEN := 2;
 CALL REPLYX(DELUSER^REPLY,REPLY^LEN);
END;

Controlling $CMON While the System Is
Running

So far this section has discussed how $CMON provides static control over requests
made by TACL process. However, you can write your $CMON program to permit run-
time control over the way it responds to these messages. That is, instead of having
responses hard coded into the $CMON process, the operator can supply or change
response values at run time.

Any control that can be hard coded into $CMON can also be applied at run time. For
example, your $CMON process might allow the operator to:

• Change the text displayed when logging on. For example, the operator may want
to include some changing system-status information.

• Specify that only commands from operators are accepted. For example, the
operator may want to forbid requests from users while preparing to shut down the
system; requests from the operator, however, still need to be allowed.

Format of Deluser^reply structure:

STRUCT DELUSER^REPLY;
BEGIN
 INT REPLYCODE; ![0] if 0, allows the deletion;
 ! if 1, rejects the deletion
 STRING REPLYTEXT[0:n]; ![1] optional display text;
 ! maximum length is 132 bytes
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 28

Controlling $CMON While the System Is Running

• Control the CPU in which new processes can execute. This section has already
described how to do this statically; your $CMON program can be written to allow
CPU specification at run time.

One effective way of providing run-time control is to provide a command-interface
program that shall be referred to as CMONCOM. This program is started by the
operator’s TACL process and passes requests to $CMON to set flags, provide
response text, and so on. Figure 23-2 shows the model.

For a model like this to work, you need a way to distinguish between messages from
the command-interface program and messages received from the TACL process.
Currently, all command-interpreter messages have a message code in the range -1
through -60. You should therefore choose message codes outside this range for
messages from your command-interface program. Using positive numbers is one
possible solution.

Another check that your $CMON program should make is that the sender of a
command-interface program message has proper authority. For example, you can
check that the message sender belongs to the operations group.

Figure 23-2. $CMON With Operator Control Process

Note. HP reserves the right to add to its message-numbering system at any time. If you
choose to use some currently unused message numbers for your own use, you should plan for
the possibility that you might need to change them in the future.

VST114.VSD

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 29

Setting the Logon Display Text at Run Time

Setting the Logon Display Text at Run Time
The following code fragments show how a command-interface program and a $CMON
process can change the logon display text at run time. Here, (plus) 50 has been
chosen as the message code for a message containing logon text.

The command-interface program prompts the operator for the logon text, puts the text
into a data structure with the message code of 50, and then sends it to $CMON.
$CMON reads the message from its $RECEIVE file, identifies it as a change logon text
message, checks that the sender belongs to the operations group, and if so changes
its logon-text buffer accordingly. $CMON will respond to future Logon^msg messages
using the modified text string.

In the command-interface program:

STRUCT RT^LOGON^MSG; !structure for run-time logon
BEGIN ! message
 INT MSGCODE; !value (plus) 50
 STRING LOGON^MSG[0:n]; !the logon message; 132 bytes
END; ! maximum
 .
 .

!Prompt operator for new logon text:
SBUFFER ':=' "Enter New Logon Text" -> @S^PTR;
WCOUNT := @S^PTR '-' @SBUFFER;
RCOUNT := 132;
CALL WRITEREADX(TERM^NUM,SBUFFER,WCOUNT,RCOUNT,BYTES^READ);

!Fill in RT^LOGON^MSG data structure and send it to $CMON:
RT^LOGON^MSG.MSG^CODE := 50;
RT^LOGON^MSG.LOGON^MSG ':=' SBUFFER[0] FOR BYTES^READ;
WCOUNT := BYTES^READ + 2;
CALL WRITEREADX(CMON^NUM,RT^LOGON^MSG,WCOUNT,RCOUNT,
 BYTES^READ);

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 30

Setting the Logon Display Text at Run Time

In the $CMON process:

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = 50 THEN
BEGIN

! Find out if sender is in group 255:

 CALL FILE_GETRECEIVEINFO_(INFO);
 P^HANDLE ':=' INFO[6] FOR 10;
 ERROR := PROCESS_GETINFO_(P^HANDLE,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 !hometerm:maxlen!,
 !hometerm^len!,
 !process^time!,
 !caid!,
 PAID);
 IF PAID.<0:7> = 255 THEN

! If sender is in group 255, process request

 BEGIN
 LOGON^MSG ':=' SBUFFER[2] FOR (BYTES^READ - 2);
 LOGON^MSG^LEN := BYTES^READ - 2;
 END;
 CALL REPLYX;
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 31

Refusing Command-Interpreter Requests

Refusing Command-Interpreter Requests
You can write your $CMON and command-interface programs to set a flag that
$CMON will check before replying to any command-interpreter message. If the flag is
on, then $CMON rejects all requests. If the flag is off, then requests are processed
normally.

To enable operator requests to continue to be accepted when requests from other
users are rejected, $CMON should check the group number of the requesting process
and allow the request if the group number is 255 (the group number for the operations
group). If the group number is not 255, it should reject the request.

The following code fragments show the logic required in the control and $CMON
processes to accomplish selective rejection of requests. The logic shown in $CMON is
for the logon request but is the same for any other request.

In the command-interface program:

STRUCT RT^SHUTDOWN^MSG; !structure for run-time logon
BEGIN ! message
 INT MSGCODE; !value (plus) 61
 STRING SHUTDOWN^MSG[0:n]; !the reply text for subsequent
 ! command-interpreter requests;
END; ! 132 bytes maximum
 .
 .

!Prompt operator for new logon text:
SBUFFER ':=' "Type 'x' to reject users: " -> @S^PTR;
WCOUNT := @S^PTR '-' @SBUFFER;
RCOUNT := 2;
CALL WRITEREADX(TERM^NUM,SBUFFER,WCOUNT,RCOUNT,BYTES^READ);

IF SBUFFER[0] = "x" THEN
BEGIN

! Prompt operator for shutdown text:

 SBUFFER ':=' "Enter message text: " -> @S^PTR;;
 WCOUNT := S^PTR '-' @SBUFFER;
 CALL WRITEREADX(TERM^NUM,SBUFFER,WCOUNT,RCOUNT,
 BYTES^READ);

! Fill in RT^SHUTDOWN^MSG data structure and send it to
! $CMON:

 RT^SHUTDOWN^MSG.MSG^CODE := 61;
 RT^SHUTDOWN^MSG.SHUTDOWN^MSG ':=' SBUFFER[0] FOR
 BYTES^READ;
 WCOUNT := BYTES^READ + 2;
 CALL WRITEREADX(CMON^NUM,RT^SHUTDOWN^MSG,WCOUNT,RCOUNT,
 BYTES^READ);
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 32

Refusing Command-Interpreter Requests

In the $CMON process:

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = 61 THEN
BEGIN

! Find out if sender is in group 255:

 CALL FILE_GETRECEIVEINFO_(INFO);
 P^HANDLE ':=' INFO[6] FOR 10;
 ERROR := PROCESS_GETINFO_(P^HANDLE,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 !hometerm:maxlen!,
 !hometerm^len!,
 !process^time!,
 !caid!,
 PAID);
 IF PAID.<0:7> = 255 THEN

! If request from operations group, process message:

 BEGIN
 REFUSE^ALL := YES;
 SHUTDOWN^TEXT ':=' SBUFFER[2] FOR (BYTES^READ - 2);
 SHUTDOWN^TEXT^LEN := BYTES^READ -2;
 END;
 CALL REPLYX;
END;
 .
 .

IF BUFFER[0] = -50 THEN !logon request
BEGIN
 IF REFUSE^ALL = YES THEN
 BEGIN

 ! Reject if not operator group:

 REQUESTING^GROUP^ID := LOGON^MSG.USERID.<0:7>;
 IF REQUESTING^GROUP^ID <> 255 THEN
 BEGIN
 LOGON^REPLY.REPLYCODE := 1;
 LOGON^REPLY.REPLYTEXT ':=' SHUTDOWN^TEXT FOR
 SHUTDOWN^TEXT^LEN;
 END
 ELSE

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 33

Controlling Which CPU a Process Can Run In

 ! Accept if operator group:

 BEGIN
 LOGON^REPLY.REPLYCODE := 0;
 LOGON^REPLY.REPLYTEXT ':=' LOGON^TEXT FOR
 LOGON^TEXT^LEN;
 END;
 END

! Accept if REFUSE^ALL = NO:

 ELSE
 BEGIN
 LOGON^REPLY.REPLYCODE := 0;
 LOGON^REPLY.REPLYTEXT ':=' LOGON^TEXT FOR
 LOGON^TEXT^LEN;
 END;
 CALL REPLYX(LOGON^REPLY,$LEN(LOGON^REPLY));
END;

Controlling Which CPU a Process Can Run In
You can write your command-interface program to send information to the $CMON
process indicating which CPU the process should run in. The following example
expands the example given earlier for grouping processes according to their priority
and having processes that need a priority response use one group of CPUs while
those processes that are not so response-critical use the remaining CPUs. In this
case, the operator is allowed to change the status of CPUs between priority response
and non-priority response at run time.

This example is built around a table of CPUs in the $CMON process called the
CPU^LIST. This is an integer array giving the response status for each CPU.
CPU^LIST[0] represents CPU 0, and it is set to 1 if it is part of the priority-response
group of CPUs or 0 if it belongs to the non-priority-response group of CPUs.
CPU^LIST[1] represents CPU 1, and so on.

To change the status of a given CPU, the command-interface program formulates a
message made up of the message code 62, the CPU number, and the new status.
Then it sends the message to $CMON. On reading a message 62, $CMON updates
the CPU^LIST accordingly.

When $CMON receives a Processcreation^msg message from a TACL process, it
checks the priority and assigns the process to the priority or nonpriority group.
$CMON then checks the CPU^LIST to find the next CPU allocated to the particular
group. $CMON then puts that CPU number into the Processcreation^accept structure
and returns the message to the TACL process.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 34

Controlling Which CPU a Process Can Run In

In the command-interface program:

STRUCT CPU^CHANGESTATUS^MSG;
BEGIN
 INT MSGCODE; !value 62
 INT PROCESSOR; !processor number to change status
 INT STATUS; !new status; 1 for move to
 ! priority-response list, 0 for
 ! move to non-priority-response
 ! list
END;
 .
 .
!Set up the CPU^CHANGESTATUS^MSG message and send to $CMON:
CPU^CHANGESTATUS^MSG.MSGCODE := 62;
CPU^CHANGESTATUS^MSG.PROCESSOR := CPU^NUMBER;
CPU^CHANGESTATUS^MSG.STATUS := NEW^STATUS;
WCOUNT := $LEN(CPU^CHANGESTATUS^MSG);
CALL WRITEREADX(CMON^NUM,CPU^CHANGESTATUS^MSG,WCOUNT,RCOUNT,
 BYTES^READ);

In the $CMON process:

INT CPU^LIST[0:5];

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
IF BUFFER[0] = 62 THEN
BEGIN

! Find out if sender is in group 255:

 CALL FILE_GETRECEIVEINFO_(INFO);
 P^HANDLE ':=' INFO[6] FOR 10;
 ERROR := PROCESS_GETINFO_(P^HANDLE,
 !file^name:maxlen!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 !hometerm:maxlen!,
 !hometerm^len!,
 !process^time!,
 !caid!,
 PAID);
 IF PAID.<0:7> = 255 THEN
END;

! Process request if from operations group:

 CPU^LIST[BUFFER[1]] := BUFFER[2];
 .
 .

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 35

Controlling Which CPU a Process Can Run In

IF BUFFER[0] = -52 THEN
BEGIN
 PROCESSCREATION^MSG ':=' SBUFFER FOR
 $LEN(PROCESSCREATION^MSG);

 !Limit process priority to 175:

 IF PROCESSCREATION^MSG.PRIORITY > 175
 THEN PROCESSCREATION^ACCEPT.PRIORITY := 175
 ELSE PROCESSCREATION^ACCEPT.PRIORITY := 0; ! Accept priority

! Allocate priority-response processor if priority over 150,
! otherwise allocate non-priority-response processor:

 IF PROCESSCREATION^MSG.PRIORITY > 150
 THEN
 BEGIN
 DO
 BEGIN
 PRIORITY^CPU := PRIORITY^CPU + 1;
 IF PRIORITY^CPU = 6 THEN PRIORITY^CPU := 0;
 END
 UNTIL CPU^LIST[PRIORITY^CPU] = 1;
 PROCESSCREATION^ACCEPT.PROCESSOR := PRIORITY^CPU;
 END
 ELSE
 BEGIN
 DO
 BEGIN
 NONPRIORITY^CPU := NONPRIORITY^CPU + 1;
 IF NONPRIORITY^CPU = 6 THEN NONPRIORITY^CPU := 0;
 END
 UNTIL CPU^LIST[NONPRIORITY^CPU] = 0;
 PROCESSCREATION^ACCEPT.PROCESSOR := NONPRIORITY^CPU;
 END;

! Do not change the program-file name:

 PROCESSCREATION^ACCEPT.PROGNAME ':='
 PROCESSCREATION^MSG.PROGNAME FOR 12;

! Reply to the TACL process:

 CALL REPLYX(PROCESSCREATION^ACCEPT,
 $LEN(PROCESSCREATION^ACCEPT));
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 36

Writing a $CMON Program: An Example

Writing a $CMON Program: An Example
The example presented here contains the code for two different processes:

• A $CMON process

• A command-interface program, CMONCOM

The $CMON process responds to all requests from a TACL process as well as to
requests made by the command-interface program. The command-interface program
makes requests for run-time control over how $CMON responds to requests made by a
TACL process. Specifically, the command-interface program allows run-time control of:

• The logon text

• The logoff text

• Rejection of all requests that are not operator requests made while the system is
shutting down

• Choice of CPU in which to run new processes

Sample $CMON Program
The $CMON program is made up the procedures described below. Apart from the
main procedure, all $CMON procedures fall into two categories: procedures that
respond to requests from the command-interface program and procedures that
respond to requests from a TACL process.

• The CMON^MAIN procedure reads messages from the $RECEIVE file.
Depending on the message code in the first word of each message, the
CMON^MAIN procedure calls the specific procedure for processing that message.
Positive message codes indicate messages from the command-interface program.
Negative message codes indicate messages from a TACL process.

• The INIT and SAVE^STARTUP^MESSAGE procedures open the IN file and
$RECEIVE and initialize some variables.

• The FILE^ERRORS and FILE^ERRORS^NAME procedures provide for file-system
error handling. When a file-system error is encountered, these procedures attempt
to display the name of the file that the error occurred against, as well as the file-
system error number itself.

Note. This example is written in TAL. However, you could write the same programs using any
supported programming language: for example, COBOL, C, or Pascal.

Note. Each procedure that handles a command-interpreter request uses a structure template
to gain access to fields of information within the received message. Although most of these
procedures make little use of buffered information, writing the code this way makes it easier for
future modification. A structure pointer maps the structure template to the I/O buffer.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 37

Sample $CMON Program

• The WRITE^LINE procedure provides a convenient way of writing a line to the
terminal.

Procedures for Processing Requests From the
Command-Interface Program
• The CHANGE^LOGON^MESSAGE procedure is called when $CMON receives an

RT^LOGON^MESSAGE structure from the command-interface program. This
procedure updates a buffer containing logon text using the text contained in the
incoming message.

• The CHANGE^LOGOFF^MESSAGE procedure is called when $CMON receives
an RT^LOGOFF^MESSAGE structure from the command-interface program. This
procedure updates a buffer containing logoff text with the text contained in the
incoming message.

• The REJECT^REQUESTS procedure is called when $CMON receives an
RT^SHUTDOWN^MESSAGE structure from the command-interface program. The
procedure sets the REFUSE^ALL flag on to prevent further command-interpreter
requests from being accepted. In addition, the procedure updates a buffer
containing shutdown text with the text string contained in the incoming message.
This message is sent to TACL processes that make requests when the
REFUSE^ALL flag is on.

• The ACCEPT^REQUESTS procedure is called when $CMON receives an
RT^START^MESSAGE structure from the command-interface program. The
procedure clears the REFUSE^ALL flag, allowing $CMON to accept command-
interpreter requests.

• The CHANGE^CPU^STATUS procedure is called when $CMON receives a
CPU^CHANGESTATUS^MESSAGE structure from the command-interface
program. The incoming message contains a CPU number and CPU status. The
procedure updates the CPU^LIST array to reflect the new CPU status.

Procedures for Processing Command-Interpreter Messages
• The PROCESS^CONFIG^MSG procedure is called when $CMON receives a

Config^msg message from a TACL process. This procedure returns a blank text
string to the TACL process; the TACL process retains the default logon
parameters.

• The PROCESS^PRELOGON^MSG procedure is called when $CMON receives a
Prelogon^msg message from a TACL process. This procedure normally accepts
the request and returns a blank text string. The request is rejected for all
nonoperator TACL processes only if the operator has already set the
REFUSE^ALL flag to inhibit further requests.

• The PROCESS^LOGON^MSG procedure is called when $CMON receives a
LOGON^MSG message from a TACL process. This procedure normally accepts
the request and returns a text string for display. The request is rejected for all

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 38

Sample $CMON Program

nonoperator TACL processes only if the operator has already set the
REFUSE^ALL flag to inhibit further requests.

• The PROCESS^LOGOFF^MSG procedure is called when $CMON receives a
Logoff^msg message from a TACL process. It functions the same way as the
PROCESS^LOGON^MSG procedure, except that it returns a logoff message
instead of a logon message.

• The PROCESS^ILLEGAL^LOGON^MSG procedure is called when $CMON
receives an Illegal^logon^msg message from a TACL process. It returns a blank
text string to the TACL process.

• The PROCESS^PASSWORD^MSG procedure is called when $CMON receives a
Password^msg message from the password program. This procedure normally
accepts the request and returns a text string indicating that the password change is
approved. The request is rejected for all nonoperator TACL processes only if the
operator has already set the REFUSE^ALL flag to inhibit further requests.

• The PROCESS^REMOTEPASSWORD^MSG procedure is called when $CMON
receives a Remotepassword^msg message from the RPASSWRD program. This
procedure is just like the PROCESS^PASSWORD^MSG procedure, except that it
works with remote passwords instead of local passwords.

• The PROCESS^PROCESSCREATION^MSG procedure is called when $CMON
receives a Processcreation^msg message from a TACL process.

This procedure normally accepts the program file and execution priority specified in
the incoming message, but it assigns a CPU depending on the execution priority.
Processes requested to run at priority 150 or higher are run in one set of CPUs,
and processes with priority less than 150 run in the remaining CPUs. This
procedure then assigns CPUs within each group on a round-robin basis. The
procedure checks the CPU^LIST array to determine which group a CPU belongs
to.

The request is rejected for all nonoperator TACL processes only if the operator has
already set the REFUSE^ALL flag to inhibit further requests.

• The PROCESS^ALTPRI^MSG procedure is called when $CMON receives an
Altpri^msg message from a TACL process. This procedure changes the process
priority only if the requester is trying to decrease the priority. The request is
rejected for all nonoperator TACL processes if the operator has already set the
REFUSE^ALL flag to inhibit further requests.

• The PROCESS^ADDUSER^MSG procedure is called when $CMON receives an
Adduser^msg message from the ADDUSER program. This procedure accepts the
request to add a user only if the originator of the request belongs to the operations
group.

• The PROCESS^DELUSER^MSG procedure is called when $CMON receives a
Deluser^msg message from the DELUSER program. This procedure accepts the
request to delete a user from the system only if the originator of the request
belongs to the operations group.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 39

Sample $CMON Program

The $CMON Code
The code for the $CMON program follows.

?INSPECT, SYMBOLS, NOCODE, NOMAP
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST

!---------------------
!Literals:
!---------------------

LITERAL YES = 1; !setting for REFUSE^ALL flag
LITERAL NO = 0; !setting for REFUSE^ALL flag
LITERAL TOP^CPU^NUMBER = 5; !highest CPU number
LITERAL BUFSIZE = 750; !size of I/O buffer
LITERAL MAXFLEN = ZSYS^VAL^LEN^FILENAME; !maximum file-name
 ! length
LITERAL MAX^PARAM = 528; !maximum length of process
 ! startup parameter string in
 ! startup message; this string
 ! can be passed in
 ! Processcreation^msg message.

!---------------------
!Global variables:
!---------------------

INT .BUFFER[0:BUFSIZE/2 - 1]; !I/O buffer
STRING .SBUFFER :=
 @BUFFER[0] '<<' 1; !string pointer to I/O
 ! buffer
STRING .S^PTR; !string pointer

STRING .SHUTDOWN^TEXT[0:63] := "Shutting system down";
STRING .LOGON^TEXT[0:63] := "Logon accepted";
STRING .LOGOFF^TEXT[0:63] := "Logoff accepted";

INT CPU^LIST[0:TOP^CPU^NUMBER]; !processor status array
INT PRIORITY^CPU := 0; !processor number of potential
 ! priority processor
INT NONPRIORITY^CPU := 0; !processor number of potential
 ! nonpriorty processor
INT REFUSE^ALL := NO; !flag for rejecting/
 ! accepting command-
 ! interpreter requests
INT REQUESTING^GROUPID; !group ID of command

INT TERMNUM; !terminal file number
INT RECVNUM; !$RECEIVE file number

STRUCT .CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULTS;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 40

Sample $CMON Program

 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 END;

 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILEID[0:3];
 END;
STRING PARAM[0:529];
END;
INT MESSAGE^LEN;

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,
? FILE_OPEN_,WRITEX,FILE_GETINFO_,READUPDATEX,WRITEREADX,
? REPLYX,DNUMOUT,PROCESS_GETINFO_,PROCESS_STOP_,
? OLDFILENAME_TO_FILENAME_)
?LIST

!--
! Here are some DEFINEs to help formatting and printing
! messages.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0); #;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 41

Sample $CMON Program

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, length, and
! error number. This procedure is mainly to be used when
! the file is not open, so there is no file number for it.
! FILE^ERRORS is to be used when the file is open.
!
! The procedure also stops the program after displaying the
! error message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME for LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program:

 CALL PROCESS_STOP_;
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 42

Sample $CMON Program

!---
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file
! name and error number are determined from the file number
! and FILE^ERRORS^NAME is then called to do the display.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!---

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 STRING .FNAME[0:MAXFLEN - 1];
 INT LEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,LEN);
 CALL FILE^ERRORS^NAME(FNAME:LEN,ERROR);
END;

!--
! Procedure to write a message on the terminal and check
! for any error. If there is an error, it attempts to write
! a message about the error and the program is stopped.
!--

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 43

Sample $CMON Program

!--
! Procedure to process the Config^msg message. Accepts the
! current default values in all cases.
!--

PROC PROCESS^CONFIG^MSG;
BEGIN
 STRUCT .CONFIG^TEXT^REPLY;
 BEGIN
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

! Prepare the reply message:

 CONFIG^TEXT^REPLY.REPLYCODE := 1;
 CONFIG^TEXT^REPLY.REPLYTEXT[0] ':=' " ";
 CONFIG^TEXT^REPLY.REPLYTEXT[1] ':='
 CONFIG^TEXT^REPLY.REPLYTEXT[0] FOR 63;

! Send the reply to the TACL process:

 CALL REPLYX(CONFIG^TEXT^REPLY,$LEN(CONFIG^TEXT^REPLY));
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 44

Sample $CMON Program

!--
! Procedure to process the Prelogon^msg message. This
! request is accepted in all cases, except during the period
! before shutdown.
!--

PROC PROCESS^PRELOGON^MSG;
BEGIN
 STRUCT MSG(*); !template for PROCESS^PRELOGON
 BEGIN ! message
 INT MSGCODE;
 INT USERID;
 INT CIPRI;
 INT CIINFILE[0:11];
 INT CIOUTFILE[0:11];
 INT LOGGEDON;
 INT USERNAME[0:7];
 END;

 INT .EXT PRELOGON^MSG(MSG) := $XADR(BUFFER); !structure
 ! pointer to I/O buffer

 STRUCT .PRELOGON^REPLY; !structure for reply
 BEGIN
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

! Clear text buffer for reply:

 PRELOGON^REPLY.REPLYTEXT[0] ':=' " ";
 PRELOGON^REPLY.REPLYTEXT[1] ':='
 PRELOGON^REPLY.REPLYTEXT[0] FOR 63;

! Determine group ID of requester:

 REQUESTING^GROUPID := PRELOGON^MSG.USERID.<0:7>;

! If shutting the system down, allow only operator group
! requests:

 IF REFUSE^ALL AND (REQUESTING^GROUPID <> 255) THEN
 BEGIN
 PRELOGON^REPLY.REPLYCODE := 1;
 PRELOGON^REPLY.REPLYTEXT ':=' SHUTDOWN^TEXT FOR 64;
 END

! Otherwise accept the request:

 ELSE PRELOGON^REPLY.REPLYCODE := 0;

! Reply to TACL process:

 CALL REPLYX(PRELOGON^REPLY,$LEN(PRELOGON^REPLY));
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 45

Sample $CMON Program

!--
! Procedure to process a Logon^msg message. The logon is
! always accepted, except after the shutdown phase has begun.
! The logon message returned to the TACL process can be
! changed at run time.
!--

PROC PROCESS^LOGON^MSG;
BEGIN
 STRUCT MSG(*); !template for LOGON^MSG message
 BEGIN
 INT MSGCODE;
 INT USERID;
 INT CIPRI;
 INT CIINFILE[0:11];
 INT CIOUTFILE[0:11];
 END;

 INT .EXT LOGON^MSG(MSG) :=
 $XADR(BUFFER); !structure pointer to I/O buffer

 STRUCT .LOGON^REPLY; !structure for reply
 BEGIN
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

! Blank the logon reply buffer:

 LOGON^REPLY.REPLYTEXT[0] ':=' " ";
 LOGON^REPLY.REPLYTEXT[1] ':=' LOGON^REPLY[0] FOR 63;

! Extract the group ID of the requesting process:

 REQUESTING^GROUPID := LOGON^MSG.USERID.<0:7>;

! If shutting the system down, accept only operator group
! requests:

 IF REFUSE^ALL AND (REQUESTING^GROUPID <> 255) THEN
 BEGIN
 LOGON^REPLY.REPLYCODE := 1;
 LOGON^REPLY.REPLYTEXT ':=' SHUTDOWN^TEXT FOR 64;
 END
 ELSE

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 46

Sample $CMON Program

! Otherwise accept the logon request and reply with the
! logon text:

 BEGIN
 LOGON^REPLY.REPLYCODE := 0;
 LOGON^REPLY.REPLYTEXT ':=' LOGON^TEXT FOR 64;
 END;

! Sends the reply message to the TACL process:

 CALL REPLYX(LOGON^REPLY,$LEN(LOGON^REPLY));
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 47

Sample $CMON Program

!--
! Procedure to process a Logoff^msg message. The message is
! always accepted except during the shutdown phase. The
! display text returned to the TACL process can be changed at
! run time.
!--

PROC PROCESS^LOGOFF^MSG;
BEGIN
 STRUCT MSG(*); !template for LOGOFF^MSG message
 BEGIN
 INT MSGCODE;
 INT USERID;
 INT CIPRI;
 INT CIINFILE[0:11];
 INT CIOUTFILE[0:11];
 END;

 INT .EXT LOGOFF^MSG(MSG) := $XADR(BUFFER); !structure
 ! pointer to I/O buffer

 STRUCT .LOGOFF^REPLY; !structure for the reply
 BEGIN
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

! Blank the reply text buffer:

 LOGOFF^REPLY.REPLYTEXT[0] ':=' " ";
 LOGOFF^REPLY.REPLYTEXT[1] ':='
 LOGOFF^REPLY.REPLYTEXT[0] FOR 63;

! Extract the group ID of the requesting process:

 REQUESTING^GROUPID := LOGOFF^MSG.USERID.<0:7>;

! If shutting the system down, allow only operator group
! requests:

 IF REFUSE^ALL AND (REQUESTING^GROUPID <> 255) THEN
 BEGIN
 LOGOFF^REPLY.REPLYCODE := 1;
 LOGOFF^REPLY.REPLYTEXT ':=' SHUTDOWN^TEXT FOR 64;
 END
 ELSE

! Otherwise accept the request and return the logoff text:

 BEGIN
 LOGOFF^REPLY.REPLYCODE := 0;
 LOGOFF^REPLY.REPLYTEXT ':=' LOGOFF^TEXT FOR 64;
 END;

! Send the reply back to the TACL process:

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 48

Sample $CMON Program

 CALL REPLYX(LOGOFF^REPLY,$LEN(LOGOFF^REPLY));
END;

!--
! Procedure for processing an Illegal^logon^msg message.
! This message is always accepted, even during the shutdown
! phase. This procedure simply returns blank display text to
! the TACL process.
!--

PROC PROCESS^ILLEGAL^LOGON^MSG;
BEGIN
 STRUCT .ILLEGAL^LOGON^REPLY; !structure for reply
 BEGIN
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

! Blank the reply buffer. There is no need to set the reply
! code because the TACL process ignores it:

 ILLEGAL^LOGON^REPLY.REPLYTEXT[0] ':=' " ";
 ILLEGAL^LOGON^REPLY.REPLYTEXT[1] ':='
 ILLEGAL^LOGON^REPLY.REPLYTEXT[0] FOR 63;

! Send the reply to the TACL process:

 CALL REPLYX(ILLEGAL^LOGON^REPLY,
 $LEN(ILLEGAL^LOGON^REPLY));
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 49

Sample $CMON Program

!--
! Procedure to process a Password^msg message. This request
! is always accepted, except during the shutdown phase.
!--

PROC PROCESS^PASSWORD^MSG;
BEGIN
 STRUCT MSG(*); !template for Password^msg
 BEGIN ! message
 INT MSGCODE;
 INT USERID;
 INT CIPRI;
 INT CIINFILE[0:11];
 INT CIOUTFILE[0:11];
 END;

 INT .EXT PASSWORD^MSG(MSG) :=
 $XADR(BUFFER); !structure pointer to I/O
 ! buffer

 STRUCT .PASSWORD^REPLY; !structure for reply
 BEGIN
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

! Blank the reply buffer:

 PASSWORD^REPLY.REPLYTEXT[0] ':=' " ";
 PASSWORD^REPLY.REPLYTEXT[1] ':='
 PASSWORD^REPLY.REPLYTEXT[0] FOR 63;

! Extract the group ID of the requesting process:

 REQUESTING^GROUPID := PASSWORD^MSG.USERID.<0:7>;

! If shutting the system down, accept only requests from
! the operator group:

 IF REFUSE^ALL AND (REQUESTING^GROUPID <> 255) THEN
 BEGIN
 PASSWORD^REPLY.REPLYCODE := 1;
 PASSWORD^REPLY.REPLYTEXT ':=' SHUTDOWN^TEXT FOR 64;
 END
 ELSE

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 50

Sample $CMON Program

! Otherwise accept the request and reply with display text:

 BEGIN
 PASSWORD^REPLY.REPLYCODE := 0;
 PASSWORD^REPLY.REPLYTEXT ':='
 "Password change approved";
 END;

! Send reply to the TACL process:

 CALL REPLYX(PASSWORD^REPLY,$LEN(PASSWORD^REPLY));
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 51

Sample $CMON Program

!--
! Procedure to process a Remotepassword^msg message. This
! request is always accepted, except during the shutdown
! phase.
!--

PROC PROCESS^REMOTEPASSWORD^MSG;
BEGIN
 STRUCT MSG(*); !template for
 BEGIN ! Remotepassword^msg message
 INT MSGCODE;
 INT USERID;
 INT CIPRI;
 INT CIINFILE[0:11];
 INT CIOUTFILE[0:11];
 INT SYSNAME[0:3];
 END;

 INT .EXT REMOTEPASSWORD^MSG(MSG) :=
 $XADR(BUFFER); !structure pointer to I/O
 ! buffer

 STRUCT .REMOTEPASSWORD^REPLY; !structure for reply
 BEGIN
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

! Blank the reply text:

 REMOTEPASSWORD^REPLY.REPLYTEXT[0] ':=' " ";
 REMOTEPASSWORD^REPLY.REPLYTEXT[1] ':='
 REMOTEPASSWORD^REPLY.REPLYTEXT[0] FOR 63;

! Extract the group ID of the requesting TACL process:

 REQUESTING^GROUPID := REMOTEPASSWORD^MSG.USERID.<0:7>;

! If shutting the system down, allow requests only from the
! operator group:

 IF REFUSE^ALL AND (REQUESTING^GROUPID <> 255) THEN
 BEGIN
 REMOTEPASSWORD^REPLY.REPLYCODE := 1;
 REMOTEPASSWORD^REPLY.REPLYTEXT ':='
 SHUTDOWN^TEXT FOR 64;
 END

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 52

Sample $CMON Program

 ELSE

! Otherwise accept the request and return the display text:

 BEGIN
 REMOTEPASSWORD^REPLY.REPLYCODE := 0;
 REMOTEPASSWORD^REPLY.REPLYTEXT ':='
 "Password change approved";
 END;

! Send the reply to the TACL process:

 CALL REPLYX(REMOTEPASSWORD^REPLY,
 $LEN(REMOTEPASSWORD^REPLY));
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 53

Sample $CMON Program

!--
! Procedure to process a Processcreation^msg message. This
! request is always accepted, except during the shutdown
! phase. This procedure assigns the process to a processor
! according to whether the process runs at a high or low
! priority. Processes with a higher priority run in one set
! of processors, whereas processes with priority 150 or less run
! in the remaining processors. The allocation of processors to
! priority or nonpriority processes is run-time configurable;
! see the CHANGE^CPU^STATUS procedure.
!--

PROC PROCESS^PROCESSCREATION^MSG;
BEGIN
 STRUCT MSG(*); !template for Processcreation^msg
 BEGIN ! message
 INT MSGCODE;
 INT USERID;
 INT CIPRI;
 INT CIINFILE[0:11];
 INT CIOUTFILE[0:11];
 INT PROGNAME[0:11];
 INT PRIORITY;
 INT PROCESSOR;
 INT PROGINFILE[0:11];
 INT PROGOUTFILE[0:11];
 INT PROGLIBFILE[0:11];
 INT PROGSWAPFILE[0:11];
 INT PARAM_LEN;
 STRING PARAM[0:MAX^PARAM - 1];
 END;

 INT .EXT PROCESSCREATION^MSG(MSG) :=
 $XADR(BUFFER); !structure pointer
 ! to I/O buffer

 STRUCT .PROCESSCREATION^REJECT; !structure for reject
 BEGIN ! reply
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

 STRUCT .PROCESSCREATION^ACCEPT; !structure for accept
 BEGIN ! reply
 INT REPLYCODE;
 INT PROGNAME[0:11];
 INT PRIORITY;
 INT PROCESSOR;
 END;

 INT COUNT;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 54

Sample $CMON Program

! Blank the reply buffer for rejecting requests:

 PROCESSCREATION^REJECT[0] ':=' " ";
 PROCESSCREATION^REJECT[1] ':='
 PROCESSCREATION^REJECT[0] FOR 63;

! Extract the group ID of the requesting TACL process:

 REQUESTING^GROUPID := PROCESSCREATION^MSG.USERID.<0:7>;

! If shutting the system down, allow only requests from the
! operator group:

 IF REFUSE^ALL AND (REQUESTING^GROUPID <> 255) THEN
 BEGIN
 PROCESSCREATION^REJECT.REPLYCODE := 1;
 PROCESSCREATION^REJECT.REPLYTEXT ':='
 SHUTDOWN^TEXT FOR 64;
 CALL REPLYX(PROCESSCREATION^REJECT,
 $LEN(PROCESSCREATION^REJECT));
 END
 ELSE
 BEGIN

 ! Allow the request:

 PROCESSCREATION^ACCEPT.REPLYCODE := 0;

 ! Accept process priority indicated in the input message:

 PROCESSCREATION^ACCEPT.PRIORITY := 0;

 ! Allocate priority-response processor if priority over 150,
 ! otherwise allocate nonpriority-response processor:

 IF PROCESSCREATION^MSG.PRIORITY > 150
 THEN
 BEGIN
 DO
 BEGIN
 COUNT := 0;
 PRIORITY^CPU := PRIORITY^CPU + 1;
 IF PRIORITY^CPU = (TOP^CPU^NUMBER + 1)
 THEN PRIORITY^CPU := 0;
 COUNT := COUNT + 1;
 IF COUNT = 16 THEN

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 55

Sample $CMON Program

 ! There is no priority processor available, use a
 ! nonpriority-response processor:

 BEGIN
 NONPRIORITY^CPU := NONPRIORITY^CPU + 1;
 IF NONPRIORITY^CPU = (TOP^CPU^NUMBER + 1)
 THEN NONPRIORITY^CPU := 0;
 PROCESSCREATION^ACCEPT.PROCESSOR :=
 NONPRIORITY^CPU;
 END;

 ! Next priority processor found:

 IF CPU^LIST[PRIORITY^CPU] = 1 THEN
 PROCESSCREATION^ACCEPT.PROCESSOR :=
 PRIORITY^CPU;
 END
 UNTIL (CPU^LIST[PRIORITY^CPU] = 1 OR COUNT = 16);
 END
 ELSE
 BEGIN
 DO
 BEGIN
 COUNT := 0;
 NONPRIORITY^CPU := NONPRIORITY^CPU + 1;
 IF NONPRIORITY^CPU = (TOP^CPU^NUMBER +1)
 THEN NONPRIORITY^CPU := 0;
 COUNT := COUNT + 1;
 IF COUNT = 16 THEN

 ! There is no nonpriority processor available, use a
 ! priority processor:

 BEGIN
 PRIORITY^CPU := PRIORITY^CPU + 1;
 IF PRIORITY^CPU = (TOP^CPU^NUMBER + 1)
 THEN PRIORITY^CPU := 0;
 PROCESSCREATION^ACCEPT.PROCESSOR :=
 PRIORITY^CPU;
 END;

 ! Next nonpriority processor found:

 IF CPU^LIST[PRIORITY^CPU] = 1 THEN
 PROCESSCREATION^ACCEPT.PROCESSOR :=
 NONPRIORITY^CPU;
 END
 UNTIL (CPU^LIST[NONPRIORITY^CPU] = 0 OR COUNT = 16);
 END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 56

Sample $CMON Program

 ! Do not change the program-file name:

 PROCESSCREATION^ACCEPT.PROGNAME ':='
 PROCESSCREATION^MSG.PROGNAME FOR 11;

 ! Reply to the TACL process:

 CALL REPLYX(PROCESSCREATION^ACCEPT,
 $LEN(PROCESSCREATION^ACCEPT));
 END;
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 57

Sample $CMON Program

!--
! Procedure to process an Altpri^msg message. This request
! is rejected during the shutdown phase. Otherwise, the
! request is accepted only if it reduces the priority of
! the process.
!--

PROC PROCESS^ALTPRI^MSG;
BEGIN
 STRUCT MSG(*); !template for Altpri^msg message
 BEGIN
 INT MSGCODE;
 INT USERID;
 INT CIPRI;
 INT CIINFILE[0:11];
 INT CIOUTFILE[0:11];
 INT CRTPID[0:3];
 INT PROGNAME[0:11];
 INT PRIORITY;
 INT PHANDLE[0:9];
 END;

 INT .EXT ALTPRI^MSG(MSG) :=
 $XADR(BUFFER); !structure pointer to I/O buffer

 STRUCT .ALTPRI^REPLY; !structure for reply
 BEGIN
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

 INT PRIORITY; !current priority of process

! Blank the reply display text:

 ALTPRI^REPLY.REPLYTEXT[0] ':=' " ";
 ALTPRI^REPLY.REPLYTEXT[1] ':='
 ALTPRI^REPLY.REPLYTEXT[0] FOR 63;

! Extract the group ID:

 REQUESTING^GROUPID := ALTPRI^MSG.USERID.<0:7>;

! If shutting the system down, accept requests only from
! the operator group:

 IF REFUSE^ALL AND (REQUESTING^GROUPID <> 255) THEN
 BEGIN
 ALTPRI^REPLY.REPLYCODE := 1;
 ALTPRI^REPLY.REPLYTEXT ':=' SHUTDOWN^TEXT FOR 64;
 END
 ELSE

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 58

Sample $CMON Program

! If accepting the request:

 BEGIN

 ! Allow priority change only if operator group attempting
 ! to reduce priority:

 CALL PROCESS_GETINFO_(ALTPRI^MSG.PHANDLE,
 !file^name:maxlen!,
 !file^name^len!,
 PRIORITY);
 IF (PRIORITY > ALTPRI^MSG.PRIORITY) OR
 (REQUESTING^GROUPID = 255) THEN
 ALTPRI^REPLY.REPLYCODE := 0
 ELSE
 BEGIN
 ALTPRI^REPLY.REPLYCODE := 1;
 ALTPRI^REPLY.REPLYTEXT ':='
 "Cannot increase process priority";
 END;
 END;

! Send the reply to the TACL process:

 CALL REPLYX(ALTPRI^REPLY,$LEN(ALTPRI^REPLY));
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 59

Sample $CMON Program

!--
! Procedure to process an Adduser^msg message. This request
! is rejected during the shutdown phase. The request is
! accepted only if the request comes from a super-group
! user (255, n).
!--

PROC PROCESS^ADDUSER^MSG;
BEGIN
 STRUCT MSG(*); !template for Adduser^msg message
 BEGIN
 INT MSGCODE;
 INT USERID;
 INT CIPRI;
 INT CIINFILE[0:11];
 INT CIOUTFILE[0:11];
 INT GROUPNAME[0:3];
 INT USERNAME[0:3];
 INT GROUPID;
 INT USER^ID;
 END;

 INT .EXT ADDUSER^MSG(MSG) :=
 $XADR(BUFFER); !structure pointer to I/O buffer

 STRUCT .ADDUSER^REPLY; !structure for reply
 BEGIN
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

! Blank the reply display-text buffer:

 ADDUSER^REPLY.REPLYTEXT[0] ':=' " ";
 ADDUSER^REPLY.REPLYTEXT[1] ':='
 ADDUSER^REPLY.REPLYTEXT[0] FOR 63;

! Extract the group ID;

 REQUESTING^GROUPID := ADDUSER^MSG.USERID.<0:7>;

! If shutting the system down, accept the request only if
! from the operator group:

 IF REFUSE^ALL AND (REQUESTING^GROUPID <> 255) THEN
 BEGIN
 ADDUSER^REPLY.REPLYCODE := 1;
 ADDUSER^REPLY.REPLYTEXT ':=' SHUTDOWN^TEXT FOR 64;
 END

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 60

Sample $CMON Program

 ELSE

! Otherwise, accept request only if originating from
! operator group.

 BEGIN
 IF REQUESTING^GROUPID = 255 THEN
 ADDUSER^REPLY.REPLYCODE := 0
 ELSE
 BEGIN
 ADDUSER^REPLY.REPLYCODE := 1;
 ADDUSER^REPLY.REPLYTEXT ':=' "Must be operator";
 END;
 END;

! Send reply to TACL process:

 CALL REPLYX(ADDUSER^REPLY,$LEN(ADDUSER^REPLY));
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 61

Sample $CMON Program

!--
! Procedure to process a Deluser^msg message. This request
! is rejected during the shutdown phase. The request is
! accepted only if the request comes from a super-group
! user (255, n).
!--

PROC PROCESS^DELUSER^MSG;
BEGIN
 STRUCT MSG(*); !template for Deluser^msg message
 BEGIN
 INT MSGCODE;
 INT USERID;
 INT CIPRI;
 INT CIINFILE[0:11];
 INT CIOUTFILE[0:11];
 INT GROUPNAME[0:3];
 INT USERNAME[0:3];
 END;

 INT .EXT DELUSER^MSG(MSG) :=
 $XADR(BUFFER); !structure pointer to I/O buffer

 STRUCT .DELUSER^REPLY; !structure for reply
 BEGIN
 INT REPLYCODE;
 STRING REPLYTEXT[0:63];
 END;

! Blank the display text buffer for the reply:

 DELUSER^REPLY.REPLYTEXT[0] ':=' " ";
 DELUSER^REPLY.REPLYTEXT[1] ':='
 DELUSER^REPLY.REPLYTEXT[0] FOR 63;

! Extract the group ID of the requesting TACL process:

 REQUESTING^GROUPID := DELUSER^MSG.USERID.<0:7>;

! If shutting the system down, accept requests only from
! the operator group:

 IF REFUSE^ALL AND (REQUESTING^GROUPID <> 255) THEN
 BEGIN
 DELUSER^REPLY.REPLYCODE := 1;
 DELUSER^REPLY.REPLYTEXT ':=' SHUTDOWN^TEXT FOR 64;
 END

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 62

Sample $CMON Program

 ELSE

! Otherwise, accept the request only if from operator group:

 BEGIN
 IF REQUESTING^GROUPID = 255 THEN
 DELUSER^REPLY.REPLYCODE := 0
 ELSE
 BEGIN
 DELUSER^REPLY.REPLYCODE := 1;
 DELUSER^REPLY.REPLYTEXT ':=' "Must be operator";
 END;
 END;

! Send reply to TACL process:

 CALL REPLYX(DELUSER^REPLY,$LEN(DELUSER^REPLY));
END;

!--
! Procedure to process a Change^logon^message. This
! procedure takes the logon display text from the input
! message and puts it in the LOGON^TEXT array to be read by
! the PROCESS^LOGON^MSG procedure when a user tries to log
! on.
!--

PROC CHANGE^LOGON^MESSAGE;
BEGIN
 STRUCT MSG(*); !template for Change^logon^message
 BEGIN
 INT MSGCODE;
 STRING DISPLAYTEXT[0:63];
 END;

 INT .EXT RT^LOGON^MESSAGE(MSG) :=
 $XADR(BUFFER); !structure pointer to I/O buffer

! Set the logon display text in the reply:

 LOGON^TEXT ':=' RT^LOGON^MESSAGE.DISPLAYTEXT FOR 64;
 CALL REPLYX;
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 63

Sample $CMON Program

!--
! Procedure to process a Change^logoff^message. This
! procedure takes the logoff display text from the input
! message and puts it in the LOGOFF^TEXT array to be read by
! the PROCESS^LOGOFF^MSG procedure when a user tries to log
! off.
!--

PROC CHANGE^LOGOFF^MESSAGE;
BEGIN
 STRUCT MSG(*); !template for Change^logoff^message
 BEGIN
 INT MSGCODE;
 STRING DISPLAYTEXT[0:63];
 END;

 INT .EXT RT^LOGOFF^MESSAGE(MSG) :=
 $XADR(BUFFER); !structure pointer to I/O buffer

! Set the logoff display text in the reply:

 LOGOFF^TEXT ':=' RT^LOGOFF^MESSAGE.DISPLAYTEXT FOR 64;
 CALL REPLYX;
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 64

Sample $CMON Program

!--
! Procedure responds to an RT^shutdown^message. This
! procedure sets a flag that prohibits $CMON from accepting
! any further requests from nonoperator TACL
! processes.
!--

PROC REJECT^REQUESTS;
BEGIN
 STRUCT MSG(*); !template for RT^shutdown^message
 BEGIN
 INT MSGCODE;
 STRING SHUTDOWNTEXT[0:63];
 END;

 INT .EXT RT^SHUTDOWN^MESSAGE(MSG) :=
 $XADR(BUFFER); !structure pointer to I/O buffer

! Set the REFUSE^ALL flag:

 REFUSE^ALL := YES;

! Set the shutdown display text in the reply:

 SHUTDOWN^TEXT ':='
 RT^SHUTDOWN^MESSAGE.SHUTDOWNTEXT FOR 64;
 CALL REPLYX;
END;

!--
! Procedure responds to an RT^startup^message. This
! procedure sets a flag that reenables $CMON to accept
! requests from nonoperator TACL processes.
!--

PROC ACCEPT^REQUESTS;
BEGIN

 REFUSE^ALL := NO;
 CALL REPLYX;
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 65

Sample $CMON Program

!--
! Procedure to respond to a CPU^changestatus^message. This
! procedure extracts a processor number and status from the
! incoming message and updates the status of the processor
! accordingly in the CPU^LIST array.
!--

PROC CHANGE^CPU^STATUS;
BEGIN
 STRUCT MSG(*); !template for CPU^changestatus^message
 BEGIN
 INT MSGCODE;
 INT PROCESSOR;
 INT STATUS;
 END;

 INT .EXT CPU^CHANGESTATUS^MESSAGE(MSG) :=
 $XADR(BUFFER); !structure pointer to I/O buffer

! Set the new processor status in the reply:

 CPU^LIST[CPU^CHANGESTATUS^MESSAGE.PROCESSOR] :=
 CPU^CHANGESTATUS^MESSAGE.STATUS;
 CALL REPLYX;
END;

!--
! Procedure to respond to an unexpected message. This
! procedure returns error 2 (invalid operation) to the TACL
! process.
!--

PROC UNEXPECTED^MESSAGE;
BEGIN
 INT ERROR;

 ERROR := 2;
 CALL REPLYX(!buffer!,
 !write^count!,
 !count^written!,
 !message^tag!,
 ERROR);
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 66

Sample $CMON Program

!--
! Procedure to save the Startup message in the global data
! area.
!--

PROC SAVE^STARTUP^MESSAGE(RUCB,START^DATA,MESSAGE,
 LENGTH,MATCH)VARIABLE;

INT .RUCB;
INT .START^DATA;
INT .MESSAGE;
INT LENGTH;
INT MATCH;

BEGIN

! Copy the Startup message into the CI^STARTUP structure:

 CI^STARTUP.MSGCODE ':=' MESSAGE[0] FOR LENGTH/2;
 MESSAGE^LEN := LENGTH;
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 67

Sample $CMON Program

!--
! Procedure to read the Startup message, and open the IN
! file, and open the $RECEIVE file. This procedure also
! initializes the CPU^LIST array.
!--

PROC INIT;
BEGIN
 STRING .RECV^FILE[0:MAXFLEN - 1];
 INT RECVLEN;
 STRING .TERMNAME[0:MAXFLEN - 1];
 INT TERMLEN;
 INT ERROR;
 INT I;

! Read Startup message and save it in global data area:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 SAVE^STARTUP^MESSAGE);

! Open the IN file:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.INFILE.VOLUME,
 TERMNAME:MAXFLEN,TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_;

! Open $RECEIVE:

 RECV^FILE ':=' "$RECEIVE" -> @S^PTR;
 RECVLEN := @S^PTR '-' @RECV^FILE;
 ERROR := FILE_OPEN_(RECV^FILE:RECVLEN,
 RECVNUM,
 !access!,
 !exclusion!,
 !nowait^depth!,
 1);
 IF ERROR <> 0 THEN
 CALL FILE^ERRORS^NAME(RECV^FILE:RECVLEN,ERROR);

! Initialize the CPU^LIST array:

 I := 2;
 DO
 BEGIN
 CPU^LIST[I] := 0;
 I := I + 1;
 END
 UNTIL I = TOP^CPU^NUMBER;

 CPU^LIST[0] := 1;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 68

Sample $CMON Program

 CPU^LIST[1] := 1;

END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 69

Sample $CMON Program

!--
! Main procedure performs initialization, then goes into a
! loop in which it reads the $RECEIVE file and then calls the
! appropriate procedure depending on whether the message read
! was a system message, the message read was a user message,
! or the read generated an error.
!--

PROC CMON^MAIN MAIN;
BEGIN
 INT BYTES^READ;
 INT ERROR;
 INT I;
 INT ERROR^CODE;

! Initialize:

 CALL INIT;

! Loop forever:

 WHILE 1 DO
 BEGIN
 ERROR := 0;

 ! Read a message from $RECEIVE and check for an error:

 CALL READUPDATEX(RECVNUM,SBUFFER,BUFSIZE,BYTES^READ);
 CALL FILE_GETINFO_(RECVNUM,ERROR);

 CASE ERROR OF
 BEGIN

 ! For a system message, reply with an error code
 ! of 0:

 6 -> BEGIN
 ERROR^CODE := 0;
 CALL REPLYX(!buffer!,
 !write^count!,
 !count^written!,
 !message^tag!,
 ERROR^CODE);
 END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 70

Sample Command-Interface Program

 ! For a user message, Select a procedure depending on
 ! the results of the read operation:

 0 -> BEGIN
 CASE BUFFER[0] OF
 BEGIN
 -60 -> CALL PROCESS^CONFIG^MSG;
 -59 -> CALL PROCESS^PRELOGON^MSG;
 -50 -> CALL PROCESS^LOGON^MSG;
 -51 -> CALL PROCESS^LOGOFF^MSG;
 -53 -> CALL PROCESS^ILLEGAL^LOGON^MSG;
 -57 -> CALL PROCESS^PASSWORD^MSG;
 -58 -> CALL PROCESS^REMOTEPASSWORD^MSG;
 -52 -> CALL PROCESS^PROCESSCREATION^MSG;
 -56 -> CALL PROCESS^ALTPRI^MSG;
 -54 -> CALL PROCESS^ADDUSER^MSG;
 -55 -> CALL PROCESS^DELUSER^MSG;
 50 -> CALL CHANGE^LOGON^MESSAGE;
 51 -> CALL CHANGE^LOGOFF^MESSAGE;
 61 -> CALL REJECT^REQUESTS;
 62 -> CALL ACCEPT^REQUESTS;
 63 -> CALL CHANGE^CPU^STATUS;
 OTHERWISE -> CALL UNEXPECTED^MESSAGE;
 END;
 END;

 OTHERWISE -> CALL FILE^ERRORS(RECVNUM);

 END;
 END;
END;

Sample Command-Interface Program
The command-interface program displays a menu allowing the operator to choose the
run-time control function. A separate procedure processes each selection from the
menu.

• The CONTROL^MAIN procedure calls INIT to perform initialization for the program
and then enters a loop in which it displays a menu and calls a procedure to
process the menu selection.

• The INIT and SAVE^STARTUP^MESSAGE procedures open the IN file and call
CREATE^AND^OPEN^CMON to create the $CMON process if it does not exist
and to open it. If $CMON does not exist, then this procedure creates it.

• The CREATE^AND^OPEN^CMON procedure calls OPEN^CMON to open the
$CMON process. If $CMON does not exist, then this procedure creates it before
calling OPEN^CMON. On return from OPEN^CMON, this procedure sends a
Startup message to the new process, closes $CMON, then calls OPEN^CMON to
open it again.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 71

Sample Command-Interface Program

• The CHANGE^LOGON^MESSAGE procedure is called when the operator
chooses to change the logon message by selecting 1 from the menu. This
procedure prompts the operator for the new logon text before sending an
RT^logon^message to $CMON.

• The CHANGE^LOGOFF^MESSAGE procedure is called when the operator
chooses to change the logoff message by selecting 2 from the menu. This
procedure prompts the operator for the new logoff text before sending an
RT^logoff^message to $CMON.

• The REJECT^REQUESTS procedure is called when the operator chooses to
disallow command-interpreter requests prior to shutting down the system. The
operator selects 3 from the menu. The procedure prompts the operator for the new
shutdown text and then sends an RT^shutdown^message to $CMON.

• The ACCEPT^REQUESTS procedure is called when the operator chooses to
reenable command-interpreter requests by selecting 4 from the menu. The
procedure sends an RT^start^message to $CMON.

• The CHANGE^CPU^STATUS procedure is called when the operator chooses to
alter the status of a CPU by moving it from one priority group to another. The
operator chooses to do this by selecting 5 from the menu. The procedure prompts
the operator first for the CPU number, then for a 1 or a 0 depending on whether the
operator wants to move the CPU into the high-priority group or the low-priority
group.

• The EXIT^PROGRAM procedure is called when the operator chooses to quit the
command-interface program by selecting x from the menu. This procedure stops
the command-interface program.

• The ILLEGAL^REQUEST procedure is called whenever the operator makes an
invalid selection from the menu. The procedure prints a message indicating that
the selection is invalid before returning to the main procedure to redisplay the
menu.

• The FILE^ERRORS and FILE^ERRORS^NAME procedures attempt to report any
file-system errors that occur.

• The WRITE^LINE procedure provides a convenient way to display a line of text on
the terminal.

