
iTP Secure WebServer System
Administrator’s Guide

HP Part Number: 629959-006
Published: February 2014
Edition: J06.10 and subsequent J-series RVUs and H06.21 and subsequent H-series RVUs.

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The Open Group are trademarks of The Open
Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc. OSF MAKES
NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall not be liable for errors contained herein or for
incidental consequential damages in connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF software to which it relates are derived in part
from materials supplied by the following:© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991
Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business Machines Corporation. © 1988, 1989
Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991,
1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989,
1990, 1991 Transarc Corporation.OSF software and documentation are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. OSF acknowledges the following individuals and institutions for their role in its development: Kenneth
C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985,
1986, 1987, 1988, 1989 Regents of the University of California.

Contents
About This Document...15

Supported Release Version Updates (RVUs)..15
Intended Audience..15
New and Changed Information in This Edition..15
Document Organization..17
Notation Conventions..18

General Syntax Notation..18
Notation for Messages...20
Notation for Management Programming Interfaces...21
General Syntax Notation..22

Related Information...23
TCP/IP Manuals..23
Open System Services (OSS) Manuals..24
NonStop TS/MP Manuals...24
NonStop Java Manuals..24
Other Related Manuals...24

Publishing History...25
HP Encourages Your Comments..25

1 Introduction to the iTP Secure WebServer...26
Features and Standards Supported by iTP Secure WebServer...27
iTP Secure WebServer Architecture...29

Web Clients..30
TCP/IP Subsystem..30
IP CIP...31
iTP Secure WebServer httpd..31
PATHMON Process..31
Active Transaction Pages (ATP)...32
Pathway CGI Server...32
Generic Common Gateway Interface (CGI) Server...32
Servlet Server Class (SSC)...32
Resource Locator Service (RLS)...32
iTP Secure WebServer Admin httpd..32
Administration Server...32

iTP Secure WebServer Encryption...32
2 Installing the iTP Secure WebServer..34

iTP Secure WebServer System Requirements...34
Supported NonStop Systems...34
Required and Optional Software..34
Required Hardware..35

Preparing Your System for the iTP Secure WebServer...35
Event Management Service (EMS) Template Installation...37
Installing and Configuring the iTP Secure WebServer..38

Before You Begin the Installation..38
Beginning the Installation..38
Using DSM/SCM..39
Running the IPSetup Program...39
Copying the iTP Secure WebServer Software from the Distribution Medium...............................40
Running the Setup Script...40
Setup for TCP/IPv6 support...42
Generate Diffie-Hellman Parameters...43

Contents 3

Setup for IP CIP Support...43
Installing the Resource Locator...44
Installation Considerations..44

Verifying the Configuration..44
Upgrading iTP Secure WebServer online...44
The Ninety-Day Test Certificate...45
Test-starting the Administration Server and the iTP Secure WebServer..46
If You Plan to Use TLS or SSL Encryption...46
If You Are Using the Nonsecure Version...46

3 Planning the iTP Secure WebServer PATHMON Environment..........................47
Conventional TCP/IP: The Distributor Process..47
TCP/IPv6 and IP CIP:The Auto Accept Feature..47

Migration Considerations For TCP/IPv6 and IP CIP Support...48
Configuring the PATHMON Environment..49
Threading Considerations for the httpd Server..49
Security for the Server's Pathway Environment...50

Who Can Modify the Configuration Files?..50
Who Can Start/Stop the iTP Secure WebServer?...50
What TCP/IP Port Is the Distributor Process Monitoring?..50
Common Gateway Interface (CGI) Application Security Considerations.....................................51
Pathway CGI Server Class Considerations...51

Other Security Considerations..51
Protecting the Key Database File..51
Protecting the Server Password...52
Protecting Core Dumps...52
Protecting Transmission of Key Database Files and Core Dumps...52

4 Configuring for Secure Transport..53
Using the Administration Server Securely...53
Overview of Server Configuration...54

Keyadmin Utility Configuration..54
Server Configuration..54

Managing Certificates...55
Formatting Distinguished Names (DNs)...55
Using the Keyadmin Utility to Manage Keys and Certificates..56
Using Server Certificate Chains With the iTP Secure WebServer..72

Managing Client Authentication...72
Using the -requireauth Option...73
Using the -requestauth Option..73
Updating TLS and SSL Configuration...74
Controlling Access and Privacy...74
Specifying Content Access Using the Region Command...75
Using TLS and SSL Environment Variables in CGI Programs..75
Controlling Encryption and Integrity Checking..75
Using Ciphers With the AcceptSecureTransport Directive..76
Hashing Ciphers Used by iTP Secure WebServer Ciphers..76
Negotiating Selection Among Available Ciphers..76
Migrating the key database from iTP Secure WebServer 7.0 to 7.2 and later..................................76
Configuring Trusted Client Root Certificate Database...79
Configuring Support For Certificates with Non-English Characters...79

5 Managing the iTP Secure WebServer Using Scripts.......................................82
The httpd Command...82
Starting the iTP Secure WebServer Using the start Script..83
Stopping the iTP Secure WebServer Using the stop Script...83

4 Contents

Restarting the iTP Secure WebServer Using the restarth Script...83
For TCP/IPv6 and IP CIP Support...83
For Classical TCP/IP Support...84

Restarting the iTP Secure WebServer Using the restart Script...84
Updating the serverclasses Using the updatesc Script..84
Using the httpd Command...85

Syntax..85
Description..87

PATHMON Environment's Autorestart for the iTP Secure WebServer and Related Processes...............88
Collecting httpd Statistics Using statscom...88

statscom Command..88
Collecting Webserver Statistics Using timestat script..92

6 Configuring the iTP Secure WebServer..94
Configuring Your Server..94

The httpd Configuration File...94
Configuring Your Server for Use With TCP/IPv6 or IP CIP..97
The Secure Transport Configuration File (httpd.stl.config)...97
Configuring Global Session Key Caching..97
Other Configuration Files..99

Managing Server Contents..99
Understanding How URLs Work...99
Mapping Requests to Contents...99
Establishing User Directories..104
Using Guardian Files..104

Controlling File Caching..105
FileStatsCheckTime...106
CacheTime..106
MaxFileCacheEntries..107
MaxFileCacheContentSize...107
NoCache Region Command...108

Managing Log Files..108
Choosing a Log Format...108
Planning Space for Logs...109
Rotating Log Files...110

Setting Up Server Aliases...111
How Aliases Work...111
Why Aliases Are Useful..111
Setting Up an Alias..112

Controlling Access to the Server...112
Using Region Directives..112
Granting Access by Host Name/IP Address..113
Denying Access by Host Name/IP Address...114
Requiring Client Authentication..114
Administering Passwords...115
Redirecting Access...116
Enabling Automatic Directory Indexing...117
Disabling Logging..118
Using Multiple Region Commands...118
Using Pattern Variables (Lists)...119
Using Conditional Commands...120
Using Tcl Variables...120
Allowing Byte Ranges...122
Implementing Multiple-Host Support...123

Customizing Server Error Messages..126

Contents 5

Setting Up Clickable Images..127
Creating an Image Map File...127
Adding a Hypertext Anchor..128
Testing the Image Setup..129
Setting Up a Server-Side Include (SSI)...130
Evaluating Performance..133

Configuring Multiple Daemons Under Same Pathmon with Alternate Names.................................135
Specifications for Different Configuration Files...135
Script to Configure Multiple httpds and their Configuration Files..136

7 Using Common Gateway Interface (CGI) Programs.....................................138
CGI Support in the iTP Secure WebServer Environment..139

Generic-CGI Server Class..139
Pathway CGI Server Classes..140
Servlet Server Class (SSC)...141

CGI Configuration and Programming..141
Configuring for CGI Programs..142

MIME Types..142
Mapping MIME Types to Server Classes...143
Server Class Configuration..145
Program Access Restrictions...146

Passing CGI Environment Variables...146
HTTP Header Variables...153
Passing Input..155

Command Line..155
Query Strings..155
Extra Path Information...155
HTML Forms..156

Returning Output..156
Response Headers...157
Server Headers...158
Nonparsed Headers..158

Logging Error Information..158
CGIStandard File Environment..159

Standard Input...159
Standard Output..159
Standard Error...159
Customizing the Standard File Environment..159

CGI Library..159
Pathway CGI Coding Considerations..161

Including the CGI Library..161
Design Guidelines..162

Examples of a Pathway CGI Implementation...162
8 Using NonStop Servlets for JavaServer Pages (NSJSP).................................165
9 Using the Resource Locator Service (RLS)...166

Resource Locator Service (RLS) Architecture..166
Configuring the Resource Locator Service (RLS)...166

Defining the Server Class..167
Creating the Database...167
Modifying the Database...169

Building and Installing the Resource Locator Service (RLS)..169
10 Administering Session Identifiers for Anonymous Sessions...........................170

Anonymous Ticketing...170
Tracking..170

6 Contents

Ticketing and Tracking Example..171
Configuring for Anonymous Ticketing..172

Enabling Session Identifiers...172
Advanced Configuration Options...174
Ticketing Strategies..177

Using Session Identifiers for Reporting...180
Using Tcl Variables for Anonymous Sessions...180

11 Managing the iTP Secure WebServer From Your Browser............................182
Administration Server Architecture...182
Installing the Administration Server...183
Invoking the Administration Server..183
Configuring the Administration Server...183

Defining the admin Server Class..184
Defining the admin httpd Server Class..184
Defining the stats-form Server Class..185

Administration ServerScreens...185
Welcome..185
Current Server Information...186
Server Control: Start...187
Server Control: Restart..187
Server Control: Stop...188
View Configuration Files...189
Server Control: Add...189
Server Control: Delete..190
Edit Configuration File..190
View EMS Logs..191
View Server Logs...193
Search Configuration Files...193
OSSCommands...194
iTP WebServer Statistics..194

A Configuration Directives..198
Accept..198

Syntax..198
Description..198
SCF TCP/IP Configuration...199
Default...199
Examples..200

AcceptSecureTransport..200
Syntax..200
Description..200
SCF TCP/IP Configuration...203
Default...203
Examples..204
Examples of Secure Transport Protocol Support (Port 4430)...205
Examples of Cipher Support..205
Examples of hashAlgorithm Support...205

AccessLog...206
Syntax..206
Description..206
Default...206
Example...206

AutomatedLogRolloverSize...206
Syntax..206
Description..206

Contents 7

Default...206
Example...207

BigInBufSize...207
Syntax..207
Description..207
Default...207
Example...207

Browser...207
Syntax..207
Description..207
Default...208
Example...208

CacheTime..208
Syntax..208
Description..208
Default...208
Example...208

ClientCADatabase..208
Syntax..208
Description..208
Default...208
Example...209

CombinedLogFormat...209
Syntax..209
Description..209
Default...209
Example...209

DefaultType..209
Syntax..209
Description..209
Default...209
Example...209

DNSCacheSize..209
Syntax..209
Description..209
Default...210
Example...210

DNSExpiration...210
Syntax..210
Description..210
Default...210
Example...210

EncodingType..210
Syntax..210
Description..210
Default...211
Example...211

ErrorLog..211
Syntax..211
Description..211
Default...211
Example...211

ExtendedLog..211
Syntax..211
Description..211

8 Contents

Default...212
Example...212

Filemap...212
Syntax..212
Description..212
Default...213
Example...213

FileStatsCheckTime...213
Syntax..213
Description..213
Default...213
Example...213

HTTPTraceMethodEnable...213
Syntax..213
Description..213
Default...214
Example...214

HeaderFieldSize...214
Syntax..214
Description..214
Default...214
Example...214

IndexFile...214
Syntax..214
Description..214
Default...215
Example...215

InputBufferScale...215
Syntax..215
Description..215
Default...215
Example...215

InputTimeout..215
Syntax..215
Description..215
Default...215
Example...215

KeepAliveHeader...215
Syntax..215
Description..215
Default...216
Example...216

KeepAliveTimeout...216
Syntax..216
Description..216
Default...216
Example...216

KeepAliveMaxRequest...216
Syntax..216
Description..216
Default...217
Example...217

KeyDatabase...217
Syntax..217
Description..217

Contents 9

Default...217
Example...217

LanguagePreference..218
Syntax..218
Description..218
Default...218
Example...218

LanguageSuffix...218
Syntax..218
Description..218
Default...218
Example...219

LoggingServerClass..219
Syntax..219
Description..219
Default...219
Example...219

MaxConnections..219
Syntax..219
Description..219
Default...219
Examples..220

MaxFileCacheContentSize...220
Syntax..220
Description..220
Default...220
Example...220

MaxFileCacheEntries...220
Syntax..220
Description..220
Default...221
Example...221

MaxPostRequestSize..221
Syntax..221
Description..221
Default...221
Example...221

MaxRequestBody..221
Syntax..221
Description..221
Default...222
Example...222

Message...222
Syntax..222
Description..222
Default...223
Example...224

MimeType..224
Syntax..224
Description..224
Default...224

Negotiation...224
Syntax..224
Description..225
Default...225

10 Contents

Example...225
NewEmsMessageFormat..226

Syntax..226
Description..226
Default...226
Examples..226

OutputTimeout..226
Syntax..226
Description..227
Default...227
Example...227

PasswordValidity...227
Syntax..227
Description..227
Default...227
Example...227

Pathmon..227
Syntax..227
Description..227
Examples..230

PathwayMimeMap..230
Syntax..230
Description..230
Examples..230

Pidfile...231
Syntax..231
Description..231
Default...231
Example...231

PutScript..231
Syntax..231
Description..231

RecvBufferScale..232
Syntax..232
Description..232
Default...232
Example...232

Region..232
Syntax..232
Description..233
Region Commands...234
Anonymous Ticket Attributes..242

RegionSet..245
Syntax..245
Description..245
Default...245
Example...245

ReverseLookup..245
Syntax..245
Description..245
Default...245
Example...245

RmtServer..245
Syntax..245
Description..246

Contents 11

Default...246
Example...246

ScriptTimeout...246
Syntax..246
Description..246
Default...246
Example...246

SendBufferScale...246
Syntax..246
Description..246
Default...246
Example...246

Server...247
Syntax..247
Description..247
Server Commands...247

ServerAdmin..252
Syntax..252
Description..252
Default...252
Example...252

ServerPassword..252
Syntax..252
Description..252
Default...253
Example...253

ServerRoot...253
Syntax..253
Description..253
Default...253
Example...253

ServerTokens..253
Syntax..253
Description..253
Default...254
Examples..254

set..254
Syntax..254
Description..254
Default...254
Example...254

SI_Default..254
Syntax..254
Description..254
Default...254
Example...254

SI_Department...254
Syntax..254
Description..255
Default...255
Example...255

SI_Enable..255
Syntax..255
Description..255
Default...255

12 Contents

Example...255
SK_CacheExpiration...255

Syntax..255
Description..255
Default...256
Example...256

SK_CacheSize..256
Syntax..256
Description..256
Default...256
Example...256

SK_GlobalCache..256
Syntax..256
Description..256
Default...256
Example...256

SK_GlobalCacheTimeout...257
Syntax..257
Description..257
Default...257
Example...257

TCPNoDelay..257
Syntax..257
Description..257
Default...257
Examples..257

User..258
Syntax..258
Description..258
Default...258
Example...258

UserDir...258
Syntax..258
Description..258
Default...259
Example...259

B Error Messages..260
C Server Log File Formats...261

Access Log Format..261
Access Log Entry Format...261
Example...262

Error Log Format...262
Hypertext Transfer Protocol (HTTP) Status Codes..262
Extended Log Format...264

Extended Log Entry Format..264
Example...266

Logging through an External ServerClass...266
D Security Concepts..269

Open Network Security...269
Encryption..269
Authentication...270

Cryptographic Techniques...270
Secret Key Systems...270

Contents 13

Public Key Systems...270
Managing Key Certificates...272

Using Certificates...272
Obtaining Certificates..273

Transport Layer Security (TLS)...273
TLS Record Protocol..273
TLS Handshake Protocol..273

Secure Sockets Layer (SSL)...274
What SSL Does...274
SSL 3.0 Protocol Enhancements Over SSL 2.0..274

Deploying TLS and SSL..274
Comparing TLS and SSL..275

Design Goals..275
Relative Advantages...275

E Tool Command Language (Tcl) Basics..276
Tcl Syntax Rules..277
Tcl Commands...277
Script Commands...279

F HTTP/1.1 Feature List...282
G Bibliography...285

Bibliography..285
Online Reference Information...285

Glossary..286
Index...290

14 Contents

About This Document
This guide describes the installation, configuration, and management of the Internet Transaction
Processing (iTP) Secure WebServer. It covers the nonsecure version (iTP WebServer) and secure
version (iTP Secure WebServer). For simplicity, both versions are referred to as iTP Secure
WebServer throughout the guide.
This guide provides an overview of the iTP Secure WebServer environment and World Wide Web
concepts. It describes how to set up the iTP Secure WebServer, create and modify configuration
files, and start the required processes. It also describes the Common Gateway Interface (CGI), HP
NonStop™ Servlets for JavaServer Pages (NSJSP), and Servlets 2.5 support for the iTP Secure
WebServer environment.

NOTE: This product uses WebServer technology from Open Market, Inc. and secure software
technology from the open source community.

Supported Release Version Updates (RVUs)
This publication supports J06.10 and all subsequent J-series RVUs and H06.21 and all subsequent
H-series RVUs, until otherwise indicated by its replacement publications.

Intended Audience
The iTP Secure WebServer System Administrator’s Guide is intended for experienced NonStop
system administrators and operators who must install, configure, and manage the iTP Secure
WebServer on a NonStop system.
The intended user of this guide includes persons who:

• Are an experienced user of NonStop software products and are specifically familiar with the
HP NonStop Open System Services (OSS) environment and the PATHCOM interface of HP
NonStop TS/MP.

• Have access to and are familiar with the World Wide Web.

• Are familiar with the Common Gateway Interface (CGI/1.1) standard and the Hypertext
Transfer Protocol (HTTP/1.0).

• Are familiar with the Java language and tools (if you plan to use Java servlets).

• Are familiar with writing and using configuration scripts.

• Are familiar with the TCP/IP family of protocols.

• Are familiar with network security and authentication techniques.

• Can operate a secure computing system. For an introduction to basic network security concepts,
see “Security Concepts” (page 269).

If you need more information about NonStop systems, consult these publications before reading
this guide:

• H06.nn Release Version Update Compendium and NonStop Systems Introduction for H-Series
RVUs if you use an operating system RVU starting with H, for example, H06.

• J06.nn Release Version Update Compendium if you use an operating system RVU starting
with J, for example, J06.

New and Changed Information in This Edition
All the newly added features in this version are supported in J06.17 and all subsequent J-series
RVUs and H06.28 and all subsequent H-series RVUs, until otherwise indicated by its replacement
publication.

Supported Release Version Updates (RVUs) 15

Modified the following sections for the various enhancements in this release:
Options for specifying encoding and encryption format for a private key
• Exporting a Private Key to a User-defined Disk File (page 69)

• Importing a Private Key into iTP Secure WebServer's Key Database File (page 68)

• Migrating the key database from iTP Secure WebServer 7.0 to 7.2 and later (page 76)
Start individual serverclasses

• Using the httpd Command (page 85)

• Updating the serverclasses Using the updatesc Script (page 84)

• Server Control: Restart (page 187)
Support for new hashing algorithms
• Hashing Ciphers Used by iTP Secure WebServer Ciphers (page 76)

• AcceptSecureTransport (page 200)
Differentiate the certificates
• ClientCADatabase (page 208)

• Configuring Trusted Client Root Certificate Database (page 79)

• KeyDatabase (page 217)
Limit the POST request size
• MaxPostRequestSize (page 221)

• Region (page 232)
Changes for 629959-004 include:

NOTE: All the newly added features in this version are supported in J06.15 and all subsequent
J-series RVUs and H06.26 and all subsequent H-series RVUs, until otherwise indicated by its
replacement publication.

• Added the section for Generating Diffie-Hellman Parameters (page 71).

• Updated the httpd command syntax with add and delete options in Using the httpd Command
(page 85).

• Added syntax for vcache shell entry in Controlling File Caching (page 105).

• Updated the section Implementing Virtual Hosts for iTP Secure WebServer (page 125).

• Added the section for Configuring Multiple Daemons Under Same Pathmon with Alternate
Names (page 135).

• Added the section for Specifications for Different Configuration Files (page 135).

• Added the section for Script to Configure Multiple httpds and their Configuration Files
(page 136).

• Added the section for Server Control: Add (page 189).

• Added the section for Server Control: Delete (page 190).

• Added a new error message for What You Do: Enter PATHMON/Domain Name (page 194).

• Updated two parameters for AcceptSecureTransport (page 200).

• Updated Supported Cipher Pairs (by Protocol) Table 30 (page 202).

• Added a note for AccessLog (page 206).

16

• Added the section for HeaderFieldSize (page 214) directive.

• Updated the section ExtendedLog (page 211) directive.
Changes for 629959-002 include:

• Added the section for “Implementing Virtual Hosts for iTP Secure WebServer” (page 125)

• Updated the section name to “Implementing Virtual Hosts for iTP Secure WebServer” (page 124)

• Updated the sections “Configuration Directives” (page 198) and“Logging through an External
ServerClass” (page 266).

• Updated the support for additional mime-types in the Table 15 (page 143), information about
the new type of CGI library—Tandem floating-point (libcgi_tandem.a), and various minor
corrections.

• Removed the /E namespace from the “Using Guardian Files” (page 104) Using Guardian Files
section, as it is not supported.

Document Organization

DescriptionSection

Describes the iTP Secure WebServer in relation to the
NonStop operating system and other HP data
communication subsystems.

Chapter 1: Introduction to the iTP Secure WebServer

Describes basic installation steps for iTP Secure WebServer
and lists the software and hardware requirements.

Chapter 2: Installing the iTP Secure WebServer

Describes the configuration steps for the Pathway
environment.

Chapter 3: Planning the iTP Secure WebServer PATHMON
Environment

Describes the configuration steps for Secure Sockets Layer
(SSL) within the iTP Secure WebServer environment.

Chapter 4: Configuring for Secure Transport

Describes how to manage the iTP Secure WebServer using
scripts provided with the product. It also describes httpd,
the command to manage the iTP Secure WebServer.

Chapter 5: Managing the iTP Secure WebServer Using
Scripts

Describes configuration steps for the iTP Secure WebServer.Chapter 6: Configuring the iTP Secure WebServer

Explains how to use the existing Common Gateway
Interface (CGI) programs with the iTP Secure WebServer.

Chapter 7: Using Common Gateway Interface (CGI)
Programs

It also discusses how to develop CGI applications for better
scalability and performance than the conventional CGI.

References NonStop Servlets for JavaServer Pages (NSJSP)
System Administrator’s Guide, which describes how to

Chapter 8: Using NonStop Servlets for JavaServer Pages
(NSJSP)

develop NSJSP and use them with the iTP Secure
WebServer.

Describes how to use RLS to implement the replicated
webserver.

Chapter 9: Using the Resource Locator Service (RLS)

Describes how to use the ticketing services of the iTP Secure
WebServer.

Chapter 10: Administering Session Identifiers for
Anonymous Sessions

Describes how to use the iTP Secure WebServer
Administration Server to establish and modify

Chapter 11: Managing the iTP Secure WebServer From
Your Browser

configurations, monitor errors and other events, start and
stop the iTP Secure WebServer environment, and perform
other administrative tasks.

Describes the syntax of each configuration directive and
the associated commands and arguments that you can
specify in the iTP Secure WebServer configuration files.

Appendix A: Configuration Directives

Document Organization 17

DescriptionSection

Provides general information about iTP Secure WebServer
error reporting. The messages are described in the iTP
Secure WebServer Operator Messages Manual.

Appendix B: Error Messages

Describes the formats used in the log files generated by
the server.

Appendix C: Server Log File Formats

Introduces the basic concepts relevant to setting up and
administering a secure Web server.

Appendix D: Security Concepts

Describes the basic Tcl concepts and language elements.Appendix E: Tool Command Language (Tcl) Basics

Lists the HTTP/1.1 features that the iTP Secure WebServer
supports.

Appendix F: HTTP/1.1 Feature List

List the Bibilography and online reference details.Appendix G: Bibliography

Notation Conventions

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.
UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
Items not enclosed in brackets are required. For example:
MAXATTACH

Italic Letters

Italic letters, regardless of font, indicate variable items that you supply. Items not enclosed in
brackets are required. For example:
file-name

Computer Type

Computer type letters indicate:
• C and Open System Services (OSS) keywords, commands, and reserved words. Type

these items exactly as shown. Items not enclosed in brackets are required. For example:
Use the cextdecs.h header file.

• Text displayed by the computer. For example:
Last Logon: 14 May 2006, 08:02:23

• A listing of computer code. For example
if (listen(sock, 1) < 0)
{
perror("Listen Error");
exit(-1);
}

Bold Text

Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE

?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
[] Brackets

Brackets enclose optional syntax items. For example:

18

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of
the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:
FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces
A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:
LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
INSPECT { OFF | ON | SAVEABEND }

… Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:
M address [, new-value]…

 -] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:
"s-char…"

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:
error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required
character that you must type as shown. For example:
"[" repetition-constant-list "]"

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation symbol such
as a parenthesis or a comma. For example:
CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no spaces
are permitted between the period and any other items:
$process-name.#su-name

Notation Conventions 19

Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:
ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o
In procedure calls, the !i notation follows an input parameter (one that passes data to the called
procedure); the !o notation follows an output parameter (one that returns data to the calling
program). For example:
CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o
In procedure calls, the !i,o notation follows an input/output parameter (one that both passes
data to the called procedure and returns data to the calling program). For example:
error := COMPRESSEDIT (filenum) ; !i,o

!i:i
In procedure calls, the !i:i notation follows an input string parameter that has a corresponding
parameter specifying the length of the string in bytes. For example:
error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i
In procedure calls, the !o:i notation follows an output buffer parameter that has a corresponding
input parameter specifying the maximum length of the output buffer in bytes. For example:
error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed messages in this
manual.
Bold Text

Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE

?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
Nonitalic Text

Nonitalic letters, numbers, and punctuation indicate text that is displayed or returned exactly
as shown. For example:
Backup Up.

Italic Text

Italic text indicates variable items whose values are displayed or returned. For example:
p-register

process-name

[] Brackets
Brackets enclose items that are sometimes, but not always, displayed. For example:
Event number = number [Subject = first-subject-value]

20

A group of items enclosed in brackets is a list of all possible items that can be displayed, of
which one or none might actually be displayed. The items in the list can be arranged either
vertically, with aligned brackets on each side of the list, or horizontally, enclosed in a pair of
brackets and separated by vertical lines. For example:
proc-name trapped [in SQL | in SQL file system]

{ } Braces
A group of items enclosed in braces is a list of all possible items that can be displayed, of
which one is actually displayed. The items in the list can be arranged either vertically, with
aligned braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:
obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
Transfer status: { OK | Failed }

% Percent Sign
A percent sign precedes a number that is not in decimal notation. The % notation precedes an
octal number. The %B notation precedes a binary number. The %H notation precedes a
hexadecimal number. For example:
%005400

%B101111

%H2F

P=%p-register E=%e-register

Notation for Management Programming Interfaces
This list summarizes the notation conventions used in the boxed descriptions of programmatic
commands, event messages, and error lists in this manual.
UPPERCASE LETTERS

Uppercase letters indicate names from definition files. Type these names exactly as shown. For
example:
ZCOM-TKN-SUBJ-SERV

lowercase letters
Words in lowercase letters are words that are part of the notation, including Data Definition
Language (DDL) keywords. For example:
token-type

!r
The !r notation following a token or field name indicates that the token or field is required. For
example:
ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o
The !o notation following a token or field name indicates that the token or field is optional. For
example:
ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Notation Conventions 21

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.
UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
Items not enclosed in brackets are required. For example:
SELECT

Italic Letters

Italic letters, regardless of font, indicate variable items that you supply. Items not enclosed in
brackets are required. For example:
file-name

Computer Type

Computer type letters within text indicate case-sensitive keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For example:
myfile.sh

Bold Text

Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE

?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
[] Brackets

Brackets enclose optional syntax items. For example:
DATETIME [start-field TO] end-field

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of
the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:
DROP SCHEMA schema [CASCADE]
 [RESTRICT]

DROP SCHEMA schema [CASCADE | RESTRICT]

{ } Braces
Braces enclose required syntax items. For example:
FROM { grantee[, grantee]...}

A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:
INTERVAL { start-field TO end-field }
 { single-field }

INTERVAL { start-field TO end-field | single-field }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
{expression | NULL}

… Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:
ATTRIBUTE[S] attribute [, attribute]...

22

{, sql-expression}...

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:
expression-n…

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:
DAY (datetime-expression)

@script-file

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required
character that you must type as shown. For example:
"{" module-name [, module-name]... "}"

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation symbol such
as a parenthesis or a comma. For example:
DAY (datetime-expression)

DAY(datetime-expression)

If there is no space between two items, spaces are not permitted. In this example, no spaces
are permitted between the period and any other items:
myfile.sh

Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:
match-value [NOT] LIKE pattern

 [ESCAPE esc-char-expression]

Related Information

TCP/IP Manuals
For information specific to managing the TCP/IP subsystem, see the following documents:

• TCP/IP Configuration and Management Manual describes the installation, configuration, and
management of the NonStop TCP/IP subsystem. This manual is designed for system managers,
operators, and others who require a basic understanding of the HP TCP/IP implementation.

• TCP/IPv6 Configuration and Management Manual describes the installation, configuration,
and management of the NonStop TCP/IPv6 subsystem. This manual is designed for system
managers, operators, and others who require a basic understanding of the HP TCP/IPv6
implementation.

• Cluster I/O Protocols (CIP) Configuration and Management Manual describes HP NonStop
Cluster I/O Protocols (CIP) subsystem as well as procedures for configuring, managing, and
migrating to CIP. This manual is designed for system managers, operators, and others who
require a basic understanding of the HP NonStop CIP implementation.

Related Information 23

Open System Services (OSS) Manuals
For information specific to the OSS environment, see the following documents:

• Open System Services User’s Guide describes the Open System Services (OSS) environment:
the shell, file-system, and user commands.

• Open System Services Installation Guide describes how to install and configure the NonStop
OSS environment.

• Open System Services Management and Operations Guide describes how to manage and
operate the NonStop OSS environment.

NonStop TS/MP Manuals
For information specific to managing PATHMON environments, see the following documents:

• TS/MP System Management Manual discusses the PATHCOM and TACL commands used to
configure and manage PATHMON environments. This manual also includes manageability
guidelines, information about monitoring and tuning a PATHMON environment to optimize
performance, and methods for diagnosing and correcting problems.

• TS/MP Management Programming Manual describes how to start, configure, and manage
PATHMON environments programmatically and describes the event messages that report errors
and other occurrences of interest to operators.

NonStop Java Manuals
For information about the features of the NonStop Server for Java, see the following documents:

• NonStop Server for Java (NSJ) Programmer’s Reference
And the following Java manuals:

• Java Development Kit Documentation

• Java Language Specification Documentation
If you plan to use NonStop Server for Java with NonStop SQL/MP, see the current NonStop
SQL/MP manual set.

Other Related Manuals
The following manuals contain additional information about NonStop systems:

• HP Integrity NonStop NS-Series Planning Guide describes how to plan and configure a
NonStop NS-series server. This guide describes the ServerNet system area network (ServerNet
SAN) and the modular Integrity NonStop NS-series system hardware, and it shows example
configurations of the modular hardware. The guide introduces the control, configuration, and
maintenance tools used in Integrity NonStop NS-series systems, and it gives an overview of
the installation planning. The guide intended for the personnel responsible for planning the
installation, configuration, and maintenance of the server and the software environment.

• H06.nn Release Version Update Compendium provides a summary of the products that have
major changes in the H06.nn RVU, including the products’ new features, migration issues,
and fallback considerations. This document explains how to migrate to an H-series RVU affects
installation, configuration, operations, system management, maintenance, applications,
networks, and databases.

• HP Integrity NonStop BladeSystem Planning Guide describes how to plan and configure a
HP Integrity NonStop BladeSystem server. This guide describes the ServerNet system area
network (ServerNet SAN) and the modular Integrity NonStop BladeSystem hardware, and
provides examples of system configurations to assist you in planning for installation of a new
HP Integrity BladeSystem server. The guide introduces the control, configuration, and
maintenance tools used in HP Integrity NonStop BladeSystem servers, and gives an overview

24

of the installation planning. The guide is for the personnel responsible for planning the
installation.

• J06.nn Release Version Update Compendium provides a summary of the products that have
major changes in the J06.nn RVU, including the products' new features, migration issues, and
fallback considerations. This document is for system managers or anyone who needs to
understand how migrating to a J-series RVU affects installation, configuration, operations,
system management, maintenance, applications, networks, and databases.

• iTP Active Transaction Pages (iTP ATP) Programmer’s Guide describes how to use iTP Active
Transaction Pages (iTP ATP), a server-side JavaScript environment for NonStop Servers. The
manual includes instructions for installing iTP ATP and for using ATP objects to provide
Web-based interfaces to existing NonStop TS/MP, NonStop TUXEDO, NonStop SQL/MP,
and sockets applications.

Publishing History

Publication DateProduct VersionPart Number

August 2010iTP Secure WebServer (Release 7.2)629959-001

February 2011iTP Secure WebServer (Release 7.3)629959-002

February 2013iTP Secure WebServer (Release 7.4)629959-003

May 2013iTP Secure WebServer (Release 7.4)629959-004

May 2013iTP Secure WebServer (Release 7.4)629959-005

February 2014iTP Secure WebServer (Release 7.5)629959-006

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or
compliments to docsfeedback@hp.com.
Include the document title, part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

Publishing History 25

mailto:docsfeedback@hp.com

1 Introduction to the iTP Secure WebServer
The iTP Secure WebServer provides a full range of services for running an online commercial or
informational enterprise on the Web. In addition to basic Web-related services, the iTP Secure
WebServer provides other important services including access control, enhanced logging,
customized error messaging, and automatic directory indexing.

NOTE: All references to the iTP Secure WebServer in this manual indicate 7.2 and later versions.

Topics discussed in this section include:

• “Features and Standards Supported by iTP Secure WebServer” (page 27)

• “iTP Secure WebServer Architecture” (page 29)

• “iTP Secure WebServer Encryption” (page 32)
The iTP Secure WebServer key features include:

• High performance
The iTP Secure WebServer's high-performance, multithreaded architecture provides low-latency
response to multiple clients simultaneously. Persistent connections can provide significant
performance gains in comparison with a separate connection for each request.

• Caching at several levels
To improve performance, the iTP Secure WebServer caches files it accesses. Disk file access
is one of the most common and expensive operations in a Web server. Therefore keeping
these files in memory can save processor utilization, and improve overall performance. In
addition to file opens that are already cached, the file information, as well as the actual file
content, can also be cached.

• Encryption and authentication flexibility
The iTP Secure WebServer supports the use of HTTP, TLS, and SSL. Secure HTTP supports the
simultaneous use of both the SSL/TLS and HTTP protocols. These options give you maximum
flexibility in protecting the privacy and integrity of your server's Einteractions with clients. The
iTP Secure WebServer implements both encryption and digital signatures.

• Flexible access control
You can control access to the iTP Secure WebServer on the basis of such factors as host name,
time of day, user name, browser type and version, and authentication method.

• High availability
The iTP Secure WebServer uses HP NonStop TS/MP to ensure high availability. NonStop
TS/MP enables you to run, as a server class, several instances of the same process. You can
configure NonStop TS/MP to create new processes as workload increases and to restart any
process that fails.

• Extensibility
You can enrich your WebServer environment by creating applications that use CGI, Java
Servlets, and JavaServer Pages. The iTP Secure WebServer supports both conventional CGI
applications andpersistent applications by using the parallel processing benefits of NonStop
TS/MP. You can write applications in any of several popular programming languages,
including Java. With the companion product iTP Active Transaction Pages (ATP), you can also
use server-side JavaScript to developWeb-based interfaces for NonStop TS/MP (Pathway),
NonStop SQL/MP, NonStop TUXEDO, and TCP/IP sockets applications.

26 Introduction to the iTP Secure WebServer

• Enhanced logging facilities
The iTP Secure WebServer provides an extended log format (ELF) that includes the access,
error, and security information of each request. ELF also provides fields for logging the Web
client type, the referring URL, and the request begin and end times. The fields are all labeled,
making the fields easy to parse and new fields easy to add. The server also supports the
Common Log Format (CLF) widely used by other Web servers.
The iTP Secure WebServer does not support the PTrace utility.

• Enhanced event reporting
The iTP Secure WebServer and many related components report events to the Event
Management Service (EMS). Messages identify the iTP Secure WebServer subsystem, PATHMON
name, and the type of event that occurred.

• Resource Locator Service (RLS)
This service enables you to define multiple Web servers to be used interchangeably for access
to the same URLs. The requester need not know which server handled a request.

• Online-Upgrade
iTP Secure Webserver can be upgraded to a newer version with zero downtime. The
online-upgrade utility enables you to upgrade the iTP Secure WebServer without bringing the
Web server down. This is achieved by bringing one Pathmon down and upgrading webserver
objects with those of the newer version, while the other Pathmon serves the requests with older
Web server objects. This process is repeated to upgrade the other PATHMON.

Features and Standards Supported by iTP Secure WebServer
• Standards compliance

The iTP Secure WebServer complies fully with:

◦ Common Gateway Interface (CGI/1.1)

◦ Java Servlets 2.5 and JavaServer Pages 2.1 APIs

◦ Hypertext Transfer Protocol (HTTP/1.0 and required features of HTTP/1.1)

◦ The Secure Hypertext Transfer Protocol (Secure HTTP)

◦ Transport Layer Security (TLS 1.0, TLS 1.1, and TLS 1.2)

◦ Secure Sockets Layer (SSL 3.0)

NOTE: Support for the TLS/SSL Secure Transport Protocols include support for user-specified
combinations of encryption. Webmasters can specify the security algorithms (ciphers) that they
want the iTP Secure WebServer to use.

The set of protocols that can be supported by a single instance of the iTP Secure WebServer now
consists of HTTP, TLS, and SSL.

• Caching of session keys, encompassing all the secure transport protocols, including SSL 3.0,
TLS 1.0, TLS 1.1, and TLS 1.2.

• Global session key caching provides increased overall SSL performance by allowing a cache
of TLS/SSL session keys to be shared amongst all instances of the httpd serverclass, thereby
maximizing the cache hits and minimizing the processor and network resources required for
establishing TLS/SSL connections to the NonStop platform.

• X509 version 3.0 certificates

Features and Standards Supported by iTP Secure WebServer 27

• Client authentication in SSL 3.0, TLS 1.0, TLS 1.1, and TLS 1.2.
The server can request or require a Web client to authenticate itself and can restrict access
based on client-authentication information by using region commands or CGI variables.

• Digest access authentication
Provides a challenge/response authentication mechanism for additional security; the user's
password is not sent over the network.

• Certificate chains
The iTP Secure WebServer uses the SSL 3.0 and TLS protocol to enable you to send certificate
chains to and from clients. By using certificate chains, you can establish a certificate hierarchy
that is more than two certificates deep.

• Support for security certificates with non-English characters
iTP Secure WebServer supports security certificates with UTF8 encoded DN (Distinguished
Name) strings. With this feature customers can use security certificates, which contain
non-English characters in the DN.

• Session tracking and authentication
The iTP Secure WebServer includes built-in support for ticketing, a technique for user-session
tracking. The iTP Secure WebServer issues anonymous tickets.

• Virtual hosts
The iTP Secure WebServer supports multiple domains within a single instance of the iTP Secure
WebServer, including the ability to return customized content based on the destination domain
name. Several configuration directives and configuration directives options (for example,
Region) are provided to support this capability (for example, Accept).

• Built-in clickable images
You can create image maps for clickable images, enabling users to easily navigate to other
pages.

• National Center for Supercomputing Applications (NCSA) format in image maps
The iTP Secure WebServer supports NCSA-formatted image-map files in addition to the CERN
format. The iTP Secure WebServer also provides support for the point directive in
NCSA-formatted image maps.

• Byte-range protocol
The iTP Secure WebServer supports the proposed Byte Range Retrieval Extension to HTTP.
This means, for example, that the iTP Secure WebServer can send Adobe Portable Document
Format (PDF) documents one page at a time, rather than an entire document at once, to users
of the Adobe Acrobat Reader version 3.0 or later. This method permits high-quality PDF
documents to be displayed like HTML documents.

• Content encoding (compression) types
This feature enables the iTP Secure WebServer to return the proper encoding type for
compressed files.

• Administration server
The iTP Secure WebServer Administration Server provides a Web-browser interface for defining
the iTP Secure WebServer configuration, starting and stopping the iTP Secure WebServer,
and monitoring noteworthy events such as errors.

28 Introduction to the iTP Secure WebServer

• Statistics collection through command-line
iTP Secure WebServer provides a command-line utility, statscom, to collect httpd statistics.
This utility is run using the command line and can be run by both administrators and normal
users. For more information, see “Collecting httpd Statistics Using statscom” (page 88).

• PUT, OPTIONS, and TRACE request methods
A browser or Web client (using HTTP/1.1) uses the PUT request method to replace or create
the content at a specified location. The iTP Secure WebServer accepts PUT requests and
enables you to specify a script to perform validation before permitting an update.
A browser or Web client uses the OPTIONS request method to determine the options or
requirements associated with a resource, or the capabilities of a server, without necessarily
retrieving or acting on the resource.
A browser or Web client uses the TRACE method to see the data that is being received at the
other end of the request chain. The data can then be used for testing or diagnostic information.

• Persistent connections
Rather than establish a new TCP/IP connection for each URL (for instance a new connection
to retrieve an embedded graphic) the iTP Secure WebServer allows the establishment of a
persistent connection for a set of related requests; you can set a timeout or specify the maximum
number of requests per connection.

• Chunked-transfer encoding
When a browser or Web client cannot anticipate the length of a request, it can transmit the
data in chunks to the iTP Secure WebServer. The iTP Secure WebServer reassembles the
request and processes it.
The iTP Secure WebServer supports chunked-transfer encoding.

• Content negotiation
When a page is available in multiple representations (for example, if the text is available in
multiple languages, or a file is available in different character sets or compression formats),
the iTP Secure WebServer can select among those representations on the basis of information
transmitted with each request or specified in the iTP Secure WebServer configuration.

iTP Secure WebServer Architecture
Figure “iTP Secure WebServer Architecture” (page 30) shows the architecture for a conventional
TCP/IP environment. For information about other products, you can use in the iTP Secure WebServer
environment, see “iTP Secure WebServer Encryption” (page 32).
If you use the new TCP/IPv6 or IP CLIM TCP/IP product, the architectural environment changes
slightly. Running with the Auto-Accept feature, an iTP Secure WebServer no longer needs the
Distributor component. The httpd servers assumes the listening in addition to the distributing functions
of the Distributor. The Distributor server class will be completely removed from the PATHWAY
environment. All the necessary process hops will be removed, resulting in improved performance.

iTP Secure WebServer Architecture 29

Figure 1 iTP Secure WebServer Architecture

PATHMON

Log FilesDistributor
Process

Administration
Server

PATHMON
Environment

iTP Secure WebServer
PATHMON Environment

Active
Transaction Pages

Pathway
CGI Applications

Generic
CGI Servers

CGI
Applications

Admin Servers

TCP/IP
Subsystem

Servlet
Server Class

Resource
Locator Service

Web Client Web Client Web Client

iTP Secure
WebServer

httpd Server Class

PATHMON

iTP Secure
WebServer

Admin
httpd Server Class

Web Clients
Web clients, such as browsers, are programs that provide a graphical user interface (GUI) to Web
servers such as the iTP Secure WebServer.

TCP/IP Subsystem
The HP NonStop TCP/IP subsystem enables processes on a NonStop System to communicate using
the TCP/IP protocol. There are three versions of TCP/IP support available: conventional TCP/IP,
TCP/IPv6, and IP CLIM.

Conventional TCP/IP
Conventional TCP/IP has one listening process on each port. The conventional TCP/IP connections
are managed by the Distributor process. The Distributor receives all incoming requests for new
connections from the TCP/IP processes and used to previously distribute them to the iTP Secure
WebServer, using the NonStop TS/MP Pathsend facility. Beginning iTP WebServer 4.1, the
Pathsend facility were removed.

30 Introduction to the iTP Secure WebServer

TCP/IPv6
TCP/IPv6 has multiple listener sockets on the same port. TCP/IPv6 allows the server direct access
to the communication environment from their own processors instead of having to communicate
via the processor that contains the HP TCP/IP process. This is done by linking to a system library
containing the TCP/IP procedures and allowing the server to call the functions that are performing
TCP/IP-related processing in its own context.
Running with the Auto-Accept feature, an iTP Secure WebServer no longer requires its Distributor
component. The httpd servers assumes the listening in addition to the distributing functions of the
Distributor. The Distributor server class is completely removed from the PATHWAY environment.
Running the iTP Secure WebServer relies on the properly configured TCP/IPv6 environment. Every
processor specified in the Server CPUS command (in the httpd.config configuration file) must be
enabled to run TCP/IPv6. The TCP6MAN must be properly configured and running. As a result,
a TCP6MON (the monitor process) runs on every processor specified in the Server's processor
command.
Unlike the conventional TCP/IP subsystem, the TCP/IPv6 enables iTP Secure WebServer to create
a listening socket on each of these processors. By creating a listening socket on each of these
processors, the httpd servers provide the listening capability for themselves. Therefore, mixing
TCP/IPv6 with conventional TCP/IP subsystems is not permissible. If both, TCP6SAM process and
conventional TCP/IP process are specified as the transport service providers, the Auto-Accept
feature will not be enabled. The iTP Secure WebServer will be running as a conventional TCP/IP
configuration.

IP CIP
The iTP Secure WebServer works the same way with IP CIP as it does with TCP/IPv6. However,
IP CIP enables all the httpd servers to assume the listening role (as opposed to one per processor
in TCP/IPv6).

iTP Secure WebServer httpd
The iTP Secure WebServer httpd has two main functions:

• A file server. The httpd process transfers and stores files, such as HTML documents.

• A message-switching facility. The httpd process forwards messages from Web clients to
application programs.

The httpd process is implemented as a server class in NonStop TS/MP. Therefore multiple httpd
processes can execute in parallel; the number of processes fluctuates automatically in response to
changes in workload. NonStop TS/MP can also restart a server process that fails. (The iTP Secure
WebServer uses the default value of the PATHCOM AUTORESTART parameter.)

PATHMON Process
The PATHMON process provides centralized monitoring and control of a PATHMON environment
consisting of server classes and other types of objects. You establish the operational parameters
for the PATHMON environment, including the characteristics of individual server classes, by creating
a PATHMON configuration file. Thereafter, you can use the PATHCOM utility to make configuration
changes and obtain information from the PATHMON process.
Multiple PATHMON environments can run on the same NonStop system. For example, the iTP Secure
WebServer Administration Server has its own PATHMON environment, separate from the iTP Secure
WebServers environments it manages. (If you have multiple iTP Secure WebServer environments
on the same system, you still need only one PATHMON environment for the Administration Server.)
Each PATHMON environment has a separate, uniquely named PATHMON process.

iTP Secure WebServer Architecture 31

Active Transaction Pages (ATP)
Active Transaction Pages (ATP) provides a server-side JavaScript environment for HP NonStop
Systems. You can use ATP objects to provide Web-based interfaces to existing NonStop TS/MP,
NonStop TUXEDO, NonStop SQL/MP, and sockets applications.
For further information, see the iTP Active Transaction Pages (iTP ATP) Programmer's Guide.

NOTE: The iTP Secure WebServer does not support Microsoft Active Server Pages or ADO.

Pathway CGI Server
The Pathway CGI extensions are a set of utility procedures that let you develop CGI applications
as NonStop TS/MP server classes or integrate existing NonStop TS/MP applications into the iTP
Secure WebServer environment.

Generic Common Gateway Interface (CGI) Server
CGI is a standard for applications that interface with Web servers. CGI applications can be written
in a variety of computer languages (or scripts) including C, Korn Shell, and others. The iTP Secure
WebServer provides a generic CGI interface that fully conforms to the NCSA CGI/1.1 standard.
For more information, see “Using Common Gateway Interface (CGI) Programs” (page 138).

Servlet Server Class (SSC)
The Servlet Server Class (SSC), also known as the Web Container, enables you to write CGI
applications as Java servlets. The servlets execute in SSC processes, which are scalable and
persistent because they run under NonStop TS/MP.

Resource Locator Service (RLS)
RLS enables you to implement replicated Web servers, to be used interchangeably and transparently
for access to the same content and services. The Web servers run on the same or different platforms;
RLS chooses the best-performing server to satisfy each request.

iTP Secure WebServer Admin httpd
The admin httpd process provides the interface between your Web client and the iTP Secure
WebServer Administration Server. It is the same program as the iTP Secure WebServer httpd but
runs in the iTP Secure WebServer Administration PATHMON environment.

Administration Server
The Administration Server enables you to establish and modify configurations, and control and
monitor one or more iTP Secure WebServer environments, from a Web client.

iTP Secure WebServer Encryption
The iTP Secure WebServer uses the following types of encryption:

• Transport Layer Security (TLS)

• Secure Socket Layer (SSL)
Because the iTP Secure WebServer is compliant with the TLS 1.0, TLS 1.1, TLS 1.2 and SSL 3.0
standards, you do not have any additional software or hardware to use the TLS and SSL encryption.
The TLS and SSL protocols enable a Web client and server to authenticate each other and enable
both partners to protect exchanged data using private encryption keys that are used for a single
session, and then discarded. A Web client or server can be authenticated only by presenting a
certificate obtained from a recognized Certificate Authority (CA).

32 Introduction to the iTP Secure WebServer

You can use the TLS or SSL encryption by generating a key pair for the server, obtaining a certificate
from a CA, and installing and configuring the key pair. For more information, see “Using the
Keyadmin Utility to Manage Keys and Certificates” (page 56).

iTP Secure WebServer Encryption 33

2 Installing the iTP Secure WebServer
This section describes the perquisites you must have for your NonStop system to run the iTP Secure
WebServer and explains how to install and configure it. This section also provides a test procedure
that you can use to verify configuration and to perform server testing.
Topics discussed in this section include:

• “iTP Secure WebServer System Requirements” (page 34)

• “Preparing Your System for the iTP Secure WebServer” (page 35)

• “Event Management Service (EMS) Template Installation” (page 37)

• “Installing and Configuring the iTP Secure WebServer” (page 38)

• “Verifying the Configuration” (page 44)

• “The Ninety-Day Test Certificate” (page 45)

• “Test-starting the Administration Server and the iTP Secure WebServer” (page 46)

• “If You Plan to Use TLS or SSL Encryption” (page 46)

• “If You Are Using the Nonsecure Version” (page 46)

iTP Secure WebServer System Requirements
The iTP Secure WebServer runs on a variety of NonStop systems and is supported by standard
NonStop subsystems and local area network (LAN) controllers.

Supported NonStop Systems
The iTP Secure WebServersupports NS-series (Integrity servers and BladeSystem servers).

Required and Optional Software
These HP NonStop product versions are required for using the iTP Secure WebServer:

• NonStop operating system version J06.10 or later J-series RVUs and H06.21 or later H-series
RVUs. For information about installing the NonStop operating system, see the INSTALL User's
Guide or the DSM/SCM User's Guide.

• Open System Services (OSS) file system. For information on creating an OSS environment,
see the Open System Services Installation Guide.

• TCP/IP, including the Sockets library and SCF. The IP addresses of both the iTP Secure
WebServer and the NonStop system must be registered on the Domain Name Server (DNS)
of your LAN.
For information about installing and configuring TCP/IP and DNS, see the TCP/IP Configuration
and Management Manual.
For information about installing and configuring TCP/IPv6, see the TCP/IPv6 Configuration
and Management Manual.
For information about installing and configuring IP CIP, see the Cluster I/O Protocols (CIP)
Configuration and Management Manual.

• NonStop TS/MP subsystem, with PATHMON and Pathsend features. For information on installing
and configuring this subsystem, see the TS/MP System Management Manual.

• NonStop SQL/MP H01, including TSQLEXE, TSQLCAT, TSQLUTI, TSQLFIL, and TSQLMSG.
This product is required only if you will be using the Resource Locator Service (RLS).

34 Installing the iTP Secure WebServer

These software products are optional for using the iTP Secure WebServer:

• NonStop Server for Java (NSJ) 2.0, if you plan to use Java servlets in the iTP Secure WebServer
environment. For information about the NonStop Server for Java 2.0, see the NonStop Server
for Java Programmer's Reference.

• NonStop Servlets for JavaServer Pages (NSJSP) V1.0 or later, if you plan to use Java servlets
in the iTP Secure WebServer environment. For information about installing NSJSP, see NonStop
Servlets for JavaServer Pages (NSJSP) System Administrator's Guide.

• NonStop Tuxedo, if you will be using Active Transaction Pages (ATP) and are not using IEEE
floating-point support. For more information about ATP, see the iTP Active Transaction Pages
(iTP ATP) Programmer's Guide.

• If you plan to use C run-time library to install EMS templates, see the C/C++ Programmer's
Guide.

In addition to the NonStop software products, you must have access to a Web client such as
Netscape Navigator or Microsoft Internet Explorer. If you will be running your server in secure
mode, you must have access to a secure browser.

Required Hardware
The hardware required for NonStop servers is:

• For NonStop servers, you must have a Gigabit Ethernet ServerNet adapter (GESA), or a
Token-Ring ServerNet adapter (TRSA).
For information on installing the TRSA, see the Token-Ring Adapter Installation and Support
Guide. For information on installing the GESA, see the Gigabit Ethernet Adapter Installation
and Support Guide.

Preparing Your System for the iTP Secure WebServer
This section describes the steps to prepare your NonStop system for the iTP Secure WebServer.
The iTP Secure WebServer is set up to come up out-of-box and run on TCP/IP process $ZTC0,
using a port that is configured during the installation process. You can use multiple TCP/IP processes
in the same iTP Secure WebServer environment.
1. Verify that the OSS environment is active. Use the STATUS command to determine that the

OSS File Manager process $ZFMnn and the OSS Pipe Server process $ZPPnn (where nn is
a processor number) are running on each of your processors.

2. Verify that the TCP/IP subsystem is running. Using SCF, verify that the host name and host ID
are specified. For more information, see the TCP/IP Configuration and Management Manual.

3. If you intend to use the TCP/IPv6 or IP CIP for iTPWebServer operations, review the following
information:
Running the iTP Secure WebServer relies on the properly configured TCP/IPv6 or IP CIP
environment. Every processor specified in the Server CPUS command (in the httpd.config
configuration file) needs to be enabled to run TCP/IPv6 or IP CIP. In other words, the TCP6MAN
needs to be properly configured and run. As a result, there is a TCP6MON (the monitor
process) running on every processor specified in the Server's CPUS command. In the
configuration phase of the startup, the iTP Secure WebServer will validate the existence of
these processes. Also, at least one TCP6SAM (TCP socket access point) process must be
running. If not all these processes are running, the Auto-Accept feature will not be used. The
iTP Secure WebServer will fall back to using the conventional support for TCP/IP.
For information about configuring for TCP/IPv6 or IP CIP and LAN adapters, see Cluster I/O
Protocols (CIP) Configuration and Management Manual.
The access list of the SAC needs to include all processors designed to run httpd servers. You
must verify the configurations, because the list now should contain more processors. In

Preparing Your System for the iTP Secure WebServer 35

conventional TCP/IP, a TCP/IP process is usually running on two processors a primary and
a backup.
For TCP/IPv6 or IP CIP, if the application is running on all the other 14 processors, and then
all of those need to be TCP/IPv6 or IP CIP-enabled and must be in the access list.
TCP/IPv6 or IP CIP-enabled means that a TCP6MON process must be running on that processor.
For the httpd servers to function properly, all these processes must be in place. Socket errors
will be reported if a TCP6MON is not running on a processor that attempts to run an httpd
process. If the bind request fails, the httpd server is designed to retry the request. Repeated
bind failures might indicate that a processor is not TCP/IPv6 or IP CIP-enabled.

NOTE: The following conditions are applicable for TCP/IPv6 and IP CIP.

• Use One TCP6SAM Process
Check that there is one TCP6SAM process pair running on any two processors in the system.
HP recommends that you use only one TCP6SAM process pair - even where you are using
more than one IP address. Unlike the conventional TCP/IP processes, one TCP6SAM process
can provide socket interfaces for all IP addresses configured in the TCP/IPv6 or IP CIP
environment. If you use more than one, two httpd servers might attempt access to the same
port and therefore generate EADDRINUSE socket errors.