The code for the command-interface program appears on the following pages.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 72

Sample Command-Interface Program

?INSPECT, SYMBOLS, NOCODE, NOMAP
?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST

!Literals:

LITERAL TOP^CPU^NUMBER = 5; !highest CPU number on system
LITERAL BUFSIZE = 512; !size in bytes of I/O buffer
LITERAL MAXFLEN =
 ZSYS^VAL^LEN^FILENAME; !maximum file-name length
LITERAL ABEND = 1;

!Global variables:

STRING .SBUFFER[0:BUFSIZE]; !I/O buffer
INT TERMNUM; !terminal file number
INT CMONNUM; !$CMON file number
STRING .S^PTR; !points to end of I/O buffer

STRUCT .CI^STARTUP; !Startup message
BEGIN
 INT MSGCODE;
 STRUCT DEFAULT;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 END;
 STRUCT INFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILENAME[0:3];
 END;
 STRUCT OUTFILE;
 BEGIN
 INT VOLUME[0:3];
 INT SUBVOL[0:3];
 INT FILENAME[0:3];
 END;
 STRING PARAM[0:529];
END;
INT MESSAGE^LEN;

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,
? FILE_OPEN_,WRITEX,FILE_GETINFO_,PROCESS_CREATE_,
? PROCESS_GETPAIRINFO_,DNUMOUT,DNUMIN,WRITEREADX,
? PROCESS_STOP_,FILE_CLOSE_,OLDFILENAME_TO_FILENAME_)
?LIST

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 73

Sample Command-Interface Program

!--
! The following DEFINEs help formatting and printing text.
!--

! Initialize for a new line:

 DEFINE START^LINE = @S^PTR := @SBUFFER #;

! Put a string into the line:

 DEFINE PUT^STR(S) = S^PTR ':=' S -> @S^PTR #;

! Put an integer into the line:

 DEFINE PUT^INT(N) =
 @S^PTR := @S^PTR '+' DNUMOUT(S^PTR,$DBL(N),10) #;

! Print the line:

 DEFINE PRINT^LINE =
 CALL WRITE^LINE(SBUFFER,@S^PTR '-' @SBUFFER) #;

! Print a blank line:

 DEFINE PRINT^BLANK =
 CALL WRITE^LINE(SBUFFER,0) #;

! Print a string:

 DEFINE PRINT^STR(S) = BEGIN START^LINE;
 PUT^STR(S);
 PRINT^LINE; END #;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 74

Sample Command-Interface Program

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameters are the file name, name length,
! and error number. This procedure is mainly to be used when
! the file is not open, when there is no file number for it.
! File^ERRORS should be used when the file is open.
!
! The procedure also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS^NAME(FNAME:LEN,ERROR);
STRING .FNAME;
INT LEN;
INT ERROR;
BEGIN

! Compose and print the message:

 START^LINE;
 PUT^STR("File system error ");
 PUT^INT(ERROR);
 PUT^STR(" on file " & FNAME FOR LEN);

 CALL WRITEX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER);

! Terminate the program:

 CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
END;

!--
! Procedure for displaying file-system error numbers on the
! terminal. The parameter is the file number. The file name
! and error number are determined from the file number and
! FILE^ERRORS^NAME is then called to display the text.
!
! FILE^ERRORS^NAME also stops the program after displaying
! the error message.
!--

PROC FILE^ERRORS(FNUM);
INT FNUM;
BEGIN
 INT ERROR;
 INT .FNAME[0:11];
 INT LEN;

 CALL FILE_GETINFO_(FNUM,ERROR,FNAME:MAXFLEN,LEN);
 CALL FILE^ERRORS^NAME(FNAME:LEN,ERROR);
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 75

Sample Command-Interface Program

!--
! Procedure to write a message on the terminal and check
! for any error. If there is an error, the procedure tries
! to write a message about the error and the program is
! stopped.
!--

PROC WRITE^LINE(BUF,LEN);
STRING .BUF;
INT LEN;
BEGIN
 CALL WRITEX(TERMNUM,BUF,LEN);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 76

Sample Command-Interface Program

!--
! Procedure to generate an RT^logon^message. This procedure
! prompts the operator for the logon display text, creates
! the RT^logon^message and sends it to the $CMON process.
!--

PROC CHANGE^LOGON^MESSAGE;
BEGIN
 STRUCT .RT^LOGON^MESSAGE; !structure to send to $CMON
 BEGIN
 INT MSGCODE;
 STRING DISPLAYTEXT[0:63];
 END;

 INT BYTES^READ;

! Set code for changing logon message in message data
! structure:

 RT^LOGON^MESSAGE.MSGCODE := 50;

! Blank the display text buffer:

 RT^LOGON^MESSAGE.DISPLAYTEXT[0] ':=' " ";
 RT^LOGON^MESSAGE.DISPLAYTEXT[1] ':='
 RT^LOGON^MESSAGE.DISPLAYTEXT[0] FOR 63;

! Prompt operator for new logon text:

 SBUFFER ':=' "Enter logon message: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Put new logon text in message structure:

 RT^LOGON^MESSAGE.DISPLAYTEXT ':=' SBUFFER FOR BYTES^READ;

! Send message to $CMON:

 CALL WRITEREADX(CMONNUM,RT^LOGON^MESSAGE,
 $LEN(RT^LOGON^MESSAGE),2,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(CMONNUM);
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 77

Sample Command-Interface Program

!--
! Procedure to generate a Change^logoff^message. This
! procedure prompts the operator for the logoff display text,
! and then sends the new text to the $CMON procedure.
!--

PROC CHANGE^LOGOFF^MESSAGE;
BEGIN
 STRUCT .RT^LOGOFF^MESSAGE; !data structure to send to
 BEGIN ! $CMON
 INT MSGCODE;
 STRING DISPLAYTEXT[0:63];
 END;

 INT BYTES^READ;

! Set message code in message structure for a change logoff
! message:

 RT^LOGOFF^MESSAGE.MSGCODE := 51;

! Blank the display text buffer:

 RT^LOGOFF^MESSAGE.DISPLAYTEXT[0] ':=' " ";
 RT^LOGOFF^MESSAGE.DISPLAYTEXT[1] ':='
 RT^LOGOFF^MESSAGE.DISPLAYTEXT[0] FOR 63;

! Prompt the operator for the new logoff text:

 SBUFFER ':=' "Enter logoff message: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Put logoff text in message structure:

 RT^LOGOFF^MESSAGE.DISPLAYTEXT ':=' SBUFFER FOR BYTES^READ;

! Send message to $CMON:

 CALL WRITEREADX(CMONNUM,RT^LOGOFF^MESSAGE,
 $LEN(RT^LOGOFF^MESSAGE),2,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(CMONNUM);
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 78

Sample Command-Interface Program

!--
! Procedure generates an RT^shutdown^message. This procedure
! prompts the operator for the shutdown display text, puts
! it into the message, and sends the message to $CMON.
!--

PROC REJECT^REQUESTS;
BEGIN
 STRUCT .RT^SHUTDOWN^MESSAGE; !structure to send to
 BEGIN ! $CMON
 INT MSGCODE;
 STRING SHUTDOWNTEXT[0:63];
 END;

 INT BYTES^READ;

! Set message code in message structure for shutdown
! message:

 RT^SHUTDOWN^MESSAGE.MSGCODE := 61;

! Blank the display text buffer:

 RT^SHUTDOWN^MESSAGE.SHUTDOWNTEXT[0] ':=' " ";
 RT^SHUTDOWN^MESSAGE.SHUTDOWNTEXT[1] ':='
 RT^SHUTDOWN^MESSAGE.SHUTDOWNTEXT[0] FOR 63;

! Prompt the operator for the shutdown text:

 SBUFFER ':=' "Enter shutdown message: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

! Put the shutdown text into the message structure:

 RT^SHUTDOWN^MESSAGE.SHUTDOWNTEXT ':='
 SBUFFER FOR BYTES^READ;

! Sends message to $CMON:

 CALL WRITEREADX(CMONNUM,RT^SHUTDOWN^MESSAGE,
 $LEN(RT^SHUTDOWN^MESSAGE),2,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(CMONNUM);
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 79

Sample Command-Interface Program

!--
! Procedure to generate an RT^start^message and send it to
! the $CMON process.
!--

PROC ACCEPT^REQUESTS;
BEGIN
 STRUCT RT^START^MESSAGE; !structure to send to $CMON
 BEGIN
 INT MSGCODE;
 END;

 INT BYTES^READ;

! Set message code in message structure for the restart
! message:

 RT^START^MESSAGE.MSGCODE := 62;

! Send the structure to the $CMON process:

 CALL WRITEREADX(CMONNUM,RT^START^MESSAGE,
 $LEN(RT^START^MESSAGE),
 2,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(CMONNUM);
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 80

Sample Command-Interface Program

!--
! Procedure to generate a CPU^changestatus^message. This
! procedure prompts the operator for a processor number and then
! for a status (priority or nonpriority) to assign to that
! processor. Finally, this procedure sends the
! CPU^changestatus^message to $CMON.
!--

PROC CHANGE^CPU^STATUS;
BEGIN
 STRING .EXT NEXT^ADR;
 INT STATUS;
 INT BYTES^READ;
 INT(32) NUMBER;

 STRUCT .CPU^CHANGESTATUS^MESSAGE; !structure to send to
 BEGIN ! $CMON
 INT MSGCODE;
 INT PROCESSOR;
 INT STATUS;
 END;

! Set the message code for changing processor status:

 CPU^CHANGESTATUS^MESSAGE.MSGCODE := 63;

! Obtain a valid processor number from the operator:

 DO
 BEGIN
 PROMPT^AGAIN:
 SBUFFER ':=' "Enter valid processor number: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);
 SBUFFER[BYTES^READ] := 0;
 @NEXT^ADR := DNUMIN(SBUFFER,NUMBER,10,STATUS);
 END
 UNTIL STATUS = 0 AND $INT(NUMBER) >= 0
 AND $INT(NUMBER) <= TOP^CPU^NUMBER
 AND @NEXT^ADR = $XADR(SBUFFER[BYTES^READ]);

! Set the processor number in the message structure:

 CPU^CHANGESTATUS^MESSAGE.PROCESSOR := $INT(NUMBER);

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 81

Sample Command-Interface Program

! Obtain the new priority for the processor from the operator:

 DO
 BEGIN
 SBUFFER ':=' ["Enter new status: 1 for priority,",
 "0 for non-priority: "]
 -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[BYTES^READ] := 0;
 @NEXT^ADR := DNUMIN(SBUFFER,NUMBER,10,STATUS);
 END
 UNTIL STATUS = 0
 AND @NEXT^ADR = $XADR(SBUFFER[BYTES^READ])
 AND ($INT(NUMBER) = 1 OR $INT(NUMBER) = 0);

! Put the new processor status into the message structure:

 CPU^CHANGESTATUS^MESSAGE.STATUS := $INT(NUMBER);

! Send the message to $CMON:

 CALL WRITEREADX(CMONNUM,CPU^CHANGESTATUS^MESSAGE,
 $LEN(CPU^CHANGESTATUS^MESSAGE),
 2,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(CMONNUM);
END;

!--
! Procedure to exit the process.
!--

PROC EXIT^PROGRAM;
BEGIN
 CALL PROCESS_STOP_;
END;

!--
! Procedure to respond to an invalid request. This procedure
! displays a message and then returns to the main procedure
! to redisplay the menu.
!--

PROC INVALID^REQUEST;
BEGIN
 PRINT^STR("Invalid request. Please try again");
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 82

Sample Command-Interface Program

!---
! Procedure to prompt the user for the next function to
! perform:
!
! "1" to change the logon message
! "2" to change the logoff message
! "3" to prohibit requests during shutdown
! "4" to re-enable requests
! "5" to change the processor status
! "x" to exit the program
!
! The selection made is returned as the result of the call.
!--

INT PROC GET^COMMAND;
BEGIN
 INT BYTES^READ;

! Prompt the user for the function to be performed:

 PRINT^BLANK;
 PRINT^STR("Type '1' to change the logon message ");
 PRINT^STR(" '2' to change the logoff message ");
 PRINT^STR(" '3' to prohibit requests in shutdown ");
 PRINT^STR(" '4' to re-enable requests ");
 PRINT^STR(" '5' to change the processor status ");
 PRINT^STR(" 'x' to exit the program ");

 SBUFFER ':=' "Choice: " -> @S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE,BYTES^READ);
 IF <> THEN CALL FILE^ERRORS(TERMNUM);

 SBUFFER[BYTES^READ] := 0;
 RETURN SBUFFER[0];
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 83

Sample Command-Interface Program

!--
! Procedure opens the $CMON process. Prompts the user to try
! again if the open fails.
!--

PROC OPEN^CMON(PROCESS^NAME,PROCESS^NAMELEN,SERVER^NUM);
STRING .PROCESS^NAME;
INT PROCESS^NAMELEN;
INT .SERVER^NUM;

BEGIN
 INT ERROR;

TRY^AGAIN:
 ERROR := FILE_OPEN_(PROCESS^NAME:PROCESS^NAMELEN,
 SERVER^NUM);
 IF ERROR <> 0 THEN
 BEGIN
 PRINT^STR("Could not open $CMON");
 SBUFFER ':=' "Do you wish to try again? (y/n): "
 ->@S^PTR;
 CALL WRITEREADX(TERMNUM,SBUFFER,@S^PTR '-' @SBUFFER,
 BUFSIZE);
 IF (SBUFFER[0] = "n") OR (SBUFFER[0] = "N") THEN
 CALL PROCESS_STOP_
 ELSE GOTO TRY^AGAIN;
 END;
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 84

Sample Command-Interface Program

!--
! Procedure handles creating and opening a $CMON process. If
! $CMON already exists it calls OPEN^CMON to open it. If
! $CMON does not exist, it creates the process and sends it
! the standard process initialization sequence.
!--

PROC CREATE^AND^OPEN^CMON(CMON^NUM,CMON^OBJECT^NAME,
 OBJFILE^NAMELEN,PROCESS^NAME,
 PROCESS^NAMELEN);
INT .CMON^NUM; !file number of $CMON process
STRING .CMON^OBJECT^NAME; !name of $CMON object file
INT OBJFILE^NAMELEN; !file-name length
STRING .PROCESS^NAME; !name of $CMON process
INT PROCESS^NAMELEN; !process-name length

BEGIN
 INT ERROR;

! Check whether $CMON already running. If so, open it.
! If not, create it and open it:

 ERROR := PROCESS_GETPAIRINFO_(
 ,PROCESS^NAME:PROCESS^NAMELEN);

! IF $CMON already exist, open it:

 CASE ERROR OF
 BEGIN

 0, 4 -> BEGIN

 ! The process already exists; open it:

 CALL OPEN^CMON(PROCESS^NAME,PROCESS^NAMELEN,
 CMON^NUM);

 END;

 9 -> BEGIN

 ! The process does not exist, create it and open it,
 ! send it a Startup message, close it, and then reopen
 ! it:

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 85

Sample Command-Interface Program

 ! Create process:

 ERROR := PROCESS_CREATE_(
 CMON^OBJECT^NAME:OBJFILE^NAMELEN,
 !library^file:length!,
 !swap^file:length!,
 !ext^swap^file:length!,
 !priority!,
 !processor!,
 !process^handle!,
 !error^detail!,
 ZSYS^VAL^PCREATOPT^NAMEINCALL,
 PROCESS^NAME:PROCESS^NAMELEN);
 IF ERROR <> 0 THEN
 BEGIN
 PRINT^STR("Unable to create $CMON");
 CALL PROCESS_STOP_;
 END;

 ! Open the new $CMON process:

 CALL OPEN^CMON(PROCESS^NAME,PROCESS^NAMELEN,
 CMON^NUM);

 ! Send $CMON a Startup message:

 CI^STARTUP.MSGCODE := -1;
 CALL WRITEX(CMON^NUM,CI^STARTUP,MESSAGE^LEN);
 IF <> THEN
 BEGIN
 CALL FILE_GETINFO_(CMON^NUM,ERROR);
 IF ERROR <> 70 THEN
 PRINT^STR("Could not write Start-Up " &
 "message to server ");
 END;

 ! Close $CMON:

 ERROR := FILE_CLOSE_(CMON^NUM);

 ! Reopen $CMON:

 CALL OPEN^CMON(PROCESS^NAME,PROCESS^NAMELEN,
 CMON^NUM);
 END;

 OTHERWISE -> BEGIN

 ! Unexpected error return from PROCESS_GETPAIRINFO_:

 PRINT^STR("Unexpected error ");
 END;
 END;
 END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 86

Sample Command-Interface Program

!--
! Procedure to save the Startup message in the global
! data area.
!--

PROC SAVE^STARTUP^MESSAGE(RUCB,START^DATA,MESSAGE,
 LENGTH,MATCH)VARIABLE;
INT .RUCB;
INT .START^DATA;
INT .MESSAGE;
INT LENGTH;
INT MATCH;

BEGIN

! Save Startup message in CI^STARTUP structure:

 CI^STARTUP.MSGCODE ':=' MESSAGE[0] FOR LENGTH/2;
 MESSAGE^LEN := LENGTH;
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 87

Sample Command-Interface Program

!--
! Procedure to read the Startup message and open the terminal
! and $CMON files.
!--

PROC INIT;
BEGIN
 STRING .PROGNAME[0:MAXFLEN - 1];
 INT PROGNAME^LEN;
 STRING .PROCESS^NAME[0:MAXFLEN - 1];
 INT PROCESS^NAME^LEN;
 STRING .TERMNAME[0:MAXFLEN - 1];
 INT TERMLEN;
 INT ERROR;

! Call the INITIALIZER and save the Startup message:

 CALL INITIALIZER(!rucb!,
 !passthru!,
 SAVE^STARTUP^MESSAGE);

! Open the IN file from the Startup message:

 ERROR := OLDFILENAME_TO_FILENAME_(
 CI^STARTUP.INFILE.VOLUME,
 TERMNAME:MAXFLEN,TERMLEN);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);
 ERROR := FILE_OPEN_(TERMNAME:TERMLEN,TERMNUM);
 IF ERROR <> 0 THEN CALL PROCESS_STOP_(!process^handle!,
 !specifier!,
 ABEND);

! Open the $CMON; create it if it does not already exist:

 PROGNAME ':=' "$APPLS.PROGS.ZCMON" ->@S^PTR;
 PROGNAME^LEN := @S^PTR '-' @PROGNAME;
 PROCESS^NAME ':=' "$CMON" -> @S^PTR;
 PROCESS^NAME^LEN := @S^PTR '-' @PROCESS^NAME;
 CALL CREATE^AND^OPEN^CMON(CMONNUM,PROGNAME,PROGNAME^LEN,
 PROCESS^NAME,PROCESS^NAME^LEN);
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 88

Sample Command-Interface Program

!--
! Main procedure performs initialization, then goes into a
! loop in which it reads the $RECEIVE file and then calls the
! appropriate procedure depending on whether the message read
! was a system message, the message used was a user message,
! or the read generated an error.
!--

PROC CONTROL^MAIN MAIN;
BEGIN
 INT I;
 STRING CMD;

! Open terminal and $CMON:

 CALL INIT;

! Loop forever:

 WHILE 1 DO
 BEGIN

 ! Prompt user for function to perform:

 CMD := GET^COMMAND;

 ! Select a procedure depending on value returned from
 ! GET^COMMAND:

 CASE CMD OF
 BEGIN

 "1" -> CALL CHANGE^LOGON^MESSAGE;

 "2" -> CALL CHANGE^LOGOFF^MESSAGE;

 "3" -> CALL REJECT^REQUESTS;

 "4" -> CALL ACCEPT^REQUESTS;

 "5" -> CALL CHANGE^CPU^STATUS;

 "x" -> CALL EXIT^PROGRAM;

 OTHERWISE -> CALL INVALID^REQUEST;
 END;
 END;
END;

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 89

Debugging a TACL Monitor ($CMON)

Debugging a TACL Monitor ($CMON)
Replacing a standard $CMON with an untested program being debugged can lead to
unacceptable delays and inconvenience to the user community. You should therefore
name the TACL monitor program you are developing something other than $CMON
and follow the guidelines described in this subsection for debugging and testing.

Debugging and testing is made more difficult because TACL processes always make
requests to a process named $CMON—the TACL program is hard coded to do this.
Therefore you should use a TACL macro or some other program that simulates the
TACL part of the TACL/$CMON interface. A TACL Macro for Debugging and Testing a
$CMON Program, following, provides an example.

A TACL Macro for Debugging and Testing a $CMON Program
The following example shows a TACL macro that you can use for sending TACL
messages to a TACL monitor program and receiving and displaying the reply. This
example tests the TACL monitor for its response to Prelogon^msg, Config^msg, and
Logon^msg messages. It can easily be modified to test the response to other TACL
messages.

?TACL MACRO
==
== This TACL macro can be used as a template to test $CMON
== processes
==

#FRAME

== Structure for sending TACL messages to $CMON:

[#DEF to^cmon STRUCT
 BEGIN
 INT message^code VALUE 0;
 BYTE group VALUE 101;
 BYTE user VALUE 131;
 INT cipri VALUE 0;
 FNAME ciinffile VALUE $ztnt.#pty21;
 FNAME cioutfile VALUE $ztnt.#pty21;
 END;
]

== Structure for receiving the reply to a Prelogon^msg
== message:

[#DEF prelogon^reply STRUCT
 BEGIN
 INT reply^code;
 CHAR reply^text (0:131);
 END;
]

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 90

A TACL Macro for Debugging and Testing a $CMON
Program

== Structure for receiving the reply to a Logon^msg message:

[#DEF loggedon^reply STRUCT
 BEGIN
 INT reply^code;
 CHAR reply^text (0:131);
 END;
]

== Structure for receiving a reply to a Config^msg message.
== cmon:configreply^text is used when $CMON accepts the
== default parameters. cmon:tacl^config is used when $CMON
== changes the configuration parameters:

[#DEF cmon STRUCT
 BEGIN
 STRUCT configreply^text;
 BEGIN
 INT reply^code;
 CHAR reply^text (0:131);
 END;
 STRUCT tacl^config REDEFINES configreply^text;
 BEGIN
 INT reply^code;
 INT count;
 INT autologoffdelay;
 INT logoffscreenclear;
 INT remotesuperid;
 INT blindlogon;
 INT namelogon;
 INT cmontimeout;
 INT cmonrequired;
 INT remotecmontimeout;
 INT remotecmonrequired;
 INT nochangeuser;
 INT stoponfemodemerr;
 INT requestcmonuserconfig;
 END;
 END;
]

[#PUSH status r^error r^rec prompt
 cmon^process^name
 cmon^process^sock
]

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 91

A TACL Macro for Debugging and Testing a $CMON
Program

== Open $CMON socket:

#SET cmon^process^name $CMOO == Temporary name of
 == $CMON process
#SET cmon^process^sock == .#cmon
#SET status [#REQUESTER/WAIT 5000/READ &
 [cmon^process^name][cmon^process^sock] &
 r^error r^rec prompt]

== Send a Prelogon^msg request and display the reply:

#SET to^cmon:message^code -59
#APPENDV prompt to^cmon
#EXTRACTV r^rec prelogon^reply
#OUTPUTV prelogon^reply

== Send a Config^msg request and display the reply:

#SET to^cmon:message^code -60
#APPENDV prompt to^cmon
#EXTRACTV r^rec cmon
[#IF [cmon:tacl^config:reply^code] |THEN|
 #OUTPUTV cmon:configreply^text
|ELSE|
 #OUTPUTV cmon:tacl^config
]

== Send a Logon^msg request and display the reply:

#SET to^cmon:message^code -50
#APPENDV prompt to^cmon
#EXTRACTV r^rec loggedon^reply
#OUTPUTV loggedon^reply

== Close $CMON:

#SET status [#REQUESTER/WAIT 5000/CLOSE r^rec]
#UNFRAME

For details of TACL programming techniques, see the TACL Programming Guide.

Writing a Command-Interpreter Monitor ($CMON)

Guardian Programmer’s Guide — 421922-014
23 - 92

Procedure for Debugging and Testing a TACL
Monitor ($CMON)

Procedure for Debugging and Testing a TACL Monitor ($CMON)
The following steps describe the recommended way to debug or test a $CMON
program.

1. Start your $CMON program and give it a name other than $CMON. Start it under
debug if desired:

1> RUN[D] ZCMON/NAME $CMOO/

See the Inspect Manual or the Debug Manual for general debugging information.

2. Start your TACL macro:

1> run cmootest
PRELOGON^REPLY(0)
 REPLY^CODE(0:0) 0
 REPLY^TEXT(0:131)

CONFIGREPLY^TEXT(0)
 REPLY^CODE(0:0) 1
 REPLY^TEXT(0:131)

LOGGEDON^REPLY(0)
 REPLY^CODE(0:0) 0
 REPLY^TEXT(0:131)
 Logon accepted

The display shows the contents of the Prelogon^reply, Config^text^reply, and
Logon^reply messages as returned by the new $CMON process.

Note that when you run your command interface program, CMONCOM, you must also
change its name for the $CMON program.

Guardian Programmer’s Guide — 421922-014
24 - 1

24 Writing a Terminal Simulator
Using the interprocess-communication features described in Section 6, Communicating
With Processes, you can write a program that simulates a terminal. A user process
can communicate with this terminal-simulation process as though it were a real
terminal. This user process is typically a requester in an application designed
according to the requester/server model.

Generally, a terminal-simulation process provides an interface between a requester
process and one or more real terminals. Some of the functions a terminal-simulation
process could include are:

• Multiplexing: mapping input/output requests from one or more requesters to one or
more terminals

• Translating: changing certain characters during the data transfer between a
requester and a real terminal

• Filtering: adding, removing, or altering information during the data transfer between
a requester and a real terminal

When writing a terminal-simulation program, you must give the terminal-simulation
process the following properties:

• The terminal-simulation process must have a device subtype of 30.

• The terminal-simulation process must be named.

• The terminal-simulation process must accept system messages through its
$RECEIVE file.

• The terminal-simulation process must specify how Setmode and Setparam
messages are to be handled.

• The terminal-simulation process must handle WRITE[X], READ[X], and
WRITEREAD[X] I/O requests from requesters.

• The terminal-simulation process must handle system messages such as:

• Device type information request messages

• Setmode messages

• Setparam messages

• Control messages

• The terminal-simulation process must handle the BREAK key.

The remainder of this section discusses the guidelines above in detail.

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 2

Specifying Device Subtype 30

Specifying Device Subtype 30
A terminal-simulation process must have a device subtype of 30. The device subtype
of a process is an attribute that is stored in the object file. By default, the subtype is 0;
however, you can specify some value for this attribute when you compile or bind the
program.

Why Device Subtype 30 Must Be Specified
Specifying device subtype 30 tells the system that the terminal-simulation process will
supply device information in response to a request for the device-type information.

A requester that communicates with a real terminal can call a procedure such as
FILE_GETINFO_ to get the device type of that device. For a real terminal, the
FILE_GETINFO_ procedure returns a device type of 6 to the requester. Processes
normally return device type 0; however, a terminal simulator must be able to return
device type 6 just like a real terminal. This operation is called device-type substitution.

To allow the terminal-simulation process to specify its own device type, you must
specify device subtype 30 for the process. Specifying device subtype 30 for the
terminal-simulation process specifies that the process performs device-type
substitution.

The mechanism for your terminal-simulation program to return the device type itself is
described later in this section under Processing System Messages.

How to Specify Device Subtype 30
You can specify the subtype attribute using either a compiler directive or a linker
command:

• You can place a compiler directive at the beginning of your TAL program:

?SUBTYPE 30

• For a TNS or accelerated program, you can use the SET SUBTYPE command in
Binder when linking the program:

@ SET SUBTYPE 30

• For a TNS/R native program, you can use the set subtype command in the nld
utility when linking the program. The following nld command links two object files,
ofile1 and ofile2, sets the subtype attribute of the resultant object file to 30, and
names it objfile:

30> nld ofile1 ofile2 -set subtype 30 -o objfile

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 3

Assigning a Name to the
Terminal-Simulation Process

Assigning a Name to the
Terminal-Simulation Process

A terminal-simulation process must be a named process. You assign a name to the
process when you call the PROCESS_CREATE_ procedure to create the process or
type the TACL RUN command. The following example creates a process named
“$T1.”

OBJFILE ':=' "TERMFILE" -> @S^PTR;
OBJFILENAME^LENGTH := @S^PTR ‘-’ @OBJFILE;
NAME^OPTION := ZSYS^VAL^PCREATOPT^NAMEINCALL;
PROCESS^NAME ':=' "$T1";
PROCESS^NAME^LENGTH := 3;
ERROR := PROCESS_CREATE_(OBJFILE:OBJFILENAME^LENGTH,
 !library^file:length!,
 !swap^file:length!,
 !ext^swap^file:length!,
 !priority!,
 !processor!,
 PROCESS^HANDLE,
 !error^detail!,
 NAME^OPTION,
 PROCESS^NAME:PROCESS^NAME^LENGTH,
 PROCESS^DESCRIPTOR:MAXLEN,
 PROCESS^DESCRIPTOR^LENGTH);

See Section 16, Creating and Managing Processes, for more details on creating
named processes.

Accepting System Messages
Through $RECEIVE

A terminal-simulation process must accept system messages in its $RECEIVE file.
The process might receive a variety of system messages. Among these are:

• Requests for device-type information

• Setmode messages

• Setparam messages

• Control messages

To receive and reply to these messages, you must specify that the terminal-simulation
process accepts system messages.

The system messages listed above are sent to $RECEIVE when a FILE_OPEN_ call is
executed. The system messages cannot be blocked. By default, bit 15 is set to the

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 4

Specifying How to Process System Messages

default value 0 of the options parameter in the FILE_OPEN_ call that opens
$RECEIVE:

FILE^NAME ':=' "$RECEIVE" -> @S^PTR;
LENGTH := @S^PTR '-' @FILE^NAME;
OPTIONS.<15> := 0;
ERROR := FILE_OPEN_(FILE^NAME:LENGTH,
 RECV^NUM);

See Section 6, Communicating With Processes, for more information about opening
$RECEIVE.

Specifying How to Process System Messages
A terminal-simulation process can specify how certain system messages are to be
handled. To do this, the process must call SETMODE function 80.

Using SETMODE function 80, the terminal-simulation process can do the following:

• Specify whether a requester can include the last-params parameter in
SETMODE procedure calls

• Specify whether a requester can call the SETPARAM procedure

• Specify whether the terminal-simulation process accepts cancellation messages

The following paragraphs discuss allowing the last-params parameter in SETMODE
procedure calls and allowing SETPARAM calls. For a discussion of accepting
cancellation messages, see Section 6, Communicating With Processes.

Allowing the Requester to Specify the last-params Parameter
A terminal-simulation process can call SETMODE function 80 to specify whether a
requester can specify the last-params parameter in SETMODE procedure calls
made against the terminal-simulation process.

When a requester communicates with a real terminal, the requester can call the
SETMODE procedure to control the operation of the real terminal. The requester can
specify the last-params parameter when calling SETMODE. The system uses
last-params to return to the requester the parameter values specified with the last
SETMODE call that specified the same function as the current SETMODE call.

When a requester communicates with a terminal-simulation process, its SETMODE
calls cause Setmode messages to be sent to the terminal-simulation process. The
process must read, process, and reply to these messages.

When a requester communicates with a terminal-simulation process, by default it
cannot include the last-params parameter in its SETMODE calls. However, the
terminal-simulation process can call SETMODE function 80 to allow requesters to
include the last-params parameter in SETMODE calls.

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 5

Allowing the Requester to Call SETPARAM

If the terminal-simulation process allows requesters to specify the last-params
parameter, the process must remember the previous parameter values for SETMODE
functions. Furthermore, the process must return this information to the requester when
responding to Setmode messages.

Reading and responding to Setmode messages is discussed in detail later in this
section.

To allow a requester to include the last-params parameter on SETMODE calls,
assign 1 to bit 15 of param1 in a SETMODE function 80 call:

PARAM1.<15> := 1;
CALL SETMODE(REQ^NUM,80,PARAM1);

Allowing the Requester to Call SETPARAM
A terminal-simulation process can call SETMODE function 80 to specify whether the
requester can call the SETPARAM procedure against the terminal-simulation process.

A requester that communicates with a real terminal can call SETPARAM to control the
operation of the terminal. Most SETPARAM functions are related to data
communication; however, SETPARAM function 3 specifies the owner of the BREAK
key. (SETPARAM function 3 works like SETMODE function 11, except that
SETPARAM function 3 can also specify a BREAK tag.) When a requester
communicates with a terminal-simulation process, by default it cannot call the
SETPARAM procedure. However, the terminal-simulation process can call SETMODE
function 80 to allow requesters to call the SETPARAM procedure.

If a terminal-simulation process allows requesters to call SETPARAM, a Setparam
message is sent to the process when the requester calls SETPARAM. The process
must read and respond to Setparam messages. The response to the Setparam
message must include the previous parameter values for the particular SETPARAM
function.

Reading and responding to Setparam messages is discussed in detail later in this
section.

To allow a requester to call SETPARAM, assign 1 to bit 14 of the param1 parameter in
a SETMODE function 80 call:

PARAM1.<14> := 1;
CALL SETMODE(REQ^NUM,80,PARAM1);

Processing I/O Requests
A terminal-simulation process accepts and responds to I/O requests from one or more
requesters. I/O requests are received through the $RECEIVE file.

Immediately after receiving a message from $RECEIVE, the process should check the
condition code. If a CCG condition code is returned, then the process should call the
FILE_GETINFO_ procedure to retrieve the file-system error number. File-system error

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 6

Processing I/O Requests

6 indicates that a file-system message was received, so the message should be
processed as a system message.

The following code fragment checks the message read from $RECEIVE to determine
whether it is a system message or a user message:

CALL READUPDATE(RECV^NUM,BUFFER,RCOUNT);
CALL FILE_GETINFO_(RECV^NUM,ERROR);
IF ERROR = 6 THEN... !system message
IF ERROR = 0 THEN... !user message

If the condition code is normal, the process must determine whether the received
message is an I/O request and, if so, the type of I/O request. You can accomplish this
by calling the FILE_GETRECEIVEINFO_ procedure.

The FILE_GETRECEIVEINFO_ procedure returns information about the last message
read from $RECEIVE. The following values returned by the
FILE_GETRECEIVEINFO_ procedure are particularly important to a terminal-
simulation process:

• The process handle of the process that sent the message.

The terminal-simulation process might use the process handle to communicate
with the requester process. For example, the terminal-simulation process might
need to send a BREAK message to the requester process. The process handle of
the requester is required in the BREAKMESSAGE_SEND_ procedure call.

• A message tag associated with this message.

If the terminal-simulation process reads several messages before issuing a reply,
then the simulation process can use the message tag to specify the message to
which it is replying.

• The maximum number of bytes the requester expects to read.

The terminal-simulation process can use this value to determine the maximum
number of bytes to return to the requester in response to a READ[X] or
WRITEREAD[X] request.

• A value indicating the type of I/O request received.

The terminal-simulation process can use this value to determine whether the most
recently received message is an I/O request and, if so, whether it is a READ[X]
request, a WRITE[X] request, or a WRITEREAD[X] request.

The FILE_GETRECEIVEINFO_ procedure returns other parameters in addition to
these; see the Guardian Procedure Calls Reference Manual for a complete description
of the FILE_GETRECEIVEINFO_ procedure.

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 7

Processing I/O Requests

Immediately after reading a message from $RECEIVE, the terminal-simulation process
should call FILE_GETRECEIVEINFO_ to check the value returned for the I/O type.
The meanings of the I/O type values that can be returned are as follows:

After the terminal-simulation process performs any processing associated with the
request, it must respond to the requester. Responding to the requester is performed
by calling the REPLY[X] procedure.

You can use the error-return parameter of the REPLY[X] procedure to return error
codes to the requester. The error number you specify in the error-return
parameter also controls the condition code returned to the requester.

The following example checks the I/O type of a request received from the requester. If
it is a WRITE[X] request, the code sends the message to the terminal. If the request is
for a READ operation, then the code fragment reads information from the terminal and
returns it to the requester. For a WRITEREAD[X] request, the code fragment writes
the message to the terminal, waits for a response, and then writes the response back
to the requester process.

0 The most recent message read from $RECEIVE was not an I/O request.

The terminal-simulation process should process the message as a system
message.

1 The most recent message read from $RECEIVE was a WRITE[X] request.

The buffer for the read from $RECEIVE contains the data that was written by the
requester. The count-read parameter for the read from $RECEIVE indicates
the number of bytes written by the requester.

2 The most recent message read from $RECEIVE was a READ[X] request.

The buffer for the read from $RECEIVE contains no data. The maximum reply
count returned by the FILE_GETRECEIVEINFO_ procedure indicates the
maximum number of bytes the requester expects to read.

3 The most recent message read from $RECEIVE was a WRITEREAD[X] request.

The buffer for the read from $RECEIVE contains the data that was written by the
requester, if any. The count-read parameter for the read from $RECEIVE
indicates how many bytes were written by the requester. The maximum reply
count returned by the FILE_GETRECEIVEINFO_ procedure indicates the
maximum number of bytes the requester expects to read.

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 8

Processing I/O Requests

 .
 .
CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
CALL FILE_GETINFO_(RECV^NUM,ERROR);
CALL FILE_GETRECEIVEINFO_(RECEIVE^INFO);
IF ERROR = 6 THEN !system message
BEGIN
 .
 .
END;
IF ERROR = 0 THEN !user message
BEGIN
 PROCESS^HANDLE ':=' RECEIVE^INFO[6] FOR 10;
 MESSAGE^TAG := RECEIVE^INFO[2];
 BYTES^TO^RETURN := RECEIVE^INFO[1];
 IO^TYPE := RECEIVE^INFO[0];
 CASE OF IO^TYPE
 BEGIN

 ! I/O is a WRITE; send message on to the terminal and
 ! reply to requester:

 1 -> BEGIN
 ERROR^RETURN := 0;
 WCOUNT := BYTES^READ;
 CALL WRITEX(TERM^NUM,SBUFFER,WCOUNT);
 IF <> THEN
 CALL FILE_GETINFO_(TERM^NUM,ERROR^RETURN);
 CALL REPLYX(!buffer!,
 !write^count!,
 !count^written!,
 !message^tag!,
 ERROR^RETURN);
 END;

 ! I/O is a READ; read message from terminal and reply to
 ! requester process:

 2 -> BEGIN
 ERROR^RETURN := 0;
 RCOUNT := BYTES^TO^RETURN;
 CALL READX(TERM^NUM,SBUFFER,RCOUNT,BYTES^READ);
 IF <> THEN
 CALL FILE_GETINFO_(TERM^NUM,ERROR^RETURN);
 CALL REPLYX(SBUFFER,
 BYTES^READ,
 !count^written!,
 !message^tag!,
 ERROR^RETURN);
 END;

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 9

Processing System Messages

 ! I/O is a WRITEREAD[X]; write message to terminal, wait
 ! for response, write response back to requester:

 3 -> BEGIN
 ERROR^RETURN := 0;
 WCOUNT := BYTES^READ;
 RCOUNT := BYTES^TO^RETURN;
 CALL WRITEREADX(TERM^NUM,SBUFFER,WCOUNT,RCOUNT,
 BYTES^READ);
 IF <> THEN
 CALL FILE_GETINFO_(TERM^NUM,ERROR^RETURN);
 CALL REPLYX(SBUFFER,
 BYTES^READ,
 !count^written!,
 !message^tag!,
 ERROR^RETURN);
 END;

 !Any other I/O type is unexpected:
 OTHERWISE -> BEGIN
 .
 .
 END;
 END;
END;

For more information about the REPLY[X] procedure, see Section 6 of this manual
Communicating With Processes, or the Guardian Procedure Calls Reference Manual.

Processing System Messages
A terminal-simulation process might receive system messages through its $RECEIVE
file. In particular, the process might receive these system messages:

The following paragraphs describe when these messages are sent to the terminal-
simulation process and discuss how the terminal-simulation process should respond
(except for system messages -147). For description of system message -147, refer to
the Guardian Procedure Errors and Messages Manual.

-32 Control message

-33 Setmode message

-37 Setparam message

-106 Request for device-type information (D-series format message)

-147 Request for device configuration information (G-series format message)

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 10

Processing Control Messages

Processing Control Messages
When the requester calls the Control procedure, a Control message is sent to the
terminal-simulation process. The message has the following format:

A requester can perform many terminal-related operations by calling the CONTROL
procedure. Your terminal-simulation process must determine the appropriate
processing to perform for each CONTROL operation.

Processing Setmode Messages
When the requester process calls the SETMODE procedure, a Setmode system
message is sent to the terminal-simulation process. This message has the following
format:

However, if the terminal-simulation process did not call SETMODE function 80 to allow
requesters to include the last-params parameter on SETMODE calls, then system
message -33 does not include sysmsg[4].

If the terminal-simulation process called SETMODE function 80 to allow the
last-params parameter on SETMODE calls, then the process can use sysmsg[4] to
determine the parameters the requester included in the last SETMODE call that used
the same function value. For example, if sysmsg[4].<15> is set to 1, then the terminal-
simulation process must determine the previous values for this SETMODE function
and return those values in its response. (The value representing the previous param1
can also be an internally defined value that identifies the previous owner of BREAK;
refer to Tracking the BREAK Owner, later in this section.) If this bit is set to 0, the
terminal-simulation process need not return previous parameter values for this

Structure of the Control message (system message -32):

sysmsg[0] = -32
sysmsg[1] = the operation parameter of the CONTROL call
sysmsg[2] = the param parameter of the CONTROL call

Structure of a Setmode system message (message -33):

sysmsg[0] = -33
sysmsg[1] = SETMODE function code
sysmsg[2] = param1 of the SETMODE call
sysmsg[3] = param2 of the SETMODE call
sysmsg[4].<13> = set to 1 if param1 was specified
sysmsg[4].<14> = set to 1 if param2 was specified
sysmsg[4].<15> = set to 1 if last-params was specified

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 11

Processing Setparam Messages

SETMODE function. The terminal-simulation process must respond to system
message -33 with a message in the following format:

A requester can perform many terminal-related functions by calling the SETMODE
procedure. Your terminal-simulation process must determine the appropriate
processing to perform for each SETMODE function.

Processing Setparam Messages
If the terminal-simulation process used SETMODE function 80 to allow requesters to
call SETPARAM, the process must read and respond to Setparam messages.

A Setparam message has the following format:

The terminal-simulation process must respond to system message -37 with a message
in the following format:

A requester can perform one terminal-related function by calling the SETPARAM
procedure. That function is SETPARAM function 3, which specifies the owner of the
BREAK key. Your terminal-simulation process should handle SETPARAM function 3 in
a manner similar to the way it handles SETMODE function 11; however, in processing
SETPARAM function 3, you must also process the BREAK tag information.

The SETPARAM functions are described in the Guardian Procedure Calls Reference
Manual.

Structure of -33 reply message:

replymsg[0] = -33
replymsg[1] = previous value of param1, if requested
replymsg[2] = previous value of param2, if requested

Structure of a Setparam message (system message -37):

sysmsg[0] = -37
sysmsg[1] = SETPARAM function code
sysmsg[2].<14> = set to 1 if param-array was specified in
 SETPARAM call
sysmsg[2].<15> = set to 1 if last-param-array was specified
 in the SETPARAM call
sysmsg[3] = the param-count parameter of the SETPARAM
 call
sysmsg[4:n] = the param-array parameter of the SETPARAM
 call

Structure of -37 reply message:

replymsg[0] = -37
replymsg[1] = value for last-param-count
replymsg[2] = value for last-param-array

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 12

Processing Device-Type Information Requests

Processing Device-Type Information Requests
A requester process can call a procedure such as FILE_GETINFO[BYNAME]_ to
determine the device type of the terminal-simulation process. When another process
requests device-type information from the terminal-simulation process, system
message -106 is sent to the terminal-simulation process. The format of system
message -106 is as follows:

The terminal-simulation process must reply with a message in the following format:

The terminal-simulation process should return 6 in replymsg[1] to indicate the device
type for a terminal and 30 in replymsg[2] to indicate device substitution. That is, the
device-type value for a terminal is substituted for the device-type value for a process.

The following code fragment processes requests for device-type information:

STRUCT REPLY^TO^106;
BEGIN
 INT MESSAGE^NUMBER;
 INT DEVICE^TYPE;
 INT DEVICE^SUBTYPE;
 INT RESERVED[0:2];
 INT RECORD^LEN;
END;
 .
 .

CALL READUPDATEX(RECV^NUM,SBUFFER,RCOUNT,BYTES^READ);
CALL FILE_GETINFO_(RECV^NUM,ERROR);
CALL FILE_GETRECEIVEINFO_(RECEIVE^INFO);
IF ERROR = 6 THEN !system message
BEGIN

 IF SBUFFER[0] = -106 THEN

 !It is a request for device-type information:

Structure of system message -106:

sysmsg[0] = -106
sysmsg[1:3] = reserved
sysmsg[4] = length in bytes of the qualifier
 name
sysmsg[5] FOR sysmsg[4] = the qualifier name

Structure of -106 reply message:

replymsg[0] = -106
replymsg[1] = device type
replymsg[2] = device subtype
replymsg[3:5] = reserved (filled with -1)
replymsg[6] = physical-record length

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 13

Managing the BREAK Key

 BEGIN

 !Set device type to 6 and subtype to 30:
 REPLY^TO^106.MESSAGE^NUMBER := -106;
 REPLY^TO^106.DEVICE^TYPE := 6;
 REPLY^TO^106.DEVICE^SUBTYPE := 30;
 REPLY^TO^106.RESERVED[0] := -1;
 REPLY^TO^106.RESERVED[1] := -1;
 REPLY^TO^106.RESERVED[2] := -1;
 REPLY^TO^106.RECORD^LEN := <configured record length for
 terminal>

 !Respond to the requester:
 CALL REPLYX(REPLY^TO^106,$LEN(REPLY^TO^106));
 END;

Managing the BREAK Key
A real terminal has a BREAK key that, when pressed, sends a Break-on-device
message to the requester that communicates with the terminal. The requester can
control BREAK handling as follows:

• The requester can call SETMODE function 11 or SETPARAM function 3 to specify
the owner of the BREAK key. The owner of the BREAK key is the process that
receives the Break-on-device message when the terminal user presses the
BREAK key. The BREAK key can be owned by only one process.

• The process that owns the BREAK key can call SETMODE function 12 to place a
terminal in BREAK mode or normal mode. When the terminal is in BREAK mode,
only a process that has BREAK access can communicate with the terminal. When
a terminal is in normal mode, any process that has the terminal open can
communicate with the terminal.

Typically, the BREAK key owner places the terminal in BREAK mode when it receives
a Break-on-device message.

When writing a terminal-simulation process, you must include the following logic to
manage the BREAK key:

• The terminal-simulation process must know the current BREAK key owner.

• The terminal-simulation process must communicate with other processes
depending on whether the terminal-simulation process is in BREAK mode or
normal mode.

• The terminal-simulation process can send Break-on-device messages to requester
processes.

The following paragraphs discuss these topics.

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 14

Tracking the BREAK Owner

Tracking the BREAK Owner
The terminal-simulation process must know the BREAK owner so that it can send
Break-on-device messages to it.

When the terminal-simulation process receives a SETMODE function 11 or
SETPARAM function 3 message, the message includes a 16-bit parameter value
(sysmsg[2] in the Setmode message, sysmsg[4] in the Setparam message) that
indicates how to set BREAK ownership, as follows:

If the sender of the message is the BREAK owner, the process handle of the owner
can be determined by a call to the FILE_GETRECEIVEINFO_ procedure. That
process handle should already be contained in the table of openers that a terminal-
simulation process typically keeps. The terminal-simulation process can remember the
BREAK owner by storing its opener-table index. (For a fuller discussion of opener
tables, see Section 22, Writing a Server Program.)

When requested, the terminal-simulation process must reply to the Setmode or
Setparam message, including in the response a value that represents the previous
owner. (See Processing System Messages, earlier in this section.) If there was no
previous owner, it sends a value of 0. If there was a previous owner, it sends an
internally defined value, typically the negative of the opener-table index for that owner.
That way, if the negative value comes back to the terminal-simulation process in a later
Setmode or Setparam message, the BREAK owner that it represents will be
understood.

Basing Interprocess I/O on BREAK Mode
The terminal-simulation process must base its communication with requesters on
whether the terminal-simulation process is currently in BREAK mode or normal mode:

• If the terminal-simulation process is in normal mode, the process can communicate
with any requester.

• If the terminal-simulation process is in BREAK mode, the process must
communicate only with a process that has BREAK access. An error must be
returned to all other processes that attempt to communicate with the terminal-
simulation process. This error can be returned using the error-return
parameter of the REPLY procedure.

When the terminal-simulation process receives a SETMODE function 12 message, the
process should update a variable to indicate whether the process is in BREAK mode or
normal mode or update a variable indicating whether the requester has BREAK
access.

If value is then BREAK should be

0 disabled and there is no owner

positive enabled and the sender of the message is the owner

negative enabled and the owner is indicated by the negative value

Writing a Terminal Simulator

Guardian Programmer’s Guide — 421922-014
24 - 15

Sending Break-on-Device Messages

When the user presses the BREAK key, the terminal simulator might enter BREAK
mode, depending on the value of the param2 parameter on the last call to SETMODE
function 11 or word 1 of the param-array parameter passed to the last call to
SETPARAM function 3.

Sending Break-on-Device Messages
The terminal-simulation process can send Break-on-device messages to requesters.
To simulate a terminal accurately, the terminal-simulation process should send Break-
on-device messages only to the current BREAK key owner.

To send a Break-on-device message to another process, call the
BREAKMESSAGE_SEND_ procedure. To do this, you need to identify the requester
process by its process handle, as well as give the file number by which the requester
has the terminal-simulation process open. Both the process handle and the file
number are available using FILE_GETRECEIVEINFO_ on receipt of the SETPARAM
function 3 message or SETMODE function 11 message. For example:

PROCESS^HANDLE ':=' RECEIVE^INFO[0] FOR 10;
FILE^NUM := RECEIVE^INFO[3];
ERROR := BREAKMESSAGE_SEND_(PROCESS^HANDLE,FILE^NUM);

This procedure sends a Break-on-device message to the process whose process
handle is stored in PROCESS^HANDLE.

The Break-on-device message sent by this procedure has the following format:

For a complete description of the BREAKMESSAGE_SEND_ procedure, see the
Guardian Procedure Calls Reference Manual.

Structure of Break-on-device message (system message -105):

sysmsg[0] = -105
sysmsg[1] = file number of receiver’s open file to the
 terminal that indicated BREAK
sysmsg[2] = first BREAK tag word
sysmsg[3] = second BREAK tag word

Guardian Programmer’s Guide — 421922-014
25 - 1

25
Debugging, Trap Handling, and
Signal Handling

This section deals with fixing problems that might occur with compiled code. Such
problems typically are coding errors that produce unexpected results or prevent the
program from continuing to execute. Coding errors are not the only possible cause of
problems: a lack of a system resource (such as memory) can also prevent normal
process execution. Such situations are reported as traps to TNS and accelerated
programs and as signals to native programs.

This section describes the following features of the operating system:

• How to invoke a debugging program on your application

• How to deal with trap conditions (TNS and accelerated programs only)

• How to deal with signals (native programs only)

Invoking a Debugger
When your program enters the Debug state (seeSection 16, Creating and Managing
Processes, for a discussion of process states) in the TNS and TNS/R environments, it
runs under the control of one of two debugging programs: Debug or the Inspect
program. Debug is a low-level debugger that provides bit-level information and control
of registers and memory locations. The Inspect program is a symbolic debugger that
allows you to control program execution, set breakpoints, examine program variables,
and modify values in terms of source-language symbols.

In the TNS/R and TNS/E environments you can also use Visual Inspect to debug
processes. Visual Inspect is a GUI-based native symbolic debugger that runs on a
Windows workstation connected to a TNS/R or TNS/E native host. It is designed to
debug native processes on a native host.

H-series and J-series systems provide two debuggers for native mode debugging in
the TNS/E environment: Native Inspect and Visual Inspect. The Inspect debugger is
available on both H-series and J-series systems, but can be used only for debugging
TNS processes.

Visual Inspect is the primary application debugging tool in the TNS/E native
environment. The H-series and J-series version of Visual Inspect debugger includes
the same functionality as the G-series version. Visual Inspect supports high-level
symbolic debugging of native and TNS processes (interpreted and accelerated)
through a PC-based graphical user interface. Visual Inspect can also be used for
debugging TNS, TNS/R, and TNS/E snapshot files.

The H-series and J-series Visual Inspect facility has been enhanced for machine-level
debugging; you can now use it for low-level debugging tasks on the PC that needed to

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 2

Getting a Process Into the Debug State

be done in previous RVUs on the NonStop server using Debug or Inspect. The
following machine-level features are supported:

• Set instruction breakpoints

• Display instruction code

• Step by instruction

• Display and modify data using a numeric (non-symbolic) address

• Modify, format, and monitor registers

• Display and format data buffers as SPI or EMS buffers

These capabilities enable you to perform low-level debugging tasks that formerly
needed to be done on the NonStop server using Debug or Inspect.

For operational details on Debug, see the Debug Manual. For operational details on
the Inspect program, see the Inspect Manual . For operational details on Visual
Inspect, see the Visual Inspect online help. For operational details on the Native
Inspect program, see the Native Inspect Manual. This discussion is limited to how to
invoke debugging on a process.

Native Inspect is a command-line symbolic debugging tool that can be used for
debugging TNS/E native processes and snapshot files. It can be used for source
statement level debugging as well as machine-level debugging. Native Inspect is
intended as a replacement for the G-series Debug facility and the G-series Inspect
debugger for native mode debugging. The command name for Native Inspect is
eInspect.

Native Inspect provides most of the functionality of Inspect and Debug. However, the
Native Inspect command syntax differs from that of Inspect and Debug. The Native
Inspect syntax is based on gdb, a debugger that is widely used throughout the industry
and is familiar to many application developers. In most cases, you are encouraged to
use Visual Inspect as your primary application debugger. The primary advantage of
Native Inspect is that it provides enhanced scripting support in the form of the Tool
Command Language (TCL), a widely used scripting language, which enables you to
automate many of your debugging tasks.

Note that any Inspect command files you are currently using to automate debugging
operations must be converted to Native Inspect syntax.

Native Inspect supports the debugging of PIC (all TNS/E native code is PIC), whereas
Inspect on the TNS/R platform cannot be used with PIC.

Getting a Process Into the Debug State
You can put a process into the Debug state in any of the following ways:

Note. Native Inspect cannot currently be used to debug COBOL programs. The only debugger
available to H-series and J-series COBOL programs is Visual Inspect.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 3

Getting a Process Into the Debug State

• Using the DEBUG procedure

• Using the PROCESS_DEBUG_ procedure

• Using the PROCESS_CREATE_ or PROCESS_LAUNCH_ procedure

• Using the RUND command (or the TACL run option DEBUG)

• Using the DEBUG command (from the TACL prompt)

• Using the Visual Inspect application (TNS/R and TNS/E environments only)

• Using the Native Inspect application (TNS/E environment only)

• Specifying a breakpoint

The following paragraphs describe each of the above alternatives.

Using the DEBUG Procedure
You can enter the Debug state by calling the DEBUG procedure. By calling this
procedure, you invoke the debugger on your own process:

CALL DEBUG;

The calling process enters the Debug state immediately when this call is made.

Using the PROCESS_DEBUG_ Procedure
You can enter the Debug state by calling the PROCESS_DEBUG_ procedure. Using
this procedure, you can invoke the debugger on your own process or on another
process.

To invoke the debugger on another process, you must supply the process handle of the
process you wish to debug:

CALL PROCESS_DEBUG_(PROCESS^HANDLE);

To debug another process this way, your process must either have super ID access, be
the group manager of the process access ID, or be a process with the same process
access ID as the target process.

You can invoke the debugger on your own process by calling the PROCESS_DEBUG_
procedure without any options. However, the preferred method of invoking the
debugger on your own process is by calling DEBUG.

Using the PROCESS_CREATE_ or
PROCESS_LAUNCH_ Procedure
You can run the debugger on a new process as soon as the process starts by
supplying the debug-options parameter to the PROCESS_CREATE_ procedure. To
run the debugger, bit 12 of this parameter must be set to 1.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 4

Getting a Process Into the Debug State

You can accomplish the same thing using the PROCESS_LAUNCH_ procedure. The
difference is that the debug options bits are passed to PROCESS_LAUNCH_ in a field
in a structure instead of in a separate parameter.

The following example uses PROCESS_CREATE_ to start a new process in the
Debug state:

OBJFILE ':=' "REQFILE" -> @S^PTR;
OBJFILENAME^LENGTH := @S^PTR ‘-’ @OBJFILE;
NAME^OPTION := ZSYS^VAL^PCREATOPT^NAMEINCALL;
PROCESS^NAME ':=' "$REQ" -> @S^PTR;
PROCESS^NAME^LENGTH := @S^PTR ‘-’ @PROCESS^NAME;
DEBUG^OPTIONS := 0;
DEBUG^OPTIONS.<12> := 1;
ERROR := PROCESS_CREATE_(OBJFILE:OBJFILENAME^LENGTH,
 !library^file:length!,
 !swap^file:length!,
 !ext^swap^file:length!,
 !priority!,
 !processor!,
 PROCESS^HANDLE,
 !error^detail!,
 NAME^OPTION,
 PROCESS^NAME:PROCESS^NAME^LENGTH,
 PROCESS^DESCRIPTOR:MAXLEN,
 PROCESS^DESCRIPTOR^LENGTH,
 !nowait^tag!,
 !hometerm:length!,
 !memory^pages!,
 !job^id!,
 !create^options!,
 !defines:length!,
 DEBUG^OPTIONS);

Using the RUND Command
You can use the RUND command to start a process in the Debug state. You must
supply the name of an object file as the parameter to the RUND command.

RUND OBJFILE

To invoke the debugger, you must either have the process access ID of the process
you want to debug, be the group manager of that process, or be the super ID user.

Using the RUNV Command
The RUNV command runs a process under control of Visual Inspect. The equivalent
OSS command is runv. For example:

>RUNV WSADDR=MYPC GPROG (Guardian)

$ runv -wsaddr=MYPC oss prog (OSS)

These commands start a Visual Inspect debug session on the workstation MYPC.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 5

Getting a Process Into the Debug State

Using the DEBUG Command
You can put a process into the Debug state by entering the DEBUG command. You
need to supply the CPU number and PIN of the process you want to debug. Typical
use of this command is as follows:

1. Run a process with the RUN command:

> RUN OBJFILE

2. Press the BREAK key to return the command-interpreter prompt.

3. Find the CPU number and PIN of the process using the STATUS command:

> STATUS
Process Pri PFR %Wt Userid Program file Hometerm
 2,49 139 R 000 8,160 $APPLS.PROGS.OBJ \SYS.$AA

4. Run the DEBUG command on the process:

> DEBUG 2,49
DEBUG 002020, 000317, UC.00
106,02,00049-

Using the Visual Inspect Application
Visual Inspect is a NonStop operating system symbolic debugger that uses program
visualization, direct manipulation, and other techniques to improve productivity in the
development or production environment. It supports these machine architectures and
compilers:

CISC (TNS C/C++, COBOL85, TAL)

RISC (TNS/R Native C/C++, NMCOBOL, pTAL)

Itanium® (TNS/E Native C/C++, ECOBOL, EpTAL)

Visual Inspect uses client/server architecture. The client runs on a Windows NT,
Windows 95, Windows 2000, or Windows XP workstation. The server runs on a
NonStop host. Working together, the client and server components allow you to control,
analyze, observe and alter application execution so that you can quickly find and
correct logic errors.

Refer to the Visual Inspect online help, included with the application, for further
information on starting and managing a process debugging session.

Using the Native Inspect Application
Native Inspect is a symbolic command-line debugger used for debugging TNS/E native
process and snapshots on HP TNS/E systems. You can use Native Inspect to debug a
running process:

TACL> debug $myproc

This invokes Native Inspect on the home terminal of process $myproc.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 6

Specifying the Debugging Environment

You can also specify a home terminal on which you want Native Inspect to run:

TACL> debug $myuproc, term $ztn10.#pthef

Native Inspect is used to debug native processes; it does not support process
debugging of TNS processes. See the Native Inspect Manual for further information.

Specifying a Breakpoint
You can put a process into the Debug state by specifying a breakpoint, as follows:

1. With the process already in the Debug state, set a breakpoint.

2. Resume normal processing of the process.

3. The process enters the Debug state when it encounters the breakpoint.

Specifying the Debugging Environment
Specifying the debugging environment primarily involves choosing between the Debug
and Inspect debuggers in the TNS and TNS/R environments, the Visual Inspect
debuggers in the native environments and the Native Inspect debugger in the TNS/E
environment. However, you can also choose to create a saveabend file that saves
data area and file status information if the process abnormally terminates. The
saveabend feature is available only with the Inspect debugger.

By default, you get the Debug program when entering the Debug state on TNS/R
systems and Visual Inspect when entering the Debug state on TNS/E systems. If the
parent process is running under a debugger when a new process is created, then the
new process inherits the debugging environment of the parent process. However, you
can specify the debugging environment as follows:

• Using compiler directives

• Using the Binder, nld utility (in the TNS/R environment), or the eld utility (in the
TNS/E environment)

• Using the TACL SET INSPECT command

• Using the TACL RUN command

• Using the PROCESS_CREATE_ or PROCESS_LAUNCH_ procedure

The following paragraphs describe each of the above alternatives.

Note that once your process is in the Debug state under the Inspect program, you can
switch back and forth between Inspect and Debug at will.

Note. If If Inspect of Visual Inspect is not available on your systems and you try to invoke it,
your process runs under Debug (on TNS/R systems) or Native Inspect when available on
TNS/E systems. If Native Inspect is not available, then the request to debug the process is
ignored and the process continues execution.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 7

Specifying the Debugging Environment

Switching Debuggers During a Debugging Session
The native debuggers Inspect, Visual Inspect, and Native Inspect (in the TNS/E
environment only), allow you to switch from one debugger to an other while debugging
a process. The ability to switch debuggers is especially useful if a process enters the
debug state under control of an inappropriate debugger; for example, if a TNS program
automatically enters the debug state under control of Native Inspect. Since Native
Inspect does not support TNS mode debugging, you could use this feature to switch to
Inspect. See the Inspect Manual, the Native Inspect Manual, and the Visual Inspect
online help for details.

Using Compiler Directives
If you specify the INSPECT compiler directive in your TAL or pTAL program, then the
process automatically runs under the Inspect program whenever the process enters
the Debug state.

The SAVEABEND compiler directive in your TAL or pTAL program also implies that the
Inspect program is the debugger, as well as specifies a saveabend file for the process.

See the TACL Reference Manual for details on these compiler directives.

Some other programming languages offer equivalent capabilities. Refer to the
appropriate programming language manuals.

Using the Binder and nld or eld Utilities
The Binder and the nld utility (in the TNS/R environment) and the eld utility (in the
TNS/E environment) also have commands that allow you to select the Inspect program
(in the TNS/R environment) or the Native Inspect program (in the TNS/E environment)
while linking. The SET INSPECT ON command, in either utility, causes your process
to automatically run under the Inspect program on TNS/R systems. On TNS/E
systems, SET INSPECT ON sets Visual Inspect as the default debugger.

The SET SAVEABEND ON command also implies the Inspect program and specifies a
saveabend file for the process.

See the Binder Manual for details on these Binder commands. See the nld Manual for
information about using the nld utility in the TNS/R environment. See the eld Manual
for information about using the eld utility in the TNS/E environment.

Using the TACL SET INSPECT Command
You can use the TACL SET INSPECT command to establish the debugging
environment for processes that will be started by the current TACL process. The
following example establishes the Inspect program as the default debugger:

> SET INSPECT ON

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 8

Specifying the Debugging Environment

The next example also establishes the Inspect program as the default debugger while
specifying that a saveabend file should be created:

> SET INSPECT SAVEABEND

The last example establishes Debug as the default debugger:

> SET INSPECT OFF

The environment set up by the SET INSPECT command can be overridden by a RUN
command, a Binder command, or a TAL compiler directive.

See the TACL Reference Manual for a complete description of the SET INSPECT
command.

Using the TACL RUN Command
You can use the TACL RUN command to set the debugging environment for the
process that you are starting by supplying the Inspect option.

You can establish the Inspect program as the debugger as follows:

> RUN objfile /INSPECT ON/

You can specify a saveabend file and establish the Inspect program as the debugger
as follows:

> RUN objfile /INSPECT SAVEABEND/

To select Debug as the debugger, enter the following:

> RUN objfile /INSPECT OFF/

The environment set up by the RUN command can be overridden by a linker command
(with either Binder or nld) or a compiler directive.

For more information about the TACL RUN command, refer to the TACL Reference
Manual.

Using the PROCESS_CREATE_ or
PROCESS_LAUNCH_ Procedure
You can specify the process debugging environment when you create a process using
the PROCESS_CREATE_ procedure. You have already seen how to use this
procedure to put the new process in the Debug state. Now, using bit 15 of the debug-
options parameter, you can specify the debugger you want to use.

Set bit 15 of the debug-options parameter to 1 to use the Inspect program, and set
it to 0 to use Debug. Whether the setting of bit 15 overrides any value supplied by the
linker or the compiler depends on bit 14: if bit 14 is set to 1, then the value supplied in
bit 15 specifies the debugger, regardless of any value supplied by the linker or
compiler. If bit 14 is 0, then bit 15 does not override any value supplied by the linker or
compiler.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 9

Handling Trap Conditions

To specify a saveabend file for the process, set bit 13 to 1.

You can accomplish the same things using the PROCESS_LAUNCH_ procedure. The
difference is that the debug options bits are passed to PROCESS_LAUNCH_ in a field
in a structure instead of in a separate parameter.

The following example uses PROCESS_CREATE_ to specify the Inspect program,
regardless of any value supplied by the linker or compiler:

OBJFILE ':=' "REQFILE" -> @S^PTR;
OBJFILENAME^LENGTH := @S^PTR '-' @OBJFILE;
NAME^OPTION := ZSYS^VAL^PCREATOPT^NAMEINCALL;
PROCESS^NAME ':=' "$REQ" -> @S^PTR;
PROCESS^NAME^LENGTH := @S^PTR '-' @PROCESS^NAME;
DEBUG^OPTIONS := 0;
DEBUG^OPTIONS.<13> := 1;
DEBUG^OPTIONS.<14> := 1;
DEBUG^OPTIONS.<15> := 1;
ERROR := PROCESS_CREATE_(OBJFILE:OBJFILENAME^LENGTH,
 !library^file:length!,
 !swap^file:length!,
 !ext^swap^file:length!,
 !priority!,
 !processor!,
 PROCESS^HANDLE,
 !error^detail!,
 NAME^OPTION,
 PROCESS^NAME:PROCESS^NAME^LENGTH,
 PROCESS^DESCRIPTOR:MAXLEN,
 PROCESS^DESCRIPTOR^LENGTH,
 !nowait^tag!,
 !hometerm:length!,
 !memory^pages!,
 !job^id!,
 !create^options!,
 !defines:length!,
 DEBUG^OPTIONS);

Handling Trap Conditions
During program execution of TNS or accelerated programs, all error and exception
conditions not related to input or output are handled by a returned error parameter
value. Conditions that are trapped typically are caused by coding errors in your
application program or by a shortage of resources. For example, errors such as
“arithmetic overflow” might be caused by erroneous application code, whereas an error
such as “no memory available” might originate from the memory manager.

Table 25-1 provides a summary of the conditions that can cause your process to trap.
Each trap condition is identified by a trap number.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 10

Handling Trap Conditions

Refer to the Guardian Procedure Errors and Messages Manual for a detailed
description of each trap condition, including what might have caused the trap and
recommended action.

You can respond to a trap in one of the following ways:

• In the TNS/E environment all traps result in the process abending. This is the
default action. If this is a TNS process, debug it using INSPECT; the TNS/E
environment does not recognize Native Inspect for TNS processes.

• The TNS or TNS/R environments allow either the Inspect program or Debug to be
automatically invoked. This is the default action. If Inspect is specified for the
process and it is available, then Inspect is the default debugger; otherwise Debug
is the default debugger. In other words, if you do nothing, all traps result in control
being passed to either Debug or the Inspect program. A screen similar to the
following appears:

>RUN Z
INSPECT-Symbolic Debugger-T9673C20-(10 July89) System \SYS
Copyright Tandem Computers Incorporated 1983, 1985-1989
INSPECT TRAP 2- (arithmetic overflow)
099,07,053 #TRAP^USER.#43(MYPROG)
-Z-

Note that line 3 of the display identifies the trap condition.

Refer to the Inspect Manual and the Debug Manual for operational details on the
Inspect program and Debug.

Table 25-1. Summary of Trap Conditions

Trap
Number Cause of Trap

0
1
2
3
4
5
8

11
12
13

Invalid address reference
Instruction failure
Arithmetic overflow
Stack overflow
Process loop-timer timeout
Invalid call from process with PIN greater than 255
Signal (Under very unusual circumstances, a signal is delivered to a TNS
process and appears as a trap 8.)
Memory manager disk read error
No memory available
Uncorrectable memory error

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 11

Setting Up a Trap Handler

• Choose to handle traps with your own trap-handling code. The ARMTRAP
procedure allows you to specify the address of your trap handler.

The rest of this section describes how to write your own trap handler.

• Disable all trap handlers, including Inspect and Debug. In this case, your process
abnormally terminates if a trap condition occurs. The ARMTRAP procedure allows
you to disable traps.

Trap conditions that occur when user code is being processed cause an immediate
trap. If a trap condition should occur when system code is being executed, then the
trap does not occur until control returns to the user code.

Setting Up a Trap Handler
When setting up a handler, you use the ARMTRAP procedure to perform two functions:

• Set up a pointer to the start of the trap-handling code. This location will be the
entry point into the trap handler when a trap occurs.

• Specify the start of the trap handler local data area. You typically locate this area
at the high end of the user data stack, where it is less likely to compete with the
application for stack space.

The following code fragment performs the two functions described above:

TRAPHANDLR^ADDR := @TRAP;
TRAPSTACK^ADDR := $LMIN(LASTADDR, %77777) - 500;
CALL ARMTRAP(TRAPHANDLR^ADDR,
 TRAPSTACK^ADDR);

Here, “@TRAP” identifies the start of the trap code as the following label:

TRAP:

The expression “$LMIN(LASTADDR,%77777) - 500” indicates that the start of the trap-
handler local data area will be 500 locations before the end of the user data area or
500 locations before location %77777, whichever is the lesser.

When a trap occurs, the first six words of the trap handler local data area will contain
environment information as well as the trap number itself. The S (stack pointer) and
L (local data pointer) registers will point to the start of the local data area plus six.
Figure 25-1 shows the allocation of stack space to the trap handler.

Note. HP recommends either writing your own trap handler or disabling traps. We make this
recommendation because a typical user does not know how to respond to an application that
goes into Inspect or Debug mode. Moreover, the operator’s console does not receive a
message to indicate that the process has trapped. Hence the process hangs in Inspect or
Debug. Stopping the process in the trap handler or disabling traps prevents the application
from hanging. The trap handler should also be written to inform the console operator of the
problem.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 12

Processing a Trap

Processing a Trap
The code for processing a trap depends on what you want to do for a given trap
condition. See Writing a Trap Handler: Examples at the end of this section for an
example of how to process a trap due to arithmetic overflow.

However, if you want to return to the application after processing the trap, then you
need to save the stack registers immediately on entering the trap-handling code.
When the trap-handling code is entered, the stack registers contain information at the
point that the trap occurred. Before the trap handler changes the register values, you
should save them so that you can restore them when you exit the trap handler.

To save the stack registers, you must push them onto the data stack using the PUSH
machine instruction as follows:

CODE (PUSH %777);

The parameter %777 causes all eight stack registers to be saved.

You must then allocate any storage you need for local variables by advancing the
S register by the number of words needed to save the local data. Use the ADDS
machine instruction as follows.

CODE (ADDS LOCALS);

Here, “LOCALS” specifies the number of two-byte words of local data.

The trap stack space now has data space allocated as shown in Figure 25-2.

Figure 25-1. Trap Handler Data Stack When Trap Occurs

VST115.VSD

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 13

Exiting a Trap Handler

Exiting a Trap Handler
Once you have processed the trap condition, you might want to exit from your trap
handler and return to your application. To do this, you need to reissue the ARMTRAP
procedure call with the traphandlr-addr parameter set to zero:

TRAPHANDLR^ADDR := 0;
TRAPSTACK^ADDR := $LMIN(LASTADDR, %77777) - 500;
CALL ARMTRAP(TRAPHANDLR^ADDR,
 TRAPSTACK^ADDR);

Calling ARMTRAP in this way restores all register values (including the stack registers)
to what they were when the trap occurred. The ARMTRAP procedure uses the values
saved in locations ‘L’ [-6] through ‘L’ [8] to achieve this. This call to ARMTRAP
normally rearms the trap handler using the same traphandlr-addr. Refer to the
description of ARMTRAP in the Guardian Procedure Calls Reference Manual for
details.

Figure 25-2. Trap Handler Data Stack After Storage Allocation

VST116.VSD

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 14

Disabling Trap Handling

Exiting After an Arithmetic Overflow Trap Condition
If the cause of the trap was an arithmetic overflow condition, then you must reset the
arithmetic overflow bit in the ENV register (bit 10) before exiting the trap handler.

Exiting After a System Code Trap
Another case to be aware of is when exiting the trap handler after a trap condition that
occurred when system code was being executed. Here, when control is passed to the
trap handler, the location of the trap passed to the trap handler is the location of the
call to the system procedure; the S register at the trap contains -1 to signify that a
deferred trap occurred while in system code. Therefore, your process cannot resume
execution at the point of the trap following a trap in system code because the correct
value for the S register is lost. Your program can, however, exit elsewhere. See
Exiting to Another Destination later in this section.

The only trap condition in system code that you can resume after is the process loop-
timer trap. If a process loop-timer times out and causes a trap while in system code,
the trap is deferred until the process returns to the user environment but the value of
the S register at this trap is not -1. In this case, the S register contains the correct
value, which allows the process to easily resume execution following a loop-timer
timeout.

Exiting to Another Destination
A trap handler can exit to some other place in the program, such as a restart point, by
putting the appropriate values into various locations in the region of ‘L’[-5] through
‘L’[8]. The code location is specified in the space index, ENV, and P values. The stack
location is specified in S and L values. Typically, a restart point is at a label at the
beginning of a statement, so the registers are empty: set RP to 7 in ENV.<13:15>
(‘L’[1:8] are immaterial).

Disabling Trap Handling
You can use the ARMTRAP procedure to disable all trap handlers, including Inspect
and Debug, in addition to user-written trap handlers. Doing so causes your process to
abnormally terminate if a trap condition occurs. In the TNS/E environment, the
ARMTRAP procedure disables all trap handlers as the default behavior.

To disable trap handling, set the trap stack address in a call to the ARMTRAP
procedure to a negative number:

CALL ARMTRAP(-1,-1);

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 15

Trap Handling on Native Systems

Trap Handling on Native Systems
Special restrictions apply to trap handlers that execute on native systems. You should
observe the following rules:

• Trap P variable

The TNS trap P variable is only approximate for a process running in accelerated
mode. You should not use it to inspect the code area and determine the failing
instruction.

You should not increment the trap P variable and resume execution; doing so
causes undefined results. However, you can change the trap P variable to a valid
TNS restart point. See Exiting to Another Destination earlier in this section.

• Invalid trap ENV fields

ENV.RP is not valid for a process running in accelerated mode. For compatibility
with TNS mode and TNS CPUs, programs must set ENV.RP to an appropriate
value before resuming; to resume at a statement, the appropriate value is usually
7.

The ENV fields N, Z, and K are not reliable for a process running in accelerated
mode.

• Register stack R[0:7]

The contents of the TNS register stack are not valid in accelerated mode and are
not dependable in TNS mode. You should never change the register stack when
attempting to resume at the point of the trap.

• Functions

A trap handler procedure must not be a function that returns a value.

• Resuming from a trap

The following ways of resuming execution from a trap are supported:

• Clear the overflow bit in the trap ENV variable and resume from a trap 2
(arithmetic overflow).

• Resume after a loop timer interrupt (trap 4).

• Jump to a restart point by changing the trap variables P, L, ENV, space ID,
and S. See Exiting to Another Destination earlier in this section.

• Terminate the process.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 16

Writing a Trap Handler: Examples

Writing a Trap Handler: Examples
The following program shows an example of a trap handler that displays the contents
of the P register when an arithmetic overflow occurs. After displaying the P register,
the trap handler returns to the application.

If any trap condition other than arithmetic overflow occurs, then the trap handler calls
the DEBUG procedure.

The example consists of two procedures:

• The OVERFLOWTRAP procedure sets up the trap handler with a call to
ARMTRAP and also provides the code for the trap handler itself.

• The TRAP^USER procedure is the main procedure. It calls the OVERFLOWTRAP
procedure to set up the trap handler, then causes an arithmetic overflow trap
condition by attempting to divide by zero.

?INSPECT,SYMBOLS

!Global variables:
INT TERM^NAME[0:11];
INT TERM^NUM;

?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,PROCESS_GETINFO_,
? FILE_OPEN_,ARMTRAP,WRITE,DEBUG,NUMOUT,LASTADDR)
?LIST

!--
! Sets up the start address of the trap handler and the stack
! space for the trap handler by calling the ARMTRAP
! procedure. This procedure also supplies the code for the
! trap handler, including a second call to ARMTRAP that exits
! the trap handler.
!--

PROC OVERFLOWTRAP;
BEGIN
 INT REGS = 'L' +1, !R0 to R7 saved here
 WBUF = 'L' +9, !buffer for terminal I/O
 PREG = 'L' -2, !P register at time of trap
 EREG = 'L' -1, !ENV register at time of trap
 TRAPNUM = 'L' -4, !trap number
 SPACEID = 'L' -5; !space ID of trap location
 DEFINE OVERFLOW = <10>#;!overflow bit in ENV register
 STRING SBUF = WBUF; !string overlay for I/O buffer
 LITERAL LOCALS = 15; !number of words of local
 ! storage

! Arm the trap:

 CALL ARMTRAP(@TRAP, $LMIN(LASTADDR,%77777) - 500);
 RETURN;

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 17

Writing a Trap Handler: Examples

! Enter here on trap:

 TRAP:

! Save registers R0 through R7 and allocate local storage:

 CODE(PUSH %777; ADDS LOCALS);

! Call DEBUG if trap not an arithmetic overflow
! condition:

 IF TRAPNUM <> 2 THEN CALL DEBUG;

! Format and print the message on the home terminal with
! the P register value displayed in octal:

 SBUF ':=' "ARITHMETIC OVERFLOW AT %";
 CALL NUMOUT(SBUF[24], PREG, 8, 6);
 CALL WRITE(TERM^NUM,WBUF,30);
 IF <> THEN CALL DEBUG;

! Clear the overflow bit in the ENV register:

 EREG.OVERFLOW := 0;

! Exit the trap handler and restore old values of
! registers:

 CALL ARMTRAP(0, $LMIN(LASTADDR,%77777) - 500);
END;

!--
! Main procedure reads Startup message, calls OVERFLOWTRAP,
! opens the home terminal, and creates an arithmetic overflow
! condition by attempting to divide by zero.
!--

PROC TRAP^USER MAIN;
BEGIN
 STRING .TERM^NAME[0:MAXLEN - 1];
 INT I, J, LEN;

! Read the Startup message:

 CALL INITIALIZER;

! Call the OVERFLOWTRAP procedure to arm the trap:

 CALL OVERFLOWTRAP;

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 18

Writing a Trap Handler: Examples

! Open home terminal:

 CALL PROCESS_GETINFO_(!process^handle!,
 !file^name!,
 !file^name^len!,
 !priority!,
 !moms^processhandle!,
 TERM^NAME:MAXLEN,
 LEN);

 CALL FILE_OPEN_(TERM^NAME:LEN,TERM^NUM);
 IF <> THEN CALL DEBUG;

! Set up an arithmetic overflow condition to cause the
! trap:

 J := 0;
 I := I/J;

END;

In the following example, a trap causes the current code sequence to be abandoned
and an alternate code sequence executed instead. Several points are illustrated:

• The procedure TRAP_GUARD sets its caller as the destination (the code address
and stack environment) to be used if a trap occurs; it also arms the trap handler.

• When a trap occurs, the information about the trap is saved globally (for possible
display or analysis).

• The trap handler exits, and control is returned to the designated destination.
Consistent values are supplied for space ID, S, P, ENV, and L. ENV.RP is set to 0
and RP[0] is set to a specific value so that returning from the trap handler effects a
return from the TRAP_GUARD function with the result equal to TRUE (-1).

• Incidentally, the trap handler stack is allocated among the globals (below the
normal stack) instead of at the top of the stack.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 19

Writing a Trap Handler: Examples

! Global declarations for trap handling
INT saved_L, ! destination when trap occurs: L,
 saved_E, ! ENV (stack-marker form, with space index),
 saved_P, ! P,
 saved_S; ! S
STRUCT trapframe_template(*);
 BEGIN ! stack frame layout of trap handler
 INT spaceid,trapnum,S,P,E,L,R[0:-1];
 END;
STRUCT .trapstate(trapframe_template); ! data from most
 ! recent trap
INT .trap_stack[0:499]; ! space for trap handler stack

?PUSHLIST,NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS(ARMTRAP,ABEND)
?POPLIST

INT PROC TRAP_GUARD; ! procedure to set trap destination,
BEGIN ! arm trap handler, and handle traps
 STRUCT tf(trapframe_template) = 'L'-5;
 INT L = 'L';

 saved_L := L; ! Save the
 saved_E := L[-1]; ! destination
 saved_P := L[-2]; ! code and stack
 saved_S := @L-3; ! locations

 CALL ARMTRAP(@traphandler,@trap_stack); ! Arm the
 ! trap handler
 RETURN 0; ! Return False: no trap
 ! If a trap occurs subsequently, TRAP_GUARD will return
 ! again to the site of the last call, but this time the
 ! value will be True.

traphandler: ! code invoked by system when trap occurs

 CODE(PUSH %777); ! Save all stack registers

 trapstate ':=' tf FOR 1 ELEMENTS; ! Save trap state

 ! Set state to return again from last call to TRAP_GUARD
 tf.spaceid := saved_E; ! Only space index is signficant
 tf.S := saved_S;
 tf.E := saved_E LAND $COMP(%37); ! Clear out space index:
 ! CC = 0 to ensure legal value
 ! RP = 0 to return one item in R[0]
 tf.P := saved_P;
 tf.L := saved_L;
 tf.R[0] := -1; ! Return True from TRAP_GUARD
 CALL ARMTRAP(0,@trap_stack); ! Exit from trap handler
END; ! TRAP_GUARD

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 20

Handling Signals

! One or more sequences like the following
! surround code that might trap.

 IF TRAP_GUARD THEN ! TRAP_GUARD will later return True
 BEGIN ! to execute this THEN clause, if a
 ! trap occurs in the ELSE clause.
 .
 . ! code to handle the trap contingency
 .
 END
 ELSE ! TRAP_GUARD initially returns False
 BEGIN ! to execute this ELSE clause.
 .
 . ! code that might trap
 .
 END;
 CALL ARMTRAP(-1,-1); ! Abend if trap where unexpected
 ! (Note that if the procedure that called TRAP_GUARD were
 ! to exit, and a trap occurred while traps were still
 ! armed, the saved destination would be wrong.)

 .
 . ! code where no trap is tolerated
 .

Handling Signals
Native Guardian processes receive signals when run-time events occur that require
immediate attention; they cannot receive traps. (OSS processes, both TNS and
native, receive signals.) Signals are software interrupts that provide a way of handling
asynchronous events, such as a timer expiration, detection of a hardware fault,
abnormal termination of a process, a lack of system resources, a process sending a
signal to itself, or any trap condition normally detectable by a TNS process.

The signals facility is unchanged in the H-series. However, the H-series signals facility
uses the H-series debuggers, as shown in the following table:

See the Inspect Manual, the Native Inspect Manual, and the Visual Inspect online help
for details.

Programs running as native Guardian processes can use the following functions and
procedures to receive and handle signals:

CPU and Execution
Mode Debuggers

TNS/R native mode Visual Inspect, Inspect, Debug

TNS/E native mode Visual Inspect, Native Inspect
The details mentioned for H-series are also applicable to J-series RVUs.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 21

About Signals

• Signals functions in the POSIX.1 standard. These are the signals functions
provided in the Open System Services (OSS) application program interface (API).
These functions are all available in C and most are available in pTAL.

• HP signals extensions to the POSIX.1 standard. These procedures are written
especially for applications that focus on handling signals indicating conditions
known as traps in TNS processes. These procedures are available in pTAL and
in C.

About Signals
The following brief discussion provides basic POSIX.1 signal concepts and
terminology. It is intended to provide you with a framework to understand how to
handle signals in native Guardian processes. For more conceptual information, see
commercial texts on UNIX programming. For the specifics of the signals functions in
the OSS API, see the Open System Services System Calls Reference Manual and the
Open System Services Library Calls Reference Manual. For the specifics of the
procedures in the Guardian API, see the Guardian Procedure Calls Reference Manual.

Signal Generation, Delivery, and Actions
A signal is generated for a process when the event that causes the signal occurs.
When a signal is delivered to a process, an action for the signal is taken. During the
time between generation and delivery of a signal, the signal is pending.

A process can select one of three standard actions for most signals:

• Let the default action apply. For most signals, the default action is to terminate the
process.

• Ignore the signal. Delivery of the signal has no effect on the process. Some
signals, such as SIGSTOP, cannot be ignored.

• Catch the signal. You supply a signal-catching function called a signal handler that
contains instructions to be executed when a particular signal occurs. Some
signals, such as SIGABEND, cannot be caught.

Blocking Signals
Each process has a signal mask that defines the set of signals currently blocked from
delivery to it. Signals that cannot be ignored cannot be blocked from delivery to a
process.

If the action associated with a blocked signal is anything other than to ignore the
signal, and if that signal is generated for the process, the signal remains pending until
the process either unblocks the signal or changes the action to ignore the signal.

If a blocked signal is generated for a process more than once before the process
unblocks the signal, it is discarded and only one instance of the signal remains

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 22

Comparing Traps and Signals

pending. The order in which pending signals are delivered to a process once they are
unblocked is unspecified.

Default Signal Settings in Guardian Processes
When a Guardian native process is created, the process signal mask is initialized so
that no signal is blocked. If a signal is delivered to the process for which the default
action is to terminate the process, process termination remains the default action. For
any other signal, the default action is set to ignore the signal.

Comparing Traps and Signals
In the native Guardian environment, a signal is said to be nondeferrable if it cannot be
blocked and cannot be ignored. Whether action upon a signal can be deferred
depends not on the type of signal it is but on whether the signal is generated by the
system, by the process itself (to itself) using the raise() function, or by a timer to the
process.

A signal generated by the system to indicate a run-time error in the process cannot be
deferred. A signal generated by a process to itself or by a timer can be deferred.

A trap received by a TNS process is equivalent to a system-generated nondeferrable
signal received by a native process. Traps are a subset of POSIX.1 signals.
Table 25-2 shows the signals that map to traps.

Table 25-2. Map of Signals to Traps

Signal Description Trap Number

SIGABRT Abnormal termination None: new

SIGFPE Arithmetic overflow 2

SIGILL Invalid hardware instruction 1

SIGLIMIT Limits exceeded 5

SIGMEMERR Uncorrectable memory error 13

SIGMEMMGR Memory manager disk read error 11

SIGNOMEM No memory available 12

SIGSEGV Invalid memory reference 0

SIGSTK Stack overflow 3

SIGTIMEOUT Process loop timeout 4

Note. Under very unusual circumstances, a signal can be delivered to a TNS Guardian
process. Any signal is delivered as trap number 8 to a TNS Guardian process.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 23

When Would You Use a Signal Handler?

When Would You Use a Signal Handler?
If your applications have trap handlers to handle trap conditions in TNS processes, you
should write signal handlers to handle the equivalent signals in native processes.

Signal handlers are also helpful in applications that must run all the time with minimal,
if any, operator intervention, such as a print spooler. A signal handler catches signals
that might cause the spooler process to terminate. Having a signal handler can
prevent the spooler process from terminating and waiting to be restarted by an
operator.

Default Signal Handlers
If what you need to do is display process context information before taking the default
action for a signal and the program is in C, consider using the default signal handler
provided by the Common Run-Time Environment (CRE). The CRE sets up a signal
handler for all signals in which the default action is not to ignore the signal.

If a C program has not set up its own signal handler, the CRE signal handler takes over
when a signal is delivered to the program. The CRE signal handler displays a
diagnostic message explaining the signal and also displays a stack trace. If the default
action for the signal was to terminate the process, the CRE signal handler calls the
PROCESS_STOP_ procedure.

The CRE does not provide a default signal handler for programs written in pTAL. To
display process context information when a pTAL process receives a signal, you can
use the HIST_INIT_, HIST_FORMAT_, and HIST_GETPRIOR_ procedures.

Standard Signals Functions
Table 25-3 shows the standard signals functions that native processes (Guardian or
OSS) can use to handle signals. Notice that native Guardian processes cannot send
or receive a signal from another process using the kill() function.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 24

Standard Signals Functions

Table 25-3. Signals Functions That Conform to the POSIX.1
Standard (page 1 of 2)

C Function pTAL Procedure Description

abort() No equivalent Terminates the calling process by sending it a
SIGABRT signal.

alarm() No equivalent Sets or changes a timer that expires at a
specified time in the future. When the timer
expires, the SIGALRM signal is generated.

kill() No equivalent Sends a signal to a process. The kill()
function requires an OSS process ID to identify
the process receiving the signal, and a Guardian
process does not have an OSS process ID. A
native Guardian process cannot receive a signal
from or send a signal to another process
(Guardian or OSS) using the kill() function.

longjmp() LONGJMP_ Performs a nonlocal goto. Restores the
execution context saved by a call to the
setjmp() function.

pause() No equivalent Suspends the calling process until it receives a
signal whose action is either to execute a signal
handler or to terminate the process.

raise() RAISE_ Sends a signal to the calling process.

setjmp() SETJMP_ Saves the current execution context, which is
restored after a call to longjmp().

sigaction() SIGACTION_ Specifies the action to be taken upon delivery of
a signal. An action for a signal remains in effect
until it is changed by another call to
sigaction().

sigaddset() SIGADDSET_ Adds a signal to a signal set (not to a process
signal mask).

sigdelset() SIGDELSET_ Deletes a signal from a signal set (not from a
process signal mask).

sigemptyset() SIGEMPTYSET_ Initializes a signal set (not a process signal
mask) to exclude all signals.

sigfillset() SIGFILLSET_ Initializes a signal set (not a process signal
mask) to include all signals.

sigismember() SIGISMEMBER_ Tests whether a signal is a member of a signal
set (not of a process signal mask).

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 25

Standard Signals Functions

siglongjmp() SIGLONGJMP_ Performs a nonlocal goto. It is often called from
a signal handler to return to the main loop of a
program instead of returning from the handler. It
restores the execution context saved by a call to
the sigsetjmp() function, including the
process signal mask if it was saved in a
sigsetjmp() call.

signal() SIGNAL_ Specifies the action to be taken upon delivery of
a signal. A signal action specified by this
function is reset to the default action each time
the signal is delivered.

sigpending() SIGPENDING_ Returns the set of signals that are blocked from
delivery and pending to the calling process.

sigprocmask() SIGPROCMASK_ Changes or examines a process signal mask.

sigsetjmp() SIGSETJMP_ Saves the current execution context, which can
include the process signal mask, and is restored
after a call to siglongjmp().

sigsuspend() SIGSUSPEND_ Changes a process signal mask and suspends
the calling process until either a signal is caught
or a signal occurs that terminates the process.

sleep() No equivalent Suspends the calling process for a specified
period of time until either the time elapses, a
signal is caught, or a signal occurs that
terminates the process.

Table 25-3. Signals Functions That Conform to the POSIX.1
Standard (page 2 of 2)

C Function pTAL Procedure Description

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 26

Using Standard Signals Functions

Using Standard Signals Functions
There are many ways to use the standard signals functions in your application
programs. For information about writing standard, portable signal handlers, see
commercial texts on UNIX programming. The following discussion provides
considerations for using some of the standard signals functions and the sequence in
which you might use them.

Tailoring the Signal Mask
The signal mask of a process contains the signals to be blocked from delivery to a
process. Remember that a process signal mask cannot include signals that cannot be
ignored. You can construct a signal set with the sigaddset(), sigdelset(),
sigemptyset(), and sigfillset() functions. This signal set is essentially a draft
of a process signal mask, but the signal set does not become an official process signal
mask until the set is passed to the sigprocmask(), sigpending(), or
sigaction() function. These functions validate the content of the process signal
mask before installing it.

Before executing a signal handler, the new process signal mask is installed. This mask
is the union of the current process signal mask and the signal being delivered.

Specifying an Action for a Signal
A process also uses the sigaction() function to specify the action to be taken in
response to a signal. The action can be to ignore the signal, take the default action for
the signal, or catch the signal. If the action is to catch the signal, the sigaction()
function installs a signal-handling function. When the signal handler finishes, if the
process can continue, it resumes executing where it left off before the signal was
delivered.

Resuming a Process in a Different Context
A process can resume in a different context by using a combination of the
sigsetjmp() and siglongjmp() functions. sigsetjmp() and siglongjmp()
also allow the process to save and restore the state of the process signal mask before
the call to the signal handler, whereas setjmp() and longjmp() do not.

To resume in a different context, the process should have established the current
execution context by calling the sigsetjmp() function. Instead of exiting normally
from the signal handler, the signal handler calls the siglongjmp() function. The
process execution context reverts to the state saved by the sigsetjmp() function
call. If the process signal mask was also saved in the call to the sigsetjmp()
function, the mask is also restored.

The jump functions allow a process to change the flow of control and return to a known
process execution context. Changing the flow of control using the jump functions can
allow a process to continue executing when it might otherwise terminate abnormally.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 27

HP Extensions

Considerations for Using the Jump Functions
The jump functions can be valuable tools in your application program. However, if the
program changes the values of variables that are local to the procedure containing the
call to setjmp(), the program cannot depend upon the values of the local variables
being preserved.

If the program must depend on the preservation of a local variable after calls to the
jump functions, you must declare the local variable as type volatile.

HP Extensions
Table 25-4 shows the HP signals extensions that native processes can use to handle
signals.

Table 25-4. HP Signals Extensions to the POSIX.1 Standard

C Function pTAL Procedure Description

SETLOOPTIMER() SETLOOPTIMER Sets the process-loop timer
value of the calling process.
If the timer expires, a
SIGTIMEOUT signal is
generated.

SIGACTION_INIT_() SIGACTION_INIT_ Establishes the initial state
of signal handling for the
calling process. This
procedure is a replacement
for the ARMTRAP procedure.

SIGACTION_RESTORE_() SIGACTION_RESTORE_ Restores the signal-
handling state stored by a
call to the SIGACTION_
SUPPLANT_() function.

SIGACTION_SUPPLANT_() SIGACTION_SUPPLANT_ Saves the current signal-
handling state and allows a
subsystem to take over
signal handling temporarily.

SIGJMP_MASKSET_() SIGJMP_MASKSET_ Saves the process signal
mask in a jump buffer that
has already been initialized
by the sigsetjmp()
function or SIGSETJMP_
procedure.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 28

Using HP Extensions

Using HP Extensions
The HP signals extensions are provided as migration and convenience tools that allow
native processes to catch signals corresponding to trap conditions in TNS processes.
The signals extensions provide shortcuts to the same basic functions as provided by
the standard signal interfaces.

If you are concerned about conforming to the POSIX.1 standard and application
portability, you should use the standard signals functions. If you are mainly interested
in getting the performance gains of converting from TNS to native processes and want
to focus on handling those signals known as trap conditions in TNS processes, use the
signals extensions.

SIGACTION_INIT_()
The SIGACTION_INIT_() function establishes the initial state of signal handling for a
process. This function is designed to be called once and sets the process signal mask
to unblock all signals. Any signals that are pending when SIGACTION_INIT_() is
called are discarded.

The SIGACTION_INIT_() function installs a signal handler for most signals, including
those corresponding to trap conditions. If a nondeferrable signal is delivered and it is
blocked, the process terminates abnormally.

Signals can be nested, which means that if a signal is delivered while a signal handler
is executing for a different signal, the current signal handler is interrupted and the
signal handler for the most-recently received signal is executed. (Traps cannot be
nested in TNS processes. If a process receives a trap while a trap handler is
executing, the process terminates abnormally.)

If a signal is nondeferrable and the signal handler returns normally, the process
terminates abnormally. In this case, the process should exit using the
siglongjmp() function.

SIGJMP_MASKSET_()
The SIGJMP_MASKSET_() function saves the process signal mask in a jump buffer
that has already been initialized by the sigsetjmp() function. You can save some
overhead processing by not saving the process signal mask in each sigsetjmp()
call and instead calling SIGJMP_MASKSET_() before calling siglongjmp().

SIGACTION_SUPPLANT() and SIGACTION_RESTORE()
The SIGACTION_SUPPLANT_() function saves the current signal-handling state and
allows a subsystem, such as a shared run-time library, to take over signal handling
temporarily. Before exiting the signal handler, the subsystem calls the
SIGACTION_RESTORE_() function to restore the signal-handling state stored by a call
to the SIGACTION_SUPPLANT_() function.

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 29

Interoperability Considerations

SIGACTION_SUPPLANT_() sets the process signal mask so that all signals that can
be blocked are blocked from delivery. Signals that can be deferred, which are those
sent to a process by itself and those generated by timers, remain pending until the
process exits the subsystem. Nondeferrable signals, which are generated by the
system to indicate a run-time error in the process, are delivered to the signal handler.

Interoperability Considerations
The following are some considerations you should be aware of when writing code to
handle traps in TNS processes and signals in native processes.

• A Guardian process, whether it is a TNS or native process, cannot contain a
mixture of TNS and native procedures and functions. For example, a Guardian
native process cannot call the ARMTRAP procedure, and a Guardian TNS process
cannot call the sigaction() function.

Examples
The first two examples show signal handlers you can use to replace trap handlers that
use the ARMTRAP procedure. The programs perform equivalent function; one is in
pTAL and one is in C.

The third example shows a signal handler that uses all the HP signal extension
functions and history procedures. This example is in C.

Using SIGACTION_INIT_: an Example in pTAL
--You can use this program as a replacement for a trap
--handler that calls the ARMTRAP procedure. This program
--shows how to do the following:
--1. Install a signal handler using the SIGACTION_INIT_
--procedure.
--2. Save the process execution context (including the
--process signal mask) and establish the location to return
--(jump) to from the handler using the SIGSETJMP_ procedure.
--3. Restore the process execution context and perform the
--nonlocal goto (jump) using the SIGLONGJMP_ procedure.

?EXPORT_GLOBALS

?NOLIST, SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL
?LIST
?NOLIST, SOURCE $SYSTEM.SYSTEM.HTDMSIG
?LIST
?NOLIST, SOURCE $SYSTEM.SYSTEM.HSETJMP
?LIST
?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0(INITIALIZER,
? DNUMOUT, PROCESS_GETINFO_, FILE_OPEN_, WRITE)
?LIST

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 30

Examples

SIGJMP_BUF_DEF(ENV);
INT TERMNUM;

PROC MYHANDLER (SIGNO, SIG_INFO, SIG_CONTEXTP);
INT(32) SIGNO; !signal number delivered to this handler
SIGINFO_T SIG_INFO; !NULL
INT .EXT SIG_CONTEXTP(UCONTEXT_T);!pointer to saved
 !process execution
 !context

BEGIN
 STRING BUF [0:40];
 STRING .SBUF;

 BUF ':=' "Signal " -> @SBUF;
 @SBUF := @SBUF [DNUMOUT(SBUF, SIGNO, 10)];
 SBUF ':=' " occurred" -> @SBUF;
 CALL WRITE(TERMNUM, BUF, (@SBUF '-' @BUF) '<<' 1);

 --Signal-handling code goes here. For example, a
 --combination of calls to HIST_* procedures and the
 --information provided in SIG_CONTEXTP can be used to
 --format and display the execution context of the process
 --when the signal occurred.

 --SIGLONGJMP_ restores the process execution context
 --saved by SIGSETJMP_, which is called from the MAIN
 --procedure, and jumps to the location of SIGSETJMP_ with
 --a return value of 1.

 SIGLONGJMP_(ENV, 1D);
END;

PROC M MAIN;

BEGIN
 LITERAL MAXLEN = ZSYS^VAL^LEN^FILENAME;
 INT I := 0;
 INT LEN;
 INT TERMNAME[0:MAXLEN-1];

 ! Read startup message

 CALL INITIALIZER;

 ! Install the signal handler

 IF SIGACTION_INIT_(@MYHANDLER) <> 0D THEN
 ; ! Code to handle errors returned by SIGACTION_INIT_

 ! Open home terminal

 CALL PROCESS_GETINFO_(!proc^handle! ,
 !proc^descriptor:maxlen! ,
 !proc^descriptor^length! ,
 !priority! ,
 !moms^processhandle! ,
 TERMNAME:MAXLEN,
 LEN);
 CALL FILE_OPEN_(TERMNAME:LEN, TERMNUM);

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 31

Examples

 --SIGSETJMP_ returns 0 (zero) if called directly and
 --returns a nonzero value if returning from a call
 --to SIGLONGJMP_.

 IF SIGSETJMP_(ENV, 1D) = 0D THEN
 BEGIN

 --Code that could generate a signal that is caught by
 --MYHANDLER.

 i := 3/i; ! SIGFPE generated here is caught by
 ! MYHANDLER
 END

 ELSE
 BEGIN

 --This is the return location for SIGLONGJMP_, which is
 --called from MYHANDLER after dealing with the signal.

 END;
END;

Using SIGACTION_INIT(): an Example in C
/* You can use this program as a replacement for a trap
handler that calls the ARMTRAP procedure. This program shows
how to do the following:
1. Install a signal handler using the SIGACTION_INIT_()
function.
2. Save the process execution context (including the
process signal mask) and establish the location to return
(jump) to from the handler using the sigsetjmp() function.
3. Restore the process execution context and perform the
nonlocal goto (jump) using the siglongjmp() function. */

#include <tdmsig.h>
#include <setjmp.h>

sigjmp_buf env;

void myHandler (signo, sig_info, sig_contextP)
int signo; /* signal number delivered to this handler*/
siginfo_t *sig_info; /* NULL */
void *sig_contextP;/* pointer to saved process */
 /* execution context */

{
 printf ("Signal %d occurred\n", signo);

 /* Signal-handling code goes here. For example, a
 combination of calls to HIST_* functions and the
 information provided in sig_contextP can be used to
 format and display the execution context of the
 process when the signal occurred. */

 /* siglongjmp() restores the process execution
 context saved by sigsetjmp(), which is called from

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 32

Examples

 the main() function, and jumps to the location of
 sigsetjmp() with a return value of 1. */

 siglongjmp (env, 1);
}

main ()
{
 int i = 0;
 if (SIGACTION_INIT_ (myHandler)) /* install the signal */
 /* handler */
 ; /* Code to handle errors returned by */
 /* SIGACTION_INIT_() */

 /* sigsetjmp() returns 0 (zero) if called directly and
 returns a nonzero value if returning from a call to
 siglongjmp(). */

 if (! sigsetjmp (env, 1)) {

 /* Code that could generate a signal that is caught
 by myHandler(). */

 i = 3/i; /* SIGFPE generated here is caught by */
 /* myHandler() */

 } else {

 /* This is the return location for siglongjmp(),
 which is called from myHandler() after dealing with
 the signal. */

 }
}

Using All the HP Signals Extensions
/* This program shows how to use the HP signal extension
 functions, jump functions, and HIST_* functions.
 This program does the following:

 1. Installs a general-purpose signal handler called
 globalHandler() using the SIGACTION_INIT_() function.
 2. Saves the process execution context (including the process
 signal mask) and establishes the location to return (jump)
 to from globalHandler() using the sigsetjmp() function.
 3. Restores the process execution context and performs the
 nonlocal goto (jump) using the siglongjmp() function.
 4. Installs a local signal handler called localHandler(),
 which takes over signal handling from globalHandler() for
 system-generated nondeferrable signals (such as SIGFPE) using
 the SIGACTION_SUPPLANT_() function. The signal-handling
 state established by globalHandler() is saved.
 5. Saves the process execution context and establishes the
 location to return (jump) to from localHandler() using the
 setjmp() function.
 6. Formats and displays the process execution context when
 the signal occurred using the HIST_* functions and the

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 33

Examples

 information provided in sig_contextP.
 7. Unblocks all signals by clearing the process signal mask
 in the jump buffer using the SIGJMP_MASKSET_() function.
 8. Restores the process execution context (including the
 process signal mask) and jumps to the location established
 by the call to setjmp(), using the siglongjmp() function.
 9. Restores the signal-handling state in globalHandler(),
 which was installed by SIGACTION_INIT_() and saved by
 SIGACTION_SUPPLANT_(), using the SIGACTION_RESTORE_()
 function. */

#include <tdmsig.h> nolist
#include <setjmp.h> nolist
#include <histry.h> nolist
#include <stdio.h> nolist
#include <stdlib.h> nolist

jmp_buf jmpEnv;
sigjmp_buf sigJmpEnv;

void localHandler /* local signal handler for "worker" */
 (int signo /* signal number */
 , siginfo_t * siginfo /* NULL */
 , void * sig_contextP /* pointer to saved process */
)
{
 NSK_histWorkspace hws;
 int error;
 char buf [80];

 printf ("localHandler: Signal %d occurred\n", signo);

 /* Use HIST_FORMAT_() to produce an ASCII text
 representation of the process execution context for the
 process indicated by HIST_INIT() or HIST_GETPRIOR_(). */

 error = HIST_INIT_ (&hws, HistVersion1, HO_Init_uContext,
 sig_contextP);
 if (error == HIST_OK)
 do {
 int len;
 while ((len = HIST_FORMAT_ (&hws, buf, 79)) > 0) {
 buf[len] = 0;
 printf ("%s\n", buf);

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 34

Examples

 }
 } while ((error = HIST_GETPRIOR_ (&hws)) == HIST_OK);

 else
 printf ("HIST_INIT_ error: %d. Unable to trace\n",
 error);

 /* if error != HIST_DONE ... */
 SIGJMP_MASKSET_ (jmpEnv, (sigset_t *) 0); /* unblock the
signals */

 /* Restore the process execution context (including the
 process signal mask) and jump to the location of the
 setjmp() call in worker(). */

 siglongjmp (jmpEnv, 1);

}

int divider (int i, int j) { /* divide i by j */
 return (i/j); /* When j is zero, and the program was
compiled with the
 overflow_traps directive, generates a
SIGFPE signal */
}

void doMoreProcessing ()
{

 /* Generate a SIGFPE signal caught by localHandler(). */
 divider(3, 0);
 /* We don't expect divider() to return. */
 printf("doMoreProcessing: after (unexpected) return from
divider()\n");
}

int worker ()
{

 int result;

 sig_save_template sigSaveBuf;
 if (SIGACTION_SUPPLANT_ (localHandler, &sigSaveBuf,
 sigsave_len))
 return 1; /* returns 1 for failure */
 /* Now we are in the domain of localHandler().*/

 if (! setjmp (jmpEnv)) {
 /* Normal path: nondeferrable signals are handled by
 localHandler(). */
 doMoreProcessing ();

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 35

Examples

 result = 0; /* 0 means success */
 } else {

 /* Error path: entered via siglongjmp() called in
 localHandler(). */
 result = 1;

 }

 if (SIGACTION_RESTORE_ (&sigSaveBuf))
 exit (2);
 return result;
}

void globalHandler
 (int signo /* signal number */
 , siginfo_t *sig_info /* NULL */
 , void *sig_context /* pointer to saved process */
)
{

 printf ("globalHandler: Signal %d occurred\n", signo);
 /* A combination of HIST_* functions and the information
 provided in sig_context can be used to format and display
 the process execution context when the signal occurred. */
 /* Restore the process execution context (including the
 process signal mask) saved by sigsetjmp() called from
 main() and jump to the location of the sigsetjmp() call
 with a return value of 1. */

 siglongjmp (sigJmpEnv, 1);

}

main ()

{

 printf("main: start of execution\n");
 if (SIGACTION_INIT_ (globalHandler)) /* install the signal
handler */

 {

 printf("main: SIGACTION_INIT failed\n");
 exit (1);

 }

 if (! sigsetjmp (sigJmpEnv, 1)) {
 printf("main: after sigsetjmp returned 0\n");
 /* Code that could generate a signal that is caught
 by globalHandler(). */

 if (worker ()) {/* worker() establishes its own */
 /* signal handling domain with */

Debugging, Trap Handling, and Signal Handling

Guardian Programmer’s Guide — 421922-014
25 - 36

Examples

 /* localHandler(). */
 /* Code to deal with errors returned from worker(). */

 }

 /* Back once again in the domain of globalHandler()
 installed by SIGACTION_INIT_(). */
 /* SIGFPE generated here is caught by globalHandler() */
 divider (5, 0);
 /* If traps are enabled, we shouldn't get here. */
 printf("main: second call to divider() failed to generate
 signal\n");

 } else {

 /* The siglongjmp() call in globalHandler() gets used
 here. */
 printf("main: after sigsetjmp returned nonzero\n");
 }

}

Guardian Programmer’s Guide — 421922-014
26 - 1

26 Synchronizing Processes
One or more processes executing concurrently on a HP system might need to share a
particular resource. Most commonly, the shared resource is an area of memory, such
as an extended data segment. This sharing can result in conflicts and possible errors.
Consider, for example, two processes, A and B, running concurrently in the same CPU,
both of which are attempting to increment a variable in a shared memory area.
Process A fetches the variable, adds 1 to it, and returns it to memory. Process B then
fetches the variable, adds 1 to it, returns it to memory, and proceeds under the
assumption that the current value of the variable is 2 greater than the original value.
But suppose the processes are synchronized such that process B fetches the variable
just before A returns it to memory. The variable would not have the correct value.

One solution would be to simply run the processes sequentially to ensure that there is
no overlap in their execution and, consequently, no conflicts in accessing the shared
resource. However, this solution would result in very inefficient processing that would
not take advantage of the HP system’s ability to run multiple processes concurrently.
Clearly, a solution is needed that allows concurrent processes to access a shared
resource without conflicts while continuing to execute in parallel.

Binary semaphores provide such a solution. Binary semaphores are a tool to
synchronize processes. They provide a way for a process to hold exclusive access to
a resource while accessing the resource. Using binary semaphores, you can
synchronize processes so that only one process at a time can use a shared resource.
While a process is accessing the resource, other processes can execute concurrently
until they need to use the resource. They then enter a wait state until the resource
becomes available. When the original process is through with the resource, it releases
its “hold” on the resource, and another process in the waiting group acquires exclusive
access to the resource and resumes execution.

Note. Binary semaphores enable you to synchronize processes running in the same CPU; to
synchronize processes in different CPUs, you must use other techniques. However, when the
issue is serializing access to variables, as in the above example, the variables must be in
shared memory, which implies that the sharers are on the same CPU.

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 2

How Binary Semaphores Work

How Binary Semaphores Work
Using binary semaphores, a programmer can maximize parallelism (the degree to
which processes are able to execute concurrently) among concurrent processes while
avoiding conflicts over shared resources. A binary semaphore consists of a global
entity called a lock and an associated group of waiting processes called a wait group.
Figure 26-1 illustrates the binary semaphore concept.

In the above example, the executing process follows these steps:

1. When the executing process reaches a critical section (a sequence of code that
accesses a shared resource), it requests a lock on the semaphore.

2. If the semaphore is unlocked, the process locks it and executes the critical code. If
the semaphore is locked by another process, the process requesting the lock is
placed in the wait group.

3. When the process holding the lock finishes executing its critical section, it
relinquishes the lock on the semaphore. The effect of relinquishing the lock is to
check the wait group and do one of the following:

• If processes are waiting for the lock, one is removed from the group and made
available for execution; that process takes ownership of the lock.

• If no processes are waiting, the semaphore is unlocked and the next process
to enter a critical section can lock the semaphore and access the shared
resource.

Table 26-1 lists four processes, indicated by A, B, C, and D, using binary semaphores
to synchronize their access to a shared memory area. The table shows the state of
each process at arbitrary points in time represented by t0 through t5.

Figure 26-1. Binary Semaphore

VST130.VSD

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 3

How Binary Semaphores Work

At t0, the four processes have not been started.

At t1, process D is accessing the shared area, C has reached a critical section and has
entered the wait group, B has been started and is executing a noncritical section, and
A is still waiting to be started.

At t2, D is still holding the lock, and A, B, and C are waiting for the lock.

At t3, C and D are executing noncritical sections, A now owns the lock and has
exclusive access to the shared area, and B is still waiting.

At t4, D has finished executing, A and C are executing noncritical sections, and B has
access to the shared area.

Finally, at t5, all four processes have finished.

Table 26-1. Process Synchronization

Not
Executing

Executing
Non-
critical
Section

Executing
Critical
Section

Waiting

t0 A,B,C,D

t1 A B D C

t2 D A,B,C

t3 C,D A B

t4 D A,C B

t5 A,B,C,D

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 4

Summary of Guardian Binary
Semaphore Procedures

Summary of Guardian Binary
Semaphore Procedures

HP provides Guardian procedure calls to implement the binary semaphore capability.
The procedures are callable from programs written in Transaction Application
Language (TAL) and C/C++. The binary semaphore procedure calls are summarized
in Table 26-1. Refer to the Guardian Procedure Calls Reference Manual for detailed
descriptions of these procedure calls, including input and output parameters and error
status values returned by the calls.

Table 26-2. Binary Semaphore Procedure Calls

Procedure Description

BINSEM_CREATE_ Creates, opens, and locks a binary semaphore. Generally
called by the program that creates the shared resource.

BINSEM_OPEN_ Opens a binary semaphore. All processes that will use the
binary semaphore must first open it.

BINSEM_LOCK_ Locks a binary semaphore. Called by a process immediately
before entering a critical section. Only one process at a time
can lock a binary semaphore. This enables a program to have
exclusive access to a shared resource. If a process tries to
lock a semaphore that is already locked, the process enters a
wait state.

BINSEM_UNLOCK_ Relinquishes a lock on a binary semaphore. Called by a
process immediately upon leaving a critical section. If there are
processes in the wait group, one of those processes is given
ownership of the lock.

BINSEM_CLOSE_ Closes a binary semaphore. Called by a process when it is
finished accessing the binary semaphore. When the last
process that has a semaphore open closes the semaphore,
that semaphore ceases to exist.

BINSEM_FORCELOCK_ Forces a lock on a binary semaphore. Used to take a lock
away from the process that has the lock and has entered an
unresponsive state (for example, an infinite loop).

BINSEM_GETSTATS_ *

* Available only for NonStop systems running J06.14, H06.25, and subsequent RVUs.

Returns counter statistics for one or more binary semaphores
for a specified process. Additionally, BINSEM_GETSTATS_
can clear counters and reset the maximum number of
contenders.

BINSEM_STAT_VERSION_ * Accepts a version number defined in kbinsem(.h) for the
BINSEM_GETSTATS_ procedure and checks whether or not it
matches the implementation version of BINSEM_GETSTATS_.

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 5

Using the Binary Semaphore Procedure Calls

 Using the Binary Semaphore Procedure Calls
This subsection describes the steps involved in using binary semaphores. Following is
a summary of these steps:

1. First, the binary semaphore must be created (call BINSEM_CREATE_).

2. After the binary semaphore is created, all processes that will access the binary
semaphore must open it (call BINSEM_OPEN_). The process that creates the
binary semaphore does not need to call BINSEM_OPEN_, because
BINSEM_CREATE_ also opens the binary semaphore.

3. Before executing a critical section of code (that is, before accessing a shared
resource), a process locks the binary semaphore (call BINSEM_LOCK_). The
process that creates the binary semaphore does not need to call BINSEM_LOCK_,
the first time it attempts to lock the semaphore because BINSEM_CREATE_ also
locks the binary semaphore.

4. After finishing the critical section, a process unlocks the binary semaphore so that
another process can lock it and safely access the resource (call
BINSEM_UNLOCK_).

5. Once a process is finished using a binary semaphore, it should close the binary
semaphore to free any system resources used by the binary semaphore (call
BINSEM_CLOSE_).

An additional procedure, BINSEM_FORCELOCK_, is provided to enable a process to
take a lock away from the process currently holding the lock. This call should be used
only if absolutely necessary.

Creating a Binary Semaphore
The first step in synchronizing a group of processes is to create a binary semaphore.
In general, the process that creates the resource to be shared also creates the binary
semaphore, although this is not a requirement.

To create a binary semaphore, call the BINSEM_CREATE_ procedure. This procedure
creates, opens, and locks a binary semaphore, and it returns a semaphore ID that is
used to refer to the semaphore in subsequent calls. The process that creates the
binary semaphore must make this semaphore ID, along with its own process handle,
available to other processes that will access the semaphore. This can be done by
placing the values in a shared data area, as illustrated in the example at the end of this
section.

In the BINSEM_CREATE_ call, you must also specify a security level for the
semaphore. The security level determines which other processes are permitted to
open the semaphore. For example:

SECURITY := 0;
ERROR := BINSEM_CREATE (SEMID, SECURITY);

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 6

Opening a Binary Semaphore

In this example, a binary semaphore is created with security level 0, which permits all
processes in the same CPU to access the semaphore.

Opening a Binary Semaphore
All processes that will access a binary semaphore must first open the binary
semaphore. The BINSEM_CREATE_ call creates and opens a binary semaphore; all
other processes besides the process that calls BINSEM_CREATE_ must call
BINSEM_OPEN_. A process generally calls BINSEM_OPEN_ at the beginning of its
execution. To synchronize access to several shared resources, a process can have
multiple binary semaphores open at the same time. (The current binary semaphore
limits are 8,000 per process and 64,000 per processor.)

When calling BINSEM_OPEN, you must specify the following input parameters:

• The process handle of either the process that created the semaphore or a process
that previously opened the semaphore.

• The ID of the semaphore being opened (the ID returned by the above process).

The process that created or previously opened the semaphore must communicate
these values to all other processes that will open the semaphore.

BINSEM_OPEN_ returns an ID value that identifies the binary semaphore locally in
this process; it is different from the semaphore ID passed as input to BINSEM_OPEN_.
The local ID is used to designate the binary semaphore in subsequent calls within the
same process; it can also be conveyed to other processes for use as input to
BINSEM_OPEN_ or BINSEM_GETSTATS_, along with the process handle of the
process to which it belongs.

Locking a Binary Semaphore
Locking a binary semaphore enables a process to exercise exclusive access to a
shared resource; only one process at a time can lock a binary semaphore. To lock a
binary semaphore, call the BINSEM_LOCK_ procedure. A process typically calls
BINSEM_LOCK_ just before accessing the shared resource.

If the binary semaphore is unlocked when BINSEM_LOCK_ is called, the calling
process is granted a lock on the semaphore and can access the shared resource
safely.

If another process has the binary semaphore locked when BINSEM_LOCK_ is called,
execution of the calling process is suspended and the process is placed in a wait
group. The process remains in this state until either:

• The process currently holding the lock unlocks the binary semaphore, and the
suspended process is selected from the wait group and granted the lock.

or

• The value specified for the timeout parameter in the BINSEM_LOCK_ call is
reached. The timeout parameter provides a way to ensure that a process does

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 7

Unlocking a Binary Semaphore

not wait indefinitely for a lock. If the timeout value is reached before the process is
selected to receive the lock, the process is awakened and EAGAIN is returned
from BINSEM_LOCK.

When the process currently holding the lock unlocks the binary semaphore, the wait
group is checked for waiting processes. If the wait group contains waiting processes,
a process is selected from the wait group to receive ownership of the lock and resume
execution at the point of suspension. The selected process is then free to access the
shared resource.

If a process holding a lock on a semaphore terminates without unlocking the
semaphore, that semaphore is said to be forsaken. The next process in the wait group
or, if the wait group is empty, the next process to call BINSEM_LOCK_, gets the lock
but is informed by the system that the semaphore has not been unlocked by the
original process. Because the shared resource may be in an inconsistent state, the
process requesting the lock should perform an application-dependent recovery before
using the resource.

In the following example, a lock is requested and given a timeout value of 500
seconds:

TIMEOUT := 50000; !timeout is expressed in units of 10
 milliseconds
ERROR := BINSEM_LOCK_ (SEMID, TIMEOUT);

Unlocking a Binary Semaphore
When a process has finished executing a critical section and is ready to relinquish a
lock on a binary semaphore, it should unlock the binary semaphore. To unlock a
binary semaphore, call BINSEM_UNLOCK_.

The BINSEM_UNLOCK_ procedure unlocks a binary semaphore and makes it
available to other processes. If other processes are in the wait group when
BINSEM_UNLOCK_ is called, a waiting process is selected to receive the lock and the
binary semaphore is immediately locked. If no processes are in the wait group, the
binary semaphore is available to the next process that requests the lock.

BINSEM_UNLOCK_ cannot unlock a binary semaphore that is currently locked by
another process; to do so, use the BINSEM_FORCELOCK_ procedure to force a lock
on the binary semaphore, then call BINSEM_UNLOCK_.

Testing Ownership of a Binary Semaphore
Software should be designed so that a process is always aware of a locked binary
semaphore, but sometimes a common-code sequence can be invoked either with or
without the semaphore. Such code can call the BINSEM_ISMINE_ procedure to
determine whether or not a binary semaphore is locked by this process.

Note. The order in which processes are selected from the wait group to receive ownership of a
lock is indeterminate; processes are not necessarily selected in the order in which they entered
the group nor are they selected in order of priority.

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 8

Forcing a Lock on a Binary Semaphore

BINSEM_ISMINE_ returns a nonzero value if the SEMID is valid and the calling
process currently has that binary semaphore locked.

Forcing a Lock on a Binary Semaphore
Under certain conditions you may want to force a lock on a binary semaphore that is
currently locked by another process. For example, a process holding a lock may have
entered an infinite loop or some other unresponsive state. To force a lock on a binary
semaphore, call the BINSEM_FORCELOCK_ procedure.

The BINSEM_FORCELOCK_ procedure enables a process to take a lock away from
another process. However, the original process continues to run as though it still has
the lock, so to avoid possible conflicts, you should take steps to terminate that process.

In order to force a lock on a binary semaphore, a process must have permission to
access the binary semaphore, as specified in the BINSEM_CREATE_ call that created
the binary semaphore.

Closing a Binary Semaphore
Once a process is finished executing critical sections of code, it should close any
binary semaphores that it has open. To close a binary semaphore, call the
BINSEM_CLOSE_ procedure.

A process typically calls BINSEM_CLOSE_ at the end of its execution. After closing a
binary semaphore, the process no longer has knowledge of it and can no longer
request a lock on it. Once all processes that have opened a binary semaphore close it,
any resources used by the semaphore are returned to the system.

When a process terminates, any binary semaphores it has open are automatically
closed. If any are locked by the process at the time of termination, they become
forsaken, as described earlier under Locking a Binary Semaphore.

Binary Semaphore Interface Declarations
As of the J06.14 and H06.25 RVUs, the entire binary semaphore interface is defined in
two new header files: KBINSEM for TAL/epTAL and KBINSEMH (also referred to as
kbinsem.h) for C/C++. These headers include literals for options and result codes,
the output structure for BINSEM_GETSTATS_, and the version literals for
BINSEM_STAT_VERSION_. In all supported releases, six of the BINSEM_...
procedures continue to be declared in EXTDECS* and CEXTDECS. The three newer
procedures, BINSEM_ISMINE_, BINSEM_GETSTATS_, and
BINEM_STATS_VERSION_, are declared only in KBINSEM and kbinsem.h.

The kbinsem.h file also contains type definitions and macros to manage the process
handle parameters required by two of the procedures: BINSEM_GETSTATS_ and

Note. The BINSEM_FORCELOCK_ call should be used only in critical situations, because it
circumvents the protection that binary semaphores are designed to provide.

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 9

Binary Semaphore Interface Declarations

BINSEM_OPEN_. These handles can be represented either as a structure or as an
array[10] of short int. Guardian procedures declared in CEXTDECS use the
array form. Some interfaces use a NSK_PHandle structure type, defined in the
kphandl.h header file. The kbinsem.h file can work either way.

By default, kbinsem.h uses the structure. Thus a program could contain:

 #include <kbinsem.h>
 NSK_PHandle myPhandle;
 ...
 ret = PROCESSHANDLE_GETMINE((short*)&myPhandle);
 ...
 ret = BINSEM_GETSTATS_(&myPhandle, ...);

or

 #include <kbinsem.h>
 short myPhandle[10];
 ...
 ret = PROCESSHANDLE_GETMINE(myPhandle);
 ...
 ret = BINSEM_GETSTATS_((NSK_Phandle*)myPhandle, ...);

Alternatively, to use the array form, the program could contain:

 #include <CEXTDECS> /* or #define PHANDLE_IS_STRUCT 0 */
 #include <kbinsem.h>
 short myPhandle[10];
 ...
 ret = PROCESSHANDLE_GETMINE(myPhandle);
 ...
 ret = BINSEM_GETSTATS_(myPhandle, ...);

By using macros defined in kbinsem.h, source code can be made agnostic with
respect to the process handle type:

 binSemPhanDef(myPhandle);
 ...
 ret = PROCESSHANDLE_GETMINE(binSemPHanShortPtr myPhandle);
 ...
 ret = BINSEM_GETSTATS_(binSemPhanPtr myPhandle, ...);

The declarations in kbinsem.h and those in CEXTDECS are compatible under either
of the following circumstances:

• The CEXTDECS file is not included whole, and the BINSEM_OPEN_ section is
not included. By default, kbinsem.h defines PHANDLE_IS_STRUCT as 1 and
uses the structure pointer type.

• The CEXTDECS file is included whole, before the kbinsem.h file. In this case,
kbinsem.h defines PHANDLE_IS_STRUCT as 0 and uses the array
representation.

For details, see the kbinsem.h header file.

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 10

Binary Semaphore Example

Binary Semaphore Example
Following is a simple TAL example illustrating the use of the binary semaphore
procedure calls. This example can be used as a template for creating other programs
that use binary semaphores. The example assumes that two processes share a
segment containing a shared structure. One process executes the PRIMARY
procedure and the other process executes the SECONDARY procedure. The address
of the shared structure is passed to these procedures. The program consists of the
following components:

• The shared memory segment. This segment contains both the shared structure
and the variables comprising the resource to which access is controlled.

• The shared structure. This structure is used to pass the process handle of the
main process and the binary semaphore ID from the primary process to the
secondary process.

• The external declarations that provide access to the binary semaphore procedures
and other Guardian procedures used by the program.

• The USERESOURCE procedure. This procedure accesses the shared resource.
It is called by the main process and the secondary process.

• The PRIMARY procedure. This procedure is executed by the main process. It
creates the binary semaphore, creates the secondary process, and uses the
shared resource.

• The SECONDARY procedure. This procedure accesses the shared resource.