• Use Static Servers
HP recommends that you run as many static servers as you might need. Creating dynamic
servers is known to be expensive and will severely affect response time - especially for the
request waiting for the dynamic server to be created. In addition, dynamic servers can drop
one or two connections when the Deletedelay effect occurs. Because all the httpd servers are
designed to run on high PIN, creating more servers at the startup should not create a resource
problem.

• Specify a Larger Tandem_Receive_Depth
The range is 1 to 255. The default is 50. Selecting a larger number prevents extra pathsends
and possible socket migration. When the connection request is sent to a server that is not
running on the same processor as the original listening agent, a socket migration occurs and
a performance penalty is incurred. A larger number also prevents the creation of dynamic
servers. Creating an additional httpd server on a processor that already has a number of httpd
servers running is neither going to help distribute the load nor improve performance. The load
distribution has now been moved down to the adapter level by use of the round-robin filter.
Additional processes can create more dispatching costs for the processor.

• Specify the -address Command in All Accept Directives
You should use the -address command in all Accept directives. Unlike the conventional TCP/IP
processes TCP6SAM allows the httpd servers to interface with all subnets configured in the
TCP/IPv6 or IP CIP environment. The "accept ALL IP addresses" is literally ALL IP addresses
defined in the entire system. This might be more than you expected.

• Rebalancing Servers Across processors
When a processor is brought down, PATHMON is likely to restart a number of static servers
on other processors to keep the number of static servers as specified in the NUMSTATIC server
attribute. When the processor is reloaded, PATHMON will not automatically rebalance its
servers among the processors. If there are extensive reloads you might want to rebalance
manually - using actions ranging from a simple stopping of one or two servers, to a complete

36 Installing the iTP Secure WebServer

restart of the iTPWebServer. Again, this behavior is not new to the PATHWAY system, it just
might be more obvious when everything from application to transport is vertically aligned.

• You Can No Longer Use Restarth
Because the new product architecture no longer has a distributor working as a buffer zone
between the incoming connection requests and the httpd servers, new servers cannot successfully
bind to a local port unless the older httpd servers cease their operations. Therefore, if you are
using TCP/IPv6 or IP CIP, the -restarth option is no longer supported.

4. If you do not have Domain Name Server (DNS) running on your network, configure and run
DNS. You start DNS when you start TCP/IP. The out-of-box start-up requires that the host name
be fully qualified to match the DNS entry. You should the host ID using the IP address defined
for host name.

5. When you configure DNS, you must modify the file, $SYSTEM.ZTCPIP.RESCONF for IPv4
addresses, $SYSTEM.ZTCPIP.IPNODES for IPv6 addresses, to point to the DNS name server
you are using. For information about starting DNS, see the TCP/IP Configuration and
Management Manual.

6. For security, you should add a super ID (for example, super.webmastr) configured for the OSS
environment, and you should use this super ID instead of super.super when installing the
software.

7. Log on to the newly created super ID before installing the iTP Secure WebServer software:
TACL> LOGON super.webmastr

Event Management Service (EMS) Template Installation
Before you install the iTP Secure WebServer, you should install the EMS templates. When the
templates are installed, each event reported by the iTP Secure WebServer appears in EMS displays
and logs using the subsystem identifier TANDEM.WEBSERV.version and an event number that
identifies the error or other event. For more information and examples, see “Error Messages”
(page 260).
If you do not install the EMS templates, all event messages from the iTP Secure WebServer appear
as if generated by OSS. Each message has the subsystem identifier TANDEM.OSS.version and
an event number that represents not the event itself but a severity ranking.
Follow this procedure after you unpax the iTP Secure WebServer pax file (as described in “Installing
and Configuring the iTP Secure WebServer” (page 38)):
To install a new set of EMS templates:
1. Log on as super ID:

TACL> logon super.super

2. Rename the files $system.zweb.newres and $system.zweb.newnres. (For example,
you could call them newres1 and newnres1.)

3. If you are using a NonStop K-series server, run the Configuration Utility Program (COUP),
including these commands:
ASSUME ALLPROCESSORS

ALTER EMS^TEMPLATES (RESIDENT newres1, NONRESIDENT newnres1)

If you are using a NonStop S-series or NonStop NS-series servers (Integrity servers and
BladeSystem servers), run the Subsystem Control Facility (SCF), including these commands:
ALTER SUBSYS $zzkrn, NONRESIDENT_TEMPLATES newnres1

ALTER SUBSYS $zzkrn, RESIDENT_TEMPLATES newres1

4. Run the template script to create the new versions of newres and newnres.
5. Run the install.EMS script, located in the

/usr/tandem/webserver/TnnnnHnn_DDMMMYY_SPR_Hnnn_nn/admin/conf directory,
as:

Event Management Service (EMS) Template Installation 37

: cd /usr/tandem/webserver/TnnnnHnn_DDMMMYY_SPR_Hnnn_nn/admin/conf : ./install.EMS

The install.EMS script moves the template file to the proper NonStop directory, and merges
the template file with the system template. Use of install.EMS requires the Guardian CTOEDIT
program (part of the T8373 C run-time Library) to function properly.
The EMS template installation can take up to five minutes to complete.
The script displays the number of errors and warnings and terminates on an error. If an error
occurs, you can check the files LWEBDDL, LWEBTMPL, LTEMPLI, and LCOUP for more information.
If the iTP Secure WebServer is already running when you install the templates, the change in the
presentation of event messages takes effect immediately; you need not restart the server.

Installing and Configuring the iTP Secure WebServer
When you install the iTP Secure WebServer, you also install:

• The iTP Secure WebServer Administration Server, which you can use later to do these:

Modify configuration files◦
◦ Start, restart, and stop the server environment

◦ Display event messages.

• Secure Transport.

• The Resource Locator Service (RLS) if you have previously built the file rmt.pway.
To install the iTP Secure WebServer and give it a basic configuration that you can use for testing,
use the procedure in 'Before You Begin the Installation'. You can make custom changes to the
configuration file later, but the basic configuration enables you to start the server and test it (if you
made all the preparations described earlier).
The procedure for installing the software depends on the distribution medium for the product. Check
the Readme.txt file if you have received the software on a CD. Check the softdoc before you
install the product. These installation instructions are correct as of the time this manual was published.
However, the Readme.txt file or softdoc supersedes the information here.

Before You Begin the Installation
• Review the readme file on the product CD to make sure you have the correct version for all

products installed or to be installed on your system.
• Make sure your site meets the minimum hardware and software requirements, as indicated

in the IPSetup User's Guide on the product CD.
• Make sure you know the directory path in which to install your iTP Secure WebServer. (The

default install directory is /usr/tandem/webserver/.)
• If you have not used the IPSetup program before, review the IPSetup User's Guide on the

product CD for information about this installation utility. The file is USRGUIDE.PDF on the
CD.

• If you are upgrading from a previous iTP Secure WebServer, you must be logged on as the
same user ID that originally installed iTP Secure WebServer before you run ./setup under
“Running the Setup Script” (page 40).

Beginning the Installation
The installation program, ./setup, is implemented in korn shell scripts. All options in the setup
program have default values. Press the enter key to accept the default values during the installation
process.

38 Installing the iTP Secure WebServer

You can install the iTP Secure WebServer in one of these three ways:

• “Using DSM/SCM” (page 39)

• “Running the IPSetup Program” (page 39)

• “Copying the iTP Secure WebServer Software from the Distribution Medium” (page 40)

Using DSM/SCM
1. Receive the SPR from disk or tape.
2. Copy the SPR to a new software revision of the configuration you want to update.
3. Execute the Build request and the Apply request on the configuration revision.
4. Run ZPHIRNM to rename the product files.
5. On the HP NonStop server, log on as super ID, go to $<ISV>.ZOSSUTL, and then unpax the

product files by using the TACL macro COPYOSS:
TACL> LOGON SUPER.SUPER

TACL> VOLUME $<ISV>.ZOSSUTL

TACL> RUN $<ISV>.ZWEB.COPYOSS T8996PAX

COPYOSS places the contents of the T8996PAX file into the version-specific OSS directory
located at:
/usr/tandem/webserver/<version>

where <version>is the vproc of this release of the iTPWebServer. (For example,
H03_DDMMMYY_XXX_H300_1.)
The softdoc file, T8996XXX, is a text file that you can keep on $<ISV>.SOFTDOC, or copy
to any other location on your HP NonStop server by using the FUP DUP or FUP RENAME
command.

6. To complete a typical installation of the iTP Secure WebServer, follow the instructions in
the“Running the Setup Script” (page 40).

Running the IPSetup Program
1. Open the product CD by double-clicking the CD drive.
2. Click the View Readme file button. Setup opens the Readme file in Notepad. Be sure to review

the entire readme before proceeding.
3. Click the IPSetup button to launch IPSetup. The Welcome screen and the License Agreement

screen are displayed. To continue the installation, click Next on both these screens.
4. On the Placement Options screen, select the NonStop Kernel RISC option. Clear the "Use

DSM/SCM to complete installation on host." check box and then click Next.
5. On the Product Selection screen, select iTP Secure WebServer as the product you want to

install. Click Add and then click Next.
6. Follow the instructions on the Host Information screen. Log on with a user ID with 'write'

privileges to the /usr OSS directory (for example, the super ID). Use either the system name
or the system IP address to log on. Click Next.

7. On the Host Target screen, either accept the default locations for Work and Backup subvolumes
or browse to the locations of your choice. Click Next.

8. On the Host File Placement screen, you can either accept the default disk locations or browse
to the locations of your choice. After confirming the choice of the locations, click Next.

9. On the Placement Manifest screen, review the file locations. Click Back to change the file
locations or click Next to go to the next screen. This step might take a few minutes to complete.

10. On the Placement Complete screen, select the check boxes to view the release documentation.
Read the release documentation. Click the Finish button to complete running IPSetup.

11. When IPSetup completes, follow the instruction the“Running the Setup Script” (page 40).

Installing and Configuring the iTP Secure WebServer 39

Copying the iTP Secure WebServer Software from the Distribution Medium
If you are using IPSetup with a product CD, the following procedure is performed automatically,
so you can ignore these steps, and go to “Running the Setup Script” (page 40) after IPSetup
completes.
If you are not using IPSetup, follow these steps to copy the iTP Secure WebServer software from
the distribution medium:
1. Copy the product files to $ISV.ZWEB (where ISV is the name of your installation

NOTE: $ISV.ZWEB is an example cited in the text. The pax files can be placed anywhere
on the system.

2. On the NonStop system, log on as super ID, go to $ISV.ZWEB, and unpax the product files
using the TACL macro COPYOSS:
TACL> LOGON SUPER.SUPER

TACL> VOLUME $ISV.ZWEB

TACL> RUN COPYOSS T8996PAX

COPYOSS places the contents of the T8996PAX file into the version-specific OSS directory
located at:
/usr/tandem/webserver/<version>

where,
$<ISV> is the vproc of the RVU (for example: H03_15JUL10_ADX_H300_1).
The softdoc file, T8996ADX, is a text file that you can store in $<ISV>.SOFTDOC, or copy
to any other location on your HP NonStop server using the FUP DUP or FUP RENAME command.

3. To complete a typical installation of the iTP Secure WebServer, “Running the Setup Script”
(page 40) located in the OSS file system directory.

Running the Setup Script
HP recommends that a SUPER group user ID other than super ID be used when you run the setup
script.
1. If you must use EMS and it is not installed, install it now by using the procedure described in

“Event Management Service (EMS) Template Installation” (page 37).
2. To run the setup script, enter the OSS environment and execute the script.

For example:
TACL> LOGON SUPER.WEB

TACL> OSH

OSS: cd /usr/tandem/webserver/<version>

OSS: ./setup

Setup for iTP Secure WebServer on systems using TS/MP 2.2 or lower versions
After you perform the two steps, the setup script instructs you step-by-step through the installation
of the administration server and the iTP Secure WebServer. By default, the script installs the product
into the /usr/tandem/webserver directory. If you are logged on with a SUPER group user ID,
you can accept the default settings, unless you want to “Installing the Resource Locator” (page 44).
If you accept the default settings, you start running both the iTP Secure WebServer administration
interfaces and the iTP Secure WebServer. The script automatically backs up any existing
configuration files.
If you want to install the iTP Secure WebServer into an OSS directory other than
/usr/tandem/webserver, specify the desired installation directory as a parameter to the setup
script. For example:

40 Installing the iTP Secure WebServer

OSS: ./setup /home/myuser/mywebserver

NOTE: The target installation path cannot be the same as the source path.

After the installation of the iTP WebServer is complete, do not delete or modify the version-specific
directory (/usr/tandem/webserver/<version>) or its sub-directories. This is because the
OSS symbolic links, present in the directory where the iTP WebServer was installed, point to the
directory tree. If any of these directories or subdirectories are deleted, the entire product (starting
with unpaxing the product PAX file) will have to be reinstalled.
You can install “Setup for TCP/IPv6 support” (page 42), “Installing the Resource Locator” (page 44),
or “Installing the Resource Locator” (page 44).

Setup for iTP Secure WebServer using TS/MP 2.3 or higher versions
After you run the setup script, it prompts you to enable the online-upgrade support. Following is a
sample interaction during the execution of setup script:
Do you wish to enable online-upgrade feature in your new iTP WebServer?

Type y/n (Default: n) #:

If you answer n to the online-upgrade query, the setup script guides through the installation of the
administration server and the iTP Secure WebServer as mentioned in the section “Setup for iTP
Secure WebServer on systems using TS/MP 2.2 or lower versions” (page 40).
However, if you want to enable the online-upgrade feature, then in addition to the normal setup
procedure, the setup script performs additional operations. This comprises checks for system
compatibility, required files, and at least one TCP/IPv6 or IP CLIM transport services.

NOTE: To support online-upgrade feature, you must ensure the following:
• The system is configured for TCP/IPv6 or IP CLIM, as underlying transport service.

• The system must be configured with TS/MP 2.3 or higher.

• WebServer PATHMONs are configured under a single DOMAIN in the ACS control file.

iTP Secure WebServer requires two PATHMONs to enable the online-upgrade feature. The setup
script provides two default PATHMONs (/G/ZWEB and /G/YWEB) during auto configuration. However,
during manual configuration, you are prompted to supply two PATHMON names and at least one
of the TCP/IPv6 or IP CLIM transport service name.
A sample interaction is as follows:
Configuring iTP WebServer...

Choose from menu below:

1) Skip configuring iTP WebServer (configuration exists)

2) Auto-configure iTP WebServer

Defaults:

TCP/IP process: /G/ZSAM2

TCP/IP Port: 80

First Pathmon: /G/zweb

Second Pathmon: /G/yweb

Guardian Pathmon subvolume name: /G/system/zweb.

3) Perform manual configuration for iTP WebServer

Choose 1, 2 (Default) or 3 #: 3

Enter a space separated list of TCP/IP processes which the iTP Admin Server or

iTP WebServer will use. The process name must be entered in OSS format.

Default: /G/ZSAM2

#:/G/ZSAM2

Installing and Configuring the iTP Secure WebServer 41

Enter the First Pathmon to use for your iTP WebServer (Default /G/zweb)

#: /G/TWEB

Enter the Second Pathmon to use for your iTP WebServer (Default /G/yweb)

#: /G/UWEB

NOTE: The target installation path cannot be the same as the source path.

After the installation of iTP WebServer is complete, do not delete or modify the version-specific
directory (/usr/tandem/webserver/<version>) or its sub-directories. You cannot delete
or modify the directory because the OSS symbolic links present in the directory where the iTP
Secure WebServer was installed point to this directory tree. If any of these directories or
sub-directories are deleted, the entire product (starting with unpaxing the product PAX file) will
have to be reinstalled.
You can now continue with any of the following:

• “Setup for TCP/IPv6 support” (page 42)

• “Generate Diffie-Hellman Parameters” (page 43)

• “Setup for IP CIP Support” (page 43)

• “Installing the Resource Locator” (page 44).

Setup for TCP/IPv6 support
In addition to scanning for conventional TCP/IP processes, the setup script checks for the presence
of TCP6SAM processes on the target system. The script queries your intentions. The following are
examples of the interaction:
If you want to use TCP/IPv6 as your underlying transport services, you need only one TCP6SAM (TCP Socket Access
 Method) process. Therefore, the following lookup process will only list the first one it encounters.
If you want to use a TCP6SAM process other than the one in the list, follow the manual configuration procedures.
Do you want to use ONLY TCP/IPv6 as your transport services?Type y/n (Default: n) #:

You can use the conventional TCP/IP support, the TCP/IPv6 support, or both. If you had to use
both versions of support (presumably a non iTP Secure WebServer reason) you would not get the
Auto-Accept feature from the iTP Secure WebServer and might receive minimal performance
improvement.
The sample script continues as if you had replied Yes to the TCP/IPv6 query by presenting you
with a menu of choices. The script found a TCP6SAM process ($ZSAM1) running, so is enabling
you to continue with the configuration.
1) Skip configuring iTP WebServer (that is, configuration exists)
2) Auto-configure iTP WebServer
Defaults: TCP/IP process: /G/ZSAM1 TCP/IP Port: 80 TCP/IP Secure Port: 443 Test Certificate:
CN=Secure Transport Bootstrap Certificate, OU=Testing Only - Do Not Trust for Secure Transactions, OU=No Assurance
 - Self-Signed, OU=Generated <dateString>, O=<organization>
Pathmon name: /G/zweb Guardian Pathmon subvolume name: /G/system/zweb.
3) Perform manual configuration for iTP WebServer
Choose 1, 2 (Default) or 3 #:

There are other dialogs with the setup script if you choose conventional TCP/IP support, or support
for both types of support.

LNP Support for TCP/IPv6
LNP can be viewed as an instance of the Conventional TCP/IP (T9551) process that spans all CPUs
within a system. Each LNP can logically be viewed as a different Conventional TCP/IP process
running on the system with its own set of IP addresses. An IP address used on one LNP cannot be
used on a different LNP. Applications on one LNP are isolated from applications on different LNPs
on the same system in the same way they would be if using different Conventional TCP/IP processes.
Communication between such applications will only be through the attached local area networks.
TCP/IPv6 does not forward internal packets between partitions.

NOTE: For more information on system configuration of LNP, see the TCP/IPv6 Configuration
and Management Manual.

42 Installing the iTP Secure WebServer

With LNP configured, iTP Secure WebServer can bind and listen on multiple TCPIPv6 transports
and servers across multiple networks. Additionally, when LNP is configured over TCP/IPv6, iTP
Secure WebServer can listen on all combinations of IP and port from the list of configured
combinations provided by the user. For using LNP feature of iTP Secure WebServer it is necessary
that LNP be properly configured on the system.
A typical configuration for enabling iTP Secure WebServer to work with LNP requires a proper
system-level TCP/IPv6 LNP configuration and proper changes in the iTP Secure WebServer's
configuration file (multiple Accept directives). For example, if there are four TCP/IPv6 transport
processes, namely $ZSAM0, $ZSAM1, $ZSAM2, $ZSAM3, running on a system configured on four
different IP addresses, then iTP Secure WebServer's configuration file must specify the following:
Accept -transport /G/ZSAM0 -port 80 -address 172.31.24.12

Accept -transport /G/ZSAM1 -port 80 -address 172.31.24.13

Accept -transport /G/ZSAM2 -port 80 -address 172.31.24.14

Accept -transport /G/ZSAM3 -port 80 -address 172.31.24.15

It is noteworthy that in this case, it becomes mandatory to mention address and port attribute
for each of the Accept directives. However, the order of the Accept directives is not relevant in
this case.

Generate Diffie-Hellman Parameters
The setup script prompts for the Diffie-Hellman key-exchange parameters generation.
If you wish to use Diffie-Hellman key-exchange method, it is recommended
that you generate Diffie-Hellman parameters. If these parameters are
not generated iTP WebServer will use default parameters.

Do you wish to generate Diffie-Hellman parameters? Type y/n (Default:
y) #:

If answered with y, setup creates Diffie-Hellman parameters with parameter size 1024. The
parameters are stored in the file dh_params in webserver’s conf directory. If answered with n,
setup does not create these parameters and gives warning.
iTP WebServer now use default parameters for Diffie-Hellman key-exchange.
It is recommended that you create a parameter file with the help of
keyadmin utility.

Setup for IP CIP Support
In addition to scanning for conventional TCP/IP processes and TCP/IPv6, the setup script checks
for the presence of CIPSAM processes on the target system and prompts for your response. Following
are some examples of the interaction:
If you wish to use IP CLIM as your underlying transport services, you need only one CIPSAM (CIP Socket Access
Method) process. Therefore, the following lookup process will only list the first one it encounters.
If you wish to use a CIPSAM process other than the first one in the list, please follow the manual configuration
 procedures.
Do you wish to use ONLY IP CLIM as your transport services?
Type y/n (Default: n) #:

You can use the conventional TCP/IP support, the IP CIP support, or both. If you want to use both
versions of support (for a non-iTP Secure WebServer reason) you will not be able to use the
Auto-Accept feature from the iTP Secure WebServer; this results in low performance improvement.
The sample script continues as if you had replied Yes to the IP CIP query by displaying a menu.
In the following example, the script finds a CIPSAM process ($CSAM) running; and hence, enables
you to continue with the configuration.
1) Skip configuring iTP WebServer (i.e., configuration exists)
2) Auto-configure iTP WebServer
 Defaults:
 TCP/IP process: /G/CSAM
TCP/IP Port: 80

Installing and Configuring the iTP Secure WebServer 43

 Pathmon name: /G/zweb
 Guardian Pathmon subvolume name: /G/system/zweb.
3) Perform manual configuration for iTP WebServer

Installing the Resource Locator
You can install the optional Resource Locator feature with the iTP Secure WebServer. The Resource
Locator feature has specific dependencies that should be considered prior to installation. See
“Using the Resource Locator Service (RLS)” (page 166)for information on using RLS.

Installation Considerations
• Pathway CGI applications that are built with a newer version of the libcgi.a library than

the version of the httpd server may not run correctly. If you encounter problems, verify that
the httpd object and the libcgi.a library are of the same version by following these steps:
1. Run the vprochttpd command in the bin directory of webserver
2. Go to the location /usr/lib

3. Run the ar -x libcgi.a t8996.o command.
4. Run the vproc t8996.o command.
5. Compare the vprocs of httpd and t8996.o.

• If you are installing this SPR in the same directory as a previously installed Non-Secure Version
of the iTP Secure WebServer (T8996), verify that the keyadmin utility is not present in the
bin subdirectory of the target installation directory.

Verifying the Configuration
Use the OSS file system to verify that the installation was successful. You should see this directory
structure at the installation directory. The default directory is /usr/tandem/webserver:

Contains all binary files related to the iTP Secure
WebServer.

/bin

This is the root that appears when you use the default
configuration. A sample home page (index.sample.html)
exists here.

/root

WebServer log files are configured to be placed in this
directory.

/logs

Administration Server and related files./admin

Contains configuration files and start or stop scripts./conf

Contains these sample server programs: /Antarctic contains
the Home Banking Demo.
/Cobol_Demo contains a sample COBOL Pathway CGI
program.

/samples

/C_Demo contains a sample C Pathway CGI program.
/gif contains graphic images that are referenced by
index.sample.html.
/scripts contains samples of standard NCSA CGI
programs.
/SSL-sample-dir requires SSL security to access the file
index.html within this directory.

Upgrading iTP Secure WebServer online
You can upgrade a running iTP Secure WebServer environment to a higher version without taking
it offline. To upgrade the environment, the current version must support the online upgrade feature.

44 Installing the iTP Secure WebServer

During this process, one Pathmon will be brought down for upgrading Webserver objects with
those of the newer version, while other Pathmon serves the requests with older Webserver objects.
This process is repeated to upgrade the other Pathmon.

NOTE: The online upgrade feature is not supported for upgrading from H02 to H03 versions or
downgrading from H03 to H02 versions of the iTP Secure WebServer.
Also, when running the online upgrade feature, the ACS control file (default file is ACSCTL) must
be in the ACTIVE state. Only users logged on with the super ID can activate this file.

To run this process, the user must run setup from iTP Secure WebServer's latest version specific
directory. Also, the setup must be supplied with the target webserver path. Following is a sample
interaction of online-upgrade process.
TACL> LOGON SUPER.WEB
TACL> OSH
OSS: cd /usr/tandem/webserver/<version>
/usr/tandem/webserver/<version>: ./setup /home/iTP

 *** Welcome to iTP WebServer Setup ***
iTP WebServer will be installed into directory: /home/iTP

*** WARNING ***
A user ID other than SUPER.SUPER should be used to execute this setup program.
It is recommended that a super ID (such as SUPER.WEBMASTR) be configured for the OSS environment and used for
this purpose. A super Group ID can use any TCP/IP port and usually the $SYSTEM disk while a non super Group
userid can only use TCP/IP ports with a value greater than 1024 and are usually excluded from using the $SYSTEM
 disk.

Press the Enter key to continue...

Checking current configuration...Please wait!

Detected a previous installation of Non-Secure version with Online-Upgrade enabled.

Your iTP WebServer supports Online-Upgrade.
Do you wish to upgrade it now?
Type y/n (Default: n) #: y

*** Note ***
If you wish to use Online-Upgrade feature, make sure to select only TCP/IPv6 or IP CLIM as your underlying
transport services.

*** Note ***
For Online-Upgrade support, system must be configured with TS/MP 2.3 or higher.
Also, make sure that both the webserver Pathmon processes are configured under a common domain in the ACS Control
 file.

Checking system compatibility for Online-Upgrade... [OK]

Checking required files... [OK]

Press Enter key to continue...

Using TCPIPv6 as your default transport service.

Installing new files, creating/updating links ..Please wait!

Online-Upgrade in progress, This may take few minutes depending on server
load
Please wait!

*

Press Enter key to continue...

The Ninety-Day Test Certificate
The installation script generates a self-signed test certificate, valid for 90 days and protected by a
password that you choose. The certificate is stored in the file
/usr/tandem/webserver/conf/test_key.db. This certificate provides low assurance and
is intended only for bootstrapping and initial testing of your secure transports. As soon as possible,
replace the test certificate with a valid commercial-grade certificate from a reputable Certificate
Authority (CA).
The DN of a test certificate generated by the install script has these components:

The Ninety-Day Test Certificate 45

CN=Secure Transport Bootstrap Certificate
OU=Testing Only - Do not trust for Secure Transactions
OU=No Assurance - Self-Signed
OU=Generated date time PDT year
O=comm.company.com

NOTE: Commercial use of the ninety-day test certificates is prohitbited.

NOTE: Certain versions of Microsoft Internet Explorer do not accept self-signed test certificates.

Test-starting the Administration Server and the iTP Secure WebServer
Use this procedure to verify your configuration:
1. Start the Administration Server by executing the start script:

: cd /usr/tandem/webserver/admin/conf

: ./start

2. Use a Web client to connect to the Administration Server through its IP address or DNS name
(as specified during installation).
The Web client displays the iTP Secure WebServer Administration Server home page.

3. Click the View button to view your configuration files or Click the Edit button to edit those files.
4. Click the Start or Restart button to start the iTP Secure WebServer.
5. Check the EMS log file for startup messages.
For more information about starting, stopping, and managing the server in other ways, see section
5, “Managing the iTP Secure WebServer Using Scripts” (page 82). To complete the preparation,
choose one the following sections.

If You Plan to Use TLS or SSL Encryption
If you plan to use encryption provided by the Transport Layer Security (TLS) or the Secure Sockets
Layer (SSL), to obtain a certificate from a CA and generate a public/private key pair to use during
run time, follow the procedures in “Configuring for Secure Transport” (page 53).

If You Are Using the Nonsecure Version
If you are using the nonsecure version of the iTP Secure WebServer, to learn how to use
configuration directives to customize the server environment, see “Configuring the iTP Secure
WebServer” (page 94).

46 Installing the iTP Secure WebServer

3 Planning the iTP Secure WebServer PATHMON
Environment

This section provides background for configuring the iTP Secure WebServer PATHMON environment.
Topics discussed in this section include:

• “Conventional TCP/IP: The Distributor Process” (page 47)

• “TCP/IPv6 and IP CIP:The Auto Accept Feature” (page 47)

• “Configuring the PATHMON Environment” (page 49)

• “Threading Considerations for the httpd Server” (page 49)

• “Security for the Server's Pathway Environment” (page 50)

• “Other Security Considerations” (page 51)

Conventional TCP/IP: The Distributor Process
If you choose not to use TCP/IPv6 or IP CIP support, you must configure your iTP Secure WebServer
to use the Distributor. The Distributor process is a process that checks for incoming requests for
new connections from the TCP/IP subsystem and distributes the new requests to the iTP Secure
WebServer. The Distributor process runs as an OSS process and uses NonStop TS/MP to provide
process control, persistence, and scalability, as required for online enterprises.
The Accept and AcceptSecureTransportdirectives in the iTP Secure WebServer configuration
file (httpd.config, described in “Configuring the iTP Secure WebServer” (page 94)), determine
the Distributor process configuration.
The Distributor process can monitor multiple ports on multiple TCP/IP transport processes for new
connection requests, and then distribute those requests to various iTP Secure WebServer processes
within the httpd server class.
The Distributor process runs persistently. PATHMON starts the Distributor process and keeps it alive
persistently, but not as a process pair. If the Distributor process fails, PATHMON automatically creates
a new process.
When started, the Distributor process establishes OPENs with the TCP/IP processes specified in
the configuration file and monitors the configured ports for incoming connection requests.
When a request for connection arrives on one of the ports, the Distributor process performs a
SERVERCLASS_SEND_() to send the connection information to one of the iTP Secure WebServer
processes in the PATHMON environment. The iTP Secure WebServer processes the request to
completion.
For more information about the OSS environment, see the Open System Services User's Guide.
For more information about the Pathway environment, see the TS/MP System Management Manual.

TCP/IPv6 and IP CIP:The Auto Accept Feature
Running with the Auto-Accept feature, an iTP Secure WebServer no longer needs its Distributor
component. The httpd servers will assume the listening in addition to the distributing functions of
the Distributor. The Distributor server class will be completely removed from the PATHWAY
environment.
When the httpd program is run (while the "start" script gets executed), it begins a series of inquiries
to determine whether to run the iTP Secure WebServer under the new architecture or the old one.
If it passes all of its checkpoints, the iTP Secure WebServer will be configured according to the
new architecture and runs without the Distributor. If any of the checkpoints fail, the iTP Secure
WebServer will fall back to the conventional TCP/IP solution.

Conventional TCP/IP: The Distributor Process 47

Running the iTP Secure WebServer relies on the properly configured TCP/IPv6 or IP CIP environment.
Every processor specified in the Server CPUS command (in the httpd.config configuration file)
needs to be enabled to run TCP/IPv6 or IP CIP. In other words, the TCP6MAN/CIPMAN needs to
be properly configured and run. As a result, there is a TCP6MON/CIPMAN (the monitor process)
running on every processor specified in the Server's CPUS command. In the configuration phase
of the startup, the iTP Secure WebServer will validate the existence of these processes. If not all
these processes are running, the Auto-Accept feature will not be used. The iTP Secure WebServer
will fall back to the conventional TCP/IP solution.
Unlike the conventional TCP/IP subsystem, the TCP/IPv6 and IP CIP allows the iTP Secure WebServer
to create a listening socket on each of these processors. By creating a listening socket on each of
these processors, the httpd servers provide the listening capability for themselves. Therefore, mixing
the TCP/IPv6 and IP CIP with conventional TCP/IP subsystem is not permissible. If both
TCP6SAM/CIPSAM process and conventional TCP/IP process are specified as the transport service
providers, the Auto-Accept feature will not be enabled.

Migration Considerations For TCP/IPv6 and IP CIP Support
TCP/IPv6 and IP CIP require the httpd server to be static server in a PATHWAY environment to
perform well. Although it does provide the ability to create dynamic httpd servers while the request
load exceeds the static capacity, it requires more system resources serving requests. The response
time for some of the requests might not be adequate when the new servers are being created.
In addition, it creates a risk of losing a few connections when the PATHWAY removes the dynamic
servers. The Auto-Accept feature traded the Distributor with better performance. Better performance
is achieved by having the httpd servers accept the new connection requests directly from transport
layer (TCP/IPv6 or IP CIP) rather than having the Distributor accept the new connection and then
distribute to httpd servers.
Because the httpd servers are now selecting the new connections, removing an httpd server might
disrupt the pending new connections (those connection requests that have been forwarded to the
httpd server and have not yet been picked up by the httpd server). The PATHWAY does not
recognize these pending connections and might remove a dynamic server when it has no more
links with the Link Manager.
A further delay has been instrumented in the httpd server to complete all of its outstanding pending
connections before it does the exit. However, the timing window might still exist. Therefore, the
new Deletedelay server directive is introduced to allow user to specify a longer delay before a
dynamic server is removed.
For information on Deletedelay, see “Server” (page 247).
To achieve a better performance and non-disrupted Web service environment, HP recommends
that a survey of the request load. The following are some of the configuration guidelines
recommended:

• Specify at least the same number of static httpd servers as those processors intended to run
httpd servers. For example, if the httpd SERVERCLASS is configured to run on processor 0 to
5 (total of 6 processors), the Numstatic value should be at least 6. HP tests have shown 3
httpd servers per processor will achieve the best performance.

• Use a higher value for TANDEM_RECEIVE_DEPTH. The maximum value support is 255.
Depending on the speed of the processor, higher value will potentially reuse more sockets
created for accepting new connections and save more processor cycles. Specifies a value
lower than 50 might not be adequate.

• Time your operation's peak hours and off-peak hours, and specify an adequate value for the
Deletedelay. The dynamic servers will only be created in the peak hours, specify a Deletedelay
that will allow the servers to be removed only in the off-peak hours. For example, if the peak
operation hours are 11:00 AM to 6:00 PM, specifying 7 hours of Deletedelay will allow the
dynamic servers to be removed after 6:00 PM. But, if you have multiple peak hours, it might

48 Planning the iTP Secure WebServer PATHMON Environment

require more detailed planning. The best way to avoid these types of problems is to make all
the httpd servers static servers.

Configuring the PATHMON Environment
The configuration of the iTP Secure WebServer PATHMON environment is specified in the
httpd.config file. You specify the configuration file when you start the iTP Secure WebServer
process.
The httpd.config file consists of keyword-value pairs. The sample configuration file
httpd.config.sample is included in the /usr/tandem/webserver/conf directory. That
file contains all keywords along with their default values and ranges.
The configuration file can contain spaces, tabs, blank lines, and lines that start with a pound sign
(#), which identifies the line as a comment. The keywords are case-sensitive and must be spelled
exactly as defined or they will not be recognized. A keyword must be followed by a valid value.
For an example of the httpd.config file, see “Configuring the iTP Secure WebServer” (page 94).
The example includes commands for configuring several processes that are essential in the HP
environment for the iTP Secure WebServer. The configuration file creates a PATHMON process and
configures the application servers and the Distributor process.
For detailed descriptions of all the configuration directives you can specify in the server configuration
file (httpd.config), see “Configuration Directives” (page 198).
To understand the configuration file, you must know the basic NonStop TS/MP architecture and
characteristics of the PATHMON environment. If you are not already familiar with the basics of using
NonStop TS/MP, see the TS/MP System Management Manual

Threading Considerations for the httpd Server
You can use two techniques, individually or in combination, to allow the iTP Secure WebServer
to handle many requests in parallel:

• Allow for a large number of servers in the httpd server class.

• Allow each server to handle multiple requests in parallel.
To allow for multiple servers, use the Maxservers command in the Server directive. This command
specifies the total number of servers in the class. If you want each server to besingle-threaded, the
value of Maxservers should be large enough to accommodate the maximum number of concurrent
requests your WebServer must be able to handle.
To allow for multithreading in each server process, use the TANDEM_RECEIVE_DEPTH environment
variable. (The Env command in the Server directive enables you to specify environment variables.)
The value of TANDEM_RECEIVE_DEPTH is the maximum number of requests a single httpd or
servlet process can handle.

NOTE: Although the receive depth is conceptually similar to the NonStop TS/MP link depth, the
link depth is limited to 255 simultaneous requests per server class, whereas the receive depth is
limited to 255 simultaneous requests per process. Therefore, even if you specify a value of 1 for
the Linkdepth command, the httpd or servlet process can simultaneously service as many requests
on that link as are specified by the value specified for the receive depth.

To increase the number of concurrent requests, you can define multiple servers in the server class
and use TANDEM_RECEIVE_DEPTH to make each server multithreaded. In this case, you can
determine the maximum number of simultaneous requests to a server class by multiplying the value
of TANDEM_RECEIVE_DEPTH by the value of Maxservers.
In the configuration file delivered with the iTP Secure WebServer, the httpd server class consists
of multiple, multithreaded servers.

Configuring the PATHMON Environment 49

The benefits of assigning a smaller number of servers with a higher number of threads per server
include:

• In a process, all threads share system resources such as swap space and file opens, including
opens to cache files.

• No system dispatching is required to switch among threads in the same process.
Assigning a larger number of processes with a lower number of threads per server has different
benefits:

• Load balancing is increased across processors.

• Less susceptibility to processor and process failures, and better fault isolation
The TANDEM_RECEIVE_DEPTH environment variable has no meaning for server classes other than
httpd or servlet.

Security for the Server's Pathway Environment
When you plan your configuration of the PATHMON environment for the iTP Secure WebServer,
you can take certain steps to enhance the security of the environment itself. These sections discuss
how to manage the security of your data and provide for secure transactions:

• “Configuring for Secure Transport” (page 53)

• “Managing the iTP Secure WebServer Using Scripts” (page 82)
These subsections discuss issues to consider with respect to the iTP Secure WebServer PATHMON
environment:

• “Who Can Modify the Configuration Files?” (page 50)

• “Who Can Start/Stop the iTP Secure WebServer?” (page 50)

• “What TCP/IP Port Is the Distributor Process Monitoring?” (page 50)

• “Common Gateway Interface (CGI) Application Security Considerations” (page 51)

• “Pathway CGI Server Class Considerations” (page 51)

Who Can Modify the Configuration Files?
By default, access to the /usr/tandem/webserver/admin/conf directory is restricted to the
owner of the directory structure. This is the user ID under which the iTP Secure WebServer was
installed, as described in “Installing the iTP Secure WebServer” (page 34). The directory owner
can allow anyone access to the directory. However, the system supervisor can always access the
directory.

Who Can Start/Stop the iTP Secure WebServer?
The default iTP Secure WebServer configuration gives all users in the system execute and read
permission for the bin directory. Therefore, any individual can access the bin/httpd file and
specify a configuration file to start an iTP Secure WebServer. If you want to restrict users from
starting their own servers, change the default security of the bin directory or the security of the
bin/httpd file.

What TCP/IP Port Is the Distributor Process Monitoring?
In its default, out-of-box configuration, the Distributor process monitors TCP/IP port number 80. To
use a different port, modify the port specification in the httpd.config file. The Distributor process
also can monitor multiple ports. For example, in the httpd.stl.config file, you can specify a
port to use with the Transport Layer Security (TLS) or Secure Sockets Layer (SSL); the default value
is 443. The Accept and AcceptSecureTransportdirectives, described in “Configuration
Directives” (page 198), let you specify multiple IP addresses and port numbers. To check that requests

50 Planning the iTP Secure WebServer PATHMON Environment

arrive only on a secure port, modify the httpd.config file to exclude the Accept directive, and
then restart the server.
The iTP Secure WebServer Administration Server uses the ports you specify in response to prompts
from the install.WS script. By default, the nonsecure port is 8088, and the secure port is 8089.
Ports in the range from 1 through 1024, including the default HTTP port (80), can be used only
by a process that has super ID privileges. Ports in the range from 1025 through 65536 can be
used by all processes.
For ports with a value from 1 through 1024 (including the default), super ID users (for example,
super.webmastr) can access the port with no restriction. Use a super ID to install and start the iTP
Secure WebServer. For security reasons, super.super is not recommended.

Common Gateway Interface (CGI) Application Security Considerations
The system administrator must consider the user ID that will configure and start the iTP Secure
WebServer environment. The user ID determines the security restrictions for the server classes within
the environment. CGI programs and scripts are spawned by the generic-cgi.pway server class.
The owner of the generic-cgi.pway process is determined as:

• If the iTP Secure WebServer environment is started by the super ID, the spawned CGI process
inherits the rights of this ID and has access to any and all system functions. If you are allowing
users to write and execute their own CGI-type programs, this behavior is not desirable.

• If the environment is started by the super ID, the spawned CGI process inherits the restrictions
placed upon super ID users.

• If the environment is started by a non-super ID, the CGI program is restricted by the security
of that user ID.

Pathway CGI Server Class Considerations
A Pathway CGI application inherits its user ID from the iTP Secure WebServer environment, and
has the same considerations as for a generic-CGI application.

Other Security Considerations
In addition to the security of the PATHMON environment, the system administrator should consider
these security requirements before installing the iTP Secure WebServer:

• “Protecting the Key Database File” (page 51)

• “Protecting the Server Password” (page 52)

• “Protecting Core Dumps” (page 52)

• “Protecting Transmission of Key Database Files and Core Dumps” (page 52)

Protecting the Key Database File
The key database file is the file you specify in commands such as keyadmin and in the
KeyDatabase configuration directive. It contains private keys and public key certificates.
The key database file contains sensitive information that must be protected. The iTP Secure
WebServer protects the database by encrypting it, and by requiring a password to access it
(decrypt it).
One way that you can protect the key database file is by protecting its password (see “Protecting
the Server Password” (page 52)). You also should protect the key database file by ensuring that
it has the correct file permissions. The file should be owned by the user name under which the
server is run and set to mode 600, giving read/write access only to that user.
A second way to protect the key database file is by keeping it properly backed up. Back up the
file every time there is a change to it. Keep the backup in a place that is as safe as your needs

Other Security Considerations 51

require. For other customers, keep a backup tape in the same building as the server machine is
sufficient. For other customers, keep a backup in another location (for example, in another building)
in case the original file is destroyed and a replica is needed immediately.
Consider controlling access to the room in which backups are made and stored and the means
by which they are transported physically or electronically (if applicable).
You also must protect the server machine itself, since it contains the key database file. According
to your security requirements, consider physically protecting the room in which the server is located
and also restricting access to the server through its network connections.

Protecting the Server Password
The key database file is encrypted with a password that you specify by using the keyadmin utility.
The iTP Secure WebServer must decrypt the file at run time to gain access to the file's stored
information. Use the ServerPassword configuration directive to assign the server a password.
The iTP Secure WebServer installation requires the server password to be eight characters or
longer. In addition, the keyadmin utility also requires passwords to be either mixed case or all
uppercase.
If your password is stored in the configuration file or another file, protect that file at least as carefully
as you would the key database file itself. Consider file protection, backups, network access, physical
access, and so on (as described in “Protecting the Key Database File” (page 51)).

Protecting Core Dumps
Any server can fail and dump core, and core dumps of the iTP Secure WebServer can contain
keys and the server password.
You must protect core files as carefully as the key database file and server password files. Consider
who has physical access to them, whether the files can end up on a backup tape, what their file
protections are, and so on. If you transmit a core file for analysis, physically or electronically,
consider the safety of the transmission mechanism.

Protecting Transmission of Key Database Files and Core Dumps
If you must transmit a key database file or a core dump over the public network—for example, to
HP support services for help with troubleshooting— make sure the transmission mechanism is
appropriate for your security requirements.
HP support requests that all key database files, core files, and configuration files that contain
passwords be sent encrypted in some form.

52 Planning the iTP Secure WebServer PATHMON Environment

4 Configuring for Secure Transport
Transport Layer Security (TLS) and Secure Socket Layer (SSL) protocols provide security enhancements
for the Web. The security enhancements include encryption to ensure privacy and authentication
(using key certificates) to verify the identity of servers, and, optionally, clients.
This section provides an overview to the configuration process, explains how to configure the server
for TLS and SSL, and includes these topics:

• “Using the Administration Server Securely” (page 53)

• “Overview of Server Configuration” (page 54)

• “Managing Certificates” (page 55)

• “Managing Client Authentication” (page 72)

• “Updating TLS and SSL Configuration” (page 74)

• “Controlling Access and Privacy” (page 74)

• “Controlling Encryption and Integrity Checking” (page 75)

• “Migrating the key database from iTP Secure WebServer 7.0 to 7.2 and later” (page 76)

• “Configuring Trusted Client Root Certificate Database” (page 79)

• “Configuring Support For Certificates with Non-English Characters” (page 79)
This section explains how to prepare the iTP Secure WebServer to use encryption provided by
TLS,SSL, or both. Use the procedures in this section after installing the iTP Secure WebServer (see
“Installing and Configuring the iTP Secure WebServer” (page 38)) and configuring the PATHMON
environment (see “Configuring the PATHMON Environment” (page 49)).

NOTE: The nonsecure version of the iTP WebServer does not support TLS or SSL.

The iTP Secure WebServer can handle TLS and SSL requests simultaneously with Hypertext Transfer
Protocol (HTTP) and HTTPS (secure HTTP) requests.
If you are unfamiliar with security concepts such as encryption, authentication, public and private
keys, and Certificate Authorities (CAs), see “Security Concepts” (page 269), before proceeding
further in this section.

Using the Administration Server Securely
HP recommends that you access the iTP Secure WebServer Administration Server only from secure
transport connections. In some cases, you must provide the password with which the server's key
database file is encrypted. This password must not be transmitted unsecuredly.
To specify that the iTP Secure Administration server must accept requests from secure connections
only, modify the httpd.adm.config file to add a RequireSecureTransport command to
the Region directive for the /admin/* region, as shown in this example:
Region /admin/* {
 RequireSecureTransport
 AllowHost *.company.com
 RequirePassword {WebServer Administration User}\
 -userfile /conf/adm.passwd
 IndexFile index.html
 }

For even greater security, choose the -auth option of the RequireSecureTransport directive
to require that a Web client certificate be presented when accessing the administration area.

Using the Administration Server Securely 53

Overview of Server Configuration
This section provides an overview of the tasks involved in configuring the server to accept and
respond to secure transport requests (both TLS and SSL). The server can be configured using the
following methods:

• “Keyadmin Utility Configuration” (page 54)

• “Server Configuration” (page 54)

Keyadmin Utility Configuration
The process for using the keyadmin utility to configure the server for secure transport includes
these steps:
1. Generate a public/private key pair for the server, as described in “Using the Keyadmin Utility

to Manage Keys and Certificates” (page 56). The keyadmin utility creates the key pair, which
is stored in the specified key database file.
If you are creating a new key database file, the password you specify is used to encrypt the
data in the key database file. You must remember the password.

2. Create the certificate request. For details, see “Creating a Certificate Request” (page 58) for
details.

3. Make a backup of both the key database file and the certificate request.
4. Obtain a certificate for the public key part of the pair from a Certificate Authority (CA) by

e-mailing the certificate-request file to the CA. This procedure is described in “Requesting a
Certificate” (page 59).

5. Store the resulting public key certificate in the key database file by using the keyadmin utility.
6. Make a new backup copy of the key database file once the certificate has been added. Also,

make a backup of the certificate itself.
7. To use Diffie-Hellman key-exchange method, generate and store Diffie-Hellman key-exchange

parameters with desired size and filename.

Server Configuration
After you have used the keyadmin utility for server configuration, complete the server configuration
by following these steps:
1. Specify the path name of the key database file by using the KeyDatabase configuration

directive. See “KeyDatabase” (page 217) for information about using this directive.
2. Specify the password for decrypting the key database file.

Using the ServerPassword directive, specify the password the server will use to decrypt the
data in the key database file. You can arrange for this password to be obtained by:

• Specifying it directly in the configuration file.

• Reading it from a different file.
For an example of specifying the encryption password, see “ServerPassword” (page 252).
The password specified by the ServerPassword directive must agree with the password used
to encrypt the key database file, as specified through the keyadmin utility.

3. Enable the server to use TLS or SSL.
Use the AcceptSecureTransportconfiguration directive to configure the server to check
for TLS or SSLconnections. You must specify the DN of the certificate to use for the server by
using the -certoption. In addition, you can specify these parameters:

• Transport name

• Host name, address, and port to use

54 Configuring for Secure Transport

• Whether the server checks for TLS, SSL, or both

• Whether the server requests or requires client authentication (or neither)
For complete information about these options, See “AcceptSecureTransport” (page 200).

NOTE: The server checks for connections on the ports specified by both the Accept and the
AcceptSecureTransport directives.

4. Use the RequireSecureTransport commands in the Region directive to control how clients access
the server and its contents as described in “Controlling Access and Privacy” (page 74).

5. Restart the server.
6. Include security properties in HTML documents.
Use the HTTPS protocol specifier (https) in anchor specifications for the Web client use to TLS or
SSL, as this example shows:
https://www.oregon-club.com/recipes
If you are using a TLS or SSL port other than the default (443), specify the port:
https://www.oregon-club.com:444/recipes

Managing Certificates
Each iTP Secure WebServer must have a private/public key pair for encrypting and decrypting
secure transactions. The public key must be signed by a CA in the form of a certificate. The certificate
verifies the binding of the public key to a particular DN, which uniquely identifies a particular
Web server. (See “Requesting a Certificate” (page 59).)
The same certificate can be used for both TLS and SSL.
This section describes how to manage certificates and covers these topics:

• “Formatting Distinguished Names (DNs)” (page 55)

• “Using the Keyadmin Utility to Manage Keys and Certificates” (page 56)

• “Using Server Certificate Chains With the iTP Secure WebServer” (page 72)

Formatting Distinguished Names (DNs)
DNs are specifications that identify persons or organizations to associate with particular keys.
DNs consist of lists of attributes that identify such entities as company name and company location.
For example:

• CN="Compedia, Inc."

• ST=New Hampshire
CAs use DNs to formally bind particular persons or organizations to particular keys. The individual
attributes in DNs are separated by commas and must be specified in the order required by a
particular CA.
Table 1 (page 55) lists and describes the most common DN attributes. For complete list of supported
DN attributes, See Table 4 (page 68).

Table 1 Common Distinguished Name (DN) Attributes

DescriptionAttribute

Common Name: The name of the owner of the certificate.CN

Organizational Unit: The name of the owner's organizational subdivision. DNs can include multiple
OUs. An example of multiple OUs is shown after this table.

OU

Organization: The name of the owner's organization (company name).O

Managing Certificates 55

Table 1 Common Distinguished Name (DN) Attributes (continued)

DescriptionAttribute

Locality: The city or other geographic location of an organization.L

State or Province: The U.S. state, Canadian province, or similar subdivision. State names must be
spelled out completely. No postal abbreviations are allowed.

ST

Country: The ISO country code of the country in which the certificate issuer is located (for example,
C=US).1

C

1 Some of these attributes might be omitted in a particular DN, in accordance with the requirements of a particular CA.
However, in general, at least CN, O, ST, and C are required.

The following example shows a DN for a server maintained by an organization (O) named
Compedia, Inc. that has two organization units (Marketing and Master-Project-Group) included in
the DN:
CN=www.compedia.com,OU=Marketing,OU=Master-Project-Group,
O= "Compedia\, Inc.",L=Portsmouth,ST=New Hampshire,C=US

In this example, the quotation marks in the Organization (O) field distinguish the literal comma
within the company name (the comma between Compedia and Inc.) from other commas used
as field separators. An escape character \ (backslash) is required when the attribute in DN is
separated by a comma in H03 as it is treated as a special character. This special character is
described in RFC4514.

Using the Keyadmin Utility to Manage Keys and Certificates
The keyadmin utility is used to generate key pairs and to manage certificates in the server key
database file. This section describes how to use the keyadmin utility and covers these topics:

• “Generating a New Key Pair” (page 57)

• “Creating a Certificate Request” (page 58)

• “Requesting a Certificate” (page 59)

• “Adding a Certificate to the Key Database File” (page 59)

• “Deleting a Certificate” (page 60)

• “Renewing a Certificate” (page 61)

• “Disabling or Enabling a Certificate” (page 61)

• “Changing the Key Database File Password” (page 62)

• “Creating a List of Key Database File Contents” (page 63)

• “Updating the Default Root Certificates” (page 64)

• “Exporting a Database Entry” (page 67).

• “Displaying Keyadmin Utility Information” (page 67)

• “Importing a Private Key into iTP Secure WebServer's Key Database File” (page 68)

• “Exporting a Private Key to a User-defined Disk File” (page 69)

• “Generating Diffie-Hellman Parameters” (page 71)
The keyadmin utility is located in the bin directory in the server install directory.

56 Configuring for Secure Transport

Generating a New Key Pair
Before you generate a key pair, you must obtain these items:

• The certificate-request form from a Certificate Authority.
You can access this form from the Certificate Authority's home page on the Web.

• The DN you have decided to use to identify your server.

• The password associated with the server's key database file. If you plan to use an existing
key database file, you must know the password associated with it. If you plan to create a new
key database file, you must choose a password.

For information about the server key database file and the password used to encrypt it, See
“KeyDatabase” (page 217)and “ServerPassword” (page 252).
To generate a new key pair, use the keyadmin command shown.

NOTE: You can use the -force option only at the end of command.

Enter the entire command on a single command line. If a continuation character is necessary, you
must use the backslash (\) character as shown; the backslash is not permitted to break the DN
value across lines.
bin/keyadmin -keydb keydb [-mkpair] -dn 'dn' \
[-length key-length] [-verbose]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default is
the bin directory.

The command arguments have these functions:
-keydb keydb
specifies the name of the key database file that will store the private key of the new
key pair (along with the key's DN).
If the database you specify is nonexistent, the server creates the database for you
and notifies you that the new database was created.

-mkpair
instructs the server to generate a random key pair that has a default length of 1024
bits.
If you omit -mkpair, this command generates both, a random key pair and a
certificate request.

-dn 'dn'
specifies the full DN for thenew key pair. Enclose this DN with apostrophes (') to
protect it from being interpreted by the shell.
Make sure to include the same field values entered on the CA request form and in
the exact order that the CA specifies. Also, be sure to enclose any value containing
a comma with quotation marks (").
The keyadmin command accepts these characters in the DN field:
A-Z a-z 0-9 (space) ' () + , - . / :=?#

-length key-length
specifies the length of the key in bits. This option allows you to control the size of
the encryption key. The default key size is 1024 bits. The minimum key size is 1024
bits. The maximum key size is 4096 bits.

-verbose

Managing Certificates 57

specifies that complete information associated with the command string should be
displayed.

The keyadmin utility prompts you to enter the password associated with the key database file.
After you enter the key database file password, the keyadmin utility creates the private/public
key pair, stores them in the key database file, and then binds this key pair to the DN you specified.
Longer keys provide more security, but at the cost of requiring more time to encrypt a particular
object.

Creating a Certificate Request
To create a public key certificate request, use the keyadmin command.
You can enter the arguments in any order. Enter the entire command on a single command line.
If a continuation character is necessary, you must use the backslash (\) character as shown; the
backslash is not permitted to break the DN value across lines.
bin/keyadmin -keydb keydb [-mkreq cert-req-file] \
-dn 'dn'[-life days] [-webmaster webmaster-name] \
[-phone webmaster-phone-num] [-software software] [-verbose]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default is
the bin directory.

The command arguments have these functions:
-keydb keydb
specifies the name of the key database file that will store the private and public
parts of the new key pair (along with the key's DN).
If the database you specify is nonexistent, the server creates the database for you
and notifies you that the new database was created.

-mkreq cert-req-file
generates a certificate request for the specified DN and writes it to the file specified
in the command. A key pair must already reside in the database. If the specified
file does not exist, the default file is cert-req.txt.
If you omit -mkreq, this command generates both a random key pair and a
certificate request.

-dn 'dn'
specifies the full DN for thenew key pair. Enclose this DN with apostrophes (') to
protect it from being interpreted by the shell.
Make sure to include the same field values entered on the CA request form and in
the exact order that the CA specifies. Also, enclose any value containing a comma
with quotation marks (").
The keyadmin command accepts these characters in the DN field:
A-Z a-z 0-9 (space) ' () + , - . / :=? # andnon-English
character sets

-life days
specifies the length of time, in days, that the certificate will remain valid. The default
is 365 days. The life span requested is inserted into the resulting certificate request.
The CA can adjust this life span when issuing the certifipcate.
-webmaster webmaster-name

-phone webmaster-phone-num

-software software

58 Configuring for Secure Transport

adds any of these plain text fields to the certificate request. The information in these
fields are for your convenience and do not affect the keyadmin command. Be sure
to include single quotes (') or double quotes (") around any entries that contain a
space.

-verbose
specifies that complete information associated with the command string should be
displayed.