Shared Structure
The shared structure is used to pass the main process handle and the semaphore ID
from the main process, which creates the binary semaphore, to the secondary process,
which opens the binary semaphore. The structure is as follows:

STRUCT SHARED_TEMPLATE (*);
BEGIN
 INT MAINPROCESSHANDLE[0:9];
 INT(32) MAINSEMID;
END;

External Declarations
The following SOURCE directives provide access to the binary semaphore procedures
and other Guardian procedures used by the program:

?SOURCE $SYSTEM.SYSTEM.EXTDECS0(BINSEM_CREATE_, BINSEM_OPEN_)
?SOURCE $SYSTEM.SYSTEM.EXTDECS0(BINSEM_CLOSE_, BINSEM_LOCK_)
?SOURCE.$SYSTEM.SYSTEM.EXTDECS0(BINSEM_UNLOCK_, DEBUG)
?SOURCE.$SYSTEM.SYSTEM.EXTDECS0(PROCESS_GETINFO_)
?SOURCE.$SYSTEM.SYSTEM.EXTDECS0(PROCESSHANDLE_NULLIT_)

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 11

Procedure USERESOURCE

Procedure USERESOURCE
Procedure USERESOURCE locks the binary semaphore, uses the shared resource,
and unlocks the binary semaphore. The procedure is called by the primary process
and the secondary process. Procedure USERESOURCE is as follows:

PROC USERESOURCE (SEMID);
INT(32) SEMID;
BEGIN
INT ERROR;

ERROR := BINSEM_LOCK_ (SEMID, -1D);
IF (ERROR <> 0) THEN CALL DEBUG;

... Use the shared resource...

ERROR := BINSEM_UNLOCK_ (SEMID);
IF (ERROR <> 0) THEN CALL DEBUG;

END;

Procedure PRIMARY
Procedure PRIMARY is executed by the main process. That process allocates a
memory segment to contain both the shared structure and the shared resource. It
creates a pointer to the structure and passes that pointer to PRIMARY. This procedure
creates the binary semaphore and makes the main process handle and semaphore ID
available to other processes by placing them in the shared structure. The PRIMARY
procedure then creates the secondary process, uses the shared resource, and closes
the binary semaphore. The PRIMARY procedure is as follows:

PROC PRIMARY (SHARED);
INT .EXT SHARED (SHARED_TEMPLATE);
BEGIN
INT ERROR;

ERROR := PROCESSHANDLE_NULLIT_ (SHARED.MAINPROCESSHANDLE);
IF (ERROR <> 0) THEN CALL DEBUG;
ERROR := PROCESS_GETINFO_ (SHARED.MAINPROCESSHANDLE);
IF (ERROR <> 0) THEN CALL DEBUG;
ERROR := BINSEM_CREATE_ (SHARED.MAINSEMID, 2);
IF (ERROR <> 0) THEN CALL DEBUG;

...Create secondary process ...

CALL USERESOURCE (SHARED.MAINSEMID);

ERROR := BINSEM_CLOSE_ (SHARED.MAINSEMID);
IF (ERROR <> 0) THEN CALL DEBUG;

END

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 12

Procedure SECONDARY

Procedure SECONDARY
Procedure SECONDARY is executed by the secondary process. That process shares
the segment created by the primary process, and passes to SECONDARY a pointer to
the shared structure. It opens the binary semaphore, locks the binary semaphore,
uses the shared resource, unlocks the binary semaphore, and closes the binary
semaphore. The main process handle and the semaphore ID are picked up from the
shared structure. Procedure SECONDARY is as follows:

PROC SECONDARY (SHARED);
INT .EXT SHARED (SHARED_TEMPLATE);
BEGIN
INT ERROR;
INT(32) SECONDARYSEMID;

ERROR := BINSEM_OPEN_ (SECONDARYSEMID,
 SHARED.MAINPROCESSHANDLE,
 SHARED.MAINSEMID);
IF (ERROR <> 0) THEN CALL DEBUG;

CALL USERESOURCE (SECONDARYSEMID);

ERROR := BINSEM_CLOSE_ (SECONDARYSEMID);
IF (ERROR <> 0) THEN CALL DEBUG;

END;

BINSEM_GETSTATS_ and
BINSEM_STAT_VERSION_ Example

Beginning with the J06.14 and H06.15 RVUs, the BINSEM_GETSTATS_ and
BINSEM_STAT_VERSION_ procedures are available. See the Guardian Procedure
Calls Reference Manual for details of these procedures.

The following binsemc program is an example of using the BINSEM_GETSTATS_
and BINSEM_STAT_VERSION_ procedures. It illustrates how a program can display
statistics about its own use of binary semaphores. Alternatively, the user could invoke
the SEMSTAT utility documented in the TACL Reference Manual.

#include <kbinsem.h> _nolist
#include <cextdecs(PROCESSHANDLE_GETMINE_)> _nolist
#include <stdio.h> _nolist

binSemID_t semID;
short err;
unsigned int ret;
binSemStats_t stat;
NSK_PHandle pHandle;

int main(int argc, char * argv[])

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 13

BINSEM_GETSTATS_ and
BINSEM_STAT_VERSION_ Example

{
 /* Create a BinSem */
 err = BINSEM_CREATE_(&semID, 2);
 if(err !=BINSEM_RET_OK) {
 printf("BINSEM_CREATE_ failed with status %d\n", err);
 return(-1);
 }
 /* Unlock BinSem Created */
 err = BINSEM_UNLOCK_(semID);
 if (err)
 printf("BINSEM_UNLOCK_ failed with %d\n", err);

 /* A real program would have application logic,
 including locking and unlocking one or more binary
 semaphores.
 It might also create or open additional semaphores.
 ...
 */
 err = PROCESSHANDLE_GETMINE_((short*)&pHandle);
 if(err)
 printf("PROCESSHANDLE_GETMINE_ failed with error:%d\n",
 err);

 /* Verify BinSem Stats Version */
 ret = BINSEM_STAT_VERSION_(BINSEM_STAT_VERSION1);
 if(ret < sizeof(binSemStats_t))
 printf("BINSEM_STAT_VERSION_ failed with error:%d\n",
 ret);

 /* Print BinSem Stats */
 puts("Sem ID Acquisitions Tot. Cont. Mult. Cont. "
 "Cur. Cont. Max. Cont");

 semID = BINSEM_STAT_INIT_CONTEXT;
 for (;;)
 {
 /* Get BinSem Stats */
 err = BINSEM_GETSTATS_(&pHandle, semID,
 BINSEM_STAT_OPT_DEFAULT,
 &stat, sizeof stat);
 if (err != BINSEM_RET_OK)
 break;

 printf("%6d %17u %13u %13u %11u %10u\n",
 stat.semID, stat.acquisitions,
 stat.contentions,
 stat.multiCont, stat.contenders,
 stat.maxContend);
 semID = stat.semID;
 };
 if(err != BINSEM_RET_EOF)
 printf("BINSEM_GETSTATS_ failed with error %d\n", err);

 if (err = BINSEM_CLOSE_(semID))
 printf("BINSEM_CLOSE_ failed with %8.8x\n", err);

Synchronizing Processes

Guardian Programmer’s Guide — 421922-014
26 - 14

BINSEM_GETSTATS_ and
BINSEM_STAT_VERSION_ Example

 return 0;
}

The binsemc example program can be compiled for various data models with the
following commands, and then executed:

• ccomp /in binsemc/ obinsem; symbols, nolist, runnable,&
extensions

• ccomp /in binsemc/ obinsem; symbols, nolist, runnable,&
extensions, systype oss, ILP32

• ccomp /in binsemc/ obinsem; symbols, nolist, runnable,&
extensions, systype oss, LP64

Guardian Programmer’s Guide — 421922-014
27 - 1

27
Fault-Tolerant Programming in C

The term “fault-tolerant” means that a single failure does not cause processing to stop.

At the hardware level, redundant hardware and duplication of paths allow systems to
tolerate a single-component failure. In many cases, multiple-component failures can
also be tolerated as long as they do not share common paths. Moreover, the
redundant paths are not duplicate backups; that is, all available resources are used for
processing—none are held in reserve for use as spare backups. The hardware
concepts used to achieve this fault tolerance are explained in the Introduction to
Tandem NonStop Systems.

Software can be written to be fault-tolerant. Many software problems are transient;
that is, the problem is caused by an unusual environment state typically resulting from
a transient hardware problem, a resource limit exceeded, or a race condition. In such
cases, reinitializing the program state to an earlier point and resuming execution often
works because the environment is different.

An application does not execute in a fault-tolerant manner automatically; it must be
designed and implemented to run as a fault-tolerant program. This section describes
the approach to fault-tolerant programming known as active backup.

This section includes the following information:

• An overview of the activities an active backup program must perform.

• An overview of the tasks a programmer must complete to create an active backup
program.

• A summary of the C language extensions that support active backup programming.

• An explanation of how to organize an active backup program.

• Two examples of active backup programs.

Overview of Active Backup Programming
In active backup programming, processes are executed in pairs: a primary process,
which performs the tasks of the underlying application, and a backup process, which is
ready to take over execution from the primary process should the primary process or
CPU fail. Active backup programs have the following characteristics:

• Active backup uses process pairs to achieve fault tolerance.

• The primary process sends state information to the backup process. State
information is information about the run-time environment that is required for the
backup to take over for the primary.

• The backup process receives state information from the primary, detects a failed
primary process or CPU, and takes over execution.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 2

Summary of Active Backup Processing

An active backup program executes as a primary and backup process pair running the
same program file. The primary and backup processes communicate through
interprocess communication. The primary process sends critical data to the backup
process. This critical data serves two purposes: to provide sufficient information to
allow the backup to resume application processing and to indicate to the backup where
it should logically resume application processing.

The backup process receives messages from two sources. It receives critical
information from the primary process, which it must record for future use in the event it
must take over processing from the primary. It can also receive messages from the
operating system indicating that the primary process or CPU has failed. If the primary
process fails, the backup takes over processing at the logical point in the application
indicated by the most recent control state information received from the primary, and it
continues processing using the most recent file state and application state information.

Summary of Active Backup Processing
When an active backup program is started, it is given a process name. This allows the
new process (and later the backup process) to run as a named process pair (use of
unnamed process pairs is not discussed in this section). Following are the activities
that an active backup program performs:

• A new process determines whether it is executing as the primary process or the
backup process.

• If the process is the primary process, it does the following:

• Opens files required for execution.

• Creates and starts the backup process (normally in another CPU), and opens it
for interprocess communication.

• Gets open file state information and sends it to the backup process.

• Begins executing the application statements. At critical points, the primary
process updates state information; that is, it sends critical file and data
information to the backup process.

• Monitors the backup process. If the backup process or CPU fails, the primary
can recognize that and create another backup.

• If the process is the backup process, it enters a message-processing loop. While
in this loop, the backup process:

• Does a backup open of any files required by the application. A backup open is
a special open that allows files to be open concurrently by both the primary and
backup processes.

• Monitors the primary process and primary CPU.

The backup process stays in the message-processing loop until either the
primary process fails or the application terminates.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 3

What the Programmer Must Do

If the primary process or CPU fails, the backup process takes over execution from the
failed primary process and becomes the new primary process. First, it creates a new
backup process. (If the failure is caused by CPU failure, the new backup is created
either immediately in another CPU or when the failing CPU is brought back online.)

The backup process then continues application processing at a point indicated in the
state information received from the primary process.

What the Programmer Must Do
When coding a program to run as a process pair, there are several activities you, as
the programmer, need to complete. These include planning tasks, which should be
completed before coding an active backup program, and programming tasks, which
involve the actual coding of an active backup program.

Note that fault-tolerant programs should be designed that way from the outset.
Converting existing programs to run in a fault-tolerant manner can be very difficult,
depending on the structure of the program.

Planning Tasks
Before coding an application to run as an active backup program, do the following:

• Develop a strategy for updating state information. You will need to include
statements in your program for providing the backup process with the information it
needs to take over execution if the primary process fails. This state information
accomplishes three things:

• Tells the backup process where to take over execution.

• Provides critical information about files currently in use by the application.

• Provides current data values to the backup process.

You must determine what information to provide and the points in the execution of
the application at which the state information will be updated and at which the
backup can take over execution. Developing an appropriate strategy is vitally
important; errors can result if the backup does not have the correct state
information. Guidelines for developing a strategy for updating state information are
given later in this section under Updating State Information.

• Define a communications protocol. You need to provide for passing messages
between the primary and backup processes. The communications protocol
enables the primary to send state information to the backup. It enables the backup
to monitor the primary process and CPU and to receive state information from the
primary process. The communications protocol should use the same message
formats as the operating system uses. HP recommends that you use the Guardian
interprocess communication facility. Guidelines are given later in this section
under Providing Communication Between the Primary and Backup Processes.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 4

Programming Tasks

Programming Tasks
Once you have developed a strategy for updating state information and defined a
protocol for interprocess communication, you can begin coding your active backup
program. Compaq provides extensions to the C language that support active backup
programming. These language extensions are summarized later in this section under
C Extensions That Support Active Backup Programming. Following is a summary of
the programming tasks required or recommended for coding an active backup
program. Details for coding an active backup program are given later in this section
under Organizing an Active Backup Program.

To code a program to run in a fault-tolerant manner, you must:

• Include statements to determine whether a process is the primary process or the
backup process.

• Include statements to start the backup process and open it for interprocess
communication.

• Provide a mechanism for sending state information to the backup process.

• Provide a mechanism for the backup process to receive and save state information
from the primary process.

• Provide a mechanism for the backup process to receive and process failure
messages from the primary process and from the operating system.

• Provide a mechanism for the backup process to take over for the primary process
if the primary process or CPU should fail.

• Provide a mechanism for the primary process to detect a failure of the backup
process.

• Include statements for detecting and handling duplicate and old requests.

• Include statements for reinitating pending I/Os and pending signal timeouts on
takeovers.

You use a combination of programming techniques, Guardian procedure calls, and
C-supplied functions to perform these tasks.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 5

C Extensions That Support Active
Backup Programming

C Extensions That Support Active
Backup Programming

C provides several functions that you can use to perform various tasks required for
active backup programming. This subsection provides a brief overview of these
functions. These functions are available for TNS and accelerated programs as well as
for TNS/R native programs. For details, refer to the Guardian TNS C Library Calls
Reference Manual and the Guardian TNS/R Native C Library Calls Reference Manual.

The following table summarizes the C functions used for active backup programming:

Starting the Backup Process
The primary process starts and initializes the backup process by calling the
__ns_start_backup function. The __ns_start_backup function does the
following:

• Starts the backup process. You can optionally specify the CPU in which the
backup process is to run.

• Optionally returns the process handle of the backup process (assuming the backup
process was started successfully).

• Sends to the backup process the same startup, assign, and param messages that
the primary process received.

• Gets file open state information for the stdin, stdout, and stderr files that the
primary process opened during its initialization, and sends that information to the
backup process. The backup process receives the open state information through
the $RECEIVE file.

The backup process has the same swap volume as the primary process.

Function Use

__ns_start_backup Called by the primary process to create and initialize the backup
process.

__ns_fopen_special Called by the primary process to open a file with a specified
sync depth.

__ns_fget_file_open_stat
e

Called by the primary process to obtain open state information
for a file.

__ns_backup_fopen Called by the backup process to back up open files that have
already been opened by the primary process.

__ns_fget_file_state Called by the primary process to obtain file state information.

__ns_fset_file_state Called by the backup process to update file state information.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 6

Opening a File With a Specified Sync Depth

After receiving messages sent by __ns_start_backup, the backup process
automatically does the following:

• Processes the startup, assign, and param messages in the same manner as the
primary process.

• For any of the standard files stdin, stdout, and stderr the primary opened
during its initialization, performs backup opens for the same files.

Only the standard files stdin, stdout, and stderr can have backup opens
automatically performed. Other files that the primary process may have opened must
be explicitly opened in the backup process by a call to __ns_backup_fopen.

Note that when the standard files are backup opened, the file states in the backup
process are not automatically set to the corresponding file states in the primary
process. If operations are performed on a standard file before __ns_start_backup
is called, it is your responsibility to ensure that the file state is up to date in the backup
process. (Refer to Retrieving File State Information in the Primary Process and
Updating File State Information in the Backup Process, later in this section.)

Opening a File With a Specified Sync Depth
Normally, you use the fopen function to open files in the primary process. The
__ns_fopen_special function performs the same operation as the fopen function,
but it also allows a sync depth to be specified.

The sync depth is the number of nonretryable write requests that must be remembered
by the opened process (server). It is used for writing operations that cannot be
repeated in the backup process without changing the results of the operation. For
more information about sync depth and nonretryable writes, see Updating File State
Information, later in this section.

After calling __ns_fopen_special, the primary process calls
__ns_fget_file_open_state to get the open state of the file, then passes the
information to the backup process through interprocess communication.

Retrieving File Open State Information in the Primary Process
After opening any files required by the application, the primary process calls
__ns_fget_file_open_state function to retrieve open state information for an
open file. The primary process sends the open state information to the backup
process through interprocess communication. The backup process receives the
information through $RECEIVE, then calls the __ns_backup_fopen function to do a
backup open of the file.

Opening Files in the Backup Process
The backup process opens files that have been opened by the primary process by
performing a backup open. A backup open is a form of file open that permits a file to

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 7

Retrieving File State Information in the Primary
Process

be open concurrently by both the primary and backup processes. The backup process
performs a backup open of a file by calling the __ns_backup_fopen function.

Before doing a backup open of a file, the backup process must obtain certain file open
state information from the primary process. The primary process obtains this
information by calling the __ns_fget_file_open_state function, then passes the
information to the backup process through interprocess communication.

The __ns_backup_fopen function does not set the file state in the backup process to
the corresponding file state in the primary process. If the primary process has
performed operations on a file before it has been backup opened, it is your
responsibility to ensure that the file state is up to date in the backup process.

Retrieving File State Information in the Primary Process
The primary process calls the __ns_fget_file_state function to get the current
state of a file. The primary process then sends the state information to the backup
process through interprocess communication. The __ns_fget_file_state function
does not handle key-position data from Enscribe files.

Updating File State Information in the Backup Process
The backup process reads from the $RECEIVE file the file state information sent by
the primary process. The backup process then calls the __ns_fset_file_state
function to update its memory with the file state information.

Terminating the Primary and Backup Processes
You can terminate the primary and backup processes by calling either the exit
function or the terminate_program function. These functions cause both the
primary and backup processes to stop when:

• The calling process is executing as a Guardian (rather than OSS) process.

• They are called from the primary process.

• Normal termination is specified. (That is, exit(0) or
terminate_program(0,...) .)

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 8

Organizing an Active Backup Program

Organizing an Active Backup Program
This subsection expands on the overview presented at the beginning of this section to
explain how to put together an active backup program. Figure 27-1 shows a general
structure for an active backup program.

When an active backup program begins execution, it must first determine whether it is
executing as the primary process or the backup process by calling
PROCESS_GETPAIRINFO_.

The code for the primary process of a process pair consists of two phases: an
initialization phase and an application processing phase. During the initialization
phase, the primary process performs the tasks associated with creating and starting
the backup process. During the application phase, the primary process executes the
application and sends current state information to the backup process.

The code for the backup process consists of a message-processing loop, followed by
an initialization phase and application processing phase. The initialization and

Figure 27-1. Active Backup Program Structure

VST132.VSD

Initialization Phase

OPEN Files

Get file open state info

Create backup process

Send file open stats to
 backup

Main Processing Loop

READ entry from terminal

READ record from disk

Update record in memory

Send state info to backup

WRITE updated record to
disk

Message-Processing Loop

READ $RECEIVE
 Y

Primary failure?
N

Update memory with
 current state

Take over Execution

Create new backup

Continue application
 processing

READ...

READ...

Update...

Send…

WRITE...

Is current process the primary or the backup?

Primary Process Backup Process

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 9

Primary Process Organization

application processing phases are essentially the same as for the primary process; that
is, the backup process (once it becomes the new primary process) must also create a
backup process and execute the application. The message-processing loop monitors
and processes messages received from the primary process and CPU.

Primary Process Organization
A process executing as the primary process proceeds as follows:

Initialization Phase
During the initialization phase, the primary process does the following:

1. Calls __ns_start_backup to start and initialize the backup process, typically in
another CPU. The backup process is given the same name as the primary
process.

2. Opens the backup process by calling FILE_OPEN_ so that the primary process
can send messages to the backup process. The messages contain the current
state information.

3. Opens any files required for its execution.

4. Calls __ns_fget_file_open_state to get open state information for the files it
just opened, and then sends the information to the backup process. The primary
uses interprocess communication (for example, WRITE[X]) to write the state
information to the backup process, which receives it through $RECEIVE.

The primary process can now begin processing the application.

Application Processing Phase
During application processing, the primary process does the following:

• At critical points during execution, sends updated state information to the backup
process. The information includes control state, application state, and file state
information. The primary process gets file state information by calling
__ns_fget_file_state, and then uses interprocess communication (for
example, WRITE[X]) to write all the state information to the backup process, which
receives it through $RECEIVE.

Note that each state update message must completely define a continuation point
in the backup process.

• Monitors the backup process. If the backup process fails, the primary process
should start a replacement backup. To monitor the backup process, the primary
process can use one of several methods, as described later in this section under
Monitoring the Backup Process.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 10

Backup Process Organization

Backup Process Organization
A process executing as the backup process proceeds as follows:

Message-Processing Loop
At the beginning of its execution, the backup process does the following:

1. Opens $RECEIVE so that it can receive messages from:

• The operating system, indicating that the primary process or primary CPU has
failed.

• The primary process, containing current state information.

2. Calls MONITORCPUS to inform the system that the backup process is to be
notified if the primary CPU fails.

Note that if the primary process fails (rather than the CPU), the backup process is
automatically notified; the backup does not need to request such notification.

3. Enters a message-processing loop in which it reads messages from $RECEIVE
and takes appropriate action depending on the type of message:

• If the message contains open state information for files opened by the primary
process, the backup process calls __ns_backup_open to perform a backup
open of the files opened by the primary process. The backup open allows files
to be open concurrently by the primary and backup processes. After calling
__ns_backup_open, the backup process continues executing the message-
processing loop.

Note that the stderr, stdin, and stdout files are automatically backup
opened and do not require an explicit open.

• If the message contains current state information, the backup process takes
appropriate action to update its memory with the state information. For file
state information, the backup process calls __ns_fset_file_state. For
control and application state, processing is application-dependent.

The backup process then continues executing the message-processing loop.

• If the message indicates that the primary process or CPU has failed, the
backup process takes over execution. The new primary process then exits the
message-processing loop and begins the initialization phase.

• If the message is of an unexpected type, that is, if the message is neither state
information from the primary process nor an indication of process or CPU
failure from the system, the backup process sends an appropriate reply. For
example, such a situation occurs in the following scenario:

1. A primary server process fails.

2. The backup process takes over.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 11

Updating State Information

3. A new backup process is created within the same CPU and with the same
PIN as the old primary process.

4. Before being notified of the change, a client process sends a message to
what it thinks is the primary server process, but what is actually the new
backup process.

The backup process checks the source of incoming messages so that it can
send an appropriate reply in such cases. The backup then continues
executing the message-processing loop.

Initialization and Application Processing Phases
The new primary process performs initialization and application processing activities
that are essentially the same as for the original primary process:

1. Creates and starts a new backup process. The new backup process is then ready
to take over if the primary process fails. The new primary process repeats the
initialization steps described earlier under Primary Process Organization.

2. Resumes application processing at the point in execution indicated by the most
recent state information. The new primary process sends state information to the
new backup process and monitors the backup process and CPU as described
above under Primary Process Organization.

Updating State Information
An important step in creating an active backup program is to develop a strategy for
updating state information. State information provides the backup process with the
data it needs to take over execution if the primary process fails. The information must
be correct and consistent so that the backup process can continue processing without
errors.

Updating state information involves saving information at a given logical point in
processing and passing it to the backup process so that the backup process can take
over execution at that point rather than starting at the beginning of execution. The
particular information determines where execution will resume in the backup process,
as illustrated in Figure 27-2. Note that for each update point in the primary process
there is a corresponding continuation point in the backup process. (Note that
Figure 27-2 is conceptual and does not use actual C language statements.)

Note. The new backup process can be started in the same CPU as the original primary
process or in a different CPU. The choice of which CPU to use is application-dependent.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 12

Updating State Information

The primary process sends state information to the backup process at various points
during execution. Meanwhile, the backup process enters a message-processing loop
in which it receives state information and failure messages. If no failure occurs, the
backup updates its memory with the state information and continues in the loop. If a
failure occurs, the backup takes over execution at the continuation point indicated by
the most recent state information.

This subsection describes what types of information are included in the state
information and gives guidelines for deciding specifically what information to update
and at what points in a program’s execution the information should be updated. The

Figure 27-2. Updating State Information

VST133.VSD

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 13

Types of State Information

actual techniques and procedures you use to format, send, and receive the messages
containing the state information are described earlier in this section under Organizing
an Active Backup Program.

As a programmer, you must determine where to do the updates within your program
and what information you want to include in each update. Enough continuation points
must be provided, and each must contain enough information, so that if the primary
process fails, the backup process can take over execution while maintaining the
integrity of any data currently in use. Keep in mind that errors can result if you fail to
include all the data that has been modified.

The number and frequency of continuation points you should provide depend on the
degree of recoverability you require. As an extreme example, a primary process, after
execution of each program statement, could send its entire data area to the backup
process. A program of this type would be recoverable after each statement. But
because of the amount of system resources needed, the program would be extremely
time-consuming and inefficient.

Processes typically update only elements that have changed since the last update.
This minimizes the update message length and message-handling overhead.

In developing a strategy for updating state information, you need to decide:

• What information to update

• Where within your program to place the update points

• How frequently to do the updates

Types of State Information
There are three types of state information:

• Control state defines the logical points in the backup process at which execution
is to resume if the primary process fails.

• File state consists of disk file sync blocks. Sync blocks contain control information
about the current state of a disk file, including the file's sync ID. You can use the
sync ID to ensure that no write operation is duplicated when the backup process
takes over for the primary process.

• Application state gives the backup process the data values it needs to take over
execution. Application state information may include file buffers and current values
of process variables.

An update message from the primary process to the backup process must completely
define a continuation point; that is, it must provide control state, application state, and,
if I/O is done in the program, file state information.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 14

Updating Control State Information

Updating Control State Information
Control state information is used by the backup process to determine where to take
over execution from the primary process. In many cases, a single scalar value is
sufficient. For example, in Figure 27-3, a simple loop reads data from a terminal and
processes it. (Note that Figure 27-3 is conceptual and does not use actual C language
statements.)

The loop counter, i, is used to determine where to resume execution in the backup
process. The update point is placed immediately after the READ. Suppose a failure
occurs at point when i = 5. The backup process then continues execution at the
previous continuation point, for which i = 4. item[4] is processed and the user must
reenter item[5]. Now suppose the failure occurs at point while i = 5. The backup
process resumes at the just-defined continuation point, processes item[5], then loops
to read item[6]; in this case, the failure is transparent to the user.

Figure 27-4 shows another example of updating control state. In this example, the
value of a switch is sent to the backup process. There, in the event of a takeover, the
switch determines where processing is to continue by selecting the appropriate case.

Figure 27-3. Control State Example

VST134.VSD

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 15

Updating File State Information

Updating File State Information
During application processing, I/O operations might be performed. At certain points in
the program, the primary process must obtain file state information and send it to the
backup. File state information includes file pointers and file synchronization
information. File buffers are not included in the file state; they are included in the
application state.

Synchronizing File Operations
File synchronization information is used by the server to determine whether an
operation by a backup process after a failure of its primary process is a new operation
or a retry of an operation just performed by the primary process. The information
allows the server to ensure that no write operation is duplicated when a backup
process takes over from its primary process. File synchronization information is
contained in a file’s sync block, which can be sent to the backup process at the update

Figure 27-4. Using Switch Statement to Determine the Continuation Point

VST135.VSD

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 16

Updating File State Information

points. Basic file sync data can be obtained using the _ns_fget_file_state
function. For key-sequenced files FILE_GETSYNCINFO_ is required.

The need to prevent duplicate file operations is illustrated in the following example. A
primary process completes the following write operation successfully but fails before
updating state information for the backup process.

Execution -> ...Update state information...
resumes here
 err = POSITION (F1, -1D); /*position to
eof*/
 err = WRITE (F1, buff);

 Primary fails here

Upon taking over from the primary process, the backup process reexecutes the
operations just completed by the primary process. If the WRITE were performed as
requested, the record would be duplicated at the new end-of-file location.

To prevent a write operation already performed by the primary process from being
duplicated by the backup process, the sync-depth parameter of the
__ns_fopen_special function must be specified as a value greater than zero when
opening the file. For a file opened in this manner, a sync ID in the sync block is used
to identify the operation about to be performed by the backup process in the event of a
primary process failure. If the backup process requests an operation already
completed by the primary process, the server, through use of the sync ID, can
recognize this condition. Then, instead of performing the requested operation again,
the server returns just the completion status of the original operation to the backup
process. (The completion status was saved by the system when the primary process
performed the operation.) However, if the requested operation has not been
performed, it is performed and the completion status is returned to the backup process.
The action taken by the server is invisible to the backup process.

The server can save the completion status and reply data of the latest operations
against a file and relate those completions to operations requested by a backup
process upon takeover from a failed primary process. The maximum number of
completion statuses that the system is to save is specified in the sync-depth
parameter in the __ns_fopen_special function call. The sync-depth value is
typically equal to the number of write operations to a file without an intervening save of
the file’s sync block. In most cases, the sync-depth value is 1; that is, the sync block
state should be updated after each WRITE. The sync-depth value cannot exceed
15.

If the primary process fails, the backup process is notified by the operating system.
The sync information received in the most recent state update message synchronizes
the retry operations that the backup process is about to perform with any writes that
the primary was able to complete before it failed. The backup process then retries
each write in the series (in the same order as the primary process). If any operation
was completed successfully by the primary process, the server does not perform the
operation; instead, it just returns the completion status and data to the backup process.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 17

Updating File State Information

The preceding example is changed to reflect the use of synchronization information:

Execution ----->...Update control and application state
resumes here ...Update sync block...

 err = POSITION (F1, -1D); /*position to
eof*/
 err = WRITE (F1, buf);

 Primary fails here

 Restart point
 ...Backup takes over...
 ...Receive sync information

 err = POSITION (F1, -1D); /*position to
eof*/
 err = WRITE (F1, buf);/*System detects
that*/
 /*operation has*/
 /*already been*/
 /*performed and*/
 /*returns
completion*/
 /*status*/

In this case, the write by the primary process completed successfully. On the second
pass, the backup process receives a saved copy of the response made to the primary
process before it failed.

See below for more information on buffered file operations.

Updating File State for Buffered File Operations
File operations can be buffered; however, the buffer is not part of the file state. This
affects input and output streams differently.

For an input stream, the file position is a component of the file state. The call to
__ns_fset_file_state updates the file position for the backup process to the file
position of the primary process at the time __ns_fget_file_state was called.
Thus, buffering is not a problem for a disk-based input stream. However, buffered but
unread input from a nondisk device will be lost. Buffering can be disabled by calling
the setvbuf or setnbuf function.

Note. When buffered file operations are used, a call to a write function in your program does
not necessarily correspond to exactly one write operation at the operating-system level, where
the sync-depth value applies. An operating-system write operation is performed only in the
following situations:

• A flush operation is performed (for example, fflush, fclose, or exit is called).

• The buffer is filled (buffer sizes are documented in the C/C++ Programmer’s Guide).

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 18

Updating Application State Information

For an output stream, a call to a write function may leave a partially filled, unflushed
buffer. The __ns_fget_file_state function does not cause a flush; it is your
responsibility to ensure that unflushed buffers are handled appropriately. Three
approaches are:

• Perform a flush operation (for example, by a call to the fflush function) before
getting file state information.

• Ignore the effects of unflushed buffers (for situations where unflushed buffer
contents are not critical to the application).

• Specify unbuffered file operations by calling the setvbuf or setbuf function.

Note that whether buffering is enabled or disabled, and whether a user-specified or
system-specified buffer is used, are each specified independently and can be different
in the primary and backup processes.

Updating Application State Information
Application state information is the data values needed by the backup process to take
over execution from a failed primary process. This may include local variables, all or
part of the data stack, and data buffers. What constitutes necessary and sufficient
application state information is highly application-dependent.

Typically, file buffer state updating occurs just before writing to a disk file; the data
about to be written is sent to the backup process. Careful selection of which data
buffers (and corresponding file synchronization information) to send can increase the
efficiency of an active backup program. An example of file buffer state updating is an
entry received from a terminal: the data buffer state is updated immediately after the
read to minimize the possibility that the operator would have to reenter data.

Various performance tradeoffs can be made when determining what constitutes the
application state. For example, suppose an item of information can be either updated
in the backup process (by the primary process sending the information to the backup
process) or recomputed in the backup process on takeover. If the primary process
sends the information to the backup process, the performance of the primary process
is lower (because it is sending state update messages), but the time required for the
backup process to take over is relatively fast. Conversely, if the backup process
recomputes the state, the performance of the primary process is relatively high
(because it is not sending update messages), but the performance of the backup
process is relatively low (because it must recompute the state information).

Guidelines for Updating State Information
When devising a strategy for updating state information, there are two major
considerations:

• The type of I/O done by the program. In general, when the backup process takes
over for the primary process, repeating I/O operations ensures that they completed

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 19

Guidelines for Updating State Information

successfully. But certain I/O operations cannot be repeated without changing the
results of the program.

• The tradeoff between recoverability and performance. The more update points a
program has, the greater the degree of recoverability, but the lower the
performance of the program.

Locating Update Points for Reads and Writes
The most important consideration in updating state information is to preserve the
results of certain critical I/O operations. Many I/O operations cannot be repeated
without changing the results of the program; therefore, you need to update file and
control state to ensure that if the primary process fails, I/O operations that completed
successfully are not duplicated in the backup process.

For purposes of updating state information, I/O operations can be classified as either
retryable or nonretryable. A retryable operation can be repeated indefinitely with the
same results. A nonretryable operation may cause erroneous or inconsistent results if
repeated.

Retryable reads do not require file state updating; if the backup process takes over, it
can reread the data. Most disk reads are retryable. Reads from the terminal are
generally considered nonretryable. An update point should be placed immediately
after each nonretryable read to protect the data just read. For reads from the terminal,
this means that the user will not need to reenter the data.

Retryable writes should be repeated in the backup process to ensure that they are
performed successfully. To minimize the chance of error, the continuation point should
be placed immediately before the write, because at that point, the exact information to
be written is known.

A nonretryable write is one that, if repeated, may cause erroneous or inconsistent
results. Examples of nonretryable writes are a write to the end-of-file and the printing
of forms. The sync ID can be used to detect and negate duplicate requests for
nonretryable operations. Continuation points should still precede the write, but special
case procedures are required to ensure consistent results. For example, a report to a
line printer might need to be restarted from the last page, or a magnetic tape might
need to be repositioned.

The following table summarizes the strategy for placing update points for I/O
operations:

Each update point should include control state information, application state
information, and, if the update precedes a write to a disk file, file state information.

Adherence to these guidelines ensures that an application program can recover from
disk file operations and, in most cases, terminal operations.

 Reads Writes

Retryable None required Immediately before

Nonretryable Immediately after Immediately before, but use special case procedures

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 20

Example of Updating State Information

Performance Versus Recoverability
In placing update points, you need to consider the tradeoff between performance and
the degree of recoverability desired. For example, an application that reads and
produces a summary of a file that contains hundreds of thousands of records may not
require a continuation point during the read stage, because all the reads are retryable.
But it might be desirable to include some degree of recovery so that, in the event of
failure, it would not be necessary to repeat all the reads. On the other hand, placing an
update point after every read would not be practical. A reasonable compromise might
be to place an update point after every hundred, or every thousand, reads.

You should keep to a minimum the number of times you update state information in a
processing loop and the amount of data in each update. But you must be sure that any
update point that also defines a continuation point yields a valid program state. For
example, you might update the data stack before entering a loop to ensure that the
calling chain is saved, then, within the loop, update only the data that is changed within
the loop.

Example of Updating State Information
The following example illustrates the placement of state information update points.
The example is a simple transaction that reads data from a terminal and uses it to
update a database record.

Records have the form:

 account_no current_balance credit_limit

They are defined by the following structure:

struct{
 long account_no;
 long current_balance;
 long credit_limit;
}buf2;

Data read from the terminal is defined as follows:

struct{
 long acct_no;
 long amount;
}buf1;

The transaction cycle is as follows:

err = WRITEREAD (terminal, buf1,...); /*returns acct_no
 and amount */
err = POSITION (account_file, buf1.acct_no);
err = READUPDATE (account_file, buf2,...);
x = buf2.current_balance + buf1.amount;
if (x > buf2.credit_limit)
 Credit limit exceeded...
else {

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 21

Example of Updating State Information

...Update account balance
}

An insufficient number of update points is added to the transaction:

/*First update point*/
cnt = 1;
...Update cnt (idle state)...

err = WRITEREAD (terminal,buf1,...); /*returns account_no
 and amount*/

/*Second update point. Include control state and terminal
 data*/
cnt = 2;
...Update cnt, buf1...

err = POSITION (account_file, buf1.acct_no);
err = READUPDATE (account_file, buf2,...);
x = buf2.current_balance + buf1.amount;
if (x > buf2.credit_limit)
 Credit limit exceeded...
else {
 buf2.current_balance = x;
 err = WRITEUPDATE (account_file, buf2, ...);
 err = WRITE (terminal, buf1,...);
}

The first state update identifies the program state as being idle (or waiting for input
from the terminal). The state information consists only of a counter variable set to 1.
The variable is used to select the appropriate continuation point in a switch statement
in the backup process.

The second state update occurs immediately after reading the terminal input. The
state information consists of:

• The counter variable (to determine where to resume execution in the backup
process)

• The data read from the terminal

The assumption is that, because the transaction is driven by the data read from the
terminal, that data is sufficient for the backup process to perform the identical
operation. This assumption is incorrect, however. A problem arises if a failure occurs
just after the WRITEUPDATE of the account_file. The problem is illustrated in the
following transaction:

err = WRITEREAD (terminal,buf1,...); reads account_no = 12345,
 amount = $10

/*Second state information update. Include control state and
terminal data*/
cnt = 2;
...Update cnt, 12345, $10...

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 22

Example of Updating State Information

err = POSITION (account_file, 12345D);
err = READUPDATE (account_file, buf2,...); returns the following:

 account_no current_balance credit_limit
 12345 $485 $500

x = $485 + $10;
if (x > $500) ...
current_balance = x;
err = WRITEUPDATE (account_file, buf2, ...); writes the following:

 account_no current_balance credit_limit
 12345 $495 $500

*********** FAILURE OCCURS HERE**********

The backup process resumes with the latest application state information:
account_no = 12345 and amount = $10.

case (cnt = 2):
err = POSITION (account_file, 12345D);
err = READ (account_file, buf2,...); reads the following:

 account_no current_balance credit_limit
 12345 $495 $500

x = $495 + 10;
IF (x > $500)...

Here, the test fails because the update to disk completed successfully and
current_balance has already been updated. The user is given an indication that
account number 12345 has exceeded its credit limit; therefore, the purchase is
refused. However, the balance in account 12345 reflects that a purchase was made.

An additional update point is now added to the transaction cycle:

/*First update point*/
cnt = 1;
...Update cnt (idle state)...

err = WRITEREAD (terminal,buf1,...); /*returns account_no
 and amount */

/*Second update point. Include control state and*/
/*terminal data */
cnt = 2;
...Update cnt, buf1...

err = POSITION (account_file, account_no);
err = READUPDATE (account_file, buf2,...);
x = buf2.current_balance + buf1.amount;
if (x > credit_limit)
 credit limit exceeded...
else
 buf2.current_balance = x;

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 23

Saving State Information for Multiple Disk Updates

/*Third update point. Include control state (cnt), data
 state (buf2), and file state (account_file)*/
cnt = 3;
...Update cnt, buf2, account_file...

err = WRITEUPDATE (account_file, buf2, ...);
err = WRITE (terminal, buf1,...);

The third update point identifies the program state as “preparing to write an updated
record to disk.” The state information consists of:

• The counter variable (control state)

• The updated record (data state)

• The disk file’s sync information (file state)

If the primary process fails between update points 1 and 2, the backup process
reissues the WRITEREAD to the terminal. If the primary process fails between update
points 2 and 3, the backup process uses the terminal input and continues processing
the transaction. If the primary process fails after update point 3, the backup process
uses the current state information to reexecute the write to disk.

Note that update point 2 could be omitted. If this were done, a failure between update
points 2 and 3 would require the operator to reenter the transaction.

Saving State Information for Multiple Disk Updates
When performing a series of updates to one or more disk files, you can save state
information for those updates at one point in the program instead of multiple points.
This results in lower system usage.

The program should be structured so that the series of writes needed to update a file
are performed in a group. For each file to be updated in this manner, you should
specify the sync-depth parameter of the FILE_OPEN_ procedure as the maximum
number of calls to the WRITE[X] procedure that are made between points at which
state information is updated. Then, just before performing sync-depth writes to the
file, update the state information, including the file’s sync block and the data buffers
about to be written to the file.

Providing Communication Between the
Primary and Backup Processes

Active backup programs require a method for communication between the primary and
backup processes and between the backup process and the operating system. HP
recommends using the Guardian interprocess communication facility for:

• Sending state information from the primary process to the backup process.

• Receiving state information in the backup process.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 24

Sending Messages From the Primary to the Backup

• Receiving system status messages in the backup process. The system messages
tell the backup process when the primary process or CPU has failed.

This subsection gives a brief overview of communication between the primary and
backup processes. The procedures of the Guardian interprocess communication
facility are described in detail in the Guardian Procedure Calls Reference Manual. The
use of those procedures for communicating between processes is described in
Section 6 of this manual, Communicating With Processes.

Your program can use the FILE_OPEN_, WRITE[X], and READ[X] procedures in the
following way:

1. The primary process calls FILE_OPEN_ to open the backup process.

2. The primary process calls WRITE[X] to send state information messages to the
backup process.

3. The backup process calls FILE_OPEN_ to open the $RECEIVE file.

4. The backup process calls READ[X] to read status and state information messages
from the $RECEIVE file. The $RECEIVE file contains the state information
messages sent by the primary process and execution status messages sent by the
system.

You can implement a protocol in which the backup process replies to the primary
process by using the WRITEREAD[X], READUPDATE[X], and REPLY[X] procedures.

As explained later in this section, you can also use nowait I/O to allow the primary
process to check that the backup process has not failed.

Sending Messages From the Primary to the Backup
To send a message to the backup process, the primary process follows these steps:

1. Opens the backup process

2. Creates the message in a buffer

3. Sends the message to the backup process and, optionally, waits for a reply

To open the backup process, the primary process calls the FILE_OPEN_ procedure.
For example:

{
...Get backup process name and name length...
error = FILE_OPEN_(process_name, /*backup process name*/
 process_name_len, /*name length*/
 &backup_filenum); /*backup process file*/
 /*number returned*/
}

The FILE_OPEN_ procedure returns the file number of the backup process.

The time at which the open finishes depends on the way the backup process opens
$RECEIVE. See Section 6, Communicating With Processes, for details.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 25

Receiving Messages in the Backup Process

Once the backup process is open, the primary process can communicate with the
backup process by writing messages to the file number returned by the FILE_OPEN_
call. To send a message, the primary process can use either WRITE[X] (for one-way
communication only) or WRITEREAD[X] (for one-way or two-way communication).

The following example sends a state message to the backup process without
expecting a reply:

{
...
error = WRITEX (backup_filenum, /*file number of backup*/
 msg_buffer, /*Buffer containing state info*/
 length, /*length of state info*/
 count_written); /*number of bytes read by
 backup*/
...
}

Receiving Messages in the Backup Process
To receive messages from the primary process or the system, the backup process first
opens the $RECEIVE file, then reads messages from it. For two-way communication,
in which the backup process replies to the primary process, set the receive-depth
parameter of the FILE_OPEN_ procedure to a value greater than zero. For one-way
communication, in which the backup process does not reply to the primary process, set
the receive-depth parameter to zero.

The first word of a system message is always a negative message number. The
primary process can insert a positive number in the first word of a state information
message, thereby giving the backup process a means of distinguishing between
system messages and state information messages.

The following example opens and reads from $RECEIVE for one-way communication.
The program tests the first word of the message to determine whether it is a system
message or a state information message:

/*Open $RECEIVE*/
filename = "$RECEIVE";
length = 8;
error = FILE_OPEN_(filename, /*the $RECEIVE file*/
 length, /*length of filename*/
 &filenum, /*file number returned*/
 /*access*/
 /*exclusion*/
 /*nowait*/
 /*receive_depth*/);

/*Read and process message*/
err = READX (filenum, /*file number of $RECEIVE file*/
 msg_buffer, /*message returned*/
 count_read, /*bytes read*/);

/*Process message based on message number*/

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 26

Monitoring the Backup Process

switch (msg_buffer.number)
{
 case ... /*Processor failure*/
 case ... /*Process deletion*/
 ...Backup takes over for primary...
 case ... /*State information*/
 ...Update control state ...
 ... Update application state ...
 ... Update file state ...
}

Monitoring the Backup Process
When writing an active backup application, it is advisable to structure the primary
process to periodically check the backup process to ensure that it is running and ready
to take over in the event of a primary process failure. Some ways of monitoring the
backup process are discussed below.

Calling PROCESS_GETPAIRINFO_
You can monitor the backup process by calling the PROCESS_GETPAIRINFO_
procedure. This procedure returns the process handle of the backup process; if the
backup process does not exist (has terminated due to process or CPU failure, the
process handle has a null value). The examples at the end of this section show a
user-written C function that calls PROCESS_GETPAIRINFO_ to monitor the backup
process.

Using Nowait I/O
An alternative method for detecting a failed backup process or CPU is to use NOWAIT
I/O as follows:

• Open the backup process for nowait I/O (by specifying the appropriate parameter
in the FILE_OPEN_ call).

• When performing write operations to the backup process (for updating state
information), call AWAITIO[X] with a positive value for the timelimit parameter.
If the write to the backup process does not finish within the specified time limit, the
primary process can perform further checking to determine whether the backup
has actually failed.

Checking I/O Error Status
You can monitor the backup process simply by checking the error status code after an
I/O operation that sends state information to the backup process. If the backup
process no longer exists, an error condition is returned.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 27

Programming Considerations

Reading $RECEIVE
You can monitor the backup process by reading the $RECEIVE file in the same
manner as the backup process. The operating system sends a message to
$RECEIVE if the backup process fails.

Programming Considerations
Following are some general considerations for writing active backup programs in C.

Compile-Time and Linker Considerations
For TNS and accelerated programs, compiler and Binder issues are:

• The nonstoph header file contains the declarations that support active backup
programming. (The functions that support fault-tolerant programming are
implemented in TAL. By using the nonstoph header, the appropriate TAL
interface code is generated.) Functions declared in the nonstoph header are
defined in the cnonstop library file.

• HP provides two different file-reference models: the ANSI model and the alternate
model. Only the ANSI model supports fault-tolerant file operations (for example,
open with sync depth, backup open, get file state, and so on).

• EDIT files do not support fault-tolerant file operations. Therefore, the
ANSISTREAMS pragma must be specified during compilation of the main function
so that the standard files will be opened as ANSI files (code 180 files) instead of
EDIT files.

• Active backup programs must use the large-memory model. The large-memory
model uses 32-bit addressing and supports the wide-data model. Refer to the
C/C++ Programmer’s Guide for additional information about the large-memory
model.

• For application portability and compatibility with future software releases, HP
recommends that active backup programs use the wide-data model. In the
wide-data model, the data type int is 32-bits.

• Active backup C programs can include TAL code, but the TAL components of an
application cannot use passive backup programming techniques. Other mixed-
language programming is not allowed.

• An active backup program can be accelerated.

• An active backup program must run in the Common Run-Time Environment (CRE).

• An active backup program can run only as a Guardian process; it cannot run as an
OSS process.

For TNS/R native programs, compiler and linker issues are:

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 28

Run-Time Considerations

• The crtlnsh header file contains the declarations that support active backup
programming. (The functions that support fault-tolerant programming are
implemented in pTAL. By using the crtlnsh header, the appropriate TAL
interface code is generated.) Functions declared in the crtlnsh header are
defined in the crtlns library file.

• HP provides two different file-reference models: the ANSI model and the alternate
model. Only the ANSI model supports fault-tolerant file operations (for example,
open with sync depth, backup open, get file state, and so on).

• EDIT files do not support fault-tolerant file operations. Therefore, the
ANSISTREAMS pragma must be specified for compilation of the main function so
that the standard files will be opened as ANSI files (code 180 files) instead of EDIT
files.

• Active backup C programs can include pTAL code, but the pTAL components of an
application cannot use passive backup programming techniques. Other mixed-
language programming is not allowed.

• An active backup program must run in the Common Run-Time Environment (CRE).

• An active backup program can run only as a Guardian process; it cannot run as an
OSS process.

Run-Time Considerations
Run-time issues are:

• An active backup program can use the full range of memory management facilities;
no special support is needed. The primary and backup processes never need to
have the same memory state, and each process manages its memory
independently.

• The standard C files (stdin, stdout, and stderr) are automatically backup
opened (in the backup process). Any other files on which fault-tolerant operations
will be performed must be explicitly backup opened by the __ns_backup_open
function.

• Errors detected in the backup process are not automatically communicated to the
primary process; user code must be written to handle such processing.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 29

Comparison of Active Backup and Passive Backup

27 Fault-Tolerant Programming in C

Comparison of Active Backup and Passive
Backup

For the benefit of programmers familiar with the passive backup programming
techniques supported by TAL, this subsection provides an overview of the differences
between active backup programming and passive backup programming.

Active backup differs from passive backup in that active backup does not have
Guardian procedures equivalent to the various passive backup CHECK* routines. The
active backup programmer must explicitly provide for this function through various
coding techniques and use of C functions described later in this section.

In active backup programming, the programmer must do more explicit programming
than in passive backup programming. However, active backup programming provides
the following advantages:

• Active backup programs can have better performance, because their fault-tolerant
functions can be specifically tailored to the application.

• It is potentially easier to convert ported reusable code components and
applications to run in a fault-tolerant manner, because any hidden state information
need not be sent to the backup process.

Table 27-1 summarizes the differences between active backup programming and
passive backup programming. Native processes cannot call CHECKPOINT[MANY];
they must call CHECKPOINT[MANY]X instead.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 30

Comparison of Active Backup and Passive Backup

Table 27-1. Differences Between C Active Backup and TAL Passive
Backup (page 1 of 2)

To Perform This Task
An Active Backup
Program Does This

A Passive Backup
Program Does This

Start backup process Primary calls __ns_start_backup. Primary calls
PROCESS_CREATE_.

Establish
communication
between primary and
backup processes

Primary opens backup, and
backup opens $RECEIVE.

Protocol is application-specific,
implemented with Guardian read
and write routines.

Backup calls
CHECKMONITOR; primary
calls CHECK* routines.
Protocol defined by the
various CHECK* routines.

Monitor primary CPU
by backup process

Backup calls MONITORCPUS;
backup is explicitly coded to check
for failure messages.

Backup calls
MONITORCPUS.
CHECKMONITOR checks for
failure messages.

Monitor backup CPU
by primary process

Primary can call
PROCESS_GETPAIRINFO_ or
read messages from $RECEIVE
or check for failures when
communicating with backup.

Same as active backup
(explicit code needed).

Backup open files for
the backup process

Primary calls
__ns_fget_file_open_state, sends
open state to backup. Backup
calls __ns_backup_fopen.

Primary calls
FILE_OPEN_CHKPT_.

Retrieve file state
information and send it
to backup

Primary calls __ns_fget_file_state
and writes state information to
backup.

Primary calls
CHECKPOINT[MANY][X].

Set file state in the
backup process

Backup calls __ns_fset_file_state
after receiving file state info from
primary.

Done automatically while
backup is running in
CHECKMONITOR.

Define continuation
points

Primary sends control state
information to backup.

Continuation point defined by
location of most recent
CHECKPOINT[MANY][X]
call.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 31

Comparison of Active Backup and Passive Backup

Send data state
information to backup
process

Primary sends data state to
backup through interprocess
communication. Backup must
update its own memory.

Primary calls
CHECKPOINT[MANY][X].

Define content of data
state information

Application-dependent. All of memory.

Implement message-
processing loop in
backup, process
messages, and take
over execution if
primary fails

Explicitly coded by programmer. Initiated by the call to
CHECKMONITOR.

Table 27-1. Differences Between C Active Backup and TAL Passive
Backup (page 2 of 2)

To Perform This Task
An Active Backup
Program Does This

A Passive Backup
Program Does This

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 32

Active Backup Example 1

Active Backup Example 1
A simple example is now used to illustrate how to structure an active backup program.
The following application consists of a loop that increments a counter.

/*This function does the work of the application, which is
 to increment a counter. To avoid overflow, the
 application wraps around after 10,000 iterations*/

int main (void)
{
 short counter;

 for (;;)
 {
 counter++;
 if (counter > 10000) counter = 0;
 /*Code that uses the counter value would go here*/
 }
}

The rest of this subsection shows the steps involved in creating an active backup
version of this program. The program is coded in a modular style, with the various
active backup activities written as separate functions. You can use this example as a
template for writing your own active backup applications.

To simplify the presentation, error conditions returned by C library routines and
Guardian procedures are not handled.

Figure 27-5 and Figure 27-6 show the functional flow for the primary and backup
processes, respectively. The names outside the boxes indicate user-written functions
that perform the activities.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 33

Active Backup Example 1

Figure 27-5. Primary Process Functional Flow

Primary or
Backup?

Create
Backup
process

Perform
Primary

processing

is_backup

Primary

initialize_backup

Initialization
Phase

Application
Processing Phase

primary_processing
Backup

See Figure
27-6

Begin
Processing

main

VST136.VSD

Executer
application
statements

Update state
information

Does backup
exist?

Create
Backup
process

Send state
information to

Backup

update_backup

Backup exists
initialize_backup

No

Yes

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 34

Active Backup Example 1

Figure 27-6. Backup Process Functional Flow

Primary or
Backup?

Perform
backup

activities

Read
$RECEIVE

is_backup

Primary

backup_processing

Initialization
Phase

Application
Processing Phase

primary_processing

Backup

See Figure
27-5

Begin
Processing

main

VST137.VSD

Primary
failure?

Create new
backup

Take over
primary

processing

initialize_backup

See Figure
27-5

Update
memory with
current state
information

Message
Processing

Loop

Yes

No

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 35

Program Declarations

Program Declarations
The particular declarations required by an active backup program depend on the
application. The following are used in this example.

#include and #pragma Lines
The following #include and #pragma lines provide the declarations required by the
program. The conditional statement #ifdef _TNS_R_TARGET causes the lines that
follow it to be included only for native programs, while the lines that are between the
#else line and the #endif line are included only for TNS and accelerated programs.
For native programs, the pragmas search "$system.system.crtlns" and
runnamed must be included in the compiler command line.

#ifdef _TNS_R_TARGET
/* for native programs only */
#include <crtlnsh> nolist

/* Note: Include the pragmas 'search "$system.system.crtlns"'
*/
/* and "runnamed" in the compiler command line for
*/
/* native programs.
*/

#else
/* for TNS and accelerated programs only /*
#pragma wide
#pragma search "$system.system.cnonstop"
#include <nonstoph> nolist
#endif

#include <stringh> nolist
#include <stdioh> nolist

#include <talh> nolist

#include <cextdecs (FILE_GETRECEIVEINFO_,
 FILE_OPEN_,
 MONITORCPUS,
 PROCESS_GETINFO_,
 PROCESS_GETPAIRINFO_,
 PROCESS_SETINFO_,
 PROCESSHANDLE_COMPARE_,
 PROCESSHANDLE_DECOMPOSE_,
 READUPDATEX,
 REPLYX,
 WRITEX)> nolist

#include "$system.zsysdefs.zsysc
(zsys_ddl_phandle,zsys_ddl_receiveinformation)" nolist

#include "$system.zspidef.zfilc (constants)" nolist

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 36

Program Declarations

#include "$system.zspidef.zspic (zspi_ddl_char8,zspi_ddl_unit)"
nolist

#pragma search "$system.system.cnonstop" for TNS and accelerated
programs, or search "$system.system.crtlns" in the compiler command line
for TNS/R native programs, causes the library containing the C functions for fault-
tolerant support to be bound into the program.

#pragma wide specifies the wide-data model (TNS and accelerated programs only).

nonstoph for TNS and accelerated programs, or crtlnsh for native programs,
provides declarations required by the C functions for active backup programming.
stringh and stdioh are standard header files. cextdecs includes declarations for
the following Guardian procedures required by the program:

• FILE_GETRECEIVEINFO_, which is called by the backup process to get
information about messages it receives.

• FILE_OPEN_, which is called by the primary process to open the backup process,
and by the backup process to open $RECEIVE.

• MONITORCPUS, which is called by the backup process to monitor the primary
process CPU. The operating system sends the backup process a “processor
down” message if the monitored CPU fails.

• PROCESS_GETINFO_, PROCESS_GETPAIRINFO_, and
PROCESSHANDLE_DECOMPOSE_, which are used to obtain information about
the primary and backup processes.

• PROCESSHANDLE_COMPARE_, which is called by the backup process to
determine if a message it received was sent by the primary process.

• READUPDATEX, which is called by the backup process to receive messages from
the primary process through $RECEIVE.

• REPLYX, which is called by the backup process to reply to messages it receives.

• WRITEX, which is called by the primary process to send messages to the backup
process.

Message Declarations
The program uses four message formats: two defined by the operating system and
two defined by the program:

• CPU_DOWN is a system message that indicates that a monitored CPU is down.
This message is used to notify the backup process, if the primary process CPU
fails, so that the backup process can take over processing.

• PROCESS_DELETION is a system message that indicates that a process has
terminated. This message is used to notify the backup process, if the primary
process terminates, so that the backup process can take over processing.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 37

Program Declarations

• UPDATE_MESSAGE is an application-defined message that contains the current
state information. In this example, the value of the counter serves as both
application state and control state information: it is the data needed by the backup
process to continue processing (application state), and it defines the point at which
processing is to resume (control state). The primary process passes this value to
the backup process, which updates its state information.

• IGNORE_MESSAGE is an application-defined message number that, for internal
processing, is substituted for the number of a message that has been received
from a source other than the primary process or the system. After a reply is sent
with an indication of OWNERSHIP_ERROR, no further action is taken on such a
message.

The message declaration portion of the program serves the following purposes:

• Provides macros that define the message numbers. Note that the system
message numbers are negative and the application-defined message numbers are
positive.

• Declares a structure for each of the three message formats. The first member of
the structure contains the message number, and the second member is a union
with one member per message format. The information contained in the system
messages is not used (only the message number is used), so the exact structure is
not defined.

Two other elements are defined that are used by the backup process if it receives a
message it does not expect: IGNORE_MESSAGE is used as a message number and
is placed in the message number portion of the message structure, and
OWNERSHIP_ERROR is an error value that is returned to the sender.

The message declarations are:

/*message numbers*/
#define CPU_DOWN -2 /*system message*/

#define PROCESS_DELETION -101 /*system message*/
#define UPDATE_MESSAGE 1 /*application message*/

#define IGNORE_MESSAGE 0 /*application message*/
#define OWNERSHIP_ERROR 200 /*used by backup*/

#define FEOWNERSHIP 200

#define IS_BACKUP 6 /* Returned from PROCESS_GETPAIRINFO_*/

#define RECEIVE_FILENAME "$RECEIVE"

/* Maximum file name length (plus 1 to allow for null
terminator)*/

#define MAXNAMELEN 36

/* Process handle size and null process handle. A phandle is 10
words long; a null phandle has all 10 words set to -1 */

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 38

Program Declarations

#define PHANDLESIZE 10

#define NULLPHANDLE {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}

/* Primary process attribute code for PROCESS_SETINFO_ */

define PRIMARY_ATTRIBUTE 47

/* File number of the backup process. Used by the primary
process to send information to the backup */

short backup_filenum;

/* Global data */

short counter = 0;

/* Variable for use by the backup to hold the counter state
value sent by the primary */

short counter_state;

/*The following structure defines the various message formats
used by this program.*/

typedef struct
{
 short msgnumber; /*message number*/
 union

 {

 /*one member for each message format*/
 /*UPDATE_MESSAGE message*/
 short counter_value;

 /*CPU_DOWN message*/
 short cpu_down_info;

 /*PROCESS_DELETION message, variable-length fields
 are assumed to have zero length*/
 short process_death_notification_info [40];

 } msg_variants;
} message_format;

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 39

Creating and Starting the Backup Process

Miscellaneous Declarations
Finally, the program contains miscellaneous declarations to define the following:

• A value to be returned by the PROCESS_GETPAIRINFO_ procedure, used to
determine whether the process is running as the primary or backup process.

• The $RECEIVE file name.

• The maximum file-name length.

• The size of the process handle, and a null process handle. A process handle is
10 words long; a null process handle has all ten words set to -1.

• The file number of the backup process. This number is used by the primary
process to send information to the backup.

• A variable to be used by the backup process to hold the counter state value sent
by the primary process.

The declarations are as follows:

#define RECEIVE_FILENAME "$RECEIVE"

/*Maximum file name length (plus 1 to allow for null
 terminator)*/
#define MAXNAMELEN 36

/*Process handle size and null process handle. A phandle is 10
words long; a null phandle has all 10 words set to -1*/
#define PHANDLESIZE 10
#define NULLPHANDLE {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}

/*Primary process attribute code for PROCESS_SETINFO_*/
#define PRIMARY_ATTRIBUTE 47

/*File number of the backup process. Used by the primary process
to send information to the backup*/
short backup_filenum;

/*Global data*/
short counter = 0;

/*Variable for use by the backup to hold the counter state
 value sent by the primary*/
short counter_state;

short primary_phandle [PHANDLESIZE];

short backup_phandle [PHANDLESIZE];

Creating and Starting the Backup Process
The primary process performs several activities related to initializing the backup
process. Specifically, it starts the backup process and opens it for interprocess

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 40

Creating and Starting the Backup Process

communication so that the primary process can send messages to the backup
process. The operating system is allowed to select the CPU in which the backup
process will run. It is convenient to code these activities as separate functions, as
follows:

• Function initialize_backup, which opens and starts the backup process;
called by function primary_processing.

• Function primary_cpu, which returns the CPU number of the primary process
CPU. The CPU number is required by the MONITORCPUS procedure.

Function initialize_backup
Function initialize_backup performs the initialization tasks of the primary
process: it starts and opens a backup process so that the primary process can send
messages to the backup process.

To start the backup process, initialize_backup calls the C function
__ns_start_backup with the input parameter -1, which specifies that the operating
system is to select the backup CPU. __ns_start_backup returns the backup
process handle. initialize_backup then calls FILE_OPEN_ to open the backup
process.

/* This function is called by the primary process to
 initialize the backup process. It starts the backup
 process and opens it for interprocess communication */
void initialize_backup (void)
{
 char process_name [MAXNAMELEN];
 short process_name_len;
 short error;
 short error_detail;

 /*Start the backup process*/
 error = __ns_start_backup (&error_detail, (short) -1,
 backup_phandle);

 /*Get the process name of the backup process*/
 error = PROCESSHANDLE_DECOMPOSE_ (backup_phandle,
 /*cpu*/,
 /*pin*/,
 /*nodenumber*/,
 /*nodename:nmax*/,,
 /*nlen*/,
 process_name,
 MAXNAMELEN,
 &process_name_len);

 /*Open backup process for interprocess communication*/
 error = FILE_OPEN_ (process_name, process_name_len,
 &backup_filenum);
}

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 41

Updating State Information

Function primary_cpu
This function returns the CPU number of the primary process CPU.

/*This function returns the processor number of the primary
 process processor*/
short primary_cpu (void)
{
 short cpu;
 short error;

 /*Get the primary process phandle*/
 error = PROCESS_GETPAIRINFO_ (/*current process*/,
 /*pair:maxlen*/,,
 /*pairlen*/,
 primary_phandle);

 /*Get and return the primary process processor*/
 error = PROCESSHANDLE_DECOMPOSE_ (primary_phandle,
 &cpu);
return cpu;
}

Updating State Information
After the primary process performs its initialization tasks, it begins executing the main
processing loop. Code is added to the main processing loop to update state
information in the backup process. The state information includes control state and
application state; file state is not needed because the program does no I/O. The value
of the loop counter provides control state and application state: it tells the backup
process where to resume execution, and it is the data needed to continue application
processing. File state information for the stdout file is updated.

The code to update state information is written as a separate function, named
update_backup, which is called by the primary process.

Function backup_exists
Function backup_exists tests for the existence of the backup process by calling
PROCESS_GETPAIRINFO_. If the backup does exist, the function returns -1. This
function is called by update_backup to make sure that the backup process exists
before updating state information.

short backup_exists (void)
{
 short null_phandle [PHANDLESIZE] = NULLPHANDLE;
 short error;

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 42

Updating State Information

 error = PROCESS_GETPAIRINFO_ (/*current process*/,
 /*pair:maxlen*/,,
 /*pairlen*/,
 /*primary_phandle*/,
 backup_phandle);
 return (short) memcmp (backup_phandle, null_phandle,
 PHANDLESIZE * 2);
}

Function update_backup
Function update_backup is called by the primary process to update state information
in the backup process. To update the state information, the primary process must send
a message to the backup process that contains the value of the loop counter.

Function update_backup does the following:

• Checks for the existence of the backup process. If the backup process does not
exist, an attempt is made to recreate it by calling initialize_backup. The
code to check for the existence of the backup process is written as a separate
function, named backup_exists.

• Creates the update message and sends it to the backup process through
interprocess communication (WRITEX).

Function update_backup is as follows:

/*This function is called by the primary process to update
 the state of the backup process. It creates and sends a
 message to the backup process. Parameter i is the counter
 value.*/
void update_backup (short i)
{
 _cc_status_short cond_code; /*value not used in this
example*/
 message_format message;

 /*Check for existence of backup, attempt to recreate
 if necessary*/
 if (!backup_exists())
 initialize_backup();

 /*Create the update message*/
 message.msgnumber = UPDATE_MESSAGE;
 message.msg_variants.counter_value = i;

 /*Send the update message to the backup*/
 cond_code = WRITEX (backup_filenum,
 (char *) &message,
 (short) sizeof message);
 /*When checking the condition code, include a check for
 the existence of the backup process*/
}

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 43

Primary and Backup Processing

Primary and Backup Processing
The original application program can now be restructured into the following three
functions:

• Function primary_processing, which performs the primary process activities: it
does the work of the application and updates state information in the backup
process.

• Function backup_processing, which performs the backup process activities: it
receives state information from the primary process and monitors the primary
process CPU. If a message indicating CPU failure or process termination is
received, the backup process takes over execution.

• Function main, which is where execution of the active backup program begins.
Function main determines whether it is running as the primary process or the
backup process: if it is the primary process, it initializes the backup process and
calls primary_processing; if it is the backup process, it calls
backup_processing.

A separate function, is_backup_process, is written to determine whether the
program is running as the primary process or the backup process. main calls this
function at the beginning of its execution.

Function primary_processing
Function primary_processing does the work of the application (which, in this
example, is to execute an infinite loop that increments a counter). Within the innermost
loop, function update_backup is called to update the state information in the backup
process.

/*This function does the work of the application, which is
 to increment a counter. To avoid overflow, the
 application wraps around after 10,000 iterations*/

void primary_processing (void)
{
 for (;;)
 {
 counter++;

 printf ("Counter is %d\n", counter);
 if (counter > 10000) counter = 0;
 update_backup (counter);
 }
}

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 44

Primary and Backup Processing

Function backup_processing
Function backup_processing handles the backup processing tasks, which include:

• Open $RECEIVE so that the backup process can receive messages from the
primary process and the operating system.

• Call MONITORCPUS to indicate to the operating system that the backup process
is to be notified if the primary process CPU fails.

• Enter an infinite loop that reads and processes messages from $RECEIVE.

The three message types are processed as follows:

• CPU_DOWN and PROCESS_DELETION indicate that the primary process has
failed. The backup process takes over execution and becomes the primary
process, then does the following:

• Initializes a new backup process (by means of initialize_backup).

• Sets the counter value to the most recent state information.

• Calls primary_processing to continue as the primary process.

• UPDATE_MESSAGE contains the counter value (the control state and application
state information). The backup process saves the counter value in the
counter_state variable.

Statements are included to test the process handle of the sender of the incoming
message and to return an appropriate response if the sender is not the primary
process or the system. If the message is from an unexpected sender, the backup
process replies with ZFIL_ERR_OWNERSHIP. This triggers a process-handle refresh
in the sender, which can then retry sending the message.

Function backup_processing is as follows:

/*This function performs processing for the backup process.
 It opens $RECEIVE, monitors the primary processor, and
executes a loop that receives messages through $RECEIVE.*/

void backup_processing (void)
{
 short receive_filenum;
 message_format message;
 short countread;
 zsys_ddl_receiveinformation_def receiveinfo;
 short primary_value = 1;
 short counter;
 _cc_status cond_code;
 short error;

 short primary_phandle [PHANDLESIZE];

 short null_phandle [PHANDLESIZE] = NULLPHANDLE;

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 45

Primary and Backup Processing

 /* open $RECEIVE */

 error = FILE_OPEN_ (RECEIVE_FILENAME,
 (short) strlen (RECEIVE_FILENAME),
 &receive_filenum,
 /*access*/,
 /*exclusion*/,
 /*nowait*/,
 1 /*receive depth*/);

 /*Monitor the primary process processor. The backup receives
 a message if the primary process goes down*/

 MONITORCPUS ((unsigned short)(0x8000 >> primary_cpu ()));
 /*Infinite loop that receives and processes messages*/
 for (;;)
 {
 /*Read the next message from $RECEIVE with the intention
 of replying*/

 cond_code = READUPDATEX (receive_filenum,
 (char *) &message,
 (short) sizeof (message_format),
 &countread);

 /*Check process handle of sender of incoming message*/

 FILE_GETRECEIVEINFO_ ((short *) &receive_info);

 error = PROCESS_GETPAIRINFO_ (, , , , primary_phandle)

 if (PROCESSHANDLE_COMPARE_ (primary_phandle,
 (short *) &receiveinfo.z_sender) != 2
 && memcmp (&receiveinfo.z_sender,
 null_phandle, PHANDLESIZE*2) != 0)

 { /*Message is not from primary process or system*/
 REPLYX (, , , , FEOWNERSHIP);
 message.msgnumber = IGNORE_MESSAGE; }

 else

 /*Acknowledge that message was received*/
 REPLYX (, , , , 0);

 /*Process message based on message number*/
 switch (message.msgnumber)
 {
 case CPU_DOWN:
 case PROCESS_DELETION:
 /*Backup process takes over as primary*/

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 46

Primary and Backup Processing

 /*Start a replacement backup process*/
 initialize_backup ();

 /*Update counter with last value*/
 counter = counter_state;

 /*Continue the work of the application*/
 primary_processing ();
 break;

 case UPDATE_MESSAGE:
 /*Update the counter state*/
 counter_state =
 message.msg_variants.counter_value;
 break;
 }
 }
}

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 47

Primary and Backup Processing

Function is_backup_process
Function is_backup_process is called by the main program to determine whether
the current process is the primary process or the backup process.

/*Function is_backup_process returns 'true' if the
current process is the backup process and 'false'
otherwise*/
short is_backup_process (void)
{
 short process_type;

 process_type = PROCESS_GETPAIRINFO_ ();
 if (process_type == IS_BACKUP)
 return -1; /*true*/
 return 0; /*false*/
}

Function main
Function main does the following:

• Calls is_backup_process to determine whether it is running as the primary or
backup process.

• If it is the primary process, it initializes a backup process and then calls
primary_processing to perform the primary processing activities.

• If it is the backup process, it calls backup_processing to perform the backup
processing activities.

/*The main function determines whether it is running as the
 primary or backup process and takes appropriate
 action.*/
int main (void)
{
 if (is_backup_process ())
 backup_processing ();
 else
 {
 initialize_backup ();
 primary_processing ();
 }
}

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 48

Compiling and Running the Example

Compiling and Running the Example
If creating a TNS or accelerated program, note the following before compiling, binding,
and running this example:

• The nonstoph header is included. This header contains the declarations for the
C functions that support fault-tolerant programming. (These functions are
implemented in TAL. By using the nonstoph header, the appropriate TAL
interface code is generated.)

• #pragma search "cnonstop" is specified. This causes the CNONSTOP
object file to be bound into the program file. This object file contains the
implementation of the C functions that support fault-tolerant programming.

• #pragma wide (for the wide-data model) is specified.

To compile the example program, enter:

c /in source-file/ object-file; runnable, runnamed

To execute the program, enter:

run object-file

If creating a TNS/R native program, note the following before compiling, linking, and
running this example:

• The crtlnsh header is included. This header contains the declarations for the
C functions that support fault-tolerant programming. (These functions are
implemented in pTAL. By using the crtlnsh header, the appropriate pTAL
interface code is generated.)

• The pragma search "$system.system.crtlns" is included in the compiler
command line. This causes the CRTLNS object file to be bound into the program
file. This object file contains the implementation of the C functions that support
fault-tolerant programming.

To compile the example program, enter:

nmc /in source-file/ object-file; extensions, runnable, &
runnamed, search "$system.system.crtlns"

To execute the program, enter:

run object-file

Example With Debugging Options
The preceding example is now modified for debugging purposes. Code is added to
enable the user to specify two terminal names as input parameters to the application:
one for debugging the primary process and one for debugging the backup process.
The example can then be run using the Inspect tool to debug the primary and backup
processes from the specified terminals. Details of how this works are as follows.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 49

Example With Debugging Options

When program execution is initiated by the appropriate RUND command, the Inspect
tool immediately gains control of the primary process and sends a prompt to the
primary process's home terminal. At this time, you can enter Inspect commands.
When the command is given to resume execution, the backup process is created and
started; the Inspect tool immediately gains control of the backup process and issues a
prompt at the home terminal specified for the backup process. You can then enter
Inspect commands to debug the backup process.

If the primary process should fail, the backup process becomes the new primary
process and creates a new backup process; the home terminal for the original primary
process becomes the home terminal for the new backup process, and you can
continue debugging.

Following are the program modifications.

Debugging Modifications to the Program Declarations
The following variables are added to the declarations portion of the program:

/*Variables for debugging option*/
short arg_num; /*Number of run-time arguments*/
char terminal_p[ZSYS_VAL_LEN_FILENAME]; /*Name of primary
 terminal*/
char terminal_b[ZSYS_VAL_LEN_FILENAME]; /*Name of backup
 terminal*/

The following #include line is added:

#include <cextdecs (PROCESS_GETINFOLIST_)> nolist

The PROCESS_GETINFOLIST_ procedure is called by the get_terminal_name
function described later in this section.

Debugging Modifications to the Main Function
Code is added to the main function to accept two terminal names as input parameters
and to save the terminal names. The new code is shown in boldface print.

/*The main function determines whether it is running as the
 primary or backup process and takes appropriate
 action.*/
int main (int argc, char *argv[])
{
/*Save terminal names, if provided*/
 arg_num = argc;
 if (arg_num >= 3)
 {
 strcpy (terminal_p, argv[1]);
 strcpy (terminal_b, argv[2]);
 }
 if (is_backup_process ())
 backup_processing ();
 else
 {

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 50

Example With Debugging Options

 initialize_backup ();
 primary_processing ();
 }
}

Debugging Modifications to Function initialize_backup
The name of the terminal for the backup process must be communicated to the backup
process through the C function __ns_start_backup. Code is added to the
initialize_backup function to test the number of parameters, get the terminal
name, and pass it to __ns_start_backup. To get the terminal name,
initialize_backup calls the user-written function get_terminal_name.

Two optional debugging parameters are added to the call to the C function
__ns_start_backup. Note that they are intended for the PROCESS_CREATE_
procedure, which is called by __ns_start_backup to create the backup process.

• terminal_name, an input parameter that points to the string naming the home
terminal for the backup process.

• debug_options, an input parameter that specifies debugging options. The
parameter is set to 11, which indicates the following when it is passed to
PROCESS_CREATE_:

• Use the Inspect tool as the debugger.

• Enter the Inspect tool at the first executable instruction in the main procedure.

• If the program traps, do not create a save file.

See the C/C++ Programmer’s Guide for details on the function parameters.

Function initialize_backup is as follows, with new code shown in boldface print:

void initialize_backup (void)
{
 short backup_phandle [PHANDLESIZE];
 char process_name [MAXNAMELEN];
 short process_name_len;
 short error; /*value not used*/
 short error_detail;
 char *terminal_name;
 short debug_options = 11;

 /*Start the backup process*/
 if (arg_num >= 3)
 {
 /*Terminal names provided for debugging*/
 get_terminal_name (&terminal_name);
 error = __ns_start_backup (&error_detail, (short) -1,
 backup_phandle, terminal_name, debug_options);
 }
 else /*Debug option not requested*/
 error = __ns_start_backup (&error_detail, (short) -1,

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 51

Example With Debugging Options

 backup_phandle);

 /*Get the process name of the backup process*/
 error = PROCESSHANDLE_DECOMPOSE_ (backup_phandle,
 /*cpu*/,
 /*pin*/,
 /*nodenumber*/,
 /*nodename:nmax */,,
 /*nlen*/,
 process_name,
 MAXNAMELEN,
 &process_name_len);

 /*Open backup process for interprocess communication*/
 error = FILE_OPEN_ (process_name, process_name_len,
 &backup_filenum);
}

Function get_terminal_name
Function get_terminal_name returns the home terminal name for the current
backup process. It is called by initialize_backup. The purpose of this function is
to enable you to debug multiple layers of primary process failure and backup takeover.
Each time a primary process fails, the backup process becomes the new primary
process and creates a new backup process. The home terminal for the new backup
process is the home terminal of the previous primary process. Thus, the home
terminals for the primary and backup processes are switched with each failure and
takeover.

Function get_terminal_name does the following:

1. Calls PROCESS_GETINFOLIST_ to retrieve the name of the home terminal

2. Tests to determine which name is the correct home terminal name

3. Places the appropriate name in the return parameter

Function get_terminal_name is as follows:

void get_terminal_name (char **name)
{
 short result[40];
 short ret_attr_list[2];
 short result_length;
 short error;
 char fn[40];
 ret_attr_list[0] = 5; /*Get home terminal name*/
 error = PROCESS_GETINFOLIST_ (,,,,, ret_attr_list, 1,
 result, 40, &result_length);
 strncpy (fn, (char*) &result[1], result[0]);
 fn[result[0]] = 0;
 if (strcmp (fn, terminal_b))
 *name = terminal_b;
 else

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 52

Active Backup Example 2

 *name = terminal_p;
}

Compiling and Running the Debugging Example
To compile the program for use with the Inspect tool, specify the symbols and
inspect pragmas on the compiler command line.

To run the program with the Inspect tool, first locate two terminals. Then do the
following:

1. On the terminal to be used for the backup process, enter PAUSE. This allows the
backup process to gain control of the terminal when it begins executing.

2. On the terminal to be used for the primary process, begin execution of the
program by entering:

rund object-file $primary-terminal $backup-terminal

Active Backup Example 2
This example illustrates active backup programming for an application that performs
simple I/O operations using the standard output file and files other than the standard
input and standard output files. The application consists of a loop that reads a number
from a file and writes the number to another file. The input and output file names are
passed to the application as input parameters.

The file input to the application is a C file (type 180) with a number on each line. To
create this file, first use a text editor to create an EDIT file, then convert the EDIT file to
a C file with the command:

edittoc editfile, cfile

The application, without any code to make it fault-tolerant, is as follows:

/*This application consists of a loop that reads a number from a
file and writes it to another file*/

#pragma ansistreams /*Create type 180 file*/
#include <stdioh> nolist
#include (stdlibh) nolist

/*File pointers*/
FILE *infile;
FILE *outfile;

int main (int argc, char *argv[])
{
 short counter;
 char sp[10];

 /*Verify at least 2 run-time arguments provided*/
 if (argc < 3)

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 53

Program Declarations

 {
 (void) printf ("Error: Must provide input and output "
 "file names.\n");
 exit (1);
 }

 /*Open input and output files*/
 infile = fopen (argv[1], "r");
 outfile = fopen (argv[2], "ab+");

 /*Main application processing; read number from input
 file and write it to output file and standard output*/
 for (;;)
 {
 /*Return immediately if end of file*/
 if (fgets (sp, 10, infile) == NULL) exit (0);

 counter = atoi (sp);
 printf ("counter = %d\n", counter);
 (void) fprintf (outfile, "%d\n", counter);
 }
}

The rest of this subsection shows the steps involved in creating an active backup
version of this application.

As in the first example, the program is coded in a modular style, with individual tasks
performed by separate functions. To simplify the presentation, the following conditions
are not handled:

• Error conditions returned by C library functions and Guardian procedures are not
handled.

• The primary process does not monitor the backup process.

Program Declarations
The particular declarations required by an active backup program depend on the
application. The following are used in this example.

#include and #pragma Lines
The following #include and #pragma lines provide the declarations required by the
program. The conditional statement #ifdef _TNS_R_TARGET causes the lines that
follow it to be included only for native programs, while the lines that are between the
#else line and the #endif line are included only for TNS and accelerated programs.
For native programs, the pragmas ansistreams, runnamed, and
search "$system.system.crtlns" must be included in the compiler command
line.

#ifdef _TNS_R_TARGET
/* for native programs only */

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 54

Program Declarations

#include <crtlnsh> nolist

/* Note: Include the pragmas "ansistreams," "runnamed,"
*/
/* and 'search "$system.system.crtlns"' in the compiler
*/
/* command line for native programs.
*/

#else
/* for TNS and accelerated programs only /*
#pragma ansistreams
#pragma wide /* Use wide-data (32-bit integer) model */
#pragma runnamed /* A process pair should be named. */

#pragma search "$system.system.cnonstop"
#include <nonstoph> nolist
#endif

#include <stringh> nolist
#include <stdioh> nolist
#include <cextdecs (FILE_GETRECEIVEINFO_,\
 FILE_OPEN_,\
 MONITORCPUS,\
 PROCESS_GETINFO_,\
 PROCESS_GETPAIRINFO_,\
 PROCESS_SETINFO_,\
 PROCESS_STOP_,\
 PROCESSHANDLE_COMPARE_,\
 PROCESSHANDLE_DECOMPOSE_,\
 READUPDATEX,\
 REPLYX,\
 WRITEX)> nolist

#include (stdlibh) nolist

#pragma search "$system.system.cnonstop" for TNS and accelerated
programs, or search "$system.system.crtlns" in the compiler command line
for TNS/R native programs, causes the library containing the C functions for fault-
tolerant support to be bound into the program.

#pragma wide specifies the wide-data model (TNS and accelerated programs only).

nonstoph for TNS and accelerated programs, or crtlnsh for native programs,
provides declarations required by the C functions for active backup programming.
stringh and stdioh are standard header files. cextdecs includes declarations for
the following Guardian procedures required by the program:

• FILE_GETRECEIVEINFO_, which is called by the backup process to get
information about messages it receives.

• FILE_OPEN_, which is called by the primary process to open the backup process,
and by the backup process to open $RECEIVE.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 55

Program Declarations

• MONITORCPUS, which is called by the backup process to monitor the primary
process CPU. The operating system sends the backup process a “processor
down” message if the monitored CPU fails.

• PROCESS_GETINFO_, PROCESS_GETPAIRINFO_, and
PROCESSHANDLE_DECOMPOSE_, which are used to obtain information about
the primary and backup processes.

• PROCESS_STOP_, which is called by the primary process to stop the backup
process if an end-of-file is encountered in the input file.

• PROCESSHANDLE_COMPARE_, which is called by the backup process to
determine if a message it received was sent by the primary process.

• READUPDATEX, which is called by the backup process to receive messages from
the primary process through $RECEIVE.

• REPLYX, which is called by the backup process to reply to messages it receives.

• WRITEX, which is called by the primary process to send messages to the backup
process.

Message Declarations
The program uses four message formats: two defined by the operating system and
two defined by the program.

• CPU_DOWN is a system message that indicates that a monitored CPU is down.
This message is used to notify the backup process if the primary process CPU fails
so that the backup process can take over processing.

• PROCESS_DELETION is a system message that indicates that a process has
terminated. This message is used to notify the backup process if the primary
process terminates so that the backup process can take over processing.

• UPDATE_OPEN is an application-defined message that contains the open state
information for the input and output files.

• UPDATE_MESSAGE is an application-defined message that contains the current
state information needed by the backup process to define a continuation point and
update its memory.

The message declaration portion of the program serves the following purposes:

• Provides macros that define the message numbers. Note that the system
message numbers are negative and the application-defined message numbers are
positive.

• Declares a structure for each of the four message formats. The first member of the
structure contains the message number, and the second member is a union with
one member per message format. The information contained in the system
messages is not used (only the message number is used), so the exact structure is
not defined.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 56

Program Declarations

Two other elements are defined that are used by the backup process if it receives a
message it does not expect: IGNORE_MESSAGE is used as a message number and
is placed in the message number portion of the message structure, and
OWNERSHIP_ERROR is an error value that is returned to the sender.

The message declarations are:

/*message numbers*/
#define CPU_DOWN -2 /*system message*/
#define PROCESS_DELETION -101 /*system message*/
#define UPDATE_OPEN 1 /*application message*/
#define UPDATE_MESSAGE 2 /*application message*/

#define IGNORE_MESSAGE 0 /*used by backup*/
#define OWNERSHIP_ERROR 200 /*used by backup*/

#define IS_BACKUP 6 /*Returned by PROCESS_GETPAIRINFO_ to
 indicate whether the current process is
 the primary or backup*/

/*The following structure defines the file open info*/
typedef struct
{
/*Input file open state*/
__ns_std_io_file_open_state input_open_info;

/*Output file open state*/
__ns_std_io_file_open_state output_open_info;
} open_info_type;

/*The following structure defines the file state
 information.*/

typedef struct
{
__ns_std_io_file_state infile_state; /*Input file state*/
__ns_std_io_file_state outfile_state; /*Output file state*/
__ns_std_io_file_state stdout_state;/*Standard output state*/

} update_info_type;

/*The following structure defines the various message
 formats used by this program*/

typedef struct
{
 short msgnumber; /*message number*/
 union /*one member for each message format*/
 {
 /*UPDATE_OPEN*/
 open_info_type open_info;

 /*UPDATE_MESSAGE message*/
 update_info_type update_info;

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 57

Program Declarations

 /*CPU_DOWN message*/
 short cpu_down_info;

 /*PROCESS_DELETION message, variable-length fields
 are assumed to have zero length*/
 short process_death_notification_info [40];
 } msg_variants;
} message_format;

Miscellaneous Declarations
Finally, the program contains miscellaneous declarations to define the following:

• The $RECEIVE file name.

• The maximum file-name length.

• The size of the process handle, and a null process handle. A process handle is
10 words long, and a null process handle has all ten words set to -1.

• The file number of the backup process. This number is used by the primary
process to send information to the backup process.

• A variable to be used by the backup process to hold the counter state value sent
by the primary process.

The declarations are as follows:

#define RECEIVE_FILENAME "$RECEIVE"

/*Maximum file-name length (plus 1 to allow for null
 terminator)*/
#define MAXNAMELEN 36

/*Process handle size and null process handle*/
#define PHANDLESIZE 10
#define NULLPHANDLE {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}

/*Primary process attribute code*/
#define PRIMARY_ATTRIBUTE 47

/*File number of the backup process; used by the primary
process to send state information to the backup*/
short backup_filenum;

/*File pointers*/
FILE *infile;
FILE *outfile;

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 58

Creating and Starting the Backup Process

Creating and Starting the Backup Process
The primary process performs several activities related to initializing the backup
process. Specifically, it starts the backup process and opens it for interprocess
communication so that the primary process can send messages to the backup
process. The operating system is allowed to select the CPU in which the backup
process will run. To perform these activities, this example uses the following functions,
which are the same as those used in Active Backup Example 1.

• Function primary_cpu, which returns the CPU number of the primary process
CPU. The CPU number is required by the MONITORCPUS procedure.

• Function initialize_backup, which opens and starts the backup process;
called by function primary_processing.

Updating State Information
After the primary process completes its initialization tasks, it begins executing the main
processing loop. Code is added to the main processing loop to update file state
information in the backup process. This code is written as a separate function, named
update_backup, which is called by the primary process.

Function update_backup
Function update_backup does the following:

• Calls backup_exists to make sure that the backup process exists; if not,
initialize_backup is called to recreate the backup process. See Active
Backup Example 1 for the listing and description of functions backup_exists and
initialize_backup.

• Calls the C function __ns_fget_file_state to retrieve file state information for
the application input and output files and the standard output file.

• Calls WRITEX to send the file state information to the backup process.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 59

Primary and Backup Processing

/*This function is called by the primary process to update the
state of the backup process. It creates and sends a message to
the backup process.*/
void update_backup (void)
{
 short cond_code;
 short error;
 message_format message;

 /*Create update message*/
 message.msgnumber = UPDATE_MESSAGE;
 error = __ns_fget_file_state (infile,
 &message.msg_variants.update_info.infile_state);
 error = __ns_fget_file_state (outfile,
 &message.msg_variants.update_info.outfile_state);
 error = __ns_fget_file_state (stdout,
 &message.msg_variants.update_info.stdout_state);

 /*Check for existence of backup; attempt to recreate if
 necessary*/
 if (!backup_exists())
 initialize_backup();

 /*Send update message to backup*/
 cond_code = WRITEX (backup_filenum,
 (char*) &message,
 (short) sizeof message);
 /*Check condition code and include check for existence of
 backup*/
}

Primary and Backup Processing
At this stage of the example, functions have been written to perform the following
active backup tasks:

• Create and start the backup process (function initialize_backup).

• Update state information (functions update_backup and backup_exists).

The next step is to restructure the application into separate functions for primary
processing and backup processing, and a main function where execution will begin.
The following new functions are created:

• Function primary_processing, which does the work of the application and
updates state information in the backup process.

• Function backup_processing, which receives state information from the primary
process, checks for failure of the primary process or CPU, and takes over
execution if the primary process or CPU fails.

• Function main, which tests whether it is running as the primary process or the
backup process. If it is the primary process, it creates and starts the backup

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 60

Primary and Backup Processing

process, then calls primary_processing. If it is the backup process, it calls
backup_processing.

Function primary_processing
Function primary_processing does the work of the application (which, in this case,
is to execute a loop that reads numbers from an input file and writes the numbers to an
output file and to the standard output). Within the loop, function update_backup is
called to send file state information to the backup process. If an end-of-file is
encountered in the input file, primary_processing stops the backup process and
returns to the main function. Function primary_processing is as follows:

/*This function performs the real work of the application. It
consists of a loop that reads lines from an input file and
writes them to an output file.*/

void primary_processing (void)
{
 short counter;
 char string_pointer[10];

 for (;;)
 {
 /*Terminate immediately if end of file*/
 if (fgets (string_pointer, 10, infile) == NULL)
 exit (0); /*Stops primary and backup processes*/
 counter = atoi(string_pointer);
 (void) printf ("counter = %d\n", counter);
 (void) fprintf (outfile, "%d\n", counter);
 fflush (outfile);
 update_backup ();
 }
}

Function backup_processing
Function backup_processing handles the backup tasks, which include:

• Open $RECEIVE so that the backup process can receive messages from the
primary process and the operating system.

• Call MONITORCPUS to indicate to the operating system that the backup process
is to be notified if the primary process CPU fails.

• Enter an infinite loop that reads and processes messages from $RECEIVE.

If the backup process receives a message indicating that the primary process or CPU
has failed, it does the following:

• Creates and starts a new backup process.

• Calls primary_processing to continue application processing.

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 61

Primary and Backup Processing

The four message types received by the backup process are processed as follows:

• PROCESSOR DOWN and PROCESS DELETION indicate that the primary
process has failed. The backup process takes over execution as described earlier.

• UPDATE_OPEN contains the file open state information for the input and output
files. This information is used by __ns_backup_fopen to backup open the files.

• UPDATE_MESSAGE contains the file state information for the input and output
files. This information is used by __ns_fset_file_state to update the file
state.

Statements are included to test the process handle of the sender of the incoming
message and to return an appropriate response if the sender is not the primary
process or the system. If the message is from an unexpected sender, the backup
replies with OWNERSHIP_ERROR. This triggers a process-handle refresh in the
sender, which can then retry sending the message.

The program statements are as follows:

/*This function performs the backup processing: it opens
$RECEIVE, monitors the primary processor, and reads and
processes messages from $RECEIVE.*/
void backup_processing (void)
{
 short receive_filenum;
 message_format message;
 short countread;
 receive_info_type receive_info;
 short primary_value = 1;
 short cond_code;
 short error;

 /*Open $RECEIVE*/
 error = FILE_OPEN_ (RECEIVE_FILENAME,
 (short) strlen (RECEIVE_FILENAME),
 &receive_filenum,
 /* access */,
 /* exclusion */,
 /* nowait */,
 /* receive depth */1);

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 62

Primary and Backup Processing

 /*Monitor the primary process processor. The backup process
 receives a message if the primary process processor fails*/
 MONITORCPUS ((unsigned short)(0x8000 >> primary_cpu ()));

 /*Infinite loop that receives and processes messages*/
 for (;;)
 {
 /*Read the next message from $RECEIVE with the intention
 of replying*/

 cond_code = READUPDATEX (receive_filenum,
 (char *) &message,
 (short) sizeof (message_format),
 &countread);

 /*Check process handle of sender of incoming message*/

 FILE_GETRECEIVEINFO_ ((short *) &receive_info);
 if (PROCESSHANDLE_COMPARE_ (primary_phandle,
 (short *) &receive_info.sender_phandle) != 2
 && memcmp (&receive_info.sender_phandle,
 null_phandle, PHANDLESIZE*2) != 0)

 { /*Message is not from primary process or system*/
 REPLYX (, , , , OWNERSHIP_ERROR);
 message.msgnumber = IGNORE_MESSAGE; }

 else

 REPLYX (, , , , 0);

 /*process based on message number*/
 switch (message.msgnumber)
 {
 case CPU_DOWN:
 case PROCESS_DELETION:
 /*Backup takes over*/

 /*Start replacement backup process*/
 initialize_backup ();

 /*Continue the work of the application*/
 primary_processing ();
 break;

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 63

Primary and Backup Processing

 /*Backup open the input and output files*/
 case UPDATE_OPEN:
 infile =__ns_backup_fopen
 (&message.msg_variants.open_info.input_open_info);
 if (infile == NULL)
 {
 (void) printf ("Error in backup_processing, "
 "update input open.\n");
 PROCESS_STOP_(,1); /*Stop primary and backup*/
 }
 outfile = __ns_backup_fopen

(&message.msg_variants.open_info.output_open_info);
 if (outfile == NULL)
 {
 (void) printf("Error in backup_processing, "
 update output open.\n");
 PROCESS_STOP_(,1); /*Stop primary and backup*/
 }
 break;

 case UPDATE_MESSAGE:
 /*Update file state information*/

 /*Update input file state*/
 error = __ns_fset_file_state (infile,
 &message.msg_variants.update_info.infile_state);

 /*Update output file state*/
 error = __ns_fset_file_state (outfile,
 &message.msg_variants.update_info.outfile_state);

 /*Update stdout state*/
 error = __ns_fset_file_state (stdout,
 &message.msg_variants.update_info.stdout_state);
 break;
 }
 }
}

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 64

Primary and Backup Processing

Function main
Execution begins with the main function. Function main does the following:

• Calls is_backup_process to determine whether it is running as the primary
process or the backup process. Function is_backup_process is described
under Active Backup Example 1.

• If it is the backup process, calls backup_processing to perform the backup
activities.

• If it is the primary process, does the following:

• Opens the input and output files. The __ns_fopen_special function is used
to open the files with a sync depth of 1.

• Calls initialize_backup to initialize a backup process. Function
initialize_backup is as described under Active Backup Example 1.

• Calls primary_processing to perform the primary process activities.

Function main is as follows:

/*The main function determines whether it is executing as the
primary or backup process and takes appropriate action*/

main (int argc, char *argv[])
{
if (is_backup_process ())
 backup_processing();
else
 {
 /*Verify at least two run-time arguments provided*/
 if (argc < 3)
 {
 (void) printf ("Error: Need to provide input and "
 "output file names.\n");
 exit(1);
 }

 /*Open files with sync depth 1*/
 infile = __ns_fopen_special (argv[1], "r", 1);
 outfile = __ns_fopen_special (argv[2], "ab+", 1);
 initialize_backup ();
 primary_processing ();
 }
}

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 65

Compiling and Running the Example

Compiling and Running the Example
If creating a TNS or accelerated program, note the following before compiling, binding,
and running this example:

• The nonstoph header is included. This file contains the C library declarations for
active backup programming. (This library is implemented in TAL. By using the
crtlnsh header file, the appropriate TAL interface code is generated.)

• #pragma search "$system.system.cnonstop" is specified. This causes
the cnonstop object file to be bound into the program file. This object file
contains the implementation of the C functions that support fault-tolerant
programming.

• #pragma wide (for the wide-data model) is specified.

• #pragma ANSISTREAMS is specified for compilation of the main function so that
the input and output files are opened as ANSI files rather than EDIT files.

To compile the example program, enter:

c /in source-file/ object-file; runnable

To run the program, enter:

run object-file cfile output-file

where cfile is the C input file and output-file is the output file written by the
program.

If creating a TNS/R native program, note the following before compiling, linking, and
running this example:

• The crtlnsh header is included. This header contains the declarations for the
C functions that support fault-tolerant programming. (These functions are
implemented in pTAL. By using the crtlnsh header, the appropriate pTAL
interface code is generated.)

• The pragma search "$system.system.crtlns" is specified in the compiler
command line. This causes the CRTLNS object file to be bound into the program
file. This object file contains the implementation of the C functions that support
fault-tolerant programming.

• The pragma ANSISTREAMS is specified in the compiler command line so that the
input and output files are opened as ANSI files rather than EDIT files.

To compile the example program, enter:

nmc /in source-file/ object-file; extensions, runnable, &
runnamed, ansistreams, search "$system.system.crtlns"

To execute the program, enter:

run object-file cfile output-file

Fault-Tolerant Programming in C

Guardian Programmer’s Guide — 421922-014
27 - 66

Compiling and Running the Example

where cfile is the C input file and output-file is the output file written by the
program.

Guardian Programmer’s Guide — 421922-014
28 - 1

28 Using Floating-Point Formats
In the G07 and later versions of the NonStop operating system, users have the option
of choosing between using HP floating-point format and IEEE floating-point format in
their native C and C++ programs for performing floating-point arithmetic. Choosing HP
floating-point format provides compatibility with pre-G07 C and C++ applications.
Choosing IEEE floating-point format allows your application to take advantage of the
greater performance provided by the floating-point instructions available in some CPU
hardware.

HP floating-point format is supported in software millicode while IEEE floating-point
format is supported in the CPU hardware. IEEE floating-point format is an industry-
standard data format. HP floating-point format is HP’s implementation of floating-point
arithmetic. Thus, the data format is different between the two floating-point options.
Data interchange with systems other than HP systems is easier with IEEE floating-
point format than with Tandem floating-point format. For data interchange from one
format to another, users need to call conversion routines. Tandem floating-point format
is available for TNS C and C++, FORTRAN, TAL, pTAL, Pascal, COBOL85, native C
and C++ programs. IEEE floating-point format is available only for native C and C++
programs.

This section discusses the following topics:

• Differences between Tandem floating-point format and IEEE floating-point format

• Building and running IEEE floating-point programs

• Compiling and linking IEEE floating-point programs

• Link-time and run-time validity checking

• Run-time support and debugging options

• Conversion and operating mode routines

• Considerations

Differences Between Tandem and IEEE Floating-Point Formats
• IEEE and Tandem floating-point data formats have different range of values and

different precisions.

• IEEE and Tandem floating-point data formats have different internal layouts (for
example, the exponents are in different bit fields).

• IEEE floating-point format is faster than Tandem floating-point format.

• IEEE floating-point format is easier for porting applications.

• IEEE floating-point default handling of overflow, underflow, divide-by-zero, and
invalid operation is better than the Tandem floating-point handling.

Using Floating-Point Formats

Guardian Programmer’s Guide — 421922-014
28 - 2

Building and Running IEEE Floating-Point Programs

• IEEE floating-point directed roundings and “sticky” flags are useful debugging tools
for investigating calculations that might go wrong because of rounding problems,
division by zero, or other problems. Unlike conditional flags, once sticky flags are
set, they stay set until explicitly reset by the user. This capability allows the user to
check a chain of computations.

• IEEE floating-point denormalized numbers avoid computational problems that arise
from very small numbers as intermediate results in computations.

• IEEE floating-point format is available only on NonStop S7000 and S72000 CPUs
running on NonStop operating system G07 or a later product version.

• IEEE floating-point format is the default floating-point format for TNS/E programs.

Building and Running IEEE Floating-Point Programs
If you want to build and execute programs using IEEE floating-point, make sure that
the required software and hardware are available.

• IEEE floating-point format runs on S7000 and S72000 CPUs. It does not run on
S70000 CPUs. For maximum application availability of IEEE floating-point
programs, make sure that systems composed of S70000 and S72000 CPUs
contain enough S72000 CPUs, depending on the architecture of your application.

• NonStop operating system RVU G07 or later product version.

• G06.06 or later product versions of native C and C++ compilers for compiling
floating-point programs.

• G06.06 or later release of the nld utility for linking.

Compiling and Linking Floating-Point Programs
To use the Tandem floating-point option, set the TANDEM_FLOAT pragma (also the
default) on the compiler command line. For the IEEE floating-point option, specify
IEEE_FLOAT. The compiler sets the floating-point format type in the generated object
file. For compiling C++ programs that use IEEE floating-point format, you must also
specify the VERSION2 pragma (see the C/C++ Programmer’s Guide for more
information).

When linking object files, if the -set FLOATTYPE flag is not specified, the nld utility
derives the floating-point state from the states of the input files (see the Link-Time
Consistency Checking section for more information about the -set FLOATTYPE
flag). If one of the three floating-point types for an object file (TANDEM_FLOAT,
IEEE_FLOAT, or NEUTRAL_FLOAT) is specified in the -set FLOATTYPE flag, nld
sets the state of the output object file as specified by the flag.

When modifying an existing object file, nld sets the state as specified by the -change
FLOATTYPE flag, which also uses one of the three floating-point types for an object
file. The following is an example of compiling a program that uses IEEE floating-point
format.

Using Floating-Point Formats

Guardian Programmer’s Guide — 421922-014
28 - 3

Link-Time Consistency Checking

> NMC/IN SOURCEA, OUT $.#LIST/OBJECTA; IEEE_FLOAT

> NMCPLUS /IN SOURCEB, OUT $S.#LIST/OBJECTB; VERSION2, &
IEEE_FLOAT

In the above example, the native C compiler processes the file SOURCEA, and the
native C++ compiler processes the file SOURCEB. Note that the C++ compiler has
VERSION2 specified, because IEEE floating-point format is supported only under
VERSION2 C++ features.

The following is an example of linking a mixed-language program that uses IEEE
floating-point format.

> NLD $SYSTEM.SYSTEM.CRTLMAIN COBJ PTALOBJ -OBEY &
$SYSTEM.SYSTEM.LIBCOBEY -SET FLOATTYPE IEEE_FLOAT -O MYEXEC

In this example, the native C object file COBJ uses IEEE floating-point format, and the
pTAL object file uses Tandem floating-point format. (pTAL supports only Tandem
floating-point format.) To link these modules, the -set FLOATTYPE IEEE_FLOAT flag
must be specified. If this flag is not specified, nld generates error messages because
of the mismatch between Tandem and IEEE floating-point formats. When this flag is
specified, nld generates a warning message about the mismatch and builds the
executable file MYEXEC. CRTLMAIN (an object file) and the LIBCOBEY (an OBEY
file) are standard items required when linking C programs.

 The nld utility can use the -set and -change flags to set or change the
float_lib_overrule attribute when creating object files. If the
float_lib_overrule attribute is specified more than once by either the -set or
-change flags, all occurrences except the last one are ignored. The
float_lib_overrule attribute can be changed only for executable files. An error
occurs if an attempt is made to change the value of this attribute for relinkable files.

Link-Time Consistency Checking
The nld utility checks the consistency of floating-point type combination when linking
object files. The checking differs depending on whether or not the -set flag is
specified. When the FLOATTYPE is not explicitly set with the -set flag, nld uses the
FLOATTYPE attribute values of all the input object files for determining the
FLOATTYPE value for the output object file. If the consistency checks of the input
object files result in an invalid floating-point state or inconsistent value, an error
message is generated and no output object file is created.

Any floating type combination is allowed if you explicitly override the default with the
set FLOATTYPE flag. When the FLOATTYPE is explicitly specified with the -set flag,
nld sets the FLOATTYPE value for the output object file to that specified value. A
warning message and an output object file are generated if an inconsistency is
detected. If the floating-point state is invalid, no output object file is created.

Using Floating-Point Formats

Guardian Programmer’s Guide — 421922-014
28 - 4

Run-Time Consistency Checking

Execute the noft utility listattribute command to display the floating-point state.
Use the header, all, listattribute or filehdr commands for displaying the
float_lib_overrule bit.

Run-Time Consistency Checking
If you attempt to use a CPU that does not support IEEE floating-point format, process
create error code 64, “IEEE floating-point support not available on this processor,”
occurs. The operating system does not allow the creation of a process that requires
IEEE floating-point format on a CPU that does not support it. Programs can call the
PROCESSOR_GETINFOLIST_ procedure to determine whether a CPU can run IEEE
floating-point instructions. (See the Guardian Procedure Calls Reference Manual for
more information about this procedure.)

The operating system also checks, at run-time, to ensure that the user program and user library
have compatible floating-point types. This check can be overruled by the
float_lib_overrule bit of the program’s object file. If the float_lib_overrule bit
is set to OFF in the program file and the user library and program have incompatible floating-
point types, the operating system generates an error code; instead of running the program.
(TACL converts the error code to an error message.) If the float_lib_overrule bit is set
to ON in the program file, the operating system allows the floating-point type incompatibility
between the user library and the program. See the C/C++ Programmer’s Guide for more
information about the link-time and run-time consistency checking.

Run-Time Support
One set of C and C++ run-time libraries supports both Tandem and IEEE floating-point
formats. The following functions also are added to support IEEE floating-point format.
For more information about these functions see the Open System Services Library
Calls Reference Manual or the TNS/R Native C Library Calls Reference Manual.

• In math.h: copysign(), isnan(), logb(), nextafter(), and scalb()

• In ieeefp.h: finite(), unordered(), and fpclass()

• In limits.h (C++): infinity(), quiet_NaN(), signaling_NaN(), and
denorm_min()

Debugging Options
You can use the Debug, Visual Inspect, and Native Inspect (TNS/E systems only)
debuggers for debugging programs that use IEEE floating-point format. Note that
Visual Inspect supports only the default rounding mode. Debug and Visual Inspect can
be used to display and modify IEEE floating-point values and registers. Inspect can be
used only for operations that do not involve IEEE floating-point values and registers.

Using Floating-Point Formats

Guardian Programmer’s Guide — 421922-014
28 - 5

Conversion Routines

Conversion Routines
IEEE floating-point data format is incompatible with Tandem floating-point format.
Conversion between Tandem and IEEE floating-point data formats requires the use of
the following routines. See the Guardian Procedure Calls Reference Manual for more
information about these routines.

Routines for conversions from TNS to IEEE floating-point formats:

Routines for conversions from IEEE to TNS floating-point formats:

In addition to conversions between Tandem and IEEE floating-point formats, note that
the NonStop operating system uses big-endian data formats for all data. Many other
computers use little-endian data formats. For data interchanges with little-endian
computers that use IEEE floating-point format, the user must reverse the order of bytes
in the data.

Floating-Point Operating Mode Routines
The operating mode routines listed below are most useful for debugging programs and
algorithms. These operating mode routines are used for:

• Controlling rounding mode

• Controlling denormalized number handling

Routine Description

NSK_FLOAT_TNS64_TO_IEEE64_ Converts a 64-bit TNS floating-point
number to a 64-bit IEEE floating-point
number.

NSK_FLOAT_TNS32_TO_IEEE64_ Converts a 32-bit TNS floating-point
number to a 64-bit IEEE floating-point
number.

NSK_FLOAT_TNS32_TO_IEEE32_ Converts a 32-bit TNS floating-point
number to a 32-bit IEEE floating-point
number.

Routine Description

NSK_FLOAT_IEEE64_TO_TNS64_ Converts a 64-bit IEEE floating-point
number to a 64-bit TNS floating-point
number.

NSK_FLOAT_IEEE64_TO_TNS32_ Converts a 64-bit IEEE floating-point
number to a 32-bit TNS floating-point
number.

NSK_FLOAT_IEEE32_TO_TNS32_ Converts a 32-bit IEEE floating-point
number to a 32-bit TNS floating-point
number.

Using Floating-Point Formats

Guardian Programmer’s Guide — 421922-014
28 - 6

Floating-Point Operating Mode Routines

• Controlling trap handling

• Controlling and accessing exception flags

To optimize programs, the native compiler does the following:

• Evaluates constants at compile time

• Removes unused expressions

• Reorders instructions within a procedure, but not across procedures

Because of these optimization capabilities, you might get unintended behavior if
operating modes such as a special rounding mode are used. For example, setting the
rounding mode does not affect constants evaluated at compile time. Further, different

Routine Description

FP_IEEE_ROUND_GET_ Returns the IEEE floating-point
rounding mode.
FP_IEEE_ROUND_NEAREST is the
default mode.

FP_IEEE_ROUND_SET_ Sets the IEEE floating-point rounding
mode.

FP_IEEE_DENORM_GET_ Returns the handling of denormalized
IEEE floating-point numbers.
FP_IEEE_DENORMALIZATION_
ENABLE is the default mode.

FP_IEEE_DENORM_SET_ Sets the handling of denormalized
IEEE floating-point numbers.

FP_IEEE_ENABLES_GET_ Returns the mask of enabled IEEE
floating-point traps. By default, traps
are disabled.

FP_IEEE_ENABLES_SET_ Sets the mask of enabled IEEE
floating-point traps.

FP_IEEE_ENV_CLEAR_ Sets the IEEE floating-point
environment to its default values and
returns its previous state.

FP_IEEE_ENV_RESUME_ Sets the IEEE floating-point
environment to the state returned by
the FP_IEEE_ENV_CLEAR routine.

FP_IEEE_EXCEPTIONS_GET_ Returns the IEEE floating-point sticky
flags (exceptions) mask. By default,
no exceptions are set.

FP_IEEE_EXCEPTIONS_SET_ Sets the IEEE floating-point sticky
flags (exceptions) mask.

Using Floating-Point Formats

Guardian Programmer’s Guide — 421922-014
28 - 7

Floating-Point Operating Mode Routines

rounding mode settings within a procedure might be affected by instruction reordering
within a procedure. When evaluating IEEE floating-point expressions, the compiler
uses the default floating-point modes identified above. The expressions evaluated at
compile time do not affect the exception flags.

See the Guardian Procedure Calls Reference Manual for details about these operating
mode routines.

Operating Modes Recommendations

• Encoding rounding modes, exception flags, and other details could vary with future
CPU families. Use the kfpieee.h header file for the encodings.

• Do not enable IEEE floating-point traps. To check for possible problems, clear the
exception flags before a computation. Also, check the exception flags after
computation. The following example illustrates the use of
FP_IEEE_EXCEPTIONS_SET_ and FP_IEEE_EXCEPTIONS_GET_.

#include <math.h> nolist
#include <stream.h> nolist
#include <kfpieee.h> nolist

double triangleArea /* Area of a triangle, as per Kahan */

 (double a, double b, double c /* lengths of the sides */)

{
 double t;
 /* sort sides so a >= b >= c */
 #define EXCHANGE(x,y) { t=x; x=y; y=t; }
 if(a<b) EXCHANGE(a,b);
 if(b<c) {
 EXCHANGE(b,c);
 if(a<b) EXCHANGE(a,b);
 }
return(sqrt((a+(b+c))*(c-(a-b))*(c+(a-b))*(a+(b-c)))/4);
} /* triangleArea */

int main (void) {
 double area;

 FP_IEEE_EXCEPTIONS_SET_(0); // clear exception flags
 area = triangleArea(1.0001, 1.0002, 2.0);

 // test for interesting exceptions:

 if(FP_IEEE_EXCEPTIONS_GET_() &
 (FP_IEEE_INVALID|FP_IEEE_OVERFLOW|FP_IEEE_DIVBYZERO))
 {

 cout << "Trouble in computation! \n";
 return(1);
 }
 cout << "Area of the thin triangle is " << area << "\n" ;
 return(0);

}

Using Floating-Point Formats

Guardian Programmer’s Guide — 421922-014
28 - 8

Floating-Point Operating Mode Routines

Considerations
• Use 64-bit floating-point format instead of 32-bit floating-point format for greater

precision, especially when doing intermediate calculations.

• Use the default operating modes for rounding and trap handling.

• IEEE floating-point values cannot be stored in SQL/MP databases.

• You cannot compile a module that uses both IEEE floating-point and embedded
SQL. Compile the IEEE floating point and the embedded SQL modules separately,
and then link them together.

• You cannot use IEEE floating-point values in programs that use NonStop Tuxedo
software and NonStop Distributed Object Manager/MP (DOM/MP) software. These
products support only Tandem floating-point values.

Guardian Programmer’s Guide — 421922-014
A - 1

A Mixed Data Model
Programming

The Guardian personality supports only 32-bit processes. Mixed Data Model
programming is a technique through which we can create both 32-bit and 64-bit
pointers for 32-bit processes.

Mixed mode programming is the model in which 32-bit programs can allocate 64-bit
segments using the SEGMENT_ALLOCATE64_ procedure and access these
segments using 64-bit pointers.

Using 64-bit Addressable Memory
Beginning with the H06.20/J06.09 RVUs, Guardian programs have access to up to
508GB of additional virtual memory. Using this additional address space can be of
significant benefit to programs that need access to large amounts of in-memory data.
Such programs can allocate 64-bit segments using the SEGMENT_ALLOCATE64_
procedure and then can access the segments using 64-bit pointers.

64-bit segments are allocated upward beginning at virtual address 0x100000000ULL.

Accessing Data in 64-bit Segments
In C/C++, a 64-bit pointer is declared using the _ptr64 modifier.

For example, char _ptr64 * longPtr;

To use 64-bit addressing in epTAL, you must specify the __EXT64 directive on the
compiler run-line or within the program source prior to the first data or procedure
declaration. The epTAL compiler supporting 64-bit addressing is available in the
H06.23, J06.12 and subsequent RVUs.

With __EXT64 specified, a 64-bit pointer is declared using .EXT64:

STRING .EXT64 LONGPTR;

Setting the __EXT64 option also enables the following variable types:

• EXT64ADDR - A 64-bit address

• PROC64PTR - A 64-bit pointer to a procedure

Note. Mixed mode programming uses 64-bit pointers to access large segments created by
SEGMENT_ALLOCATE64_. In this way, 64-bit APIs can be used in the Guardian environment.

Note. While NSK supports up to 508GB of virtual memory for 64-bit segments, the practical
limit is determined by the amount of physical memory on the processor where the program is
running, and on the Kernel Managed Swap Facility (KMSF) configuration. 64-bit segments are
supported in the H06.20 and J06/09 and subsequent RVUs, but supporting system interfaces
are incomplete until the H06.24 and J06.13 RVUs.

Mixed Data Model Programming

Guardian Programmer’s Guide — 421922-014
A - 2

Allocating a 64-bit Segment

• PROC64ADDR - The 64-bit address of a procedure

Additionally, new built-ins are enabled by __EXT64:

• $EXT64ADDR_TO_EXTADDR - converts 64-bit address values to 32-bit
extaddr address values; no checking is performed to see if the 32-bit address
value is valid.

• $EXT64ADDR_TO_EXTADDR_OV - converts 64-bit address values to 32-bit
EXTADDR address values. If the address cannot be represented in 32-bits, an
overflow trap occurs.

• $EXTADDR_TO_EXT64ADDR - converts 32-bit address values to 64-bit
address values.

• $FIXED0_TO_EXT64ADDR - converts a FIXED integer to a 64-bit address
EXT64ADDR.

• $IS_32BIT_ADDR - Returns -1 only if the specified address value can be
represented as a 32-bit byte address; otherwise, returns 0. Input values may
be any of the address types except SGWADDR and SGBADDR, which are 16-
bits in length.

• $PROCADDR - also accepts a PROC64ADDR expression.

• $PROC64ADDR - Converts a PROCADDR or PROC64ADDR expression to a
PROC64ADDR. The bit pattern is unchanged.

• $XADR64 - 64-bit counterpart of $XADR.

Also, the $FIX function now accepts an EXT64ADDR expression, converting it to
FIXED(0). The new function $UFIX converts an INT(32) into a zero-extended
FIXED(0).

Allocating a 64-bit Segment
A 64-bit segment is allocated by calling SEGMENT_ALLOCATE64_(). The C/C++
prototype for the function is found in the header kmem.h while the epTAL external
declaration is in kmem. The following procedures are used to allocate and manage 64-
bit segments:

• SEGMENT_ALLOCATE64_

A 64-bit version of the existing SEGMENT_ALLOCATE_ procedure.

• SEGMENT_GETINFO64_

A 64-bit version of the SEGMENT_GETINFO_ procedure; it supports only native
callers. This procedure is superseded by SEGMENT_GETINFOSTRUCT_; it is
convenient for widening existing calls to SEGMENT_GETINFO_, but is not
recommended for new code.

An additional bit in the usage-flags parameter output identifies 64-bit segments.
The bit is selected by mask 0x1000 (MM_SegIs64Mask in KMEM[.h]); in TAL

Mixed Data Model Programming

Guardian Programmer’s Guide — 421922-014
A - 3

Dynamic Memory Allocation in 64-bit Segments

notation it is bit <3>. SEGMENT_GETINFO_ assigns -1 to base-address for a
64-bit segment; it assigns -1 to segment-size if the size exceeds 31 bits.

• SEGMENT_RESIZE64_

A 64-bit version of the existing RESIZESEGMENT procedure.

Additional procedures recognizing 64-bit segments are:

• ADDRESS_DELIMIT64_

A 64-bit version of the existing ADDRESS_DELIMIT_ procedure.

• REFPARAM_BOUNDSCHECK64_

A 64-bit version of the existing REFPARAM_BOUNDSCHECK_ procedure.

For more information on the SEGMENT_*64_ and related procedures, see Guardian
Procedure Calls Reference Manual. These procedures exist in the H06.20, J06.09 and
subsequent RVUs.

Dynamic Memory Allocation in 64-bit Segments
Dynamic allocation and de-allocation of space in a 64-bit segment can be
accomplished through use of the 64-bit pool routines. These routines have the
following advantages:

• Much higher performance than traditional NSK pool management routines

• Do not require that a pool be a contiguous block of virtual memory. A pool can be
grown by allocating an additional segment, then augmenting the pool to include
that segment

The 64-bit pool routines are:

• POOL64_DEFINE_ defines a new pool

• POOL64_GET_ allocates space from the pool

• POOL64_PUT_ deallocates space form the pool

• POOL64_GETINFO_ provides information about an existing pool

• POOL64_RESIZE_ grows or shrinks a single-segment pool

• POOL64_AUGMENT_ adds a potentially discontiguous memory area to a pool

• POOL64_DIMINISH_ removes a memory area previously added by
POOL64_AUGMENT_

• POOL64_CHECK_SHRINK_ determines if a POOL64_RESIZE_ or
POOL_DIMINISH_ call will succeed

• POOL64_CHECK_ checks the integrity of a pool

Mixed Data Model Programming

Guardian Programmer’s Guide — 421922-014
A - 4

Data Scanning and Movement within 64-bit
Segments

For more information on pool routines, see Guardian Procedure Calls Reference
Manual. The POOL64_* routines are available in H06.20, J06.09 and subsequent
RVUs. All TNS/E C/C++ compilers support the necessary 64-bit addressing constructs.
The epTAL compiler supporting 64-bit addressing is available as of H06.23 and J06.12;
the constructs must be enabled using the __EXT64 directive. The KPOOL64 header
file, for use with epTAL, is available as of H06.24 and J06.13.

Data Scanning and Movement within 64-bit Segments
C/C++ programs can move data to, from and within a 64-bit segment using functions
defined in string.h. These routines accept 64-bit pointer arguments and data
lengths. Those that return a pointer, return a 64-bit pointer. The 64-bit capable
functions have names that are formed from their standard C counterparts by
appending '64'. For example, the 64-bit capable version of memcpy() is named
memcpy64(). These functions are available in H06.22, J06.11 and subsequent RVUs.

epTAL programs can use the normal data scanning or movement constructs with 64-bit
pointers.

File I/O to/from 64-bit Segments
Guardian programs can perform I/O operations directly to and from 64-bit segments
using 64-bit Guardian I/O procedures. These procedures are:

• CANCELREQL

• FILE_AWAITIO64_

• FILE_COMPLETEL_

• FILE_CONTROL64_

• FILE_CONTROLBUF64_

• FILE_LOCKFILE64_

• FILE_LOCKREC64_

• FILE_READ64_

• FILE_READLOCK64_

• FILE_READUPDATE64_

• FILE_READUPDATELOCK64_

• FILE_REPLY64_

• FILE_SETMODENOWAIT64_

• FILE_UNLOCKFILE64_

• FILE_UNLOCKREC64_

• FILE_WRITE64_

Mixed Data Model Programming

Guardian Programmer’s Guide — 421922-014
A - 5

Socket I/O to/from 64-bit Segments

• FILE_WRITEREAD64_

• FILE_WRITEUPDATE64_

• FILE_WRITEUPDATEUNLOCK64_

• FILENAME_FINDNEXT64_

Socket I/O to/from 64-bit Segments
Socket I/O can also be performed directly to and from 64-bit segments using the
following Guardian Socket calls:

• send64_()

• sendto64_()

• recv64_()

• recvfrom64_()

• send_nw64_()

• send_nw2_64_()

• sendto_nw64_()

• t_sendto_nw64_()

• recv_nw64_()

• recvfrom_nw64_()

• t_recvfrom_nw64_()

OSS I/O to/from 64-bit segments
The following OSS system calls provide 64-bit I/O buffer support to 32-bit programs:

• read64_()

• recv64_()

• recvfrom64_()

• recvmsg64_()

• send64_()

• sendto64_()

• sendmsg64_()

• write64_()

Mixed Data Model Programming

Guardian Programmer’s Guide — 421922-014
A - 6

Debugging Programs with 64-bit Segments

Debugging Programs with 64-bit Segments
Both Visual Inspect and eInspect may be used to debug a running program that has
64-bit segments.