The keyadmin utility writes the public key and DN to the file name specified in
-mkreqcert-req-file. The information in this file name is encoded in PKCS #10 message
format.

Requesting a Certificate
After creating the certificate request and writing it to a file, follow instructions provided by the CA
(for example, on the web page) to request the certificate.
After processing your request, the CA will e-mail you a file containing your certificate in PKCS #7
format.

Adding a Certificate to the Key Database File
When you receive a certificate from a CA, install it in your server's key database file and remove
any hidden characters it contains (such as line-feed characters). To add a certificate, use the
keyadmin command.

Adding certificates with DNs that are different from the key generation DN
You can add certificates that have DNs that are different from the DN used during key generation.
A typical case where this occurs is when a DN is changed by an issuing CA.
When you add such a certificate for the first time, the iTP Secure WebServer creates a file called
newdn.txt (in the root directory) that contains the new DN. If you add any certificates subsequently
that have DNs that are different from those used during key generation or those added previously
to the key database file, those certificates' DNs are appended to the newdn.txt file. After the
newdn.txt file is created, the "newdn is" message provides the DN that is to be used in all
keyadmin commands that require a DN and for the AcceptSecureTransportdirective. For
information about the AcceptSecureTransport directive, See “AcceptSecureTransport”
(page 200).
A sample newdn.txt file is:

DN used at the time of keygeneration is: CN=hima.lab201.tandem.com,
 OU=datakomhw, O=tandem, L=cupertino, ST=california, C=US
 New DN in the certificate to be added is: CN=hima.lab201.tandem.com,
 SN=297-68-2381, OU=a-sign.datakom.at, OU=a-sign Server Light Demo CA,
 O=Datakom Austria GmbH, C=AT
Use the new DN for all your commands requiring a DN for this certificate.

You can enter the arguments in any order. Enter the entire command on a single command line.
If a continuation character is necessary, you must use the backslash (\) character as shown.
bin/keyadmin -keydb keydb -addcert cert-recv-file \
[-force] [-root] [-verbose]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default is
the bin directory.

The command arguments have these functions:
-keydb keydb

Managing Certificates 59

specifies the name of the key database file in which the key pair you created is stored.
-addcert cert-recv-file

specifies the name of the encoded file containing your new certificate as received from your CA.
-force

specifies that a renewal of an older certificate should occur, but that the check for a valid start
date should not be performed.
-root

treats the certificate as a root.
-verbose

specifies that complete information associated with the command string should be displayed.
A sample command is:
bin/keyadmin -keydb conf/mykeys -addcert my-cert.txt

This command ensures that the certificate is valid by checking that the public key it contains matches
the public key associated with the same DN in the database. Then the certificate is inserted in the
database.
Update the KeyDatabase, ServerPassword, and AcceptSecureTransport configuration directives
in the server's configuration file, if you have not done so already, and restart the server.
Responses are delivered in PKCS #7 message format. However, you can add items to the database
in any of these formats:

• A message in PKCS #7 format

• A raw RADIX-64 encoded certificate
“Sample Certificate in RADIX-64 Format” (page 60) shows an example of a certificate is in the
RADIX-64 format:

Table 2 Sample Certificate in RADIX-64 Format

-----BEGIN CERTIFICATE-----
MIICPzCCAekCEAS/HreKrbhGuo00vaEFPcgwDQYJKoZIhvcNAQEEBQAwgakxFjAU
BgNVBAoTDVZlcmlTaWduLCBJbmMxRzBFBgNVBAsTPnd3dy52ZXJpc2lnbi5jb20v
cmVwb3NpdG9yeS9UZXN0Q1BTIEluY29ycC4gQnkgUmVmLiBMaWFiLiBMVEQuMUYw
RAYDVQQLEz1Gb3IgVmVyaVNpZ24gYXV0aG9yaXplZCB0ZXN0aW5nIG9ubHkuIE5v
IGFzc3VyYW5jZXMgKEMpVlMxOTk3MB4XDTk3MDgwNjAwMDAwMFoXDTk3MDgyMDIz
NTk1OVowgZsxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRIwEAYD
VQQHFAlDdXBlcnRpbm8xHzAdBgNVBAoUFlRhbmRlbSBDb21wdXRlcnMsIEluYy4x
ITAfBgNVBAsUGFRlc3QgYW5kIEV2YWx1YXRpb24gT25seTEfMB0GA1UEAxQWaElN
QS5sYWIyMDEudGFuZGVtLmNvbTBcMA0GCSqGSIb3DQEBAQUAA0sAMEgCQQCm17LN
l/GG+UYvlnWujFau+PXWF6WAMlsG1MfPk5fWsl7kXw862TKzMHGNBaRzTBbcONOW
PFv4NMBZYVZAWux9AgMBAAEwDQYJKoZIhvcNAQEEBQADQQB9gqo61uzQEd9YZ2vn
dVYd4FH7+1YSGOAmqUJ6yPbv52vmLvXJjZ8b6ENVL7cYvZ55RVhYBKhenCFIu2mu
Cbuk
-----END CERTIFICATE-----

Deleting a Certificate
To delete a certificate and key pair from the server's key database file, use the keyadmin command.
You can enter the arguments in any order. Enter the entire command on a single command line.
If a continuation character is necessary, you must use the backslash (\) character as shown; the
backslash is not permitted to break the DN value across lines.
bin/keyadmin -keydb keydb -delete -dn 'dn' [-root] [-verbose]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default is
the bin directory.

60 Configuring for Secure Transport

This command deletes from the certificate database all information associated with the specified
DN.
The command arguments have these functions:

-keydb keydb
specifies the name of the key database file in which the key pair you created is
stored.

-delete
specifies that a certificate and key pair should be deleted from the server's key
database file.

-dn 'dn'
specifies the full DN for the new key pair. Enclose this DN with apostrophes (') to
protect it from being interpreted by the shell.
Make sure to include the same field values entered on the CA request form and in
the exact order that the CA specifies. Also, enclose any value containing a comma
with quotation marks (").
The keyadmin command accepts these characters in the DN field:
A-Z a-z 0-9 (space) ' () + , - . / :=? #

-verbose
specifies that complete information associated with the command string should be
displayed.

Renewing a Certificate
To renew a certificate, perform these steps:
1. Generate certificate request. For more details, see “Creating a Certificate Request” (page 58).
2. Follow the instructions provided by your CA (for example, on their web page) and send the

resulting certificate request (in the file designated by -mkreqor in cert-req.txt) to them
via email for processing. For more details, see “Requesting a Certificate” (page 59).

3. Add certificate from CA. For more details, see “Adding a Certificate to the Key Database
File” (page 59).

4. Update the httpd.stl.config file if the certificate is different from the request.

NOTE: Use keyadmin utility with the -list -keydb < keydb> command to view the
information in the keydb file. For more details, see “Adding certificates with DNs that are
different from the key generation DN” (page 59).

5. Restart the iTP WebServer.
The existing key database file renews the certificate by using any of these approaches:

• Use the same (as it was for the existing certificate) Certificate Signing Request (CSR) and
keypair to get a certificate for the same DN with extended validity.

• Generate a different keypair and CSR for the same DN to get a new certificate.

NOTE: If you are using the second approach to renew a certificate, you must delete the old entry
from the key database file. Otherwise, the key database file cannot identify the proper certificate.

Disabling or Enabling a Certificate
To disable a certificate or enable a previously disabled certificate in the key database file, use
keyadmin command.

Managing Certificates 61

You can enter the arguments in any order. Enter the entire command on a single command line.
If a continuation character is necessary, you must use the backslash (\) character as shown; the
backslash is not permitted to break the DN value across lines.
bin/keyadmin -keydb keydb {-disable | -enable} \ -dn 'dn' [-root] [-verbose]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default is
the bin directory.

The command arguments have these functions:
-keydb keydb
specifies the name of the key database file in which the key pair you created is
stored.

-disable
specifies that you want to disable a certificate in the key database file. The certificate
remains in the key database file so that it can be enabled, as required, at a later
time.

-enable
specifies that you want to enable a certificate in the key database file.

-dn 'dn'
specifies the full DN for the new key pair. Enclose this DN with apostrophes (') to
protect it from being interpreted by the shell.
Make sure to include the same field values entered on the CA request form and in
the exact order that the CA specifies. Also, enclose any value containing a comma
with quotation marks (").
The keyadmin command accepts these characters in the DN fieldp:
A-Z a-z 0-9 (space) ' () + , - . / :=?#

-root
treats the certificate as a root.

-verbose
specifies that complete information associated with the command string should be
displayed.

Changing the Key Database File Password
Use the following keyadmin command to change the password with which the server's key
database file is encrypted.
You can enter the arguments in any order. Enter the entire command on a single command line.
If a continuation character is necessary, you must use the backslash (\) character as shown.
bin/keyadmin -keydb keydb -chpw [-verbose]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default is
the bin directory.

The command arguments have these functions:
-keydb keydb
specifies the name of the key database file in which the key pair you created is
stored.

-chpw
specifies that you want to change the password.

62 Configuring for Secure Transport

-verbose

specifies that complete information associated with the command string should be
displayed.

The keyadmin utility prompts you for the new password. Database passwords must have at least
eight characters all in uppercase or in a combination of uppercase and lowercase characters.

NOTE: Whenever you use the keyadmin utility to change the key database file password, you
must reset the ServerPassword directive to the same password and restart the server. For details,
see ServerPassword (page 252).

Creating a List of Key Database File Contents
To generate a list of keys and certificates along with their attributes, use the keyadmin command.
You can enter the arguments in any order. Enter the entire command on a single command line.
If a continuation character is necessary, you must use the backslash (\) character as shown; the
backslash is not permitted to break the DN value across lines.
bin/keyadmin -keydb keydb -list [-dn 'dn'] \
 [-root | nonroot] [-disabled | enabled] [-verbose]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default is
the bin directory.

This command lists the attributes of the certificates in the key database file.
If you do not specify any of the options, the server displays all certificates in the database.
Otherwise, you can specify precisely the certificate attributes you want displayed, by using the
optional command components. The options are mutually exclusive.
The command arguments have these functions:

-keydb keydb
specifies the name of the key database file in which the key pair you created is
stored.

-list
specifies that you want to generate a list of keys and certificates.

-dn 'dn'
specifies that only the entry indicated by dn be displayed.

-root

specifies that only entries marked as root should be displayed.

-nonroot
specifies that only the entries not marked as root be displayed.

-disabled
specifies that only disabled entries be displayed.

-enabled
specifies that only enabled entries be displayed.

-verbose
specifies that complete information associated with the command string should be
displayed.

For example, this command:

Managing Certificates 63

bin/keyadmin -keydb conf/keys -list

produces the output:

Distinguished Name:
OU: Secure Server Certification Authority
O: RSA Data Security, Inc.
C: US
State: Root Enabled
Private Key: Not present
Public Key: Present
Certificate: Present

Distinguished Name:
CN: Secure Transport Bootstrap Certificate
OU: Testing Only - Do Not Trust for Secure Transactions
OU: No Assurance - Self-Signed
OU: Generated Wed Mar 5 17:36:57 EST 1997
O: fenway.company.com
State: Enabled
Private Key: Present
Public Key: Present
Certificate: Present

Updating the Default Root Certificates
The iTP Secure WebServer supports a set of default root certificates for domestic use (United States
and Canada). If a request arrives and client authentication is required, the iTP Secure WebServer
checks the certificate to see whether it matches any of the default root certificates; if the certificate
matches, the request is accepted, and if not, the request is rejected. To restrict the set of accepted
certificates, or to define the certificates used outside the United States and Canada, you specify
the corresponding DNs in AcceptSecureTransport directives in your configuration file.
The default root certificates for the current release of the iTP Secure WebServer are as shown in
Table 3 (page 64):

Table 3 Example Default Root Certificate

Distinguished Name
OU: Class 4 Public Primary Certification Authority
O: Verisign, Inc.
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
OU: Class 3 Public Primary Certification Authority
O: Verisign, Inc.
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
OU: Class 2 Public Primary Certification Authority
O: Verisign, Inc.
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

64 Configuring for Secure Transport

Table 3 Example Default Root Certificate (continued)

Distinguished Name
OU: Class 1 Public Primary Certification Authority
O: Verisign, Inc.
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
CN: Entrust Demo Web CA
O: For Demo Purposes Only
OU: No Liability Accepted
L: Nepean
C: Ca
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
OU: MALL
OU: internetMCI
O: MCI
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
CN: BBN Certificate Services Root CA 3
O: BBN Certificate Services Inc
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
CN: BBN Certificate Services Root CA 2
O: BBN Certificate Services Inc
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
OU: Secure Server Certification Authority
O: RSA Data Security, Inc.
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
OU: Persona Certificate
O: RSA Data Security, Inc.
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
OU: Certificate Services
O: AT&T

Managing Certificates 65

Table 3 Example Default Root Certificate (continued)

C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
OU: Directory Services
O: AT&T
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
OU: Transaction Services
O: AT&T
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
CN: GTE CyberTrust Root
O: GTE Corporation
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

Distinguished Name
CN: Open Market, Inc.
OU: No Assurance Beta Certificates
OU: For testing and evaluation use only
O: OMI Persona CA
L: Cambridge
ST: MA
C: US
State: Root Enabled
Private Key: Not Present
Public Key: Present
Certificate: Present

You can use the keyadmin utility's -initdefaults option to update the default root certificates
in your key database file. This option causes:

• Existing root certificates to be updated in those cases where keyadmin has more recent
information

• Root certificates not found in the database to be added
To update the default root certificates in the database, use this keyadmin command:
keyadmin -keydb keydb -initdefaults [-verbose]

The command arguments have these functions:
-keydb keydb
specifies the name of the key database file in which the key pair you created is
stored.

-initdefaults
specifies that you want to update the default root certificates in your key database
file.

66 Configuring for Secure Transport

-verbose
specifies that complete information associated with the command string should be
displayed.

Under normal circumstances, you do not need to invoke this option.

Exporting a Database Entry
You can request that an entry from a specified key database file be written to any file name that
you specify. Then you can use the new file as a key database file.
You can enter the arguments in any order. Enter the entire command on a single command line.
If a continuation character is necessary, you must use the backslash (\) character as shown; the
backslash is not permitted to break the DN value across lines.
To export a database entry, use this keyadmin command:
bin/keyadmin -keydb keydb -export key-file -dn 'dn'\
 [-overwrite | -nooverwrite] [-verbose]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default is
the bin directory.

This command prompts you for the password that will be used with the new database name.
The command arguments have these functions:

-keydb keydb
specifies the name of the key database file in which the key pair you created is
stored.

-export key-file
specifies that you want to generate a list of keys and certificates using the indicated
file name.

-dn 'dn'
specifies the key associated with this DN.-overwrite specifies that you want to
overwrite the existing entry.

-nooverwrite
specifies that you do not want to overwrite the existing entry.

-verbose
specifies that complete information associated with the command string should be
displayed.

If an entry already exists in the new database, keyadmin displays a prompt asking if the existing
entry can be overwritten. However, if you specify the option -overwrite, keyadmin simply
overwrites the existing entry without prompting first (but does generate a message to indicate that
it has overwritten the entry).
If you specify -nooverwrite, keyadmin generates a message to indicate that the entry was not
overwritten.

Displaying Keyadmin Utility Information
You can display information about keyadmin by issuing the following keyadmin command:
bin/keyadmin -version [-verbose]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default is
the bin directory.

Managing Certificates 67

This command displays the information about the keyadmin utility that you are running:

• Utility name (keyadmin)

• Version number of the utility

• The operating system platform on which the utility was built
Table 4 (page 68) lists all supported DN attributes.

Table 4 Supported DN Attributes

Required Encoding TypeAttribute

Directory StringCN: Common Name

Directory StringL: Locality

Directory StringST: State

Directory StringO: Organization

Directory StringOU: Organization Unit

Printable StringC: Country

Directory StringSA: Street Address

IA5 StringDC: Domain Component

Directory StringSN: Serial Number

Directory StringT: Title

Directory StringPC: Postal Code

IA5 StringEMAIL: Email Address

Printable StringDQ: DN Qualifier

Directory StringS: Surname

Directory StringGN: Given Name

Directory StringI: Initials

Directory StringGQ: Generation Qualifier

Directory StringNAME: Name

Note: Directory String can take one of these encoding formats, Printable String, or T.61 String (DN value specified is
not in printable character set and UTF-8 encoding is not specified or not applicable for the DN).

Importing a Private Key into iTP Secure WebServer's Key Database File
You can request to import a private key (not generated by the keyadmin utility) to the iTP Secure
WebServer's key database, and then store it in the entry that contains the corresponding certificate.
Starting with iTP Secure WebServer Release 7.5, you can indicate iTP Secure WebServer to process
the private key as unencrypted. The private key must be in one of the following formats:
• PEM or DER encoded PKCS#8 format encrypted using either the 3DES, AES128, AES192, or

AES256 algorithms
• PEM encoded format (keys exported with the older keyadmin utility)
To import a private key, use the keyadmin command:
bin/keyadmin [—verbose] —keydb <keydb> -importpriv <key-file> [-dn 'dn'] [-nocrypt]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default
directory is bin.

68 Configuring for Secure Transport

This command prompts for the password of the key database file in which the key must be stored.
The keyadmin command prompts to create a password to protect the key database file if it is not
password protected.
If the corresponding certificate is not found, a new entry is created using the DN provided in the
-dn option of the command. In such instances, the -dn option must be specified and is not treated
as optional. If the -dn option is not set, an error is displayed.
The keyadmin command arguments have the following functions:

-keydb <keydb>
specifies the name of the key database file in which the private key will be stored.
If the key database file mentioned in the command does not exist, the system prompts
you to create it. If you choose to create the database, the system prompts for a
password to protect the key database file.

-importpriv <key-file>
specifies that you want to import the private key from the key-file and store it in a
key database file.

[-dn 'dn']
specifies the DN to be used to identify the newly created entry for the imported key.
This parameter is ignored if the corresponding certificate already exists in the key
database.

[-nocrypt]
indicates the iTP Secure WebServer to process the private key as unencrypted. Use
this option when importing a private key in the PEM encoded format. When you
use this option, the following warning appears:
Storing unencrypted private keys in disk files is not
recommended.

If -nocrypt option is not specified, the keyadmin utility processes private keys
as encrypted. After you enter the valid passphrase for the key database, the
keyadmin utility prompts for the private key passphrase. The private key is
encrypted with this passphrase.

The following examples illustrate the import sequence:
./keyadmin -keydb demo.db -importpriv priv.key -dn
'CN=www.hp.com, L=Cupertino, O=HP, OU=NED, C=US'

./keyadmin -keydb test.db -importpriv keyfile -dn "CN=www.example.com"
The keyfile "test.db" does not exist. Do you wish to create it? (y/n) y
Do you wish to add the default certificates to this keyfile? (y/n) n
Database does not currently have a passphrase associated with it.
Enter passphrase:

Re-enter new passphrase:
Enter passphrase for private key:
Are you sure you want to import this private key? (y/n) y
New keypair successfully added
Saving key database "test.db"... Done

NOTE: If you enter a passphrase that is not the same as the one used for encrypting the private
key, the import operation aborts with an error message.

Exporting a Private Key to a User-defined Disk File
You can export a private key from an existing key database to a user-specified disk file.

Managing Certificates 69

Starting with iTP Secure WebServer Release 7.5, you can export the private keys in the following
formats:
• PEM or DER encoded PKCS#8 format encrypted using either the 3DES, AES128, AES192, or

AES256 algorithms
• PEM encoded format

NOTE: The private key is exported in PKCS#8 Base64 encoded format in older releases.

To export a private key, use the following command:
bin/keyadmin [—verbose] —keydb <dbfile> -exportpriv <key-file> -dn 'dn'
[{[-encode <format>] [-crypt <algorithm>]} | [-nocrypt]]

NOTE: The bin/ prefix indicates the directory that contains the keyadmin utility; the default is
the bin directory.

The keyadmin command prompts you for the passphrase of the key database. If you do not specify
the –nocrypt option, the command prompts you for the passphrase to encrypt the private key.
The passphrase specifications are the same as that of passphrase for key database.
If you enter a valid passphrase, the command prompts you to re-enter the passphrase for validation.
After passphrase validation, the key is encrypted with the passphrase and exported in PKCS#8
format. A maximum of four attempts are allowed to enter the passphrase for the following cases:
• The passphrase specifications are not met

• The passphrase validation fails
The keyadmin command arguments have the following functions:

-keydb <dbfile>
specifies the name of the key database file in which the private key is stored.

-exportpriv <key-file>
specifies the disk file to which the private key must be exported.

-dn 'dn'
specifies the associated DN of the private key to be export ed.

-encode <format>
specifies the encoding format for the private key. The valid values are PEM or DER
. The default encoding format is PEM.
You can specify this option anywhere after the –exportpriv option in the
command line sequence.

–crypt <algorithm>
specifies the encryption format for storing the PKCS#8 encrypted keys. The valid
values are AES256, AES192, AES128, or 3DES. The default encryption algorithm
is AES256.
You can specify this option anywhere after the –exportpriv option in the
command line sequence.

–nocrypt
specifies that the private key must be exported without encryption in PEM encoded
format.
You can specify this option anywhere after the –exportpriv option in the
command line sequence.
When this option is used, the following warning appears:

70 Configuring for Secure Transport

Storing unencrypted private keys in disk files is not
recommended.

Do not use –nocrypt with –crypt/-encode options.

If the key-file does not exist, you are prompted to create the file. If the key-file already
exists, it is overwritten.
If the specified DN does not exist in the key database file, an error message is displayed.
The following examples illustrate the export options:
./keyadmin -keydb demo.db -exportpriv priv.key –dn \
'CN=www.hp.com, L=Cupertino, O=HP, OU=NED, C=US' \
–encode DER –crypt 3DES

./keyadmin -keydb demo.db -exportpriv priv.key –dn \
'CN=www.hp.com, L=Cupertino, O=HP, OU=NED, C=US' \
–encode PEM –crypt AES256

./keyadmin -keydb demo.db -exportpriv priv.key –dn \
'CN=www.hp.com, L=Cupertino, O=HP, OU=NED, C=US'

./keyadmin -keydb demo.db -exportpriv priv.key –dn \
'CN=www.hp.com, L=Cupertino, O=HP, OU=NED, C=US' -nocrypt

Generating Diffie-Hellman Parameters
You can use the -dhparams option in the Keyadmin utility to generate Diffie-Hellman parameters.
This option can:

• Generate Diffie-Hellman parameters with different sizes and store them in the specified file.

• Overwrite previous parameter file with new parameters.
To generate the Diffie-Hellman parameters, use the following keyadmin command:
bin/keyadmin -dhparams [-out filename][-length paramsize][-overwrite]

The command’s arguments have these functions:
-out filename

specifies the output filename for parameters to be stored. If the filename you specify is nonexistent,
the keyadmin creates a new file and notifies you that the new file is created.
-length paramsize

specifies that the parameter set generated must be of parameter size paramsize. The default
value of paramsize is 1024 bits. The minimum value of paramsize is 512 bits. The maximum
value of paramsize is 4096 bits.
-overwrite

specifies that you want to overwrite the existing file.

NOTE: The parameters generated by keyadmin are Privacy Enhanced Mail (PEM) encoded.
PEM encoded Diffie-Hellman parameters use the header and footer lines:
-----BEGIN DH PARAMETERS-----

-----END DH PARAMETERS-----

iTP Secure WebServer supports only the PKCS#3 formatted structure.
For example, to generate Diffie-Hellman parameters with output filename dh_params and parameter
size 1024 the syntax is:
bin/keyadmin –dhparams –out dh_params —length 1024

Managing Certificates 71

Using Server Certificate Chains With the iTP Secure WebServer
The TLS and SSL 3.0 protocols allow iTP Secure WebServer to send and receive certificate chains.
You can use the certificate chain option to establish a certificate hierarchy that is more than two
certificates deep.
For more information about certificates and certificate chains, see “Using Certificates” (page 272).
No configuration changes to the iTP Secure WebServer are required for this feature.
To create a server certificate chain, follow these steps:
1. Obtain leaf and intermediate certificates from the appropriate CA.
2. Store the leaf and the CA certificates:

• Store the root certificate, including the lines labeled ----- BEGIN CERTIFICATE
-----and ----- END CERTIFICATE -----, in a certificate file (a plain text file).
Add this certificate to the designated key database file using the keyadmin utility.

NOTE: While adding the root certificate to the key database file using keyadmin utility,
–root option of keyadmin must be used.

• Store the intermediate certificate, including the lines labeled ----- BEGIN
CERTIFICATE ----- and ----- END CERTIFICATE -----, in a certificate file (a
plain text file). Add this certificate to the designated key database file using the keyadmin
utility.

NOTE: While adding the intermediate certificate to the key database file using keyadmin
utility, –root option of keyadmin must be used.

• Store the leaf certificate, including the lines labeled ----- BEGIN CERTIFICATE
----- and ----- END CERTIFICATE -----, in a certificate file (a plain text file).
Add this certificate to the designated key database file using the keyadmin utility.

For details about adding certificates using keyadmin, see “Adding a Certificate to the Key
Database File” (page 59).

Managing Client Authentication
With TLS and SSL 3.0, the server always authenticates itself to its clients. However, you can
configure the server to request or require the Web client to authenticate itself to the server.
The AcceptSecureTransport configuration directive accepts two options for specifying how
the server controls client authentication:

The server requests that the Web client present a certificate,
and the Web client can choose to do so.

-requestauth

The server requires that the Web client present its certificate
and terminates communication if the Web client declines.

-requireauth

Unless you specify either the -requestauth or -requireauth option, client authentication
does not occur. Specifying one of these options enables you to use the Web client's authentication
information in Region configuration directives to restrict access to the iTP Secure WebServer. Client
authentication can be set by using the RequireSecureTransport -auth command or by accessing
specific Region variables and restricting access based on these variables.
After the iTP Secure WebServer requests and receives the Web client certificate from the Web
client as either an individual certificate or as a certificate chain, it performs these steps for client
authentication:

72 Configuring for Secure Transport

1. Builds an internal certificate chain using what the Web client has returned.
2. Attempts to back-build the internal certificate chain by retrieving issuer certificates from the

certificate database and adding them to the internal certificate chain. The chain is built until
the server either retrieves a certificate that is marked as root from the database or it cannot
find an issuer of a certificate on the chain in the database.

3. Verifies each certificate in the chain, starting with the leaf, to check that the chain is
well-formatted, is in its validity period, follows the Basic Constraints and Key Usage extensions
rules, and has a valid signature that was issued by its successor in the chain.

4. Stores the results of this verification in the various Tool Command Language/Common Gateway
Interface (Tcl/CGI) variables.

5. Appends the appropriate log messages to the Extended Log File (ELF) entry.
The server's action depends on its specific configuration, as shown in the list of variable settings
in “Using the -requestauth Option” (page 73).

NOTE: All X.509v1 certificates (root, non-root) are considered obsolete. The client or server
certificates using MD5 hashing algorithm are considered insecure. To use these certificates, specify
the -requestauth option instead of the -requireauth option. HP does not recommend the
use of X.509v1 certificates.

Using the -requireauth Option
When you set the -requireauth option, and the Web client supplies an invalid certificate (for
example, if the certificate does not exist, contains an error, is expired, or is issued by a CA that
is unknown to the server), the server always refuses the connection request from the Web client,
and then logs error messages to the error and extended log files.
When the Web client supplies a valid certificate, the server allows the connection and sets the
HTTPS_CLIENT_STATUS variable to valid. The server also sets all the other HTTPS_CLIENT
Tcl/CGI variables at the same time. For information about these Tcl/CGI variables, see “Passing
CGI Environment Variables” (page 146).

Using the -requestauth Option
When you set the -requestauth option, the server allows the Web client connection, regardless
of the state of the client certificate. In addition, the server sets the HTTPS_CLIENT_STATUS variable
to reflect the status of the client certificate (if the certificate is valid or invalid). The server sets the
variable to one of these values:

The certificate does not exist.NO_CERTIFICATE

The certificate is issued by a CA that is unknown to the
server.

ISSUER_NOT_FOUND

The server requested and received the client certificate or
a certificate chain, but the begin date of the certificate is
a future date.

NOT_VALID_YET

The certificate is expired.EXPIRED

The server requested client authentication and received a
client certificate chain that contains X509 version 3

ISSUER_NOT_CA

certificates, but one or more of the issuer certificates do
not have CA privilege (indicated by the issuer certificate
containing the Basic Constraints extension with the subject
type set to END_ENTITY).

The server requested client authentication and received a
client certificate chain that contains X509 version 3

INSECURE_ALGORITHM

certificates, but it has been signed using the MD5
algorithm, which is considered unsecure.

Using the -requireauth Option 73

The server requested client authentication and received a
client certificate chain that contains X509 version 3
certificates, but the certificate cannot be trusted.

INVALID_CERTIFICATE

The server requested and received a client certificate or
client certificate chain, and all previous checks have
passed.

VALID

NOTE: If the iTP Secure WebServer finds one or more errors when validating a certificate, it
reports the first error only.

Updating TLS and SSL Configuration
After you have generated the public/private key pair, installed the certificate, and changed the
key database file password, you must update the configuration file httpd.stl.config with this
new information and the DN you used when running the keyadmin utility. This file is located in
the /usr/tandem/webserver/conf directory.
The contents of httpd.stl.config are shown in “Sample Secure Transport httpd.stl.config File”
(page 74). Brief descriptions of them follow the example. For a complete description of the directives,
see “Configuration Directives” (page 198).

Table 5 Sample Secure Transport httpd.stl.config File

httpd.stl.config
Configure the required Secure Transport information
#
KeyDatabase $root/conf/test_key.db
ServerPassword WebServer
AcceptSecureTransport -transport /G/ZTC0 -port 4571 -address
172.31.24.12 -cert
{CN=Secure Transport Bootstrap Certificate, OU=Testing Only - Do
Not Trust for Secure Transactions, OU=No Assurance - Self-
Signed, OU=Generated Mon Dec 22 09:1421 UTC+ 2003, O=HP-NED}

The KeyDatabase directive specifies the file to be used for storing keys and public-key certificates.
The ServerPassword directive specifies the password used to encrypt the key database file.
This password must agree with the one you specified when running the keyadmin utility. For
details, see “Changing the Key Database File Password” (page 62).
The AcceptSecureTransport directive specifies the TCP/IP process, DN, and port to use for
TLS and SSL connections.

NOTE: The standard port for TLS and SSL is 443. If you use this port, the server must be started
using the super ID, as described in “Installing the iTP Secure WebServer” (page 34).

The DN you enter must match the one specified in the keyadmin command when the certificate
request was generated.
The Region directive enables you to control how clients access your secure server and its contents.
(These commands are entered between the curly braces.) The directive in the example restricts
access to /ssl-sample-dirto clients that use a TLS or an SSL connection.

Controlling Access and Privacy
With TLS and SSL, all connections between a Web client and the server are encrypted. A Web
client can verify the server's identity by using the server's public-key certificate. As described
previously, you also can request or require a Web client to authenticate itself to the server.

74 Configuring for Secure Transport

To control server access and privacy, you can:

• Specify Region commands to control server responses

• Use the TLS and SSL variables to access information within CGI programs

Specifying Content Access Using the Region Command
You use the Region directive's RequireSecureTransport command to mandate that only TLS
or SSL connections can access particular regions of content. For example, if you must protect all
your secret recipes from eavesdropping, you could use the RequireSecureTransport command:
Region /recipes/* { RequireSecureTransport }

In this example, all requests for objects in the /recipes region on the server must be made using
TLS or SSL.
You can further restrict access by using the -auth option of the RequireSecureTransport
command to require that client authentication occurs, as in this example:
Region /recipes/* { RequireSecureTransport -auth }

In this example, only clients that have been authenticated using TLS or SSL are allowed access to
objects in the /recipes/top-secret region on the server. (For more information about the
Region command, See “Region” (page 232).
You also can use CGI environment variables in Region commands. All security-related CGI
variables are available in Region commands. For example:
The following command allows access only to clients using keys 1024 bits long:
Region /* { if {$HTTPS_KEYSIZE != 1024} {Deny}

 }

Following is another example, using the Web client's DN:
set goodusers {CN=User 1, OU=Persona Certificate, O="RSA Data
 Security, Inc.", C=US}
lappend goodusers {CN=User 2, OU=Persona Certificate, O="RSA
Data Security, Inc.", C=US}
RegionSet goodusers $goodusers
Region /* {
RequireSecureTransport -auth $goodusers
}

This command allows access only to clients who have presented a certificate by using one of the
DNs specified in goodusers.

Using TLS and SSL Environment Variables in CGI Programs
You can use the TLS and SSL environment variables to access information about individual requests
in CGI programs.
The method to access these variables depends on the programming language you use. For a list
of the TLS and SSL environment variables and for information about how to use them
programmatically, see “Using Common Gateway Interface (CGI) Programs” (page 138).

Controlling Encryption and Integrity Checking
The iTP Secure WebServer enables the Web client and server to negotiate which encryption
algorithm will be used. The encryption algorithm is called a cipher. The choice of cipher controls
both the encryption and integrity checking required between client and server.
Encryption protects the privacy of a message in transit, while integrity checking provides proof
that a message has not been altered during transit.

Specifying Content Access Using the Region Command 75

Using Ciphers With the AcceptSecureTransport Directive
The iTP Secure WebServer allows you to specify the ciphers that you want the WebServer to
support. Specifying a particular cipher mode ensures the maximum security for each connection.
Encryption and integrity checking are controlled through the AcceptSecureTransportdirective's
-ciphers argument. For details about the syntax and use of the -ciphers argument, See
“AcceptSecureTransport” (page 200).
In general, what ciphers you select depends on your use of the iTP Secure WebServer. For example,
for financial transactions and private personal data, the Camellia cipher provides the highest level
of security but limits the user base as not all clients support Camellia. AES Cipher provides high
level of security while maintaining compatibility with most clients. For basic level privacy, RC4
generally provides enough security while optimizing for speed.

Hashing Ciphers Used by iTP Secure WebServer Ciphers
The ciphers for secure transport ports within iTP Secure WebServer can use three different hashing
algorithms. The first, called MD5, has been in wide use for many years in various Internet
applications. The other, called Secure Hash Algorithm (SHA1), was developed by the U.S.
government. For most applications, either cipher provides sufficient security. Starting with iTP Secure
WebServer Release 7.5 onwards, the third hashing algorithm, SHA256 is supported.

Negotiating Selection Among Available Ciphers
Use the -ciphers option to specify a Tcl list of ciphers that describe the bulk encryption and hash
algorithms the iTP Secure WebServer will use. If you specify no -ciphers option, all the ciphers
are set by default.
The cipher negotiated for the connection will be the first cipher on the Web client's list supported
by the server. For example, if the Web client list (in order) is 1 2 3 4 and the server list is 4 3 2,
cipher 2 will be chosen because it is the first cipher present in the Web client's list that is also
present on the server list. This concept is illustrated in Figure 2 (page 76).

Figure 2 Cipher Negotiation Between Web Client and Server Lists

Web Client List

When this list...

3DES-CBC-SHA1
AES-128-CBC-SHA1

CAMELLIA-CBC-SHA1
RC4-MD5

Server List

is compared to this list...

RC4-MD5
3DES-CBC-SHA1

AES-128-CBC-SHA1 3DES-CBC-SHA1

This cipher is used

For a list of the cipher-hashing algorithms iTP Secure WebServer supports, See
“AcceptSecureTransport” (page 200).

Migrating the key database from iTP Secure WebServer 7.0 to 7.2 and
later

The iTP Secure WebServer version 7.0 key database is not compatible with iTP Secure WebServer
7.2 and later versions. To migrate the key database from version 7.0, you must use the dbmigrate
utility distributed with iTP Secure WebServer.

76 Configuring for Secure Transport

Starting with iTP Secure WebServer Release 7.5, you can export the private keys in the following
formats:
• PEM or DER encoded PKCS#8 format encrypted using either the 3DES, AES128, AES192, or

AES256 algorithms
• PEM encoded format
To migrate the iTP Secure WebServer database, complete the following steps:

NOTE: Before migrating your iTP Secure WebServer 7.0 key database to iTP Secure WebServer
7.2 and later versions, store a copy of the key database in case you want to fallback to iTP Secure
WebServer 7.0.

1. Using the following dbmigrate utility commands, export the private keys from the old key
database:
bin/dbmigrate -keydb <key-file> -exportpriv <key-file> -dn 'dn’
[{[-encode <format>] [-crypt <algorithm>]} | [-nocrypt]]

where,
keydb
is the name of the key database file in which the private key is stored.

key-file
is the name of the key database file in which the private key is stored.

dn
is the associated DN of the private key to be exported.

-encode <format>
specifies the encoding format for the private key. The valid format values are PEM
or DER. The default encoding format is PEM.
You can specify this option anywhere after the –exportpriv option in the
command line sequence.

–crypt <algorithm>
specifies the encryption format for storing the PKCS#8 encrypted keys. The valid
values are AES256, AES192, AES128, or 3DES. The default encryption algorithm
is AES256.
You can specify this option anywhere after –exportpriv option in the command
line sequence.

–nocrypt
specifies that the private key must be exported without encryption in PEM encoded
format.
You can specify this option anywhere after –exportpriv option in the command
line sequence.
When this option is used, the following warning appears:
Storing unencrypted private keys in disk files is not
recommended.

Do not use –nocrypt with –crypt/-encode options.

If you do not specify the -nocrypt option, you must provide the passphrase for
encrypting the key before exporting it to disk file. The following example illustrates
this export sequence:
./dbmigrate -keydb olddb -exportpriv keyfile –dn “CN=www.example.com”
Enter passphrase:

Migrating the key database from iTP Secure WebServer 7.0 to 7.2 and later 77

Enter passphrase for private key:
Re-enter passphrase for private key:
Are you sure you want to export this entry? (y/n) y
The keyfile "keyfile" does not exist. Do you wish to create it? (y/n) y
Private key is successfully exported to file.."keyfile"

The dbmigrate command prompts you for the passphrase of the key database. If you do
not specify the –nocrypt option, the command prompts you for the passphrase to encrypt
the private key. The passphrase specifications are same as that of passphrase for key database.
If you enter a valid passphrase, the command prompts you to re-enter the passphrase for
validation. After passphrase validation, the key is encrypted with the passphrase and exported
in PKCS#8 format. A maximum of four attempts are allowed to enter the passphrase for the
following cases:
• The passphrase specifications are not met

• The passphrase validation fails
If the key-file does not exist, you will be prompted to create the file. If the key-file
already exists, it is overwritten.
If the specified DN does not exist in the key database file, an error message is displayed.
For example,
./dbmigrate -keydb demo.db -exportpriv priv.key -dn

'CN=www.hp.com, L=Cupertino, O=HP, OU=NED,C=US'

2. Using the following dbmigrate utility tool command, export certificates from the old key
database:
bin/dbmigrate -keydb <keydb> -exportcert <key-file> -dn 'dn'

where,
<keydb>
is the name of the key database file in which the private key is stored.

<key-file>

is the name of the disk file to which you want to export the certificate.

dn
is the associated DN of the private key to be exported.

The keyadmin command prompts you for the passphrase of the key database mentioned in
the keyadmin command.
If the key-file does not exist, you will be prompted to create the file. If the key-file already
exists, it will be overwritten.
If the specified DN does not exist in the key database file, an error message is displayed.
The following examples illustrate the use of dbmigrate command:
./dbmigrate -keydb demo.db -exportpriv priv.key –dn \
'CN=www.hp.com, L=Cupertino, O=HP, OU=NED, C=US' \
–encode PEM –crypt 3DES

./dbmigrate -keydb demo.db -exportpriv priv.key –dn \
'CN=www.hp.com, L=Cupertino, O=HP, OU=NED, C=US' \
–encode DER –crypt AES256

./dbmigrate -keydb demo.db -exportpriv priv.key –dn \
'CN=www.hp.com, L=Cupertino, O=HP, OU=NED, C=US'

./dbmigrate -keydb demo.db -exportpriv priv.key –dn \
'CN=www.hp.com, L=Cupertino, O=HP, OU=NED, C=US' -nocrypt

3. After exporting the certificates and the private keys from the old key database, perform the
following steps to create the new key database:

78 Configuring for Secure Transport

a. Using the following command, import the private keys:
bin/keyadmin [-verbose] -importpriv <file> -dn <dn> -keydb <dbfile>

For more information about importing a private key, see “Importing a Private Key into
iTP Secure WebServer's Key Database File” (page 68).

b. Using the following command, add the corresponding certificate:
bin/keyadmin [-verbose] -addcert <file> [-root] -keydb <dbfile>

For more information about adding a certificate, see “Adding a Certificate to the Key
Database File” (page 59).

4. Repeat the steps 1 through 3 for all other key database migrations.
5. Configure iTP Secure WebServer with the newly created key database and start the iTP Secure

WebServer environment.
For more information about how to configure the iTP Secure WebServer environment, see
“Configuring the iTP Secure WebServer” (page 94).

Configuring Trusted Client Root Certificate Database
Starting from iTP Secure WebServer Release 7.5, you can use the ClientCADatabase directive
to specify the name of the database that contains the trusted client root certificates.
Perform the following steps if multiple client certificate chains are added manually to the original
key database (configured using the KeyDatabase directive), and there are less number of server
certificate chains:
1. Export the server certificate chain from the original key database.
2. Create a new key database.
3. Import the server certificate chain into the newly created key database.
4. Delete the server certificate chain from the original key database.
5. Configure the iTP Secure WebServer and set the following:

• The newly created key database as the path for KeyDatabase directive.

• The original key database as the path for ClientCADatabase directive.

Perform the following steps if there are multiple server certificate chains and less number of client
certificate chains:
1. Create a new key database using the keyadmin utility with –initdefaults option. This

creates a certificate database file with all the default root certificates.
2. Add the other client root certificates that are manually added to the original key database to

the new key database.
3. Configure ClientCADatabase directive with the newly created key database.
4. Continue to use the original key database with the KeyDatabase directive. Do not delete

the client root certificates. The iTP Secure WebServer automatically selects only server certificate
chain and ignores the other client root certificates from the original key database.

NOTE: HP recommends that you backup the key database file before performing any of these
procedures. You can use this backup to fallback to the older version of iTP Secure WebServer.
Without backing up, you must merge the client and server certificate chains into the same key
database file before falling back to the older iTP Secure WebServer versions.

Configuring Support For Certificates with Non-English Characters
iTP Secure WebServer supports security certificates containing non-English characters in the DN.
These certificates can be used with the keyadmin utility just like any other security certificate,
without any extra options. However, you must configure the OSS terminal to support these characters

Configuring Trusted Client Root Certificate Database 79

for keyadmin to process them. Use the following commands to enable support for non-English
characters in your OSS terminal:
1. Check for available locales in your system using command locale -a. A list of locales is

displayed.
Table 6 (page 81) lists the locales displayed in the output of the command.
For detailed information about these locales, see the Software Internationalization Guide.

2. Select the required locale based on the language support needed.
For example, for Swedish character support, select sv_SE.ISO8859-1.

3. Set the locale using the following command:
export LC_ALL=<selectedlocale>

For example, for Swedish character support, use the following command:
exportLC_ALL=sv_SE.ISO8859-1.

4. Verify the details of the selected locale and its configuration, using the locale command.
For example, to verify the details of the Swedish locale:
OSS>locale

LANG=C

LC_COLLATE="sv_SE.ISO8859-1"

LC_CTYPE="sv_SE.ISO8859-1"

LC_MONETARY="sv_SE.ISO8859-1"

LC_NUMERIC="sv_SE.ISO8859-1"

LC_TIME="sv_SE.ISO8859-1"

LC_MESSAGES="sv_SE.ISO8859-1"

LC_ALL=sv_SE.ISO8859-1

5. Verify that your terminal supports 8-bit characters using the following command:
OSS> stty cs8

On completion of these steps, your OSS terminal is configured to support the required character
sets.
In certain cases, the keyadmin utility might not display the non-English characters accurately. In
such cases, use the characters as displayed by keyadmin to configure the iTP Secure WebServer.
For example, for a certificate with DN CN=test.nonstop.se, OU=Övrigt -
Applikationer, O=Region Suåns, L=Suåns län, C=se, the keyadmin -list command
displays the following output:
 CN=test.nonstop.se

 OU=xxvrigt - Applikationer

 O=Region Su¥ns

 L=Su¥ns lÃn

 C=se

To start the iTP Secure WebServer with this certificate, specify the following in the -cert option
of AcceptSecureTransport command:
CN=test.nonstop.se, OU=xxvrigt - Applikationer, O=Region Su¥ns, L=Su¥ns lÃn, C=se

and not the following command:
CN=test.nonstop.se, OU=Övrigt - Applikationer, O=Region Suåns, L=Suåns län, C=se

With the -cert option, the complete AcceptSecureCommand is as follows:
AcceptSecureTransport -transport /G/ZTC0 -port 443 -address
128.88.136.198 -cert {CN=test.nonstop.se, OU=xxvrigt -
Applikationer, O=Region Su¥ns, L=Su¥ns lÃn, C=se}

80 Configuring for Secure Transport

Table 6 (page 81) lists the locales that are displayed on running the locale -a command.

Table 6 List of Valid Locales

nl_BE.ISO8859-1fr_BE.ISO8859-1da_DK.ISO8859-1

nl_NL.ISO8859-1fr_CA.ISO8859-1de_CH.ISO8859-1

no_NO.ISO8859-1fr_CH.ISO8859-1de_DE.ISO8859-1

pt_PT.ISO8859-1fr_FR.ISO8859-1el_GR.ISO8859-7

sv_SE.ISO8859-1is_IS.ISO8859-1en_GB.ISO8859-1

tr_TR.ISO8859-9it_IT.ISO8859-1en_JP.ISO8859-1

zh_TW.eucTWja_JP.AJECen_US.ISO8859-1

ja_JP.SJISes_ES.ISO8859-1

ko_KR.eucKRfi_FI.ISO8859-1

Configuring Support For Certificates with Non-English Characters 81

5 Managing the iTP Secure WebServer Using Scripts
This section describes the httpd command and how to manage the iTP Secure WebServer
environment using the scripts provided.
Topics discussed in this section include:

• “The httpd Command” (page 82)

• “Starting the iTP Secure WebServer Using the start Script” (page 83)

• “Stopping the iTP Secure WebServer Using the stop Script” (page 83)

• “Restarting the iTP Secure WebServer Using the restarth Script” (page 83)

• “Restarting the iTP Secure WebServer Using the restart Script” (page 84)

• “Updating the serverclasses Using the updatesc Script” (page 84)

• “Using the httpd Command” (page 85)

• “PATHMON Environment's Autorestart for the iTP Secure WebServer and Related Processes”
(page 88)

• “Collecting httpd Statistics Using statscom” (page 88)
To learn how to perform the same tasks from your browser, see “Managing the iTP Secure
WebServer From Your Browser” (page 182).

The httpd Command
The httpd command starts, stops, and restarts the iTP Secure WebServer environment. The
command takes these actions on startup:

• Reads and validates a configuration file, which describes the entities to be created.

• Creates a PATHMON process to provide process-management services for the iTP Secure
WebServer environment

• Starts the iTP Secure WebServer (the httpd server) as a NonStop TS/MP server class.

• Checks configuration for transport services providers and server processors. If TCP6SAM
specified and a TCP6MON running on every processor, then uses TCP/IPv6 or IP CIP (based
on the availability), otherwise, starts the Distributor process as a NonStop TS/MP server class.

• Starts the generic CGI server and any other specified servers that use the Pathway CGI
interface.

Figure 3 (page 83) shows the management processes created and started to initialize the iTP
Secure WebServer environment.

82 Managing the iTP Secure WebServer Using Scripts

Figure 3 WebServer Management Processes

PATHMONhttpd
config file

Distributor
Process

Generic-CGI
Server

iTP Secure
WebServer

Appl. CGI
Server

When stopping the iTP Secure WebServer environment, the httpd process sends a shutdown request
to PATHMON, which in turn stops the server classes and the PATHMON process.
The start, stop, and restart scripts provided in the /usr/tandem/webserver/conf directory
manage a single iTP Secure WebServer process described by the httpd.config configuration
file. You can use the scripts as they are, modify them, or create your own.

Starting the iTP Secure WebServer Using the start Script
You can start the iTP Secure WebServer by executing the start script that is in the
/usr/tandem/webserver/conf directory. The script starts the httpd process using the
httpd.config configuration file. You can use the script as:
: cd /usr/tandem/webserver/conf
: ./start

No error messages appear. The configured PATHMON process must be running on your system
after the start script has been executed.

Stopping the iTP Secure WebServer Using the stop Script
You can stop the iTP Secure WebServer by executing the stop script that is in the
/usr/tandem/webserver/conf directory. The script stops the process that was started by the
httpd.config file. You can use the script as:
: cd /usr/tandem/webserver/conf
: ./stop

You should not get any error messages. The PATHMON process and any processes started by the
iTP WebServer environment are stopped.

Restarting the iTP Secure WebServer Using the restarth Script

For TCP/IPv6 and IP CIP Support
If the Auto-Accept feature is elected, the iTP Secure WebServer will no longer support the
-restarth option at its startup. This occurs because the Distributor has been removed and can
no longer be used to stage incoming requests while the iTP Secure WebServer is bringing up and
down the HTTPD servers.

Starting the iTP Secure WebServer Using the start Script 83

The -restarth option will result in the following error message indicating the function is no
longer supported:
httpd: (#617) Operation restarth is not supported with PTCPIP.

In addition, the following preceding messages might also appear when the iTP Secure WebServer
attempts to communicate with the Distributor:
httpd: (#556) SERVERCLASS_SEND_ error: 233

httpd: (#545) could not verify if distributor is using port 80

httpd: (#556) SERVERCLASS_SEND_ error: 233

httpd: (#545) could not verify if distributor is using port 443

The -restarth option will work only if both the old and the new configurations are using
conventional TCP/IP processes as their transport (the Auto-Accept feature is not enabled).

For Classical TCP/IP Support
If the iTP Secure WebServer is already running and you want to restart it so that changes to the
httpd.config file can take effect, you can bring up your new configuration without stopping
the server first. You can use the script as:
: cd /usr/tandem/webserver/conf
: ./restarth

You should not get any error messages.
The restarth script applies changes to the httpd and Distributor process configurations
only. It ignores the following types of changes in the configuration file:

• The arguments to other server classes such as generic-cgi.pway

• The addition of new server classes or the deletion of existing ones
Do not modify the configuration of the PATHMON itself, for example, its process priority, before
running restarth.

NOTE: It can take several minutes to restart the iTP Secure WebServer environment if you issue
the restarth script from a Ksh script. For better performance, issue the restarth script from a Pathway
CGI program, and invoke the CGI_fflush procedure immediately after the restarth script is run.
For information about Pathway CGI programming, see “Using Common Gateway Interface (CGI)
Programs” (page 138).

Restarting the iTP Secure WebServer Using the restart Script
Use the restart script when you want changes to take effect other than the ones allowed with
the restarth script. The restart script stops the iTP Secure WebServer and immediately starts
it again, allowing any configuration changes that affect the iTP Secure WebServer to take effect.
You can use the script as:
: cd /usr/tandem/webserver/conf : ./restart

You should not get any error messages. The restart script shuts down the PATHMON process
specified in the httpd.config file and restarts the whole environment.

Updating the serverclasses Using the updatesc Script
Use the updatesc script to modify the configuration of individual serverclasses without impacting
other application serverclasses and httpd daemon. The updatesc script restarts the serverclass.
If you specify an invalid serverclass, an error is returned. If the serverclass is not running, the
updatesc script adds the serverclass to the iTP Secure WebServer environment. Use the following
command to run the script:
conf/updatesc httpd.config serverclass-name1 [serverclass-name2 [serverclass-name3] …]

84 Managing the iTP Secure WebServer Using Scripts

NOTE: By default, the conf directory contains the updatesc script.

You can modify the configuration of multiple serverclasses by specifying the serverclasses as a
space separated list.

Using the httpd Command
You can use the httpd command in your own scripts, or you can use it interactively to control the
iTP Secure WebServer (the HTTPD server).
Starting with iTP Secure WebServer Release 7.5, you can restart individual serverclasses with the
httpd command.

Syntax
The httpd command has this syntax:

httpd {-start [-rollover] |-stop [-rollover] |-restart [serverclass-name]
[-rollover][-noprompt]|-restarth [-rollover] | -add [-rollover][-noprompt] | —delete
[-rollover][-noprompt]} config-filename

-start
starts the httpd server with the configuration specified by config-filename.

-stop
stops the httpd server with the configuration specified by config-filename.

You must provide a confirmation to the following question while you run this
command. "Pathmon <pathmon-name> and all the serverclasses
running under it would be stopped. Do you wish to
continue?(y/[n]):"The default value is n or N(no). The task aborts when
you use the default n or N(no) value. If you enter y or Y, the task is performed.
In case, more than one pathmon's are configured in the configuration file, this
question is prompted for each pathmon and only that pathmon is stopped for which
you enter y or Y </pathmon-name>. The iTP Secure WebServer must be
online-upgrade enabled.

-restart
when specified without serverclass-name, stops and then restarts the iTP
WebServer environment using the configuration from the config-filename.
You must provide a confirmation to the following question while you run this
command."All the Pathmon(s) mentioned in the configuration
file will be restarted. All the serverclasses running under
those pathmon(s) would be stopped and only those
serverclasses that are mentioned in the configuration file
will be started again. Do you wish to continue?(y/[n]):"The
default value is n or N(no). The task is aborted when you use the default value
and when you enter y or Y the task is performed.

-restarth
dynamically reconfigures the httpd server with the configuration specified by
config-filename. This argument does not stop the server. Cannot be used if
httpd is currently running with Auto-Accept feature enabled.

-add

Using the httpd Command 85

adds and starts the server definitions to the pathmon specified in the configuration
file. You can configure other serverclasses along with httpd. You must configure
one httpd server in the configuration file that has all the server definitions that are
to be added to the pathmon. The config-filename is a mandatory input
parameter with this option.

You must provide a confirmation to the following question while you run this
command. "Pathmon <pathmon-name> is already running. Do you
want to add new servers to the same pathmon?(y/[n])"The default
value is n or N(no). The task aborts when you use the default value. When you
enter y or Y, the task is performed. In case, more than one pathmons are
configured in the configuration file, this question is prompted for each pathmon
and servers are added to only that pathmon for which you enter y or Y. The iTP
Secure WebServer must be online-upgrade enabled.

-delete
deletes the servers running in the pathmon environment mentioned in the
configuration file used with this command. Pathmon and other serverclasses continue
to run. The config-filename is a mandatory input parameter with this option.

You must provide a confirmation to the following question while you run this
command. "Pathmon $ZWEB is already running. Following servers
will be deleted from the pathmon: <List of servers mentioned
in configuration file>. Do you wish to continue?(y/[n])". The
default value is n or N(no). The task aborts when you use the default value.
When you enter y or Y the task is performed. In case, more than one pathmons
are configured in the configuration file, this question is prompted for each pathmon
and servers are deleted from only that pathmon for which you enter y or Y.

-rollover
causes the current log files to be saved and the iTP Secure WebServer to write to
a new log file. You can use this argument alone or with the -start, -stop,
-restart, -add, -delete, and -restarth options.

-noprompt
disables the questions prompted for user confirmation in case of
-stop,-restart,-add and-delete. When you use this option along with
-stop/-restart/-add/-delete commands, the task is performed without the
user confirmation.

serverclass-name
is the name of the serverclass. For more information about serverclass name, see
Server (page 247). You can specify the serverclass-name only with the
-restart option.
The serverclass is restarted using the configuration from the specified
config-filename. The Server definition for the serverclass must be present in
the config-filename configuration file. An error is returned if the Server
definition is not present in the configuration file.
If the serverclass is not running, it is added to the PATHMON. If the serverclass is
running, it is restarted without stopping the PATHMON and other serverclasses.
Consider the following when restarting individual serverclasses:
• If a serverclass is running and you modify the serverclass name as part of the

configuration update, the serverclass continues to run with the older

86 Managing the iTP Secure WebServer Using Scripts

configuration. A new serverclass with the modified configuration, and new
name is added to the PATHMON.

• When distributor is present, you cannot use this option with httpd serverclass.

• You cannot update distributor serverclass because it is configured by httpd.
You cannot update a manually added serverclass named distributor.

• If gcache is added to the iTP Secure WebServer environment, perform the
following steps for caching to take effect:

◦ Set GlobalCache to ON in the httpd.stl.config file.

◦ Restart httpd serverclass.

Description
The httpd command controls the iTP Secure WebServer (httpd) process. You can use the
command to start, stop, and restart the httpd process with the configuration specified in
config-filename, and to cause the httpd process to begin logging to new files. The httpd
object file is located in the /usr/tandem/webserver/bin directory. The default httpd.config
file is located in /usr/tandem/webserver/conf.
You can start multiple httpd servers by using the -start argument with unique
config-filename:
#!/bin/ksh
root=${1:-/usr/tandem/webserver}
server1=${2:-httpd1.config}
server2=${2:-httpd2.config}
$root/bin/httpd -start $root/conf/$server1
$root/bin/httpd -start $root/conf/$server2

You can dynamically change the configuration of an iTP Secure WebServer by modifying the
configuration file for the server you want to change, and then using the httpd command with the
-restarth argument The -restarth argument causes the server to reread the directives in the
configuration file without stopping. The configuration file specified must be one that is already in
use. The following example would dynamically reconfigure the server described in the file
httpd3.config:
#!/bin/ksh
root=${1:-/usr/tandem/webserver}
server3=${2:-httpd3.config}
$root/bin/httpd -restarth $root/conf/$server3

The -restarth argument applies configuration changes only to the Distributor process, the httpd
process, and the Servlet Server Class (SSC). Do not specify changes to the PATHMON configuration.
The -restarth argument does not apply these kinds of changes:

• The arguments to other server classes such as generic-cgi.pway

• The addition of new server classes or the deletion of existing ones

• The httpd process is configured to run in Auto-Accept mode.
The -rollover argument causes the httpd process to save the files that it is logging to and to log
to new, empty files. Using -rollover eliminates the need to manually rename log files when you
want to archive them and start new ones. The -rollover argument saves the current log files
using the names specified in the AccessLog, ErrorLog, and ExtendedLog directives, but appends
a timestamp to the name.

• When you use -rollover as the only argument to the httpd command, the current log
files are saved and the httpd process begins logging to new files. If the log file names have

Using the httpd Command 87

been changed in the configuration file, the iTP Secure WebServer ignores the change and
opens new files using the old names.

• When you use -rollover with -start, the log files that were in use when the iTP Secure
WebServer was stopped are saved on startup, and the httpd process begins logging to new
files. If the log file names have been changed in the configuration file, the server opens new
files using the new names.

• When you use -rollover with -restart, the current log files are saved when the iTP
Secure WebServer is stopped, and the httpd process begins logging to new files when it is
started again. If the log file names have been changed in the configuration file, the server
opens new files using the new names.

• When you use -rollover with -restarth, the current log files are saved, and the httpd
process begins logging to new files. If the log file names have been changed in the
configuration file, the server opens new files using the new names.

• When you use -rollover with -stop, the current log files are saved before the httpd process
is stopped. When the iTP Secure WebServer is started again, it begins logging to new files.

• When you use -rollover with -add, the log files that were in use when the iTP Secure
WebServer is started, are saved on addition, and the httpd process begins logging to new
files. If the log file names have been changed in the configuration file, the server opens new
files using the new names.

• When you use -rollover with -delete, the current log files are saved before the deletion.
When the iTP Secure WebServer is started/added again, it begins logging to new files.

NOTE: If no disk space is available to save the current log files, a message (#580) appears on
the command line. Logging stops, and the iTP Secure WebServer reports to the Event Management
Service (EMS) that it cannot write to the log files. To recover from this condition, either provide
more disk space for the logs or, if the log files are very large, archive or delete them and restart
the httpd process.

PATHMON Environment's Autorestart for the iTP Secure WebServer and
Related Processes

Because the iTP Secure WebServer and related processes run in a PATHMON environment, a process
that fails is restarted automatically, ensuring persistence of its service. (PATHMON does not
automatically restart a process that the operator has explicitly stopped.)

Collecting httpd Statistics Using statscom
iTP Secure WebServer performance statistics can be collected from the iTP Secure Administration
WebServer. Because the webserver administrator only can access this server, it is not possible for
normal users to collect webserver statistics. Also, this process is manual and cannot be automated
for scheduled statistics collection.
To overcome these problems, iTP Secure WebServer provides a command-line utility that uses the
statscom command to collect webserver statistics. It eliminates the need of administration server
access for performance data collection. Therefore, any user can collect webserver statistics. Also,
the command-line utility makes automated processing possible through the use of shell scripts for
batch processing.

statscom Command
The statscom command performs the following tasks:
1. Starts the webserver instrumentation
2. Stops the webserver instrumentation

88 Managing the iTP Secure WebServer Using Scripts

3. Checks and reports if the webserver instrumentation is active
4. Reads the current webserver statistics
The statscom tool performs the following series of operations when run through the command
line:
1. Finds all httpd processes owned by the specified iTP Secure Webserver PATHMON/ DOMAIN

2. Opens all httpd processes
3. Depending on the action requested, sends a specific request message to all httpd processes

and when required, the statistics are returned and submitted in the form of Comma Separated
Values (CSV), which can be viewed using Microsoft Excel

The timestat script in iTP Secure WebServer's conf directory can be used to collect webserver
statistics with a single command.

Using the statscom Command
Following are the various command-line options that can be performed using statscom ($PATHMON
is the PATHMON name for webserver, %DOMAIN is the DOMAIN of iTP WebServer running in the
online-upgrade mode).

Sample Commands for Statistics Collection When WebServer is Running Under a Single Pathmon

• statscom -start \$PATHMON [config-file][-location
<DIRECTORY-PATH>][-name <HTTPD-PROCESS-NAME>]

This command starts the statistics collection process for all the httpd processes under PATHMON
$PATHMON.
For example:
./statscom -start \$SWEB

OR
./statscom -start \$SWEB [config-file]][-location
<DIRECTORY-PATH>]\[-name <HTTPD-PROCESS-NAME>]

where config-file is the user-specified configuration file.

• statscom -status $PATHMON [config-file]

This command returns the current instrumentation status. A message is displayed indicating
whether instrumentation for all httpd processes are PATHMON $PATHMON is active or not.
For example:
./statscom -status \$SWEB

OR
./ statscom -status \$SWEB [config-file][-location
<DIRECTORY-PATH>][-name <HTTPD-PROCESS-NAME>]

where config-file is the user-specified configuration file.

• statscom -submit $PATHMON [config-file]

This command stores the httpd statistics in the statistics.csv file under the logs directory
of the webserver.
For example:
./statscom -submit \$SWEB

This command collects complete statistics for all httpd processes in PATHMON $PATHMON.
OR
./statscom -submit \$SWEB [config-file][-location
<DIRECTORY-PATH>][-name <HTTPD-PROCESS-NAME>]

Collecting httpd Statistics Using statscom 89

This command collects statistics for all httpd processes in PATHMON $PATHMON for parameters
specified in user-specified config-file.
The output of all of the above commands is a Comma Separated Value list that can be read
in Microsoft Excel.

• statscom -stop $PATHMON [config-file][-location
<DIRECTORY-PATH>][-name <HTTPD-PROCESS-NAME>]

This command stops the statistics gathering for all httpd processes in PATHMON $PATHMON.
For example:
./statscom -stop \$SWEB

OR
./statscom -stop \$SWEB [config-file]

where config-file is the user-specified configuration file.

In all of the previously listed examples, you can select the parameters, for which the statistics are
to be collected, by exclusively turning the parameter ON / OFF in the configuration file.

Sample Commands of Statistics Collection When WebServer is Running Under a Domain (Two
PATHMONs)

• statscom -start \%DOMAIN [config-file]-location
<DIRECTORY-PATH>]\[-name <HTTPD-PROCESS-NAME>]

This command starts the statistics collection process for all the httpd processes under DOMAIN
$DOMAIN.
For example:
./statscom -start \%WEB

OR
./statscom -start \%WEB [config-file]-location
<DIRECTORY-PATH>]\[-name <HTTPD-PROCESS-NAME>]

where config-file is the user-specified configuration file.

• statscom -status \%DOMAIN [config-file]-location
<DIRECTORY-PATH>][-name <HTTPD-PROCESS-NAME>]

This command returns the current instrumentation status. A message is displayed indicating
whether instrumentation for all httpd processes in under DOMAIN $DOMAIN is active or not.
For example,
./statscom -status \%WEB

OR
./ statscom -status \%WEB [config-file]-location
<DIRECTORY-PATH>]\[-name <HTTPD-PROCESS-NAME>]

where config-file is the user-specified configuration file.

• statscom -submit \%DOMAIN [config-file]-location
<DIRECTORY-PATH>]\[-name <HTTPD-PROCESS-NAME>]

This command stores the httpd statistics in the statistics.csv file under the logs directory
of the webserver.
For example:
./statscom -submit \%WEB

This command collects complete statistics for all httpd processes in DOMAIN $DOMAIN

90 Managing the iTP Secure WebServer Using Scripts

OR
./statscom -submit \%WEB [config-file]

This command collects statistics for all httpd processes in DOMAIN $DOMAINfor parameters
specified in config-file.
The output is a Comma Separated Value list that can be read in Microsoft Excel.

• statscom -stop \%DOMAIN [config-file]-location
<DIRECTORY-PATH>]\[-name <HTTPD-PROCESS-NAME>]

This command stops the statistics gathering for all httpd processes under DOMAIN $DOMAIN.
For example:
/statscom -stop \%WEB

OR
./statscom -stop \%WEB [config-file]-location <DIRECTORY-PATH>]\[-name
<HTTPD-PROCESS-NAME>]

where config-file is the user-specified configuration file.

In all of the above cases, you can select the parameters, for which the statistics are to be collected,
by exclusively turning the parameter ON / OFF in the configuration file.
DIRECTORY-PATH is the user-specified directory location where the statistics.csv file/
statscom.log file is created. -name option can be used to specify the name of httpd serverclass
for which statistics collection has to be done. HTTPD-PROCESS-NAME is the serverclass name of
httpd process. This is useful if httpd serverclass is configured with user configurable name other
than httpd. If not used, statscom would use the default name httpd.

NOTE: config-file can be the name of any user-defined configuration file. The default file
statparams.config, provided with iTP Secure WebServer, enables all the statistics options.
You can edit this file based on your requirement to enable/disable particular options. If the
configuration file is not specified, statscom collects statistics for all the available parameters.
If the statistics collection must be done for a domain, you must ensure that the domain name is
specified as an argument, while executing statistics collection must match with the one mentioned
in the ACS control file.
Additionally, commands for statistics collection must be run with $root/bin as the current working
directory.

A separate log file named statscom.log is created under the logs directory of the webserver
to gather the error messages.

Sample Configuration File for statscom
The sample configuration file for statscom (statparams.config) is located in the conf
directory of the webserver. Statistics collection for a particular parameter can be enabled by
specifying ON in front of the parameter in the configuration file.
Statistics can be collected for the following parameters:

MaxSockets
Maximum number sockets ever opened

SocketOpens
Number of sockets currently open

TotalActiveTimers
Total number of active timers

CurrentConnections

Collecting httpd Statistics Using statscom 91

Number of current open connections (Same as current active requests.)

TotalPendingIOOperations
Total number of pending I/O operations (socket as well as PATHSEND operations.)

AvgBytesProcessed
Average number of bytes processed

AverageHttpdTime
Average time taken by httpd to process requests

HttpdBestTime
Minimum time taken by httpd to process a request

HttpdWorstTime
Maximum time taken by httpd to process a request

AvgCgiRoundTripTime
Average round trip time taken to complete a CGI request

BestCgiRoundTripTime
Minimum round trip time taken to complete a CGI request

WorstCgiRoundTripTime
Maximum round trip time taken to complete a CGI request

TotalTransactionCompleted
Total number of transactions completed

ReceivedPassonRequest
Total number of pass-on requests (These are the PATHSEND
requests from other httpds.)

OutgoingPathsends
Number of outgoing Pathsend requests (These are the PATHSEND requests to other
httpds.)

TotalPathwayInterfacesOpen

Total number of Pathway interfaces open

TotalOpenFileDescriptors
Total number of open file descriptors (These include FDs for disk files, sockets, and
serverclasses.)

ConnectionsOnSocketOperation
Number of connections on a socket (Equivalent to total socket FDs open. This includes
not only the sockets being used for requests, but listening sockets.)

Collecting Webserver Statistics Using timestat script
You can use the timestat script to collect webserver statistics with a single command. This script
performs the following operations:
1. Starts the webserver instrumentation.
2. Waits for the time period provided as an argument while running the script.
3. Collects the webserver statistics for the specified time interval in seconds.
4. Stops the webserver instrumentation.

92 Managing the iTP Secure WebServer Using Scripts

Syntax
./timestat \$<Pathmon>interval [config-file]

OR
./timestat \%<Domain>interval [config-file]

where
config-file is any user-defined file configuration file, which specifies the statistics parameters
to be monitored. If no configuration file is specified, all the parameters will be considered for
statistics collection.
interval specifies the time in seconds for which the webserver statistics are to be collected.
Statistics of all the httpd processes are gathered and stored in the statistics.csv file under
the logs directory of the webserver. It will be overwritten if already present.

Collecting httpd Statistics Using statscom 93

6 Configuring the iTP Secure WebServer
This section contains the default iTP Secure WebServer configuration file and explains how
configuration directives can be used to affect server operation. “Configuration Directives” (page 198),
contains complete descriptions of all configuration directives.
Topics discussed in this section include:

• “Configuring Your Server” (page 94)

• “Managing Server Contents” (page 99)

• “Controlling File Caching” (page 105)

• “Managing Log Files” (page 108)

• “Setting Up Server Aliases” (page 111)

• “Setting Up Server Aliases” (page 111)

• “Customizing Server Error Messages” (page 126)

• “Setting Up Clickable Images” (page 127)

Configuring Your Server
The iTP Secure WebServer is shipped with a default configuration, contained in the file
httpd.config, located in the /usr/tandem/webserver/conf directory. You modify the
configuration by entering or changing the Tcl commands, called directives, in this file. (For an
overview of Tcl, see “Tool Command Language (Tcl) Basics” (page 276).)
The httpd.config file contains conditional file exists statements that enable the inclusion of
directives in other files. For example, directives required for the TLS or the SSL are included in the
httpd.stl.config file.
The iTP Secure WebServer Administration Server, described in “Managing the iTP Secure WebServer
From Your Browser” (page 182), enables you to use the facilities of your browser to modify
configuration files and restart the iTP Secure WebServer environment to implement a new
configuration.

The httpd Configuration File
This example illustrates the contents of the httpd.config file:

Table 7 Sample httpd.config File

###
#
This is an automatically generated configuration file for
the iTP WebServer.
#
See the server documentation for more information.
Set the server root to the server’s installation directory.
#
set root /usr/tandem/webserver
ServerRoot $root
The content negotiation might have value of NONE | LANG |
MULT,
The default is NONE
#
Negotiation NONE
LanguagePreference definition samples
#
LanguagePreference {en, fr, es}
#
LanguageSuffix definition samples
#

94 Configuring the iTP Secure WebServer

Table 7 Sample httpd.config File (continued)

LanguageSuffix en .en
#
LanguageSuffix fr .fr
LanguageSuffix es .es
LanguageSuffix de .ger
The default TCP/IP transport process that will be used is
/G/ztc0 the name is saved here because it is used in two
places in the configuration file.
#
set transport /G/ztc0
This is the file where the extended format server log will
be written.
#
ExtendedLog $root/logs/httpd.log
#
AccessLog $root/logs/access.log
#
ErrorLog $root/logs/error.log
#
This specifies the where the server’s process ID will be
written.
#
PidFile $root/logs/httpd.pid
##
Procs 0
###
#
List of html files to look for when a client only specifies
a directory name
#
IndexFile index.html index.htm home.html home.htm
##
#
Filemap: where to find the content (html files)
#
Filemap / $root/root
##
Enable directory browsing for all regions.
#
Region /* {
DirectoryIndex
}
This Adds Guardian files to the httpd
Filemap /G /G
##
#
source the mime types configuration file"
#
source $root/conf/mime-types.config
##
##
Prevent DNS lookups
#
ReverseLookup no
##
##
Configure information about the Pathway environment to be
created.
#
#
##
##
Pathmon Configuration information.
#
Pathmon /G/zweb {
Priority 170
PrimaryCPU 1
BackupCPU 0
Gsubvol /G/system/zweb

Configuring Your Server 95

Table 7 Sample httpd.config File (continued)

}
##
##
Attributes for servers might be stored in a variable and then
used later.
##
set DefaultServerAttributes {
Priority 170
Numstatic 1
Maxservers 50
Linkdepth 1
CWD $root/bin
Maxlinks 1
}
##
##
Definition of the Generic-CGI server
#
Server $root/bin/generic-cgi.pway {
eval $DefaultServerAttributes
}
##
##
Configure the httpd server’s attributes
#
Server $root/bin/httpd {
eval $DefaultServerAttributes
CWD [pwd]
Arglist -server [HTTPD_CONFIG_FILE]
Env TANDEM_RECEIVE_DEPTH=50
Priority 170
Numstatic 5
Maxservers 50
MapDefine =TCPIP^RESOLVER^NAME /G/system/ztcpip/resconf
MapDefine =TCPIP^NODE^FILE /G/system/ztcpip/ipnodes
MapDefine =TCPIP^PROCESS^NAME $transport
}
##
##
Configure Resource Locator attributes
#
set rmt /bin/rmt/rmt.pway
if { [file exists $root$rmt]} {
Filemap $rmt $root$rmt
Server $root$rmt {
CWD $root/bin/rmt
eval $DefaultServerAttributes
}
RmtServer $rmt
}
##
##
End Resource Locator’s configuration
#
#
Bring in any SSL/TLS related configuration information.
#
if { [file exists $root/conf/httpd.stl.config] } {
source $root/conf/httpd.stl.config
}#
The Accept directive configures the server to accept HTTP
connections on a specified address and port. If no port is
specified, the default port used is 80. Note - if you use
a port below 1024, you must start the server within the
SUPER group.
#
Accept -transport <TRANSPORT_INFO> -port <UNSECURE_PORT_INFO>

###

96 Configuring the iTP Secure WebServer

Table 7 Sample httpd.config File (continued)

#
Custom configuration can be done here.
#
#
##
##
This does an existential check for a sampleservers.config
file. If it is there, it will be included in the
configuration.
#
if { [file exists $root/conf/sampleservers.config] } {
source $root/conf/sampleservers.config
}
##
##
This does an existential check for a local.config file. If
it is there, it will be included in the configuration. By
default,this file is NOT shipped with the product.
#
if { [file exists $root/conf/local.config] } {
source $root/conf/local.config
}

Configuring Your Server for Use With TCP/IPv6 or IP CIP
No new configuration directives are required to support TCP/IPv6 or IP CIP.
1. You must specify a TCP6SAM/CIPSAM process as the transport process in httpd.config.

For example:
Accept -transport /G/ZSAM1

2. If you also use the httpd.stl.config file, you must specify a TCP6SAM/CIPSAM process
for secure transport. For example:
AcceptSecureTransport -transport /G/ZSAM1

3. Optionally, consider adding the new server command, Deletedelay, to the Server
configuration directive. The Server commands control the creation of the PATHMON environment
that the server executes in. Unused links to dynamic servers are returned to PATHMON. The
Deletedelay command specifies the amount of time (in minutes) to wait before returning
these unused links.
For further details on Deletedelay, see “Migration Considerations For TCP/IPv6 and IP CIP
Support” (page 48), and for the Server configuration directive see “Server” (page 247).

The Secure Transport Configuration File (httpd.stl.config)
Table 8 (page 98) shows how to configure the iTP Secure WebServer for SSL or TLS. This sample
file, httpd.stl.config, is supplied with the iTP Secure WebServer. For more information about
SSL/TLS configuration, see “Configuring for Secure Transport” (page 53).

Configuring Global Session Key Caching
To improve caching performance, you can use global session key caching. The current architecture
has multiple instances of Webserver processes running as a Pathway serverclass. Each instance
maintains its own cache of TLS/SSL session keys. However, due to round-robin load balancing of
the iTP Secure WebServer environment, TLS/SSL session key cache hits are rare. This enhancement
provides increased overall TLS/SSL performance by allowing a cache of TLS/SSL session keys to
be shared amongst all instances of the httpd serverclass, thereby maximizing the cache hits and
minimizing the processor and network resources required for establishing TLS/SSL connections to
the NonStop platform.

Configuring Your Server 97

If you want global session key caching, the SK_GlobalCache directive (that is the GlobalCache
variable), must be set to ON to enable the configuration of the server. If individual httpd server
process session key caching is desired, which is the default, set the variable to OFF, or omit it.
The value of MAXSERVERS must always be set to 1. This is a single process serverclass. The value
of MAXLINKS and LINKDEPTH must both always be set to the value of the httpd server's
MAXSERVERS value. For example:
Server $root/bin/httpd { Server $root/bin/gcache {
... Maxservers 1
Maxservers 50 ---> Maxlinks 50
... Linkdepth 50
} ...
 }

The configuration directives SK_CacheSize and SK_CacheExpiration, which are set by
defining the variables CacheSize and CacheExpiration, are optional. The default value for
SK_CacheSize is 1000, and for SK_CacheExpiration is 3600 (1 hour).

NOTE: If individual httpd server process session key caching is used, each process will create
it's own cache with SK_CacheSize entries. However, if global session key caching is used, that
single process server will create a single cache also with SK_CacheSize entries. Take this into
consideration when determining the value for SK_CacheSize.

Use the new directive SK_GlobalCacheTimeout to alter the default Pathsend timeout value
of 1/2 second (50/100 second). This timeout determines how long the httpd server will wait for
a response from the global cache server before a timeout error occurs.
To enable tracing you must define the env variable TRACEFILE. All communication from and to
the httpd server is logged. You can set this option only if problems arise.Table 8 (page 98) shows
global caching enabled.

Table 8 Sample httpd.stl.config File

#VERSION=7.2
httpd.stl.config
Configure the required Secure Transport information
#
KeyDatabase $root/conf/test_key.db
ServerPassword WebServer
AcceptSecureTransport -transport /G/ZTC0 -port 443 -cert
{CN=Test Key, OU=Testing Only, O=Tandem Computers,Inc.,
ST=California,C=US}
Region /*/ssl-sample-dir {
RequireSecureTransport
}#
Optional Global Session Key Cache server configuration
#
set GlobalCache OFF
#set CacheSize 1000
#set CacheExpiration 3600
if { [string match "ON" $GlobalCache] } {
SK_GlobalCache $GlobalCache
SK_GlobalCacheTimeout 50
Server $root/bin/gcache {
eval $DefaultServerAttributes
Maxservers 1
Maxlinks 50
Linkdepth 50
Numstatic 1
Env TRACEFILE=$root/logs/gctrace.log
Env ERRORFILE=$root/logs/gcerror.log
if {[info exists CacheSize]} {
Env SK_CacheSize=$CacheSize
}
if {[info exists CacheExpiration]} {
Env SK_CacheExpiration=$CacheExpiration

98 Configuring the iTP Secure WebServer

Table 8 Sample httpd.stl.config File (continued)

}
}
}

Other Configuration Files
Information about the configuration file required to use the Servlet Server Class (SSC) is in NonStop
Servlets for JavaServer Pages (NSJSP) System Administrator's Guide.

Managing Server Contents
This subsection describes how to manage the contents of your server including:

• “Understanding How URLs Work” (page 99)

• “Mapping Requests to Contents” (page 99)

• “Establishing User Directories” (page 104)

• “Using Guardian Files” (page 104)

Understanding How URLs Work
Objects on your iTP Secure WebServer are accessed by means of Universal Resource Locators (
URLs). A URL is composed of these five elements:

DescriptionURL ComponentNo.

The transport method to be used to access the server. For example: http.Method1

The name of the host machine.Host2

The port on the host to which the request is to be directed. If no port
number is specified, the default port for the particular method is assumed
(for example: port 80 for HTTP).

Port3

The path name of an object (document, image, file, and so on.) on the
server.

Path4

Additional query information (optional).Query String5

A Web client uses the first three components of a URL (method, host, and port) to access the correct
server. It uses the path component to tell the server which specific object is being requested. “Sample
URL” (page 99) shows a sample URL.

Table 9 Sample URL

1 2 3 4 5
http://www.widgets.com:8080/finance/home.cgi?money

This URL directs its request to an HTTP server running on host www.widgets.com and checking for
requests on port 8080. The object being requested is a Common Gateway Interface (CGI) program
(home.cgi) located in directory /finance. The query string is money. CGI programs are discussed
in detail in “Using Common Gateway Interface (CGI) Programs” (page 138).

Mapping Requests to Contents
To make the contents on your server available to clients, you must map the object information in
URLs to the actual location of these objects on your server. To implement this mapping, you specify
one or moreFilemap directives in your server configuration file (httpd.config).
Each Filemap directive has two arguments:

Managing Server Contents 99

www.widgets.com

Filemap url-prefix dir

where:
url-prefix
specifies the URL prefix to which this Filemap directive applies. For example:
/admin/widgets.

dir
is the server directory to which any object specification matching url-prefix
will be directed for the requested object.

The Filemap directive converts a matched request specification (object path) into the actual
location on the server of the requested object by substituting the target server directory (dir) for
the matched URL prefix (url-prefix).
The Filemap directive also has two options, both of which concern the handling of symbolic links.
For complete information on the use of the Filemap directive, see “Filemap” (page 212).
To illustrate how the Filemap directive works, assume the following Filemap directive is specified
in the configuration file of a server running on the host www.widgets.com:
Filemap /admin /usr/tandem/webserver/root

If a Web client user accesses this server by using the URL
http://www.widgets.com/admin/info/welcome.html

then the server maps the request to the following file on the server:
/usr/tandem/webserver/root/info/welcome.html

You can add new content to your server without having to restart or reconfigure your server. Place
new files under one or more of the directories specified in existing Filemap directives. As soon as
you place these new files under a mapped directory, users can begin accessing them.
For example, if you place a new file named office.html in the directory
/usr/tandem/webserver/root

users can immediately begin accessing this new file by using the URL
http://www.widgets.com/admin/office.html

Using Multiple Filemap Directives
If you have a large number of files to make available on your server, using multiple Filemap
directives might be useful. Multiple Filemap directives can coexist in the same configuration file
as long as each directive specifies a different matching prefix.
Using multiple Filemap directives enables you to partition major areas of server content across
different directories or even different disks. For example, given the directives
Filemap /encyclopedia /usr/disk0

Filemap /dictionary /usr/disk7

Filemap /info /G/data1/web

the URL
http://my.server.com/encyclopedia/info/doc.html

will see the file
/usr/disk0/info/doc.html

while the URL
http://my.server.com/dictionary/entry/ants.html

will see the file
/usr/disk7/entry/ants.html

100 Configuring the iTP Secure WebServer

Handling DirectoryAccesses
A URL can see a directory instead of a specific object. For example:
http://my.server.com:8080/personal/tootie/

When a URL refers to adirectory, the server looks for an index file within the directory being
requested. The specificindex file the server looks for is determined by the setting of the IndexFile
directive. For example, if your server receives a directory request, and the directive
IndexFile index.html welcome.html

is specified in the server configuration file (httpd.config), your server searches first for the
index file index.html within the specified directory. If it finds this file, it returns the content to
the Web client. Otherwise, it searches for the specified alternative index file, welcome.html. If
your server cannot find this file, it returns an error message to the Web client (unless automatic
indexing is specified; see “Enabling Automatic Directory Indexing” (page 117)).
For complete information on the IndexFile directive, see “Configuration Directives” (page 198).
A common use of index files is to establish home pages that apply to a server's entire contents.
For example, the following directives might be specified in a configuration file:
Filemap / /usr/tandem/webserver/root/
IndexFile index.html

When a Web client makes a request to this server through the home page URL
http://www.widgets.com/

the server returns the file index.html contained in
/usr/tandem/webserver/root

You can configure your server to automatically generate anindex file whenever the server cannot
locate an index file within an accessed directory. This generated index file lists all the files currently
residing in the accessed directory. For complete information on automatic indexing, see “Enabling
Automatic Directory Indexing” (page 117).

Content Negotiation
Sometimes it is reasonable to present the same content to different users in different ways. For
example, you might want to let the user choose whether to receive text in English, German, or
Japanese. Similarly, different clients might prefer different character sets or file compression options.
To satisfy these requirements, the iTP Secure WebServer supports server-based content negotiation.
Content negotiation implies that:

• A request from a client might include Accept headers (Accept, Accept-Language,
Accept-Encoding, Accept-Charset) to specify the client's preferred data representations. The
HTTP/1.1 specification defines these headers and also a method of weighting (describing the
precedence among) several options.

• The server configuration enables content negotiation and specifies the types of content
negotiation to allow (language only or multiple criteria).

• The content files are organized and named in a way that enables the server to distinguish
among different representations of the same content.

Managing Server Contents 101

Configuration Directives for Content Negotiation
The iTP Secure WebServer makes content-negotiation decisions on the basis of the following three
configuration directives:

• The Negotiation directive specifies whether the server should perform content negotiation
and, if so, whether to make decisions based on language alone or also on the basis of
encoding and character set. For example, the following directive specifies that the server
should allow multiple content-negotiation criteria:
Negotiation Mult

• The LanguagePreference directive specifies how the server should choose among different
language representations of the same content in cases in which the request does not include
an Accept-Language header. (If the request includes an Accept-Language header, the server
chooses according to the information in that header.) For example, the following directive
specifies that the server should select English by preference but that, if no English-language
version of the content exists, the server should select French:
LanguagePreference {en,fr}

• The LanguageSuffix directive maps between the RFC 2068 standard abbreviation for a
language (such as en-US for American English and de for German) and the extension used
to identify files in that language on the host. For example, the following directive specifies
that German language files will have the extension .ger:
LanguageSuffix de .ger

For detailed information about these directives, see “Configuration Directives” (page 198).
To see RFC 2068, use the following URL:
http://www.ietf.org/rfc/rfc2068.txt

Storing Content for Negotiation
To select among different representations of the same content, the server does not examine the
files; rather, it searches for path components or file extensions that correspond to
content-representation options. The server behaves very differently depending on whether the
Negotiation directive specifies language-only (Lang), multiview (Mult), or no (None) content
negotiation. In fact, you must store your content differently depending on the kind of negotiation
you choose.
Language Only. If the configuration species language-only content negotiation (Lang), the server
examines the request URL, and then:
1. If the requested file is present at the specified location, as determined by the URL and any

applicable Filemap directives, the server returns the file. No content negotiation occurs.
2. If the requested file is not present at the specified location, the server searches for a subdirectory

that has the name of the RFC 2068 standard abbreviation for the preferred language.
For example, if the request contains the URL:
/us/ca/sj/store1/product.html

and if an AcceptLanguage header specifies English (en) followed by German (de) as acceptable
languages, the server first searches for the subdirectory:
/store1/en/

If no such directory exists, the server searches for the subdirectory:
/store1/de/

If the request does not contain an AcceptLanguage header, the server uses the value or values
of the LanguagePreference directive to condition the search. If the configuration does not

102 Configuring the iTP Secure WebServer

http://www.ietf.org/rfc/rfc2068.txt

include a LanguagePreference directive, the server returns a status code indicating that the
file was not found.

3. After locating a subdirectory for the preferred language, the server searches for and returns
the requested file. If the server finds a directory corresponding to the highest weighted
language, but the file is not present in that directory, the server searches for the file in the
directory for the second best language, and then the third best, and so on. Most browsers
specify 'any language' (*) as the final language tag in the Accept-language header to increase
the likelihood that some file will be returned.

To use language-only content negotiation:
1. Define a separate subdirectory for each language.
2. Use the RFC 2068 standard abbreviation for the language as the subdirectory name.
3. Store the files that contain text in each language in the corresponding subdirectory.
For information about RFC 2068, see:
http://www.ietf.org/rfc/rfc2068.txt
Multiview. If the configuration specifies multiview content negotiation (Mult), the server examines
the request URL and then:
1. If the requested file is present at the specified location (as determined by the URL and any

applicable Filemap directives), the server returns the file. No content negotiation occurs.
2. If the requested file is not present at the specified location, the server searches for a file that

has extensions that match the criteria specified by the request headers.
The Accept header specifies the preferred content types. The MIME types table (“Server MIME
Types” (page 143)) defines the corresponding file extensions. If the request does not contain
an Accept header, the server does not select content on the basis of content type.
The Accept-language header or the LanguagePreference directive specifies the preferred
languages: the LanguagePreference directive applies only if the request has no Accept-language
header. The LanguageSuffix directive defines the corresponding file extensions. If the request
does not contain an Accept-language header and the configuration file does not contain a
LanguagePreference directive, or if the configuration file does not contain a LanguageSuffix
directive for any preferred language, the server does select content on the basis of language.
The Accept-encoding header specifies the preferred encodings. the MIME types table (“Server
MIME Types” (page 143)) defines the corresponding file extensions. If the request does not
contain an Accept-encoding header, the server does not select content on the basis of encoding.

3. Upon locating a file that meets the content-negotiation criteria, the server returns that file to
the client.
If no file matches all these criteria, the server returns the one that offers the best match according
to these criteria:

TypePrecedence

content typeFirst

languageSecond

encodingThird

If multiple files are equal in terms of satisfying the criteria, the server returns the smallest file.
For example, if the request contains the URL:
/us/ca/sj/store1/product

and its headers specify text/html and English (en) as preferences, the server will return:
/us/ca/sj/store1/product.de.html

in preference to:

Managing Server Contents 103

http://www.ietf.org/rfc/rfc2068.txt

/us/ca/sj/store1/product.en.avi

However, in no case will the server return a file that is unacceptable in terms of any of the
header criteria.

To use multiview content negotiation, you must give each file name one or more extensions that
match the supported content-negotiation criteria. Do not store files for different languages in
subdirectories named for those languages unless the client will include the subdirectory name
explicitly in each URL.

Establishing User Directories
You might want to allow one or more Open System Services (OSS) accounts on the host machine
to make content available to clients through your server. You can do this by establishing private
user directories.
You establish user directories by specifying UserDir directives in the server configuration file
(httpd.config):
UserDir user-dir

where:
user-dir
specifies a subdirectory in the user's home directory.

Requests to user directories are differentiated from normal requests by the use of a tilde (~) prefixed
to the path component of the URL. Any path beginning with a tilde is automatically mapped to the
appropriate user directory.
For example, if the directive
UserDir public_html

is specified in a server's configuration file, the URL
http://www.widgets.com/~black/home.html

will be mapped to public_html/home.html in the user directory black.
If a referenced user account or user-dir does not exist on the host machine, the server will return a
"not found" result. If no UserDir directive is specified in the configuration file, the server will
return a "not found" result for any attempt to access a URL prefixed with a tilde.

Using Guardian Files
Although content in the iTP Secure WebServer environment traditionally resides in the OSS
namespace, you can also use URLs to see Guardian files. Guardian files do not have file extensions,
but you can specify extensions when referring to those files. When using Guardian files, the
following rules apply:
• If a URL in the namespace /G or /E includes an extension, the iTP Secure WebServer omits

the extension when opening the file, but opens the file using the correct MIME type for the
extension.
Examples:

◦ The URL
/G/vol/subvol/file.html

opens the file
/G/vol/subvol/file

as html.
◦ The URL

/G/vol/subvol/file.txt

opens the file

104 Configuring the iTP Secure WebServer

/G/vol/subvol/file

as text.

• If a URL refers to a Pathway-CGI application and includes an extension, the iTP Secure
WebServer directs the request to the server class specified in the PathwayMimeMap directive
for the extension. For example:
/G/vol/subvol/serverclassname.pway

invokes the server class serverclassname in the local iTP Secure WebServer environment,
unless the configuration contains a PathwayMimeMap directive that assigns the extension
.pway to another server class or PATHMON environment.

• If a URL refers to a Pathway-CGI application and does not include an extension, the iTP Secure
WebServer opens the file using the default type for the region, as specified by the
DefaultType configuration directive or Region command. If the default type for the region
is application/x-httpd-Guardian, the extension is .pway by default.

NOTE: If this feature does not seem to work as you expect, check your configuration file to
check that the DefaultType command for the region specifies application/x-httpd-Guardian.

Examples:

◦ The URL
/G/vol/subvol/file

opens the file
/G/vol/subvol/file

as the default type for the region, as specified by the DefaultType configuration
directive or Region command.

◦ /G/vol/subvol/serverclassname

is treated as if it had a .pway extension. It invokes the server class serverclassname
in the local iTP Secure WebServer environment, unless the configuration contains a
PathwayMimeMap directive that assigns the extension .pway to another server class or
PATHMON environment.

• If a Pathway-CGI application is in the /G namespace and the argv[0] argument passed to
the application contains a URL with an extension, the iTP Secure WebServer removes the
extension from the argument string but preserves the extension in CGI environment variables
such as SCRIPT_NAME and HTTP_REFERRER.
For example, for the application:
/G/vol/subvol/echo.atp

the argv[0] string becomes
/G/vol/subvol/echo

but SCRIPT_NAME includes the URL used for access to the application, including any extension,
that is /filemap/ echo.atp.

Controlling File Caching
To improve performance, the iTP Secure WebServer caches files it accesses. When a file is cached,
it is held open for 15 minutes, eliminating the need to open the file again during that time. While
the file is open, no maintenance can be performed on it nor can it be moved to a different directory.
In addition to file opens, file information (retrieved by calling fstat) and actual file content can
also be cached.

Controlling File Caching 105

The default configuration of the iTP Secure WebServer has been changed to take advantage of
the file caching enhancement. If file caching is not enabled, the iTP Secure WebServer performs
as in previous releases.
However, users might choose not to use file caching because of its increased memory consumption.
With the default configuration, up to 20MB bytes of additional memory might be used.
A shell script, named vcache, is available in the /conf directory to validate the cache entries in
all the httpd servers. This script causes the HTTPD to verify its cached information, ensuring current
file content is provided to clients. However, the process of validating cache entries walks through
the entire cache table and might temporarily consume system resources. Therefore, file updates
should be conducted during off-peak hours.
Syntax:
./vcache [userid][server-name]

userid if specified, is the id of the owner of httpd process else username of current logon session.
The following are the five other configuration directives that you can use to handle file caching:
server-name is the serverclass name of httpd. When httpd serverclass is configured with
user configurable names, this option can be used with vcache to specify the name. This argument
is optional and when not used the default value is httpd.

FileStatsCheckTime
Syntax:FileStatsCheckTime <minutes>
Description:
Use the FileStatsCheckTime directive to specify the interval for file stats information (information
about a file retrieved via a call to fstat) refreshing. In other words, the cached file stats are used
during the period specified by FileStatsCheckTime. If a file update is performed during this
interval, the timestamp and file contents in the response might not be up to date. Therefore, use
this directive with caution.
FileStatsCheckTime accepts a value from -1 to 600 minutes (10 hours). Specifying a value
of -1 disables checking. Specifying a value of 0 (zero) causes a check to be performed every time
the file is requested. With this setting, the timestamp and file contents returned by the iTP Secure
WebServer will always be current.

NOTE: If disk files are not frequently updated, HP recommends that you use the value of -1, and
use the vcache script after files are updated.

Default:
When no FileStatsCheckTime directive is present, the value of 60 (one hour) will be used.
Example:
FileStatsCheckTime 120

CacheTime
Syntax:CacheTime <minutes>
Description:
Use the CacheTime directive to specify the time (in minutes) during which the server caches file
opens, file stats, or actual file contents. When this directive is present in a configuration file, files
accessed by the iTP Secure WebServer stay in memory for the time specified in the CacheTime
directive.
CacheTime accepts a value from 0 (zero) to 600 (10 hours). Specifying a value of 0 (zero) in
the CacheTime directive disables file caching.
Default:

106 Configuring the iTP Secure WebServer

When no CacheTime directive is present, the server caches files for approximately 60 minutes
(one hour).
Example:
CacheTime 7

MaxFileCacheEntries
Syntax:
MaxFileCacheEntries <num_entries>

If you specify a larger number of entries, more memory might be consumed by the file cache; if
you specify a smaller number, the server must access files directly from disk more frequently.
Therefore, HP recommends a survey of the Web site in addition to the physical memory configuration
on the processor.
Description:
Use the MaxFileCacheEntries directive to specify the maximum number of entries allowed in
the file cache where the server stores file opens, file stats, and actual file contents.
If you specify a larger number of entries, more memory might be consumed by the file cache; if
you specify a smaller number, the server must access files directly from disk more frequently.
Therefore, HP recommends a survey of the Web site in addition to the physical memory configuration
on the processor.
Only one MaxFileCacheEntries directive is allowed in the configuration file.
MaxFileCacheEntries accepts a value from 256 to 6000.
To disable file opens caching, the CacheTime directive must be set to 0.
Default:
When no MaxFileCacheEntries directive is present, the server allows 2000 entries in the file
cache.
Example:
MaxFileCacheEntries 5000

MaxFileCacheContentSize
Syntax:
MaxFileCacheContentSize<num_kilobytes>

where [num_kilobytes] specifies the number of kilobytes (KB), where 1 KB equals 1024 bytes.
Description:
Use the MaxFileCacheContentSize directive to specify the maximum file content length allowed
in a file cache entry. When this directive is present in a configuration file, files with a content length
less than or equal to [num_kilobytes] are cached entirely in the server's file cache. For files
with a content length greater than [num_kilobytes], only file opens and file stats are cached.
The actual file content is accessed directly from disk.
MaxFileCacheContentSize accepts a value from 0 (zero) to 50KB (50 x 1024 bytes).
Specifying a value of 0 (zero) in the MaxFileCacheContentSize directive disables file content
caching.
Default:
When no MaxFileCacheContentSize directive is present, the server assumes a value of 10
(10KBp).
Example:
MaxFileCacheContentSize 30

Controlling File Caching 107

Both MaxFileCacheEntries and MaxFileCacheContentSize determine the maximum file
cache size. For example, if MaxFileCacheEntries is set to 3000 and
MaxFileCacheContentSize is set to 30, and then the maximum capacity for the file cache is
90MB. HP recommends a survey of all static files residing on the Web site in addition to the
physical memory configuration. Performance might be hindered if the iTP Secure WebServer
consumes too much physical memory and causes a high number of page faults. A tuning process
might be required to determine optimal settings for these directivpes.

NoCache Region Command
Syntax:
Region URL_path {

[NoCache]

}

Description:
Use the Region directive to control access to the server by path component. The command(s)
specified are applied to all URLs matching URL_path. The NoCache command is used to disable
file caching for all URLs matching the URL_path. In other words, none of the file opens, file stats,
or file contents in the region are cached.
The file caching mechanism is applied to all disk files on an iTP Secure WebServer. If a small
number of disk files require constant updates, frequent updates to the file cache might also be
required, and this might impact the overall performance of the iTP Secure WebServer. The NoCache
Region command can be used to exclude some of these files from file caching and allow the
static files to remain in the cache longer, and therefore help maintain a good performance.
However, the Region directive is evaluated for every request and, in this case, every file access.
Therefore, too many Region directives might also affect the efficiency of the iTP Secure WebServer.
It might be best to keep all constantly updated files in a single region.
Default:
When no Region directive or no NoCache command in the Region directives is present, the
server attempts to cache all files accessed.
Example:
 Region /h/dynamic_files/* {

 NoCache

 }

Managing Log Files
This section describes how to manage your log files including:

• “Choosing a Log Format” (page 108)

• “Planning Space for Logs” (page 109)

• “Rotating Log Files” (page 110)

Choosing a Log Format
You can choose between three formats for your server log files:

• “Common Log Format (CLF)” (page 109)

• “Combined Log Format” (page 109)

• “Extended Log Format (ELF)” (page 109)

108 Configuring the iTP Secure WebServer

Common Log Format (CLF)
The common log format (CLF) is used by the access and error log files and is specified by the
AccessLog andErrorLog configuration directives (see “Configuration Directives” (page 198)). This
format is supported by other Web servers and by many log-analysis tools. If you already are using
or have such tools, you might want to use CLF.

Combined Log Format
The information logged into the access log as per the Common Log Format is devoid of the 'Referer'
and the 'User-Agent' fields. The users can specify the configuration directive CombinedLogFormat
if they want to log these two additional fields in to the access log file. For information on using this
configuration directive, see “CombinedLogFormat” (page 209).

NOTE: The CombinedLogFormat directive is available on systems running J06.04 and later
J-series RVUs and H06.15 and later H-series RVUs.

Extended Log Format (ELF)
The extended log format (ELF) is used by the extended log file and is specified by the ExtendedLog
configuration directive (see “ExtendedLog” (page 211)). ELF implements several features not available
with CLF including:

• All error and access information for a particular request is recorded in a single log entry. This
integration of information eliminates the need to correlate entries in the error log with separate
entries in the access log.

• Fields are provided for the Web-browser software type, the referrer, and the request begin
and end times.

• Fields are provided for security information, such as the name of an authenticated user.

• The name/value pairs used for the information fields support the addition of new logging
fields (such as a field for security information).

• The overall format makes it easy to write new log-analysis programs.
If you plan to write your ownlog-analysis programs, or if you must use the additional information
fields, you might want to specify ELF. CLF and ELF are described in detail in “Server Log File
Formats” (page 261).

Planning Space for Logs
Because the serverlog files can grow quickly in size, you should plan adequate space for them.
Table 10 (page 109) compares the expected daily growth in the size of the server log files for
various aggregate numbers of daily requests. This table assumes a typical entry size of 100 bytes
for the access log file and a typical entry size of 150 bytes for the extended log file. The size of
the errorlog file will depend on the frequency of access errors. Table 10 (page 109) assumes that
the error log file will grow at 20 percent the rate of the access log file.

Table 10 Required Log-File Space

Extended Log SizeError Log SizeAccess Log SizeRequests/Day

732K98K488K5,000

1.5 Mb195K976K10,000

3.0 Mb0.4 Mb1.9 Mb20,000

7.2 Mb1.0 Mb4.8 Mb50,000

14.5 Mb1.9 Mb9.7 Mb100,000

28.5 Mb3.8 Mb19.0 Mb200,000

Managing Log Files 109

Table 10 Required Log-File Space (continued)

Extended Log SizeError Log SizeAccess Log SizeRequests/Day

72.0 Mb9.6 Mb48.0 Mb500,000

145.5 Mb19.4 Mb97.0 Mb1,000,000

Rotating Log Files
As the serverlog files grow in size, you will eventually must rotate to new ones: that is, either archive
or delete the old files (depending on your policy) and create new files. There are a number of
ways you can automatically save current log files and have iTP Secure WebServer begin logging
to new files.

Using the rollover and rollstarth Scripts to Rotate Log Files
You can use the rollover or the rollstarth script to rotate the log files of the iTP Secure
WebServer specified in the httpd.config file. The rollover script saves the current log files in
an archive directory called ArchiveLogs and causes the iTP Secure WebServer to begin writing
to new ones; the iTP Secure WebServer continues the operation. The old log files will be saved
with a timestamp attached to their names when the rollover occurs.
You run the rollover script from the /usr/tandem/webserver/conf directory:
: cd /usr/tandem/webserver/conf
: ./rollover

The renamed log files will be saved to the archive directory:
/usr/tandem/webserver/logs/ArchiveLogs

The rollstarth script operates like the rollover script, but dynamically restarts the iTP Secure
WebServer so that configuration changes can take effect without the iTP Secure WebServer being
brought down. The types of configuration changes that can be introduced dynamically are described
in “Managing the iTP Secure WebServer Using Scripts” (page 82). Run the rollstarth script:
: cd /usr/tandem/webserver/conf
: ./rollstarth

Additionally, iTP Secure WebServer provides a configuration parameter “AutomatedLogRolloverSize”
(page 206) to enable/disable automated log file rollover. This default value of this configuration
parameter will be -1.
If the AutomatedLogRolloverSize configuration parameter is greater than zero, iTP Secure
WebServer automatically rollsover log files when any of the log file reach the size limit defined
by the AutomatedLogRolloverSize parameter in the httpd.config file and saves the
current log files in an archive directory. When any one of the log files reaches the threshold limit,
all the three log files namely, access log, error log, and extended log are rolled over.

Using the httpd command to Rotate Log Files
If your server uses a different configuration file, you can use the httpd command with the
-rollover argument to automatically rotate log files. The -rollover argument causes httpd
to save the current log files for the specified server and to start writing to new files. It can be used
in several ways.
For example, the following command:
: httpd -rollover configfile_name

saves current log files and starts new ones without bringing down the server. If the log file names
have been changed in the configuration file, the server continues to use the old names.
The following command:
: httpd -start -rollover configfile_name

110 Configuring the iTP Secure WebServer

starts the server, saves the log files that were current when the server was stopped, and opens new
log files.
The following command:
: httpd -restarth -rollover configfile_name

dynamically restarts the server so that configuration changes can take effect immediately. The iTP
Secure WebServer continues operation, the log files that were current when the server was started
are saved, and new log files are opened.
The following command:
: httpd -restart -rollover configfile_name

This command stops the server, and then immediately restarts it. The log files that were current
when the server was stopped are saved and new ones are created on restart.
The httpd command is described in “Managing the iTP Secure WebServer Using Scripts”
(page 82), and in the iTP Secure WebServer reference pages.

Log File Naming Conventions
When you automatically rotate log files, current log files are saved under their configured names,
and a timestamp is appended to the name in the mmddyyyy.hhmmss format. You can use the
compress command to archive the log files as shown in the following examples:
: cd /usr/tandem/webserver/logs
: compress ../logs/error.log.07172009.124321

: cd /usr/tandem/webserver/logs
: compress ../logs/error.log.07172009.124321

Setting Up Server Aliases
If you plan to advertiseURLs for your server, you should register an alias for your server machine.
This subsection describes:

• “How Aliases Work” (page 111)

• “Why Aliases Are Useful” (page 111)

• “Setting Up an Alias” (page 112)

How Aliases Work
Analias, also known as a CNAME, is simply an alternative name for your server. Youregister the
CNAME and the local name with the Domain Name Server (DNS). For example, if your server
has the local name
aegean.compedia.com

you might select the following name as its DNS alias:
www.compedia.com

After registering this name with the DNS, you can then advertise www.compedia.com as the
name of your server. Users making requests through this alias would actually be accessing
aegean.compedia.com.

Why Aliases Are Useful
The major benefit to using an alias is flexibility. If your server has a registeredalias, you can
physically move your server to a new host machine without having to change your server's name
to reflect the name of the new host. If you did not use an alias and you moved to a new host, you
would must change all your server URLs to point to the new host and advertise the new URLs to
your users.

Setting Up Server Aliases 111

Setting Up an Alias
To set up an alias for your server:
1. Choose an alias for your machine and register it with the DNS. If you are not sure how to

register the name you choose, consult your local area network (LAN) administrator or the
system documentation.

2. Verify that your alias has been registered. Use the nslookup command if it is available on
your system.

3. In the server configuration file (httpd.config), set the -name option in the Accept or
AcceptSecureTransport directive to the server's alias name (see “Configuration Directives”
(page 198)). This option configures the server to create URLs that properly point to the server.
For the server in the example, you would include the following element in the Accept or
AcceptSecureTransport directive:
-name www.compedia.com

After changing the configuration file, you must restart the server as described in “Configuring
the iTP Secure WebServer” (page 94).

4. Test the new configuration by using the new alias in a URL to access the server. For the server
in our example, you would use your Web client to access:
http://www.compedia.com/index.html

Controlling Access to the Server
This subsection describes how to control and monitor access to your server using these tasks:

• “Using Region Directives” (page 112)

• “Granting Access by Host Name/IP Address” (page 113)

• “Denying Access by Host Name/IP Address” (page 114)

• “Requiring Client Authentication” (page 114)

• “Administering Passwords” (page 115)

• “Redirecting Access” (page 116)

• “Enabling Automatic Directory Indexing” (page 117)

• “Disabling Logging” (page 118)

• “Using Multiple Region Commands” (page 118)

• “Using Pattern Variables (Lists)” (page 119)

• “Using Conditional Commands” (page 120)

• “Using Tcl Variables” (page 120)

• “Allowing Byte Ranges” (page 122)

• “Implementing Multiple-Host Support” (page 123)

Using Region Directives
You control client access to your server by entering commands in a Region directive in the server
configuration file (httpd.config). The Region directive applies these commands to any requests
or classes of requests attempting to access a specified portion of your server file tree. Such a
specified portion of the server file tree is referred to as a region.
Region directives allow you to limit access to any region on your server. For example, you might
use a Region directive to deny requests from certain hosts, to describe the security attributes
required for certain requests, or to redirect requests to another location. The region you specify in
a Region directive might include all files on the server, only the files under a certain directory

112 Configuring the iTP Secure WebServer

tree, or all files ending with a particular extension, such as .gif. For example, you could deny
access to any request attempting to access a region on your server such as /admin/*.cgi.
A Region directive consists of a matching pattern and a list of commands to be applied to any
URL that matches the given pattern:
Region pattern {
region_command
 .
 .
 .
}

where:
pattern
is a string that matches the path component of a URL. You specify pattern in a format
similar to that used by UNIX shells: you use path names and wildcards (*). For
example, the pattern * would refer to all files on the server, *.cgi would refer to
files ending with the extension .cgi, and /admin/* would refer to all files under
the /admin directory.

region_command
is a command that constrains access to the matched region.

A typical configuration file contains several Region directives. During request processing, the
server compares the current URL against the pattern in each directive in the configuration file,
beginning with the top directive and proceeding to the bottom. When a match is found, the server
executes, in order, the commands contained in the matched directive.
A Region command is a procedure that either runs to completion or calls a result command such
as Deny, Redirect, or Allow. When a result command other than Allow is called, command
processing stops; when Allow is called, the server executes the requested access immediately.
If all the commands in a Region directive run to completion, the server proceeds to compare the
current URL against the pattern in the next Region directive in order. In the case of a match, the
server processes the corresponding commands as previously described. When all the Region
directives in the configuration file have been processed, the server proceeds with the requested
access (unless Allow was called earlier).
More than one Region directive in the same configuration file can specify the same matching
pattern. For example:
Region /foo {
 command1
 command2
}

Region /foo {
 command3
 command4
}

The commands for controlling client access to your server are introduced in the following subsections.
For further information about these commands, see “Region” (page 232).

Granting Access by Host Name/IP Address
You can grant access to specified regions on your server on the basis of the client host name. To
control access by host name, you use the AllowHost command in a Region directive as:
AllowHost host_pattern host_pattern ...

where:
host_pattern

Controlling Access to the Server 113

specifies one or more client host names or IP addresses. If a Web client host name
or an IP address matches a specified pattern, the Web client is granted access to
the region specified in the containing Region directive. All other clients are denied
access.

For example, you are working on a project with another company that has the widget.com
domain and you want to grant employees in this other company (along with those in your own
company) access to the design documents in directory /secret-project. If your company
domain is wonka.com, the following directive would grant the desired access:
Region /secret-project/* {
AllowHost *.widget.com *.wonka.com
}

If a host name pattern is specified but the Web client’s host name is not available (for example,
because the host’s IP address has not been registered with the DNS for reverse lookup), the
AllowHost command will deny access to the Web client.

Denying Access by Host Name/IP Address
You can specifically deny access on the basis of client host name. To deny access by host name,
you use the DenyHost command in a Region directive as:
DenyHost host_pattern host_pattern ...

where:
host_pattern
specifies one or more client host names or IP addresses. If a Web client host name
or IP address matches one of the specified patterns, the Web client is denied access
to the server region specified in the containing Region directive.

For example, if users in domain hackers.widget.com are abusing access to your server, you
can specifically shut them out by using this directive:
Region * {
DenyHost hackers.widget.com
}

If a host name pattern is specified but the Web client’s host name is not available (for example,
because the host’s IP address has not been registered with the DNS for reverse lookup), the
DenyHost command will not work.

Requiring Client Authentication
You can use client authentication (basic or digest access) to require a user name andpassword for
access. To control access in this way, you use the RequirePassword command in a Region
directive as:
RequirePassword {realm -userfile userfile
 |-safeguard}

where:
realm
is the string the Web client will use to prompt the user for a user name and
password. For example, realm might specify the text string HP Account Name.

userfile
is the name of a server file containing a user-name/password database.

This file is maintained by means of the useradm tool, as described in “Administering Passwords”
(page 115).

-safeguard
allows to use the Safeguard user ID database for authentication.

114 Configuring the iTP Secure WebServer

NOTE: The -safeguard option is recommended for use with RequireSecureTransport
because it is used with the non-secure basic authentication scheme that sends the
user name and password as radix64 encoded strings.