Snapshot files from programs that have 64-bit segments have a format that differs from
those of programs without such segments. Snapshots of programs with 64-bit
segments may not be examined using Visual Inspect but must rather be analyzed
using eInspect.

In RVUs prior to H06.24 and J06.13:

• Only eInspect can display 64-bit segments and their contents.

• Snapshot files omit 64-bit segments; those segments simply do not exist in a
debugging session using a snapshot.

Examples
Here is a complete example C program that performs the following:

• Allocates a 1GB 64-bit segment

• Defines a pool on that segment

• Moves some data into the pool

• Writes that data to stdout

Mixed Data Model Programming

Guardian Programmer’s Guide — 421922-014
A - 7

Examples

C Example:
#include <kmem.h> nolist
#include <kpool64.h> nolist
#include <stdio.h> nolist
#include <string.h> nolist
#include <cextdecs(FILE_WRITE64_)> nolist
#include <unistd.h> nolist

int main(void) {
 void _ptr64 * segment; /* Base address of the 64-bit Segment */
 short err, detail; /* Results from SEGMENT_ALLOCATE64_ */
 uint32 error; /* Results from POOL64 functions */
 NSK_POOL64_PTR pool_ptr; /* 64-bit Pool Header */
 void _ptr64 * ptr; /* Buffer allocated from the pool */
 int64 poolSize = 1024LL * 1024 * 1024;

 /* Allocate the 64-bit Segment */
 err = SEGMENT_ALLOCATE64_(1
 , poolSize
 , /* filename */ , /* filename length */
 , &detail
 , /* pin */
 , /* segment-type (default) */
 , &segment
);
 if (err != SEGMENT_OK) {
 fprintf(stderr, "Error %d,%d returned by SEGMENT_ALLOCATE64_\n",
 err, detail);
 return 1;
 }
 /* Set address of pool */
 pool_ptr = (NSK_POOL64_PTR)segment;
 /* Define the pool */
 error = POOL64_DEFINE_(pool_ptr, poolSize, POOL64Default);
 if (error != POOL64_OK) {
 fprintf(stderr, "Error %d returned by POOL64_DEFINE_\n" , error);
 return 1;
 }

 /* Allocate a buffer from the pool */
 ptr = POOL64_GET_(pool_ptr, 100 , &error);
 if (error != POOL64_OK) {
 fprintf(stderr, "Error %d returned by POOL64_GET_\n" , error);
 return 1;
 }
 /* Copy data to be written into the pool */
 strcpy64((char _ptr64 *)ptr, "This data is in a 64-bit segment");
 /* Write the Data to Standard Out */
 FILE_WRITE64_(STDOUT_FILENO,
 (char _ptr64 *)ptr,
 (int)strlen64((char _ptr64 *)ptr)
);

 return 0;
}

Mixed Data Model Programming

Guardian Programmer’s Guide — 421922-014
A - 8

Examples

The following is a similar program written in epTAL:
?__EXT64

?SETTOG _64BIT_CALLS

?COLUMNS 79

!Global variables:

STRUCT CI_STARTUP; !Startup message

 BEGIN

 INT MSGCODE;

 STRUCT DEFAULT;

 BEGIN

 INT VOLUME[0:3];

 INT SUBVOLUME[0:3];

 END;

 STRUCT INFILE;

 BEGIN

 INT VOLUME[0:3];

 INT SUBVOL[0:3];

 INT FNAME[0:3];

 END;

 STRUCT OUTFILE;

 BEGIN

 INT VOLUME[0:3];

 INT SUBVOL[0:3];

 INT FNAME[0:3];

 END;

 STRING PARAM[0:529];

 END;

INT FNO; !OUT FILE NUMBER

?NOLIST

?SOURCE KMEM(SEGMENT_PROC_CONSTANTS, SEGMENT_ALLOCATE64_)

?SOURCE KPOOL64

?SOURCE EXTDECS(ABEND

? , FILE_WRITE64_

? , INITIALIZER

? , OPEN)

?LIST

PROC START_IT(RUCB,START_DATA,MESSAGE,LENGTH,MATCH) VARIABLE;

INT .RUCB,

 .START_DATA,

 .MESSAGE,

 LENGTH,

 MATCH;

BEGIN

 CI_STARTUP.MSGCODE ':=' MESSAGE[0] FOR LENGTH/2;

END;

PROC INITIAL MAIN;

BEGIN

 INT ERR, DETAIL;

 INT(32) ERROR;

 EXT64ADDR POOLADDR;

 INT .EXT64 POOLPTR = POOLADDR;

 STRING .EXT64 PTR

 , .EXT64 PTR1;

Mixed Data Model Programming

Guardian Programmer’s Guide — 421922-014
A - 9

Examples

 LITERAL POOLSIZE = 1024F * 1024F * 1024F;

 CALL INITIALIZER(!rucb!,

 !passthru!,

 START_IT);

 OPEN(CI_STARTUP.OUTFILE.VOLUME, FNO, %4000, 1);

 IF <> THEN

 ABEND;

 ERR := SEGMENT_ALLOCATE64_(1

 , POOLSIZE

 , ! Filename : length

 , DETAIL

 , ! pin

 , ! segment_type (default)

 , POOLADDR);

 IF ERR <> SEGMENT_OK THEN

 ABEND;

 ERROR := POOL64_DEFINE_(POOLADDR, POOLSIZE, POOL64DEFAULT);

 IF ERROR <> POOL64_OK THEN

 ABEND;

 @PTR := POOL64_GET_(POOLPTR, 100F, ERROR);

 IF ERROR <> 0d THEN

 ABEND;

 PTR ':=' "This data is in a 64-bit segment" -> @PTR1;

 FILE_WRITE64_(FNO, PTR, $DBL(@PTR1 - @PTR));

END;

Guardian Programmer’s Guide — 421922-014
Glossary - 1

Glossary
absolute pathname. An Open System Services (OSS) pathname that begins with a

slash (/) character and is resolved beginning with the root directory. Contrast with
relative pathname.

accelerate. To speed up emulated execution of a TNS object file by applying the
Accelerator for TNS/R system execution or the Object Code Accelerator (OCA) for
TNS/E system execution before running the object file.

accelerated mode. See TNS accelerated mode.

accelerated object code. The MIPS RISC instructions (in the MIPS region) that result from
processing a TNS object file with the Accelerator or the Intel® Itanium® instructions (in
the Itanium instruction region) that result from processing a TNS object file with the
Object Code Accelerator (OCA).

accelerated object file. A TNS object file that, in addition to its TNS instructions (in the
TNS region) and symbol information (in the symbol region), has been augmented by
the Accelerator with equivalent but faster MIPS RISC instructions (in the MIPS region),
the Object Code Accelerator (OCA) with equivalent but faster Intel® Itanium®
instructions (in the Itanium instruction region), or both.

Accelerator. A program optimization tool that processes a TNS object file and produces an
accelerated object file that also contains equivalent MIPS RISC instructions (called the
MIPS region). TNS object code that is accelerated runs faster on TNS/R CPUs than
TNS object code that is not accelerated. See also TNS Object Code Accelerator
(OCA).

Accelerator region of an object file. The region (called the MIPS region) of an object file
that contains MIPS RISC instructions and tables necessary to execute the object file
on a TNS/R system in accelerated mode. The Accelerator creates this region. Contrast
with OCA region of an object file. See also accelerated object file.

access mode. A file attribute that determines what operations you can perform on the file,
like reading and writing.

active backup. A programming technique used to achieve fault tolerance in application
programs. In active backup programming, a program executes as a process pair: a
primary process, which performs the application processing, and a backup process,
which is ready to take over execution if the primary process fails.

active process. The process that is currently using the instruction processing unit of the
CPU. Contrast with inactive process.

address space. The memory locations to which a process has access.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 2

alternate key

alternate key. A sequence of characters other than the primary key used as an alternate
index to records in a key-sequenced file.

alternate-key file. A key-sequenced file that provides the relationship between alternate
keys and primary keys.

ancestor. The process that is notified when a named process or process pair is deleted.
The ancestor is usually the process that created the named process or process pair.

ANSI. The American National Standards Institute.

APE. See application program interface (API).

API. See application program interface (API).

application program interface (API). A set of services (such as programming language
functions or procedures) that are called by an application program to communicate with
other software components. For example, an application program in the form of a client
might use an API to communicate with a server program.

ASSIGN. An association of a physical file name with a logical file name made by the TACL
ASSIGN command. The physical file name is any valid file name. The logical file
name is used within a program. The ASSIGN is therefore used to pass file names to
programs.

AXCEL. The command used to invoke the Accelerator on a TNS/R or TNS/E system.

beginning-of-tape (BOT) sticker. A light-reflecting strip that indicates the start of the
usable portion of a magnetic tape. Contrast with end-of-tape (EOT) sticker.

binary semaphore. A software tool used to synchronize processes. Binary semaphores
provide a way for several concurrently-executing processes to share a resource.
Using binary semaphores, an executing process can hold exclusive access to the
shared resource. Other processes execute until they need to use the resource, then
enter a wait state until the resource becomes available.

Binder. A programming utility that combines one or more compilation units’ TNS object
code files to create an executable TNS object code file for a TNS program or library.
Used only with TNS object files.

Binder region. The region of a TNS object file that contains header tables for use by the
Binder program.

binding. The operation of collecting, connecting, and relocating code and data blocks from
one or more separately compiled TNS object files to produce a target object file.

BOT sticker. See beginning-of-tape (BOT) sticker.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 3

BREAK mode

BREAK mode. A mode of process execution where a process gains exclusive access to a
terminal when the BREAK key is pressed. BREAK mode is established using
SETPARAM function 3 or SETMODE function 11.

BREAK owner. The process that receives the Break-on-device message when the BREAK
key is pressed. The establishment of BREAK ownership is achieved using
SETPARAM function 3 or SETMODE function 11.

breakpoint. An object code location at which execution will be suspended so that you can
interactively examine and modify the process state. With symbolic debuggers,
breakpoints are usually at source line or statement boundaries.

In TNS/R or TNS/E native object code, breakpoints can be at any MIPS RISC
instruction or Intel® Itanium® instruction within a statement. In a TNS object file that
has not been accelerated, breakpoints can be at any TNS instruction location. In a
TNS object file that has been accelerated, breakpoints can be only at certain TNS
instruction locations (see memory-exact point), not at arbitrary instructions. Some
source statement boundaries are not available. However, breakpoints can be placed at
any instruction in the accelerated code.

C-series system. A system that is running a C-series version of the operating system.

CAID. See creator access ID (CAID).

central processing unit (CPU). Historically, the main data processing unit of a computer.
HP NonStop™ servers have multiple cooperating CPUs rather than a single CPU. See
also processor clock.

child process. A process created by another process. The creating process becomes the
parent process of the new process. See also pathname component.

CISC compiler. See complex instruction-set computing (CISC) and TNS compiler

CISC processor. An instruction processing unit (IPU) that is based on complex
instruction-set computing (CISC) architecture.

checkpoint. A line in a program at which specified information is copied from the primary
process of a process pair to the backup process. This line then becomes the restart
point for the backup process in the event that the primary process should stop due to
CPU failure.

child process. A process created by the current process.

CISC. See complex instruction-set computing (CISC).

client. A software process, hardware device, or combination of the two that requests
services from a server. Often, the client is a process residing on a programmable
workstation and is the part of an application that provides the user interface. The
workstation client might also perform other portions of the application logic.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 4

client application

client application. An application that requests a service from a shared memory. Execution
of remote procedure calls is an example of a client application.

clock averaging. The technique used to keep CPU clocks synchronized.

code file. See object code file.

code segment. A segment that contains executable instructions of a program or library to
be executed plus related information. Code segments can be executed and also
accessed as read-only data but not written to by an application program. These read-
only and execute-only segments are efficiently shared among simultaneous executions
of that program or library. Therefore, they are read from disk but are never written back
to disk. See also TNS code space.

code set. Codes that map a unique numeric value to each character in a character set,
using a designated number of bits to represent each character. Single-byte code sets
use 7 or 8 bits to represent each character. The ASCII and ISO 646 code sets use 7
bits to represent each character in Roman-based alphabets; these code sets are very
limited and are not appropriate for international use. The single-byte ISO 8859 code
sets use 8 bits to represent each character and can therefore support Roman-based
alphabets and many others including Greek, Arabic, Hebrew, and Turkish. Multibyte
code sets represent characters that require more than one byte, such as East Asian
ideographic characters.

code space. that part of virtual memory reserved for user code, user library code, system
code, and system library code. See TNS code space.

command-interpreter monitor ($CMON). A server process used to monitor requests made
to the command interpreter (TACL process) and to affect the way the command
interpreter responds.

common FCB. Seecommon file control block.

common file control block. A data structure containing information common to all SIO files
opened by a process. This information includes the name of the file that receives error
messages generated by SIO procedures.

Common Object File Format (COFF). A common standard for executable files and object
code. On HP NonStop™ servers, COFF for TNS/R native files was replaced by the
more extensible Executable and Linkable Format (ELF) beginning with the D40.00
RVU.

compiler extended-data segment. A selectable segment, with ID 1024, created and
selected automatically in many (but not all) TNS processes. Within this segment, the
compiler automatically allocates global and local variables and heaps that would not fit
in the TNS user data segment. A programmer must keep this segment selected
whenever those items might be referenced. Any alternative selections of segments
must be temporary and undone before returning.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 5

completion code

completion code. A value used to return information about a process to its ancestor
process when the process is deleted. This value is returned in the Process deletion
message, system message -101.

complex instruction-set computing (CISC). A CPU architecture based on a large
instruction set, characterized by numerous addressing modes, multicycle machine
instructions, and many special-purpose instructions. Contrast with reduced instruction-
set computing (RISC).

concurrency control. The use of locking mechanisms to prevent data corruption due to
concurrent access.

condition code. A status returned in the Environment Register by some file-system
procedure calls to indicate whether the call was successful. A condition-code-greater-
than (CCG) indicates a warning, a condition-code-less-than (CCL) indicates an error,
and a condition-code-equal (=) indicates successful execution.

context-free server. A server process that does not retain any information about previous
processing. It knows only about the processing of the current request message.

conversational mode. A mode of communication between a terminal and its I/O process in
which each byte is transferred from the terminal to the CPU I/O buffer as it is typed.
Each data-transfer operation finishes when a line-termination character is typed at the
terminal. Contrast with page mode.

CPU. A functional unit of a NonStop server that is composed of one or more instruction
processing units (IPUs) and memory. Each CPU has its own copy of the NonStop
operating system.

cpu, pin. In the Guardian environment, a number pair that uniquely identifies a process
during the lifetime of the process, consisting of the CPU number and the process
identification number (PIN).

creator. The process that causes a process to be built from a program file of another
process. Compare with mom and ancestor.

creator access ID (CAID). A process attribute that identifies, by user ID, the user who
initiated the process creation. Contrast with process access ID (PAID).

current selectable segment. The selectable segment that can be accessed by a process.
A process specifies the current selectable segment by calling the USESEGMENT or
SEGMENT_USE_ procedure to select one of a set of alternative selectable segments.

D-series system. A system that is running a D00 or later version of the operating system.

data segment. A virtual memory segment holding data. Every process begins with its own
data segments for program global variables and runtime stacks (and for some libraries,
instance data). Additional data segments can be dynamically created. See also flat
segment and selectable segment.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 6

data space

data space. The area of virtual memory reserved for user data and system data.

DCT. See destination control table (DCT).

deadlock. A situation in which two processes or two transactions cannot continue because
they are each waiting for the other to release a lock.

DEFINE. An HP Tandem Advanced Command Language (TACL) command you can use to
specify a named set of attributes and values to pass to a process.

DEFINE name. An identifier preceded by an equal sign that can be used in place of an
actual name to identify a DEFINE in a procedure call. See DEFINE.

destination control table (DCT). A collection of operating system data structures that
serves as a directory of named processes and logical devices.

device subtype. A value that further qualifies a device type. For example, a device type of
4 indicates a magnetic tape drive; if the same device has a device subtype of 2, then
the magnetic tape drive has a 3206 controller. You can also apply a device subtype to
a process, for example, when performing terminal simulation.

disk drive. A device that stores and accesses data on a magnetic disk. Random access to
addressable locations on a magnetic disk is provided by magnetic read/write heads.
See also voluntary rendezvous opportunity (VRO).

disk volume. See voluntary rendezvous opportunity (VRO).

dispatching. The task of making a process active, permitting it to use the CPU to execute.

distributed system. A system that consists of a group of connected, cooperating
computers.

download. The process of transferring software from one location to another, where the
transferring entity initiates the transfer.

dynamic-link library (DLL). A collection of procedures whose code and data can be loaded
and executed at any virtual memory address, with run-time resolution of links to and
from the main program and other independent libraries. The same DLL can be used by
more than one process. Each process gets its own copy of DLL static data. Contrast
with shared run-time library (SRL). See also TNS/R library.

dynamic loading. Loading and opening dynamic-link libraries under programmatic control
after the program is loaded and execution has begun.

duplicate key. A sequence of characters that makes up the same value in a key field in
more than one record in the same file.

EDIT file. In the Guardian file system, an unstructured file with file code 101. An EDIT file
can be processed by either the EDIT or PS Text Edit (TEDIT) editor. An EDIT file

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 7

elapsed time

typically contains source program or script code, documentation, or program output.
Open System Services (OSS) functions can open an EDIT file only for reading.

elapsed time. Time as measured by the CPU clock, independent of the state of any
process.

eld utility. A utility that collects, links, and modifies code and data blocks from one or more
position-independent code (PIC) object files to produce a target TNS/E native object
file. See also ld utility and nld utility.

ELF. See Executable and Linkable Format (ELF).

emulate. To imitate the instruction set and address spaces of a different hardware system
by means of software. Emulator software is compatible with and runs software built for
the emulated system. For example, a TNS/R or TNS/E system emulates the behavior
of a TNS system when executing interpreted or accelerated TNS object code.

end-of-tape (EOT) sticker. A light-reflecting strip that indicates that the end of the usable
area of a magnetic tape is approaching. Contrast with beginning-of-tape (BOT) sticker.

enoft utility. A utility that reads and displays information from TNS/E native object files.
See also noft utility.

EPTRACE. A performance investigation tool for Open System Services (OSS) and
Guardian environments running H-series or J-series RVUs. It is designed to count,
trace, locate, and provide a log of millicode-corrected misalignments in TNS stumble
events.

Enscribe. A database record management system.

entry-sequenced file. A file in which each new record is stored at the end of the file in
chronological sequence and whose primary key is a system-generated record address.
Contrast with “key-sequenced file and relative file.

EOT sticker. See end-of-tape (EOT) sticker”

exact point. See memory manager and register-exact point.

executable. See object code file.

Executable and Linkable Format (ELF). A common standard for executable files and
object code. On HP NonStop™ servers, ELF replaced the less extensible Common
Object File Format (COFF) for native files.

execution mode. The emulated or real instruction set environment in which object code
runs. A TNS system has only one execution mode: TNS mode using TNS compilers
and 16-bit TNS instructions. A TNS/R system has three execution modes: TNS/R
native mode using MIPS native compilers and MIPS instructions, emulated TNS
execution in TNS interpreted mode, and emulated TNS execution in TNS accelerated

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 8

exclusion mode

mode. A TNS/E system also has three execution modes: TNS/E native mode using
TNS/E native compilers and Intel® Itanium® instructions, emulated TNS execution in
TNS interpreted mode, and emulated TNS execution in TNS accelerated mode.

exclusion mode. The attribute of a lock that determines whether any process except the
lock holder can access the locked data.

executable object file. See program file.

explicit DLL. See explicit dynamic-link library (explicit DLL).

explicit dynamic-link library (explicit DLL). A dynamic-link library (DLL) that is named in
the libList of a client or is a native-compiled loadfile associated with a client.

export. To offer a symbol definition for use by other loadfiles. A loadfile exports a symbol
definition for use by other loadfiles that need a data item or function having that
symbolic name.

EXTDECS file. See external declarations file.

extended data segment. See selectable segment.

external entry-point (XEP) table. A table located in the last page of each TNS code
segment that contains links for calls (unresolved external references) out of that
segment.

extensible data segment. An extended data segment for which swap file extents are not
allocated until needed.

extent. A contiguous area of a disk allocated to a file.

external declarations file. A file containing external declarations for Guardian procedure
calls. There are several such files relating to the high-level programming language you
are using and the version of the operating system.

fault domain. In a fault-tolerant system, a module that can fail without causing a system
failure.

fault tolerance. The ability of a computer system to continue processing despite the failure
of any single software or hardware component within the system.

FCB. See file control block (FCB).

field. In a structured programming language, an addressable entry within a data structure.

file. An object to which data can be written or from which data can be read. A file has
attributes such as access permissions and a file type. In the Open System Services
(OSS) environment, file types include regular file, character special file, block special
file, FIFO, and directory. In the Guardian environment, file types include disk files,
processes, and subdevices.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 9

file code

file code. An integer value assigned to a file for application-dependent purposes, typically
identifying the kind of information the file contains.

file control block (FCB). (1) A data structure automatically created and managed by the file
system that contains a collection of information about a given file. (2) A data structure
on the user’s data stack used by SIO to access SIO files. These FCBs contain
information in addition to the information kept in the FCB automatically created and
managed by the file system.

file description. See open system.

file identifier. In the Guardian environment, the portion of a filename following the
subvolume name. In the Open System Services (OSS) environment, a file identifier is a
portion of the internal information used to identify a file in the OSS file system (an
inode number). The two identifiers are not comparable.

filename. In the Open System Services (OSS) environment, a component of a pathname
containing any valid characters other than slash (/) or null. See also file name.

file name. A string of characters that uniquely identifies a file.

In the PC environment, file names for disk files normally have at least two parts (the
disk name and the file name); for example, B:MYFILE.

In the Guardian environment, disk file names include an Expand node name, volume
name, subvolume name, and file identifier; for example,
\NODE.$DISK.SUBVOL.MYFILE.

In the Open System Services (OSS) environment, a file is identified by a pathname; for
example, /usr/john/workfile. See also filename.

file lock. A mechanism that restricts access to a file by all processes except the lock owner.

file name. A unique name for a file. This name is used to open a file using a FILE_OPEN_
or OPEN procedure call and thereby provides a connection between the opening
process and the file.

file-name part. That portion of a file name that occurs between two periods, before the first
period, or after the last period. Node name, file ID, process name, process qualifier,
device name, and volume name are all examples of file-name parts.

file-name pattern. A sequence of characters including the asterisk (*) and question mark
(?) that matches existing file names by expanding each asterisk to zero or more letters,
digits, dollar signs ($), and pound signs (#) and replacing each question mark with
exactly one letter, digit, dollar sign, or pound sign.

file-name piece. One or more consecutive parts of a file name separated by periods.

file-name subpart. An element of a file-name part separated from the next element by a
colon (:).

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 10

file number

file number. An integer that represents a particular instance of an open file. A file number
is returned by the FILE_OPEN_ or OPEN procedure and is used in all subsequent
input/output procedures to reference the file. Internally, the file number is an index into
the file table.

file serial number. A number that uniquely identifies a file within its file system.

file system. In the Open System Services (OSS) environment, a collection of files and file
attributes. A file system provides the namespace for the file serial numbers that
uniquely identify its files. Open System Services provides a file system (see also
ISO/IEC IS 9945-1:1990 [ANSI/IEEE Std. 1003.1-1990], Clause 2.2.2.38); the
Guardian application program interface (API) provides a file system; and OSS Network
File System (NFS) provides a file system. (OSS NFS filenames and pathnames are
governed by slightly different rules than OSS filenames and pathnames.) Within the
OSS and OSS NFS file systems, filesets exist as manageable objects.

On an HP NonStop™ system, the Guardian file system for an Expand node is a subset
of the OSS virtual file system. Traditionally, the API for file access in the Guardian
environment is referred to as the Guardian file system.

In some UNIX and NFS implementations, the term file system means the same thing
as fileset. That is, a file system is a logical grouping of files that, except for the root of
the file system, can be contained only by directories within the file system. See also file
system.

file type. A designation for a file structure. See entry-sequenced file, key-sequenced file.
relative file, and unstructured file.

firmware. Code in memory that is necessary for the power-up initialization and
communication with a host or device. The software for components of the ServerNet
architecture (for example, an adapter) is called firmware. Some firmware for ServerNet
components is downloaded when the system or component is loaded.

flat segment. A type of logical segment. Each flat segment has its own distinct address
range within the process address space that never overlaps the range of any other
allocated segments. Thus all allocated flat segments for a process are always available
for use concurrently. See also logical segment and selectable segment.

fully qualified file name. The complete name of a file, including the node name. For
permanent disk files, this consists of a node name, volume name, subvolume name,
and file ID. For temporary disk files, consists of a node name, subvolume name and a
temporary file ID. For a device, it consists of a node name and a device name or
logical device number. For a named process, it consists of a node name, and a
process name. For an unnamed process it consists of a node name, CPU number,
PIN, and sequence number. Contrast with partially qualified file name.

global read-only array area. The part of an object file that contains global read-only arrays.

GMT. See Greenwich mean time (GMT).

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 11

godmother

godmother. Seejob ancestor.

GPLDEFS file. A file containing TAL DEFINEs used to allocate space for SIO data
structures.

Greenwich mean time (GMT). The mean solar time for the meridian at Greenwich,
England.

Gregorian date. A date specified according to the common calendar using the month of the
year (January through December), the day of the month, and the year A.D.

graphical user interface (GUI). A user interface that offers point-and-click access to
program functions.

group list. An Open System Services (OSS) process attribute that is used with the effective
group ID of the process to determine the file access permissions for the process.

Guardian. An environment available for interactive or programmatic use with the HP
NonStop™ operating system. Processes that run in the Guardian environment usually
use the Guardian system procedure calls as their application program interface.
Interactive users of the Guardian environment usually use the HP Tandem Advanced
Command Language (TACL) or another HP product’s command interpreter. Contrast
with Open System Services (OSS).

Guardian environment. The Guardian application program interface (API), tools, and
utilities.

Guardian services. An application program interface (API) to the HP NonStop™ operating
system, plus the tools and utilities associated with that API. This term is synonymous
with Guardian environment. See also Guardian.

Guardian user ID. See HP NonStop™ operating system user ID.

GUI. See graphical user interface (GUI).

header. An object that, when specified for inclusion in a program’s source code, causes the
program to behave as if the statement including the header were actually a specific set
of other programming statements. A header contains coded information that provides
details (such as data item length) about the data that the header precedes.

HP NonStop™ Open System Services (OSS). The product name for the OSS
environment. See also Open System Services (OSS).

HP NonStop™ Kernel operating system. The former name of the operating system for HP
NonStop systems. See HP NonStop™ operating system user ID.

HP NonStop™ operating system user ID. A user ID within an HP NonStop system. The
Guardian environment normally uses the structured view of this user ID, which consists
of either the group-number, user-number pair of values or the

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 12

HP NonStop™ operating system

group-name.user-name pair of values. For example, the structured view of the
super ID is (255, 255). The Open System Services (OSS) environment normally uses
the scalar view of this user ID, also known as the UID, which is the value
(group-number * 256) + user-number. For example, the scalar view of the super ID
is (255 * 256) + 255 = 65535.

HP NonStop™ operating system. The operating system for HP NonStop systems.

HP NonStop™ System EPIC Model A processor (NSE-A processor). The model
designation for the TNS/E CPU used in the HP NonStop NS10000 server.

HP NonStop™ Technical Library (NTL). The application for accessing, searching, and
viewing technical publications and support information for the HP NonStop server. NTL
replaces Total Information Manager (TIM).

HP Tandem Advanced Command Language (TACL). The user interface to the HP
NonStop™ operating system. The TACL product is both a command interpreter and a
command language. Users can write TACL programs that perform complex tasks or
provide a consistent user interface across independently programmed applications.

HP Transaction Application Language (TAL). A systems programming language with
many features specific to stack-oriented TNS systems.

high PIN. A PIN in the range 256 or higher.

home terminal. The terminal whose name is returned by a call to the MYTERM procedure,
or the name returned in the hometerm parameter of the PROCESS_GETINFO_
procedure. The home terminal is often the terminal from which the process or
process’s ancestor was started.

hybrid shared run-time library (hybrid SRL). A shared run-time library (SRL) that has
been augmented by the addition of a dynamic section that exports the SRL’s symbols
in a form that can be used by position independent code (PIC) clients. A hybrid SRL
looks like a dynamic-link library (DLL) to PIC clients (except it cannot be loaded at
other addresses and cannot itself link to DLLs). The code and data in the SRL are no
different in a hybrid SRL, and its semantics for non-PIC clients are unchanged.

implicit library import library (imp-imp). See import library.

implied user library. A method of binding TNS object files that have more than 16 code
segments. Segments 16 through 31 are located in the user code (UC) space but are
executed as if they were segments 0 through 15 of the user library (UL) code space.
This method precludes the use of a user library. Binder now supports 32 segments of
UC space concurrently with 32 segments of UL code space, so the implied user library
method is not needed in new or changed TNS applications.

import. To refer to a symbol definition from another loadfile. A loadfile imports a symbol
definition when it needs a data item or function having that symbolic name.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 13

import control

import control. The characteristic of a loadfile that determines from which other loadfiles it
can import symbol definitions. The programmer sets a loadfile’s import control at link
time. That import control can be localized, globalized, or semiglobalized. A loadfile’s
import control governs the way the linker and loader construct that loadfile’s searchList
and affects the search only for symbols required by that loadfile.

import library. A file that represents a dynamic-link library (DLL) and can substitute for it as
input to the linker. Import libraries facilitate linking on auxiliary platforms (that is, PCs)
where it is inconvenient to store the actual DLLs.

inactive process. A process that is not currently using the instruction processing unit of the
CPU. Contrast with active process.

input/output process (IOP). A system process that drives one or more input/output units
attached to the CPU through input/output channels and controllers.

interprocess communication (IPC). The exchange of messages between processes in a
system or network.

Inspect region. The region of a TNS object file that contains symbol tables for all blocks
compiled with the SYMBOLS directive. The Inspect region is sometimes called the
SYSnn subvolume.

INSPSNAP. The program that provides a process snapshot file for the Inspect subsystem.

installation subvolume (ISV). A subvolume containing files that perform a specific function
during the installation process, such as organizing documentation in a specific location,
providing the components of the HP NonStop™ operating system image (OSIMAGE),
and containing files that are used after the installation process.

instance. A particular case of a class of items or objects. For example, a process is defined
as one instance of the execution of a program. Multiple processes might be executing
the same program simultaneously. Also, instance data refers to global data of a
program or library. Each process has its own instance of the data.

instance data. For each process using a dynamic-link library, a data segment area
containing the global variables used by the library.

Intel® Itanium® instructions. Register-oriented Itanium instructions that are native to and
directly executed by a TNS/E system. Itanium instructions do not execute on TNS and
TNS/R systems. Contrast with TNS instructions and RISC instructions.

TNS Object Code Accelerator (OCA) produces Itanium instructions to accelerate TNS
object code. A TNS/E native compiler produces native-compiled Itanium instructions
when it compiles source code.

Intel® Itanium® instruction region. The region of a TNS object file that contains Itanium
instructions and the tables necessary to execute the instructions in accelerated mode
on a TNS/E system. The Object Code Accelerator (OCA) creates this region and writes

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 14

Intel® Itanium® instruction region loading

it into the TNS object file. A TNS object file that contains an Itanium instruction region
can execute in accelerated mode on TNS/E systems. Contrast with native.

Intel® Itanium® instruction region loading. Mapping the Itanium instructions and any
tables necessary at runtime into memory from the Itanium instruction region of a TNS
object file, performed when deemed necessary by the TNS emulation software on a
TNS/E system.

Intel® Itanium® word. An instruction-set-defined unit of memory. An Itanium word is 4
bytes (32 bits) wide, beginning on any 4-byte boundary in memory. Contrast with TNS
word and word. See also native.

interpreted mode. See TNS interpreted mode.

interactive mode. A mode of operation that is characterized by having the same input and
output device (a terminal or a process) for the session. If a terminal is used, a person
enters a command and presses Return. If a process is used, the system interface waits
for the process to send a request and treats the process in the same manner as a
terminal. Contrast with noninteractive mode.

interrupt. The mechanism by which a CPU is notified of an asynchronous event that
requires immediate processing.

interval timer. A 16-bit register that is incremented every microsecond.

IOP. See input/output process (IOP).

IPC. See interprocess communication (IPC).

IPU. The functional unit in a CPU that reads program instructions, moves data between
CPU memory and the input/output controllers, and performs arithmetic operations.

job ancestor. A process that is notified when a process that is part of a job is deleted. The
job ancestor of a process is the process that created the job to which the process
belongs.

Julian timestamp. A 64-bit timestamp based on the Julian Date. It is a quantity equal to
the number of microseconds since January 1, 4713 B.C., 12:00 (noon) Greenwich
mean time (Julian proleptic calendar). This timestamp can represent either Greenwich
mean time, local standard time, or local civil time. There is no way to examine a Julian
timestamp and determine which of the three times it represents.

Kernel subsystem. In G-series, H-series and J-series release version updates (RVUs), the
subsystem for configuration and management of the Subsystem Control Facility (SCF)
subsystem managers that are generic processes, some system attributes, and the
ServerNet X and Y fabrics.

Kernel subsystem manager process. The graphical user interface (GUI) that starts and
manages other generic processes, some system attributes, and the ServerNet X and Y

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 15

Kernel-Managed Swap Facility (KMSF)

fabrics in G-series release version updates (RVUs). The $ZZKRN Kernel subsystem
manager process is started and managed by the $ZPM persistence manager process.

Kernel-Managed Swap Facility (KMSF). A facility by which the operating system manages
virtual memory using swap files that it owns. Each CPU has at least one
kernel-managed swap file that provides the swap space needs of all of its processes.

key-sequenced file. A file in which each new record is stored in sequence by primary key
value, and whose primary key is either a user-defined or a system-defined value.
Records in a key-sequenced file can be updated or deleted. Contrast with entry-
sequenced file and relative file.

KMSF. See Kernel-Managed Swap Facility (KMSF).

keyword. A character sequence recognized by a command process.

labeled tape. A magnetic tape file described by standard ANSI or IBM file labels. Contrast
with unlabeled tape.

LCT. Seelocal civil time (LCT).

LDEV. See logical device.

ld utility. A utility that collects, links, and modifies code and data blocks from one or more
position-independent code (PIC) object files to produce a target TNS/R native object
file. See also eld utility and nld utility.

legacy system. An operating system that is not open but from which applications must be
ported or users transferred.

library. A generic term for a collection of routines useful in many programs. An object code
library can take the form of a linkfile to be physically included into client programs, it
can be an OSS archive file containing several linkable modules, it can be a loadfile, or
it can be a system-managed collection of preloaded routines. Source-code libraries fall
outside the scope of this glossary.

library client. A program or another library that uses routines or variables from that library.

library file. See library.

linking. The operation of collecting, connecting, and relocating code and data blocks from
one or more separately compiled object files to produce a target object file.

load. (1) To transfer the HP NonStop™ operating system image or a program from disk into
a computer’s memory so that the operating system or program can run.

local millicode. Emulation millicode routines that are physically copied into each TNS
program code file when accelerated for TNS/E. These are a small and frequently used
subset of the full set of accelerated-mode millicode routines located in the system’s

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 16

local civil time (LCT)

TNS Emulation Library. The program’s calls to its local copy of these routines are
faster and more compact than DLL calls to the external library.

local civil time (LCT). Wall clock time in the current time zone, including any compensation
for daylight saving time.

local standard time (LST). The time of day in the local time zone excluding any
compensation made for daylight saving time.

logical device. (1) An addressable device, independent of its physical environment.
Portions of the same logical device may be located in different physical devices, or
several logical devices or parts of logical devices may be located in one physical
device. (2) A process that can be accessed as if it were an I/O device; for example,
the operator process is logical device LDEVOPR.

logical device number. A number that identifies a configured logical device. A logical
device number can be used instead of a device file name when opening a device file.

logical memory. The portion of virtual memory that can be accessed by any process in
nonprivileged mode.

logical page. (1) 2048 contiguous bytes of memory. (2) The size of a printed page given as
a number of lines.

logical processor. See CPU.

logical segment. A single data area consisting of one or more consecutive 128-kilobyte
unitary segments that is dynamically allocated by a process. The two types of logical
segments are selectable segments and flat segments. See also selectable segment
and flat segment.

login. The activity by which a user establishes a locally authenticated identity on a server.
Each login has one login name.

login name. A user name associated with a session.

logon sequence. The process through which the HP NonStop™ server to be managed is
determined, the security constraints to interact with that server are met, and a
connection with that server is established.

low PIN. A PIN in the range 0 through 254.

LST. See local standard time (LST).

main memory. Data storage, specifically the chips that store the programs and data
currently in use by a CPU.

memory-exact point. A potential breakpoint location within an accelerated object file at
which the values in memory (but not necessarily the values in registers) are the same

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 17

memory manager

as they would be if the object file were running in TNS interpreted mode or on a TNS
system. Most source statement boundaries are memory-exact points. Complex
statements might contain several such points: at each function call, privileged
instruction, and embedded assignment. Contrast with register-exact point and
nonexact point.

memory manager. An HP NonStop™ operating system process that implements the paging
scheme for virtual memory. This process services requests generated by different
interrupt handlers as well as by other system processes.

memory page. A unit of virtual storage. In TNS systems, a memory page contains 2048
bytes. In TNS/R systems, the page size is determined by the memory manager and
can vary, depending on the CPU type.

memory pool. An area of an extended data segment or user data segment that your
program allocates and from which your program can obtain and release blocks of
storage.

message system. A set of operating system procedures and data structures that handles
the mechanics of exchanging messages between processes.

message tag. A value assigned to a message by the file system when you read the
message from $RECEIVE. You can use this tag to identify the reply when processing
multiple messages at the same time.

MIPS Computer Systems, Incorporated. RISC CPU manufacturer.

MIPS region of a TNS object file. The region of a TNS object file that contains MIPS
instructions and the tables necessary to execute the instructions in accelerator mode
on a TNS/R system. Accelerator creates this region and writes it into the TNS object
file. Contrast with Intel® Itanium® instruction region.

MIPS RISC instructions. Register-oriented 32-bit machine instructions in the MIPS-1 RISC
instruction set that are native to and directly executed on TNS/R systems. MIPS RISC
instructions do not execute on TNS systems and TNS/E systems. Contrast with TNS
instructions and Intel® Itanium® instructions.

Accelerator-generated MIPS RISC instructions are produced by accelerating TNS
object code. Native-compiled MIPS RISC instructions are produced by compiling
source code with a TNS/R native compiler.

MIPS RISC word. An instruction-set-defined unit of memory. A MIPS RISC word is 4 bytes
(32 bits) wide, beginning on any 4-byte boundary in memory. Contrast with TNS word
and word. See also Intel® Itanium® word.

millicode. RISC instructions that implement various TNS low-level functions such as
exception handling, real-time translation routines, and library routines that implement
the TNS instruction set. Millicode is functionally equivalent to TNS microcode.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 18

mirrored disk

mirrored disk. A pair of identical disk drives that are used together as a single volume.
One drive is considered the primary and the other is called the backup or the mirror.
Each byte of data written to the primary drive is also written to the backup drive; if the
primary drive fails, the backup can continue operations.

mom. A process that is notified when certain other processes are deleted. In a process
pair, each process is the other’s mom When a process is unnamed, its mom is usually
the process that created it.

monitor. A process that, among other functions, is responsible for checking that certain
other processes continue to run. If such a process should stop, then it is the monitor’s
responsibility to restart it.

multibyte character set. A means for identifying written characters for national languages
that require more than one byte to represent a single character.

multiprocessing. Two or more processes running in parallel by executing on different
processing modules.

multithreaded process. A process that performs more than one operation concurrently.
Contrast with single-threaded process.

named process. A process to which a process name was assigned when the process was
created. Contrast with unnamed process.

native. An adjective that can modify object code, object file, process, procedure, and mode
of process execution. Native object files contain native object code, which directly uses
MIPS or Intel® Itanium® instructions and the corresponding conventions for register
handling and procedure calls. Native processes are those created by executing native
object files. Native procedures are units of native object code. Native mode execution
is the state of the process when it is executing native procedures.

native mode. See TNS/R native mode and TNS/E native mode.

native-mode code. Object code that has been compiled with TNS/R native compilers to run
on TNS/R systems or with TNS/E native compilers to run on TNS/E systems.

native-mode library. A native-compiled loadfile associated with one or more other native-
compiled loadfiles. A native mode process can have any number of associated native-
mode libraries. See also TNS library and TNS/E library.

native-mode source code. High-level language routines that can be compiled with TNS/E
native compilers. These two sets of compilers accept the same language dialects.

native object code. See TNS/R native object code and TNS/E native object code.

native object file. See TNS/R native object file and TNS/E native object file.

native process. SeeTNS/R native process and TNS/E native process.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 19

native signal

native signal. SeeTNS/R native signal and TNS/E native signal.

nld utility. A utility that collects, links, and modifies code and data blocks from one or more
object files to produce a target TNS/R native object file. See also eld utility and ld
utility.

node. A system of one or more CPU modules. Typically, a node is linked with other nodes
to form a network.

node name. The portion of a file name that identifies the system through which the file can
be accessed.

noft utility. A utility that reads and displays information from TNS/R native object files. See
also enoft utility.

nonexact point. A code location within an accelerated object file that is between memory-
exact points. The mapping between the TNS program counter and corresponding
RISC instructions is only approximate at nonexact points, and interim changes to
memory might have been completed out of order. Breakpoints cannot be applied at
nonexact points. Contrast with memory manager and register-exact point.

nonretryable error. An error condition returned by the file system that cannot be recovered
by retrying the operation even after operator intervention. Contrast with retryable error.

NonStop™ Kernel operating system. See HP NonStop™ operating system.

NonStop™ Series TNS. See temporary disk file.

NonStop™ Series TNS/E. See TNS/E.

NonStop™ Series TNS/R. See TNSVU.

NonStop Technical Library. See HP NonStop™ Technical Library (NTL).

NonStop Kernel Open System Services (OSS). An application program interface (API) to
the Tandem NonStop Kernel and associated tools and utilities. SeeOpen System
Services (OSS) for a more complete definition.

NonStop SQL. A relational database management system that provides efficient online
access to large distributed databases.

NSAA. HP NonStop™ advanced architecture.

NSE-A processor. See HP NonStop™ System EPIC Model A processor (NSE-A
processor).

noft utility. A utility that reads and displays information from TNS/R native object files. See
also enoft utility.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 20

noninteractive mode

noninteractive mode. A mode of operation that usually involves a command file (an EDIT
file that contains a series of commands). Contrast with interactive mode.

nowait I/O. An operation with an I/O device or process where the issuing process does not
wait for the I/O operation to finish. Contrast with waited I/O.

object code accelerator (OCA). See TNS Object Code Accelerator (OCA).

object code file. A file containing compiled machine instructions for one or more routines.
This file can be an executable loadfile for a program or library or a not-yet-executable
linkfile for some program module. On other systems, an object code file is also known
as a binary or as an executable.

object code interpreter (OCI). See TNS Object Code Interpreter (OCI).

OCA. (1) The command used to invoke the TNS Object Code Accelerator (OCA) on a
TNS/E system. (2) See TNS Object Code Accelerator (OCA).

OCA region loading. A task performed when necessary by the TNS emulation software for
TNS/E machines. This task involves mapping into memory the Intel® Itanium®
instructions and any tables needed at run time from the TNS Object Code Accelerator
(OCA) region (called the Itanium instruction region) of an OCA-generated object file.

OCA region of an object file. The region of a TNS Object Code Accelerator (OCA)-
generated object file, also called the Intel® Itanium® instruction region, that contains
Itanium instructions and tables necessary to execute the object file on a TNS/E system
in TNS accelerated mode. The TNS Object Code Accelerator (OCA) creates this
region. See also OCA-accelerated object code. Contrast with Accelerator region of an
object file.

OCA-accelerated object code. The Intel® Itanium® instructions that result from processing
a TNS object file with the TNS Object Code Accelerator (OCA).

OCA-accelerated object file. A TNS object file that has been augmented by the TNS
Object Code Accelerator (OCA) with equivalent but faster Intel® Itanium® instructions.
An OCA-accelerated object file contains the original TNS object code, the OCA-
accelerated object code and related address map tables, and any Binder and symbol
information from the original TNS object file. An OCA-accelerated object file also can
be augmented by the Accelerator with equivalent MIPS RISC instructions.

OCA-generated Itanium instructions. See Intel® Itanium® instructions.

OCI. See TNS Object Code Interpreter (OCI).

object code library. Synonym for library.

object file. A file generated by a compiler or linker that contains machine instructions and
other information needed to construct the executable code spaces and initial data for a
process. The file may be a complete program that is ready for immediate execution, or

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 21

one-way communication

it may be incomplete and require linking with other object files before execution. See
also TNS object file, TNS/R native object file, and TNS/E native object file.

one-way communication. A form of interprocess communication where the sender of a
message (the requester) does not expect any data in the reply from the receiver of the
message (the server). Contrast with two-way communication.

open system. A system with interfaces that conform to international computing standards
and therefore appear the same regardless of the system’s manufacturer. For example,
the Open System Services (OSS) environment on HP NonStop™ systems conforms to
international standards such as ISO/IEC IS 9945-1:1990 (ANSI/IEEE Std. 1003.1-
1990, also known as POSIX.1), national standards such as FIPS 151-2, and portions
of industry specifications such as the X/Open Portability Guide Version 4 (XPG4).

Open System Services (OSS). An open system environment available for interactive or
programmatic use with the HP NonStop™ operating system. Processes that run in the
OSS environment usually use the OSS application program interface. Interactive users
of the OSS environment usually use the OSS shell for their command interpreter.
Synonymous with Open System Services (OSS) environment. Contrast with Guardian.

Open System Services (OSS) environment. The HP NonStop™ Open System Services
(OSS) application program interface (API), tools, and utilities.

opener table. A data structure maintained by a server process containing information about
processes that have the server process open. Typically, the server uses this table to
check that incoming requests originate from valid openers.

operating system. See HP NonStop™ operating system.

operational environment. The conditions under which your system performs. These
conditions include the devices and communications lines that are made active and the
system and application processes that are started at system startup.

OS. See HP NonStop™ operating system.

OSS. See Open System Services (OSS).

OSS environment. See Open System Services (OSS) environment.

OSS process ID. In the Open System Services (OSS) environment, the unique identifier
that identifies a process during the lifetime of the process and during the lifetime of the
process group of that process.

OSS signal. A signal model defined in the POSIX.1 specification and available to TNS
processes and TNS/R native processes in the OSS environment. OSS signals can be
sent between processes.

OSS user ID. See HP NonStop™ operating system user ID.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 22

page

page. A unit of virtual storage for disks and CPU memory. The size of a disk page is 2048
bytes. The size of a memory page varies depending on the CPU type and the software
release.

page mode. A mode of communication between a terminal and its I/O process in which the
terminal stores up to a full page of data (1920 bytes) in its own memory before sending
the page to the I/O process. Contrast with conversational mode.

PAID. See process access ID (PAID).

PARAM. An association of an ASCII value with a parameter name made by the TACL
PARAM command. You can use PARAMs to pass parameter values to processes.

partially qualified file name. A file name in which only the right-hand file-name parts are
specified. The remaining parts of the file name assume default values. Contrast with
fully qualified file name.

pathname. In the Open System Services (OSS) file system and Network File System
(NFS), the string of characters that uniquely identifies a file within its file system. A
pathname can be either relative or absolute. See also ISO/IEC IS 9945-1:1990
(ANSI/IEEE Std. 1003.1-1990 or POSIX.1), Clause 2.2.2.57.

pathname component. See filename.

partitioned file. A logical file made up of several partitions that can reside on different disks.
Generic key values determine the partition on which a given record resides.

PCB. See process control block (PCB).

permanent disk file. A file that remains on disk until it is explicitly purged.

persistent process. A process that must always be either waiting, ready, or executing.
These processes are usually controlled by a monitor process that checks on the status
of persistent processes and restarts them if necessary.

PFS. See process file segment (PFS).

physical memory. The semiconductor memory that is part of every CPU.

PIN. See process identification number (PIN).

primary extent. The first contiguous area of disk allocated to a file. See also secondary
extent.

primary key. A unique value that identifies a record in a structured disk file.

primary path. The path between the CPU and controller that is currently being used.

priority. An indication of the precedence with which a process gains access to the
instruction processing unit.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 23

process

process. A program that has been submitted to the operating system for execution.
Multiple submissions of the same program run multiple processes.

process access ID (PAID). A user ID used to determine whether a process can make
requests to the system, for example to open a file, stop another process, and so on.
The process access ID is usually the same as the creator access ID but it can be
different; the owner of the corresponding object file can set the object file security such
that it runs with a process access ID equal to the user ID of the file owner, rather than
the creator of the process. Contrast withcreator access ID (CAID).

process control block (PCB). An operating system data structure that contains information
about the resources and environment of a process.

process descriptor. A process name returned by a Guardian procedure call.

process environment. The state and contents of the code and data spaces, stacks, and
register values that exist when the IPU is executing instructions that are part of a user
or system process.

process file name. A file name that identifies a process.

process file segment (PFS). An extended data segment that is automatically allocated to
every process and contains operating system data structures, file-system data
structures, and memory-management pool data structures.

process handle. A D-series 20-byte data structure that identifies a named or unnamed
process in the network. A process handle identifies an individual process; thus, each
process of a process pair has a unique process handle.

process ID. In the Guardian environment, the content of a 4-integer array that uniquely
identifies a process during the lifetime of the process.

process identification number (PIN). A number that uniquely identifies a process running
in a CPU. The same number can exist in other CPUs in the same system. See also
process ID.

process name. A name that can be assigned to a process when the process is created. A
process name uniquely identifies a process or process pair in a system.

process pair. Two processes created from the same object file running in a way that makes
one process a backup process of the other. Periodic checkpointing ensures that the
backup process is always ready to take over from the primary if the primary process
should fail. The process pair has one process name but each process has a different
process identification number (PIN).

process qualifier. A suffix to a process file name that gets passed to a process when the
process is opened. Its use is application-dependent.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 24

process sequence number

process sequence number. A subpart of a process file name that allows the process to be
identified over time.

process time. The amount of time that a process has spent in the active substate.

process timer. A clock that measures process execution time.

processor clock. A hardware timer on each CPU module that keeps CPU time; the number
of microseconds since cold load.

processor time. The time represented by a CPU clock.

program. See program file.

program file. An executable object code file containing a program’s main routine plus
related routines statically linked together and combined into the same object file. Other
routines shared with other programs might be located in separately loaded libraries. A
program file can be named on a RUN command; other code files cannot. See also
object code file.

ready list. A linked list of PCBs of ready processes.

ready process. A process that is prepared to become active.

read-only data segment. An extended data segment, the contents of which a process can
read but cannot alter. The contents of a read-only data segment can be shared across
CPUs.

record block. A collection of data records written to or read from a mass storage medium
using one I/O operation. Record blocks are usually used with magnetic tape to speed
I/O.

record lock. A lock held by a process or a transaction that restricts access to that record by
other processes.

reduced instruction-set computing (RISC). A CPU architecture based on a relatively
small and simple instruction set, a large number of general-purpose registers, and an
optimized instruction pipeline that supports high-performance instruction execution.
Contrast with complex instruction-set computing (CISC).

register-exact point. A synchronization location within an accelerated object file at which
both of these statements are true:

All live TNS registers plus all values in memory are the same as they would be if the
object file were running in TNS mode or TNS interpreted mode or on a TNS system.

All accelerator code optimizations are ended.

Register-exact points are a small subset of all memory-exact points. Procedure entry
and exit locations and call-return sites are usually register-exact points. All places

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 25

relative file

where the program might switch into or from TNS mode or TNS interpreted mode are
register-exact points. Contrast with memory manager and nonexact point.

relative file. A file in which each new record is stored at the relative record location
specified by its primary key, and whose primary key is a relative record number.
Records can be updated or deleted. Contrast with key-sequenced file and entry-
sequenced file.

relative pathname. In the Open System Services (OSS) file system and Network File
System (NFS), a pathname that does not begin with a slash (/) character. A relative
pathname is resolved beginning with the current working directory. Contrast with
absolute pathname.

release version update (RVU). A collection of compatible revisions of HP NonStop
operating system software products, identified by an RVU ID, and shipped and
supported as a unit. An RVU consists of the object modules, supporting files, and
documentation for the product revisions. An RVU also includes a set of documentation
for the overall RVU.

rendezvous. A distributed operation that exchanges data to achieve synchronization among
the CPU elements of a logical processor.

RVU. See release version update (RVU).

reply. A response to a requester process by a server process. Contrast with request.

request. A message formatted and sent to a server by a requester. Requests also include
status messages such as CPU up and CPU down messages, which are placed on the
intended recipient’s process message queue ($RECEIVE file) by the operating system.
Contrast with reply.

requester. A process that initiates interprocess communication by sending a request to
another process. Contrast with server.

response. See reply.

retryable error. An error condition returned by the file system that can be corrected by
repeating the operation that caused the error. Sometimes operator intervention is
required before the retry, for example to put paper into an empty printer. Contrast with
nonretryable error.

RISC. See reduced instruction-set computing (RISC).

RISC instructions. Register-oriented 32-bit machine instructions that are directly executed
on TNS/R CPUs. RISC instructions execute only on TNS/R systems, not on TNS
systems. Contrast with TNS instructions.

RUCB. See “run unit control block (RUCB).”

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 26

run unit control block (RUCB)

run unit control block (RUCB). A data structure used by the INITIALIZER procedure to
specify to SIO the name of the common FCB and the number other SIO FCBs to be
created.

secondary extent. A contiguous area of disk storage allocated to a file. A file is made up of
one or more extents; the first extent is the primary extent, and other extents are
secondary extents. The secondary extents are all the same size for a specific file. The
primary extent can be a different size. See also primary extent.”

segment. In general, a contiguous sequence of logically related pages of virtual memory.
The pages of the segment are individually swapped in and out of physical memory as
needed. Within a loadable object file, one of the portions of the file that is mapped as
one unit into virtual memory as the file is loaded. See also code segment and data
segment.

segment ID. A number that identifies an extended data segment and specifies the kind of
extended data segment to allocate.

selectable segment. A type of logical segment formerly known as an extended data
segment. The data area for a selectable segment always begins with relative segment
4, and this area can be dynamically switched among several selectable segments by
calls to the Guardian SEGMENT_USE_ procedure. The effect is similar to a rapid
overlaying of one large data area. See also logical segment and flat segment.

sequence number. See process sequence number.

server. (1) An implementation of a system used as a stand-alone system or as a node in an
Expand network. (2) A combination of hardware and software designed to provide
services in response to requests received from clients across a network. For example,
HP NonStop™ servers provide transaction processing, database access, and other
services. (3) A process or program that provides services to a client or a requester.
Servers are designed to receive request messages from clients or requesters; perform
the desired operations, such as database inquiries or updates, security verifications,
numerical calculations, or data routing to other computer systems; and return reply
messages to the clients or requesters. A server process is a running instance of a
server program.

shared data segment. An extended data segment that can be accessed by more than one
process.

shared memory. An interprocess communication mechanism that allows two or more
processes to share a given region of memory.

Shared Millicode Library. An intrinsic library containing privileged or TNS-derived millicode
routines used by many native-compiled programs and by emulated TNS programs.
This library includes efficient string-move operations, TNS floating-point emulation, and
various privileged-only operations. These routines are mode independent. They
comply with native calling conventions but can be directly invoked from any mode
without changing execution modes.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 27

shared run-time library (SRL)

shared run-time library (SRL). An object file that the operating system links to a program
file at run time. See also TNS/R native shared run-time library (TNS/R native SRL).

signal. A means by which a process can be notified of or affected by an event occurring in
the system. Some signals are used to notify a process when an error not related to
input or output has occurred. See also TNS/R native signal and OSS signal. Contrast
with trap.

signal handler. A procedure that is executed when a signal is received by a process.

single-threaded process. A process that performs only one operation at a time. Contrast
with multithreaded process.

site update tape (SUT). One or more tapes that contain each target system’s site-specific
subvolume and various products. Each product contains a softdoc and a complete set
of files. A SUT is delivered with every new HP NonStop™ system and can be ordered
whenever a new release version update (RVU) of the system software is available. A
full SUT contains the current RVU of the HP NonStop operating system and all product
software that has been ordered with it. A partial SUT contains a subset of products for
the current RVU.

SRL. See shared run-time library (SRL).

startup sequence. A convention for sending and receiving certain messages while starting
a new process. By convention, the new process receives an Open message, followed
by a Startup message, an Assign message for each ASSIGN in effect, a Param
message if there are any PARAMs in effect, and then a Close message.

state information. In active backup programming, information about a program’s execution
environment that is periodically sent from the primary process to the backup process.
In the event of a primary process failure, the backup process uses the state information
to take over execution at or near the logical point of failure.

stop mode. An attribute that a process can use to protect itself from being stopped by other
processes.

structured file. A disk file in which records are saved according to a predefined structure.
See relative file. key-sequenced file, and entry-sequenced file for examples. Contrast
with unstructured file.

subvolume. A group of files stored on disk. These files all have the same subvolume name
but each has a different file ID. For example, $DATA.INFO identifies the subvolume
named INFO on the volume $DATA. An example of a file name is
$DATA.INFO.RESULTS.

super ID. On HP NonStop™ systems, a privileged user who can read, write, execute, and
purge all files on the system. The super ID is usually a member of a system-supervisor
group.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 28

superuser

The super ID has the set of special permissions called appropriate privileges. In the
Guardian environment, the structured view of the super ID, which is (255, 255), is most
commonly used. In the Open System Services (OSS) environment, the scalar view of
the super ID, which is 65535, is most commonly used.

superuser. See super ID.

SUT. See site update tape (SUT).

swap files. The disk files to and from which information is copied during swapping. The
Kernel-Managed Swap Facility (KMSF) now manages swap space for most of the
purposes for which processes formerly maintained separate swap files. See Kernel-
Managed Swap Facility (KMSF).

swapping. The process of copying information between physical memory and disk storage.

sync ID. A value used by the operating system to determine whether an I/O operation has
finished. In active backup programming, a file’s sync ID is used to prevent the backup
process from repeating I/O operations that have already been completed by the
primary process.

SYSnn subvolume. A subvolume on the $SYSTEM volume where the new version of the
HP NonStop™ operating system image is located. Also located on the SYSnn
subvolume is system-dependent and release version update (RVU)-dependent
software. nn is an octal number in the range %00 through %77.

system. All the CPUs, controllers, firmware, peripheral devices, software, and related
components that are directly connected together to form an entity that is managed by
one HP NonStop™ operating system image and operated as one computer.

System Code (SC). See TNS code space.

system code. A logically distinct part of the HP NonStop™ operating system that consists
of operating system procedures shared by all CPUs.

system entry-point (SEP) table. A table used on TNS systems that stores the XEP entry
value for each TNS operating system procedure entry point.

system expansion. The process of making a target system larger by adding enclosures to
it. The enclosures being added can be either new enclosures or enclosures from a
donor system. Contrast with TACL.

system generation. The process of creating an operating system to support a particular
system configuration and release version update (RVU).

System Library (SL). See TNS code space.

system library. A logically distinct part of the HP NonStop™ operating system that consists
of user-callable library procedures and kernel procedures.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 29

system process

system process. (1) A privileged process that comes into existence at system-load time
and exists continuously for a given configuration for as long as the CPU remains
operable. (2) An HP NonStop™ operating system process, such as the memory
manager, the monitor, and the input/output (I/O) control processes. The files containing
system processes are invoked by ALLPROCESSORS paragraph entries. (3) A part of
a single copy of the HP NonStop operating system with Open System Services (OSS)
interfaces. A system process does not have an OSS process ID.

system time. The time represented by any synchronized CPU clock in the system.

TACL. See HP Tandem Advanced Command Language (TACL).

TAL. See HP Transaction Application Language (TAL).

temporary disk file. A file stored on disk that will be purged automatically as soon as the
process that created it stops.

terminal-simulation process. A process that is made to behave like a terminal file.

TIM. See HP NonStop™ Technical Library (NTL).

timekeeping. A function performed by the operating system that involves initializing and
maintaining the correct time in a CPU.

timestamp. An item containing a representation of the time. A timestamp can be applied to
an object at some critical point in the object’s life.

TNS. Refers to fault-tolerant HP computers that support the HP NonStop™ operating
system and are based on microcoded complex instruction-set computing (CISC)
technology. TNS systems run the TNS instruction set. Contrast with TNS/R and
TNS/E.

TNS accelerated mode. A TNS emulation environment on a TNS/R or TNS/E system in
which accelerated TNS object files are run. TNS instructions have been previously
translated into optimized sequences of MIPS or Intel® Itanium® instructions. TNS
accelerated mode runs much faster than TNS interpreted mode. Accelerated or
interpreted TNS object code cannot be mixed with or called by native mode object
code. See also TNS Object Code Accelerator (OCA). Contrast with TNS/R native
mode and TNS/E native mode.

TNS C compiler. The C compiler that generates TNS object files. Contrast with TNS/E
native compiler.

TNS code segment. One of up to 32 128-kilobyte areas of TNS object code within a TNS
code space. Each segment contains the TNS instructions for up to 510 complete
routines.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 30

TNS code segment identifier

TNS code segment identifier. A seven-bit value in which the most significant two bits
encode a code space (user code, user library, system code, or system library) and the
five remaining bits encode a code segment index in the range 0 through 31.