If the user enters a user name and password that matches one of the user name/password pairs
in the specified password file, the Web client is granted access to the server region specified in
the containing Region directive.
For example:
Region /recipes/secret {
RequirePassword "Secret Recipes" -userfile \
/home/data/passwords }

Administering Passwords
To administer the passwords contained in a server password file, you use the useradm utility
included with the server distribution. The useradm utility enables you to perform these tasks:

• “Checking the useradm Utility Version” (page 115)

• “Creating a New Password File” (page 115)

• “Adding a New User to a Password File” (page 115)

• “Deleting a User From a Password File” (page 116)

• “Changing a User's Password” (page 116)
The useradm utility is located in the /usr/tandem/webserver/bin directory.

Checking the useradm Utility Version
To check the utility version:
useradm -version

where:
-version
displays the useradm version

Creating a New Password File
To create a new password file:
useradm create [-digest] file-name

where:
-digest
specifies a digest-authentication format

file-name
is the name of the new password file

Adding a New User to a Password File
To add a new user to an existing password file:
useradm add file-name [user-name]
[password]

where:
file-name
is the name of the password file

user-name
is the name of the user to be added

Controlling Access to the Server 115

password
is the new user’s password

If you do not supply the user name and password, you will be prompted for them.

Deleting a User From a Password File
The following command needs to be run to delete a user from a password file:
useradm delete file-name [user-name]

where,
file-name
is the name of the password file

user-name
is the name of the user to be deleted

If a user name is not supplied, you will be prompted for it. Moreover, you will be prompted to
supply your current password for deletion. After successful validation of the current password, the
provided user-name will be deleted. Three unsuccessful attempts will abort this process.

Changing a User's Password
To change the password, you can use the following command:
useradm changepwd file-name
[user-name]

where,
file-name
is the name of the password file

user-name
is the name of the user whose password is to be changed

After executing this statement, you will be prompted to supply the old password. If the correct old
password is provided, you will be prompted further to supply new password. However, useradm
will abort the password changing process after three unsuccessful attempts.

Example of Password Administration
These commands create a new password file, and then add the user tristen who is assigned
the password play-group:
useradm create /usr/tandem/webserver/users
useradm add /usr/tandem/webserver/users tristen play-group

Redirecting Access
You can use the Redirect command in a Region directive to redirect requests to an alternate
URL. This feature is especially useful when you move server contents (in part or in whole) to a
different host machine. Instead of advertising the new URL, you can simply redirect requests to it.
The function of the Redirect command is similar to that of the Filemap command. Instead of
translating a request to a different path, as the Filemap directive does, the Redirect command
directs a request to a different URL.
The Redirect command has a status option that enables you to specify whether a file has
moved temporarily or permanently. When a request is satisfied by redirection, the iTP Secure
WebServer reports this status to the client as an HTTP status code.
There are two approaches to redirecting requests to an alternate URL:

116 Configuring the iTP Secure WebServer

1. You can use a Redirect command to redirect requests to an alternate location that has a
different file structure from that of the original location:
Redirect alt-url

This Redirect command tells the server to redirect a request for a specified object and
specifies a fully qualified alternate URL (alt-url). For example, if you move the HTML
document
/info/stats.html

to
/statsinfo.html

on a different host machine (www.widgets.com), you could use the following Region
directive to redirect requests for this file:
 Region /info/stats.html {
Redirect http://www.widgets.com/statsinfo.html
}

In this example, any request for
/info/stats.html

is automatically redirected to the URL
http://www.widgets.com/statsinfo.html

2. You can use a Redirect command with the -replace option to redirect requests to an
alternate location that has the same file structure as the original location:
Redirect [-replace /replace-spec] alt-rl

When you specify the -replace option, the URL path element specified by /replace-spec
is removed from the front of the request URL. The remainder of the request URL is then appended
to the alternate URL (alt-url).
The -replace option is especially useful when you move an entire file structure intact from
one host to another.
For example, you can use the following Region directive to redirect requests for all objects
under directory /info/stocks/* to the new location
http://quote.widgets.com/stocks as follows:
Region /info/stocks/* {
Redirect -replace /info/stocks
http://quote.widgets.com/stocks }

In this example, any request for the object
/info/stocks/quote/dec.html

is redirected to the URL
http://quote.widgets.com/stocks/quote/dec.html

Enabling Automatic Directory Indexing
You can enable automatic indexing for server directories. Under automatic indexing, if a request
corresponds to a directory for which no index file is available, the server automatically generates
one.
To enable automatic indexing, you use the DirectoryIndex command in a Region directive.
For example, this directive enables indexing for all directories on the server:
Region * {
DirectoryIndex
}

This example shows an index generated under automatic directory indexing:
NameLast ModifiedSize

Controlling Access to the Server 117

../26-Mar-9510:14
CVS/17-Mar-9513:44
a-very-long-file-name-test17-Mar-9512:OK
size-100000.html17-Mar-9512:1597K
subdir/17-Mar-9513:44
test.html17-Mar-9512:15OK

Automatic directory indexing is disabled by default. If no index file is available, the server returns
an error for any attempt to access a directory.
For more information about the DirectoryIndex command, see “Region” (page 232).

Disabling Logging
You can disable logging for specific requests. When you disable logging for a request, no entry
is generated for that request in the server log files. This feature is useful for omitting unimportant
log entries. For example, you could disable logging for requests coming from your own company,
or you could disable logging for requests corresponding to a particular region.
To disable logging for specific requests, you can use the NoLog command in a Region directive
as:
NoLog [pattern pattern ...]

where:
pattern
specifies one or more client host names or IP addresses. If a Web client host name
or IP address matches one of the specified patterns, logging is disabled for all
requests corresponding to the relevant region. If no patterns are specified, logging
is disabled for all requests corresponding to the relevant region.
For example, if your company domain is wonka.com, you could use this directive
to disable logging for all requests from within your company:
Region * {
NoLog *.wonka.com
}

To disable logging for requests affecting only files that have the .gif extension,
you would specify:
Region *.gif {
NoLog
}

Using the NoLog command with a host name only works if there is Domain Name Server (DNS)
reverse lookup available for the specified host name.

Using Multiple Region Commands
A Region directive can contain more than one command. Multiple commands are evaluated in
order. If a command returns a response such as "access denied" or "password required," the
directive immediately terminates: no other commands are evaluated for the current request.
The ordering of commands within a Region directive can be an important consideration. For
example, suppose that you want to limit the access for a particular region to machines from the
domain that you also want to require a valid user name and password. One way you could do
this is by specifying this Region directive:
Region * {
 RequirePassword "Access accountname" -userfile
/server/root/user.db
 AllowHost *.compedia.com
}

118 Configuring the iTP Secure WebServer

In this example, your server would first require a user name and password for access. After receiving
a valid user name and password, your server would check the Web client host name and deny
access if the host name was not in the domain compedia.com.
The problem with this ordering of commands is that users not in the domain compedia.com will
be prompted for their user name and password before being denied access anyway. A better
approach in this case would be to specify the AllowHost command first:
Region * {
AllowHost *.compedia.com
RequirePassword "Access accountname" -userfile
/server/root/user.db
}

With this ordering of commands, hosts outside compedia.com will be denied access immediately.
Only hosts in compedia.com will be prompted for a valid user name and password.
You can enter any number of Region directives in your server's configuration file. Therefore, a
request might be processed by more than one directive, depending on how the URL matching
patterns in the directives are specified. For example, if the configuration file contains the Region
directives,
Region * {
DirectoryIndex
}

Region /admin/* {
AllowHost *.compedia.com
}

an attempt by a request to access the URL path /admin/ would match the URL matching pattern
in both directives. In this case, the command in each directive would be applied in the order of
their appearance in the configuration file: DirectoryIndex first, and then AllowHost.

Using Pattern Variables (Lists)
The same list of matching patterns can be shared among multiple Region directives. For example,
if you want to deny the same set of hosts access to two different regions, you can specify two
Region directives, each of which includes the same list of host patterns:
Region /admin/* {
 DenyHost *.widgets.com *.compedia.com *.foo.com
}

Region /testing/* {
 DenyHost *.widgets.com *.compedia.com *.foo.com
}

You cannot include more than one matching pattern in a Region directive. For example, you
cannot merge the two Region directives into the single directive:
Region /admin/* /testing/* {
 DenyHost *.widgets.com *.compedia.com *.foo.com
}

As pattern lists grow, however, this approach can become increasingly unwieldy. To change a
list, you must make the same change to each occurrence of the list.
As an alternative, you can use the RegionSet directive to assign a list of patterns to a variable.
This variable can then be used within Region commands as needed. If you subsequently need to
change the list, you only need to change it once.
You specify a RegionSet directive as:
RegionSet variable value

where:
variable
is the name of the variable.

Controlling Access to the Server 119

value
is the value to which you are setting this variable.

Returning to the earlier example, you could accomplish the same result using the following
RegionSet directive:
RegionSet denyList "*.widgets.com *.compedia.com *.foo.com"
Region /admin/* {
DenyHost $denyList
}
Region /testing/* {
DenyHost $denyList
}

If you subsequently needed to change your deny-access list, you would only need to change it in
the RegionSet directive.

Using Conditional Commands
You can use the Tcl if command to specify the conditional execution of commands in a Region
directive. (See “Tool Command Language (Tcl) Basics” (page 276), for details about the Tcl
language.) The if statement has this syntax:
if condition {

if-true
} else {

if-false
}

If condition is non-zero (indicating true), the if-true statement is executed; otherwise, the
if-false statement (in the else clause) is executed. (The else clause is optional.)
For example, suppose that you want to redirect requests from any host in the widget.com domain
to /widget-welcome.html while not affecting requests from any other domain. You can use
the Tcl if statement with the Tcl HostMatch command, as:
Region / {
 if [HostMatch *.widget.com] {
 Redirect /widget-welcome.html
 }
}

In this example, the Region directive redirects home-page requests from *.widget.com to a
special home page. (The Tcl HostMatch command is discussed in detail in “Configuration
Directives” (page 198).)

Using Tcl Variables
You can use Tcl variables in Region directives to give commands certain information about a
request, such as time of day, the Web client host name, or the HTTP header information. Then the
commands can use this information to modify the behavior of the request.
Table 11 (page 120) lists the variables you can use in Region directives, except the variables used
for anonymous sessions, which are described in “Anonymous Ticket Attributes” (page 242).

Table 11 Region Directive Variables

DescriptionVariable

Contains the name of the Web client making the request.
If no reverse lookup is available, this variable is blank.

REMOTE_HOST

For example:
aegean.compedia.com

120 Configuring the iTP Secure WebServer

Table 11 Region Directive Variables (continued)

DescriptionVariable

For information on reverse lookup, see “Region” (page 232).

The request is sent by using this port number.REMOTE_PORT
Format:
number between-1-and-65535

For Example:
80

Contains the IP address of the Web client making the
request.

REMOTE_ADDR

For example:
199.170.183.5

Contains the URL path for this request.PATH
For example:
/home/index.html

Contains the query string (the text after the ? in the URL)
for this request.

QUERY_STRING

Contains the method used for the current request. For
example, GET or POST.

METHOD

Contains the minute past the hour (range 0 to 59).MINUTE

Contains the hour in local time (range 0 to 23).HOUR

Contains the day of the week in the form of a numeric
index (range 0 to 6). Sunday is day 0.

WEEKDAY

Contains the day of the month (range 1 to 31).DAY

Contains the month of the year (range 1 to 12).MONTH

Contains the year, measured in years since 1900.YEAR

Contains the contents of any HTTP headers sent by the
Web client. This array variable's indexes consist of the

HEADER

header names, converted to lower- case, with no trailing
colon. For example, the HTTP header User-Agent: would
be stored as HEADER(user-agent).

The IP address of the virtual host for the session.SERVER_ADDR

The number of the port for the session.SERVER_PORT

The name associated with the address on which the
connection was received, as specified by the name

SERVER_NAME

argument of the Accept directive. The name logged is the
value of the -name or -address argument of the Accept
directive; if there is no (symbolic) name or address
argument, the name logged is the host name of the machine
on which the server is running.

Example 1: Time of Day Variables
For example, you can use the YEAR, MONTH, DAY, WEEKDAY, HOUR, and MINUTE variables to
trigger different types of access based on the time of day, as shown in this example:
Region /pictures/* {
if {$HOUR > 7 && $HOUR < 19} {
Redirect /come-back-later.html

Controlling Access to the Server 121

}
}

In this example, the Region directive limits access to the /pictures area. Any users attempting
to access this area between 7AM and 7PM (local server time) will be directed to the
/come-back-later.html document.

Example 2: REMOTE_HOST and REMOTE_ADDR Variables
You can use the REMOTE_HOST and REMOTE_ADDR variable (containing the host name of the
Web client making a request) or the REMOTE_ADDR variable (containing the IP address of the
Web client) with the Tcl switch command:
Region / {
switch $REMOTE_HOST {
*.mit.edu {Redirect /mit/home.html}
*.cornell.edu {Redirect /cornell/home.html}
*.yale.edu {Redirect /yale/home.html}
*.wvu.edu {Redirect /wvu/home.html}
}
}

In this example, the switch command directs requests to different home pages on the basis of
the origin of each request.

Example 3: HEADER Variable
The HEADER array variable contains any HTTP headers sent by a Web client, including the headers
containing the Web client software type and the referring URL. The indexes of the array elements
consist of the header names, converted to lowercase, with no trailing colon. For example, the HTTP
header
User-Agent:

would be stored as array element
HEADER(user-agent)

Because clients do not have to send headers, Region commands using the HEADER variable
should first check for the existence of a HEADER array entry, by using the Tcl info
existscommand.
For example, assume the Dinosaur/1.0 browser fails whenever it attempts to use a particular
CGI program and you want to direct all Dinosaur/1.0 users to an alternative page. In this case,
you could use the User-Agent header to issue a redirect:
Region /order.cgi {
if {[info exists HEADER(user-agent)] && \
[string match "*Dinosaur/1.0" $HEADER(user-agent)]} {
Redirect /order-dinosaur.cgi
}
}

Allowing Byte Ranges
The iTP Secure WebServer supports byte-range access, which is always enabled. Web clients that
also support byte-range access can request any range within a requested file. For detailed
information about byte ranges, see RFC 2068 "Hypertext Transfer Protocol-HTTP/1.1," section
14.36; you can see RFC 2068 by using this URL:
http://www.ietf.org/rfc/rfc2068.txt
In practice, most data on the Web is represented as a byte stream and can be addressed with a
byte range to retrieve a desired portion of it. This is useful when, for example, a document
transmitted is interrupted, and then resumed: only the missing portion needs to be transferred.
Byte-range requests are typically generated by the Web client's software.

122 Configuring the iTP Secure WebServer

http://www.ietf.org/rfc/rfc2068.txt

As an example, an Adobe Portable Document Format (PDF) helper application would need to have
access to individual pages by byte range; the table that defines those ranges is located at the end
of the PDF file. (Use Adobe Acrobat version 3.0 or later to take advantage of this feature.)
When the iTP Secure WebServer responds with the requested range, the HTTP status code 206,
Partial Content, is returned and logged to the extended log file.

Implementing Multiple-Host Support
This subsection describes how to implement multiple-host support on the same host machine. Having
support for multiple hosts on the same machine is useful for testing and for operating servers for
different organizations.
The following are the different ways to implement multiple host support:

• “Implementing Multiple Servers” (page 123)

• “Implementing Virtual Hosts for iTP Secure WebServer” (page 124)

• “Implementing Virtual Hosts for iTP Secure WebServer” (page 125)

Implementing Multiple Servers
The following are the different ways to configure multiple servers on the same machine:

• “Using Different Ports” (page 123)

• “Using Different IP Addresses” (page 123)
In either case, you must run separate instances of the iTP Secure WebServer, each of which is
completely independent of the other. Each has its own installation directory with configuration file,
log files, and content areas specific to that individual server.

Using Different Ports
The easiest way to configure multiple installations of the iTP Secure WebServer on the same host
machine is to assign each server to a different port on which to make connections with clients. To
assign a particular server to a port, specify the Accept directive with the -port option in that
server's configuration file.
For example, if you are configuring two servers on a host machine named www.widgets.com,
you can assign one server to port 80 (the default port) and the other to port 8000 using the -port
option of the Accept directive:
Accept -transport /G/ZTC0 -port 80

Accept -transport /G/ZTC0 -port 8000

Clients would access these servers through the following URLs:
http://www.widgets.com/

http://www.widgets.com:8000/

The URL for the first server does not require a port number, because this server has been assigned
to the default (80). For further details about the Accept directive, see “Accept” (page 198).

Using Different IP Addresses
Another way to configure multiple servers to run on the same host machine is to assign each server
to a different IP address. Normally, an individual server on a host checks for connections on every
local IP address. However, you can run multiple servers on the same machine such that each server
checks for connections on a different IP address, as described in “Establishing Alias IP Addresses”
(page 124). Implement this behavior by establishing the IP addresses needed and specifying a
different Accept directive using the -address option in each iTP Secure WebServer configuration
file.

Controlling Access to the Server 123

Establishing Alias IP Addresses
NonStop TCP/IP enables you to define alias IP addresses (sometimes also called virtual IP addresses).
For brief instructions about how to define such addresses, see “SCF TCP/IP Configuration”
(page 199). For detailed information about this and other topics related to TCP/IP configuration on
NonStop systems, see the TCP/IP Configuration and Management Manual.

Assigning Servers to Specific IP Addresses
You can limit a server to accept connections on only oneIP address and assign each of multiple
servers running on the same host to a different IP address.
You assign a server to a specific IP address by specifying an Accept directive with the -address
option in the server configuration file (httpd.config).
For example, you could specify the directive
Accept -transport /G/ZTC0 -address 16.11.96.5

in the configuration file of one of two servers, to limit this server to accepting connections only on
IP address 16.11.96.5.
Similarly, you could specify the directive
Accept -transport /G/ZTC0 -address 16.11.96.6

in the configuration file of the other server, to limit this server to accepting connections only over
IP address 16.11.96.6.
You can specify a host name instead of an IP address in an Accept directive by using the
-address option. The host name specified must correspond to a local IP address, and then the
server automatically uses that IP address. For example:
Accept -transport /G/ZTC0 -address www.widgets.com

Again, each of the servers assigned a different IP address is completely independent of the others.
Each has its own configuration file, log files, and content areas.
For further details on the Acceptdirective, see “Accept” (page 198).

Implementing Virtual Hosts for iTP Secure WebServer
Another way to configure a server for multiple-host support is to configure a single server process
intovirtual hosts, with each virtual host checking for requests on a different IP address or port.
Configuring a single server process to support multiple virtual hosts involves:

• Establishing virtual IP addresses, as described in “Establishing Alias IP Addresses” (page 124)

• “Setting Up Virtual Hosts” (page 124)

Setting Up Virtual Hosts
You can cause one iTP Secure WebServer to function as multiple servers by setting up multiple
virtual hosts. Each virtual host can be configured to check for requests on a different IP address or
port and can be mapped to host a specified region on the server.
Create virtual hosts by using the Accept or AcceptSecureTransport directives to associate
specific IP addresses with specific host names or ports. Then associate content regions with these
virtual hosts by using Region directives, using the -host or -port arguments.
For example:
Accept -transport /G/ZTC0 -address www.baygroup.org -port 4986
Region -host www.baygroup.org -port 4986 /* {
Filemap / /groups/baygroup/www
}
AcceptSecureTransport -transport /G/ZTC0 -address www.nerds.org\
-cert {CN=Open Market Test Certificate MCI-1, OU=Open \
Market,O=MCI, C=US} -port 8080
Region -host www.nerds.org -port 8080 /* {

124 Configuring the iTP Secure WebServer

Filemap / /groups/nerds/www
}

You can specify any number of pairings of Accept (or AcceptSecureTransport) and Region
(with -host and -portdirectives) in any single configuration file. For further information about
the Accept directive, see “Accept” (page 198). For further information about the
AcceptSecureTransport directive, see “AcceptSecureTransport” (page 200). For further
information about the Region directive, see “Region” (page 232).
If you are configuring hundreds or even thousands of virtual hosts, you could efficiently vary the
filemap (and any of several other configuration items) for each virtual host by using the
SERVER_NAME variable, as follows:
Region /* {
Filemap//root/$SERVER_NAME/
}

This Region directive maps the root of each virtual host to its own named directory in /root.
If you have a host machine configured with 256 individual IP addresses, you can specify:
Accept -port 80

to accept connections on port 80 for all 256 IP addresses. You could then specify the following:
Region /* {
Filemap / /root/$SERVER_NAME/
}

to configure a total of 256 virtual hosts, where $SERVER_NAME is the name of the virtual host (IP
address). This is the address over which a request is received as specified by the -address or
-name argument to the Accept directive. See Table 11 (page 120).

Implementing Virtual Hosts for iTP Secure WebServer
In iTP Secure WebServer 7.3 or higher versions, every Region command that is used to create
a virtual host, might not be associated with an Accept or AcceptSecureTransport command.
It is possible to have multiple Regions using a single Accept or AcceptSecureTransport
directive. However, you must make sure that the iTP Secure WebServer is configured to accept
requests on an address or port configured for a virtual host.
iTP Secure WebServer supports the following types of virtual host settings:

• “Setting Up Port Based Virtual Hosts” (page 125)

• “Setting Up Name Based Virtual Hosts” (page 125)

• “Setting Up IP Based Virtual Hosts” (page 126)

Setting Up Port Based Virtual Hosts
Port Based Virtual Hosts can be configured using the Region –port configuration option.
For example:
Region –port 80 /* {

 Filemap / /home/site_data/port_80_content

 }

This configuration allows access whenever a user accesses the web portal through server port 80
irrespective of the server address used for the access.
For more information about the Region directive, see “Region” (page 232).

Setting Up Name Based Virtual Hosts
In this method, the differentiation between the hosts is carried out based on the Domain Name
Server (DNS) name used by the client to access the web portal. To identify the DNS used, webserver
uses the HTTP request header Host.

Controlling Access to the Server 125

Name Based Virtual Hosts are configured using Region –host configuration option.
To enable Name Based Virtual Hosting, you must specify a valid DNS name as a parameter for
Region –host. If a DNS name is specified as a parameter for Region –host, string
comparisons with the users' Host value would be performed to validate the access.
Syntax:
Region –host <hostname> {
<region-options>

}

For example:
Region –host hp.com /* {

 Filemap / /home/site_data/hp_com

 }

Region –host nonstop.com /* {

 Filemap / /home/site_data/nonstop_com

 }

In the above example, the Web server serves different content, based on the hostname used for
accessing the web portal.
For more information about the Region directive, see “Region” (page 232).

Setting Up IP Based Virtual Hosts
IP Based Virtual Hosts can also be configured using the Region –host configuration option.
However, users must explicitly provide a specific IP address in the Region –host to do so.
For example:
Region –host 192.168.0.1 /* {

 Filemap / /home/site_data/IP_based_content

}

This configuration allows access whenever a user accesses the website using the IP address
192.168.0.1, as well as any DNS value which maps to the IP address 192.168.0.1.
For more information about the Region directive, see “Region” (page 232).

NOTE: Using more than one type of virtual hosting methods together can result in duplicate
filemap errors.

Customizing Server Error Messages
This subsection describes how to customize the default text of the server-access error messages.
You can customize these messages to include more explanation, to use a different language, or
to suggest a corrective action.
The server comes with a default message for each of the access errors listed in “Server Access
Errors” (page 222). The text of these messages is encoded in HTML and is presented to the user
whenever access errors occur.
For example, the following message (in HTML format) is displayed to the user who attempts to
access an object for which he or she lacks the correct permission:
<TITLE>Forbidden</TITLE><H1>Forbidden</H1>
You do not have permission to get the requestedobject.

To change the text of this or any of the other access error messages, you use this Message
configuration directive:
Message id text

where:

126 Configuring the iTP Secure WebServer

id
is the message identifier (see “Server Access Errors” (page 222)).

text
is the HTML encoding of the message. You must use curly braces ({}) to enclose
messages that include spaces or that span more than one line.

The Message directive causes the server to return text whenever the error condition specified
by id occurs.
For example, you might use the Message directive to customize the error-forbidden message
to read as:
Message error-forbidden {
 <TITLE>Forbidden</TITLE><H1>Forbidden</H1>
 You do not have permission to get the requested object.<P>
 For access information, contact webmaster@widgets.com.
 <P><HR><ADDRESS>Widgets International, Inc.</ADDRESS>
}

Or, you might customize the error-short-redirect message to read as:
Message error-short-redirect {
<TITLE>Redirection</TITLE><H1>Redirection</H1>
This document can be found elsewhere.
<P>Your browser does not properly support long URLs.
}

In this example, the server replaces $url with the redirection URL.
For further details about the Message directive, see “Configuration Directives” (page 198).

Setting Up Clickable Images
The iTP Secure WebServer provides built-in support for clickable images. Clickable images are
inline images that a user can click to access a specific URL. When a user clicks a clickable image,
the Web client sends a query to the server together with the coordinates of the user's selection.
The server uses an image map file to determine which image the coordinates map to along with
which URL is associated with the image.
To setup a clickable image, you must perform the following steps:

• “Creating an Image Map File” (page 127)

• “Adding a Hypertext Anchor” (page 128)

• “Testing the Image Setup” (page 129)

Creating an Image Map File
The first step in setting up a clickable image is to map specific areas of the image to specific URLs.
You specify this mapping in an image map file, which must have the extension .map.
The image to be mapped must be defined in an existing graphics file (for example, kellie.gif).
You create a corresponding image map file (for example, kellie.map) to contain the mappings
of specific parts of the existing image to specific URLs.
iTP Secure WebServer image map files can use either the CERN or NCSA format.

Image Map Directives
You specify a mapping between specific areas of an image and specific URLs by usingimage map
directives. These directives specify an area of an image in terms of pixel coordinates (x,y) measured
from the upper left corner of the image.
Lines that begin with a pound sign (#) are treated as comments and are ignored.
There are four image map directives:

Setting Up Clickable Images 127

rectangle (x1,y1) (x2,y2) url

This directive defines a rectangle in terms of the upper-left coordinate (x1,y1) and
the lower-right coordinate (x2,y2). For example:
rectangle (30,30) (50,50) /offices/ceo.html

circle (x1,y1) radius url

This directive defines a circle in terms of the center of the circle (x,y) and the radius.
For example:
circle (100,100) 10/target/bullseye.html

polygon (x1,y1) (x2,y2) (x2,y3) ... url

This directive defines a polygon in terms of the vertices of the shape. For example,
a triangular region is defined by:
polygon (0,0) (0,10) (10,10) (0,0) /corner.html

There can be any number of vertices.

default url
This directive defines the default URL that is returned if the selected coordinate does
not match any of the areas in the image map. A default directive is required for
each image map file.

URL Formats
You can specify URLs in image map directives in three different formats: full URL, server-relative
URL, and relative URL.

Full URL
URLs in full format are fully qualified. They include both the method of access and the server name.
For example:
http://www.compedia.com/index.html
ftp://crl.dec.com/pub/misc/

Server-Relative URL
URLs in server-relative format begin with a slash (/) and refer to an object on the server. For
example:
/personal/unerd/home.html
/feedback.cgi

Relative URL
URLs in relative format refer to an object relative to the location of the image map file. For example:
target.html
foundation/index.html

Adding a Hypertext Anchor
The next step is to add a hypertext anchor to the HTML inline image. For example, suppose that
you have an HTML document with an inline image specified as:

To enable this image as clickable, you would add an ISMAP tag and a hypertext anchor that refers
to the server's image map file. For example:

This specification tells the Web client to enable clicks for kellie.gif and to retrieve kellie.map
if the user clicks anywhere in the image.

128 Configuring the iTP Secure WebServer

Testing the Image Setup
The final step is to test your clickable image setup.
With your Web client, open the HTML document that has the inline image. You should be able to
click the image and link to other documents. If clicking has no effect, check to see if the hypertext
anchor and ISMAP tag are properly set up (see “Adding a Hypertext Anchor” (page 128)).
Be sure to check the hypertext links for all the regions in your image map file. If you encounter a
server error while testing, you probably have an error in the image map file. For description of
the problem, see the server's error log.
“Sample Image Map” (page 129) shows the contents of a sampleimage map file:

Table 12 Sample Image Map

#
This is a sample image map file.
#

rectangle (50,50) (100,100) http://www.foo.com/

circle (200,50) 25 /secret-stuff.html

polygon (50,200) (50,250) (100,200) triangle.html

default /home.html

The image areas defined in “Sample Image Map” (page 129) are shown in “Image Map Areas”
(page 129).

Figure 4 Image Map Areas

(50, 50)

(50, 200)

(50, 250)

(200, 50)(100, 100)

(100, 200)

In “Image Map Areas” (page 129), if you select coordinates anywhere within the rectangle, you
will be directed to http://www.foo.com/. Likewise, if you select coordinates anywhere within
the circle, you will be directed to /secret-stuff.html on the same server; and if you select
coordinates anywhere within the triangle, you will be directed to the file triangle.html in the
same directory containing the image map. If you select coordinates anywhere else, you will be
directed to the default URL, /home.html.

Setting Up Clickable Images 129

Setting Up a Server-Side Include (SSI)
Use a server-side include (SSI) to insert real-time or updated information within any given document.
Examples of such information include:

• Another file

• Output from a CGI or /bin/sh script

• The current date

• A document's last modification date

• The size or last modification of other documents
You set up SSIs by instructing the server to parse the HTML output being sent to a Web client to
detect SSIs and act on them. Before you enable SSIs, consider that having the server parse
documents can be time-consuming for heavily loaded servers since the servers would have to parse
files in the process of sending them. Furthermore, SSIs can be a security risk since clients would
be executing commands on the server's host system. If you disable the exec option (described in
“Specifying SSI Use” (page 130)), this danger is mitigated. However, the performance issue remains.

NOTE: The iTP Secure WebServer does not support the <servlet< tag in .shtml-file server-side
includes, which is part of Sun Microsystems, Inc. implementation of the Servlet API 2.0. Other
implementations that are not supported are documented in NonStop Servlets for JavaServer Pages
(NSJSP) System Administrator's Guide.

Specifying SSI Use
Specifying SSI use with the iTP Secure WebServer involves enabling SSIs in specific regions,
partially enabling SSIs in specific regions, or disabling SSIs (the default).
HP recommends that you disable SSI usage in users' home directories and in directories in which
users can insert files without permission.
SSI usage is disabled by default. To enable SSI in a particular region (including exec), use the
EnableIncludes command. For example:
Region /* {
EnableIncludes -restricted
}

To enable SSI in a region while disabling exec usage, you simply specify the EnableIncludes
command using no arguments. For example:
Region /*{
EnableIncludes
}

You can control the amount of SSI document nesting by specifying the -nesting argument in the
EnableIncludes command. The default nesting level is 3. For example, the following command
limits the amount of document nesting to one level:
Region /include/* {
EnableIncludes -nesting 1
}

Therefore, if a set of documents is nested as follows:
Doc1.shtml: <!--#include virtual="/include/Doc2.shtml"-->
Doc2.shtml: <!--#include virtual="/include/Doc3.shtml"-->
Doc3.shtml: <!--#include virtual="/include/Doc4.shtml"-->

document inclusion stops after Doc2.shtml is included into Doc1.shtml, and an error will be
logged to the server's log files.
For more information about the EnableIncludes command, see “Region Commands” (page 234).
After specifying SSI usage for specific regions, you must tell the server the extension of the files
you want to be parsed for SSIs. Internally, the server uses the MIME type

130 Configuring the iTP Secure WebServer

text/x-server-parsed-html to identify files to be parsed. To tell the server which extension
you want to correspond to these files, you specify the MimeType directive in the mime-types.config
file. For example, the server default is:
MimeType text/x-server-parsed-html shtml

This directive marks for parsing any file ending in .shtml.
The default MIME-type extensions specified in the mime-types.config file are lowercase.
Therefore, if you have a file with the extension .SHTML, this file appears as text unless you add
SHTML as an extension to the appropriate MimeType directive or Region command. See
“MimeType” (page 224).
Alternatively, if you are not concerned about the negative performance impact of having all.html
files parsed, you could use:
MimeType text/x-server-parsed-html html

This directive causes the server to parse all.html files searching for SSIs. Server parsing also can
be specified by CGI programs that return a Content-type: text/x-server-parsed-html
header.

SSI Directives
All SSI directives to the server are formatted as HTML comments. Each SSI directive has this format:
<!--#command [[tag1="value1" [tag2="value2"] ...] -->

where command is one of these:
config
controls various aspects of file parsing. This command accepts three tags:
errmsg
controls which message is sent back to the Web client if an error occurs while a
document is being parsed. When an error occurs, it is logged in the server’s error
and extended logs, in addition to being returned to the Web client. For example:
<!--#config errmsg="The server cannot satisfy request"-->

The default behavior of the server is to return error messages formatted as SGML
comments. If you use the configuration errmsg directive, the text of errmsg is
returned to the Web client as is, it is returned within a comment only if you specify
it explicitly. For example:
errmsg="<--!this is an error message -->""

timefmt
gives the server a new format to use when providing dates. This string is compatible
with the strftime library call under most versions of UNIX. For example:
<!--#config timefmt="%A"-->
the day is: <!--#echo var="DATE_LOCAL"-->

<!--#configtimefmt="%Y"-->
the year is: <!--#echo var="DATE_LOCAL"-->

<!--#config timefmt=%T"-->
the time is: <!--#echo var="DATE_LOCAL"-->

<!--#config timefmt="-->
the default string is:<!--#echo var="DATE_LOCAL"-->

Output:
the day is: Wednesday
the year is: 1996
the time is: 14:21:34
the default string is: Wednesday, 31-Jan-96 14:21:34 EST

The strftime(3) - "%z" (time zone) conversion specification forces the local time zone
to be inserted into the output time string. Using strftime(3) is not desirable if the time
being echoed is DATE_GMT.

Setting Up Clickable Images 131

sizefmt

determines the formatting to be used for displaying the size of a file. The two values
are bytes, for displaying a formatted byte count (formatted as 1,234,567); and
abbrev, for displaying an abbreviated version consisting of the number of kilobytes
or megabytes the file occupies. For example:
<!--config sizefmt="bytes"-->
size=<!--#fsizefile="size"-->

Output:

size=1,652,708

include
inserts the text of a document into the parsed document. Any included file specified
as virtual is subject to any region commands that apply to its URL. This command
accepts two tags:
virtual
gives a virtual path to a document served by the local server. You might only access
a text file (for example, plain text, HTML, or parsed HTML) this way. You cannot
access an executable file in this fashion. However, you can access another parsed
document. For example:
<!--#include file="text.html"-->

file
gives a path name relative to the directory in which the document with the
#include occurs. The path ./ cannot be used in this path name, nor can absolute
paths be used. As for the virtual option, you can access other static documents, but
not CGI scripts. For example:
<!--#include file="text.html"-->

echo
prints the value of the specified CGI environment variable or SSI variable (see
“Region Directive Variables for Anonymous Sessions” (page 180)). Dates are printed
using the currently configured timefmt value. The only valid tag for this command
is var, whose value is the name of the variable you want to echo. For example:
<!--#echovar="DOCUMENT_NAME"-->

exec
executes a given shell command or CGI script and inserts the results in the document.
Any included file specified as CGI is subject to the region commands that apply to
its URL. The exec command is enabled only if the -restricted option of the
EnableIncludes directive is set. The exec command accepts the following tags:
cmd
executes a given command string using /bin/sh (the Bourne shell) and inserts the
results in the document. All the variables listed in “Region Directive Variables for
Anonymous Sessions” (page 180) can be accessed by parsed documents. For
example:
<!--#exec cmd="ls -l var=DOCUMENT_NAME"-->

cgi
executes a given CGI script (specified by virtual path name and access control)
and inserts the results into the document. The path name is relative to the location
of generic-cgi.pway. For example, if the htppd.config file contains

132 Configuring the iTP Secure WebServer

 Region/test {Filemap/ test $root/cgiscripts
DirectoryIndex
EnableIncludes - restricted}

then, the cgi script at
/usr/tandem/webserver/cgiscripts/test.cgi

will be executed.
The server does not perform error checking to check that the specified generated
HTML output is valid; therefore, you should use this tag with caution.
Disable SSI exec usage on uncontrolled regions. The iTP Secure WebServer does
not support automatic handling of Location: headers.

Pathway CGI applications, including servlets, cannot use server-side pincludes.

fsize
prints the size of a particular file. The tags accepted by the fsize command are
the same as for the include command. The results are formatted in regards to the
sizefmt argument used in the config command. For example:
<!--#fsize virtual="/include/size_zero"-->

flastmod
prints the last modification date of a particular file, using a format determined by
the timefmt argument to config. The tags accepted by the flastmod command are
the same as for the include command. For example:
<!--#flastmod file="/home/tom/open_issues"-->

SSI Environment Variables
In addition to the CGI variable set (see “Environment Variables” (page 146)), the variables listed
in “Region Directive Variables for Anonymous Sessions” (page 180) are made available to parsed
documents.

Table 13 SSI Environment Variables

DescriptionSSI Variable

The current file name.DOCUMENT_NAME

The virtual path to this document (such as
/docs/tutorials/foo.shtml).

DOCUMENT_URI

The unescaped version of any search query the Web client
sent with all shell-special characters escaped with.

QUERY_STRING_UNESCAPED

The current date, local time zone. Subject to the timefmt
parameter of the config command.

DATE_LOCAL

Same as DATE_LOCAL but in Greenwich Mean Time
(GMT).

DATE_GMT

The last modification date of the current document. Subject
to timefmt.

LAST_MODIFIED

Evaluating Performance
iTP Secure WebServer provides environment variables that can be used for evaluating the
performance of the http daemon with respect to time:

• TANDEM_PWAY_ALERT_TIME

• TANDEM_REQUEST_ALERT_TIME

• TANDEM_SOCK_ALERT_TIME

Setting Up Clickable Images 133

TANDEM_PWAY_ALERT_TIME

monitors the time taken for setting up a pathway link. A timer starts in the WebServer when a
Pathway link needs to be established, and ends when the link is granted.
When TANDEM_PWAY_ALERT_TIME is set to a value greater than 0, and the timer value is greater
than the value specified, this EMS alert message is generated:

PPPPP pathway send for SERVERCLASS_DIALOG_BEGIN_ took m secs (n usecs) gfn: w irp x

Where:
m and n are the time taken, in seconds
w is the gfn number
x is the irp address
The unit of measurement for this environment variable is seconds.
Example:
#
Configure the httpd server's attributes
#
Server $root/bin/httpd {
...
Env TANDEM_PWAY_ALERT_TIME=1
}

TANDEM_REQUEST_ALERT_TIME

monitors the time taken for processing a HTTP request. A timer starts when the connection is accepted
and ends when the request is processed.
When TANDEM_REQUEST_ALERT_TIME is set to a value greater than 0, and the timer value is
greater than the value specified, this EMS alert message is generated:

RRRRR request took m secs (n usecs) req: x remote addr_n_port y:z

Where:
m and n are the time taken, in seconds
x is the irp address
y is the remote client address
z is the port number
The unit of measurement for this environment variable is seconds.
Example:
#
Configure the httpd server's attributes
#
Server $root/bin/httpd {
...
Env TANDEM_REQUEST_ALERT_TIME=1
}

TANDEM_SOCK_ALERT_TIME

monitors the time taken for reading data from a socket. A timer starts when the nowaited socket
read is posted, and ends when data is read on the socket.

134 Configuring the iTP Secure WebServer

When TANDEM_SOCK_ALERT_TIME is set to a value greater than 0, and the timer value is greater
than the value specified, this EMS alert message is generated:

WWWWW socket read took m secs (n usecs) gfn: w irp x remote addr_n_port y:z

Where:
m and n are the time taken, in seconds
w is the gfn number
x is the irp address
y is the remote client address
z is the port number
The unit of measurement for this environment variable is seconds.
Example:
#
Configure the httpd server's attributes
#
Server $root/bin/httpd {
...
Env TANDEM_SOCK_ALERT_TIME=1
}

Configuring Multiple Daemons Under Same Pathmon with Alternate Names
To configure multiple httpds, you can use the following steps:
1. Run the altHttpd script in conf folder of iTP Secure WebServer installation to create

configuration files for alternate httpd.
2. Update the configuration file with other directives if required. The directives that ensures

common behavior for all the httpd must be updated in both the configuration files.
3. Run the start script to start the iTP Secure WebServer.
4. Run the following command: ../bin/httpd -add

<alternate_httpd_configuration_file>

The command must be used when the iTP Secure WebServer is already running.

Specifications for Different Configuration Files
To configure multiple daemons that have different configuration files, you can use the following
steps:
1. All the directives that have a common behavior for all daemons must be included in each of

the configuration files.
• Log files: All daemons must log their entries in different log files. The file path values for

AccessLog, ExtendedLog, and ErrorLog directives must be different for all the
daemons.

• Region: If all httpds are expected to follow same rules for a certain region, that Region
directive must be present in all the files. For example, requests only from secure transport
should be allowed. Different configuration files can have different Region directives for
isolated behavior.

• Accept/AcceptSecureTransport: The Accept/AcceptSecureTransport directive
must have different combinations of transport:ip:port for different httpds. If you

Configuring Multiple Daemons Under Same Pathmon with Alternate Names 135

use the same value, the serverclass mentioned in the configuration is not added to the
pathmon and displays a relevant error.

2. Configuration of multiple daemons with different names is not supported with distributor
(conventional TCP/IP).
• Pathmon: Use the same Pathmon names in all configuration files to add the serverclasses

in the same pathmon.
• Server: Server definitions present in the configuration file are added and started to the

pathmon as per the conditions mentioned above.
• PidFile: To store the process id, all the configuration files must contain different values. If

the configuration file uses the same file, then it contains the process id for recently added
daemon.

Likewise, you can include other directives, if necessary.
Directives that are present in the configuration file implies its rules only on the specific daemon
serverclass using that configuration file.

Script to Configure Multiple httpds and their Configuration Files
To automate the process of configuration file generation for different httpds, you can use the
altHttpd script. The altHttpd script exists in the conf folder of iTP Secure Web server installation
directory. The required input parameters for the script is ServerClassName. This script can be
used for httpd serverclass. If these values are not specified or is of length greater than 15, the
setup terminates the process with a relevant error. You can run the script only from the iTP Secure
WebServer's conf directory.
Syntax:
./altHttpd serverclass_name

For example:
./altHttpd httpdA

serverclass_name: This is used as a value for ServerClassName directive of httpd server.
This is also used as a part of the filename for new configuration files.

NOTE: You can use this option to create the configuration files httpd.config,
httpd.stl.config, the log files with default names error.log, httpd.log, access.log,
httpd.pid, and key database file such as test_key.db.
Table 14 displays the file names that is used based on the httpd serverclass name specified by the
user.

Table 14 Configuration and Log File Names for alternate httpd

Changed NameDefault Name

<httpd_server_class_name>.confighttpd.config

<httpd_server_class_name>-stl.confighttpd.stl.config

<httpd_server_class_name>--test_key.dbtest_key.db

<httpd_server_class_name>-access.logaccess.log

<httpd_server_class_name>-httpd.loghttpd.log

<httpd_server_class_name>-error.logerror.log

<httpd_server_class_name>-httpd.pidhttpd.pid

If you enter the same file name that already exists, the script prompts for a confirmation to replace
the file name with a .backup extension.

136 Configuring the iTP Secure WebServer

“<file-name>file already exists. It will be saved with .backup
extension.”Do you wish to continue? (y/n) (No default)

If you enter y/Y, the script continues. Otherwise, if you enter n/N, the script exits. Else, an error
message is printed and the script exits.
This script does not create object files or sample server objects or admin WS.
You must have the required permission to create files or directories on the specified location.
The altHttpd script creates separate files for secure and non-secure versions.
The log files and pid file have names based on the httpd serverclass name. If required, you can
change the names in the configuration files.
This option can create configuration files with basic information. You can perform additional
changes to the configuration files.
The file permissions remain the same.
The altHttpd script performs the similar steps as performed in the manual configuration of iTP
Secure WebServer.
You must provide the following details:

• The current configuration file name. The default is: <Web Server Installation
directory>/conf/httpd.config.

• TCP/IP information such as, IP CLIM, TCP/IPV6, and conventional TCP/IP is based on the
system configuration.

• TCP/IP process.

• Port number for Accept. For secure version use AcceptSecureTransport .

• For secure version, use DN information and password for key database file and
ServerClassName for gcache.

You can configure the httpd server definition with the ServerClassName directive that contains
the same name.
The IP address for Accept or AcceptSecureTransport exists by default. If required, you
can change the IP address. You can enter the port number and key database information as per
the requirement. The transport:ip:port combination must be set such that it is different from
the configuration of other httpd serverclass. Pathmon name is copied from the current configuration
file.

Script to Configure Multiple httpds and their Configuration Files 137

7 Using Common Gateway Interface (CGI) Programs
This section introduces you to using Common Gateway Interface (CGI) programs with the iTP Secure
WebServer. Topics discussed in this section include:

• “CGI Support in the iTP Secure WebServer Environment” (page 139)

• “CGI Configuration and Programming” (page 141)

• “Configuring for CGI Programs” (page 142)

• “Passing CGI Environment Variables” (page 146)

• “HTTP Header Variables” (page 153)

• “Passing Input” (page 155)

• “Returning Output” (page 156)

• “Logging Error Information” (page 158)

• “CGIStandard File Environment” (page 159)

• “CGI Library” (page 159)

• “Pathway CGI Coding Considerations” (page 161)

• “Examples of a Pathway CGI Implementation” (page 162)
Web servers use CGI programs to interpret and process the information they receive from clients.
CGI programs also interact with other programs and resources. For example, if a Web client wants
to search a database, a CGI program would receive the search criteria (for example, keywords)
from the Web client as input and would then interact with the proper search mechanism to gather
the information desired. The CGI program then would process this information for passing back
to the Web client through the server.
CGI programs can be written in several languages; the languages most often used are: Tcl, shell
scripts (Korn or Bourne shell), C, and COBOL. Of these languages, HP offers C, C++, and Korn
shell (through OSS) as supported products. The iTP Secure WebServer also enables you to use
Java servlets in a CGI execution environment.
When a server receives a request from a Web client, the server runs the CGI program to process
the request and uses either environment variables or standard input to pass request data to the
program. The data passes to the CGI program through the Common Gateway Interface. After
processing the request data, the CGI program uses standard output to pass requested objects or
data to the server, which, in turn, passes the output to the Web client. “CGI Relationships” (page 139)
displays the relationships among the Web client, a Web server, the CGI, and a CGI program.

138 Using Common Gateway Interface (CGI) Programs

Figure 5 CGI Relationships

Database
CGI Server Other

iTP Secure WebServer

Web Client

CGI Standard Input
& Environment Variables

Standard Output

CGI Support in the iTP Secure WebServer Environment
The iTP Secure WebServer offers two CGI execution environments; and both have advantages
over conventional CGI execution. These environments are:

• “Generic-CGI Server Class” (page 139)

• “Pathway CGI Server Classes” (page 140)
In addition, the “Servlet Server Class (SSC)” (page 141) provides a way of executing Java servlets.

Generic-CGI Server Class
The generic-CGI server class is a NonStop TS/MP server class that launches and manages
user-written Open System Services (OSS) CGI programs that conform to the NCSA CGI 1.1
specification. A CGI program written for another environment requires no change to communicate
with the generic-CGI server class.
As shown in “Generic-CGI Server class” (page 140) the generic-CGI server class translates the
NonStop TS/MP Pathsend protocol into a standard CGI interface. Your CGI program uses its
familiar stdin and stdout file descriptors and environment variables. The generic-CGI server
class makes it unnecessary for the httpd process to implement polling.

NOTE: CGI requests and replies can be of any length. For long requests and replies, the httpd
process and the process labeled "Pathway CGI main" exchange multiple Serverclass_send and
reply messages.

CGI Support in the iTP Secure WebServer Environment 139

Figure 6 Generic-CGI Server class

HTTPD

Pathway CGI Main
Serverclass_send

Reply

stdin stdout

.cgi Program

generic_cgi

The generic-CGI execution environment has these characteristics and constraints:

• You can run as many simultaneous CGI processes as there are processes in the generic-CGI
server class.

• The .cgi programs are launched in the same processor in which the generic-CGI server is
running.

• As in standard CGI, a new process is created for each invocation.
Generic-CGI is the best choice for running an existing .cgi program or a program that will run
without change in various WebServer environments. For high-volume applications, you can achieve
better performance by using Pathway CGI, as described next.

Pathway CGI Server Classes
Pathway CGI server classes provides substantial improvement in performance by comparison with
conventional or generic-CGI, because the CGI program is implemented not as a separate process,
but as a user-written CGI_main procedure within a NonStop TS/MP server process.

NOTE: If your program must read environment variables, write a CGI_initialize routine so that
when CGI_main is invoked, the getenv() call will return the WebServer's environment variables.
See “Design Guidelines” (page 162) for more information.

To create a Pathway CGI server class, you use theCGI library:
• Use the following library routines, rather than the corresponding C library routines, for access

to the standard input, output, and error files:

◦ CGI_fread

◦ CGI_fwrite

◦ CGI_printf

140 Using Common Gateway Interface (CGI) Programs

◦ CGI_getc

◦ CGI_puts

• Use other CGI procedures as required by your application. “CGI Procedures” (page 159) lists
and describes all the procedures in the CGI library.
The semantics of CGI routines are identical to the corresponding routines in the standard C
library.

• Link your application code with the CGI library, libcgi.a, to create an executable program.

NOTE: Applications built using a version of libcgi.a that is newer than the version of the iTP
Secure WebServer (httpd process) might not run correctly in the older WebServer environment.
Applications built with a previous version of libcgi.a run correctly with newer versions of the
iTP Secure WebServer.
The iTP WebServer provides CGI library, which supports the IEEE floating-point (libcgi.a),
Tandem floating-point (libcgi_tandem.a), and Neutral floating-point (libcgi_neutral.a).

The CGI library uses the context-sensitive Pathsend interface, as shown in “Pathway CGI Interface”
(page 141). The Pathway CGI interface simulates the behavior of the OSS standard input, output,
and error files.

NOTE: CGI requests and replies can be of any length. For long requests and replies, the httpd
process and the process labeled "Pathway CGI main" exchange multiple Serverclass_send and
reply messages.

Figure 7 Pathway CGI Interface

HTTPD

Pathway CGI Main
Serverclass_send

Reply
CGI_main

Servlet Server Class (SSC)
The Servlet Server Class (SSC) provides a way of executing Java servlets. For details, see NonStop
Servlets for JavaServer Pages (NSJSP) System Administrator's Guide.

CGI Configuration and Programming
To use CGI programs in the iTP Secure WebServer environment, you be familiar with the following:

• How to configure CGI programs and server classes
See “Configuring for CGI Programs” (page 142)

• Passing environment variables
See “Passing CGI Environment Variables” (page 146)

• Passing input
See “Passing Input” (page 155)

CGI Configuration and Programming 141

• Returning output
See “Returning Output” (page 156)

• Logging errors
See “Logging Error Information” (page 158)

• The CGI standard file environment
See “CGIStandard File Environment” (page 159)

If you plan to use Pathway CGI, you should also be aware of a the coding considerations described
in “Pathway CGI Coding Considerations” (page 161).
CGI programs can be located in a common directory that includes HTML documents and graphics
files. CGI executables are conventionally labeled with the extension .cgi. Pathway CGI applications
usually have the extension .pway. You can override these conventions by defining other extensions
in the MIME-types configuration file, as described in “MIME Types” (page 142).

Configuring for CGI Programs
Under many circumstances, you do not have to configure the iTP Secure WebServer to useCGI
programs. The configuration file provided with the iTP Secure WebServer defines any file that has
a .cgi extension as a CGI program to be handled by the generic-CGI server class. CGI files can
reside in any directory, including the same directory as HTML documents, image files, and other
objects.
To customize the handling of CGI programs or to create a new Pathway CGI application, you
should understand several aspects of configuration:

• “MIME Types” (page 142)

• “Mapping MIME Types to Server Classes” (page 143)

• “Server Class Configuration” (page 145)

• “Program Access Restrictions” (page 146)

MIME Types
The two MIME types, cgi and pway, are interpreted as CGI programs by the CGI interface as
shipped. These two MIME types are defined in the conf/mime-types.config file, which is
sourced in by httpd.config.
The MIME type of a file is defined by the MimeType directive. The MIME types for generic and
Pathway CGI applications, respectively, are

• MimeType application/x-httpd-guardian cgi

• MimeType application/x-httpd-guardian pway

142 Using Common Gateway Interface (CGI) Programs

You can customize this configuration in the following ways:

• Enable files other than those that have the .cgi or .pway extension as CGI programs. The
following example specifies that all files that have the extension .pl also have the MIME type
of a CGI application
MimeType application/x-httpd-guardian pl

PathwayMimeMap pl generic-cgi

(The PathwayMimeMap directive is required, as described in “Mapping MIME Types to Server
Classes” (page 143).)

• Define an entire directory of CGI programs (such as /cgi-bin/).
To define such a directory, use a DefaultType command in a Region directive. For example,
the directive
Region /cgi-bin/* { DefaultType application/x-httpd-guardian }

specifies that in the directory /cgi-bin/, any file that has no extension should be treated
as a CGI program.

Mapping MIME Types to Server Classes
In the configuration shipped with the iTP Secure WebServer, files that have the extension .cgi are
processed by the generic-CGI server class. The generic-CGI server class launches a CGI process
for each request. The server class uses the NonStop TS/MP Pathsend facility to communicate with
the httpd process but uses a standard NCSA CGI interface to communicate with CGI programs.
Programs that have the extension .pway are treated as NonStop TS/ MP server classes, and the
file name is mapped into a server class name. The server class name consists of the file name
portion of the path as the server class name, excluding the extension. For example, the following
becomes the server class userform:
/usr/tandem/webserver/root/userform.pway

Because the server class uses explicit naming conventions, names of CGI programs that have
.pway extensions must start with an alphabetic character, must be no more than 15 characters in
length, and must be unique to each system.
Also, server class names (unlike OSS file names) are not case sensitive. Check that the names you
specify for CGI processes are unique regardless of case.
You map MIME types to server classes by using the PathwayMimeMap configuration command,
shown in “Server MIME Types” (page 143). The example contains the serverMIME types table and
is derived from the table shipped with NCSA's public domain HTTP server. The PathwayMimeMap
directives specify that programs that have the extension .cgi are to be processed by the
generic-CGI server class, and programs that have the extension .ab_demo are to be processed
by server classes defined to the $ZAB PATHMON process. The MimeType and PathwayMimeMap
for server-side includes cause the iTP Secure WebServer to invoke the generic-CGI server class to
process SSI directives that use the exec command to run CGI programs. (For information about
the exec command, see “SSI Directives” (page 131).)
All CGI programs have the MIME type of application/x-httpd-guardian. The other types
in “Server MIME Types” (page 143) have no significance for CGI programs.