TNS code segment index. A value in the range 0 through 31 that indexes a code segment
within the current user code, user library, system code, or system library space. This
value can be encoded in five bits.

TNS code space. One of four addressable collections of TNS object code in a TNS
process. They are User Code (UC), User Library (UL), System Code (SC), and System
Library (SL). UC and UL exist on a per-process basis. SC and SL exist on a per-node
basis.

TNS compiler. A compiler in the TNS development environment that generates 16-bit TNS
object code following the TNS conventions for memory, stacks, 16-bit registers, and
call linkage. The TNS C compiler is an example of such a compiler. Contrast with
TNS/E native compiler.

TNS Emulation Library. A public dynamic-link library (DLL) on a TNS/E system containing
the TNS Object Code Interpreter (OCI), millicode routines used only by accelerated
mode, and millicode for switching among interpreted, accelerated, and native
execution modes. See also Shared Millicode Library.

TNS emulation software. The set of tools, libraries, and system services for running TNS
object code on TNS/E systems and TNS/R systems. On a TNS/E system, the TNS
emulation software includes the TNS Object Code Interpreter (OCI), the TNS Object
Code Accelerator (OCA), and various millicode libraries. On a TNS/R system, the TNS
emulation software includes the TNS Object Code Interpreter (OCI), the Accelerator,
and various millicode libraries.

TNS instructions. Stack-oriented, 16-bit machine instructions that are directly executed on
TNS systems by hardware and microcode. TNS instructions can be emulated on
TNS/E and TNS/R systems by using millicode, an interpreter, and either translation or
acceleration. Contrast with reduced instruction-set computing (RISC) and Intel®
Itanium® instructions.

TNS interpreted mode. A TNS emulation environment on a TNS/E system in which
individual TNS instructions in a TNS object file are directly executed by interpretation
rather than permanently translated Intel® Itanium® instructions. TNS interpreted mode
runs slower than TNS accelerated mode. Each TNS instruction is decoded each time it
is executed, and no optimizations between TNS instructions are possible. TNS
interpreted mode is used when a TNS object file has not been accelerated for that
hardware system, and it is also sometimes used for brief periods within accelerated
object files. Accelerated or interpreted TNS object code cannot be mixed with or called
by native mode object code. See also TNS Object Code Interpreter (OCI). Contrast
with TNS accelerated mode, TNS/R native mode, and TNS/E native mode.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 31

TNS library

TNS library. A single, optional, TNS-compiled loadfile associated with one or more
application loadfiles. If a user library has its own global or static variables, it is called a
TNS shared run-time library (TNS SRL). Otherwise it is called a User Library (UL).

TNS mode. The operational environment in which TNS instructions execute by inline
interpretation. See also accelerated mode.

TNS object code. The TNS instructions that result from processing program source code
with a TNS compiler. TNS object code executes on TNS, TNS/R, and TNS/E systems.

TNS Object Code Accelerator (OCA). A program optimization tool that processes a TNS
object file and produces an accelerated file for a TNS/E system. OCA augments a TNS
object file with equivalent Intel® Itanium® instructions. TNS object code that is
accelerated runs faster on TNS/E systems than TNS object code that is not
accelerated. See also Accelerator and TNS Object Code Interpreter (OCI).

TNS Object Code Interpreter (OCI). A program that processes a TNS object file and
emulates TNS instructions on a TNS/E system without preprocessing the object file.
See also TNS Object Code Accelerator (OCA).

TNS object file. An object file created by a TNS compiler or the Binder. A TNS object file
contains TNS instructions. TNS object files can be processed by the Accelerator or by
the TNS Object Code Accelerator (OCA) to produce to produce accelerated object
files. A TNS object file can be run on TNS, TNS/R, and TNS/E systems.

TNS procedure label. A 16-bit identifier for an internal or external procedure used by the
TNS object code of a TNS process. The most-significant 7 bits are a TNS code
segment identifier: 2 bits for the TNS code space and 5 bits for the TNS code segment
index. The least-significant 9 bits are an index into the target segment's procedure
entry-point (PEP) table. On a TNS/E system, all shells for calling native library
procedures are segregated within the system code space. When the TNS code space
bits of a TNS procedure label are %B10, the remaining 14 bits are an index into the
system's shell map table, not a segment index and PEP index.

TNS process. A process whose main program object file is a TNS object file, compiled
using a TNS compiler. A TNS process executes in interpreted or accelerated mode
while within itself, when calling a user library, or when calling into TNS system libraries.
A TNS process temporarily executes in native mode when calling into native-compiled
parts of the system library. Object files within a TNS process might be accelerated or
not, with automatic switching between accelerated and interpreted modes on calls and
returns between those parts. Contrast with TNS/R native process and TNS/E native
process.

TNS stack segment. See TNS user data segment.

TNS State Library for TNS/E. A library of routines to access and modify the TNS state of a
TNS process running on TNS/E.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 32

TNS system library

TNS system library. A collection of HP-supplied TNS-compiled routines available to all
TNS processes. There is no per-program or per-process customization of this library.
All routines are immediately available to a new process. No dynamic loading of code or
creation of instance data segments is involved. See also HP NonStop™ operating
system.

TNS user data segment. In a TNS process, the segment at virtual address zero. Its length
is limited to 128 kilobytes. A TNS program's global variables, stack, and 16-bit heap
must fit within the first 64 kilobytes. See also compiler extended-data segment.

TNS user library. A user library available to TNS processes in the Guardian environment.

TNS word. An instruction-set-defined unit of memory. A TNS word is 2 bytes (16 bits) wide,
beginning on any 2-byte boundary in memory. See also Intel® Itanium® word, native,
and word.

TNS/E. Refers to fault-tolerant HP computers that support the HP NonStop™ operating
system and are based on the Intel® Itanium® CPU. TNS/E systems run the Itanium
instruction set and can run TNS object files by interpretation or after acceleration.
TNS/E systems include all HP NonStop™ systems that use NSE-x CPUs. Contrast
with temporary disk file.

TNS/E library. A TNS/E native-mode library. TNS/E libraries are always dynamic-link
libraries (DLLs); there is no native shared runtime library (SRL) format.

TNS/E native compiler. A compiler in the TNS/E development environment that generates
TNS/E native object code, following the TNS/E native-mode conventions for memory,
stack, registers, and call linkage. The TNS/E native C compiler is an example of such a
compiler. Contrast with TNS compiler.

TNS/E native mode. The primary execution environment on a TNS/E system, in which
native-compiled Intel® Itanium® object code executes, following TNS/E native-mode
compiler conventions for data locations, addressing, stack frames, registers, and call
linkage. Contrast with TNS interpreted mode and TNS accelerated mode.

TNS/E native object code. The Intel®® Itanium® instructions that result from processing
program source code with a TNS/E native compiler. TNS/E native object code
executes only on TNS/E systems, not on TNS systems or TNS/R systems.

TNS/E native object file. An object file created by a TNS/E native compiler that contains
Intel® Itanium® instructions and other information needed to construct the code
spaces and the initial data for a TNS/E native process.

TNS/E native process. A process initiated by executing a TNS/E native object file. Contrast
with TNS process.

TNS/E native signal. A signal model available to TNS/E native processes in both the
Guardian and Open System Services (OSS) environments. TNS/E native signals are
used for error exception handling.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 33

TNS/E native user library

TNS/E native user library. A user library available to TNS/E native processes in both the
Guardian and Open System Services (OSS) environments. A TNS/E native user library
is implemented as a TNS/E native dynamic-link library (DLL).

TNSVU. A tool used to browse through TNS object files that have been accelerated by the
TNS Object Code Accelerator (OCA). TNSVU displays Intel® Itanium® code in
addition to TNS code.

Total Information Manager (TIM). See HP NonStop™ Technical Library (NTL).

TNS/R. See NonStop™ Series TNS/R.

TNS/R library. A TNS/R native-mode library. For a PIC-compiled application, TNS/R
libraries can be dynamic-link libraries (DLLs) or hybridized native shared runtime
libraries (SRLs). For an application that is not PIC compiled, TNS/R libraries can only
be native SRLs.

TNS/R native mode. The operational environment in which native-compiled RISC
instructions execute.

TNS/R native object code. The RISC instructions that result from processing program
source code with a TNS/R native compiler. TNS/R native object code executes only on
TNS/R systems, not on TNS systems.

TNS/R native object file. A file created by a TNS/R native compiler that contains RISC
instructions and other information needed to construct the code spaces and the initial
data for a TNS/R native process.

TNS/R native process. A process initiated by executing a TNS/R native object file.

TNS/R native shared run-time library (TNS/R native SRL). A shared run-time library
(SRL) available to TNS/R native processes in the Guardian and OSS environments.
TNS/R native SRLs can be either public or private. A TNS/R native process can have
multiple public SRLs but only one private SRL.

TNS/R native signal. A signal model available to TNS/R native processes in the Guardian
and OSS environments. TNS/R native signals are used for error exception handling.

TNS/R native user library. A user library available to TNS/R native processes in the
Guardian and OSS environments. A TNS/R native user library is implemented as a
special private TNS/R native shared run-time library.

transfer mode. The protocol by which data is transferred between a terminal and the
computer system. See conversational mode and page mode.

trap. A software mechanism that stops program execution and holds the cause of a
processing problem. In TNS and accelerated execution modes, traps occur as the
result of errors that are not related to input or output. Contrast with signal.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 34

trap handler

trap handler. A location in a program where execution begins if a trap occurs. A process
can specify a trap handler by a call to the Guardian ARMTRAP procedure.

two-way communication. A form of interprocess communication in which the sender of a
message (requester process) expects data in the reply from the receiver (server
process). Contrast with one-way communication.

UID. A nonnegative integer that uniquely identifies a user within a node.

In the Open System Services (OSS) environment, the UID is the scalar view of the HP
NonStop™ operating system user ID. The UID is used in the OSS environment for
functions normally associated with a UNIX user ID.

unlabeled tape. A magnetic tape that does not contain standard ANSI or IBM tape labels.
Contrast with labeled tape.

unnamed process. A process to which a process name was not assigned when the
process was created. Contrast with named process.

unstructured file. A disk file that has no structure known to the disk process. Contrast with
structured file.

user code. A logically distinct part of the HP NonStop™ operating system that consists of
the code for user processes.

user database. A database within an HP NonStop™ node that contains the user name,
user ID, group ID, initial working directory, and initial user program for each user of the
node.

user data stack. The first 64K bytes in the user data segment in a TNS process. It is the
only 16-bit byte-addressable area. It is the primary area for static and dynamic data as
well as for saving procedure call and return information.

user ID. The unique identification of a user within a node.

In the Guardian environment, the term user ID usually means the structured view of the
HP NonStop™ operating system user ID. In the Open System Services (OSS)
environment, the term user ID usually means the scalar view of the HP NonStop™
operating system user ID—a number called the UID.

User Library (UL). See TNS code space.

user library. (1) An object code file that the operating system links to a program file at run
time. A program can have only one user library. See also TNS user library and TNS/E
native user library.

user name. A string that uniquely identifies a user within the user database for a node.

Glossary

Guardian Programmer’s Guide — 421922-014
Glossary - 35

user process

user process. A process whose primary purpose is to solve a user’s problem. A user
process is not essential to the availability of a CPU. A user process is created only
when the user explicitly creates it. Contrast with system process.

vertical form control (VFC) table. A table in the memory of a 5515, 5516, or 5518 printer
that is used to control vertical forms movement.

VFC table. See vertical form control (VFC) table.

virtual memory. A range of addresses that processes use to reference real storage, where
real storage consists of physical memory and disk storage.

volume. A disk drive or a pair of disk drives that forms a mirrored disk.

voluntary rendezvous opportunity (VRO). A point in the instruction stream of a
processing element at which the operating system is permitted to establish
synchronization among the CPU elements of a logical process. Most system calls are
VROs.

waited I/O. An operation with an I/O device or process where the issuing process waits until
the operation finishes. Contrast with nowait I/O.

waiting process. A process that cannot execute until an event occurs, a resource becomes
available, or an interval of time passes.

wall-clock time. The local time-of-day, including any adjustment for daylight-savings time.

word. An instruction-set-defined unit of memory that corresponds to the width of registers
and to the most common and efficient size of memory operations. A TNS word is
2 bytes (16 bits) wide, beginning on any 2-byte boundary in memory. A MIPS RISC
word is 4 bytes (32 bits) wide, beginning on any 4-byte boundary in memory. An Intel®
Itanium® word is also 4 bytes (32 bits) wide, beginning on any 4-byte boundary in
memory.

working set. A collection of DEFINE attributes that have been assigned values using the
DEFINESETATTR procedure. The working set becomes a DEFINE when the
DEFINEADD procedure is called.

$CMON. Seecommand-interpreter monitor ($CMON).

$RECEIVE. A special file name through which a process receives messages from other
processes.

Index

Numbers
32-bit ELF format 1-22
48-bit timestamps

converting to Gregorian date and
time 18-14
definition 18-3
obtaining 18-14
working with 18-13/18-14

5515 matrix line printer, communicating
with 11-2/11-9, 11-19/11-49
5516 matrix line printer, communicating
with 11-2/11-9, 11-19/11-49
5518 matrix line printer, communicating
with 11-2/11-9, 11-19/11-49
5573 Laser-LX printer, communicating
with 11-2/11-19, 11-29/11-49
5573D Laser-LX printer, communicating
with 11-2/11-19, 11-29/11-49
5574 laser printer, communicating
with 11-2/11-19, 11-29/11-49
5577 laser printer, communicating
with 11-2/11-19, 11-29/11-49
64-bit ELF format 1-22
64-bit Julian timestamps

See Julian timestamps

A
abort C function 25-24
Accelerator 1-23, 16-4
Access mode, files

See Files, access mode
Access mode, SIO 15-15/15-16, 15-67
Active backup programming

buffered I/O 27-17
C support of 27-5
file synchronization 27-15
introduction to 27-1
overview 27-1/27-3
program examples 27-32, 27-52

Active backup programming (continued)
updating state information 27-11, 27-23

ADDDSTTRANSITION
command 18-31/18-36
ADDDSTTRANSITION
procedure 18-30/18-31
Adding users 23-24/23-26
ADDRESS_DELIMIT_ procedure 17-1,
17-15/17-16, 17-38
Adduser^msg message 23-24/23-26
Adduser^reply structure 23-25/23-26
alarm C function 25-24
ALLOCATE^FCB DEFINE 15-7/15-10
ALLOCATE^FCB^D00 DEFINE 15-7/15-10
Alternate-key files

adding keys to 5-85
creating 5-81/5-85
entry-sequenced primary file 5-72
key-sequenced primary file,
example 5-72/5-76
purpose of 5-7
relative primary file, example 5-71,
5-86/5-88
structure of 5-7/5-8

Altpri^msg message 23-22/23-24
Altpri^reply structure 23-23/23-24
Ancestor process 16-11/16-12
Application design, fault-tolerant 1-2
Application design, requester/server model

See Requester/server model
Approximate positioning 5-49
ARMTRAP procedure 1-10, 25-11/25-12,
25-13/25-15, 25-29
ASSIGN 1-7
ASSIGN command

described 8-2
with SIO 15-15/15-19
Guardian Programmer’s Guide—421922-014
Index-1

Index B
Assign message
example 8-10
introduction to 8-8/8-10
processing 8-12/8-13
receiving 8-12, 16-46
sending 16-46
structure of 8-9

ASSIGN^BLOCKLENGTH
operation 15-18/15-19
ASSIGN^FILECODE operation 15-17
ASSIGN^FILENAME operation 15-67
ASSIGN^LOGICALFILENAME
operation 15-10
ASSIGN^OPENACCESS
operation 15-15/15-16, 15-38
ASSIGN^OPENEXCLUSION
operation 15-16, 15-16
ASSIGN^PRIMARYEXTENTSIZE
operation 15-18
ASSIGN^RECORDLENGTH
operation 15-17
ASSIGN^SECONDARYEXTENTSIZE
operation 15-18
Asterisk (*) 13-3/13-4
Attributes, of DEFINEs

See DEFINE attributes
AWAITIO procedure 4-4/4-23

EDIT files 14-18
IOEdit 14-18
magnetic tape 12-2
printers 11-2
SIO files 15-42/15-45
terminals 10-2
$RECEIVE 6-2

AWAITIOX procedure 4-4/4-23
extended data segments 17-35/17-36
magnetic tape 12-2
printers 11-2
terminals 10-2, 10-8
timelimit parameter 10-8
$RECEIVE 6-2

B
Backslash (\), in node name 2-5
Backspace character 10-13
BACKSPACEEDIT procedure 14-17
Batch processing

assigning job-ID 16-35/16-36
relationship between
processes 16-13/16-14

Binary semaphores 1-24
closing 26-8
creating 26-5
example 26-10
forcing a lock 26-8
Guardian procedure calls 26-4/26-8
locking 26-6
opening 26-6
overview 26-1/26-3
unlocking 26-7

Binder program 25-7
BINSEM_CLOSE_ procedure 26-8
BINSEM_CREATE_ procedure 26-5
BINSEM_FORCELOCK_ procedure 26-8
BINSEM_LOCK_ procedure 26-6
BINSEM_OPEN_ procedure 26-6
BINSEM_UNLOCK_ procedure 26-7
Blank characters

ASCII
padding before writing 15-33/15-34
trimming before
writing 15-32/15-33
trimming on reading 15-34/15-35

MBCS 19-54
Block buffering, of SIO files 15-25/15-26
Block length, SIO 15-67/15-71
Block mode

See Page mode
Blocking records 12-15/12-16,
12-26/12-27, 12-72
BLOCKLEN attribute 12-26
BREAK key 10-23/10-25
Guardian Programmer’s Guide—421922-014
Index-2

Index C
BREAK mode 10-27/10-36
BREAK ownership

releasing 10-26, 15-56
taking 10-25/10-26, 15-55/15-56

BREAKMESSAGE_SEND_
procedure 24-15
Breakpoints 25-6
Break-on-device message 24-15
Buffered mode

end-of-file marks 12-19
errors, recovering from 12-85/12-86
example of 12-19/12-20
introduction to 12-16/12-17
invoking 12-17/12-18
labeled tape 12-29
revoking 12-18
streaming devices 12-19
unlabeled tape 12-74

C
C and C++, calling Guardian procedures
from 1-19
Cache flushes, minimizing 5-13
CAID 16-10/16-11
CANCEL procedure 6-2, 6-23

printers 11-2
terminals 10-2

Canceled messages 6-23/6-25
Cancellation messages 6-24/6-25
CANCELPROCESSTIMEOUT
procedure 18-17/18-18
CANCELREQ procedure 6-2, 6-23

printers 11-2
terminals 10-2

CANCELTIMEOUT procedure 18-16/18-17
Case shifting

ASCII characters 19-36/19-37
multibyte characters 19-55

CASECHANGE procedure 19-55
CCE 2-27

CCG 2-27
CCL 2-27
cextdecs header 1-19
Character sets 1-9, 19-49/19-65
Checkpointing 1-2, 1-8, 1-15
CHECK^BREAK procedure 15-2, 15-56
CHECK^FILE procedure 15-2, 15-3,
15-26/15-27
Child process, monitoring 16-46/16-47
CHILD_LOST_ procedure 16-1,
16-46/16-47
Chinese Big 5 character set 19-49
Chinese PC character set 19-49
CI messages

See Command interpreter messages
CISC Glossary-3
CLASS attribute

labeled tape 12-23
of DEFINEs 7-9
unlabeled tape 12-70

CLASS DEFAULTS DEFINEs
See DEFAULTS CLASS DEFINEs

CLASS MAP DEFINEs
See MAP CLASS DEFINEs

CLASS SEARCH DEFINEs
See SEARCH CLASS DEFINEs

CLASS TAPE DEFINEs
See TAPE CLASS DEFINEs

CLEAR command 8-2
Client process

See Requester process
Clock averaging 18-1/18-2
Close message 6-26, 6-29, 15-53, 22-7
CLOSEALLEDIT procedure 14-1, 14-19
CLOSEEDIT procedure 14-1, 14-19
CLOSE^FILE procedure 15-2, 15-65
COBOL85, calling Guardian procedures
from 1-20
COBOLEX0 file 1-20
COBOLEX1 file 1-20
COBOLEXT file 1-20
Guardian Programmer’s Guide—421922-014
Index-3

Index C
Code spaces 16-2, 16-5/16-7
Command interpreter

See TACL
Command interpreter messages

number -1 (Startup)
example 8-5
introduction to 8-3/8-4
processing 8-6/8-8
reading 8-6
See also Startup message
structure of 8-4
terminal files 10-4/10-5

number -2 (Assign)
example 8-10
introduction to 8-8/8-10
processing 8-12/8-13
reading 8-12
See also Assign message
structure of 8-9

number -20 (Wakeup) 8-19/8-20
number -21 (Display) 8-20/8-21
number -3 (Param)

example 8-11
introduction to 8-8/8-11
processing 8-14/8-15
reading 8-12
See also Param message
structure 8-11

number -50 (Logon^msg) 23-10/23-11
number -51 (Logoff^msg) 23-12
number -52
(Processcreation^msg) 23-17/23-22
number -53
(Illegal^logon^msg) 23-13/23-14
number -54 (Adduser^msg
) 23-24/23-26
number -55 (Deluser^msg
) 23-26/23-27
number -56 (Altpri^msg) 23-22/23-24

number -57 (Password^
msg) 23-14/23-15
number -58
(Remotepassword^msg) 23-15/23-17
number -59
(Prelogon^msg) 23-9/23-10
number -60 (Config^msg) 23-4/23-8

Command interpreter monitor
See $CMON

Common FCB 15-6, 15-66
Common file control block 15-6, 15-66
COMPLETEIOEDIT procedure 14-1, 14-18
Completion codes 16-49/16-50
Complex instruction-set computing
(CISC) Glossary-5
COMPRESSEDIT procedure 14-1, 14-18
COMPUTEJULIANDAYNO
procedure 18-13
COMPUTETIMESTAMP
procedure 18-10/18-11
Concurrency control

See Files, concurrent access
Concurrent message processing,
example 6-22
Condition codes 2-27/2-28

magnetic tape
from CONTROL operations 12-3
from SETMODE functions 12-3

printers
from CONTROL operations 11-3
from SETMODE functions 11-3

terminals
from CONTROL operations 10-3
from SETMODE functions 10-4

Configuring TACL 23-4/23-8
Config^msg message 23-4/23-8
Config^reply structure 23-7/23-8
Config^text^reply structure 23-7
Context-free server 22-3
CONTIME procedure 18-14
Control message 6-26, 6-30, 24-10
Guardian Programmer’s Guide—421922-014
Index-4

Index D
CONTROL procedure 2-23
device operations 9-4
interprocess communication 6-2
magnetic tape operations 12-2/12-3
operation-1

printers 11-3, 11-21
terminals 10-3, 10-17/10-18

operation-10 12-3, 12-8/12-10
operation-11 10-3, 11-3
operation-12 10-3, 11-3
operation-2 12-2, 12-13
operation-24 12-3
operation-26 12-18
operation-27 5-33/5-35
operation-3 12-2, 12-10
operation-4 12-2, 12-10
operation-5 12-2, 12-11
operation-6 12-2, 12-11
operation-7 12-2, 12-5
operation-8 12-2, 12-5/12-10
operation-9 12-2, 12-7/12-8
printer operations 11-3
terminal operations 10-2, 10-3

Controlbuf message 6-26, 6-30
CONTROLBUF procedure 6-2
CONTROLBUF procedure, device
operations 9-4
Controlling openers 6-29
Conversational mode

form feed 10-17/10-18
interrupt characters

See Interrupt characters
line spacing 10-16/10-17
line-termination character 10-11/10-12
overview 10-10/10-11
setting 10-9/10-10

CONVERTPROCESSTIME
procedure 18-19
CONVERTTIMESTAMP procedure 18-11
CPU down message 15-53, 22-7/22-8

CPU failure 22-7/22-8
Creator access ID 16-10/16-11
Current-record pointer 2-18/2-23

D
Data descriptors, formatter 19-7
Data integrity 2-16
Data segment, extended 1-9
Data segment, user 1-8
Data spaces 16-2, 16-8/16-10
Data stack 17-3/17-6
Data, manipulating 1-9
Daylight-saving time 18-2
DAYOFWEEK procedure 18-13
DCT 16-2, 16-11/16-12
Deadlocks

avoiding 3-8, 3-10
examples 3-7/3-11

DEBUG command 25-5/25-6
DEBUG procedure 25-3
Debug program 1-9, 25-1/25-9
Debug state 16-18/16-19, 25-2/25-6
Debugger

Debug program 1-9, 25-1/25-9
high level 1-9, 25-1/25-9
Inspect program 1-9, 25-1/25-9
low level 1-9, 25-1/25-9

Debugging
switching debuggers during a
debugging session 25-7

Debugging tools 25-1
Native Inspect 25-2
Visual Inspect 25-1

Debugging, environment for 25-6/25-9
Decorations, formatter 19-6/19-7
DEFAULTS CLASS DEFINEs

modified by file system 7-6
purpose 7-3, 7-5/7-6
Guardian Programmer’s Guide—421922-014
Index-5

Index D
DEFINE attributes
errors 7-13
restoring 7-13
setting 7-12/7-13

DEFINE errors
number-2057 7-14
number-2058 7-14
number-2059 7-14

DEFINE mode 7-10
DEFINE names, resolving 13-9/13-11
DEFINEADD procedure 7-1, 7-14/7-15,
12-22
DEFINEDELETE procedure 7-1, 7-15
DEFINEDELETEALL procedure 7-1, 7-15
DEFINEMODE procedure 7-11, 12-22,
12-70
DEFINERESTORE procedure 7-1, 7-13,
7-15
DEFINERESTOREWORK procedure 7-1,
7-16/7-17
DEFINERESTOREWORK2 procedure 7-1,
7-16/7-17
DEFINEs

adding 7-11/7-17
attributes 7-8/7-10

data types 7-8/7-9
values 7-9

CLASS attribute 7-9
DEFAULTS CLASS

See DEFAULTS CLASS DEFINEs
definition of 1-6
deleting 7-15
enabling 7-10/7-11
example 7-17/7-40
introduction to 7-1/7-2
labeled tape 12-22/12-28
MAP CLASS

See MAP CLASS DEFINEs
naming 7-7/7-8
propagating 7-10/7-11, 16-36/16-37
purpose of 7-2/7-6

DEFINEs (continued)
referring to 7-11
restoring 7-15/7-16
saving 7-15/7-16
SEARCH CLASS

See SEARCH CLASS DEFINEs
See also Working set
TAPE CLASS

See TAPE CLASS DEFINEs
unlabeled tape 12-70/12-71
=_DEFAULTS 2-5, 7-3, 7-5/7-6

DEFINESAVE procedure 7-1, 7-15
DEFINESAVEWORK procedure 7-1,
7-16/7-17
DEFINESAVEWORK2 procedure 7-1,
7-16/7-17
DEFINESETATTR procedure 7-1,
7-12/7-13

BLOCKLEN attribute 12-26
CLASS attribute 12-23, 12-70
DENSITY attribute 12-27, 12-72
DEVICE attribute 12-71
EBCDIC attribute 12-25
FILEID attribute 12-24
FILESECT attribute 12-24
FILESEQ attribute 12-24
LABELS attribute 12-23, 12-70
RECFORM attribute 12-27
RECLEN attribute 12-26
REELS attribute 12-24
SYSTEM attribute 12-24
USE attribute 12-25
VOLUME attribute 12-24

DEFINESETLIKE procedure 7-1, 7-13
DEFINESETMODE procedure 7-1
DEFINEVALIDATEWORK procedure 7-1,
7-13
DELETEEDIT procedure 14-1, 14-16/14-17
Deleting users 23-26/23-27
Deluser^msg message 23-26/23-27
Deluser^reply structure 23-27
Guardian Programmer’s Guide—421922-014
Index-6

Index D
DENSITY attribute
labeled tape 12-27
unlabeled tape 12-72

Destination control table (DCT) 16-2,
16-11/16-12
DEVICE attribute

labeled tape 12-27
unlabeled tape 12-71

Device files
home terminal

getting the name of 9-3
opening 2-17

I/O with 2-23
naming 2-6, 9-2/9-3
opening 2-16
See also Magnetic tape
See also Printers
See also Terminals

Device mode
labeled tape 12-28
unlabeled tape 12-73

Device names
searching for 13-23/13-24
syntax of 2-6/2-7

Device subtypes 16-35
Device subtypes, subtype 30 24-2
Devices

communicating with 9-1/9-11
getting information about 9-5/9-11
I/O with 1-6
magnetic tape, I/O with 1-7
printers, I/O with 1-7
See also Device files
terminals, I/O with 1-6

DEVICE_GETINFOBYLDEV_
procedure 9-5/9-11

printers 11-2
DEVICE_GETINFOBYNAME_
procedure 9-5/9-11

printers 11-2

Disk files
accessing 1-5
alternate-key

See Alternate-key files
creating 2-11/2-12
entry-sequenced

See Entry-sequenced files
extents, allocating 2-12
introduction to 1-5
I/O with 2-18/2-23

example 2-29/2-38
key-sequenced

See Key-sequenced files
naming 2-4, 2-6
opening 2-16
partitioned

See Partitioned files
permanent

See Permanent disk files
queue

See Queue files
random access 2-21
relative

See Relative files
structured 2-2
subvolumes 2-2
syntax of 2-4/2-6
temporary

See Temporary disk files
TM/MP 1-5
unstructured

See Unstructured files
volumes 2-2

Disk I/O process 2-16
Display message 8-20/8-21
DLLs

implicit 16-4, 16-5
DNUMIN procedure 19-1, 19-35/19-36
DNUMOUT procedure 19-1, 19-36
Guardian Programmer’s Guide—421922-014
Index-7

Index E
Dollar sign ($)
in device name 2-7
in process name 2-7
in volume name 2-5

DST transition table 18-29/18-36
Duplicate keys 5-8

E
E register 17-4
EBCDIC attribute 12-25
Edit descriptor 19-6/19-7
EDIT file segment (EFS) 14-7
EDIT files

accessing with SIO 15-37/15-39
appending to with IOEdit 14-14
closing with IOEdit 14-19
compressing with IOEdit 14-18
creating for IOEdit 14-9/14-10
deleting lines with IOEdit 14-16/14-17
file pointer positioning 14-12/14-13
initializing for IOEdit 14-10
inserting lines with IOEdit 14-15
IOEdit access 14-1/14-19
line backspacing with IOEdit 14-17
nowait I/O and IOEdit 14-18
opening for IOEdit 14-8/14-10
opening for SIO 15-38
packed line format 14-5/14-7
reading from SIO 15-38
reading with IOEdit 14-11/14-17
renumbering lines with
IOEdit 14-15/14-16
restrictions 14-1/14-2
sequential reading with IOEdit 14-13
sequential writing with
IOEdit 14-13/14-15
setting the read position for
SIO 15-38/15-39
writing with IOEdit 14-11/14-17
writing with SIO 15-38

EFS 14-7
Elapsed time 18-15

canceling timers 18-16/18-17
measuring long intervals 18-20/18-24
setting timers 18-16/18-17

ELF format 1-22
End-of-file character 10-14
End-of-file pointer 2-18
Enscribe files

See Disk files
Entry-sequenced files

altering attributes of 5-33
alternate key access 5-72
closing 5-33
creating 5-31/5-32
example of programming
with 5-36/5-46
introduction to 2-2
I/O with 5-32/5-33
locking 5-33
opening 5-32
positioning 5-32/5-33
purging 5-33
purpose of 5-4
reading 5-32/5-33
renaming 5-33
structure of 5-4/5-5
writing 5-32/5-33

Environment register 17-4
Error number, file system 2-26/2-28
ERROR process

closing 20-5
creating 20-2/20-3
deleting 20-5
example program 20-6/20-12
opening 20-3
overview of 20-1
reading messages from 20-5
running 20-2/20-3
sending a Startup message to 20-4
Guardian Programmer’s Guide—421922-014
Index-8

Index F
Errors
DEFINE

See DEFINE errors
file system

See File system errors
nonretryable 2-28
process creation 16-27/16-28
retryable 2-28
SIO

See SIO errors
Exact positioning 5-49
Exclusion mode, files

See Files, exclusion mode
Exclusion mode, SIO 15-16, 15-67/15-71
Execution modes, TNS/R 1-23
EXPIRATION attribute 12-27
EXTDECS file 1-19
EXTDECS0 file 1-18, 1-19
EXTDECS1 file 1-19
Extend access 3-1
Extended data segments 1-9

allocating 17-23
bounds checking 17-34, 17-38
deallocating 17-42
extensible 17-23, 17-27
getting the size of 17-34
introduction to 17-16/17-22
I/O with 17-35/17-37
large buffer transfers 17-36/17-37
moving data between 17-37
read only 17-23, 17-27
referencing data in 17-29/17-33
resizing 17-34
shared 17-23, 17-27, 17-39/17-41

Extended memory
See Extended data segments

EXTENDEDIT procedure 14-1, 14-16

Extents
allocating 2-12
primary 2-12
secondary 2-12
SIO 15-18, 15-67/15-71
sizes 2-12

External declarations file
C and C++ 1-19
COBOL85 1-20
Pascal 1-20
TAL and pTAL 1-18

F
Fault tolerance 1-1

active backup 27-1
data integrity 2-16
fault containment 1-3
monitor 1-15
multiple copies of operating system 1-3
Pathway 1-8
persistent process 1-2, 1-15
process pairs 1-2, 1-8, 27-1/27-2
requester/server model 1-15
sync depth 2-16
system integrity 1-3
TM/MP 1-2, 1-8

fault tolerance, mirrored disk 1-3
Fault-tolerant programming

See Active backup programming
FCBSIZE literal 15-66
FCBSIZE^D00 literal 15-66
FCBs, SIO 15-2

allocating 15-7/15-10, 15-66
initializing 15-7/15-10, 15-67
naming 15-7/15-10, 15-67

File access mode, SIO 15-15/15-16,
15-67/15-71
File code, SIO 15-17, 15-67/15-71
File control blocks (FCBs), SIO

See FCBs, SIO
Guardian Programmer’s Guide—421922-014
Index-9

Index F
File control blocks, SIO
See FCBs, SIO

File names 1-4
comparing 13-20/13-21
default values 2-5, 13-8
device 2-6
disk

location-independent 2-9
permanent 2-4/2-6
temporary 2-6

editing 13-18/13-20
extracting a part of 13-15/13-16
extracting a prefix from 13-16
extracting a suffix from 13-16
extracting pieces of 13-15/13-18
extracting pieces without implicit
resolution 13-16/13-17
fully qualified 2-5, 13-7/13-13
manipulating 13-1/13-41
matching

complete match 13-31/13-32
examples 13-33
incomplete match 13-32/13-33

modifying 13-18/13-20
part

definition of 13-2
partially qualified 2-5
part, examples of 13-2
passing to processes 2-9
piece

definition of 13-3
examples of 13-3

process
named 2-7
unnamed 2-8

process descriptors 2-8
resolving 13-7/13-13
scanning 13-4/13-6

File names (continued)
searching for and
resolving 13-11/13-12
subpart 13-3
truncating 13-13/13-15
validating 13-4/13-6
wild-card characters in 13-3/13-4
* symbol 13-3/13-4
? symbol 13-3/13-4

File number 2-16
File pointers

current record 2-18/2-23
end-of-file 2-18
next record 2-18/2-23

File system 1-4/1-7
buffering 4-8/4-9
error handling 2-26/2-28
errors

nonretryable 2-28
number 30-to-39 10-37
number 638 16-51/16-52
number 639 16-51/16-52
number-100 11-30, 12-87,
12-87/12-88, 15-63/15-64
number-101 15-63/15-64
number-102 11-30, 15-63/15-64
number-103 15-64
number-110 10-37/10-38, 15-64
number-111 10-37/10-38, 15-64
number-112 10-38, 15-64
number-124 15-64
number-140 10-38
number-153 12-87/12-88
number-154 12-6, 12-8
number-200 6-31
number-201 6-31
number-21 12-13
number-218 12-87/12-88
number-40 6-31, 10-37
number-45 14-16
Guardian Programmer’s Guide—421922-014
Index-10

Index F
File system (continued)
path errors 10-38/10-39, 11-30,
12-52, 12-88, 15-65
printers 11-29/11-31
retryable 2-28
terminals 10-36/10-41

File System I/O Synchronization 21-4
FILEID attribute 12-24
FILEINFO command 3-2/3-3
FILENAME_COMPARE_ procedure 13-1,
13-20/13-21
FILENAME_DECOMPOSE_ procedure

file-name part 13-15/13-16
file-name prefix 13-16
file-name suffix 13-16
introduction to 13-1, 13-15
no-defaults flag 13-16/13-17
process descriptor 13-17/13-18

FILENAME_EDIT_ procedure 13-1,
13-18/13-20
FILENAME_FINDFINISH_ procedure 13-1,
13-31
FILENAME_FINDNEXT_ procedure 13-1,
13-26/13-31
FILENAME_FINDSTART_ procedure 13-1,
13-21/13-26
FILENAME_MATCH_ procedure 13-1,
13-31/13-33
FILENAME_RESOLVE_ procedure

defaults override 13-8
DEFINE names 13-9/13-11
file name override 13-12/13-13
file names 13-7/13-8, 13-11/13-12
introduction to 13-1
subvolume names 13-8/13-9

FILENAME_SCAN_ procedure
examples 13-6
file names 13-5
file-name patterns 13-6
introduction to 13-1, 13-4/13-5
node names 13-5

FILENAME_SCAN_ procedure (continued)
subvolume names 13-6

FILENAME_TO_PROCESSHANDLE_
procedure 16-1, 16-62/16-63
FILENAME_UNRESOLVE_ procedure

all default values 13-13/13-14
alternate default values 13-14/13-15
introduction to 13-1, 13-13
subset of default values 13-14

Files
access mode 3-1/3-3

example 3-2
closing 2-29
concurrent access 1-5, 3-1/3-11
creating 2-10/2-15
deadlocks 3-7/3-11
Enscribe 1-5
exclusion mode 3-3/3-6

exclusive 3-4
protected 3-4
shared 3-3

getting information on 2-26
I/O with 1-4, 2-18/2-25, 4-1/4-23
locking 1-5, 3-6/3-11
naming 2-4/2-9
opening 2-15/2-18

for nowait I/O 4-3
nowait I/O 4-5

ownership 3-2/3-3
security 3-2/3-3
See also Device files
See also Device names
See also Disk files
See also File names
See also Process files
See also $RECEIVE

FILESECT attribute 12-24
FILESEQ attribute 12-24
Guardian Programmer’s Guide—421922-014
Index-11

Index F
File-name patterns
introduction to 13-3/13-4
matching 13-21/13-33
scanning 13-6
searching for 13-21/13-33
validating 13-6

FILE_ALTERLIST_ procedure 5-15
FILE_CLOSE_ procedure

all files 2-29
magnetic tape 12-2, 12-84
printers 11-2, 11-4/11-5
processes 6-2
terminals 10-2, 10-10
unstructured files 5-13
$RECEIVE 6-13

FILE_CREATELIST_ procedure
alternate-key file 5-82/5-85
disk files 2-11
entry-sequenced files 5-31/5-32
extent sizes, specifying 2-13
key-sequenced files 5-47/5-48
partitioned file 5-78/5-80
relative files 5-16/5-17
unstructured files 5-9/5-10

FILE_CREATE_ procedure 5-48
disk files 2-11/2-13
entry-sequenced files 5-31/5-32
key-sequenced files 5-47
relative files 5-16/5-17
unstructured files 5-9/5-10

FILE_GETINFOBYNAME_ procedure 2-26,
10-2
FILE_GETINFOLISTBYNAME_
procedure 2-26
FILE_GETINFOLIST_ procedure 2-26

FILE_GETINFO_ procedure
all files 2-26, 2-27
magnetic tape 12-2
printers 11-2
process files 6-3
terminals 10-2
$RECEIVE 6-3

FILE_GETRECEIVEINFO_ procedure 6-3,
6-18/6-21
FILE_OPEN_ procedure

all files 2-15/2-18
EDIT files 14-8
entry-sequenced files 5-32
home terminal 10-6
IN file 10-4/10-5
key-sequenced files 5-48
labeled tape 12-22, 12-28
magnetic tape 12-2, 12-4
nowait parameter 4-3, 4-5
OUT file 10-4/10-5
partitioned files 5-80
printers 11-2, 11-4/11-5
process files 6-3
processes 6-4/6-5
receive-depth parameter 6-10, 6-17
relative files 5-17
sync-depth parameter of 2-16
terminal simulator 24-3
terminals 10-2, 10-4/10-6
unlabeled tape 12-71
unstructured files 5-11
$RECEIVE 6-3, 6-15
$RECEIVE for reading system
messages 6-27

FILE_PURGE_ procedure 5-14
FILE_RENAME_ procedure 5-12
FIXSTRING procedure

example of 19-39/19-46
overview of 19-1, 19-37
template for 19-38/19-39
Guardian Programmer’s Guide—421922-014
Index-12

Index G
Flat segments
allocating 17-24
introduction to 17-19/17-23
referencing data in 17-32/17-33

Form feed
printers 11-21/11-25
terminals 10-17/10-18

FORMATCONVERT procedure 19-1/19-34
FORMATCONVERTX
procedure 19-1/19-34
FORMATDATA procedure 19-1/19-34
FORMATDATAX procedure 19-1/19-34
Formatter 19-1/19-34

using in TNS/R native programs 19-2
Formatting

buffer control 19-11/19-13
data descriptors 19-7
edit descriptors 19-6/19-7
format-directed input 19-4/19-6
format-directed output 19-3/19-4

example 19-19/19-25
list-directed input 19-26/19-34

example 19-27/19-34
list-directed output 19-34
literals 19-13/19-15
numbers 19-8/19-10
plus control 19-18/19-19
scale factor 19-18
tabulated data 19-15/19-18
text 19-8/19-10

FORTRAN, calling Guardian procedures
from 1-20
FUP ALTER command 2-13, 5-15
FUP CREATE command

alternate-key files 5-81/5-82
key-sequenced files 5-47/5-48
partitioned files 5-78
unstructured files 5-9/5-10

FUP PURGE command 5-14

G
GEN attribute 12-28
Generic key positioning 5-50
GETINCREMENTEDIT procedure 14-1,
14-15
GETPOSITIONEDIT procedure 14-1,
14-15, 14-16/14-17
GIVE^BREAK procedure 15-2, 15-56
Globals-heap segment 1-8, 16-9, 16-10,
17-6, 17-8
GMT

converting to local time 18-11
definition of 18-2

GPLDEFS file 15-3, 15-4, 15-5, 15-6,
15-65
Greenwich mean time (GMT)

See GMT
Gregorian date and time

converting to Julian
timestamp 18-10/18-11
obtaining from Julian timestamp 18-10

Gregorian dates
converting to Julian day number 18-13
obtaining from Julian day
number 18-13

H
Hangul character set 19-49
Hash sign

See Pound sign
HEADROOM_ENSURE_ procedure 17-1,
17-14
Heap 1-8, 16-9, 17-13
HEAPSORT procedure 19-1, 19-46
HEAPSORTX_ procedure 19-1,
19-46/19-49
Heap, sizing 17-13
High PIN 16-3, 16-28/16-31
HIST_FORMAT_ procedure 25-23, 25-32
HIST_GETPRIOR_ procedure 25-23,
25-32
Guardian Programmer’s Guide—421922-014
Index-13

Index I
HIST_INIT_ procedure 25-23, 25-32
Home terminal

getting the name of 9-3
opening 2-17, 10-6
relationship of process with 16-14
specifying 16-31/16-32

H-series
debugging tools 25-1

I
IBM Kanji character set 19-50
IBM Kanji Mixed character set 19-50
Illegal logon, controlling from
$CMON 23-13/23-14
Illegal^logon^msg message 23-13/23-14
Illegal^logon^reply structure 23-13/23-14
Implicit DLLs 16-4, 16-5
IN file 9-3

and the SYSTEM command 8-2
contents of 8-4
opening 10-4/10-5
with SIO 15-7/15-10

INCREMENTEDIT procedure 14-1, 14-14,
14-15, 14-15
Index blocks 5-5
INITIALIZEEDIT procedure 14-8
INITIALIZER procedure 8-3, 8-6/8-8,
8-12/8-16

differences between native and
TNS 15-4, 15-13
SIO applications 15-5/15-22

INIT^FILEFCB operation 15-67
INIT^FILEFCB^D00 operation 15-67
Input/output

See I/O
Inspect program 1-9, 25-1/25-9
Inspect state 16-18/16-19
INSPECT TAL compiler directive 25-7
INTERPRETINTERVAL
procedure 18-11/18-12

INTERPRETJULIANDAYNO
procedure 18-13
INTERPRETTIMESTAMP
procedure 18-10, 18-12
Interprocess communication

canceled messages 6-23/6-25
closing $RECEIVE 6-13
example of 6-31/6-63
getting message information 6-19/6-21
handling concurrent
messages 6-17/6-22
handling errors 6-31
introduction to 1-6, 6-1/6-4
message tag 6-21
one way 6-15/6-16
opening a process 6-4/6-5
opening $RECEIVE 6-10, 6-15, 6-17
queuing messages on
$RECEIVE 6-8/6-9
receiving messages 6-11, 6-15, 6-18,
15-46, 15-48/15-51
reply count 6-20
replying to messages 6-11/6-12,
6-21/6-22, 15-46
sending messages 6-4/6-7

no reply 6-6/6-7, 15-48
reply expected 6-7, 15-46

system messages 6-26/6-30
two-way 6-10/6-14

Interrupt characters 10-20/10-22
backspace 10-13
changing 10-14/10-15
conversational mode 10-12/10-16
end-of-file 10-14
line-cancel 10-13
line-termination 10-11/10-12
overview 10-12/10-13
transparent mode 10-15

Interval timing 1-9, 18-7/18-8
Guardian Programmer’s Guide—421922-014
Index-14

Index J
IOEdit
appending to files 14-14
closing files 14-19
compressing files 14-18
creating files 14-9/14-10
current-record pointer 14-11
deleting lines 14-16/14-17
EDIT file segment 14-7
EFS 14-7
file full errors 14-16
file pointer positioning 14-12/14-13
initializing files 14-10
inserting lines 14-15
introduction to 1-7, 14-1
line backspacing 14-17
line numbers 14-4/14-5
next-record pointer 14-11
nowait I/O with 14-18
opening files 14-8/14-10
packed line format 14-5/14-7
reading 14-11/14-17
record number increment 14-15
record numbers 14-5, 14-11/14-12
renumbering lines 14-15/14-16
restrictions 14-1/14-2
sequential reading 14-13
sequential writing 14-13/14-15
SIO, comparison with 14-2/14-4
using 14-1/14-19
writing 14-11/14-17

IOP 9-1
IPC

one-and-a-half-way
communication 2-25
one-way communication 2-25
See also Interprocess communication
two-way communication 2-24

I/O
nowait 1-5

See Nowait I/O
to extended data
segments 17-35/17-37
waited 1-5

I/O process (IOP) 9-1
I/O subsystem 9-1/9-2
I’m Alive message 1-3

J
Jacket procedure 1-19
JEF (Fujitsu) Kanji character set 19-50
JEF (Fujitsu) Kanji Mixed character
set 19-50
JIS Kanji character set 19-50
Job ancestor 16-13/16-14
Julian day numbers

converting to day of the week 18-13
converting to Gregorian dates 18-13
introduction to 18-12
obtaining from Gregorian dates 18-13
obtaining from Julian timestamp 18-12

Julian timestamps
converting to Gregorian date and
time 18-10
definition 18-2/18-3
obtaining

local node 18-6/18-7
remote node 18-8/18-10

obtaining from Gregorian date and
time 18-10/18-11
timing an interval with 18-7/18-8

JULIANTIMESTAMP procedure 18-6/18-14
Guardian Programmer’s Guide—421922-014
Index-15

Index K
K
Kanji character set 19-49
Kernel Managed Swap Facility Glossary-15
Kernel Managed Swap Facility (KMSF)

requesting space guarantee
from 16-34/16-35

Key compaction 5-47
Key compression 5-47
Key length 5-47
Key offset 5-47
Key specifier 5-7
KEYPOSITION procedure

approximate positioning 5-49
exact positioning 5-49
generic key positioning 5-50

Key-sequenced files
See also Queue files

Key-sequenced files
altering attributes of 5-51
alternate key access 5-72/5-76

example 5-74/5-76
approximate positioning 5-49
closing 5-51
creating 5-47/5-48, 5-81/5-85
exact positioning 5-49
example of programming
with 5-51/5-67
generic key positioning 5-50
introduction to 2-2
I/O with 5-49/5-51
key compaction 5-47
key compression 5-47
key length 5-47
key offset 5-47
locking 5-51
opening 5-48
purging 5-51
purpose of 5-5
renaming 5-51

Key-sequenced files (continued)
See also Alternate-key files
structure of 5-5/5-7

kill C function 25-24
KMSF

See Kernel Managed Swap Facility
KSC5601 character set 19-49

L
L register 17-4
Labeled tape

accessing 12-22/12-29
backward spacing by files 12-5/12-10
backward spacing by
records 12-8/12-10
block size, specifying 12-26/12-27
buffered mode 12-29
closing 12-84
conversion mode, selecting 12-25
creating files 12-21
device mode, selecting 12-28
enabling processing of 12-21
errors, recovering from 12-52,
12-85/12-89
example program 12-52/12-89
forward spacing by files 12-5
forward spacing by records 12-7/12-8
introduction to 12-1, 12-21
I/O operation, specifying 12-25
label type, specifying 12-23
positioning 12-4/12-11
reading from multiple-file
tape 12-45/12-48
reading from multiple-volume
file 12-48/12-69
reading from only file 12-42/12-45
reading, concepts of 12-11/12-13
record size, specifying 12-26/12-27
rewinding 12-10/12-11
support for, checking 12-21
Guardian Programmer’s Guide—421922-014
Index-16

Index M
Labeled tape (continued)
tape density, specifying 12-27
tape file, specifying 12-24
tape volume, specifying 12-24
writing to multiple-file tape 12-33/12-38
writing to multiple-volume
file 12-38/12-42
writing to only file 12-29/12-33
writing to, concepts of 12-13/12-14

labeled tape
opening 12-4

LABELEDTAPESUPPORT
procedure 12-21
LABELS attribute

labeled tape 12-23
unlabeled tape 12-70

Laser printers, communicating
with 11-2/11-19, 11-29/11-49
LCT

definition 18-2
obtaining from GMT timestamp 18-11

Libraries, supplied by HP 16-4, 16-5
Library file 16-33

as a private SRL 16-33
Line-cancel character 10-13
Line-termination character 10-11/10-12
Load balancing 1-14
Local civil time (LCT)

See LCT
Local data address register 17-4
Local standard time (LST)

See LST
LOCKFILE procedure 3-6/3-11
Locking

files 3-6/3-11
introduction to 1-5
records 5-11

LOCKREC procedure 5-11
Logical device number 2-7
Logical file name, assigning 15-10
Logical-record length, SIO 15-17

Logoff, controlling from $CMON 23-12
Logoff^msg message 23-12
Logoff^reply structure 23-12
Logon, controlling from $CMON 23-9/23-11
Logon^msg message 23-10/23-11
Logon^reply structure 23-11
Long time intervals,
measuring 18-20/18-24
LONGJMP_ procedure/C function 25-24,
25-26
Loss-of-communication-with-a-network-
node message 15-53
Low PIN 16-3, 16-28/16-31
LST

definition 18-2
obtaining from GMT timestamp 18-11

M
Magnetic tape

accessing 12-2/12-4
backward spacing by files 12-5/12-10
backward spacing by
records 12-8/12-10
blocking records 12-15/12-16
buffered mode

end-of-file marks 12-19
errors, recovering
from 12-85/12-86
example of 12-19/12-20
introduction to 12-16/12-17
invoking 12-17/12-18
revoking 12-18
streaming devices 12-19

closing 12-84
communicating with 12-1/12-109
errors, recovering from 12-52,
12-85/12-89
forward spacing by files 12-5
forward spacing by records 12-7/12-8
I/O with 1-7, 2-23
opening 12-4
Guardian Programmer’s Guide—421922-014
Index-17

Index M
Magnetic tape
positioning 12-4/12-11
reading, concepts of 12-11/12-13
rewinding 12-10/12-11
See also Labeled tape
See also Unlabeled tape
writing to, concepts of 12-13/12-14

Magnetic tape files 2-3
Main procedure

TNS 17-4
TNS/R native 17-9

Main stack 1-8, 16-8, 16-9, 17-6
bounds checking 17-15/17-16
sizing 17-13/17-15
use for procedure calls 17-9

Main stack, TNS/E 16-9, 17-13
MAP CLASS DEFINEs

example of 7-3/7-4
FILE attribute 2-10
purpose 2-10, 7-2

Matrix line printers, communicating
with 11-2/11-9, 11-19/11-49
MBCS 1-9, 19-49/19-65
MBCS_CHARSIZE_ procedure 19-50,
19-54/19-55
MBCS_CHARSTRING_ procedure 19-51
MBCS_CHAR_ procedure 19-50,
19-52/19-53
MBCS_CODESETS_SUPPORTED_
procedure 19-50, 19-51/19-52
MBCS_DEFAULTCHARSET_
procedure 19-50, 19-52
MBCS_EXTERNAL_TO_TANDEM_
procedure 19-51
MBCS_FORMAT_CRT_FIELD_
procedure 19-51
MBCS_FORMAT_ITI_BUFFER_
procedure 19-51
MBCS_REPLACEBLANK_
procedure 19-50, 19-54
MBCS_SHIFTSTRING_ procedure 19-50,
19-55

MBCS_TANDEM_TO_EXTERNAL_
procedure 19-51
MBCS_TESTBYTE_
procedure 19-55/19-56
MBCS_TRIMFRAGMENT_
procedure 19-50, 19-54
MEDIACOM utility 12-21
Memory pools

debugging 17-48
defining 17-43/17-45
getting information about 17-48
getting space in 17-46/17-47
introduction to 17-42/17-43
resizing 17-47/17-48
returning space to 17-47

Memory stack, TNS/E 16-9, 17-13
Memory, virtual 16-4, 16-5
Message system 1-6
Message tag 6-21
MESSAGESTATUS procedure 6-3, 6-25
Metacharacters

See File-name patterns
See Wild-card characters

Mirrored disk 1-3
Modifiers, formatter 19-6
Mom process 16-12
Monitor 1-15
Monitor process 1-2, 1-15
MONITORCPUS procedure 22-7/22-8
Monitoring a child process 16-46/16-47
MONITORNET procedure 22-7/22-8
Monolithic program

See Unified program
MOUNTMSG attribute 12-28
MOVEX procedure 17-1, 17-37/17-38
multibyte 1-9
Multibyte character sets (MBCS) 1-9,
19-49/19-65
Guardian Programmer’s Guide—421922-014
Index-18

Index N
Multibyte characters
analyzing strings of 19-52/19-53
blank characters 19-54
case shifting 19-55
checking support for 19-51/19-52
determining the default set 19-52
example program 19-56/19-65
introduction to 19-49/19-51
size of 19-54/19-55
special symbols, testing
for 19-55/19-56
trimming fragments of 19-54

Multithreaded server 22-1/22-2
MYPROCESSTIME procedure 18-19

N
Named processes

creating 2-14
relationship with 16-11/16-12

Native Inspect 25-2
introduction 25-5
specifying the debugging
environment 25-6
use in native envrionments 25-5

Native processes 1-23, 16-5
NEC Kanji character set 19-50
NetBatch utility 16-13
Next-record pointer 2-18/2-23
nld utility 25-7
Node down message 22-7/22-8
Node names 2-5

scanning 13-5
validating 13-5

Nonrepeatable edit descriptors 19-6
Nonretryable errors 2-28
NonStop Kernel Open System Services
(OSS) Glossary-19
NonStop SQL files 1-5, 2-1
NonStop Transaction Manager/MP
(TM/MP) 1-2, 1-8

Nowait I/O 1-5, 4-1/4-23
example 4-12/4-23
introduction to 4-1/4-3
multiple files 4-10/4-11, 15-42/15-45
multiple I/Os with one file 4-5/4-9
on SIO files 15-39/15-45
one I/O with one file 4-3/4-4,
15-39/15-41

NO^ERROR procedure 15-2
NUMBEREDIT procedure 14-1,
14-15/14-16
Numeric strings

conversion to binary
numbers 19-35/19-36
obtaining from binary numbers 19-36

NUMIN procedure 19-1, 19-35/19-36
NUMOUT procedure 19-1, 19-36

O
Object file format 1-22
OLDFILENAME_TO_FILENAME_
procedure 8-4, 10-4/10-5
One-and-a-half-way communication 2-25
One-way communication

example of 6-15/6-16, 15-49/15-51
introduction to 2-25
opening $RECEIVE 6-15
receiving messages 6-15, 15-48/15-51
sending messages 15-48/15-51

Open message 6-26, 6-29, 15-53,
22-5/22-6
OPENEDIT_ procedure 14-1, 14-8/14-10
Opener table

adding a requester 22-5/22-6
checking a request against 22-6
contents of 22-3/22-4
deleting a requester 22-6/22-8
maintaining 22-3/22-8
when CPU fails 22-7/22-8
when requester closes server 22-7
Guardian Programmer’s Guide—421922-014
Index-19

Index P
OPENER_LOST_ procedure 22-7/22-8
OPEN^FILE procedure

ABORT^OPENERR flag 15-61/15-62
ABORT^XFERERR flag 15-62/15-63
block buffering 15-25/15-26
creating and opening files 15-24/15-25
EDIT files 15-38
flag values, setting 15-23/15-24
interactive read prompt, setting 15-29
introduction to 15-2
long writes 15-30/15-31
MUSTBENEW flag 15-25
nowait I/O 15-40
opening files 15-24
padding records before
writing 15-33/15-34
printing 15-36
purging data 15-26
redirecting error messages 15-61
suppressing error message
reporting 15-60
trimming trailing blanks before
writing 15-32/15-33
trimming trailing blanks on
reading 15-34/15-35

OSS signal
defined Glossary-21

OUT file 9-3
and the SYSTEM command 8-2
contents of 8-4
opening 10-4/10-5
with SIO 15-7/15-10

Overstriking text 11-27/11-29
OWNER attribute 12-28

P
P register 17-4
PACKEDIT procedure 14-1, 14-13/14-15

Page mode
interrupt characters 10-20/10-22
overview 10-18/10-19
page-termination character 10-19
pseudopolled terminals 10-22/10-23
setting 10-9/10-10

Page-termination character 10-19
PAID 16-10/16-11
PARAM 1-7
PARAM command 8-2
Param message

example 8-11
introduction to 8-8/8-11
processing 8-14/8-15
receiving 8-12, 16-46
sending 16-46
structure of 8-11

Partitioned files
creating 5-77/5-80
introduction to 5-77
opening 5-80

Pascal, calling Guardian procedures
from 1-20
Passive backup 27-29
Passwords, controlling from $CMON

local passwords 23-14/23-15
remote passwords 23-15/23-17

Password^msg message 23-14/23-15
Password^reply structure 23-15
Pathway 1-8
pause function 25-24
PCB 16-2
PCL 11-5/11-29, 15-37

selecting for 5577 printer 11-10/11-11
Permanent disk files

creating 2-11
naming 2-4/2-6

Persistent process 1-2, 1-15
PEXTDECS file 1-20
PFS, sizing 16-32/16-33
Guardian Programmer’s Guide—421922-014
Index-20

Index P
Physical-block length, SIO 15-18/15-19
PIN 2-8, 16-3
POOL_CHECK_ procedure 17-1, 17-48
POOL_DEFINE_ procedure 17-1,
17-43/17-45
POOL_GETINFO_ procedure 17-1, 17-48
POOL_GETSPACE_ procedure 17-1,
17-46/17-47
POOL_PUTSPACE_ procedure 17-1,
17-47
POOL_RESIZE_ procedure 17-1,
17-47/17-48
POSITION procedure 2-21, 2-22, 5-17,
5-32/5-33
POSITIONEDIT procedure 14-1, 14-12
PostScript

selecting for 5577 printer 11-10/11-11
Pound sign

in qualifier
device name 2-7
process name 2-8

in temporary file ID 2-6
Prelogon^msg message 23-9/23-10
Prelogon^reply structure 23-9/23-10
Primary extent 2-12
Primary key 5-7
Printer control language (PCL) 11-5/11-29,
15-37
Printer files 2-3
Printers

accessing 11-2/11-5
closing 11-4/11-5
communicating with 11-1/11-49,
15-36/15-37
controlling 11-6/11-8
escape sequences 11-6/11-9
I/O with 1-7, 2-23
opening 2-17, 11-4/11-5
opening for SIO 15-36

Printing 11-1/11-49
default printer settings 11-19, 11-29
duplex mode 11-12
example program for 11-31/11-49
forms control 11-21/11-25
job control commands 11-11/11-14
number of copies 11-11
overstriking text 11-27/11-29
page control commands 11-14/11-16,
11-20/11-21
page length 11-20
page size 11-14, 11-15
paper source 11-12
setting margins 11-15, 11-20
simplex mode 11-12
underlining text 11-18, 11-27

Priv stack 1-8, 16-8, 16-9, 17-6, 17-14
use of 17-9

Procedure call stack
See User data stack

Process
definition of 16-1/16-2
startup 1-7

Process access ID 16-10/16-11
Process control block (PCB) 16-2
Process deletion message 16-37/16-38,
16-47/16-52
Process descriptor

extracting subparts of 13-17/13-18
introduction to 16-2
syntax of 2-8

Process file names
converting to process
handles 16-62/16-63
introduction to 16-2/16-3
named processes 2-7
obtaining from process
handles 16-63/16-64
process descriptors 2-8
searching for 13-24
Guardian Programmer’s Guide—421922-014
Index-21

Index P
Process file names (continued)
unnamed processes 2-8

Process file segment 17-6
Process file segment (PFS)
sizing 16-32/16-33
Process files

introduction to 2-4
opening 2-17/2-18

Process handles
converting to process file
names 16-63/16-64
converting to process strings 16-64
getting information from 16-62
introduction to 16-3
manipulating 16-61/16-64
obtaining from process file
names 16-62/16-63

Process identification number (PIN) 2-8,
16-3
Process identifiers 16-2/16-3
Process names

See Process file names
Process pairs 1-2, 1-15, 16-11
Process pairs, in fault-tolerant
programming 27-1/27-2
Process priority 16-15/16-17, 23-22/23-24
Process qualifiers 2-8
Process sequence number 2-7, 2-8
Process subtype, introduction to 16-15
Process time

canceling timers 18-17/18-18
converting to readable form 18-19
definition of 18-15
setting timers 18-17/18-18

Process time signal message 18-17/18-18
Processcreation^accept structure 23-19
Processcreation^msg
message 23-17/23-22
Processcreation^reject
structure 23-19/23-20

Processes
activating 16-52, 16-53
code spaces 16-5/16-7
communicating with 6-1/6-63,
15-45/15-52
creating 2-13/2-15, 16-19/16-38

controlling creation from
$CMON 23-17/23-22
errors 16-27/16-28
introduction to 16-19/16-21
named process 2-14, 16-23/16-25
nowait 16-26/16-27
specifying attributes and
resources 16-28/16-38
unnamed process 2-15, 16-23

data spaces 16-8/16-10
Debug state 16-18/16-19, 25-1/25-9
deleting

abnormal deletion 16-49
completion codes 16-49/16-50
introduction to 16-47/16-52
other process 16-50/16-51
own process 16-48/16-50
using stop mode 16-51/16-52

device subtype, specifying 16-35
getting information about 16-53/16-58
heap, sizing 17-13
high PIN 16-28/16-31
Inspect state 16-18/16-19
I/O with 2-24/2-25, 6-1/6-63

example of one-way
communication 6-15/6-16
example of one-way communication
with SIO 15-49/15-52
example of requester/server
application 6-31/6-63
example of two-way
communication 6-13/6-14
example of two-way communication
with SIO 15-47
Guardian Programmer’s Guide—421922-014
Index-22

Index P
I/O with (continued)
job ID, specifying 16-35/16-36
low PIN 16-28/16-31
main and priv stack, sizing 17-13
managing 1-8, 16-1/16-64
named

creating 2-14, 16-23/16-25
process file name for 2-7

opening 2-17/2-18, 6-4/6-5
organization of 16-4, 16-5
persistent 1-15
PFS, sizing 16-32/16-33
priority of 16-15/16-17
processor, specifying 16-35
propagating DEFINEs 16-36/16-37
receiving messages from 6-11/6-16,
15-46, 15-48/15-51
replying to messages 6-11/6-16, 6-21,
15-46
runnable state 16-18/16-19, 16-53
saveabend state 16-18/16-19
security of 16-10/16-11
sending messages to 6-4/6-7

no reply 6-6/6-7, 15-48
reply expected 6-7, 15-46

setting attributes
nonstring 16-60/16-61
string 16-61

specifying attributes and
resources 16-28/16-38
starting state 16-18/16-19
states of 16-18/16-19
stop mode 16-11
stopping state 16-18/16-19
suspended state 16-18/16-19,
16-52/16-53

suspending
introduction to 16-52
other process 16-52/16-53
own process 16-52

swap file, specifying 16-33/16-34
timing 18-19
TNS and TNS/R native 16-5
TNS/E native 16-4
unnamed

creating 2-15, 16-23
process file name for 2-8

user data segment, sizing 16-32, 17-3
user library file, specifying 16-33

PROCESSHANDLE_DECOMPOSE_
procedure 16-1, 16-62
PROCESSHANDLE_GETMINE_
procedure 16-60
PROCESSHANDLE_TO_FILENAME_
procedure 16-1, 16-63/16-64
PROCESSHANDLE_TO_STRING_
procedure 16-1, 16-64
PROCESSNAME_CREATE_
procedure 16-24/16-25
Processor, specifying 16-35, 23-33/23-35
PROCESSTIME procedure 18-19
PROCESS_ACTIVATE_ procedure 16-1,
16-53
PROCESS_CREATE_ completion
message 16-22, 16-26/16-27
PROCESS_CREATE_ procedure 16-20

creating processes
detailed discussion 16-38
introduction to 2-13/2-15

Debug state 25-3/25-4
memory management 17-1
naming processes 2-7
specifying debugging
environment 25-8/25-9

PROCESS_DEBUG_ procedure 25-3
Guardian Programmer’s Guide—421922-014
Index-23

Index Q
PROCESS_GETINFOLIST_ procedure
introduction to 16-1
multiple processes 16-57/16-58
single process 16-56/16-57

PROCESS_GETINFO_ procedure
getting the home terminal name 2-17,
9-3, 10-6
how to use 16-54/16-56
introduction to 16-1
process timing information 18-19
terminals 10-2

PROCESS_GETPAIRINFO_
procedure 16-58

how to use 16-59
PROCESS_LAUNCH_ completion
message 16-22, 16-26/16-27
PROCESS_LAUNCH_ procedure

creating processes
detailed discussion 16-19/16-20

Debug state 25-4
introduction to 16-1
memory management 17-1
specifying debugging environment 25-9

PROCESS_LAUNCH_PARMS_
definition 16-21
PROCESS_SETINFO_
procedure 13-1/13-2, 16-1, 16-60/16-61
PROCESS_SETSTRINGINFO_
procedure 16-1, 16-61
PROCESS_SPAWN_ procedure 16-20
PROCESS_STOP_ procedure 16-1,
16-47/16-52
PROCESS_SUSPEND_ procedure 16-1,
16-52/16-53
Program

debugging 1-9, 25-1/25-9
definition of 16-1/16-2
monolithic

See Program, unified
unified 1-10

Program counter register 17-4

Programs
native, TNS, and accelerated 16-3

Pseudopolled terminals 10-22/10-23
pTAL, calling Guardian procedures
from 1-18
Public library

DLL 16-4, 16-5
PURGE command 5-14

Q
Question mark (?) 13-3/13-4
Queue files 5-8

R
ra register 17-9
RAISE_ procedure/C function 25-24
Random access 2-21
READ procedure

devices 2-23
effect on record pointers 2-18
entry-sequenced files 5-32/5-33
introduction to 2-18
key-sequenced files 5-49
magnetic tape 12-2, 12-11/12-13
processes 6-3
relative files 5-17
terminals 10-2, 10-6
$RECEIVE 6-3, 6-15

READEDIT procedure 14-1, 14-12, 14-13
READEDITP procedure 14-1, 14-13
READLOCKX procedure 17-35/17-36
READUPDATE procedure

effect on record pointers 2-22
key-sequenced files 5-49/5-51
relative files 5-17
$RECEIVE 2-25

concurrent message
processing 6-18
introduction 6-3
system messages 6-27
Guardian Programmer’s Guide—421922-014
Index-24

Index R
$RECEIVE (continued)
two-way communication 6-11

READUPDATEX procedure
effect on record pointers 2-22
extended data segments 17-35/17-36
key-sequenced files 5-49/5-51
relative files 5-17
$RECEIVE 2-24, 2-25

concurrent message
processing 6-18
introduction 6-3
system messages 6-27
two-way communication 6-11

READX procedure
devices 2-23
effect on record pointers 2-18/2-22
entry-sequenced files 5-32/5-33
extended data segments 17-35/17-36
introduction to 2-18
key-sequenced files 5-49/5-51
magnetic tape 12-2, 12-11/12-13
processes 6-3
relative files 5-17
terminals 10-2, 10-6
$RECEIVE 6-3, 6-15

Read-only access, files 3-1
Read/write access, files 3-1
READ^FILE procedure

interactive read prompt,
changing 15-29
introduction to 15-2
nowait I/O 15-40/15-41
reading records 15-28
receiving interprocess
messages 15-46, 15-48/15-49
sending interprocess messages 15-46
system messages 15-54

Receive depth 2-25, 6-10, 6-17
RECFORM attribute 12-27
RECLEN attribute 12-26

Record blocking 12-15/12-16, 12-26/12-27,
12-72
Record length, magnetic tape 12-15/12-16
Record length, SIO 15-67/15-71
Reduced instruction-set computing
(RISC) Glossary-24
REELS attribute 12-24, 12-50
Relative files

altering attributes of 5-18
alternate key access,
example 5-70/5-71, 5-86/5-88
cache flushes 5-18
closing 5-18
creating 5-16/5-17
example of programming
with 5-18/5-30
introduction to 2-2
I/O with 5-17
locking 5-18
opening 5-17
positioning 5-17
purging 5-18
purpose of 5-2
renaming 5-18
structure of 5-2/5-4

Remote CPU down message 15-53,
22-7/22-8
Remotepassword^msg
message 23-15/23-17
Remotepassword^reply
structure 23-16/23-17
Repeatable edit descriptors 19-6
Reply 1-6
Reply count 6-20
REPLY procedure

introduction to 6-3
multiple concurrent messages 6-21
one-and-a-half-way
communication 2-25
Guardian Programmer’s Guide—421922-014
Index-25

Index S
REPLYX procedure
extended data segments 17-35/17-36
introduction to 6-3
multiple concurrent messages 6-21
one-and-a-half-way
communication 2-25
two-way communication 2-24,
6-11/6-12

Requester process 1-10/1-15
application control 21-3/21-4
data mapping 21-2/21-3
example 6-32/6-51, 21-9/21-51
field validation 21-2
functions of 21-1/21-4
selecting a server 21-3/21-4
terminal interface 21-2
transaction control 21-4
writing a program for 21-1/21-51

Requester/server model 1-10/1-15
adding functions to 1-12
adding users to 1-11
fault tolerant 1-15
in network environment 1-14/1-15
load balancing 1-14
modularity 1-11
monitors 1-15

Request-for-device-type-information
message 24-12/24-13
Resetsync message 6-26, 6-30
RESIZESEGMENT procedure 17-1,
17-34/17-35
Response

See reply
RETENTION attribute 12-27
Retryable errors 2-28
RISC Glossary-25
RISC instructions Glossary-25
RUCB

introduction to 15-5
setting up 15-6

RUN command 8-2
name-option parameter 2-7, 2-13
RUNNAMED flag 2-13

RUN INSPECT command 25-8
RUND command 25-4/25-5
Runnable state 16-18/16-19, 16-53
RUNV command 25-4
Run-unit control block (RUCB)

introduction to 15-5
setting up 15-6

S
SAFEGUARD program 3-3
Saveabend state 16-18/16-19
SAVEABEND TAL compiler directive 25-7
SEARCH CLASS DEFINEs

example of 7-4/7-5
purpose 7-2

Secondary extents 2-12
Security, file 3-2/3-3
SEGMENT_ALLOCATE_ procedure

default use 17-23/17-27
extensible data segment 17-27
introduction to 17-1
read-only data segment 17-27
shared data segment 17-27
swap file, specifying 17-26/17-27

SEGMENT_DEALLOCATE_
procedure 17-1, 17-42
SEGMENT_GETINFO_ procedure 17-2,
17-34

checking segment type 17-28
SEGMENT_USE_ procedure 17-2,
17-28/17-29
Selectable segments

allocating 17-24
introduction to 17-17/17-22
making current 17-28/17-29
referencing data in 17-30/17-31

Sequential access, unstructured file 2-19
Guardian Programmer’s Guide—421922-014
Index-26

Index S
Sequential Input/Output (SIO)
See SIO

Server process 1-10/1-15
concurrent message
processing 6-17/6-22
context-free 22-3
example 6-51/6-63, 22-8/22-64
functions of 22-1/22-3
monitor 1-15
monitor process 1-15
multithreaded 22-1/22-2
opener table

See Opener table
processing system
messages 22-4/22-8
single message handling 6-10/6-16
single-threaded 22-1/22-2
writing a program for 22-1/22-64

ServerWare Storage Management
Foundation (SMF) 2-9
SET INSPECT command 25-7/25-8
SETJMP_ procedure/C function 25-24,
25-26, 25-32
SETLOOPTIMER procedure/C
function 25-27
SETMODE

function-4 3-10
Setmode message 6-26, 6-30, 24-10/24-11
SETMODE procedure

device functions 9-4
function-10 10-3
function-11 10-3, 10-31
function-110 10-3
function-113 10-3
function-119 12-3, 12-19, 12-28, 12-73
function-12 10-3, 10-30/10-31
function-120 12-3
function-13 10-3
function-14 10-3, 10-15
function-141 17-36/17-37
function-146 5-35

SETMODE procedure (continued)
function-149 5-85
function-152 5-13
function-162 12-3
function-20 10-3, 10-9
function-22 10-3, 11-3
function-23 10-3
function-24 10-3
function-25 11-3
function-26 11-3
function-260 11-3, 11-10
function-27 10-3, 11-3
function-28 10-3, 11-3
function-29 11-3
function-30 4-5/4-8
function-36 6-9
function-37 11-3
function-38 10-3
function-4 3-6/3-7
function-5 11-3
function-52 12-3, 12-13
function-6 10-3, 10-16/10-17, 11-3,
11-28
function-66 12-3, 12-72/12-73
function-67 10-3
function-68 11-3
function-7 10-3, 10-11
function-72 4-8/4-9
function-8 10-3, 10-9/10-10
function-80 6-25, 24-4/24-5
function-9 10-3, 10-14/10-15,
10-21/10-22
function-92 2-13
function-99 12-3, 12-17/12-19, 12-29,
12-74
interprocess communication
functions 6-3
magnetic tape functions 12-3
memory management 17-2
printer functions 11-3
Guardian Programmer’s Guide—421922-014
Index-27

Index S
SETMODE procedure (continued)
terminal functions 10-2, 10-3

SETMODENOWAIT procedure
device functions 9-4
interprocess communication 6-3
magnetic tape functions 12-2
printer functions 11-2
terminal functions 10-2

Setparam message 6-26, 6-30, 24-11
SETPARAM procedure

device functions 9-4
function-3 10-25/10-27, 10-30, 10-31
interprocess communication 6-3
terminal functions 10-2

SETSTOP procedure 16-1, 16-51/16-52
SETSYSTEMCLOCK
procedure 18-27/18-28
SETTIME command 18-28
Setting timers

elapsed time 18-16/18-17
process time 18-17/18-18

SET^BREAKHIT operation 15-59/15-60
SET^CRLF^BREAK operation 15-55/15-56
SET^EDITREAD^POSITION
operation 15-38/15-39
SET^ERRORFILE operation 15-61
SET^FILE procedure 15-16, 15-17, 15-67

ASSIGN^BLOCKLENGTH
operation 15-18/15-19
ASSIGN^FILECODE operation 15-17
ASSIGN^LOGICALFILENAME
operation 15-10
ASSIGN^OPENACCESS
operation 15-15/15-16, 15-38
ASSIGN^PRIMARYEXTENTSIZE
operation 15-18
ASSIGN^SECONDARYEXTENTSIZE
operation 15-18
differences between native and
TNS 15-3
INIT^FILEFCB operation 15-67

SET^FILE procedure (continued)
 INIT^FILEFCB^D00 15-67
introduction to 15-2, 15-15
SET^BREAKHIT
operation 15-59/15-60
SET^CRLF^BREAK
operation 15-55/15-56
SET^EDITREAD^POSITION
operation 15-38/15-39
SET^ERRORFILE operation 15-61
SET^PRINT^ERR^MSG
operation 15-60/15-61
SET^PROMPT operation 15-29
SET^READ^TRIM
operation 15-34/15-35
SET^SYSTEMMESSAGESMANY
operation 15-53/15-54
SET^WRITE^FOLD
operation 15-30/15-31
SET^WRITE^PAD
operation 15-33/15-34
SET^WRITE^TRIM
operation 15-32/15-33
SET^XFERERR operation 15-63

SET^PRINT^ERR^MSG
operation 15-60/15-61
SET^PROMPT operation 15-29
SET^READ^TRIM operation 15-34/15-35
SET^SYSTEMMESSAGESMANY
operation 15-53/15-54
SET^WRITE^FOLD operation 15-30/15-31
SET^WRITE^PAD operation 15-33/15-34
SET^WRITE^TRIM operation 15-32/15-33
SET^XFERERR operation 15-63
Shared Run-Time Library

See SRL
Shared run-time library (SRL) 16-5,
16-5/16-7
SHIFTSTRING procedure 19-1, 19-37,
19-50, 19-55
SIGACTION_ procedure/C function 25-24,
25-26
SIGACTION_INIT_ procedure 1-10
Guardian Programmer’s Guide—421922-014
Index-28

Index S
SIGACTION_INIT_ procedure/C
function 25-27/25-36
SIGACTION_RESTORE_ procedure/C
function 25-27/25-36
SIGACTION_SUPPLANT_ procedure/C
function 25-27/25-36
SIGADDSET_ procedure/C function 25-24,
25-26
SIGDELSET_ procedure/C function 25-24,
25-26
SIGEMPTYSET_ procedure/C
function 25-24, 25-26
SIGFILLSET_ procedure/C function 25-24,
25-26
SIGISMEMBER_ procedure/C
function 25-24
SIGJMP_MASKSET_ procedure/C
function 25-27/25-36
SIGLONGJMP_ procedure/C
function 25-25, 25-26, 25-29/25-36
Signal

defined Glossary-27
Signal handler

default 25-23
defined Glossary-27
examples of 25-29/25-36
introduction to 25-23

Signal handling 1-9, 25-20/25-36
SIGNALPROCESSTIMEOUT
procedure 18-17/18-18
Signals

comparing traps and 25-22
deferrable and nondeferrable 25-22
interoperability in TNS and native
processes 25-29
introduction to 25-21/25-22
standard POSIX.1 25-23/25-27
Tandem extensions 25-27/25-36

SIGNALTIMEOUT procedure 18-16/18-17
measuring long intervals 18-20/18-24

SIGNAL_ procedure/C function 25-25
SIGPENDING_ procedure/C
function 25-25, 25-26

SIGPROCMASK_ procedure/C
function 25-25, 25-26
SIGSETJMP_ procedure/C function 25-25,
25-26, 25-29/25-36
SIGSUSPEND_ procedure/C
function 25-25
Singlethreaded server 22-1/22-2
SIO 1-7, 15-1/15-83

BREAK handling 15-54/15-60
example initialization

using TAL or pTAL
DEFINEs 15-19/15-22
without TAL or pTAL
DEFINEs 15-68/15-71

example program 15-71/15-83
file control blocks (FCBs)

allocating 15-7/15-10, 15-66
initializing 15-7/15-10, 15-67
introduction to 15-2
naming 15-7/15-10, 15-67

file initialization
compile time 15-5/15-22
dynamic 15-65/15-71
run time 15-65/15-71
static 15-5/15-22
using TAL or pTAL
DEFINEs 15-5/15-22
without TAL or pTAL
DEFINEs 15-65/15-71

interprocess messages 15-45/15-52
introduction to 15-1/15-3
logical file names, assigning 15-10
multiple processes 15-52
naming FCBs 15-7/15-10, 15-67
one-way communication, example
of 15-49/15-51
PCL commands 15-37
physical file name, reassigning 15-19
printer control 15-37
receiving interprocess
messages 15-46, 15-48/15-51
Guardian Programmer’s Guide—421922-014
Index-29

Index S
SIO (continued)
replying to interprocess
messages 15-46
sending interprocess messages

no reply 15-48
reply expected 15-46

system messages 15-52/15-54
two-way communication, example
of 15-47
writing a program for 15-3
$RECEIVE file, using for 15-7/15-10,
15-66, 15-67, 15-67

SIO errors
fatal 15-61/15-63
introduction to 15-60
I/O errors 15-62/15-63
open errors 15-61/15-62
redirecting 15-61
retryable 15-63/15-65
suppressing error-message
reporting 15-60/15-61

SIO files
access mode 15-15/15-16,
15-67/15-71
ASSIGN command with 15-14/15-19
AWAITIO procedure with 15-42/15-45
block buffering 15-25/15-26
block length 15-67/15-71
closing 15-65
creating and opening 15-24/15-25
exclusion mode 15-16, 15-67/15-71
extents 15-18, 15-67/15-71
file code 15-17, 15-67/15-71
flag values, setting 15-23/15-24
getting information about 15-26/15-27

SIO files (continued)
initializing
compile time 15-5/15-22
dynamic 15-65/15-71
run time 15-65/15-71
static 15-5/15-22
using TAL or pTAL
DEFINEs 15-5/15-22
without TAL or pTAL
DEFINEs 15-65/15-71

interactive read prompt,
changing 15-29
I/O with 15-27/15-37
logical-record length 15-17
long writes to 15-30/15-31
nowait I/O 15-39/15-45
opening 15-24
padding blank characters before
writing 15-33/15-34
physical-block length 15-19
purging data 15-26
reading 15-28
read-only access 15-28
read/write access 15-28
record length 15-67/15-71
trimming trailing blanks before
writing 15-32/15-33
trimming trailing blanks on
reading 15-34/15-35
write-only access 15-28
writing 15-29

sleep C function 25-25
SMF

See ServerWare Storage Management
Foundation

Snapshot files, debugging
TNS 25-1
TNS/E 25-1, 25-2
TNS/R 25-1

sp register 17-9
Guardian Programmer’s Guide—421922-014
Index-30

Index S
SRL data segments 17-6
SRL (shared run-time library) 16-5,
16-5/16-7
Stack frames 17-9
Stack pointer 17-9
Stacks

TNS/R and TNS/E 16-9, 17-13
Stack, TNS user data 17-2
Starting state 16-18/16-19
Startup message

example 8-5
example of sending and
receiving 16-39/16-46
introduction to 8-3/8-5
opening terminal files 10-4/10-5
processing 8-6/8-8
reading 8-6
structure of 8-4

Startup sequence
introduction to 1-7, 2-10, 8-2/8-3
sending and receiving 16-38/16-46
timing out 8-16
with INITIALIZER 8-3/8-15
without INITIALIZER 8-16/8-18

Start/stop mode devices
labeled tape 12-28
unlabeled tape 12-73

State information, updating 27-11/27-23
Stop mode 16-11, 16-51/16-52
Stopping state 16-18/16-19
Streaming devices

labeled tape 12-28
unlabeled tape 12-73

Strings
case shifting 19-36/19-37
converting between characters and
numbers 19-35/19-36
downshifting 19-37
editing 19-37/19-46
sorting 19-46/19-49

Strings (continued)
upshifting 19-37

Strings, numeric
conversion to binary
numbers 19-35/19-36
obtaining from binary numbers 19-36

STRING_UPSHIFT_ procedure 19-55
Structured files 2-2
Subvolume names

resolving 13-8/13-9
scanning 13-6
validating 13-6

Subvolumes 2-2
Suspended state 16-18/16-19, 16-52/16-53
Swap file 16-33/16-34, 17-26/17-27
Swap space guarantee

requesting from KMSF 16-34/16-35
Sync depth 2-16, 27-6, 27-15
Synchronizing processes 1-24, 26-1
SYSTEM attribute 12-24
System clock

checking 18-26
setting 18-27/18-28

System code 16-5/16-7
SYSTEM command 8-2
System library 16-4, 16-5, 16-5/16-7
System messages

introduction to handling 6-26
masking 15-53/15-54
reading, in SIO 15-54
receiving 6-27
selecting 15-53/15-54
with SIO 15-52/15-54
-100 (Remote CPU down) 15-53,
22-7/22-8
-101 (Process deletion) 16-37/16-38,
16-47/16-52
-102 (PROCESS_CREATE_
completion) 16-22, 16-26/16-27
-102 (PROCESS_LAUNCH_
completion) 16-22, 16-26/16-27
Guardian Programmer’s Guide—421922-014
Index-31

Index T
System messages (continued)
-103 (Open) 6-26, 6-29, 15-53,
22-5/22-6
-104 (Close) 6-26, 6-29, 15-53, 22-7
-105 (Break-on-device) 24-15
-110 (Loss of communication with a
network node) 15-53
-110 (Node down) 22-7/22-8
-2 (CPU down) 15-53, 22-7/22-8
-22 (Time signal) 18-16/18-17
-26 (Process time signal) 18-17/18-18
-32 (Control) 6-26, 6-30, 24-10
-33 (Setmode) 6-26, 6-30, 24-10/24-11
-34 (Resetsync) 6-26, 6-30
-35 (Controlbuf) 6-26, 6-30
-37 (Setparam) 6-26, 6-30, 24-11
-40 (Request for device-type
information) 24-12/24-13

System time
introduction to 18-1/18-2
managing 18-25/18-36

T
TACL

communicating with 8-1/8-21
displaying text 8-20/8-21
obtaining startup information
from 8-3/8-8
See also $CMON
setting up process environment 8-1/8-3
startup without INITIALIZER 8-16/8-18
using ASSIGNs 8-8/8-15
using PARAMs 8-8/8-15
waking 8-19/8-20

TAKE^BREAK procedure 15-2,
15-55/15-56
TAL, calling Guardian procedures
from 1-18

Tandem Advanced Command Language
(TACL)

See TACL
TAPE CLASS DEFINEs

BLOCKLEN attribute 12-26
CLASS attribute 12-23, 12-70
DENSITY attribute 12-27, 12-72
DEVICE attribute 12-27, 12-71
EBCDIC attribute 12-25
example of 7-5
EXPIRATION attribute 12-27
FILEID attribute 12-24
FILESECT attribute 12-49
FILESEQ attribute 12-24
GEN attribute 12-28
LABELS attribute 12-23, 12-70
MOUNTMSG attribute 12-28
OWNER attribute 12-28
purpose 7-3
RECFORM attribute 12-27
RECLEN attribute 12-26
REELS attribute 12-50
RETENTION attribute 12-27
SYSTEM attribute 12-24
USE attribute 12-25
VERSION attribute 12-28
VOLUME attribute 12-24

Tape headers 12-80
TAPECOM utility 12-21
Temporary disk files

creating 2-12
naming 2-6

Terminal files 2-3
Terminal simulator

BREAK key 24-13/24-15
device subtype 24-2
introduction to 24-1
I/O requests 24-5/24-9
naming 24-3
Guardian Programmer’s Guide—421922-014
Index-32

Index T
Terminal simulator (continued)
system messages 24-3/24-5,
24-9/24-13

Terminals
accessing 10-1/10-10
block mode

See Page mode
BREAK key 10-23/10-36
BREAK mode 10-27/10-36
BREAK ownership 15-55/15-59

releasing 10-26
taking 10-25/10-26

closing 10-10
communicating with 10-1/10-41
conversational mode

See Conversational mode
echo mode 10-9
errors 10-36/10-41
form feed 10-17/10-18
interrupt characters

See Interrupt characters
I/O with 1-6, 2-23, 10-6/10-8
line spacing 10-16/10-17
line-termination character 10-11/10-12
opening 10-4/10-6
page mode

See Page mode
pseudopolled 10-22/10-23
reading from 10-6
simulating

See Terminal simulator
timeout 10-8
transfer mode 10-9/10-10
writing to 10-6
writing to and reading from 10-7/10-8

TIME command 18-26
TIME procedure 18-26
Time signal message 18-16/18-17
Time zones 18-2
Timekeeping 1-9

TIMESTAMP procedure 18-3, 18-14
Timestamps

See 48-bit timestamps
See Julian timestamps

Time, managing 1-9, 18-1/18-36
Timing, intervals 1-9, 18-7/18-8,
18-15/18-19

long 18-20/18-24
TM/MP 1-2, 1-8
TNS processes 1-23, 16-5
TNS/E debugging tools 25-1
TNS/R execution modes 1-23
TNS/R native processes 1-23, 16-5
TNS/R native signal

defined Glossary-33
TNS/R systems

trap handling on 25-15
To-RISC shell 16-5/16-7
Transaction Manager/MP (TM/MP) 1-2, 1-8
Transparent mode 10-15
Trap

defined Glossary-33
Trap handler

default 25-10/25-11
defined Glossary-34
examples of 25-16/25-20
exiting 25-13/25-15
introduction to 25-9/25-11
setting up 25-11/25-12
trap processing 25-12/25-13

Trap handling 1-9, 25-9
on TNS/R systems 25-15

TS_NANOSECS_ procedure 18-4
TS_UNIQUE_COMPARE_ procedure 18-4
TS_UNIQUE_CONVERT_ procedure 18-4
TS_UNIQUE_CONVERT_TO_JULIAN_
procedure 18-4
TS_UNIQUE_CREATE_ procedure 18-2
Guardian Programmer’s Guide—421922-014
Index-33

Index U
Two-way communication
example of 6-13, 6-31/6-63, 15-47
introduction to 2-24, 6-10
opening $RECEIVE 6-10
receiving messages 6-11, 15-46
replying to messages 6-11/6-12, 15-46
returning data 6-11
returning errors 6-11
sending messages 15-46

U
Underlining text 11-18, 11-27
Unified program 1-10
Unlabeled tape

accessing 12-70/12-74
appending to last file 12-78/12-79
appending to only file 12-76/12-77
backward spacing by files 12-5/12-10
backward spacing by
records 12-8/12-10
blocking records 12-72
buffered mode 12-74
checking for end of tape 12-80/12-81
closing 12-84
conversion mode,
selecting 12-73/12-74
device mode, selecting 12-73
device name for 12-71
errors, recovering from 12-52,
12-85/12-89
example program 12-89/12-109
forward spacing by files 12-5
forward spacing by records 12-7/12-8
introduction to 12-1, 12-70
label type, specifying 12-70
opening 12-4
positioning 12-4/12-11
reading from multiple-file
tape 12-83/12-84
reading from multiple-volume file 12-84

Unlabeled tape (continued)
reading from only file 12-82/12-83
reading, concepts of 12-11/12-13
rewinding 12-10/12-11
tape density, specifying 12-72/12-73
tape headers 12-80
writing files to multiple-file
tape 12-77/12-78
writing to multiple-volume
file 12-79/12-81
writing to scratch tape 12-75/12-76
writing to, concepts of 12-13/12-14

UNLOCKFILE procedure 3-6/3-11
UNLOCKREC procedure 5-11
Unnamed processes

creating 2-15
relationship with 16-12

UNPACKEDIT procedure 14-1
Unstructured files

altering attributes of 5-15
cache flushes 5-13
closing 5-13
creating 5-9/5-10
introduction to 2-2, 5-1, 5-9
I/O with 2-18/2-23, 5-11
locking 5-11
opening 5-11
positioning 2-18/2-23, 5-11
purging 5-14
random access 2-21
reading 2-18/2-23, 5-11
renaming 5-12
sequential access 2-19
writing 2-18/2-23, 5-11

USE attribute 12-25
User code 16-4, 16-5, 16-5/16-7
User data areas, managing 17-6
Guardian Programmer’s Guide—421922-014
Index-34

Index V
User data segment 1-8
bounds checking 17-15, 17-15/17-16
managing 17-2/17-15
sizing 16-32, 17-3
upper 64K bytes 17-6/17-15

User data stack 1-8, 16-8, 17-3/17-6
User library 16-5

overview 16-4, 16-5
User library file 16-33
Users

adding 23-24/23-26
deleting 23-26/23-27

V
VERSION attribute 12-28
Vertical forms control (VFC)
table 11-21/11-25
VFC table 11-21/11-25
Virtual memory 16-4, 16-5

introduction to 1-8
managing 1-8
pools 1-9, 17-42/17-48

Visual Inspect
introduction 25-1, 25-5
specifying the debugging
environment 25-6
use in native envrionments 25-1, 25-5
use with TNS/E native programs 25-1

VOLUME attribute 12-24
VOLUME command 8-2
Volume names 2-5
Volumes 2-2

W
Waited I/O 1-5
WAIT^FILE procedure 15-2

multiple files 15-42/15-45
one file 15-41

Wakeup message 8-19/8-20
WHO command 9-3

Wild-card characters 13-3/13-4
Working set

checking for errors 7-13
restoring 7-13, 7-16/7-17
saving 7-16/7-17
setting attributes in 7-12/7-13

WRITE procedure
devices 2-23
effect on record pointers 2-18
entry-sequenced files 5-32/5-33
introduction to 2-18
key-sequenced files 5-49/5-51
magnetic tape 12-2, 12-13/12-14
printers 11-2
relative files 5-17
terminals 10-2
writing messages 6-4

WRITEEDIT procedure 14-1, 14-12/14-13,
14-13/14-15
WRITEEDITP procedure 14-1, 14-13/14-15
WRITEREAD procedure

terminals 2-23, 10-2
writing messages 6-4, 6-7

WRITEREADX procedure 2-24, 6-7
extended data segments 17-35/17-36
terminals 2-23, 10-2, 10-7/10-8
writing messages 6-4, 6-7

WRITEUPDATE procedure
effect on record pointers 2-22
key-sequenced files 5-49
relative files 5-17

WRITEUPDATELOCKX
procedure 17-35/17-36
WRITEUPDATEUNLOCKX
procedure 17-35/17-36
WRITEUPDATEX procedure

effect on record pointers 2-22/2-23
extended data segments 17-35/17-36
key-sequenced files 5-49/5-51
relative files 5-17
Guardian Programmer’s Guide—421922-014
Index-35

Index Z
WRITEX procedure
devices 2-23
effect on record pointers 2-18/2-21
entry-sequenced files 5-32/5-33
extended data segments 17-35/17-36
introduction to 2-18
key-sequenced files 5-49/5-51
magnetic tape 12-2, 12-13/12-14
printers 11-2
relative files 5-17
terminals 10-2, 10-6
writing messages 6-4, 6-6/6-7

Write-only access, files 3-1
WRITE^FILE procedure 15-2

long writes 15-30/15-31
printers 15-37
replying to interprocess
messages 15-46
sending messages, no reply 15-48
writing records 15-29

Z
ZSYS* files

ZSYSC 1-24
ZSYSCOB 1-24
ZSYSDDL 1-23
ZSYSPAS 1-24
ZSYSTAL 1-24

ZSYS^DDL^SMSG^PROCCREATE^DEF
definition 16-22
ZSYS^VAL^LEN^FILENAME literal 2-11,
2-12, 2-14
ZSYS^VAL^LEN^PROCESSDESCR
literal 2-14
ZSYS^VAL^PCREATOPT^NAMEDBYSYS
literal 2-15, 16-25
ZSYS^VAL^PCREATOPT^NAMEINCALL
literal 2-14, 16-23
ZSYS^VAL^PCREATOPT^NONAME
literal 2-15, 16-23

Special Characters
symbol

See Pound sign
$ symbol

in device name 2-7
in process name 2-7
in volume name 2-5

$CMON
adding users, controlling 23-24/23-26
command interface to

CPU designation 23-33/23-35
introduction to 23-27/23-29
logon display text,
setting 23-29/23-31
refusing command interpreter
requests 23-31/23-33

communicating with TACL 23-2/23-3
configuring TACL 23-4/23-8
CPU of new process,
controlling 23-21/23-22
debugging 23-89/23-92
deleting users, controlling 23-26/23-27
example of 23-36/23-70
example of command interface
to 23-70/23-88
illegal logon, controlling 23-13/23-14
introduction to 23-1/23-3
logoff, controlling 23-12
logon, controlling 23-9/23-11
passwords, controlling

local 23-14/23-15
remote 23-15/23-17

process creation,
controlling 23-17/23-22
process priority of new process 23-20,
23-22/23-24
TACL illegal logon,
controlling 23-13/23-14
testing 23-89/23-92
Guardian Programmer’s Guide—421922-014
Index-36

Index Special Characters
$RECEIVE
closing 6-13
getting message information 6-19/6-21
introduction to 1-6, 1-11, 2-4, 2-24
opening 6-10, 6-15, 6-17
queuing messages on 6-8/6-9
reading messages from 6-18
SIO

allocating 15-66
initializing FCB for 15-7/15-10,
15-67
naming 15-67

* symbol 13-3/13-4
<, condition-code-less-than (CCL) 2-27
=, condition-code-equal (CCE) 2-27
=_DEFAULTS DEFINE 2-5, 7-3, 7-5/7-6
>, condition-code-greater-than (CCG) 2-27
? symbol 13-3/13-4
\ symbol, in node name 2-5
__ns_backup_fopen C function 27-6
__ns_fget_file_open_state C function 27-6
__ns_fget_file_state C function 27-7
__ns_fopen_special C function 27-6
__ns_fset_file_state C function 27-7
__ns_start_backup C function 27-5
Guardian Programmer’s Guide—421922-014
Index-37

Index Special Characters
Guardian Programmer’s Guide—421922-014
Index-38

	Guardian Programmer’s Guide
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information

	About This Manual
	Contents
	Related Reading
	Notation Conventions

	Legal Notices
	HP Encourages Your Comments

	1 Introduction to Guardian Programming
	Providing Fault Tolerance
	Application-Level Fault Tolerance
	Mirrored Disks
	Multiple Copies of the Operating System
	System Integrity

	System Services
	The File System
	The Startup Sequence
	Process Management
	Memory Management
	Time Management
	Data Manipulation
	Debugging, Trap Handling, and Signal Handling

	The Requester/Server Application Model
	Advantages of the Requester/Server Model
	Monitoring Server Processes
	Requesters and Servers in Fault-Tolerant Applications
	Client/Server Application Model

	Accessing Guardian Procedures
	Calling Guardian Procedures From TAL or pTAL
	Calling Guardian Procedures From C or C++
	Calling Guardian Procedures From Pascal
	Calling Guardian Procedures From COBOL85
	Calling Guardian Procedures From FORTRAN

	TNS/E Program Execution Modes
	Similarities and Differences Between H-series RVUs on the TNS/E Platform and G-Series RVUs on the TNS/R Platform

	TNS/R Program Execution Modes
	Using Parameter Declarations Files
	Synchronizing Processes

	2 Using the File System
	File Concepts
	Disk Files
	Device Files
	Process Files and $RECEIVE

	File Names
	Permanent Disk-File Names
	Temporary Disk-File Names
	Device-File Names
	Process File Names

	Location Independent Disk-File Names
	Passing File Names to Processes
	Using CLASS MAP DEFINEs
	Using the Startup Sequence

	Creating and Accessing Files
	Creating Files
	Opening Files
	Reading and Writing Data
	Getting File Information
	Handling File-System Errors
	Closing Files

	Accessing Files: An Example

	3 Coordinating Concurrent File Access
	Setting the Access Mode
	Setting the Exclusion Mode
	Locking a File
	Avoiding Deadlocks
	Avoiding Multiple-Process Deadlocks
	Avoiding Single-Process Deadlocks

	4 Using Nowait Input/Output
	Overview of Nowait Input/Output
	Applying a Nowait Operation on a Single File
	Applying Multiple Nowait Operations on a Single File
	Completing I/Os in the Order Initiated
	Completing I/Os in Any Order
	Using File-System Buffering

	Applying Nowait Operations to Multiple Files
	Nowait I/O: An Example
	Using FILE_COMPLETE_ and its Companion Procedures
	Using the FILE_COMPLETE_SET_ Procedure
	Using the FILE_COMPLETE_GETINFO_ Procedure
	Using the FILE_COMPLETE_ Procedure

	Nowait-Depth

	5 Communicating With Disk Files
	Types of Disk Files
	Unstructured Files
	Structured Files
	Alternate-Key Files
	Queue Files

	Using Unstructured Files
	Creating Unstructured Files
	Opening Unstructured Files
	Positioning, Reading, and Writing With Unstructured Files
	Locking With Unstructured Files
	Renaming Unstructured Files
	Avoiding Unnecessary Cache Flushes to Unstructured Files
	Closing Unstructured Files
	Purging Unstructured Files
	Altering Unstructured-File Attributes

	Using Relative Files
	Creating Relative Files
	Opening Relative Files
	Positioning, Reading, and Writing With Relative Files
	Locking, Renaming, Caching, Closing, Purging, and Altering Relative Files
	Relative-File Programming Example

	Using Entry-Sequenced Files
	Creating Entry-Sequenced Files
	Opening Entry-Sequenced Files
	Positioning, Reading, and Writing With Entry-Sequenced Files
	Locking, Renaming, Caching, Closing, Purging, and Altering Entry-Sequenced Files
	Monitoring Writes to a Disk File
	Entry-Sequenced File Programming Example

	Using Key-Sequenced Files
	Creating Key-Sequenced Files
	Opening Key-Sequenced Files
	Positioning, Reading, and Writing With Key-Sequenced Files
	Locking, Renaming, Caching, Closing, Purging, and Altering Key-Sequenced Files
	Key-Sequenced File Programming Example
	Using Alternate Keys With an Entry-Sequenced File
	Using Alternate Keys With a Key-Sequenced File

	Using Partitioned Files
	Creating Partitioned Files
	Accessing Partitioned Files

	Using Alternate Keys
	Creating Alternate-Key Files
	Adding Keys to an Alternate-Key File
	Using Alternate Keys With a Relative File

	6 Communicating With Processes
	Sending and Receiving Messages: An Introduction
	Sending Messages to Other Processes
	Opening a Process
	Writing Messages to Another Process

	Queuing Messages on $RECEIVE
	Receiving and Replying to Messages From Other Processes
	Opening $RECEIVE for Two-Way Communication
	Reading Messages for Two-Way Communication
	Replying to Messages
	Sending, Receiving, and Replying to Messages: An Example
	Closing $RECEIVE

	Receiving Messages From Other Processes: One-Way Communication
	Opening $RECEIVE for One-Way Communication
	Reading From $RECEIVE for One-Way Communication
	Sending and Receiving One-Way Messages: An Example

	Handling Multiple Messages Concurrently
	Opening $RECEIVE to Allow Concurrent Message Processing
	Reading Messages for Concurrent Processing
	Getting Information About Messages Read From $RECEIVE
	Replying to Messages
	Handling Multiple Messages Concurrently: An Example

	Checking for Canceled Messages
	Checking for Cancellation Messages
	Using the MESSAGESTATUS Procedure

	Receiving and Processing System Messages
	Receiving System Messages
	Processing Open and Close System Messages
	Processing Control, Setmode, Setparam, and Controlbuf Messages

	Handling Errors
	Communicating With Processes: Sample Programs
	Programming the Requester
	Programming the Server

	7 Using DEFINEs
	Example Uses for DEFINEs
	Example of a CLASS MAP DEFINE
	Example of a CLASS SEARCH DEFINE
	Example of a CLASS TAPE DEFINE
	CLASS DEFAULTS DEFINEs

	DEFINE Names
	DEFINE Attributes
	Attribute Data Types
	Attribute Values
	CLASS Attribute

	Working With DEFINEs
	Enabling DEFINEs
	Referring to DEFINEs

	Adding DEFINEs
	Setting Attributes in the Working Set
	Checking the Working Set for Errors
	Adding a DEFINE to the Context of Your Process
	Deleting DEFINEs From the Process Context
	Saving and Restoring DEFINEs
	Saving and Restoring the Working Set

	Using DEFINEs: An Example

	8 Communicating With a TACL Process
	Setting Up the Process Environment
	Obtaining Startup Information
	Using INITIALIZER to Read the Startup Message
	Processing the Startup Message

	Using ASSIGNs and PARAMs
	Using INITIALIZER to Read Assign and Param Messages
	Processing Assign Messages
	Processing the Param Message

	Setting a Timeout Value for INITIALIZER
	Reading the Startup Sequence Without INITIALIZER
	Waking the TACL Process
	Causing the TACL Process to Display Text

	9 Communicating With Devices
	Overview of I/O Subsystem
	Addressing Devices
	Accessing Devices
	Controlling Devices
	Getting Device Information
	Additional Device Information (G-series Only)

	10 Communicating With Terminals
	Accessing a Terminal
	Opening a Terminal
	Transferring Data Between Application and Terminal
	Timing Out Terminal Response
	Echoing Text to the Terminal
	Setting the Transfer Mode
	Terminating Terminal Access

	Communicating in Conversational Mode
	Using the Line-Termination Character
	Setting the Interrupt Characters for Conversational Mode
	Controlling Forms Movement

	Communicating in Page Mode
	Using the Page-Termination Character
	Setting the Interrupt Characters for Page Mode
	Communicating With Pseudopolled Terminals

	Managing the BREAK Key
	Taking BREAK Ownership
	Releasing BREAK Ownership
	Selecting BREAK Mode

	Recovering From Errors
	Recovering From Errors That Indicate a Temporary Lack of Resources
	Recovering From an “Operation Timed Out” Error
	Recovering From a BREAK Error
	Responding to Operator Preemption
	Recovering From a Modem Error
	Recovering From a Path Error
	Recovering From Errors: A Sample Program

	11 Communicating With Printers
	Accessing a Printer
	Procedures for Working With Printers
	A Printer Program Outline

	Using the Printer Control Language
	Controlling the Printer
	Commonly Used PCL Escape Sequences

	Programming for Tandem Laser Printers
	Selecting a Printer Language (5577 Only)
	Using Job-Control Commands
	Using Page-Control Commands
	Printing Text
	Resetting the Laser Printer Default Values

	Programming for Tandem Matrix Line Printers
	Using Page-Control Commands
	Controlling Forms Movement
	Printing Text
	Resetting the Printer to Default Values

	Recovering From Errors
	Recovering From a “Device Not Ready” Error
	Recovering From Path Errors

	Sample Program for Using a Printer

	12 Communicating With Magnetic Tape
	Accessing Magnetic Tape: An Introduction
	Positioning the Tape
	Spacing Forward and Backward by Files
	Spacing Forward and Backward by Record Blocks
	Rewinding the Tape

	Reading and Writing Tape Records
	Reading Tape Records
	Writing Tape Records

	Blocking Tape Records
	Working in Buffered Mode
	Invoking and Revoking Buffered-Mode Operation
	Flushing the Buffer
	Buffered Mode for Streaming Devices (D-Series Only)
	Buffering End-of-File Marks
	An Example of Buffered-Mode Operation

	Working With Standard Labeled Tapes
	Enabling Labeled Tape Processing
	Creating Labeled Tapes
	Checking for Labeled Tape Support
	Accessing Labeled Tapes
	Writing to the Only File on a Labeled Tape Volume
	Writing to a File on a Multiple-File Labeled Tape Volume
	Writing to a File on Multiple Labeled Tape Volumes
	Reading From the Only File on a Labeled Tape Volume
	Reading From a File on a Multiple-File Labeled Tape Volume
	Reading From a File on Multiple Labeled Tape Volumes

	Accessing a Labeled Tape File: An Example
	Preparing the Tape
	Creating the DEFINE
	Writing the Program

	Working With Unlabeled Tapes
	Accessing Unlabeled Tapes
	Writing to a Single-File Unlabeled Tape
	Writing to a Multiple-File Unlabeled Tape
	Writing to a File on Multiple Unlabeled Tape Reels
	Reading From a Single-File Unlabeled Tape
	Reading From a Multiple-File Unlabeled Tape
	Reading From a File on Multiple Unlabeled Tape Reels

	Terminating Tape Access
	Recovering From Errors
	Recovering From “Device Not Ready” Errors
	Recovering From Tape Unit Power Failure
	Recovering From Path Errors

	Accessing an Unlabeled Tape File: An Example

	13 Manipulating File Names
	Overview
	Identifying Portions of File Names
	Working With File-Name Patterns

	Scanning, Resolving, and Unresolving File Names
	Scanning a String for a Valid File Name
	Resolving Names
	Truncating Default Parts of File Names
	Extracting Pieces of File Names

	Modifying Portions of a File Name
	Modifying One Part of a File Name
	Replacing a File-Name Suffix or File-Name Prefix
	Replacing a Subpart of a Process ID

	Comparing File Names
	Searching For and Matching File-Name Patterns
	Establishing the Start of a File-Name Search
	Finding the Next Matching File Name
	Terminating the File-Name Search
	File-Name Matching

	Manipulating File Names: An Example

	14 Using the IOEdit Procedures
	When to Use and When Not to Use EDIT Files
	Overview of IOEdit
	When Should You Use IOEdit?
	Line Numbers and Records
	Packed Line Format
	The EDIT File Segment
	IOEdit and Errors

	Creating, Opening, and Initializing an IOEdit File
	Opening an Already Existing File
	Opening a Nonexistent File
	Initializing an Already Open File

	Reading and Writing an IOEdit File
	Record Pointers
	Selecting a Starting Point
	Performing Sequential Reading
	Performing Sequential Writing
	Setting and Getting the Record Number Increment
	Renumbering Lines
	Handling “File Full” Errors
	Deleting Lines
	Line Backspacing

	Using Nowait I/O With IOEdit Files
	Compressing an IOEdit File
	Closing an IOEdit File
	Closing a Single File
	Closing All EDIT Files

	15 Using the Sequential Input/Output Procedures
	An Introduction to the SIO Procedures
	FCBs for SIO Files
	Steps for Writing a Program
	Differences Between TNS/R Native and TNS Procedures

	Initializing SIO Files Using TAL or pTAL DEFINEs
	Setting Up the SIO Data Structures
	Assigning a Logical File Name
	Using the INITIALIZER Procedure
	Setting Up File Access
	Reassigning a Physical File Name to a Logical File
	Sample Initialization

	Opening and Creating SIO Files
	Setting Flag Values in the OPEN^FILE Call
	Opening SIO Files: Simplest Form
	Creating SIO Files
	Block Buffering With SIO Files
	Purging Data When Opening

	Getting Information About SIO Files
	Reading and Writing SIO Files
	Handling Basic I/O With SIO Files
	Changing the Interactive Read Prompt
	Handling Long Writes
	Handling Padding Characters
	Writing to a Printer

	Accessing EDIT Files
	Opening an EDIT File
	Setting the Read Position

	Handling Nowait I/O
	Waiting for One File
	Waiting for Any File

	Handling Interprocess Messages
	Passing Messages and Reply Text Between Processes
	Passing Messages Between Processes: No Reply Data
	Communicating With Multiple Processes

	Handling System Messages
	Selecting or Masking System Messages
	Reading System Messages

	Handling BREAK Ownership
	Taking BREAK Ownership
	Checking for a Break Message
	Returning BREAK Ownership
	Handling BREAK Ownership: An Example
	Handling BREAK Ownership With $RECEIVE Handled as a Non-SIO File

	Handling SIO Errors
	Handling Error Messages
	Handling Fatal Errors
	Handling Retryable Errors

	Closing SIO Files
	Initializing SIO Files Without TAL or pTAL DEFINEs
	Allocating FCBs
	Initializing FCBs
	Naming FCBs
	Setting Up File Access Without INITIALIZER
	Sample Initialization

	Using the SIO Procedures: An Example

	16 Creating and Managing Processes
	Process Management Overview
	Process Identifiers
	Programs and Processes
	Process Organization
	Process Security
	Relationship With Other Processes
	Relationship With a Home Terminal
	Process Subtype
	Process Priority
	Process Execution

	Creating Processes
	Using the PROCESS_LAUNCH_ Procedure
	Creating an Unnamed Process
	Creating a Named Process
	Creating a Process in a Nowait Manner
	Analyzing Process-Creation Errors
	Specifying Process Attributes and Resources

	Sending the Startup Sequence to a Process
	Sending and Receiving the Startup Message
	Sending and Receiving Assign and Param Messages

	Monitoring a Child Process
	Deleting Processes
	Deleting Your Own Process
	Deleting Other Processes
	Using Stop Mode to Control Process Deletion
	Reusing Resources Held by a Stopped Process

	Suspending and Activating Processes
	Suspending Your Own Process
	Suspending Other Processes
	Activating Another Process

	Getting and Setting Process Information
	Getting Process Information
	Setting Process Information

	Manipulating Process Identifiers
	Retrieving Information From a Process Handle
	Converting Between Process Handles and Process File Names
	Controlling the IPU Affinity of Processes

	17 Managing Memory
	An Introduction to Memory-Management Procedures
	Managing the User Data Areas
	Managing the TNS User Data Segment
	Managing the Native User Data Areas
	Checking the Bounds of Your Data Areas

	Using (Extended) Data Segments
	Overview of Selectable Segments
	Overview of Flat Segments
	Which Type of Segment Should You Use?
	Using Selectable Segments in TNS Processes
	Accessing Data in Extended Data Segments
	Attributes of Extended Data Segments
	Allocating Extended Data Segments
	Checking Whether an Extended Data Segment Is Selectable or Flat
	Making a Selectable Segment Current
	Referencing Data in an Extended Data Segment
	Checking the Size of an Extended Data Segment
	Changing the Size of an Extended Data Segment
	Transferring Data Between an Extended Data Segment and a File
	Moving Data Between Extended Data Segments
	Checking Address Limits of an Extended Data Segment
	Sharing an Extended Data Segment
	Determining the Starting Address of a Flat Segment
	Deallocating an Extended Data Segment

	Using Memory Pools
	Defining a Memory Pool
	Getting Space in a Memory Pool
	Returning Memory Pool Space
	Changing the Size of a Memory Pool
	Getting Information About a Memory Pool
	Debugging a Memory Pool

	18 Managing Time
	How the System Keeps Time
	Clock Averaging and System Time
	Time Zones and Daylight Saving Time
	128-Bit, 64-Bit, and 48-Bit Timestamps

	Using the Time Management Procedures
	Time and Date Manipulation
	Working With 64-Bit Julian Timestamps
	Working With Julian Day Numbers
	Working With 48-Bit Timestamps

	Timing in Elapsed Time and Timing in Process Time
	Setting and Canceling Timers: Elapsed Time
	Setting and Canceling Timers: Process Time
	Timing Your Process
	Timing Another Process
	Converting Process Time Into a Readable Form

	Measuring Long Time Intervals
	A Sample Long-Range Timer

	Managing System Time
	Checking the System Clock
	Setting the System Clock
	Interacting With the DST Transition Table

	19 Formatting and Manipulating Character Data
	Using the Formatter
	Format-Directed Formatting
	List-Directed Formatting

	Manipulating Character Strings
	Converting Between Strings and Integers
	Case Shifting Character Strings
	Editing a Character String
	Sorting Characters

	Programming With Multibyte Character Sets
	Checking for Multibyte Character-Set Support
	Determining the Default Character Set
	Analyzing a Multibyte Character String
	Dealing With Fragments of Multibyte Characters
	Handling Multibyte Blank Characters
	Determining the Character Size of a Multibyte Character Set
	Case Shifting With Multibyte Characters
	Testing for Special Symbols
	Sample Program

	20 Interfacing With the ERROR Program
	Creating an ERROR Process
	Opening an ERROR Process
	Sending an ERROR Process a Startup Message
	Reading and Processing Error-Message Text
	Closing and Deleting an ERROR Process
	Using the ERROR Process: An Example

	21 Writing a Requester Program
	Functions of a Requester
	Terminal Interface
	Field Validation
	Data Mapping
	Application Control

	File System I/O Synchronization
	Sync-Depth
	Sync-Depth in Practice
	File Sync Block Checkpoints (Example)

	Writing a Requester Program: An Example
	User Interface
	Application Overview
	Coding the Requester Program

	22 Writing a Server Program
	Functions of a Server Process
	Multithreaded and Single-Threaded Servers
	Receive-Depth
	Context-Free Servers

	Maintaining an Opener Table
	The Opener Table
	Getting Message Information
	Adding a Requester to the Opener Table
	Checking a Request Against the Opener Table
	Deleting a Requester From the Opener Table

	Writing a Server Program: An Example
	Application Overview
	The Part-Query Server ($SER1)
	The Process-Order Server ($SER2)
	The Order-Query Server ($SER3)

	23 Writing a Command-Interpreter Monitor ($CMON)
	Communicating With TACL Processes
	Controlling the Configuration of a TACL Process
	Retaining Default Values
	Setting Configuration Parameters

	Controlling Logon and Logoff
	Controlling Logon
	Controlling Logoff
	Controlling Illegal Logon

	Controlling Passwords
	When the User Requests to Change a Local Password
	When the User Requests to Change a Remote Password

	Controlling Process Creation
	Controlling the Priority of a New Process
	Controlling the CPU of a New Process

	Controlling Change of Process Priority
	Controlling Adding and Deleting Users
	Controlling Adding a User
	Controlling Deleting a User

	Controlling $CMON While the System Is Running
	Setting the Logon Display Text at Run Time
	Refusing Command-Interpreter Requests
	Controlling Which CPU a Process Can Run In

	Writing a $CMON Program: An Example
	Sample $CMON Program
	Sample Command-Interface Program

	Debugging a TACL Monitor ($CMON)
	A TACL Macro for Debugging and Testing a $CMON Program
	Procedure for Debugging and Testing a TACL Monitor ($CMON)

	24 Writing a Terminal Simulator
	Specifying Device Subtype 30
	Why Device Subtype 30 Must Be Specified
	How to Specify Device Subtype 30

	Assigning a Name to the Terminal-Simulation Process
	Accepting System Messages Through $RECEIVE
	Specifying How to Process System Messages
	Allowing the Requester to Specify the last-params Parameter
	Allowing the Requester to Call SETPARAM

	Processing I/O Requests
	Processing System Messages
	Processing Control Messages
	Processing Setmode Messages
	Processing Setparam Messages
	Processing Device-Type Information Requests

	Managing the BREAK Key
	Tracking the BREAK Owner
	Basing Interprocess I/O on BREAK Mode
	Sending Break-on-Device Messages

	25 Debugging, Trap Handling, and Signal Handling
	Invoking a Debugger
	Getting a Process Into the Debug State
	Specifying the Debugging Environment

	Handling Trap Conditions
	Setting Up a Trap Handler
	Processing a Trap
	Exiting a Trap Handler
	Disabling Trap Handling
	Trap Handling on Native Systems
	Writing a Trap Handler: Examples

	Handling Signals
	About Signals
	Comparing Traps and Signals
	When Would You Use a Signal Handler?
	Standard Signals Functions
	Using Standard Signals Functions
	HP Extensions
	Using HP Extensions
	Interoperability Considerations
	Examples

	26 Synchronizing Processes
	How Binary Semaphores Work
	Summary of Guardian Binary Semaphore Procedures
	Using the Binary Semaphore Procedure Calls
	Creating a Binary Semaphore
	Opening a Binary Semaphore
	Locking a Binary Semaphore
	Unlocking a Binary Semaphore
	Testing Ownership of a Binary Semaphore
	Forcing a Lock on a Binary Semaphore
	Closing a Binary Semaphore

	Binary Semaphore Interface Declarations
	Binary Semaphore Example
	Shared Structure
	External Declarations
	Procedure USERESOURCE
	Procedure PRIMARY
	Procedure SECONDARY

	BINSEM_GETSTATS_ and BINSEM_STAT_VERSION_ Example

	27 Fault-Tolerant Programming in C
	Overview of Active Backup Programming
	Summary of Active Backup Processing
	What the Programmer Must Do
	Planning Tasks
	Programming Tasks

	C Extensions That Support Active Backup Programming
	Starting the Backup Process
	Opening a File With a Specified Sync Depth
	Retrieving File Open State Information in the Primary Process
	Opening Files in the Backup Process
	Retrieving File State Information in the Primary Process
	Updating File State Information in the Backup Process
	Terminating the Primary and Backup Processes

	Organizing an Active Backup Program
	Primary Process Organization
	Backup Process Organization

	Updating State Information
	Types of State Information
	Updating Control State Information
	Updating File State Information
	Updating Application State Information
	Guidelines for Updating State Information
	Example of Updating State Information
	Saving State Information for Multiple Disk Updates

	Providing Communication Between the Primary and Backup Processes
	Sending Messages From the Primary to the Backup
	Receiving Messages in the Backup Process
	Monitoring the Backup Process

	Programming Considerations
	Compile-Time and Linker Considerations
	Run-Time Considerations

	Comparison of Active Backup and Passive Backup
	Active Backup Example 1
	Program Declarations
	Creating and Starting the Backup Process
	Updating State Information
	Primary and Backup Processing
	Compiling and Running the Example
	Example With Debugging Options

	Active Backup Example 2
	Program Declarations
	Creating and Starting the Backup Process
	Updating State Information
	Primary and Backup Processing
	Compiling and Running the Example

	28 Using Floating-Point Formats
	Differences Between Tandem and IEEE Floating-Point Formats
	Building and Running IEEE Floating-Point Programs
	Compiling and Linking Floating-Point Programs
	Link-Time Consistency Checking
	Run-Time Consistency Checking
	Run-Time Support
	Debugging Options
	Conversion Routines
	Floating-Point Operating Mode Routines

	A Mixed Data Model Programming
	Using 64-bit Addressable Memory
	Accessing Data in 64-bit Segments
	Allocating a 64-bit Segment
	Dynamic Memory Allocation in 64-bit Segments
	Data Scanning and Movement within 64-bit Segments
	File I/O to/from 64-bit Segments
	Socket I/O to/from 64-bit Segments
	OSS I/O to/from 64-bit segments
	Debugging Programs with 64-bit Segments
	Examples

	Glossary
	Index