Table 15 Server MIME Types

VERSION=7.2
#
This file contains the server MIME types table, and is
derived from the table shipped with NCSA's public domain HTTP
server.
#
#
These types enable CGI script processing, imagemaps, and

Configuring for CGI Programs 143

Table 15 Server MIME Types (continued)

server side includes.
#
#MimeType application/x-httpd-cgi cgi
#MimeType application/x-httpd-fcgi fcg fcgi
MimeType application/x-imagemap map
MimeType text/x-server-parsed-html shtml
#These Mime Types are for Servlet API 2.0 SSC
MimeType application/x-httpd-nsk ssc
#These Mime Types are for Pathway
MimeType application/x-httpd-guardian pway
PathwayMap for Generic CGI programs do not remove!
MimeType application/x-httpd-guardian cgi
PathwayMimeMap cgi generic-cgi
PathwayMap for Server-side include
MimeType application/x-httpd-guardian zinclude
PathwayMimeMap zinclude generic-cgi
#
This variable is the document MIME type returned if the
server can find no matching extension in the MIME types
table.
#
DefaultType text/plain
#
This table maps file extensions into MIME types.
#
MimeType application/octet-stream bin
MimeType application/oda oda
MimeType application/pdf pdf
MimeType application/postscript ai eps ps
MimeType application/rtf rtf
MimeType application/x-mif mif
MimeType application/x-csh csh
MimeType application/x-dvi dvi
MimeType application/x-hdf hdf
MimeType application/x-latex latex
MimeType application/x-netcdf nc cdf
MimeType application/x-sh sh
MimeType application/x-tcl tcl
MimeType application/x-tex tex
MimeType application/x-texinfo texinfo texi
MimeType application/x-troff t tr roff
MimeType application/x-troff-man man
MimeType application/x-troff-me me
MimeType application/x-troff-ms ms
MimeType application/x-wais-source src
MimeType application/zip zip
MimeType application/x-bcpio bcpio
MimeType application/x-cpio cpio
MimeType application/x-gtar gtar
MimeType application/x-shar shar
MimeType application/x-sv4cpio sv4cpio
MimeType application/x-sv4crc sv4crc
MimeType application/x-tar tar
MimeType application/x-ustar ustar
MimeType audio/basic au snd
MimeType audio/x-aiff aif aiff aifc
MimeType audio/x-wav wav
MimeType image/gif gif
MimeType image/ief ief
MimeType image/jpeg jpeg jpg jpe
MimeType image/tiff tiff tif
MimeType image/x-cmu-raster ras
MimeType image/x-portable-anymap pnm
MimeType image/x-portable-bitmap pbm
MimeType image/x-portable-graymap pgm
MimeType image/x-portable-pixmap ppm
MimeType image/x-rgb rgb
MimeType image/x-xbitmap xbm
MimeType image/x-xpixmap xpm

144 Using Common Gateway Interface (CGI) Programs

Table 15 Server MIME Types (continued)

MimeType image/x-xwindowdump xwd
MimeType text/html html htm
MimeType text/plain txt
MimeType text/richtext rtx
MimeType text/tab-separated-values tsv
MimeType text/x-setext etx
MimeType video/mpeg mpeg mpg mpe
MimeType video/mpeg2 mpv2
MimeType video/quicktime qt mov
MimeType video/x-msvideo avi
MimeType video/x-sgi-movie movie
#
Everything below this point has been added for version 1.1
#
MimeType x-world/x-vrml wrl
MimeType image/png png
#
added for XML support
#
MimeType text/xml xml XML
MimeType text/xsl xsl XSL
#
Encoding Types (for compression)
#
#EncodingType x-gzip gz
#EncodingType x-zip-compress Z
MimeType application/x-compress Z
MimeType application/x-gzip gz
#added for javascript and css support
#
MimeType application/x-javascript js
MimeType text/css css
#
Everything below this point has been added for version 2.0
#
MimeType audio/x-pn-realaudio ra ram

Server Class Configuration
You use theServer directive to establish the configuration of the generic-CGI server class or a
Pathway CGI server class. The configuration files shipped with the iTP Secure WebServer include
Server directives for the generic-CGI server class, the Servlet Server class (SSC), and the Antarctic
Bank demonstration application. You can change the configuration of these server classes by
changing the Server directives that define them. For example, you might want to change the
number of processes in a server class.
The following example, from the default configuration file httpd.config, defines the generic-CGI
server class with a default set of server attributes:
Server generic-cgi.pway {eval $DefaultServerAttributes}

The server class name is derived from the name in the Server directive by stripping the .pway
extension. The URL httpd://www.server.com/generic-cgi.pway becomes a generic-CGI
server class.
When adding a Pathway server class, do not use the same file name under different directories.
File names must translate to a legal server class name as follows:

• The server class name is less than or equal to 15 characters.

• The first character must be alphabetic.

• The underscore character is invalid in a Pathway server class name.
For a detailed description of the Server directive, see “Configuration Directives” (page 198). For
specific information about defining new SSCs, see NonStop Servlets for JavaServer Pages (NSJSP)
System Administrator's Guide.

Configuring for CGI Programs 145

Program Access Restrictions
You can disable access to CGI programs in certain server areas by using the Deny command in
a Region directive. For example, the directive
Region /~*.cgi* {
Deny
}

denies access to all CGI programs located in user directories, that is, any directory accessed by
a URL beginning with a forward slash followed by a tilde (/~).

Passing CGI Environment Variables
You use environment variables to pass descriptive information about the server and the current
request to a CGI program. Some of these variables are set for all requests; others are set only for
particular requests. Passing environment variables is described in these three tables:

• “Environment Variables” (page 146) lists and describes the standard environment variables
applicable to generic and Pathway CGI programs.

• “Pathway Specific Environment Variables” (page 150) lists and describes additional environment
variables available in the iTP Secure WebServer environment.

• “Environment Variable Access Methods” (page 152) describes how to use environment variables
from specific programming languages.

NOTE: The CGI environment changes on each invocation of CGI_main. To access your
environment variables, use CGI_initialize(), as described under “Design Guidelines” (page 162).

The SSL, session identifier, and Secure HTTP environment variables apply only to secure versions
of the iTP Secure WebServer.

Table 16 Environment Variables

DescriptionEnvironment Variable

The following environment variables are not
request-specific. These variables are set for all requests.

The name and version of the server software answering
the request and running the gateway.
Format:

SERVER_SOFTWARE

name/version

Example:
Tandem iTP Secure WebServer/7.2

The IP address of the virtual host that accepted the
connection. Format: /dir1/dir2/program_name
Example:

SERVER_ADDR

/search/name.cgi

The server host name, DNS alias, or IP address as it would
appear in self-referencing URLs.
Format:

SERVER_NAME

fully-qualified-domain-nameor ip-address
Example:
www.company.com or 199.170.183.2

The CGI specification to which this server complies.
Format:

GATEWAY_INTERFACE

CGI/revision

Example:
CGI/1.1

146 Using Common Gateway Interface (CGI) Programs

Table 16 Environment Variables (continued)

DescriptionEnvironment Variable

These environment variables are request specific.

The name and revision of the information protocol this
request came in with.
Format:

SERVER_PROTOCOL

protocol/revision

Example:
HTTP/1.0

The port number to which the request was sent.
Format:

SERVER_PORT

number-between-1-and-65535

Example:
80

Extra path information given by the Web client. CGI
programs can be accessed by their virtual path name

PATH_INFO

followed by extra information. This extra information is
contained in the PATH_INFO variable. If this information
comes through a URL, it is decoded by the server before it
is passed to the CGI program.
Format:
/dir1/dir2/dir3.../file
Example:
/images/logo.gif

The translated version of PATH_INFO, after the server
applies a virtual-to-physical mapping to it.
Format:

PATH_TRANSLATED

/dir1/dir2/dir3.../file

Example:
The partial path /images/logo.gif becomes the full path
name:/root/server/images/logo.gif

The method by which the request was made. For HTTP,
this is GET, HEAD, POST, and so on.
Format:

REQUEST_METHOD

method

A virtual path to the CGI program being executed, used
for self-referencing URLs.
Format:

SCRIPT_NAME

/dir1/dir2/program_name

Example:
/search/name.cgi

The information following the question mark (?) in the URL
referencing this CGI program. This information is not

QUERY_STRING

decoded by the server. This variable is set whenever there
is query information, regardless of command-line decoding
(see “HTML Forms” (page 156)).

The name of the host making the request. If the iTP Secure
WebServer does not know this name, it leaves this variable

REMOTE_HOST

unset. To use this feature, you must enable DNS lookups
by including the ReverseLookup directive, with a value of
yes, in your configuration file.
Format:
machine.domain.category

Example:
www.company.com

Passing CGI Environment Variables 147

Table 16 Environment Variables (continued)

DescriptionEnvironment Variable

The IP address of the remote host making the request.
If IPv4 address is used:

REMOTE_ADDR

n.n.n.n

Example:
199.170.183.2

If IPv6 address is used:
n:n:n:n:n:n:n:n

Example:
2001:0:0:0:0:FFD3:0:57ab

The request is sent by using this Port number.
Format:

REMOTE_PORT

number-between-1-and-65535

Example:
80

If the server supports user authentication, and the CGI
program is protected, this is the protocol-specific
authentication method used to validate the user.
Example:

AUTH_TYPE

basic

This variable is not supported.REMOTE_IDENT

If the server supports user authentication, and the CGI
program is protected, this is the authenticated user name.
Example:

REMOTE_USER

sandeman

For queries with attached information, such as HTTP POST,
this is the content type of the data.
Format:

CONTENT_TYPE

type/subtype

Example:
text/html

The length of the content (in bytes) as given by the Web
client.
Example:

CONTENT_LENGTH

768

These TLS and SSL environment variables are request specific.

Contains the number of bits in the session key used to
encrypt this session.
Example:

HTTPS_KEYSIZE

128

Contains the name of the issuer of this server's certificate.
Example:

HTTPS_SERVER_ISSUER

CN=Capulet, O=Capulet's House of Keys,
C=Italy

Contains the DN for this server's certificate.
Example:

HTTPS_SERVER_SUBJECT

CN=Juliet, O=Capulet's House of Keys,
C=Italy

Indicates whether the request is using TLS or SSL. The values
are: ON, OFF
Example:

HTTPS

off

148 Using Common Gateway Interface (CGI) Programs

Table 16 Environment Variables (continued)

DescriptionEnvironment Variable

If TLS or SSL client authentication is used, this variable
contains the certificate that is presented by the Web client.

HTTPS_CLIENT_CERT

It is encoded in ASCII using radix-64. If SSL 3.0 was used,
the value stored in this variable is the Web client's
certificate, extracted from the certificate chain that was
received from the Web client.

If TLS or SSL client authentication is used, this variable
contains the type of certificate used. Possible values are
X509 and X509V3.
Example:

HTTPS_CLIENT_CERTTYPE

X509V3

If TLS or SSL client authentication is used with the
-requestauth option, and the iTP Secure WebServer

HTTPS_CLIENT_ERROR_DN

discovers an error while verifying the client certificate, this
variable contains the DN of the certificate in error.

If TLS or SSL client authentication is used, this variable
contains the DN of the direct issuer of the client certificate.

HTTPS_CLIENT_ISSUER

The DN is taken from the issuer field within the client
certificate.
Example:
OU=PersonalCertificate,0="RSA Data
Security,Inc.",C=US

If TLS or SSL client authentication is used, this variable
contains the verification status of the client certificate. For

HTTPS_CLIENT_STATUS

descriptions of possible status values, see “Using the
-requestauth Option” (page 73).
Example:
VALID

If TLS or SSL client authentication is used, this variable
contains the DN of the Web client.
Example:

HTTPS_CLIENT_SUBJECT

CN=Juliet,O=Capulet's House of Keys

Indicates the port number used for the TLS or SSL request.
Example:

HTTPS_PORT

443

Indicates the protocol used. Possible values are TLS and
SSL.
Example:

HTTPS_PROTOCOL

SSL

Indicates the version of the security protocol used. Possible
values are: 3 - (SSL 3.0) 1.0 - (TLS 1.0) 1.1 - (TLS 1.1) 1.2
- (TLS 1.2)
Example:

HTTPS_PROTOCOL_VERSION

3.0

These environment variables pertain to session identifiers.

The department ID, in ASCII.SI_DEPARTMENT

The group number embedded in the ticket. The group ID
is taken from a user database. You can use this variable

SI_GROUP

to present customized Web pages to particular groups of
users.
Example:
45

The SI_GROUP variable is present only if a valid ticket is
presented.

Passing CGI Environment Variables 149

Table 16 Environment Variables (continued)

DescriptionEnvironment Variable

The entire Session Identifier.SI_SI

The 2-bit user context field from the ticket. This field is used
by the ticketing agent.

SI_UCTX

The user ID of the user accessing the content. This value is
extracted from the ticket. Except for anonymous ticketing,

SI_UID

the user ID is taken from a user database. You can use this
variable to present customized Web pages to particular
users.
Example:
967845

The SI_UID variable is present only if a valid ticket is
presented.

Table 17 Pathway Specific Environment Variables

DescriptionEnvironment Variable

Causes form-encoded data and name-value pairs in the
QUERY_STRING environment variable to be stored in
environment variables.

AUTOMATIC_FORM_DECODING1

This feature is only applicable to CGI objects with a MIME
type of application/x-httpd-guardian. The parsing
automatically decodes the form encoded data from the
stdin file (or pseudo stdin in the case of Pathway servers).
The parsing mechanism also decrements the
CONTENT_LENGTH environment variable accordingly.
Format:
Region /* {AddCGI AUTOMATIC_FORM_DECODING
ON | OFF}

Example:
To retrieve the value of the form entry:
<INPUT SIZE=30 NAME="First_Name"> Your
First Name

Use the following:
getenv ("First_Name");

In this example, the environment variables are made with
the same names as the name portion of the name value
pair.
This URL:
http://www.yourserver.com/samples/Scripts/env.cgi?name=value&x=y

has the QUERY_STRING environment variable decoded
into two extra environment variables: name=value and
x=y. If these namevalue pairs were passed to the env.cgi
program found in /samples/Scripts, the following would
be returned:
Env CGI Script
Environment info follows
SERVER_PORT 80
name value
SERVER_PROTOCOL HTTP/1.0
SERVER_NAME comm.loc201.company.com
HTTP_USER_AGENT Mozilla/1.1N (Macintosh;
I; PPC)
SERVER_SOFTWARE iTP Secure WebServer/1.1-
SSL/1.1
HTTPS OFF
REMOTE_ADDR 155.186.131.240

150 Using Common Gateway Interface (CGI) Programs

Table 17 Pathway Specific Environment Variables (continued)

DescriptionEnvironment Variable

QUERY_STRING=name=value name=value=y
AUTOMATIC_FORM_DECODING ON
HTTP_ACCEPT */*, image/gif,
image/x-xbitmap,
image/jpeg
PATH
/bin:/usr/bin:/usr/ucb:/usr/bsd:/usr/local/bin
x y
GATEWAY_INTERFACE CGI/1.1
REQUEST_METHOD GET
SCRIPT_NAME /samples/Scripts/env.cgi

This environment variable is used to attach a prefix to the
environment variables that are created when the value of

FORM_DECODING_PREFIX

the AUTOMATIC_FORM_DECODING environment variable
is set to ON.
Format:
Region /* {
AddCGI AUTOMATIC_FORM_DECODING ON
AddCGI FORM_DECODING_PREFIX your_prefix_
}

Example:
To retrieve the value of the form entry:
<INPUT SIZE=30 NAME="First_Name"> Your
First Name

Use the following:
getenv ("your_prefix_First_Name");

In this example, the names of all environment variables
have the prefix your_prefix_. The prefix option can be
useful if you expect duplication of names between the
names in your form and the names of predefined
environment variables.

If set to yes, causes the Pathway CGI server to abort when
the dialog between HTTPD and CGI server is aborted.
Format:

TANDEM_CGI_CONNECTION_ABORT_EXIT

Server path { Env
TANDEM_CGI_CONNECTION_ABORT_EXIT=value}

The valid values for this variable are YES/yes and NO/no.
If you write your own copy of CGI_connection_abort()
routine that does not stop the Pathway CGI server, the CGI
server is aborted if
TANDEM_CGI_CONNECTION_ABORT_EXIT is set to yes.
In all other cases, this variable has no effect.
This environment variable is not used in case of NSJSP.
Example:
Server $root/bin/SampleServer.pway {
Eval $DefaultServerAttributes
Env TANDEM_CGI_CONNECTION_ABORT_EXIT=YES}

This environment variable determines the number of
seconds that the CGI process will retain buffered data

TANDEM_CGI_ FFLUSH_TIMER

before flushing the data to the httpd process (which, in
turn, sends the data to the client). You can include this
variable in the configuration of your server class or set it
by using the CGI_set_fflush_timer procedure.
Format:

Passing CGI Environment Variables 151

Table 17 Pathway Specific Environment Variables (continued)

DescriptionEnvironment Variable

Serverpath {Env
TANDEM_CGI_FFLUSH_TIMER=value}

The valid values for this variable are from 0 to 3600. The
default value, 0, causes the CGI process to retain buffered
data until the buffer is full. Any other value causes the
process to wait the specified number of seconds before
flushing the buffer.
Example:
Server /dir5/flush.pway {Env
TANDEM_CGI_FFLUSH_TIMER=1}

The flush timer uses an OSS signal handling routine that
catches a SIGALARM signal. When the alarm signal is
delivered to a process, it can interrupt long I/O operations
and cause an error. In this case, the errno variable is set
to 4004 (interrupted system call).
If you want your program to do its own SIGALARM
processing, set the value of TANDEM_CGI_FFLUSH_TIMER
to 0.

This environment variable maps the current working
directory to the CGI script directory when its value is set
to YES.
Format:

TANDEM_CGI_ RELATIVE_PATH_ SUPPORT

Server path {
Env TANDEM_CGI_RELATIVE_PATH_SUPPORT=value}

The valid values for this variable are YES/yes and NO/no.
The default value, NO, causes the current working directory
to be mapped to the directory specified by the CWD
attributes of the server directive. If a directory is not
specified by the CWD attributes, the current working
directory, by default, will be mapped to the directory in
which the generic-cgi.pway is located.
Example:
Server $root/bin/generic-cgi.pway {
Eval $DefaultServerAttributes
Env TANDEM_CGI_RELATIVE_PATH_SUPPORT=YES}

Generic CGI will move the current working directory to the
location of the script file. You can specify a relative path
inside a cgi script by using this feature.

1 When AUTOMATIC_FORM_DECODING is used, only the last value in a multiple selection will be returned if the POST
method is used along with the multiple tag. To see all values, use the GET method and the QUERY_STRING variable.

Table 18 Environment Variable Access Methods

Variable Access MethodLanguage

This access method makes a getenv library call
Format:

C/C++

#include stdlib.h
char *variable =
getenv("environment_variable_name")

Example:
char *sname=getenv("SERVER_NAME")

This access method accesses an environment variable
Format:

Tcl

$env(environment_variable_name)

Example:

152 Using Common Gateway Interface (CGI) Programs

Table 18 Environment Variable Access Methods (continued)

Variable Access MethodLanguage

$env(cgi_dump.cgi)

This access method accesses environment variables as
normal shell variables
Format:

Bourne Shell

variable=$environment_variable_name

Example:
SNAME=$SERVER_NAME

This access method accesses environment variables as
normal shell variables
Format:

Korn Shell

variable=$environment_variable_name

Example:
SNAME=$SERVER_NAME

You access environment variables through the
HttpServletRequest class

Java

HTTP Header Variables
In addition to the predefined environment variables, the iTP Secure WebServer creates environment
variables for HTTP header lines sent by a Web client. The server names these variables by prefixing
HTTP_ to the name of the header converted to uppercase. Any dash (-) characters in the header
name are converted to underscore (_) characters.
For example, for the Web client header
User-agent: WebBrowser/2.1

the server creates the environment variable HTTP_USER_AGENT and assigns to it the value
WebBrowser/2.1

If more than one client header has the same name, the server creates a single environment variable
based on the common name (CN). For example, the variable for multiple Accept: headers would
be HTTP_ACCEPT. The single value assigned to this variable would consist of the Web client
headers separated by commas. For example, if the multiple client headers are:
Accept: image/gif
Accept: image/jpeg

the server would assign the value:
image/gif, image/jpeg

to environment variable HTTP_ACCEPT.
The server might omit environment variables for headers it has already processed, such as
Authorization: Content-length:, and Content-type:.
Table 19 (page 153) lists some commonly used HTTP header environment variables.

Table 19 Sample HTTP Header Variables

DescriptionSample HTTP Variable

This variable lists the MIME headers that the Web client
can accept.

HTTP_ACCEPT

Format:
[type/subtype,] [type/subtype,] …

Example:

HTTP Header Variables 153

Table 19 Sample HTTP Header Variables (continued)

DescriptionSample HTTP Variable

image/gif, image/jpeg

This variable lists the character sets that the Web client can
accept.

HTTP_ACCEPT_CHARSET

Format:
[char-set-name,] [char-set-name,] …

Example:
iso-8859-5, Shift_JIS

This variable lists the set of languages that the Web client
prefers as a response.

HTTP_ACCEPT_LANGUAGE

Format:
[language,] [language,] …

Example:
da, en-gb

This variable lists the IP host and port of the resource being
requested. port is required only if the value is other than
80.

HTTP_HOST

Format:
host-name[:port]

Example:
www.w3.org:10300

This variable specifies the number of bytes (or a range of
bytes if the range is indicated) a Web client can retrieve.

HTTP_RANGE

Format:
bytes=number-of-bytes

or
bytes=range-of-bytes

where
consists of a starting value and an ending value separated
by a hyphen (-); omit the starting value if you want the Web
client can retrieve the last number of bytes specified by
range-of-bytes.
Examples:
bytes=0-499

specifies a range from 0 to 499
bytes=-250

specifies the previous 250 bytes

This variable identifies the Web client software being used
to access the server.

HTTP_USER_AGENT

Format:
browser-name/version

Example:
Mozilla/4.0

154 Using Common Gateway Interface (CGI) Programs

Passing Input
Input is passed to CGI programs by these ways:

• “Command Line” (page 155)
Arguments from the command line are placed into a variable argument list, and the argument
counter is appropriately incremented.

• “Query Strings” (page 155)
The CGI program receives data through the QUERY_STRING environment variable if
AUTOMATIC_FORM_DECODING is turned off. If AUTOMATIC_FORM_DECODING is turned
on, the data is stored not only in the QUERY_STRING environment variable, but in a separate
environment variable for each name/value pair.

• “Extra Path Information” (page 155)
The CGI program receives data through the PATH_INFO andPATH_TRANSLATED environment
variables.

• “HTML Forms” (page 156)
The CGI program receives data entered intoHTML forms onstandard input.

The following sections describe these means of passing input to a CGI program.
For a detailed description of URL encoding, see RFC 1738. To see RFC 1738, use this URL:
http://www.ietf.org/rfc/rfc1738.txt

Command Line
The command-line interface is identical to the command-line interface from a shell program such
as the Korn shell. It applies only when you run a CGI program directly from the OSS environment
to debug it and has no relevance to the iTP Secure WebServer execution environment.

Query Strings
Input can be passed to CGI programs by appending query strings toURLs:
URL?query_string

where:
query_string
is a string of alphanumeric characters.

Any blank spaces in the query string are replaced with plus signs (+); multiple query strings are
separated with ampersands (&). The server assigns the contents of query_string to the
QUERY_STRING environment variable, which then is passed to the CGI program designated in
the URL.
For example:
http://www.datamart.com/search.cgi?Albert+Einstein&Marie_Curie

In this example, the value Albert+Einstein&Marie_Curie is assigned to the QUERY_STRING
variable, which then is passed to the CGI program search.cgi.

Extra Path Information
Input data can be passed to CGI programs by appendingextra path information to URLs:
URL/cgi_script/extra_path_info

where:
extra_path_info

Passing Input 155

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

is information to be passed to the designated CGI program (cgi_script). The
most common use of extra path information is to specify the relative path name of
a data file.

The iTP Secure WebServer stores the contents of extra_path_info in the PATH_INFO variable.
Using the mapping information specified in theFilemap directive, the iTP Secure WebServer also
translates the PATH_INFO path name and assigns the translated path name to the variable
PATH_TRANSLATED. The PATH_INFO and PATH_TRANSLATED environment variables are both
available to the CGI program (cgi_script).
For example, if the request URL is:
http://www.company.com/search.cgi/misc/images

and the server Filemap directive is:
Filemap / /usr/tandem/webserver/root

the path name /misc/images is assigned to the PATH_INFO variable. Using the mapping in
the Filemap directive, the server expands the contents of PATH_INFO to
/usr/tandem/webserver/root/misc/images

and assigns this expanded path name to the variable PATH_TRANSLATED.

HTML Forms
Input data can be passed to CGI programs through input parameters constructed from data items
entered into HTML forms. These parameters are read by CGI programs onstandard input.
Each data item entered into an HTML form is assigned to a value-name. The resulting names and
their values then are used to construct input parameters formatted as:
name=value&name=value...&name=value

where:

• A space in a value is replaced with a plus sign (+).

• An equals sign (=) assigns a value to a specific name.

• An ampersand (&) separates individual parameters.
For example, if a user name (John J. Smith) and an e-mail address (jsmith@xyz.com) are
entered into an HTML form as input, these data items would be formatted into input parameters as
follows:
NAME=John+J.+Smith&EMAIL=jsmith@xyz.com

The input parameters must be entered exactly as required.
The environment variable CONTENT_LENGTH specifies the number of bytes on standard input.
For detailed information about processing forms input parameters, consult an appropriate HTML
resource.

Returning Output
Any output a CGI program writes tostandard output is passed by the server to the Web client. This
output has three components:

• One or moreHTTP response headers
These headers contain descriptive information about the server response to a request, such
as the content (data) type, the number of bytes, and the expiration time.

• A blank line
This blank line is mandatory, even no content follows it. This requirement is imposed by RFC
822; to see RFC 822, use the following URL:

156 Using Common Gateway Interface (CGI) Programs

http://www.faqs.org/rfcs/rfc822.html

• The response content
The response content is the actual object being returned to a Web client. For example, this
content might consist of an HTML document, an image, or an audio file.

A simple example of output from a CGI program:
Content-type: text/html

<HTML><HEAD>
<TITLE>Example output</TITLE>
</HEAD><BODY>

This is the HTML document generated by a CGI program.

</BODY></HTML>

Response Headers
The headers used in all CGI responses take the form:
head_name: head_value

Table 20 (page 157) lists CGI response headers.

Table 20 CGI Response Headers

DescriptionHeader Name

Specifies the data compression code. The valid values are:Content-encoding:
• x-compress (for standard UNIX compression)

• x-gzip (for GNU zip compression)

Specifies the length of the output data in bytes.
This header is optional.

Content-length:

Specifies a valid MIME type in the format type/subtype.
See “Server MIME Types” (page 143) for a MIME resource

Content-type:

that provides a complete list of the valid MIME types and
subtypes.
Note: All CGI programs must send this header.

Specifies the date and time by which the Web client should
consider the output invalid.
For example:

Expires:

Monday, 13-Feb-95 12:00:00 GMT

This header is optional.

Specifies the location of a new file for the server or client
to retrieve. The search begins at the server's root directory.
This header is optional.

Location:

Specifies that a CGI script should generate name and value
entries in the iTP Secure WebServer's extended log file by
writing out special HTTP headers.
For example:

Log-.*

Log-userid: bobmac

This example generates the following entry in the extended
log file: (cgi-userid bobmac)
This header is optional.

Specifies the status of the request. The valid status codes
are listed in “HTTP Status Codes” (page 262).

Status:

A Web client cannot properly interpret CGI program output unless it knows the output data (MIME)
type. Therefore, every response generated by a CGI program must contain aContent-type:
header. For example:

Returning Output 157

http://www.faqs.org/rfcs/rfc822.html

Content-type: text/html

Clients ignore any headers they are unable to interpret.

Server Headers
Two headers (Location: and Status:) are used by CGI programs to pass information to the
server rather than directly to the Web client. These headers cause the server to modify its response
to the Web client.

Location Header
The Location: header instructs the server toredirect the Web client to another URL. This redirection
consists of a specific URL the Web client should access in place of the original URL. For example,
a CGI program returning the header
Location: http://www.foo.com/home.html

is instructing the server to redirect the Web client to a URL
http://www.foo.com/home.html

The Resource Locator Service (RLS) passes the Location header sent by the remote server unaltered
to the client server; the RLS is not designed to modify the Location header from the remote server.
Accordingly, you should configure the remote Webserver to either:

• Not send redirect location headers

• Send a redirect location that properly refers to the DNS name (or IP address) and port of the
iTP Secure WebServer front-end server.

Status Header
The Status: header instructs the server to return a specificstatus response to the Web client. This
status information consists of a numeric HTTP status code followed by text explaining the code. For
example, a CGI program might cause the server to return a bad-request response to the Web
client:
Status: 400 Bad Request Content-type: text/html

<HTML><HEAD>
<TITLE>Bad Request</TITLE>
</HEAD><BODY>

You sent this server a bad request.

</BODY></HTML>

For a complete list of the HTTP status codes, see “HTTP Status Codes” (page 262).

Nonparsed Headers
CGI programs can use the nonparsedheader feature to return responses directly to the Web client.
To use this feature, the CGI program must have a file name that begins with nph- (for example,
nph-payment.cgi). This marker tells the server not to process any of the CGI program's output.
A CGI program using the nonparsed feature must construct a complete HTTP response, including
all status and header information.

Logging Error Information
You use a CGI program's standard error to log error information. Any output written to standard
error is recorded in either or both of two places:

• The ErrorLog file

• The stderr field in the ExtendedLog file
Standard errors from a server CGI program are not returned to the Web.

158 Using Common Gateway Interface (CGI) Programs

You controlerror logging by specifying an ErrorLog or ExtendedLog directive in the server
configuration file (httpd.config). For further details about enabling error logging, see “Managing
Log Files” (page 108).

CGIStandard File Environment
Although the UNIX and OSS environment have some internal differences, your CGI programs can
use a standard file environment in familiar ways. This section provides background about the
underlying differences and the ways your CGI programs can use the standard file environment.
In the NCSA CGI model, interprocess communications are achieved through the standard in
(stdin) and standard out (stdout) file descriptors. Each of these file descriptors is a simplex
communications channel. Full-duplex, bidirectional interprocess communications are achieved only
when both file descriptors are open simultaneously.
The Guardian $RECEIVE interprocess communications model contrasts with the POSIX model in
that it is a half-duplex, message-based mechanism. The CGI interfaces of the iTP Secure WebServer
simulate full-duplex stream behavior by treating all received messages as the standard input stream,
and all reply messages as the standard output stream.

Standard Input
The httpd process acts as the standard input file for CGI applications. The httpd process passes
all request data following the HTTP header to the generic-CGI program on the standard input file
of the program. A Pathway CGI application receives request data on a simulated standard input
file accessible through the CGI library.

Standard Output
The httpd process serves as the standard output file for CGI applications. The httpd process
returns all response information from the CGI program to the requester.

Standard Error
The CGI library functions provide access to the standard error file.

Customizing the Standard File Environment
You can use the Stdin,Stdout, and Stderr options to the Server directive to customize the
standard file environment for your CGI program.
For a Pathway CGI application, the CGI library procedures always use the httpd process in place
of standard files, but the application can use the corresponding C or other language library functions
(for example, printf) for access to the files specified by Stdin, Stdout, and Stderr. For
example, the SSC uses the standard output and error files you specify for error reporting.

CGI Library
A CGI program to be invoked by the generic-CGI server class uses standard functions, such as C
library functions, for access to the standard file environment.
A Pathway CGI application uses the CGI library for access to standard files. “CGI Procedures”
(page 159) lists and describes the procedures in the CGI library.

Table 21 CGI Procedures

DescriptionProcedure

This procedure decodes the name/value pairs encoded in
form data returned by the POST request method or in the

CGI_Capture()

QUERY_STRING returned by the GET request method,
creates an environment variable for each name/value pair

CGIStandard File Environment 159

Table 21 CGI Procedures (continued)

DescriptionProcedure

and sets the value of the variable. CGI_Capture() might be
called in lieu of placing the Region directive AddCGI
AUTOMATIC_FORM_DECODING ON command in the
server's configuration file.

This procedure is analogous to the feof() procedure in the
C library: It tests for the end-of-file condition on a specified

CGI_feof()

stream and returns a nonzero value if it encounters the
end-of-file.

This procedure is analogous to the fgets() procedure in the
C library. The CGI_fgets() function reads data from the

CGI_fgets()

stream pointed to by the stream parameter into the array
pointed to by the string parameter. Data is read until n-1
bytes have been read, a newline character is read, or an
end-of-file condition is encountered. The string represented
by the data is then terminated with a NULL character.

This procedure is used as an entry point into a user-written
CGI server class. The CGI environment changes on each

CGI_main()

invocation of CGI_main. (See “Design Guidelines”
(page 162).)

This procedure is analogous to the printf() procedure in the
C library, with one exception: output is passed back to the

CGI_printf()

CGI client program through the Pathway CGI interface
rather than to the stdout file descriptor.
The maximum size of the write buffer (including expansion
of elements such as integers) is 32000 bytes. If the printf
string exceeds this size, the application terminates with an
error message.

This procedure is analogous to the fread() procedure in the
C library with the following exceptions:

CGI_fread()

Data is read from the Pathway CGI interface rather than
from stdin, and stdin is the only file descriptor that this
procedure might be called with.

This procedure is analogous to the write() procedure with
the following exceptions: stdout is the only file descriptor

CGI_fwrite()

that works with this procedure, and data is written to the
Pathway CGI interface rather than to stdout.

This procedure immediately writes buffered data from a
CGI program to a specified stream. If the stream specified

CGI_fflush()

is stdout or stderr, this procedure immediately writes any
buffered data to the httpd process and restarts the fflush
timer.

This procedure specifies the interval at which stdout (really
$RECEIVE simulating stdout) is flushed. To change a flush

CGI_set_fflush_timer()

interval set by a call to CGI_set_fflush_timer(), the program
must call CGI_set_fflush_timer() with seconds set to 0 (zero),
and then call CGI_set_fflush_timer() with a nonzero value
to set the new flush interval.
A call to this procedure supersedes the value of the
TANDEM_CGI_SET_FFLUSH_TIMER in the server
configuration.
The flush timer uses an signal handling routine that catches
a SIGALARM signal. When the alarm signal is delivered
to a process, it can interrupt long I/O operations, and
cause an error. In this case, the errno variable is set to
4004 (interrupted system call). If you want your server to
perform its own SIGALARM processing, set this value to 0.

160 Using Common Gateway Interface (CGI) Programs

Table 21 CGI Procedures (continued)

DescriptionProcedure

Only a single alarm signal can be in effect for a process.
If you need to implement a customized alarm function and
still use the fflush timer, write an alarm signal handler that
calls CGI_fflush() when appropriate.

This procedure gets a character from the CGI input stream.
It is the same as the Posix function getc(), but returns the

CGI_getc()

next byte from the CGI input stream specified and moves
the file pointer, if defined, ahead 1 byte in the stream.

This procedure writes a string to the CGI output stream. It
operates in the same way as its Posix equivalent.

CGI_puts()

This stub procedure is called whenever the connection
between the CGI server and the httpd program is broken;

CGI_connection_abort

usually, when the end user at the Web client stops an active
data transfer prior to receiving all the data being sent, or
when there is an internal timeout within the httpd server
itself, in the case where a single connection has existed
longer than its configured lifetime. An internal timeout might
occur if the ScriptTimeout / InputTimeout /OutputTimeout
values are configured. When an internal timeout occurs,
httpd cancels the request, closes the connection, and sends
a termination signal to the CGI process. The CGI library
invokes the CGI_connection_abort procedure to handle
the termination signal.
The intent of a user-coded connection abort routine is to
allow for graceful cleanup of transactions in progress.

This stub procedure is called each time the server comes
up to allow user-written initialization code (such as opening

CGI_initialize()

database files) to be executed at startup time. You must
use this function in order to read environment variables.
(See “Design Guidelines” (page 162).)

This stub procedure is called before the server stops to
allow user-written cleanup code to be executed prior to
process termination.

CGI_terminate

Pathway CGI Coding Considerations
The considerations for coding a Pathway CGI application include requirements for including the
CGI library and design guidelines for the NonStop TS/MP execution environment.

Including the CGI Library
Your application must include the cgilib.h file, illustrated in “Sample cgilib.h File” (page 161). If the
application consists of multiple modules, all except the CGI_main module should precede the
include using this define:
#define _CGI_NO_EXTERNALS

Table 22 Sample cgilib.h File

#ifndef _CGILIB
#define _CGILIB
#ifndef _CGI_NO_EXTERNALS
extern void _MAIN (void);
int *DummyMainPTR = (int *) _MAIN
#endif
size_t CGI_fwrite(const void *buffer,size_t size,size_t num_items,FILE
*stream);
size_t CGI_fread (void *buf, size_t size,size_t num_items,FILE *stream);
char *CGI_fgets(char *, int, FILE * stream);

Pathway CGI Coding Considerations 161

Table 22 Sample cgilib.h File (continued)

int CGI_feof(FILE * stream);
int CGI_printf(const char *format, ...);
int CGI_getc(FILE * stream);
int CGI_puts(const char *buffer);
int CGI_main(int argc, char *argv[]);
void ErrorAbort(void);
void CGI_connection_abort(void);
void CGI_initialize(void);
void CGI_terminate(void);
int CGI_fflush(FILE * stream);
int CGI_set_fflush_timer(int seconds);
void CGI_Capture(void);
#endif /* CGILIB */

Design Guidelines
Most CGI programs do not clean up their environments. Programs are written with the assumption
that the process exits upon completion of the HTTP request. Because Pathway CGI programs are
persistent, you should be aware of these coding considerations:

• Code must be written to be serially reusable between invocations of CGI_main.

• The CGI environment changes on each invocation of CGI_main. To access your environment
variables, use CGI_initialize(), as follows:
1. Write a CGI_initialize() routine in your CGI program.
2. In this routine, call getenv(). This returns the current environment variable.
3. In your CGI_main routine, call getenv() again. This call returns the WebServer's

environment variables.

• You must watch for memory leaks and file-open leaks.

• State information should not be maintained in the server.

Examples of a Pathway CGI Implementation
“Sample Pathway CGI Program” (page 162) displays you how a CGI program might be written as
a Pathway server class.

Table 23 Sample Pathway CGI Program

/*
This is a simple little test program that demonstrates how to
write a CGI routine as a Pathway Server Class.
This routine assumes that the forms data has been put into
the standard environment. The "Region" command that should
be used is:
Region /* {
AddCGI AUTOMATIC_FORM_DECODING ON
}
To retrieve the value of the following filled out form entry:
<INPUT SIZE=30 NAME="First_Name"> Your First Name

Use:
getenv("First_Name");
OR
Region /* {
AddCGI AUTOMATIC_FORM_DECODING ON
AddCGI FORM_DECODING_PREFIX
your_prefix_
}
To retrieve the value of the following filled out form entry:
<INPUT SIZE=30 NAME="First_Name"> Your First Name

Use:
getenv("your_prefix_First_Name");
In the first example the environment variables will be made with the same

162 Using Common Gateway Interface (CGI) Programs

Table 23 Sample Pathway CGI Program (continued)

names as the name portion of the name value pair.
In the second example the names of all decoded from are prefixed with the
prefix "your_prefix_".
Using the prefix option can be useful if you expect duplication of names on
your form with default CGI parameters.
*/
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <sys/types.h>
#include <cgilib.h>
extern char **environ;
int CGI_main(int argc,char *argv[])
{
static int get=0;
static int post=0;
int i=0;
int content_length=0;
int count_read;
char buffer[4096];
char *name=NULL;
char *equalsign=NULL;
int Test_Count=0;
/* Always print a header */
CGI_printf("Content-type: text/html\n\n");
/* This is a logical case on REQUEST_METHOD */
/* CASE=HEAD */
if (!strcmp(getenv("REQUEST_METHOD"),"HEAD")){
/* Nothing to do here */
/* CASE=GET */
}
else if (!strcmp(getenv("REQUEST_METHOD"),"GET")){
get++;
CGI_printf("<title>Template CGI Demo Form</title>");
CGI_printf("<h1>CGI Forms Demo</h1>\n");
CGI_printf("<FORM METHOD=\"POST\"ACTION=\"%s\">\n,
getenv("SCRIPT_NAME"));
}
CGI_printf("<INPUT SIZE=30 NAME=\"First_Name\"> Your First Name

");
CGI_printf("<INPUT SIZE=30 NAME=\"Last_Name\"> Your Last Name

");
CGI_printf("The following entry will control the number of test lines
that are printed in the response.
");
CGI_printf("<INPUT SIZE=6 NAME=\"Test_Count\" >Test Line count
br>");
CGI_printf("<INPUT TYPE=\"submit\" VALUE=\"Send
Message\"></form>
</html>%c%c",LF,LF);
/* CASE=POST */
} else if (!strcmp(getenv("REQUEST_METHOD"),"POST")){
post++;
CGI_printf("<title>CGI Demo Form</title>\n);
CGI_printf("<h1>CGI Form Response</h1>\n");

CGI_printf("Get count: %d
Post count: %d
\n",get,post);
CGI_printf("<H2>Environment Variables</H2>\n);
/* This loop reads through the environment variables and displays them
*/
for (i=0;environ[i];i++) {
strcpy(buffer,environ[i]);
equalsign=strchr(buffer,'=');
*equalsign=0;
equalsign+=1;
CGI_printf("%s %s
\n%c",buffer, equalsign);
}

Test_Count=atoi(getenv("Test_Count"));

Examples of a Pathway CGI Implementation 163

Table 23 Sample Pathway CGI Program (continued)

if (Test_Count){
CGI_printf("<h2>Printing %d test lines.</h2>",Test_Count);
for (i=1;i<=Test_Count;i++){
CGI_printf("Test Line %d
....|...10....|...20....|...30....|...40....|...50
",i);
}
}
/* CASE=DEFAULT FALL THROUGH */
} else {
CGI_printf("Unrecognized method '%s'.\n", getenv("REQUEST_METHOD"));
}
return 0;
}

164 Using Common Gateway Interface (CGI) Programs

8 Using NonStop Servlets for JavaServer Pages (NSJSP)
NonStop Servlets for JavaServer Pages (NSJSP) are platform-independent server-side programs
that programmatically extend the functionality of Web-based applications by providing dynamic
content from a Webserver to a client browser over the HTTP protocol.
NSJSP is an extension of the servlet functionality, primarily supplying a template of static content
to be modified with dynamic content from a servlet or other programmable resource.
You should know how to use NSJSP in the iTP Secure WebServer environment and how to develop
servlets and the JSP program for use on NonStop systems. For details, see NonStop Servlets for
JavaServer Pages (NSJSP) System Administrator's Guide, which discusses NSJSP under these
sections:

• Overview and Architecture

• Installation

• Configuration

• Programming and Management Features

• Manager Web Application

• Logs and Error Conditions

• Migration

• Security Considerations

165

9 Using the Resource Locator Service (RLS)
The Resource Locator Service (RLS) is an optional feature that causes multiple Web servers to
appear to users as a single server. For example, an iTP Secure WebServer on a NonStop system
and a different Web server on a Windows NT platform could be used interchangeably for access
to the same content. For a given request, RLS selects which Web server to use. The selection criteria
are:

• Which Web server has demonstrated the best response time recently.

• Whether that Web server is available and not busy. (If the best-performing Web server is
currently unavailable or busy, RLS chooses the next-best Web server.)

By using RLS, you can implement replicated servers. The person or application that makes the
request cannot tell which Web server returned the reply or whether a particular Web server was
available.
RLS requires NonStop SQL/MP to be installed and running on the same system as RLS. Use a H01
or later version of NonStop SQL/MP.
The topics discussed in this section include:

• “Resource Locator Service (RLS) Architecture” (page 166)

• “Configuring the Resource Locator Service (RLS)” (page 166)

• “Building and Installing the Resource Locator Service (RLS)” (page 169)

Resource Locator Service (RLS) Architecture
RLS is implemented as a Pathway CGI server class. The interaction between RLS and other iTP
Secure WebServer components:

• The Distributor process receives a request from the network.

• The Distributor process sends the request to an httpd process.

• The httpd process determines whether it can service the request.

• If the httpd process can service the request, it does so without invoking RLS (in which case,
the other steps in this list do not apply). If the httpd process cannot service the request, it
invokes RLS, using the NonStop TS/MP Pathsend facility.

• RLS uses its SQL database to identify the set of Web servers that can handle the request.

• RLS attempts to connect to the best-performing Web server in the set, using TCP/IP if that server
is on a remote system. If the best-performing server is not available, RLS connects with the
next-best server.

• RLS stores response-time information from the server for use in subsequent decision-making.

Configuring the Resource Locator Service (RLS)
This subsection describes configuring RLS, including these tasks:

• “Defining the Server Class” (page 167)

• “Creating the Database” (page 167)

• “Modifying the Database” (page 169)

CAUTION: RLS does not verify that the servers you define can actually provide access to the
same content and services. You (or your website administrator) must check that each replicated
server has the same or similar features and configuration.

166 Using the Resource Locator Service (RLS)

Defining the Server Class
The RLS server class is called rmt.pway. As shown in “RLS Server Class Definition” (page 167),
the httpd.config file provided with the iTP Secure WebServer defines the RLS server class as follows:

Table 24 RLS Server Class Definition

###
Configure Resource Locator attributes
#
set rmt /bin/rmt/rmt.pway
if { [file exists $root$rmt]} {
 Filemap $rmt $root$rmt

 Server $root$rmt {
 CWD $root/bin/rmt
 eval $DefaultServerAttributes
 Env PASSTHROUGH_CONTENT_LENGTH 50000
 }
 RmtServer $rmt
}

The first line in the configuration (starting set...) defines the Tcl variable rmt to point to the RLS
object file. Subsequent references to this variable begin with a dollar sign ($).
The next line (starting if...) checks to see whether the object file is present in the root directory of
the iTP Secure WebServer environment; the object file is present if you built and installed it as
described in “Building and Installing the Resource Locator Service (RLS)” (page 169). If the object
file is not present, the RLS server class is not created.
The Filemap directive maps the URL of the object file to the correct location in the OSS file system.
The Server directive defines the server class and its default server attributes. You can override
any default attribute by defining it explicitly. Maxservers must at least equal the number of processes
in the httpd server class. Linkdepth and Maxlinks must each have a value of 1 because
each RLS process is single-threaded.
The PASSTHROUGH_CONTENT_LENGTH variable specifies the maximum length of content that RLS
will fetch from a remote server and send to the Web client. If the length of the requested content
exceeds the value of this variable, or the content length cannot be determined because the request
is for a dynamically mapped resource, RLS does not fetch the content but sends the Web client a
redirect packet identifying the remote server. The value can range from 0 to 2147483647 bytes;
the default and recommended value is 32000 bytes. If you specify a value less than zero, RLS
regards the value to be 0 and sends a redirect packet in all cases. If you specify a value greater
than 2147483647, RLS uses the value 2147483647.

NOTE: If you change the value of PASSTHROUGH_CONTENT_LENGTH, you must re-create the
database and restart the rmt server class as described in “Modifying the Database” (page 169).

The RmtServer directive specifies the URL path name of RLS in relation to the root directory of
the iTP Secure WebServer.
AUTOMATIC_FORM_DECODING will always be off for the server class, even if you specify a value
of ON in your configuration file.
The Web client will display a server error if you replace rmt.pway with your own application or
if you installed rmt.pway incorrectly.

Creating the Database
You can customize the RLS database to specify which Web servers RLS should use interchangeably.
Replicated servers have a common root directory reflected in the database.
To customize the database, edit the file dbload.sqlci in the /bin/rmt directory. When you
run the make utility to build RLS, the data in dbload is loaded into a table called DBACCESS.

Configuring the Resource Locator Service (RLS) 167

The table has at least one row for each Web server RLS can contact. Each row includes these
columns:

• Filename

• Ip_addr

• Port

• Tcpip

• No_Servers

• Relative_ID

Where:
Filename
is the prefix (the first part of the URL path name) shared by a set of replicated Web
servers. Its value identifies the root directory, or the alias name of the root directory
for an Windows NT IIS Web server. This field cannot exceed 200 characters and
cannot include wildcard characters. The value must be the same for all Web servers
to be considered replicated; for example, to define a set of three replicated servers,
you need three database records, all with the same value of Filename. To map
multiple prefixes to the same Web server you need multiple records for the server,
with different values in this field.

Ip_addr
specifies the address of the remote server. The value of Ip_addr can be either an
address in dotted decimal format or a domain name; it cannot exceed 40 characters.

Port
specifies the port of the remote server.

Tcpip
is the name of the local TCP/IP process that RLS must use to connect to the remote
Web server. You can use any TCP/IP process on your system. If the Web server
described in this record is on the same system as RLS, you must still specify a TCP/IP
process name, but RLS will ignore it. Specify the process name in Guardian format:
a dollar sign ($) followed by up to five characters.

No_Servers
is the number of replicated servers in the set. Each replicated server must be
represented by its own record. The value of No_Servers is the same in each
record. The value must not exceed 50.

Relative_ID
assigns a record number. No two records in the table can have the same value for
this field. The first record is numbered 0. The maximum record number is
4294967295. You do not have to list the records in order in dbload.sqlci, but in
most cases, HP recommends that you do not leave gaps in the numbering; for
example, if you create five records, they should be numbered 0, 1, 2, 3, and 4.

Example
In the following example, the prefixes /WEB and /Images will cause invocation of the Web server
whose domain name is net.myco.com. Similarly the prefixes /samples and /index1.html
will cause invocation of the Web server at IP address 172.16.10.22. RLS will use a different
TCP/IP process to reach each server. The prefix /MlplSrvs can cause invocation of either of two
Web servers, whichever RLS predicts will offer better response time. In this case, the Web servers
are both on the same system (as indicated by their common IP address).

168 Using the Resource Locator Service (RLS)

insert into =dbaccess values ("/WEB","net.myco.com",80,"$ztc2",1,2);
insert into =dbaccess values ("/Images","net.myco.com",80,"$ztc2",1,1);
insert into =dbaccess values ("/samples","172.16.10.22",3366,"$ztc0",1,0);
insert into =dbaccess values ("/index.html","172.16.10.22”,3366,"$ztc0",1,3);
insert into =dbaccess values ("/MlplSrvs","172.16.10.22",3376,"$ztc0",2,4);
insert into =dbaccess values ("/MlplSrvs","172.16.10.22",3366,"$ztc0",2,5);

Modifying the Database
When you build and install RLS as described in “Building and Installing the Resource Locator
Service (RLS)” (page 169), the make utility loads the database with the data in dbload.sqlci, but
you do not have to reinstall RLS to make changes later. In fact, an administrator should periodically
review and update the database to check that it reflects any changes in Web-server configurations.
To update the database without changing the locations of the database files:
1. Update the dbload.sqlci file.
2. Use the NonStop TS/MP PATHCOM utility to stop the RLS server class.
3. Return to the OSS environment and issue the command make dbload to load your new data

into the DBACCESS table.
4. Use the PATHCOM utility to start the RLS server class.
To change the location of the database:
1. Stop the iTP Secure WebServer environment.
2. Issue the rm command in OSS to remove the file rmt.pway.
3. Issue the command make dbdelete to delete the existing database.
4. Change the values of DB_VOLUME and DB_SUBVOLUME in the make file. The database files

will be created in the Guardian volume and subvolume you specify.
5. Issue the command make to create a new rmt.pway and a new database.
6. Restart the iTP Secure WebServer environment.

Building and Installing the Resource Locator Service (RLS)
To build and install RLS in the OSS environment:
1. Navigate to the RLS directory, using the command cd /bin/rmt.
2. If you want to create the database in a directory other than $SYSTEM.ZWEB, change the

values of DB_VOLUME and DB_SUBVOLUME in the make file.
The database must be located on a volume audited by TMF.

3. Enter descriptions of your Web servers by editing the file dbload.sqlci, if you have not
already done so.

4. Run the make utility. This step installs the database and compiles and links the object code
into the executable rmt.pway.

5. To install RLS in a different directory, move rmt.pway by using the following command:
mv rmt.pway directory

specifying the desired directory. Do not copy rmt.pway; executable programs that contain
SQL queries do not work if you copy them.

6. Navigate to the configuration directory, using the command cd /admin/conf.
7. Run the installation script using ./install.WS if your iTP Secure WebServer environment

is not already installed.
8. Modify the httpd.config file if you must change the RLS configuration. You must modify

the httpd.config file if you moved rmt.pway.
9. Start the iTP Secure WebServer environment. Use ./start if you just installed the iTP Secure

WebServer or ./restart if the iTP Secure WebServer was already running.

Building and Installing the Resource Locator Service (RLS) 169

10 Administering Session Identifiers for Anonymous Sessions
This section describes how to set up the iTP Secure WebServer to use Session Identifiers for
anonymous ticketing. Topics discussed in this section include:

• “Anonymous Ticketing” (page 170)

• “Tracking” (page 170)

• “Ticketing and Tracking Example” (page 171)

• “Configuring for Anonymous Ticketing” (page 172)

• “Using Session Identifiers for Reporting” (page 180)

• “Using Tcl Variables for Anonymous Sessions” (page 180)

Anonymous Ticketing
Anonymous ticketing enables you to track accesses to your website—that is, determine how
frequently resources are accessed and by whom.
A ticket is a string of characters that uniquely identifies a user and specifies what resources the
user is permitted to access. The ticket is protected by a message authentication code (MAC), which
makes the ticket nearly impossible to duplicate or change.
There are various formats for tickets: the iTP Secure WebServer uses a type of ticket known as a
Session Identifier.
A Session Identifier is a short string of characters preceded by two at signs (@@). For example:
@@Fz3H78Og56kCSf2s

Encoded within this string are:

• A message authentication code (MAC)

• A user ID that uniquely identifies the user

• A group ID that indicates what information the user is authorized to access

• An expiration time signifying for how long the ticket is valid
A user acquires a ticket implicitly on the first request for a resource. Thereafter, the Web client
automatically transmits the ticket with any subsequent request. A single ticket, therefore, can be
used for multiple requests.

Tracking
Conventional Web technology makes tracking a single user through a website difficult. The HTTP
protocol treats every request for a Web resource as a separate, independent connection. For
example, if a user requests a Web page that contains four graphics files, the server interprets the
request as five independent requests—one for the HTML file and one each for the four graphics
files. The server receives little information to indicate that all five requests originated from the same
user. The server does receive the IP address of the requesting browser, but this can be misleading
because many users might have the same perceived IP address when proxy servers are being
used.
For content providers, this situation makes analyzing how users are accessing their Web pages
difficult. Although the number of accesses (hits) to each file can be counted, it is difficult to know
how many of those hits were made by the same user. In addition, you cannot track a single
individual's access pattern—that is, which URLs the user requested and in what order.
Ticketing identifies a user for a specified duration so user activities can be tracked throughout a
single Web session or across multiple sessions.

170 Administering Session Identifiers for Anonymous Sessions

Ticketing and Tracking Example
To understand how tracking works, consider the following example:
A company called Universal Technology, Inc., has put all its marketing literature on the Web.
Universal Technology does not want to limit access to these files, but it does want to know how
many individuals are looking at each file. It also wants to know which links are accessed most
frequently.
Universal Technology obtains this information by configuring its iTP Secure WebServer to support
anonymous ticketing, a type of ticketing that provides tracking information but no authentication
or authorization.
When the Universal Technology WebServer receives a request for a resource, it generates a ticket
for the user and redirects the user's browser to the same content, but with the ticket inserted in the
URL. The Web client resends the request, this time with the inserted ticket.
The iTP Secure WebServer detects the ticket, validates it to check that it has not been tampered
with and has not expired, and then returns the requested resource (as shown in “Requesting a
Ticket” (page 171)). The request, along with the ticket, is recorded in the server's log file.

Figure 8 Requesting a Ticket

iTP Secure WebServer

Web Client

Internet

No ticket, so...
...iTP Secure WebServer

generates ticket and sends
a redirect to the web client

This time there is
a ticket, so...

...the resource
is returned

URL Request

Redirect to URL with ticket

URL Request, with ticket

Requested Resource

Now the user has received one resource and makes a request for another. The Web client has
retained the user's ticket so it can be reused, as shown in “Using a Ticket” (page 172).

Ticketing and Tracking Example 171

Figure 9 Using a Ticket

Web Client

Internet

iTP Secure WebServer

Subsequent requests are
sent with the same ticket

...so the resource is returned
immediately

URL Request with Ticket

Requested Resource

Again, the ticket is logged. Because the ticket contains a user ID that uniquely identifies the user,
the company in this example can track and analyze a user's Web activity by generating reports
based on the log file.
Two points are especially important to note in this process:

• Tickets work with most Web clients. However, the Web client itself does not know that it is
sending requests that contain tickets.

• The process is transparent to users.

Configuring for Anonymous Ticketing
This section describes how to configure the iTP Secure WebServer to support anonymous ticketing.
You can activate ticketing for specific regions of content to track the use of some file types while
ignoring others. For example, you might want to track accesses of HTML files, but not GIF files.
To set up a content server for anonymous ticketing, configure the server with configuration directives
and Region commands in the server configuration file (httpd.config). Some directives and
commands are required and others are optional. This section discusses the required settings.
“Advanced Configuration Options” (page 174) describes the optional settings. For more general
information about the server configuration file (httpd.config), see “Configuration Directives”
(page 198).
To configure for anonymous ticketing:

• Enable Session Identifiers with the SI_Enable directive.

• Enable anonymous ticketing with the SI_Department directive.

• Initialize the department with the SI_Default directive.

• Activate ticketing for one or more regions with the SI_RequestSI command in the Region
directive.

Enabling Session Identifiers
By default, the iTP Secure WebServer does not use Session Identifiers. You must explicitly enable
Session Identifiers by using the SI_Enable directive in the configuration file:
SI_Enable Yes

When the SI_Enable directive is set to No, any Session Identifier encountered in a URL is treated
as part of the URL.
For further information about the SI_Enable directive, see “SI_Enable” (page 255).

172 Administering Session Identifiers for Anonymous Sessions

Enabling Anonymous Ticketing
After enabling ticketing, you also must enable anonymous ticketing by using the SI_Default
directive and the -EnableAnonymousTicketing attribute. For example:
SI_Default -EnableAnonymousTicketing {0}

The number inside the braces (0 in this case) is a group ID. The group ID cab be any integer
between 0 and 255.

Initializing a Department
Every region that you want to track must be part of a department. For anonymous ticketing, you
must initialize a department, and then use the department ID in configuration directives.
You initialize a department by using the SI_Department directive, which has the following
format:
SI_Department departmentID

The department ID can be any string, as long as it does not contain spaces. For example:
SI_Department Open_Department

Activating Ticketing for Regions
The final step to activating anonymous ticketing is to specify the regions that should be tracked by
using the SI_RequireSI command in the Region directive, which has this form:
SI_RequireSI departmentID groupID

where:
departmentID
is the department name you initialized using the SI_Department directive.

groupID
should be the same group ID you specified when you enabled anonymous ticketing
using the -EnableAnonymousTicketing attribute.

For example:
Region /Open_Stuff/*.html {
SI_RequireSI Open_Department 5
}

In this example, the Region command directs the server to track accesses of all files ending in
.html in the directory /Open_Stuff. Enter similar region directives for all regions you want to
track.
This example includes all the directives needed to activate tracking:
#
Turn on Session Identifiers
#
SI_Enable YES
#
Declare a department as allowing anonymous ticketing
to group 0. Because it is anonymous, we can pick any
legal name we want (that is, anything that does not
have a space in it).
SI_Department Engineering -EnableAnonymousTicketing {0}
#
protect all *.htm* and *.cgi* files with anonymous
tickets
#
Region {*.htm*} {
SI_RequireSI Engineering 0
}
Region {*.cgi*} {

Configuring for Anonymous Ticketing 173

SI_RequireSI Engineering 0
}

Advanced Configuration Options
This subsection describes how to customize the use of tickets to meet a variety of needs, including:

• “Anonymous Ticketing Attributes” (page 174)

• “Setting the Anonymous Ticket Expiration Time” (page 175)

• “Browser Caching” (page 176)

• “How Proxy Servers Affect Ticketing” (page 176)

Anonymous Ticketing Attributes
You can use various ticketing attributes to control ticketing behavior, as outlined in Table 10-1:

Table 25 Anonymous Ticketing Attributes

DefaultDescriptionAttribute

6 hoursSpecifies the length of time that
anonymous tickets are valid.

AnonymousTicketExpiration

0 secondsSpecifies the number of seconds, from
the time that a cookie is issued, that
the cookie remains valid.

CookiePersistence

Anonymous ticketing is off for all groupsEnables anonymous ticketing for
resources protected with specified
group IDs.

EnableAnonymousTicketing

3 hours (10,800 seconds)Adds a specified number of seconds
to the life span of the Session

PostExpirationExtension

Identifier. Allows clients time to get a
form, fill it out, and post it back to the
server.

NoneSpecifies a list of alias names that
refer to the content server.

RequireIP

6 hoursCauses the server to convert HTML
references to relative references or
disables conversion.

RewriteHtmlLinks

0 secondsCauses the server to convert non-HTML
references to either relative or absolute
references.

RewriteImageLinks

Anonymous ticketing is off for all groupsSpecifies how many bits long the
message authentication code (MAC)

SignatureLength

for tickets must be. The longer the
MAC, the more tamper-proof the
ticket.

174 Administering Session Identifiers for Anonymous Sessions

You can specify the attributes listed in Table 25 (page 174) in one of these three ways:

• By Default Attributes
You can change the default value of any ticketing attribute shown in [Table 24 (page 167)],
by using the SI_Default directive, which has this form:
SI_Default -attribute value [-attribute value] ...

For example, the directive
SI_Default -AnonymousTicketExpiration 7200

changes the validity period to 2 hours (7200 seconds). Attributes set through the SI_Default
directive apply to all regions following the directive unless overridden by a subsequent
department-wide or region-wide directive, or reset by another SI_Default directive.

• By Department-Wide Attributes
You can override a default attribute value by specifying a department-wide attribute by using
the SI_Department directive, which has this form:
SI_Department departmentID -attribute value [-attribute value]...

For example, the following directive sets the period cookies are valid to 1000 seconds for
department 1, only. The default value of the CookiePersistence attribute remains valid
for all other departments:
SI_Department 1 -CookiePersistence 1000

Attributes set through the SI_Department directive apply to all regions in the specified
department unless overridden by a region-wide directive or reset by a subsequent
SI_Department directive.

• By Region-Wide Attributes
You can override a default attribute value and a department-wide attribute value by specifying
the SI_Department command in the Region directive, which has the following form
SI_Department departmentID -attribute value \ [-attribute value]...

For example, this Region directive specifies the period (1800 seconds) that Session Identifiers
are valid.
Region /info/* {
SI_Department 1 -AnonymousTicketExpiration 1800
}

Any SI_Department commands in a region must precede all Region directive SI_RequireSI
commands in the same region. Attributes set through the SI_Department command apply
only to requests for contents in the region in which the attributes are specified. For all other
requests, the default or department-wide attributes apply.

Setting the Anonymous Ticket Expiration Time
By default, tickets generated by anonymous ticketing have an expiration value of six hours. If a
user presents a ticket that has expired, the content server generates a new ticket using the same
user ID so that users can be tracked across long sessions. You can also track users across sessions
if browser caching is enabled, as described in “Browser Caching” (page 176).
You can specify a different expiration time for anonymous tickets by using the
-AnonymousTicketExpiration attribute, which has the form
-AnonymousTicketExpiration seconds

For example, this directive sets the expiration time of anonymous tickets to 1800 seconds (30
minutes):
SI_Default -AnonymousTicketExpiration 1800

You can use this attribute in an SI_Default or SI_Department directive or in an SI_Department
command in a Region directive.

Configuring for Anonymous Ticketing 175

The Session Identifier Specification 1.0 rounds expiration times to approximately 8.5 minute
intervals. The range of expiration times is approximately 8.5 minutes (510 seconds) to 1 year
(about 30 million seconds).

Browser Caching
Some browsers support caching mechanisms that the content server can use to prevent the loss of
tickets. The cached information is called a cookie. You can specify whether you want your server
to take advantage of these mechanisms whenever they are available.
If a Web client supports caching, a Web server can direct the Web client to save arbitrary
information. For ticketing, the content server can direct the Web client to store a ticket in its cache;
then, whenever the Web client sends a request to the server, it automatically sends the cached
information (the ticket).
Caching is particularly valuable if you want to track users across separate sessions. With caching,
a user can exit the Web client or request a resource on a nonticketed server without losing the
ticket.

How Proxy Servers Affect Ticketing
Many Web installations and online services employ a proxy server, which has a job to cache
requests and replies for multiple Web users. Caching can increase performance dramatically for
Web users, but it can have some negative effects on tracking and authentication.
As shown in “Proxies” (page 176), proxies act as intermediaries between a group of Web clients
and Web servers.

Figure 10 Proxies

Cached Requests
and Replies

WebServer WebServer

Proxy Server

WebServer

Web Client Web Client Web Client Web Client Web Client

When a Web client issues a request in the form of a URL, the proxy first checks its cache to see if
it already has the resource. If so, the proxy returns the resource to the Web client, sometimes
without contacting the Web server at all. If the proxy does not have the requested resource, it
forwards the request to the specified Web server.
The use of proxies prevents an accurate measure of the number of times a Web page is accessed
because there is no way to know how often a proxy short-circuits a request by returning a page

176 Administering Session Identifiers for Anonymous Sessions

from its own cache. Using tickets can reduce the problem considerably because each request can
have a unique ticket embedded in it. So even though many users might request the same Web
page, the presence of a unique ticket will make it appear to the proxy as though each request is
unique. For example, user X's request might be
http://www.acme.com/@@4RTgh67j8S23c5d3/info.html

whereas user Y's request is
http://www.acme.com/@@H9bF3f0Df36Gpp3Cd/info.html

The proxy, therefore, will successfully find a page in its cache only if the same user requests the
same page a second time. Note, however, that this method works only if the ticket is embedded
in the URL. By default, the content server does not insert tickets in URLs if cookies are enabled and
the Web client supports cookies.
If you want a true hit count, you can specify one policy for HTML pages (for which you want to
accurately track the hit count) and another policy for other types of references (for which you might
not want this information). (For more information, see “HTML and Image References” (page 178).)

Ticketing Strategies
Tickets can be attached to resource requests either as part of the URL or in a cookie. For example,
this URL contains a ticket:
http://www.acme.com/@@3jr7D&&j89WerfB6/index.htm

When the content server receives a request for a protected resource, it first looks in the request
URL to find the ticket. If a ticket is not present or the one that is present is invalid, the content server
checks the cookie, if the cookie is available. A cookie might be unavailable either because the
Web client does not support cookies or because the user has not yet received a ticket.
Only when the content server cannot acquire a valid ticket does it generate a new anonymous
ticket and insert it into the URL.
When the content server finds a valid ticket from the URL or cookie, the server attempts to keep
the ticket until the ticket expires. So, when the user makes subsequent requests, the content server
can validate the request by using the same ticket. The content server has three techniques for
maintaining tickets:

• Inserting the ticket in a URL directly

• Causing the Web client to insert the ticket in a URL

• Storing the ticket in a cookie
You can control the way the server stores tickets.
The ticket can only be inserted into a URL if it is a relative URL, as described in “Dynamically
Rewriting References” (page 178).

iTP Secure WebServer Default Ticketing Strategy
By default the iTP Secure WebServer inserts tickets into cookies whenever cookies are supported.
If the Web client does not support cookies, the server looks for the ticket in the URL. As long as the
initial document was referred to using a ticketed URL, the iTP Secure WebServer causes the Web
client to automatically insert the ticket in all subsequent relative URLs.
To guarantee that this action occurs for all HTML references, the content server converts absolute
HTML references into relative references. (Absolute and relative references are described in
“Dynamically Rewriting References” (page 178).) This strategy maximizes the lifetime of a ticket.
A side effect of this strategy is that log files might not show the true hit number for ticketed resources
because of proxies, as explained in “How Proxy Servers Affect Ticketing” (page 176).

Configuring for Anonymous Ticketing 177

Dynamically Rewriting References
URL references can be either relative or absolute. Relative references specify the location of the
resource relative to the base document. For example, consider the directory structure shown in
“Relative and Absolute References” (page 178).

Figure 11 Relative and Absolute References

Graphics

www.acme.com

index.html

picture.gif

other_Docs
HTML_Docs

Relative Reference = “graphics/picture.gif”
Absolute Reference = “/HTML_Docs/Graphics/picture.gif”

Depending on how you configure the content server, the content server either leaves all references
as they are or converts them in one of these ways:

• Converts all absolute references to relative reference

• Converts some absolute references to relative references

• Converts some relative references to absolute references
Whether references are absolute or relative can affect the lifetime of tickets.

HTML and Image References
References fall into two categories: HTML and image.
HTML references include:

•

• <form action ="xxxx">

• <area href="xxxx">

178 Administering Session Identifiers for Anonymous Sessions

• <isindex action ="xxxx">

•
Image references include:

•

• <body background ="xxxx">

• <bgsound src="xxxx">

•

• <input src="xxxx">

• <meta url="xxxx">

• <embed src="xxxx">

• <applet codebase ="xxxx">

• <script src="xxxx">
For ticketing purposes, the distinction between the two types is significant because you might want
to track HTML hits but not image hits; the ticketing attributes enable you to treat the two types of
references separately.

Rewriting HTML References
By default, the server makes relative absolute HTML references when necessary. Specifically:

• If cookies are unavailable, or if the ForceTicketInUrl attribute has been turned on, the server
makes relative any absolute references that it can. That is, if an absolute reference points to
a file on the same server, the server converts the reference to a relative reference. This enables
the Web client to attach a ticket to the URL.

• If cookies are enabled and the Web client supports them, and if the ForceTicketInUrl attribute
is off, the server does not rewrite any HTML references.

NOTE: The server does not modify the files stored on disk. Instead, as it sends the file to the Web
client, it rewrites any absolute references it finds.

You can change this behavior by using the -RewriteHtmlLinks attribute, which has this format:
-RewriteHtmlLinks Relative | Off

where:
-RewriteHtmlLinks Relative
specifies the default behavior.

Off
prevents the server from rewriting HTML references.

Rewriting Image References
By default, the server does not rewrite image references. If you have disabled the use of cookies,
or if you are forcing tickets into URLs, you might want to direct the server to make absolute all
image references to check that tickets are not inserted into these URLs. This action ensures that the
images are cached by proxy servers. However, if you want to track the number of times image
references are selected, you should make relative all image references.
You specify what action the content server should take for image references by using the
RewriteImageLinks attribute, which has this format:
-RewriteImageLinks Absolute | Relative | Off

For example, to make absolute all image references in department 5, enter

Configuring for Anonymous Ticketing 179

SI_Department 5 -RewriteImageLinks Absolute

Using Session Identifiers for Reporting
One of the uses of Session Identifiers is to track how specific users access resources in a content
server. Whenever the server receives a ticket, it logs the ticket's user ID and group ID, enabling
you to organize reports by visits.
As shown in “Sample Visit-Organized Report” (page 180), the visit field includes the user ID, group
ID, and the start time of the visit.

Table 26 Sample Visit-Organized Report

Visit Duration Requests %Reqs Bytes Sent %Bytes
 (all) (all)
-1001700702:03/04/96-13:44:33 Less than 1 min. 2 0.04 1032 0.00
-1006614320:03/04/96-10:11:27 1 - 3 min. 8 0.16 28167 0.11
-1008039334:03/04/96-13:29:22 Less than 1 min. 1 0.02 1006 0.00
-1009491827:03/04/96-13:02:54 Less than 1 min. 1 0.02 9564 0.04
-1016206840:03/04/96-03:12:41 Less than 1 min. 6 0.12 18178 0.07
-1016590095:03/04/96-09:58:24 1 - 3 min. 10 0.20 45376 0.18
-10203757:03/04/96-10:31:22 Less than 1 min. 1 0.02 693 0.00
-1027374366:03/04/96-13:51:11 3 - 5 min. 9 0.18 11722 0.05
-1027374366:03/04/96-14:24:47 5 - 10 min. 6 0.12 7464 0.03
-1037448415:03/04/96-12:17:34 20 - 30 min. 2 0.04 1006 0.00
-1038092476:03/04/96-06:52:26 50 - 60 min. 19 0.38 61571 0.24
-1040110926:03/04/96-10:11:18 Less than 1 min. 1 0.02 9509 0.04
-1041021790:03/04/96-08:19:28 Less than 1 min. 1 0.02 6919 0.03
-1041021790:03/04/96-12:12:27 1 - 3 min. 13 0.26 55171 0.22
-1049253885:03/04/96-09:09:12 Less than 1 min. 1 0.02 1006 0.00
-1051850526:03/04/96-14:20:02 10 - 20 min. 4 0.08 15110 0.06
-1057485701:03/04/96-10:31:44 Less than 1 min. 1 0.02 9509 0.04
-1061358985:03/04/96-14:05:46 1 - 3 min. 4 0.08 27028 0.11
-1062080264:03/04/96-13:48:12 Less than 1 min. 1 0.02 0 0.00
-1068541615:03/04/96-13:16:27 Less than 1 min. 1 0.02 4156 0.02
-1069859513:03/04/96-10:40:28 Less than 1 min. 3 0.06 3048 0.01
-1071206021:03/04/96-08:29:42 20 - 30 min. 17 0.34 79054 0.31

Using Tcl Variables for Anonymous Sessions
You can use Tcl variables in Region directives to give commands specific information about a
request for anonymous sessions. The commands then can modify the behavior of the request on
the basis of this information.
Table 27 (page 180) lists the variables you can use in Region directives for anonymous sessions.

Table 27 Region Directive Variables for Anonymous Sessions

DescriptionVariable

The user ID of the user accessing the content. This value is
extracted from the ticket (see “Anonymous Ticketing”
(page 170)).

SI_UID

You can use this variable to present customized Web pages
to particular users. The SI_UID variable is set to double
quotation marks ("") if a valid ticket has not been
presented.

The department ID in ASCII.SI_Department

The entire session identifier.SI_SI

The group number that is embedded in the ticket (see
“Anonymous Ticketing” (page 170)).

SI_GROUP

180 Administering Session Identifiers for Anonymous Sessions

Table 27 Region Directive Variables for Anonymous Sessions (continued)

DescriptionVariable

You can use this variable to present customized Web pages
to particular groups of users. The SI_GROUP variable is
set to -1 if a valid ticket is not presented.

The user context embedded in the ticket (see “Anonymous
Ticketing” (page 170)): a 2-bit value set by the ticketing

SI_UCTX

agent that can be used to convey information to the content
server.

Using Tcl Variables for Anonymous Sessions 181

11 Managing the iTP Secure WebServer From Your Browser
The iTP Secure WebServer Administration Server enables you to manage the configuration and
operation of one or more iTP Secure WebServer environments from your browser. Topics discussed
in this section include:

• “Administration Server Architecture” (page 182)

• “Installing the Administration Server” (page 183)

• “Invoking the Administration Server” (page 183)

• “Configuring the Administration Server” (page 183)

• “Administration ServerScreens” (page 185)
The Administrative Server screens support these functions:

◦ Starting the iTP Secure WebServer environment See “Server Control: Start” (page 187)

◦ Restarting the iTP Secure WebServer environment and switching to new log files See
“Server Control: Restart” (page 187)

◦ Stopping the iTP Secure WebServeriTP Secure WebServer environment See “Server
Control: Stop” (page 188)

◦ Adding httpd to the iTP Secure WebServer environment.
See “Server Control: Add” (page 189)

◦ Deleting httpd from the iTP Secure WebServer environment.
See “Server Control: Delete” (page 190)

◦ Viewing configuration files See “View Configuration Files” (page 189)

◦ Editing configuration files See “Edit Configuration File” (page 190)

◦ Monitoring EMS events See “View EMS Logs” (page 191)

◦ Monitoring log messages See “View Server Logs” (page 193)

◦ Searching configuration files See “Search Configuration Files” (page 193)

◦ Issuing OSS (POSIX-compliant) commands See “OSSCommands” (page 194)

◦ Obtaining iTP Secure WebServer Statistics See “iTP WebServer Statistics” (page 194)

To use the Administration Server screens, you must have a Web client that supports Javascript and
have Javascript enabled.

Administration Server Architecture
You define the Administration Server in a PATHMON environment separate from the iTP Secure
WebServer.

182 Managing the iTP Secure WebServer From Your Browser

The PATHMON environment for the Administration Server consists of four server classes:

• Distributor server class
The Distributor server class accepts requests from TCP/IP processes and sends them to members
of the admin httpd server class. You do not explicitly define this server class in the
configuration files.

• admin httpd server class
The httpd server class in the Administration Server PATHMON environment is like the
corresponding server class in the iTP Secure WebServer PATHMON environment, except that
the admin httpd server class is dedicated to interactions between a Web client and the admin
server class.

• admin server class
The admin server class is the Pathway CGI server class that performs or initiates the
administrative functions. In some cases, the admin server class processes a request by running
an OSS script; for example, to start, restart, or stop the server, the admin server class uses the
scripts described in “Managing the iTP Secure WebServer Using Scripts” (page 82).

• stats-form server class
The stats-form server class is the Pathway CGI server class that collects the statistics of the iTP
Secure WebServer.

You should define these server classes in only one PATHMON environment on each system, but you
can use these server classes to control any iTP Secure WebServer environment on the system.

NOTE: The installation procedure does not detect the installation of multiple Administration Server
PATHMON environments on the same system. However, it is easier to manage all local iTP Secure
WebServers from the same Administration Server.

Installing the Administration Server
Install the Administration Server server classes by using the install.WS script, as described in
“Installing the iTP Secure WebServer” (page 34).

Invoking the Administration Server
You can invoke the Administration Server from a Web client by specifying a URL consisting of the
host name and port number, as specified in the installation procedure.

Configuring the Administration Server
You define the admin and admin httpd server classes in the file httpd.adm.config, and the
secure transport for administrative functions in the file httpd.adm_stl.config. Sample
configuration files are provided with the iTP Secure WebServer and edited in the install.WS
script.
If you run the install.WS script and an httpd.adm.config file is already present on the system, the
script prompts you, asking whether to replace the existing script.

Installing the Administration Server 183

Defining the admin Server Class
The admin server class has the object-code file name admin.pway and must consist of exactly one
static server process. (This restriction ensures that only one user at a time can modify the
configuration files.) If you choose to modify the sample configuration, follow these guidelines:

Set Value to:Parameter or CommandConfigurationDirective

1NumstaticServer

1Maxservers

Value greater than 2Linkdepth

Value greater than 2Maxlinks

For information about the syntax and semantics of configuration directives, see
“Configuration Directives” (page 198).

Defining the admin httpd Server Class
The admin httpd server class has the object-code file name $root/bin/httpd. You can define
multiple static processes to accommodate the workload you expect, and additional dynamic
processes to handle peak workload. If you choose to modify the sample configuration, follow these
guidelines:

Set Value to:Parameter or CommandConfiguration Directive

Value greater than or equal to 5NumstaticServer

Value greater than or equal to 50Maxservers

Value greater than or equal to 2Linkdepth

Value greater than or equal to 2Maxlinks

Value greater than or equal to 2Env TANDEM_RECEIVE_DEPTH

Enable
AUTOMATIC_FORM_DECODING
(required)

AddCGIRegion

Specify DNS name of client
(recommended)

AllowHost

Required for secure version of serverRequireSecureTransport

RecommendedRequirePassword

Specify index.html and admin.pwayIndexfile

For information about the syntax and semantics of configuration directives, see “Configuration
Directives” (page 198).

184 Managing the iTP Secure WebServer From Your Browser

Defining the stats-form Server Class
The stats-form server class has the object-code file name stats-form.pwayand must consist of
exactly one static server process. (This restriction ensures that only one user at a time can modify
the configuration files.) If you choose to modify the sample configuration, follow these guidelines:

Set Value to:Parameter or CommandConfiguration Directive

1NumstaticServer

3Maxservers

For information about the syntax and semantics of configuration directives, see Appendix A,
Configuration Directives.

Administration ServerScreens
The rest of this section describes the following Administration Server screens and how to use them.

• “Welcome” (page 185)

• “Current Server Information” (page 186)

• “Server Control: Start” (page 187)

• “Server Control: Restart” (page 187)

• “Server Control: Add” (page 189)

• “Server Control: Delete” (page 190)

• “Server Control: Stop” (page 188)

• “View Configuration Files” (page 189)

• “Edit Configuration File” (page 190)

• “View EMS Logs” (page 191)

• “View Server Logs” (page 193)

• “Search Configuration Files” (page 193)

• “OSSCommands” (page 194)

• “iTP WebServer Statistics” (page 194)

Welcome
You see the Welcome screen when the Administration Server starts. It enables you to specify the
path to your configuration files and allows you to manage the iTP Secure WebServer environment.

What You See
The left side of the screen displays a menu ofAdministration Server functions:
Server Control

Start
Restart
Stop
Add
Delete

Configuration
View Files

Administration ServerScreens 185

Edit Files

Event Logs
EMS Logs
Server Logs

Tools and Utilities
Search
OSS Commands

Server Statistics
Status

This menu appears in the same position on every screen.
The right side of the screen displays general information about the Administration Server and
indicates the default path to your configuration files.

What You Do
To change the path so that you can use a different set of configuration files, enter the path name
over the name in the Path box. The path name can be of any length that is allowed within any
restriction imposed by your browser. After you specify the path, click the Change button.
To get information about the current server environment, click the Info button. The next screen you
see will be the Current Server Information screen.
To request an administrative function, click to select it from the menu on the left side of the screen.
The request applies to the configuration corresponding to the path that you selected.

Current Server Information
This screen provides information about the current server environment. You reach it from the
Welcome screen.

What You See
This screen displays information under the following headings:

• Server Path:
This line provides the path name of the bin directory on the path you specified at the Welcome
screen. The bin directory contains executable programs.
If the directory httpd is present on the path, the display includes the Binder timestamp, the
version procedure (VPROC), and the native mode of the iTP Secure WebServer.
If the directory httpd is not present on the path, the display includes an error message under
this heading.

• Configuration Files:
This line provides the path name of the conf directory on the path you specified at the Welcome
screen. The conf directory contains the iTP Secure WebServer configuration files.
The display lists the file name, size, and last modification date for every configuration file.

• Server Log Files:
This line provides the path name of the logs directory on the path you specified at the Welcome
screen. The logs directory contains the iTP Secure WebServer error log files.
The display lists the file name, size, and last modification date for every error file.

186 Managing the iTP Secure WebServer From Your Browser

What You Do
This screen is for your information. Select the next function you want from the menu on the left side
of the screen.

Server Control: Start
This screen enables you start the iTP Secure WebServer environment. You reach it by selecting
Start from the menu on the left side of the screen.

What You See
The display includes the title line Server Control: Start and directs you to click the Start Server
button to start the server.
If this is the first time you have started the server since using the Administration Server to edit the
configuration file, the screen displays the line "using edited configuration file." If you have not
edited the configuration file since the last time you started the server, the screen displays the line
"using current configuration file."

What You Do
To start the iTP Secure WebServer environment with the indicated configuration file, click the Start
Server button.
To use the other configuration file—for example, to use the previous one rather than the new edited
version—select the file from the list, and then click the Start Server button.
If you do not want to start the server at this time, select any other function from the menu.

What Happens Next
If the iTP Secure WebServer environment starts without error, the screen displays a message saying
that startup was successful. If you have started the server after editing the configuration file, the
display also indicates that the previous file was replaced, and it tells you where the previous version
of the file now resides. (The file name of the previous version has the extension .backup.)
If errors make it impossible to start the server, the screen displays that the server failed to start. At
the bottom of the screen you will see the messages logged by the iTP Secure WebServer during
startup. Look for and correct errors in your configuration file.

NOTE: Even if your edited file does not start the server successfully, the Administration Server
replaces the previous configuration with your edited file. To return your server to operation, delete
the new configuration file, rename the file that has the extension .backup, and start the server
again.

Server Control: Restart
This screen enables you to restart the iTP Secure WebServer environment or a specific serverclass.
You can also indicate the iTP Secure WebServer to switch to a new set of log files. You reach it
by selecting Restart from the menu on the left side of the screen.

What You See
The display lists the available restart functions and what they do. The functions are:

• Restarth to change the configuration without stopping the server.

• Restart the iTP Secure WebServer environment. When you select Restart, the textbox for
serverclass name is enabled. Do not enter any text in the textbox.

• Restart a serverclass. When you select Restart, the textbox for serverclass name is enabled.
Enter the serverclass name that you want to restart. The maximum length of this input text box
is 15 characters.

Administration ServerScreens 187

• Rollstarth to change the configuration and switch to new log files without stopping the server.

• Rollover to switch to new log files without changing the configuration or stopping the server.
For more information about these options, see the descriptions of the corresponding scripts in
“Managing the iTP Secure WebServer Using Scripts” (page 82).
If this is the first time you have started the server since using the Administration Server to edit the
configuration file, the screen also displays the line "using edited configuration file." If you have
not edited the configuration file since the last time you started the server, the screen displays the
line "using current configuration file."

What You Do
If you want to use the current configuration file instead of the newly edited version, select "using
current configuration file."
When the display indicates the configuration file you want to use, click the button for the restart
function you want. Then click the Submit button.

What Happens Next
If the iTP Secure WebServer environment or specific serverclass restarts without error, you can see
a message for successful startup. If you restart the iTP Secure WebServer environment or serverclass
after updating the configuration file, you can also see the following:
• A message for replacing the older configuration file

• The older configuration file location; this filename has the extension .backup

If errors prevent a restart, you can see a message for the restart failure. At the bottom of the screen,
you can see the messages logged by the iTP Secure WebServer during startup. Check these
messages and correct any errors in the configuration file.

NOTE: The Administration Server replaces the older configuration file with the new file. If the
new configuration file has errors, delete the new configuration file, replace the saved configuration
file (with the .backup extension), and restart the iTP Secure WebServer.

Server Control: Stop
This screen enables you to stop the iTP Secure WebServer environment. You reach it by selecting
Stop from the menu on the left side of the screen.

What You See
The screen displays the title Server Control: Stop and directs you to click a button to stop the server.

What You Do
Click the Stop Server Now button to stop the server.

What Happens Next
If the iTP Secure WebServer environment stops without error, the screen displays a message that
the server has been stopped. If an error makes it impossible to stop the server, the screen displays
that the server failed to stop. At the bottom of the screen you will see messages logged by the iTP
Secure WebServer during the operation. Correct the problem and try again.
Sometimes an error stopping the server can result from a change in the current configuration file.
For example, if someone edited the configuration file to specify a port number other the one actually
in use by the iTP Secure WebServer, the Administration Server could not determine which iTP
Secure WebServer to stop.

188 Managing the iTP Secure WebServer From Your Browser

View Configuration Files
This screen enables you to view configuration files. You reach this screen by selecting View Files
from the menu at the left side of the screen.

What You See
The screen displays the path to the configuration files and a list of all the configuration files on the
path.

What You Do
To use a different set of configuration files, type the desired path name over the path name in the
Path window, and then click the Change button. The path name can be of any length that is allowed
within any restriction imposed by your browser.
To select a configuration file for viewing, select it from the list of file names, and then click the View
button.

What Happens Next
After you click the View button, the screen displays the path name, the file name, the last
modification date, and the contents of the selected file. You can scroll through the file. Then choose
another function from the menu on the left of the screen.

Server Control: Add
You can add new serverclasses by using add option from the menu on the Welcome screen.

What You See
The screen displays the title Server Control: Add and directs you to a page that has the following
input options:

• A text box input: To specify the configuration file name that has to be used by httpd.

• Add button: To add the serverclasses that exist under the configuration file.

What You Do
To add serverclass to the iTP Secure WebServer environment in the default path mentioned on the
Welcome screen:

• Enter the configuration file name.

• Click the Add Server Now button to add the serverclass.
To use other configuration files, you can change the path on the Welcome screen and then perform
the previously mentioned steps.
If you do not want to add the serverclass, select any other function from the menu.

What Happens Next
If the new serverclasses are added to the iTP Secure WebServer environment, the screen prompts
a server added message. If an error occurs, the screen displays that the server failed to add. You
can notice the iTP Secure WebServer log message at the bottom of the screen.
You can correct the problem and try again.
Sometimes an error adding the server can result from a change in the current configuration file.
For example, if the configuration file has transport:ip:port combination that is already in
use, the administration server cannot add the httpd serverclass.
Httpd serverclass is successfully added to the pathmon, but some other serverclass are not added
due to duplicate serverclass name.

Administration ServerScreens 189

NOTE: The feature of using the edited version of configuration file is not supported with this
option. Hence, the configuration files to be used must not be edited by using the admin WebServer.

Server Control: Delete
You can use Delete option from the menu to delete some of the serverclasses. This screen enables
you to delete the serverclasses that are already running in the iTP Secure WebServer environment.
You can perform this task without stopping the pathmon.

What You See
This screen displays the title Server Control: Delete and directs you to a page that contains the
following options:

• A text box input: To specify the configuration file name that has to be used by httpd to delete
the serverclasses.

• A delete button: To delete the serverclasses from the pathmon environment.

What You Do
To delete the serverclasses from iTP Secure WebServer environment with the configuration file in
the default path mentioned on the Welcome screen:

• Enter the configuration file name.

• Click the Delete Server Now button to delete the server.
To use the other configuration file, change the path on the Welcome screen and then perform the
previously mentioned steps.
If you do not want to delete the server, select any other function from the menu.

What Happens Next
If the serverclasses are deleted from the iTP Secure WebServer environment without error, the
screen displays a message that the servers are deleted. If an error makes it impossible to delete
the servers, the screen displays that the server failed to delete. You can notice the iTP Secure
WebServer log message at the bottom of the screen.
You can correct the problem and try again.

NOTE: The feature of using the edited version of configuration file is not supported with this
option. Hence, the configuration files to be used must not be edited by using admin WebServer.

Edit Configuration File
This screen enables you to edit a configuration file so that you can change the configuration of
your iTP Secure WebServer environment.

What You See
The screen displays the path to the configuration files and a list of all the configuration files on the
path.

What You Do
To use a different set of configuration files, type the desired path name over the path name in the
Path box, and then click the Change button. The path name can be of any length that is allowed
within any restriction imposed by your browser.
To select a configuration file for editing, select it from the list of file names, and then click the Edit
button.

190 Managing the iTP Secure WebServer From Your Browser

What Happens Next
After you click the Edit button, the screen displays the contents of the selected file. You can scroll
through the file and edit it using your browser. When you are finished, click the Save button to
save the edited file. The edited version is stored in a file that has the same name as the previous
version and the extension .editing.
If you click the Cancel button, your new version of the file is not saved but remains visible on the
screen.
To implement the new configuration, select Restart from the menu at the left side of the screen.
When you restart:

• The previous configuration file is renamed to include the extension .backup.

• The new configuration file is renamed to omit the extension .editing.

• The new file has the same name that the previous file had before you chose the restart
operation.

For example, if you edit the file httpd.config, you create a file named
httpd.config.editing. When you restart the server, the following file names change:

• The stored httpd.config file becomes httpd.config.backup.

• The edited file httpd.config.editing becomes httpd.config.
These name changes occur even if the restart does not succeed.

View EMS Logs
This screen enables you to monitor event messages as events arise or review messages logged at
some earlier time. You reach this screen by choosing EMS logs from the menu on the left side of
the screen.

What You See
The screen displays a list of criteria for selecting events to be displayed:

• Enter event source (collector or log file)
If you want to monitor events as they occur, the event source is a collector. If you want to
review a log of stored event messages, the event source is a log file. This list item enables you
to enter the name of the collector process or log file. Your entry must be a legal HP process
or file name; the length of a fully qualified file name cannot exceed 35 characters.

• Enter log positioning date and time
If you do not enter a date, the current date is assumed. If you do not enter a time, the current
time is assumed. To get the most recent event messages, leave the date and time blank. Your
entry can have a maximum length of 19 characters.

• Enter filter file name
A filter file specifies the selection criteria for messages, using the EMS filter language. For
information about that language, see the EMS Manual.
Specify the file name in Guardian file-name format. The maximum length is 35 characters.
If you omit the filter file name, all events pass this test.

• Enter filter criteria
This item enables you to specify one or more subsystem owners, subsystem IDs, and event
numbers.
A subsystem owner usually is a company name and is case sensitive. For example, to include
events from HP subsystems, you must specify TANDEM in all uppercase. A subsystem owner
name consists of eight or fewer characters. The first character must be alphabetic, the others

Administration ServerScreens 191

alphanumeric. You can specify multiple subsystem owners, by using commas to separate the
values.
A subsystem ID specifies the product whose event messages you want to see in the display.
For example, the iTP Secure WebServer has the EMS subsystem ID WEBSERV. Each subsystem
ID has a maximum length of 8 characters. You can specify multiple subsystem IDs, by using
commas to separate the values; the total length of your entry cannot exceed 24 characters.
An event number specifies the kind of event you want to see in the display. You can specify
a number or a series of numbers separated by commas. However, if you specify more than
one subsystem ID, you must specify no more than one event number. The range of an event
number is -32637 to 32638. The maximum length of your entry is 36 characters.
The Pass option causes messages to be displayed if they pass the criteria. The Fail option
causes messages to be displayed if they fail the criteria.
If you omit filter criteria, all events pass this test.

• Enter search string
Enter a string in the text box to search the text of each event message. A message is displayed
only if its text includes the string. The string can occur anywhere in the message text. The
maximum length of the search string is 64 characters. You can use any alphanumeric or
special characters except the asterisk (*) and the question mark (?).
The search is case-nonsensitive unless you check the box labeled Case Sensitive.
If you omit a search string, all events pass this test.

• Enter display options:
The number of events to display cannot exceed 9999. The default value is 10.
The time order determines whether messages are displayed with the most recent first or the
oldest first. By default, messages are displayed in descending order by timestamp (most recent
first).
The timeout determines how long to wait since the last received message before completing
the request. The range is 0 to 9999. The default value is 20 seconds.
The stop at EOF option determines whether the request will complete at the end of a log file.
If this option is off, the program waits for another message until the timeout is exceeded. This
setting applies only if the time order is ascending.
The line-size option specifies how many characters of each message the Web client should
display before wrapping to the next line. Use this option to control the amount of message
text you can see without having to use horizontal scrolling.
The indentation option enables you to specify how much the second and subsequent lines of
each event message should be indented with respect to the first line, which always starts in
the first column.

What You Do
Enter the criteria, and click one of these selections:

• The Submit button to initiate the operation

• The Reset button to return to the values originally displayed on this screen

• The Help button for more explanation of the items on this screen
For a simplified set of options restricted to monitoring events as they occur, select Operational
View.
You can specify any combination of filter file, filter criteria, and search string. The order of
precedence among these items is:

192 Managing the iTP Secure WebServer From Your Browser

1. Filter file
2. Filter criteria
3. Search string

What Happens Next
After you click the Submit button, you will see a list of messages, one line for each message. Each
line displays the time the event was reported, the name of the process that reported the event, the
name of the subsystem, the event number, and the message text. On a color monitor, critical events
are red, and non-critical events are green. (Critical events also are marked with asterisks.) You
can scroll sideways to see more of the text.
Click the sequence number of a message to display all the tokens in the message. Such a list is
valuable not only for troubleshooting but for planning filter specifications to use on other occasions.
Click the Cancel button to stop the display of messages.

View Server Logs
This screen enables you to view the iTP Secure WebServer error logs. You reach this screen by
selecting Server Logs from the menu on the left side of the screen.

What You See
The screen displays the current path name and a list of the log files on the path. At the bottom of
the screen are:

• A View button for initiating the display operation.

• A box where you can enter the number of log messages to display. There is no limit on this
value. The default value is 10.

• A scrolling list from which you select the log file to use.

What You Do
To change the path, type over the value in the Path window and click the Change button. The path
name can be of any length that is allowed within any restriction imposed by your browser. The
list of log files changes to reflect the new path.
When you've accepted or changed the path, enter the number of lines to display, select a file from
the scrolling list, and click the View button.

What Happens Next
After you click the View button, the screen displays the file name, path name, and last modification
date of the selected log file. Then it lists the messages—as many as you requested at the previous
screen. Each line includes the date, the ID of the process that logged the message, the message
number, and the message text. You can scroll sideways to see more of the text and down to see
more messages.

Search Configuration Files
This screen enables you to search a configuration file for a string. Use this screen to find the value
of a particular directive without scrolling through the whole file in View Configuration Files.
You reach this screen by selecting Search from the menu on the left side of the screen.

What You See
The screen displays the path to the configuration files to be searched and provides a box for you
to enter the search string.

Administration ServerScreens 193

What You Do
To change the path, enter a new value over the displayed value, and click the Change button.
In the next box, enter the search string. The path name can be of any length that is allowed within
any restriction imposed by your browser. The search is case-sensitive unless you remove the check
from the box labeled Case Sensitive. Click the Search button to start the search.

What Happens Next
If the string occurs in any configuration file on the path, the screen will display, each line that
contained the string under the heading Search Results. Each result has a label indicating the name
of the configuration file in which it was found.
If the string does not occur in any configuration file on the path, no results are displayed.
If you forget to enter a string, you get the message "No search criteria entered."

OSSCommands
Use this screen to enter POSIX compliant OSS commands, but you cannot specify other commands
or executable program objects.

What You See
The screen includes the title OSS Command on Server, a line reminding you to enter only POSIX
compliant commands, and a box for the command.

What You Do
Enter a command in lowercase and click the Execute button.

What Happens Next
Any output from the command appears at the bottom of the screen.
If the command you entered is not present on the system, or if you misspelled it, an error message
appears.
If you click the Execute button without entering a command, the error message "No command
entered" is displayed.

iTP WebServer Statistics
This screen enables you to enter the PATHMON/Domain name for the iTP Secure Web server and
serverclass name whose statistics you want to collect. You can use the Status option from the menu
to enter the Pathmon/domain name.

What You See: Enter PATHMON/Domain Name
The screen includes the title, iTP WebServer Statistics, a text box to enter the
PATHMON/Domainname of the WebServer (default is $zweb), another text box to enter the
serverclass name of httpd process (default is httpd), a Submit button to initiate the status operation,
and a Reset button to revert to the default PATHMON/Domain name.

What You Do: Enter PATHMON/Domain Name
To view the httpd processes of the Web server, type the PATHMON/Domain name under which
the web server is running, type serverclass name of the httpd that runs under the PATHMON/Domain
and then click the Submit button.
If you click the Submit button without entering the PATHMON/Domain name, the following error
message is displayed:
Enter PATHMON/DOMAIN name

194 Managing the iTP Secure WebServer From Your Browser

If you click the Submit button without entering the serverclass name, the server displays the following
error message:
Enter serverclass name for httpd

If you click the Submit button without entering both PATHMON/Domain name and serverclass
name, the server displays the following error message:
Enter Pathmon/Domain name.Enter httpd serverclass name.

If the entered PATHMON/Domain name is not present on the system, the following error message
is displayed:
Enter proper PATHMON/Domain name

If the length of the PATHMON/Domain name entered is greater than six characters, the following
error message is displayed because the maximum length of any PATHMON/Domainname can be
six characters including the $ sign:
Enter proper PATHMON/Domain name. Entered PATHMON/Domain length is
greater than six.

If no httpd process with the specified serverclass name is running for the entered
PATHMON/Domain name, the server displays the following error message:
Not WebServer httpd name.Enter WebServer httpd Name

If a Pathway is not configured for the PATHMON/Domain name entered, the following error message
is displayed:
Check whether WebServer is running under the given PATHMON/Domain name

If you enter a proper PATHMON/Domain name that is not a Web server PATHMON/Domain name,
the following error message is displayed:
Not WebServer PATHMON name. Enter WebServer PATHMON/Domain name

NOTE: Whenever an error message is displayed, you should restart the status application by
selecting Status from the menu on the lower-left side of the screen. The Back button of the browser
is disabled for this screen.

Click Status to view the httpd process selection page. To reset the default PATHMON name, click
Reset.

What You See: Select httpd Process
After you click the Status button, the screen displays the httpd process names with serverclass
name specified and running under the pathmon name entered. Only the Restart button is enabled
and the Start, Status, and Stop buttons are disabled. The message window displays the following
messages:

• Click Start to start the instrumentation.

• Click Status to get the status of the process for which instrumentation is running.

• Click Stop to stop the instrumentation.
However, the Start, Status, and Stop buttons will be enabled only when you select at least one of
the httpd processes.

What You Do: Select httpd Process
Select the process for which instrumentation is to be started or stopped and then click Start or Stop
as needed. To select all httpd processes, select the ALL check box. You can reset the selected
processes by clicking the Reset button.
When you click Start, a message is displayed to indicate that the instrumentation for the selected
process is started. If the instrumentation for the selected process has already been running, a
message is displayed to indicate the same.

Administration ServerScreens 195

After starting the instrumentation, click the Status button to collect the statistics. If the instrumentation
for one or more selected processes has not been started when you click the Status button, a message
will be displayed prompting you to start the instrumentation for those processes.

NOTE: You can collect statistics only for WebServer version ABV or later. If the version is different,
when you click Start or Stop, the message "Instrumentation is supported for iTP WebServer version
ABV or later. Check the version of WebServer." will be displayed in the message window.

If the available storage memory is not enough, or the memory arena is corrupted, or any httpd
process terminates, a message will be displayed to indicate the same. If the admin server restarts,
the error message "Admin restarted. Click Refresh button of browser or click Status button at the
bottom left corner." will be displayed.

What You See: Select Parameters
After you select the processes and click the Status button, Parameter selection page will be displayed
with User Parameters and Development Parameters frames along with the check boxes with each
parameter to be selected, a disabled Status button and an enabled Home button. Initially, the
check boxes under the Development Parameters would be disabled.

What You Do: Select Parameters
Select the required parameters. You can also select all user parameters by selecting the check box
ALL. The Status button will be enabled only when you select at least one of the parameters. The
development parameters will be enabled only when you select the Enable Development Parameters
check box.
Select the desired parameters and click the Submit button to view the values for the selected
parameters. Click the Home button to go back to the httpd process selection page. If the admin
server restarts, the error message "Admin restarted. Click Refresh button of browser or click Status
button at the bottom left corner." will be displayed.

What You See: Statistics Display
The values of the selected parameters for the selected processes are displayed on the statistics
display page along with the start time and status time between which they have been measured.
At the bottom of the page are the Home, Back, Refresh, and Save buttons.

What You Do: Statistics Display

• Click the Home button to go back to the httpd process selection page.

• Click the Back button to go back to the parameter selection page.

• Click the Refresh button to get the latest values of the displayed parameters. The values
displayed will be from the time when the selected process has been started till the time when
you click Refresh.

• Click the Save button to store all the statistics in a .csv file, which would be available at the
location where the WebServer is installed.

NOTE: When you click the Save button, the message "Warning: Previous data file if exists would
be overwritten. Are you sure you want to save?" will be displayed with the OK and Cancel buttons.
Click OK to save the data in the file or overwrite the file if it already exists. Click Cancel to remain
on the current page.
If proper location is not available to save the file, the error message "Location at which the file is
to be stored does not exist" will be displayed.

If the admin server restarts, the error message "Admin restarted. Click Refresh button of browser
or click Status button at the bottom left corner." will be displayed.

196 Managing the iTP Secure WebServer From Your Browser

NOTE: If Maximum value is reached for Total transactions completed parameter, the message
"Maximum value reached for Total transactions completed" is displayed in a message window.
You should stop the instrumentation for the process that has the maximum value that has been
reached. If you do not stop, false values for other parameters might also get displayed.

What Happens Next
If the file is saved, a message window appears with a message indicating that the statistics.csv
file has been saved successfully at the location. It also has a Home button that helps to go back
to the httpd process selection page.

Administration ServerScreens 197

A Configuration Directives
This appendix describes the configuration directives you can specify in the server configuration
file (httpd.config). For background information about using the configuration file, see “Configuring
the iTP Secure WebServer” (page 94).
Directives that were supported in earlier releases of the iTP Secure WebServer, and that have been
superseded by new directives are listed in Table 28 (page 198):

Table 28 Directives That Have Been Replaced

Replaced by New Directive(s)Previously Supported Directive

“Accept” (page 198)Port

“Accept” (page 198)
“AcceptSecureTransport” (page 200)

ServerAddress

“Accept” (page 198)
“AcceptSecureTransport” (page 200)

ServerName

“Accept” (page 198)
“AcceptSecureTransport” (page 200)

Transport

Accept

Syntax
Accept -transport transport-name [-address server-addr] [-name server-name] [-port port-num]

Description
Use the Accept directive to configure the iTP Secure WebServer (server-name in the example)
to accept HTTP connections on one or more specified transports and ports.
The Accept directive takes the following arguments:

-transport transport-name

The transport name (transport-name) is a TCP/IP process name in OSS format
(that is, preceded by /G/).
One transport-name is required.

-address server-addr

Use the -address argument to configure the server to accept connections on a
specified address (server-addr). The address you specify can be either a numeric
IP address or a valid name or alias registered with the Domain Name Service
(DNS). If no -address argument is specified, the iTP Secure WebServer accepts
connections on all IP addresses currently valid for the iTP Secure WebServer
machine.

NOTE: If -address option is not specified and hostname is not configured for
the particular transport process then, iTP Secure WebServer throws "Invalid
hostname" error.

The following examples configure the httpd process to receive messages on any
IPv4 address associated with the process $ZTC0, to use a specified IPv4 or IPv6
address with the process $ZTC1, and to use the IP address bound to the DNS name
www.goblet.com with the process $ZTC2:
-transport /G/ZTC0
-transport /G/ZTC1 -address 120.1.2.13

198 Configuration Directives

www.goblet.com

-transport /G/ZTC1 -address fe80::ffff:abcd:1
-transport /G/ZTC2 -address www.goblet.com

If server-addr is not an IP address associated with the TCP/IP process name in
the TCP/IP configuration, an error is reported during httpd process startup. The
error message reports that the server cannot bind to the combination of TCP/IP
process name, IP address, and port (as specified in the -port argument).
If server-addr is specified in DNS format, an attempt is made to bind to each
IP address to which the DNS name maps. Bindings that fail because the address
is not available are ignored. All successful binds are kept. If no binds are successful,
an error is reported and the httpd process does not start.
For the DNS format to be used, the address-resolved file,
$SYSTEM.ZTCPIP.RESCONF for IPv4 addresses and $SYSTEM.ZTCPIP.IPNODES
for IPv6 addresses, must be set up and contain the correct IP addresses for the name
servers, which are entities defined by DNS.

-name server-name

Use the -name argument to specify the name used to refer to the server. The iTP
Secure WebServer uses this name whenever it needs to generate a URL that refer
to itself, such as for redirects.
The name you specify must be a valid name or alias registered with the DNS. For
more information about setting up an alias, consult your system or network manager.
If no -name argument is specified, the iTP Secure WebServer uses the server address
(server-addr) if -address is specified. Otherwise, the iTP Secure WebServer
uses the host name of the machine on which it is running.

-port port-num

Use the -port argument to configure the server to check for connections on a
specified port (port-num).
The standard port number for HTTP connections is 80. If you choose another port,
check the $SYSTEM.ZTCPIP.SERVICES file to check that this port has not already
been allocated to another service.
If you choose any port number less than 1024, you need to be root (super.super)
to start the iTP Secure WebServer. If no -port argument is specified, 80 is used.
You can specify any number of Accept directives in the iTP Secure WebServer
configuration file. Omit the Accept directive if you plan to use only secure transport.

SCF TCP/IP Configuration
To associate multiple IP addresses with a single TCP/IP process, use the SCF ALTER SUBNET
command with the ADDALIAS parameter, as shown in the example:
SCF> ALTER SUBNET $ZTC0.#SN1, ADDALIAS 120.1.1.12, &
SCF> SUBNETMASK %hFFFF0000

This command adds the IP address 120.1.1.12 to the subnet $ZTC0.#SN1. The SUBNETMASK
parameter is required. Each IP address must be added with a separate ALTER SUBNET command.
You can use the DELETEALIAS parameter to delete IP addresses that have been added to a subnet
using the ADDALIAS parameter. as shown:
SCF> ALTER SUBNET $ZTC0.#SN1, DELETEALIAS 120.1.1.12

Each IP address must be deleted with a separate ALTER SUBNET command.

Default
There is no default. Specify at least one Accept or AcceptSecureTransport directive.

Accept 199

Examples
To accept HTTP connections on any IPv4 address associated with the process $ZTC0, using default
port 80:
Accept -transport /G/ZTC0

To accept HTTP connections on any IPv4 address associated with the process $ZTC0, using port
8080:
Accept -transport /G/ZTC0 -port 8080

To accept HTTP connections on any IPv6 address associated with the process $ZTC0,
using default port 80:
Accept -transport /G/ZTC0 -address ::

To accept HTTP connections on any IPv6 address associated with the process $ZTC0,
using port 8080:
Accept -transport /G/ZTC0 -address :: -port 8080

To accept HTTP connections on a specific IPv4 address associated with the process $ZTC1, using
default port 80:
Accept -transport /G/ZTC1 -address 120.1.2.13

To accept HTTP connections on a specific IPv6 format address associated with the process $ZTC1,
using default port 80:
Accept -transport /G/ZTC1 -address fe80::ffff:abcd:1

To accept HTTP connections on the IP address bound to the DNS name www.goblet.com with
the $ZTC2 process, using default port 80:
Accept -transport /G/ZTC2 -address www.goblet.com

To accept HTTP connections on any IPv4 address associated with the process $ZTC0, To accept
HTTP connections on any IPv6 address associated with the process $ZTC0, a specified IPv4 or
IPv6 address with the process $ZTC1, and the IP addresses bound to the DNS name
www.goblet.com with the process $ZTC2, using default port 80, you need three Accept
directives:
Accept -transport /G/ZTC0
Accept -transport /G/ZTC0 -address ::
Accept -transport /G/ZTC1 -address 120.1.2.13
Accept -transport /G/ZTC1 -address fe80::ffff:abcd:1
Accept -transport /G/ZTC2 -address www.goblet.com

AcceptSecureTransport

Syntax
AcceptSecureTransport -transport transport-name -cert cert-name
[-address server-addr] [-ciphers list-of-ciphers]
[-name server-name][-port port-num]
[-nossl][-notls][-notls1.0][-notls1.1][-notls1.2][-requestauth/-
requireauth][-dh_paramsFilepath filePath][-keyExchange keyexchange-
method][-hashAlgorithm list-of-hashalgorithm]

Description
Use the AcceptSecureTransport directive to configure the server to accept SSL or TLS
connections on a specified transport (transport-name) or port (port-num).
The AcceptSecureTransport directive takes these arguments:
-transport transport-name

The transport name (transport-name) is a TCP/IP process name in OSS format (that is, preceded
by /G/).
One transport-name is required.

200 Configuration Directives

-cert cert-name

Use the -cert argument to specify the distinguished name (cert-name) of the certificate to be
used for TLS or SSL requests associated with the virtual host. The Distinguished Name must match
the name in the key database file.
The -cert argument is required.
-address server-addr

Use the -address argument to configure the server to accept connections on a specified address
(server-addr). The address you specify can be either a numeric IP address or a valid name or
alias registered with the Domain Name Server (DNS). If no -address argument is specified, the
iTP Secure WebServer accepts connections on all IP addresses currently valid for the iTP Secure
WebServer machine.
The following examples configure the httpd process to receive messages on any IPv4 or IPv6
address associated with the process $ZTC0, to use a specified IPv4 or IPv6 address with the process
$ZTC1, and to use the IP address bound to the DNS name www.goblet.com with the process
$ZTC2:
-transport /G/ZTC0 -cert DN
-transport /G/ZTC0 -address :: -cert DN
-transport /G/ZTC1 -address 120.1.2.13 -cert DN
-transport /G/ZTC1 -address fe80::ffff:abcd:1 -cert DN
-transport /G/ZTC2 -address www.goblet.com -cert DN

If server-addr is not an IP address associated with the TCP/IP process name in the TCP/IP
configuration, an error is reported during httpd process startup. The error message reports that the
server cannot bind to the combination of TCP/IP process name, IP address, and port (as specified
in the -port argument).
If server-addr is specified in DNS format, an attempt is made to bind to each IP address to
which the DNS name maps. Bindings that fail because the address is not available are ignored.
All successful binds are kept. If no binds are successful, an error is reported and the httpd process
does not start.
For the DNS format to be used, the address-resolved file, $SYSTEM.ZTCPIP.RESCONF for IPv4
addresses and $SYSTEM.ZTCPIP.IPNODES for IPv6 addresses, must be set up and contain the
correct IP addresses for the name servers.
-ciphers list-of-ciphers

Use the -ciphers argument to specify a Tcl list of ciphers. The iTP Secure WebServer uses the
bulk encryption algorithms described by this list. The ciphers available for encryption include:

Table 29 List of Ciphers for AcceptSecureTransport

Cipher-codeCipher

AES_256_CBCAES-256

AES_128_CBCAES-128

CAMELLIA_256_CBCCamellia-256

CAMELLIA_128_CBCCamellia-128

RC4_128RC4-128(ARC4-128)

3DES_CBCTriple DES

Except for RC4, each of these ciphers is operated in the cipher block chaining (CBC) mode, which
alters the block of data before encrypting.
Table 30 (page 202) lists the cipher-hashing algorithm pairs supported in iTP Secure WebServer.

AcceptSecureTransport 201

Table 30 Supported Cipher Pairs (by Protocol)

TLS 1.2TLS 1.1TLS 1.0SSL 3.0Cipher

YesYesYesYes3DES_CBC_SHA1

YesYesYesYesAES_128_CBC_SHA1

YesYesYesYesAES_256_CBC_SHA1

YesYesYesNoCAMELLIA_128_CBC_SHA1

YesYesYesNoCAMELLIA_256_CBC_SHA1

YesYesYesYesRC4_SHA1

YesYesYesYesRC4_MD5

YesNoNoNoAES_128_CBC_SHA256

YesNoNoNoAES_256_CBC_SHA256

Table 31 (page 202) lists the cipher-hashing algorithm pairs (by key-exchange method) supported
in iTP Secure WebServer.

Table 31 Supported cipher-hashing algorithm pairs (by key-exchange method)

DHE_RSARSACipher

YesYes3DES_CBC_SHA1

YesYesAES_128_CBC_SHA1

YesYesAES_256_CBC_SHA1

YesYesCAMELLIA_128_CBC_SHA1

YesYesCAMELLIA_256_CBC_SHA1

NoYesRC4_SHA1

NoYesRC4_MD5

YesYesAES_128_CBC_SHA256

YesYesAES_256_CBC_SHA256

For integrity checking, either the MD5, SHA, or SHA256 hashing algorithm is used.
-name server-name

Use the -name argument to specify the name used to refer to the server. The iTP Secure WebServer
uses this name whenever it needs to generate a URL that refers to itself, such as with anchor
specifications in HTML files.
The name you specify must be a valid name or alias registered with the Domain Name Server
(DNS). For more information about setting up an alias, consult your system documentation or
network administrator. If no -name option is specified, the iTP Secure WebServer uses the server
address (server-addr) if -address is specified. Otherwise, the iTP Secure WebServer uses the
host name of the machine on which it is running.
-port port-num

Use the -port argument to configure the server to check for connections on a specified port
(port-num).
The standard port number for TLS and SSL connections is 443. If you choose another port, check
the $SYSTEM.ZTCPIP.SERVICES file to check that this port is not already allocated to another
service.
If you choose any port number less than 1024, you need to be root (superuser) to start the iTP
Secure WebServer. The default port number 443 is used if no -port argument is specified.

202 Configuration Directives

-nossl
-notls
-notls1.0
-notls1.1
-notls1.2

Use the -notls, -notls1.0, or -notls1.1, or-notls1.2 option to disallow TLS requests or
use the -nossl option to disallow SSL requests. By default, both TLS and SSL requests are accepted.
-requestauth
-requireauth

Use the -requestauth option to challenge the Web client for authentication. This option only
requests the Web client to authenticate; it does not require that the Web client do so. The
RequireSecureTransport -auth command in a Region directive prevents access without authentication.
Use the -requireauth option to challenge the Web client for authentication credentials. The
connection is aborted if the Web client does not authenticate.
You can specify either or neither of the -requestauth or -requireauth options. The default
is neither.
—dh_paramsFilepath filePath

Use the dh_paramsFilepath argument to specify the filePath that contains Diffie-Hellman
parameters.
—keyExchange key-exchange-method

Use the keyExchange argument to specify the supported key-exchange-method. The
key-exchange-method can be RSA,DH (Diffie-Hellman) or ALL. The default value for this
argument is ALL.
iTP Secure WebServer uses these parameters for Diffie-Hellman key-exchange.
You can specify any number of AcceptSecureTransport directives in the iTP Secure WebServer
configuration file. Omit this directive if you do not require secure transport; in that case, use the
Accept directive instead.
-hashAlgorithm list-of-hashalgorithm

Use the -hashAlgorithm argument to specify the Tcl list of cryptography hashing algorithms
supported with iTP Secure Webserver. The list-of-hashalgorithm can be MD5, SHA1, and
SHA256. If this argument is not specified, the iTP Secure WebServer is configured with all supported
hashing algorithms.

NOTE: When options -dh_paramsFilepath is not used and Diffie-Hellman key-exchange is
enabled the iTP Secure WebServer uses default hard coded Diffie-Hellman parameters.

SCF TCP/IP Configuration
To associate multiple IP addresses with a single TCP/IP process, use the SCF ALTER SUBNET
command with the ADDALIAS parameter, as shown in the example:
SCF> ALTER SUBNET $ZTC0.#SN1, ADDALIAS 120.1.1.12, &
SCF> SUBNETMASK %hFFFF0000

This command adds the IP address 120.1.1.12 to the subnet $ZTC0.#SN1. The SUBNETMASK
parameter is required. Each IP address must be added by using a separate ALTERSUBNET
command.
You can use the DELETEALIAS parameter to delete IP addresses that have been added to a subnet
using the ADDALIAS parameter as shown:
SCF> ALTER SUBNET $ZTC0.#SN1, DELETEALIAS 120.1.1.12

Each IP address must be deleted by using a separate ALTER SUBNET command.

Default
If no AcceptSecureTransport directives are specified, the iTP Secure WebServer will not
accept TLS or SSL connections.

AcceptSecureTransport 203

Examples
To accept TLS and SSL connections on all IP addresses bound to the DNS name
www.directory.netwith the $ZTC0 process, using default port 443:
AcceptSecureTransport -cert {CN=Juliet,O=Capulet's House of
Keys} -transport /G/ZCT0 -address www.directory.net

To accept only SSL connections on address 199.170.183.18 with the $ZTC0 process, using default
port 443:
AcceptSecureTransport -cert {CN=Juliet,O=Capulet's House of
Keys} -transport /G/ZTC0 -address 199.170.183.18 -notls

To accept TLS and SSL connections on the address fe80::ffff:abcd:1 with the $ZSAM1 process,
using default port 443:
AcceptSecureTransport -cert {CN=Juliet,O=Capulet's House of
Keys} -transport /G/ZSAM1 -address fe80::ffff:abcd:1

To accept only TLS connections on IP addresses bound to the name www.directory.net with
the $ZTC0 process, using a port other than the default port 443, and requiring the Web client to
authenticate:
AcceptSecureTransport -cert {CN=Juliet,O=Capulet's House of
Keys} -transport /G/ZTC0 -address www.directory.net -port 4430 -nossl -requireauth

To accept TLS and SSL connections for two virtual hosts, on the IP addresses bound to the DNS
names www.directory.net and www-1.directory.net, using default ports:
AcceptSecureTransport -cert {CN=www.directory.net,O=D"Directory,
Inc.",ST=Massachusetts, C=US} -transport /G/ZTC0
-address www.directory.net

AcceptSecureTransport -cert {CN=www-1.directory.net, O="Directory,
Inc.",ST=Massachusetts, C=US} -transport /G/ZTC0
-address www-1.directory.net

To accept TLS and SSL connections on the IP addresses bound to the DNS name
www.directory.net with the $ZTC0 process (HTTP connections on ports 80 and 8080 and
SSL/TLS connections on ports 443 and 4430):
Accept -transport /G/ZTC0 -address www.directory.net

AcceptSecureTransport -cert {CN=Juliet,O=Capulet's House
of Keys} -transport /G/ZTC0 -address www.directory.net

Accept -transport /G/ZTC0 -address www.directory.net -port 8080

AcceptSecureTransport -cert {CN=Juliet,O=Capulet's House of
Keys} -transport /G/ZTC0 -address www.directory.net -port 4430

204 Configuration Directives

Examples of Secure Transport Protocol Support (Port 4430)
• To accept SSL 3.0, TLS 1.0, TLS 1.1 and TLS 1.2 connections:
AcceptSecureTransport -transport /G/ZTC0 -cert {CN=...}

• To accept SSL 3.0 and TLS 1.1 connections:
AcceptSecureTransport -transport /G/ZTC0 -cert {CN=...}
-notls1.0 -notls1.2

• To accept SSL 3.0 and TLS 1.0 connections:
AcceptSecureTransport -transport /G/ZTC0 -cert {CN=...}
-notls1.1 -notls1.2

• To accept SSL 3.0 and TLS 1.2 connections:
AcceptSecureTransport -transport /G/ZTC0 -cert {CN=...}
-notls1.1 -notls1.0

• To accept TLS 1.0 and TLS 1.1 connections:
AcceptSecureTransport -transport /G/ZTC0 -cert {CN=...}
-nossl

• To accept only SSL connections:
AcceptSecureTransport -transport /G/ZTC0 -cert {CN=...}\
-notls1.0 -notls1.1 -notls1.2

or
AcceptSecureTransport -transport /G/ZTC0 -cert {CN=...}
-notls

Examples of Cipher Support
To allow only Triple AES:
AcceptSecureTransport -transport /G/ZTC0 -cert {DN=...}\
-port 4433 -ciphers {AES_256_CBC AES_128_CBC}

To allow all SSLv3 ciphers:
set SSLv3_CipherList {
AES_256_CBC
AES_128_CBC
RC4_128
3DES_CBC
}
AcceptSecureTransport -transport /G/ZTC0 -cert {DN=....}
-ciphers $SSLv3_CipherList

To allow all supported ciphers:
set cipherList {
CAMELLIA_256_CBC
CAMELLIA_128_CBC
AES_256_CBC
AES_128_CBC
RC4_128
3DES_CBC
}
AcceptSecureTransport -transport /G/ZTC0 -cert {DN=....}\
-ciphers $cipherList

Examples of hashAlgorithm Support
To allow only SHA1 and SHA256 cryptography hashing algorithms:
AcceptSecureTransport -transport /G/ZTC0 -cert {DN=...}\
-port 4433 -hashAlgorithm {SHA1 SHA256}

To allow all the supported cryptography hashing algorithms:

AcceptSecureTransport 205

set hashList { SHA256 SHA1 MD5 }
AcceptSecureTransport -transport /G/ZTC0 -cert {DN=....}\
-hashAlgorithm $hashList

AccessLog

Syntax
AccessLog pathname [-remotePort] [-cookie]

Description
You set the AccessLog directive to the path name of the server accesslog file. This log file records
information about client requests, structuring the information in a format commonly used by other
HTTP server software. For further information about this format, see “Server Log File Formats”
(page 261)“Server Log File Formats” (page 261). For information about recording access information
in a different format, see “ExtendedLog” (page 211).
Only one AccessLog directive is allowed in the configuration file.
The AccessLog directive takes the following option:
-remotePort

when this option is set, REMOTE_PORT will be logged in the access log.
-cookie

when this option is set, cookies associated with the request, if any, are logged into the access log
entries.
For information about recording server and access errors, See “Managing Log Files” (page 108)

NOTE:
• To reflect the changes, you must restart the iTP Secure WebServer.
• This option is not set by default.

Default
None. If you do not set the AccessLog directive, no access log file is generated.

Example
AccessLog /usr/tandem/webserver/logs/access.log

AutomatedLogRolloverSize

Syntax
AutomatedLogRolloverSize <-1 / size>

where:
-1 indicates that this parameter is off.
size is the threshold size in megabytes (MB) to rollover log files.

Description
AutomatedLogRolloverSize is used to set the threshold limit for the log files to rollover. By
default, this directive is set to '-1', which indicates that there will be no automated rollover of log
files. When a value greater that zero is passed, the automated rollover is initiated and the value
passed is set as the threshold limit in megabytes (MB) to rollover the log files.

Default
AutomatedLogRolloverSize -1

206 Configuration Directives

Example
AutomatedLogRolloverSize 50

BigInBufSize

Syntax
BigInBufSize { yes][no }

Description
Use the BigInSize directive when you need to send a large amount of data in burst mode to the
httpd. When the value is set to yes, the http request inbound buffer size increases four fold to
better handle the load.

Default
BigInBufSize no

Example
BigInBufSize yes

Browser

Syntax
Browser agent -redirectlimit url-length

Description
Use the Browser directive to specify the maximum HTTP redirect URL length (url-length) that
is supported by the specified browser (agent). Many browsers have a limit (such as 128 characters)
for the length of the URL specified in an HTTP redirect operation. The agent argument matches
against the content in the HTTP User-Agent: field.
For example, the following directive specifies that the maximum redirect URL length for browsers
that have names matching *NCSA Mosaic* is 128 characters:
Browser "*NCSA Mosaic*" -redirectlimit 128

Multiple Browser directives are allowed in the server configuration file (httpd.config); these
directives might have agent patterns that overlap. For example:
Browser "*NCSA*" -redirectlimit 128
Browser "*NCSA Mosaic*" -redirectlimit 256

When the contents of User-Agent: matches more than one agent pattern, the server uses the
Browser directive corresponding to the longest matching pattern. For example, if User-Agent:
contains the string NCSA Web Browser, the server uses the first Browser directive (with a redirect
limit of 128); whereas if User-Agent: contains the string NCSA Mosaic, the server uses the second
Browser directive (with a redirect limit of 256).
The server uses the information provided by the Browser directive to modify the HTTP redirect
operation such that the Web client operates correctly. If a redirect URL is shorter than the redirect
limit supported by the matched browser, the server returns an HTTP redirect result directing the
Web client to the new location. If the redirect URL is longer than the limit supported by the matched
browser, the server returns a page containing a link the user can select to go to the new location.
This link page can be customized (as described in “Message” (page 222)).
For more information about redirect operations, see the description of the Redirect command in
“Region” (page 232).

BigInBufSize 207

Default
If no Browser directives are specified, the server assumes there is no limit on the URL length for
redirect operations.

Example
Browser "*WebRover V1.0*" -redirectlimit 1024

CacheTime

Syntax
CacheTime minutes

Description
Use the CacheTime directive to specify the number of minutes that the iTP Secure WebServer is
to cache files that it opens. When this directive is present in the configuration file, files accessed
by the iTP Secure WebServer stay open for the period specified in the CacheTime directive.
CacheTime accepts a value from 0 to 600 in minutes (10 hours). Specifying a value of 0 in the
CacheTime directive disables file caching.

Default
When no CacheTime directive is present, the iTP Secure WebServer holds open files it accesses
for approximately 60 minutes.

Example
CacheTime 7

ClientCADatabase

Syntax
ClientCADatabase <client-database-filepath>

Description
Use the ClientCADatabase directive to specify the name of the database that contains the
trusted client root certificates. This database also contains the certificates to verify the client certificate
during client authentication.
Only one ClientCADatabase directive entry is allowed in the configuration file. If there are multiple
entries in the configuration file, the last entry is used.

NOTE: HP recommends the following:
• Configure KeyDatabase for server certificates, and private and public key pairs
• Configure ClientCADatabase for client certificates
If you configure KeyDatabase for both, the following are also sent to the client as trusted root
certificates:
• CA root of server certificate chain
• Intermediate certificate of server certificate chain

Default
When ClientCADatabase directive is not specified, the iTP Secure WebServer reads the root
certificates from the file specified in the KeyDatabase directive as trusted client root certificates.
The following warning appears on startup:

208 Configuration Directives

Using different files for trusted client root certificates is recommended.

Example
ClientCADatabase $root/conf/clientcerts

CombinedLogFormat

Syntax
CombinedLogFormat [On/Off]

Description
Use the CombinedLogFormat directive when you want the access log files to be populated with
the 'Referer' and 'User-Agent' fields, in addition to the fields provided as per the Common Log
Format.

Default
By default this directive is set to Off.

Example
CombinedLogFormat On

DefaultType

Syntax
DefaultType mime-type

Description
Use the DefaultType directive to specify the MIME type identifier to be returned by the server
when no MIME type has been set for a requested file (see “MimeType” (page 224)) or when the
requested file does not have a file extension. The mime-type argument can be for any valid
MIME type, such as text/html.
Only one DefaultType directive is allowed in the configuration file.

Default
DefaultType text/plain

Example
DefaultType text/html

DNSCacheSize

Syntax
DNSCacheSize entry-num

Description
You set the DNSCacheSize directive to the number of entries (entry-num) allowed in the cache
in which the server stores host names and addresses from the Internet Domain Name Server (DNS).
A larger number of entries (entry-num) means more memory might be consumed by the cache;
a smaller number means the server must query DNS more frequently.
Only one DNSCacheSize directive is allowed in the configuration file.

CombinedLogFormat 209

Default
DNSCacheSize 1000

Example
DNSCacheSize 2000

DNSExpiration

Syntax
DNSExpiration life-secs

Description
You set the DNSExpiration directive to the maximum number of seconds (life-secs) that any
entry can remain in the server DNS cache.
Each entry in the server DNS cache is assigned an expiration time in seconds, to be measured
from the time the entry is created. The maximum for this expiration time is set by the
DNSExpiration directive. An entry can have a shorter expiration time if the time-to-live value
assigned to it by a DNS server is smaller than the value set by the DNSExpiration directive.
Only one DNSExpiration directive is allowed in the configuration file.

Default
DNSExpiration 21600

which assigns six hours, measured in seconds

Example
DNSExpiration 24000

EncodingType

Syntax
EncodingType code-type extension-list

Description
Use the EncodingType directive to specify the identifier of the encoding type (code-type) to
be returned to a Web client requesting a file whose extension matches an extension listed in
extension-list. The returned encoding type identifies to the Web client the kind of decoding
the Web client must perform on the file content before the content can be viewed by the user. This
decoding is usually a form of uncompression.
The items in extension-list are separated by blank spaces.
For example, if the server configuration file (httpd.config) contains the directive
EncodingType x-zip-compress Z

any URL that refers to a file that has .Z extension causes the server to return a content encoding
type of x-zip-compress with the requested file.
If the requested file is index.html.Z, the server returns a content encoding of x-zip-compress
and a MIME type of text/html.
The two most-common compression types used in EncodingType directives are x-gzip and
x-zip-compress. These two encoding types are specified in the conf/mime-types.config file
supplied with your server.

210 Configuration Directives

Default
None. If no EncodingType directive is set for a requested file, the server does not send a Content
Encoding line with the requested file.

Example
EncodingType x-gzip gz

ErrorLog

Syntax
ErrorLog filename

Description
You set the ErrorLog directive to the path name of the server error log file. This log file records
information about access and server errors, structuring this information in aformat commonly used
by other Web server software. For more information about this format, see “Server Log File Formats”
(page 261). For more information about recording error information in a different format, see
“ExtendedLog” (page 211).
Only one ErrorLog directive is allowed in the configuration file.

Default
None. If you do not set the ErrorLog directive, no error log file is generated.

Example
ErrorLog /usr/tandem/webserver/logs/errors

ExtendedLog

Syntax
ExtendedLog filename [-remotePort][-cookie]

Description
You set the ExtendedLog directive to the name of the extended log file. The extended log file
combines the functions of the access log file and the error log file, recording any error information
in context with information about the relevant request. It records this combined information in the
extended log format (ELF), which is extensible and easy to parse. For details about ELF, see “Server
Log File Formats” (page 261).
Only one ExtendedLog directive is allowed in the configuration file.
The ExtendedLog directive takes the following option:
—remotePort

When this option is set, REMOTE_PORT will be logged in the httpd log.
-cookie

When this option is set, cookies associated with the request, if any, are logged into the extended
log entries.

NOTE:
• To reflect the changes, you must restart the iTP Secure WebServer.
• This option is not set by default.

ErrorLog 211

Default
None. If you do not set the ExtendedLog directive, no extended log file is generated.

Example
ExtendedLog /usr/tandem/webserver/logs/httpd.log

Filemap

Syntax
Filemap [-symlink-disable] [-symlink-owner] prefix dir

Description
Use the Filemap directive to mapURLs to specific directories on the host machine. For URLs
having a path component beginning with prefix, the server translates theURL path into the name
of a file in dir. The server composes this name by replacing the prefix with dir.
If dir specifies a nonexistent directory, the server does not start.
The options are:
-symlink-disable

This option disables symbolic links to files in the specified directory. As a result, the iTP Secure
WebServer returns a message indicating that the file was not found in response to any attempt to
access a path that contains a symbolic link.
-symlink-owner

This option is similar in function to the -symlink-disable option: it disables symbolic links, but
only if these symbolic links are owned by someone other than the owner of the files to which the
symbolic links point.
For example, consider the Filemap directive
Filemap /admin /usr/tandem/webserver/root

Any URL having a component beginning with /admin is converted into a reference to a file in
directory /usr/tandem/webserver/root. For example, the URL
http://my.server.com/admin/welcome.html

maps to the file /usr/tandem/webserver/root/welcome.html.
You can enter more than one Filemap directive in the configuration file, with each directive
specifying a different prefix. Using this feature, you can partition major areas of server content
across different directories or disks. For example, given the directives
Filemap /encyclopedia /usr/disk0
Filemap /dictionary /usr/disk7
Filemap /accounts /G/data/accounts

the URL
http://my.server.com/encyclopedia/info/doc.html

refers to the file /usr/disk0/info/doc.html.
while the URL
http://my.server.com/dictionary/entry/aardvark.html

refers to the file /usr/disk7/entry/aardvark.html.
More than one Filemap directive is allowed in the configuration file. If two Filemap directives
have overlapping prefixes, the prefix that has the most characters matching the URL path will be
used to translate the file. For example, consider the overlapping Filemap directives
Filemap /personal /usr/disk/personal Filemap /personal/payne /udir/payne

In this case, the URL
http://my.server.com/personal/info.html

212 Configuration Directives

refers to the file /usr/disk/personal/info.html.
Conversely, the URL
http://my.server.com/personal/payne/info.html

refers to the file /udir/payne/info.html.
The Filemap command in the Region directive is equivalent to the Filemap directive, except for
the following differences:
• The Filemap command in the Region directive only applies within a region
• The Filemap command in the Region directive overrides any Filemap directive that has the

same prefix

Default
None
You must set at least one Filemap directive in the configuration file.

Example
Filemap / /usr/tandem/webserver/webstuff

FileStatsCheckTime

Syntax
FileStatsCheckTime <minutes>

Description
Use the FileStatsCheckTime directive to specify the interval for file stats information (information
about a file retrieved via a call to fstat) refreshing. In other words, the cached file stats are used
during the period specified by FileStatsCheckTime. If a file update is performed during this
interval, the timestamp and file contents in the response might not be up to date. Therefore, use
this directive with caution.
FileStatsCheckTime accepts a value from -1 to 600 minutes (10 hours). Specifying a value
of -1 disables checking. Specifying a value of 0 (zero) causes a check to be performed every time
the file is requested. With this setting, the timestamp and file contents returned by the iTP Secure
WebServer will always be current.
Note: If disk files are not frequently updated, it is recommended that you use the value of -1, and
use the vcache script after files are updated.

Default
When no FileStatsCheckTime directive is present, the value of 60 (one hour) will be used.

Example
FileStatsCheckTime 120

HTTPTraceMethodEnable

Syntax
HTTPTraceMethodEnable { yes][no }

Description
Use the HTTPTraceMethodEnable directive to disable the HTTP TRACE method in iTP Secure
WebServer. When the directive is set to no, an HTTP request containing the TRACE method results
in a "501, Not Implemented" HTTP response.

FileStatsCheckTime 213

Default
HTTPTraceMethodEnable no

Example
HTTPTraceMethodEnable no

HeaderFieldSize

Syntax
HeaderFieldSize header-field-size

Description
Set the HeaderFieldSize directive to specify the header field size. When HeaderFieldSize
is set, the header field size is restricted to the value specified. The argument header-field-size
must be a valid value. The allowed range is 1 to 16384. Only one HeaderFieldSize is allowed
in the configuration file.

Default
By default, the iTP Secure WebServer supports header field size of 4352.

Example
HeaderFieldSize 1024

NOTE: For Header Size or HeaderFieldSize greater than 8192, BigInBufSize and
InputbufferScale have to be used and InputbufferScale must be atleast greater than
two. For more information about directives, see “Configuration Directives” (page 198).

IndexFile

Syntax
IndexFile filename1 filename2 ...

Description
Use the IndexFile directive to specify thefile the server is to return whenever a URL refers to a
directory instead of to a file. Typically the IndexFile directive is set to a file that contains an
index or other description of thecontents of the directory being referred to by the URL.
For example, if your server receives the URL
http://www.myserver.com/foo/

and that the server configuration file (httpd.config) specifies
IndexFile index.html welcome.html

in response to this URL, which does not specify a particular file in directory /foo, the server will
look for a file named index.html in /foo, as if the full URL were
http://my.server.com/foo/index.html

If this file does not exist, the server will try to find in /foo the next file specified in the IndexFile
directive, as if the full URL were now
http://my.server.com/foo/welcome.html

If neither of these files exist, and if no IndexFile directive is specified in the configuration file,
and the DirIndex command of the Region directive is not present, the server returns an error message
to the Web client saying that access has been denied.
Only one IndexFile directive is allowed in the configuration file.

214 Configuration Directives

Default
None

Example
IndexFile index.html welcome.html

InputBufferScale

Syntax
InputBufferScale int-value

Description
Use the InputBufferScale directive to scale the size of the request input buffer. The value has
a range from 1 to 8.

NOTE: The InputBufferScale directive is effective only when the BigInBufSize directive
is set to yes. Use this directive only when it is recommended by HP development.

Default
InputBufferScale 4

Example
InputBufferScale 6

InputTimeout

Syntax
InputTimeout time-in-seconds

Description
You set the InputTimeout directive to the period (in seconds) that the server is to wait to receive
arequest from a Web client before closing the connection.
Only one InputTimeout directive is allowed in the configuration file.
Do not specify a value greater than 2147483647 (the maximum value permitted for a signed
integer).

Default
InputTimeout 120

which assigns 2 minutes, measured in seconds.

Example
InputTimeout 60

KeepAliveHeader

Syntax
KeepAliveHeader OFF/ON

Description
Use the KeepAliveHeader directive to enable or disable the HTTP/1.1 KeepAlive hop-by-hop
header. This directive supports persistent connections. The iTP Secure WebServer also supports

InputBufferScale 215

persistent connections for Java clients. The KeepAliveHeader directive can occur only once in
the configuration file.

Default
KeepAliveHeader OFF

The default value is set for all client connections.

Example
KeepAliveHeader ON

KeepAliveTimeout

Syntax
KeepAliveTimeout timeout-value

Description
Use the KeepAliveTimeout directive to specify the number of seconds that the iTP Secure
WebServer should wait for a request before terminating a persistent TCP/IP connection. The
KeepAliveTimeout directive can occur only once in the configuration file.
Persistent connections are a feature introduced in the HTTP/1.1 protocol to improve performance.
In earlier versions of HTTP, each request for a URL resulted in a new connection. Serving a page
often requires many requests (for example to include a graphics file in a page of text), so a complex
page could take considerable time to load. When a server supports persistent connections, it
establishes a connection when the user makes a request; the connection stays open for the series
of related requests the client makes of the server.
This directive enables you to control how long the server waits for the next request from the client.
If the timeout expires, the server closes the connection. If a new request arrives from the client, the
server creates a new connection. The user does not experience any disruption of service.
The timeout-value has a range from 0 seconds to the value of the InputTimeout directive. A
value of 0 causes the server not to create persistent connections; that is, the server will behave as
in previous releases.

Default
KeepAliveTimeout 15

Example
KeepAliveTimeout 30

KeepAliveMaxRequest

Syntax
KeepAliveMaxRequest integer-value

Description
Use the KeepAliveMaxRequest directive to specify the number of requests the iTP Secure
WebServer should handle before closing a persistent connection.
Persistent connections are a feature introduced in the HTTP/1.1 protocol to improve performance.
In earlier versions of HTTP, each request for a URL resulted in a new connection. Serving a page
often requires many requests (for example to include a graphics file in a page of text), so a complex
page could take considerable time to load. When a server supports persistent connections, it
establishes a connection when the user makes a request; the connection stays open for the series
of related requests the client makes of the server.

216 Configuration Directives

This directive enables you to control how many requests the server will accept on the same
connection. If the number is exceeded, the server closes the connection; when the next request
arrives, the server creates a new connection. The user does not experience any disruption of service.
The integer-value has a range from -1 to 32767. A value less than -1 or greater than 32767
results in an error message.
Values from 0 to 32767 indicate the number of requests that the Webserver will service on the
same persistent connection before closing the connection. A value of 0 or 1 disables persistent
conditions. A value of -1 indicates that the Webserver will keep the persistent connection open
until the client closes the connection or the Webserver encounters an error while processing the
request.

Default
KeepAliveMaxRequest 255

Example
KeepAliveMaxRequest 50

KeyDatabase

Syntax
KeyDatabase key-database-filename

Description
Use the KeyDatabase directive to specify the name of the database file that contains the relevant
certificate and private keys for server authentication.
Consider the following when you configure iTP Secure WebServer for client authentication:
• If ClientCADatabase directive is configured, the iTP Secure WebServer reads the trusted

client root certificates from the specified database file. The database file specified with
KeyDatabase directive must have only the relevant private and public keys, and certificates
for server authentication.

• If ClientCADatabase directive is not configured, the iTP Secure WebServer reads the trusted
client root certificates from the database file specified with KeyDatabase directive. The
database file specified with KeyDatabase directive must have the relevant public and private
keys, certificates for server authentication, trusted client root certificates and other certificates
for client authentication.

Only one KeyDatabase directive is allowed in the configuration file. If there are multiple entries
in the configuration file, the last entry is used.

NOTE: HP recommends the following:
• Configure KeyDatabase for server certificates, and private and public key pairs
• Configure ClientCADatabase for client certificates
If you configure KeyDatabase for both, the following are also sent to the client as trusted root
certificates:
• CA root of server certificate chain
• Intermediate certificate of server certificate chain

Default
None. This is a mandatory directive for secure communication.

Example
KeyDatabase $root/conf/keys

KeyDatabase 217

LanguagePreference

Syntax
LanguagePreference language-tags

Description
Use theLanguagePreference directive to specify the natural languages that the server will favor
when making content-negotiation decisions for the iTP Secure WebServer environment or a region.
Content negotiation is a protocol feature defined in the HTTP/1.1 specification.
The server consults this directive only if the configuration file also contains a Negotiation directive
with the Lang or Mult argument, and only if the client sends a request without an Accept-language
header.
The language-tags consist of one or more RFC 2068 language tags. To specify multiple tags,
separate them by commas with no intervening spaces, and enclose the list in braces {}. List the
tags in order of preference.
For more information about content negotiation, see “Negotiation” (page 224).
To see RFC 2068, use the following URL:
http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html

Default
If you specify this directive, you must specify at least one language tag. If you omit this directive
and a request does not contain an Accept-language header, the server does not use language as
a basis for content negotiation.

Example
LanguagePreference {de,en-us}

expresses a preference for German-language content, with a secondary preference for American
English.

LanguageSuffix

Syntax
LanguageSuffix language-tag .lang-abbreviation

Description
Use the LanguageSuffix directive to specify the file extension that corresponds to a language
tag. The LanguageSuffix directive applies only if the configuration file also contains a
Negotiation directive with Mult argument.
The language-tag consists of one RFC 2068 language tag. The .lang-abbreviation is the
string of characters used as the file extension for files in the specified language in your iTP Secure
WebServer environment. The .lang-abbreviation must start with a period.
To specify file extensions for multiple language tags, use multiple instances of this directive. You
can specify different file extensions for different regions by using LanguageSuffix as a Region
command.
For more information about content negotiation, see “Negotiation” (page 224).
To see RFC 2068, use this URL:
http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html

Default
If you do not specify this directive, the server does not use language as a basis for content
negotiation.

218 Configuration Directives

http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html

Example
LanguageSuffix en .en
LanguageSuffix de .ger
LanguageSuffix es .es
LanguageSuffix fr .fr

LoggingServerClass

Syntax
LoggingServerClass <serverclass-name >

Description
Specifies the TS/MP serverclass to be used to redirect iTP Secure WebServer logging. If specified,
nothing would be logged in the httpd.log and access.log files. Contents of these files would
be sent to the configured serverclass using Pathsend. WebServer errors would still be logged in
the error.log file. For more information on LoggingServerClass, see “Server Log File Formats”
(page 261).

Default
If this directive is not specified, the webserver will continue to log into its own log files.

Example
LoggingServerClass logtoclass

where, logtoclass is the user-specified serverclass name.

MaxConnections

Syntax
MaxConnections -count <integer value> -replytype <customized/RST>

For example,
MaxConnections –count 500 –replytype RST

Description
Use the MaxConnections directive to specify the maximum number of connections that will be
served before displaying the customized error message or sending the RST packet.
The MaxConnections directive takes these arguments:
-count <integer value>

RANGE (-count): 1 to (NUMSTATIC x 255)

where Numstatic is the number of static servers for the httpd server class.
Use the -count argument to specify the number of connections, which will be served, before
displaying the customized error message or sending the RST packet.
-replytype <customized/RST>

Use the –replytype argument to specify the type of response, customized error message or RST
packet, when the number of connections reaches the value specified with the -count argument.

NOTE: The number of connections served before displaying the error message or RST packet
will be the higher multiple of Numstatic nearest to the count value.

Default
None
Both the arguments are mandatory.

LoggingServerClass 219

Examples
MaxConnections –count 101 –replytype customized

Consider the above scenario, where Numstatic is 5 and maximum connections required is 101.
The iTP Secure WebServer would serve 105 requests (higher multiple of Numstatic nearest to the
count value). Here, 106th request will display the error message, "Maximum connections reached:
The server reached its maximum configured capacity.", with response code, '200 OK'.
MaxConnections –count 100 –replytype customized

Consider the above scenario, where Numstatic is 5 and maximum connections required is 100
(proper multiple of configured server, that is, Numstatic). The 101th request will display the
customized or RST packet as specified with the -replytype argument.
To customize the error message, create the new message id error-maximum-connection.
The customized message will be displayed if Message configuration directive is used in the
httpd.config file along the newly created message id.

NOTE: The values of Numstatic and MaxServers of the httpd process must be equal.

MaxFileCacheContentSize

Syntax
MaxFileCacheContentSize <num_kilobytes>

where [num_kilobytes] specifies the number of kilobytes (KB), where 1 KB equals 1024 bytes.

Description
Use the MaxFileCacheContentSize directive to specify the maximum file content length allowed in
a file cache entry. When this directive is present in a configuration file, files with a content length
less than or equal to [num_kilobytes] are cached entirely in the server's file cache. For files with a
content length greater than [num_kilobytes], only file opens and file stats are cached. The actual
file content is accessed directly from disk.
MaxFileCacheContentSize accepts a value from 0 (zero) to 50KB (50 x 1024 bytes). Specifying
a value of 0 (zero) in the MaxFileCacheContentSize directive disables file content caching.

Default
When no MaxFileCacheContentSize directive is present, the server assumes a value of 10 (10KB).

Example
MaxFileCacheContentSize 30

Both MaxFileCacheEntries and MaxFileCacheContentSize determine the maximum file cache size.
For example, if MaxFileCacheEntries is set to 3000 and MaxFileCacheContentSize is set to 30,
and then the maximum capacity for the file cache is 90MB. HP recommends a survey of all static
files residing on the website in addition to the physical memory configuration. Performance might
be hindered if the iTP Secure WebServer consumes too much physical memory and causes a high
number of page faults. A tuning process might be required to determine optimal settings for these
directives.

MaxFileCacheEntries

Syntax
MaxFileCacheEntries <num_entries>

Description
Use the MaxFileCacheEntries directive to specify the maximum number of entries allowed in the
file cache where the server stores file opens, file stats, and actual file contents.

220 Configuration Directives

If you specify a larger number of entries, more memory might be consumed by the file cache; if
you specify a smaller number, the server must access files directly from disk more frequently.
Therefore, HP recommends a survey of the Web site in addition to the physical memory configuration
on the processor.
Only one MaxFileCacheEntries directive is allowed in the configuration file.
MaxFileCacheEntries accepts a value from 256 to 6000.
To disable file opens caching, the CacheTime directive must be set to 0.

Default
When no MaxFileCacheEntries directive is present, the server allows 2000 entries in the file cache.

Example
MaxFileCacheEntries 5000

MaxPostRequestSize

Syntax
MaxPostRequestSize <size-in-kilo-bytes>

Description
Use the MaxPostRequestSize directive to specify the maximum allowed Content-Length of HTTP
POST request. The maximum value for size-in-kilo-bytes is 2147483647, which is the
maximum value permitted for an integer. If the Content-Length of HTTP POST request is greater
than MaxPostRequestSize, the iTP Secure WebServer rejects the request with error 403.
Only one MaxPostRequestSize directive is allowed in the configuration file. If there are multiple
entries in the configuration file, the last entry is used.

Default
The default value for MaxPostRequestSize is 2GB (2097152 Kbytes).

Example
MaxPostRequestSize 5000

MaxRequestBody

Syntax
MaxRequestBody integer-value

Description
The MaxRequestBody directive specifies the maximum size of a message the iTP Secure WebServer
can build from a series of transmissions using chunked transfer encoding.
Chunked transfer encoding is a feature of HTTP/1.1 that allows a client to send a message to the
server as a series of chunks, each with its own size indicator. The server must assemble all the
chunks and add the required Content-Length header before passing the message to a CGI
application. This feature is useful in cases where the client produces the data dynamically or is for
some other reason, for instance encryption, unable to predict the total message length.
The integer-value determines the size of the buffer that the iTP Secure WebServer allocates
for assembling the chunks of a received message. The value is a number of kilobytes and must be
in the range of 32 to 1024.
If the iTP Secure WebServer receives a chunked message and is unable to allocate a buffer, the
server logs an error (413 Request Entity Too Large), rejects the chunked request, and closes the

MaxPostRequestSize 221

connection. In general, failure to allocate a buffer is due to fluctuations in available memory, but
if this error occurs repeatedly, try a smaller value for this directive.
If the iTP Secure WebServer can allocate a buffer of the correct size but receives a chunk that
causes the message to exceed the size of the buffer, the server rejects the request (413 Request
Entity Too Large) and discards the message.
A chunked message can include trailers after the message body. The maximum size applies only
to the message body, not to any trailers the message contains.

Default
MaxRequestBody 128

Example
MaxRequestBody 256

Message

Syntax
Message message-id text

Description
You set the Message directive to the text (text) to be associated with a specific message
(message-id). This directive allows you to customize the server messages to accommodate your
particular needs (for example, to conform to a particular language, locale, or application).
Using the Message directive, you can customize the messages listed in Table 32 (page 222).

Table 32 Server Access Errors

DescriptionMessage ID

The HTML text returned to a Web client attempting to
access an object requiring authorization (such as a user
name and password).
Default text:

error-unauthorized

Browser not authentication-capable or
authentication failed.

The HTML text returned to a Web client when the server
encounters errors while communicating with other

error-unavailable

application servers during the processing of the Web
client's request. The errors can occur due to any of these
reasons:
• could not start serverclass dialog

• pathsend operation failed, with pathsend error 201

• pathsend operation failed, with pathsend error 211

• could not fork new process

• could not create pipes

• could not open servlet server class

Default text:
The server was not available to handle your
request.

The HTML text returned to a Web client submitting a bad
or malformed HTTP request.
Default text:

error-badrequest

Your client sent a query that this server
could not understand.

222 Configuration Directives

Table 32 Server Access Errors (continued)

DescriptionMessage ID

The HTML text returned to a Web client attempting to
access an object for which the Web client does not have
access permission.
Default text:

error-forbidden

You do not have permission to get the
requested object.

The HTML text returned to Web client when maximum
connections specified with count argument and

error-maximum-connection

"customized" is specified with replytype argument of
MaxConnections configuration directive.
Default text:
Maximum connections reached: The server
reached its maximum configured capacity.

The HTML text returned to a Web client attempting to
access an object that does not exist.
Default text:

error-notfound

The requested object was not found on this
server.

The HTML text returned when the server returns an HTTP
redirect response. Occurrences of the string $url in the text

error-redirect

of the message will be replaced with the redirected URL.
Normally, this text is never displayed to the user, but old
browsers that do not support redirects might display this
message.
Default text:
You see this message because your browser
doesn't support automatic redirection
handling.

The HTML text returned to a Web client when the server
encounters an internal error while processing the Web
client's request.
Default text:

error-server

The server encountered an internal error
and was unable to complete your request.

The HTML text returned when the server returns an HTTP
redirect response and the URL is longer than the URL

error-shortredirect

supported by the Web client. Occurrences of the string
$url in the text of the message are replaced with the
redirected URL.
Default text:
This document can be found elsewhere. You
see this message because your browser
doesn't support automatic redirection
handling properly.

The HTML text returned when the Web client didn't use the
right security options for the request.
Default text:

error-security-retry

The cryptographic enhancements on the
request were insufficient. Try again with
appropriate options.

You can set as many Message directives. But, message-id for each directive must be unique.

Default
The server has built-in defaults for all server messages.

Message 223

Example
Message error-forbidden {
 <TITLE>Access Denied</TITLE><H1>Access Denied</H1>
 You have been denied access.
}

Message error-shortredirect {
<TITLE>Redirection</TITLE><H1>Redirection</H1>
This document can be found elsewhere.
<P>Your browser does not properly support long URLs.
}

MimeType

Syntax
MimeType mime-type extension-list

Description
Use the MimeType directive to specify theMIME type that is to be returned to a Web client that
requests a file whose extension matches an extension in extension-list. The returned MIME
type informs the Web client of the type of the data in the requested file (for example, text, audio,
video, or image). The Web client then can present the data correctly, for example, as audio.
For example, if the server configuration file (httpd.config) contains the directive
MimeType image/gif gif

any URL that refers to a file with .gif as its extension causes the server to return a MIME type of
image/gif with the requested file.
If there are multiple items in the extension-list, use blanks to separate the items.

NOTE: The mapping of extensions to MIME types in the configuration file that comes with your
server is in lowercase. Therefore an extension expressed in uppercase, such as .HTML, will be
processed as text unless you explicitly map the uppercase extension to the correct MIME type.

Use these MIME types to enable special server features:
application/x-imagemap

This MIME type specifies that the server process the file as an image map.
application/x-httpd-guardian

This MIME type specifies that the server process the file as a CGI program.
You can set as many MimeType directives as you need to specify the type information for all the
file types on your server. MimeType directives for many common file extensions are supplied with
the server in the file conf/mime-types.config.
For a complete list of MIME types supported by the iTP Secure WebServer, See “Server MIME
Types” (page 143). For more information about MIME types, see “Bibliography” (page 285).

Default
If there is no matching MIME file for a requested file, the server returns the default MIME type
specified by the DefaultType directive.

Negotiation

Syntax
Negotiation { None | Lang | Mult }

224 Configuration Directives

Description
Use the Negotiation directive to specify the how the iTP Secure WebServer will select from
available representations of a requested page. For example, if the same content is available in
multiple languages, the server can provide the content in the user's preferred language. Content
negotiation is defined in the HTTP/1.1 specification; the iTP Secure WebServer supports server-driven
content negotiation, as described in that document. The multiview negotiation option is not defined
in the HTTP/1.1 specification but is a feature of the Apache HTTP/1.1 server.
If you specify the argument None, the server does not perform content negotiation. In this case, if
the file requested by the client is not present at the specified URL, the server returns an error status
(404) to the client, reporting that the resource is missing.
If you specify the argument Lang, the server selects content based on a language tag. A language
tag consists of an RFC 2068 language abbreviation, optionally followed by a hyphen and a
subtag; a subtag can be either an RFC 2068 country code or some other registered code. For
example, the code en-US signifies American English, and the code fr signifies French. The client
specifies the preferred language tag or tags in the Accept-language header; if no such header
appears in the request, the server uses the value or values specified in the LanguagePreference
directive. To support this feature, the target directory must have subdirectories with names
corresponding to the language tags. For example, if the client requests a French language
representation of the page /store1/welcome, the server looks for the file in the directory /store1/fr/.
To see RFC 2068, use this URL:
http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html
If an Accept-Language header is present, the server searches for a subdirectory that matches a
language tag in that header. To specify precedence among the tags, HTTP/1.1 defines the concept
of a q value for each tag; the server searches for subdirectories in order of descending q value.
If no q values are specified, the server searches for subdirectories in the order in which the language
tags occur in the Accept-language header.
If you specify the argument Mult, the server selects content based not only on a language tag,
but so on other headers in the request, matching the specified criteria to file extensions (not
subdirectories) in the target directory. For example, if the client requests a French language, HTML
representation of the page /store1/welcome, the server expects the file to be named
/store1/welcome.fr.html or /store1/welcome.html.fr. If no file matches all the criteria specified in
the request, the server weighs the criteria, from highest to lowest priority as:
• Content or media type (such as audio/basic, text/html) from the Accept header
• Natural language (such as en, de) from the Accept-language header
• Content encoding (such as compress, gzip) from the Accept-encoding header
If the request does not include an Accept-language header, the server uses the values given in the
LanguagePreference directive.

NOTE: To use language as a criterion for multiview content negotiation, you must include a
LanguageSuffix directive to map each language tag to a file extension.

To use different content-negotiation policies in different regions of a WebServer environment, use
Negotiation as a Region command.

Default
If you omit this directive, the default value is None (no content negotiation).

Example
Assume that you specified the argument Mult and that the directory janedoe contains the files
xyz.html, xyz.en.html, and xyz.gif.

Negotiation 225

http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html

A client requests the URL /usr/janedoe/xyz with the following Accept headers:
• Accept:image/jpeg, text/html, */*
• Accept-language:en, fr, es
• Accept-encoding: gzip
To service the request, the server finds all files whose names begin with "xyz" then uses the request
headers to select the best match. In this case, the best match is xyz.en.html, which satisfies the
criteria in the Accept and Accept-language headers.

NewEmsMessageFormat

Syntax
NewEmsMessageFormat { yes | no }

Description
The NewEmsMessageFormat directive allows you to choose the method of viewing the EMS
messages. If you set the value of this directive to yes, you can view the EMS messages in the new
format, which will not include the DAEMON, PID, and the PATHMON fields. If you set the value to
no, you can view the EMS messages in the current format, which includes the DAEMON, PID, and
the PATHMON fields. If this directive is not specified in the server configuration file (httpd.config),
the EMS message will be displayed in the current format.

Default
None
If you do not specify any value with the NewEmsMessageFormat directive, an error message will
be displayed prompting to specify one.

Examples
In Web ViewPoint:
NewEmsMessageFormat { yes }

Text Format: 2005-02-01 15:41:32 \PETRI.$X0M8 TANDEM.WEBSERV.D42002004 INFO,
$PWEB (dist): (#4) bind_nw failed: could not bind to port 55113 in transport \PETRI.$ZTC0.
errno=4114
NewEmsMessageFormat { no }

Text Format: 2005-02-01 15:41:32 \PETRI.$X0M8 TANDEM.WEBSERV.D42002004 DAEMON
INFO, PID=459604020, PATHMON=$PWEB (dist): (#4) bind_nw failed: could not bind to port
55113 in transport \PETRI.$ZTC0. errno=4114
In ViewPoint:
NewEmsMessageFormat { yes }

Text Format: 15:41 \PETRI INFO, $PWEB (dist): (#4) bind_nw failed: could not bind to port 55113
in transport \PETRI.$ZTC0. errno=4114
NewEmsMessageFormat { no }

Text Format: 15:41 \PETRI DAEMON INFO, PID=459604020, PATHMON=$PWEB (dist): (#4)
bind_nw failed: could not bind to port 55113 in transport \PETRI.$ZTC0. errno=4114

OutputTimeout

Syntax
OutputTimeout time-in-seconds

226 Configuration Directives

Description
You set the OutputTimeout directive to the period (in seconds) that the server is to spend sending
a requested file to a Web client. If the entire file has not been sent within this limit, the request is
canceled and the connection is closed.
Only one OutputTimeout directive is allowed in the configuration file.
The maximum value is 4294967295 (the maximum value permitted for an unsigned long integer).

Default
OutputTimeout 1200

which assigns 20 minutes, measured in seconds

Example
OutputTimeout 240

PasswordValidity

Syntax
PasswordValidity value

Description
If PasswordValidity directive is set, iTP Secure WebServer's basic and digest authentication
passwords (managed by useradm) will expire after the specified time period.

Default
By default, the passwords never expire. value set to -1 signifies default behavior.

Example
PasswordValidity 60

where, 60 is the number of days specified for the validity of the password.

NOTE: If you choose to enable this configuration directive, then any previous password database
files will not work with this feature and you need to generate a new password database file using
the useradm utility.

Pathmon

Syntax
Pathmon process-name{
 [Priority number]
 [PrimaryCPU number]
 [Hometerm file-name]
 [BackupCPU number]
 [Gsubvol OSS-pathname]
 [Hometerm file-name]
 [MaxServerClasses number]
 [MaxServerProcesses number]
 [Security security-attribute]
 [LOG1 file-name]}

Description
The Pathmon directive is required to configure the PATHMON process. For additional information
about configuring PATHMON, see the NonStop TS/MP System Management Manual or the NonStop
TS/MP Management Programming Manual.

PasswordValidity 227

Pathmon process-name

is the OSS path name of the PATHMON process that controls the iTP Secure WebServer environment.
The process-name must consist of a letter followed by one to three alphanumeric characters. It
must be qualified by the string /G/. The process-name must be unique on the host.
An example of the Pathmon directive is:
Pathmon /G/zweb

The following Pathmon attributes control the creation of the Pathway subsystem that the server
executes in.
Priority number

specifies the execution priority of the PATHMON process.
number can be a value from 1 through 199. If you omit this attribute, the PATHMON process has
the same priority as the httpd process that starts it.
An example of the Priority attribute is:
Priority 150

This attribute is optional.
Hometerm file-name

specifies the name of the Guardian home terminal being used by the PATHMON process executing
on this system. If you do not specify the Hometerm attribute, the default home terminal is the home
terminal associated with the program that started the PATHMON process on this machine. You
should use an asynchronous terminal for the PATHMON home terminal.
An example of the Hometerm attribute is:
Hometerm /G/TERMA

This attribute is optional.
PrimaryCPU number

specifies the primary processor in which the PATHMON process runs.
An example of the PrimaryCPU attribute is:
PrimaryCPU 1

This attribute is required.
BackupCPU number

specifies the backup processor in which the PATHMON process runs.
An example of the BackupCPU attribute is:
BackupCPU 2
This attribute is required.
Gsubvol oss-pathname

specifies an OSS path name to be used for NonStop TS/MP log and control files. oss-pathname
must begin with the /G directory followed by a Guardian volume and subvolume name.
An example of the Gsubvol attribute is:
Gsubvol /G/system/zweb

This attribute is required.
MaxServerClasses number

specifies the maximum number of server classes allowed in the PATHMON environment.
An example of the MaxServerClasses attribute is:
MaxServerClasses 25

This attribute is optional. Do not set a value of less than 2 for the iTP Secure WebServer environment,
or less than 3 for the iTP Administration Server environment.
MaxServerProcesses number

228 Configuration Directives

is the maximum number of servers you can define for all server classes in the iTP Secure WebServer
environment. The total of all MaxServers values for all server classes in the PATHMON environment
cannot exceed this number.
An example of the MaxServerProcesses attribute is:
MaxServerProcesses 2

This attribute is optional. Do not set a value of less than 2 for the iTP Secure WebServer environment,
or less than 3 for the iTP Administration Server environment.
Security security-attribute

specifies the users who can issue PATHCOM commands that directly alter the state of Pathway
objects. The security attributes are the same as standard Guardian security attributes. The values
are:

Any local userA

A group member or ownerG

Owner onlyO

Local super ID-

Any local or remote userN

Any member of the owner's community (a local or remote user who has the same group ID as the owner)C

Any member of the owner's user class (a local or remote user who has the same group ID and user ID as the
owner)

U

If you do not specify the Security attribute for the Pathmon directive, the default is 0.
An example of the Security attribute is:
Security G

This attribute is optional.
LOG1 <file-name|collector-process|terminal> [status|eventformat]

specifies the logging mode that the PATHMON process and TCP must use to report errors and
changes in object status.
A typical syntax format for the LOG1 attribute is as follows:
LOG1 file-name|collector-process|terminal [logparam1] [logparam2]

where,
• file-name specifies the name of a file to receive error reports and changes in status. If the

specified file does not exist, iTP Secure WebServer creates it automatically. If you specify a
pre-existing file, ensure that the specified file is a text file.

• collector-process is the name of the collector process for the system. Currently, iTP
Secure WebServer supports only the primary collector process, $0.

• terminal is any Guardian terminal, in paused state, used to display logging information
about the LOG1 attribute.

Pathmon 229

NOTE: If the terminal is not in the open state, iTP Secure WebServer does not log any
information and returns error 1020.

• logparam1, logparam2 can be STATUS or EVENTFORMAT.

Examples
• The following command logs errors and status change messages in a file named MYLOG:

LOG1 MYLOG STATUS

where,
MYLOG is the name of the text file where the status information must be stored.
STATUS sends status change messages and error messages to the file MYLOG.

• The following command logs error messages to the primary collector $0, and formats the
messages as event messages:
LOG1 /G/0 EVENTFORMAT

where,
/G/0 is the primary collector.
EVENTFORMAT specifies that messages must be formatted as event messages. If you omit
EVENTFORMAT, text messages are generated.

• The following command sends error information to a terminal:
LOG1 /G/$ZTO/#A033H

where,
/G/ZTN0/#PTQUZZB is the terminal name.

PathwayMimeMap

Syntax
PathwayMimeMap mime-type{ pathmon[:serverclassname]][serverclassname}

Description
The PathwayMimeMap directive correlates a previously defined MIME type with the name of the
NonStop TS/MP server class that can handle files of that type.
mime-type

an extension defined by a previous MimeType directive to have a MIME type of
application/x-httpd-guardian.
pathmon

a valid HP name for a PATHMON process in OSS file format (preceded by /G/). The PATHMON
name is optional if the server class is in the same PATHMON environment as the httpd process.
serverclassname

a valid NonStop TS/MP server class name. If you do not specify a server-class name, the server
class is presumed to have the same name as the file, minus the extension. For example, the file
logon.ab_demo would be referred to a server class called logon in the PATHMON environment
indicated by the PATHMON name.

Examples
Here are some examples of the PathwayMimeMap directive. The first example specifies a
server-class name, the second specifies a PATHMON name, and the third specifies both:

230 Configuration Directives

PathwayMimeMap tcltcl-server
PathwayMimeMap userapp/G/UA
PathwayMimeMap userapp2/G/UA:ua2-server

The next set of examples displays the relationship between a PathwayMimeMap directive and the
corresponding MimeType directive. The MimeType directive must precede the PathwayMimeMap
directive but does not have to appear directly before it as shown. The two MimeType directives
indicate that files with the extension cgiand ab_demo have the MIME type application
x/httpd-guardian. The corresponding PathwayMimeMap directives indicate that files with
the extension cgi are processed by the generic-cgi server class, and files with the extension
ab_demo are processed by a server class under control of the PATHMON process /G/ZAB or
$ZAB.
MimeType application x/httpd-guardian cgi
PathwayMimeMap cgi generic-cgi
MimeType application/x-httpd-guardian ab_demo
PathwayMimeMap ab_demo /G/ZAB

Pidfile

Syntax
PidFile filename

Description
You set the PidFile directive to the file in which the server is to record the serverprocess ID.
The PidFile directive is optional. Only one PidFile directive is allowed in the configuration
file.

Default
None. If you do not set the PidFile directive, no process ID file is written.

Example
PidFile /usr/tandem/webserver/httpd.pid

PutScript

Syntax
PutScript CGI-script-filename

Description
Use the PutScript directive to indicate that you want the iTP Secure WebServer to support the
PUT method defined by the HTTP/1.1 protocol. The PUT method stores a new page or replaces
an existing page on the host.
If you do not include this directive, a client can upload content to the host by using the File Transfer
Protocol (FTP) or the POST request method. The differences in operation among FTP, POST, and
PUT are:
• FTP copies a file to a specified location. Filemap directives in your configuration file determine

the correspondence between URLs and file locations on the server.
• POST sends data, for example input from a form, to the resource specified by the URL in the

request. For example, the URL could identify an application that accepts data, a gateway that
forwards data, or a resource such as a newsgroup or a database that can have items added
to it.

• PUT differs from POST in that the content sent in the request is stored under the specified URL,
replacing any content that might have been store there previously.

Pidfile 231

Clearly, there are security concerns when a client can directly update content on the server. To
use PUT safely, you must provide a CGI script that authenticates the client and performs any other
necessary functions to determine whether the client should be permitted to make the requested
update. Note that this script must include these environment variables: PATH_INFO,
PATH_TRANSLATED, and SCRIPT_NAME.The variable CGI-script-filename is required and
specifies the location of the script that performs these functions for the server or within the region.
The iTP Secure WebServer returns an error to the client upon receiving a PUT request in any of
these cases:
• If the PutScript directive is not specified for the server or the region to which the request

applies, the iTP Secure WebServer returns the error (404 NOT_FOUND).
• If the PutScript request is specified but does not include CGI-script-location, the startup

fails.
• If the PutScript request is specified but the specified script cannot be found, the iTP Secure

WebServer returns the error (404 NOT_FOUND).
• If the client does not support HTTP/1.1 or later, the iTP Secure WebServer returns the error

(400 BAD-REQUEST)

RecvBufferScale

Syntax
RecvBufferScale double-value

Description
Use the RecvBufferScale directive to scale the size of the socket receive buffer. The value has
a range from 1 to 2.5.

NOTE: The RecvBufferScale directive is effective only when the BigInBufSize directive
is set to yes. Use this directive only when it is recommended by HP development.

Default
RecvBufferScale 1.5

Example
RecvBufferScale 2.5

Region

Syntax
Region [options] URL-path{
 [AddCGI env-var value]
 [AllowHost -noexit host-pattern]
 [DefaultType mime-type]
 [Deny -noexist]
 [DenyHost -noexist host-pattern]
 [DirectoryIndex]
 [EnableIncludes [-restricted] [-nesting level]]
 [EncodingType code-type extension-list]
 [Filemap [-symlink-disable] [-symlink-owner] prefix path]
 [HostMatch pattern pattern]
 [IndexFile filename1 filename2...]
 [LanguagePreference language-tags]
 [LogItem item-name item-value]
 [MaxPostRequestSize size-in-kilo-bytes]
 [Message message-id text]
 [MimeType mime-type extension-list]

232 Configuration Directives

 [Negotiation {None][Lang| Mult}
 [NoCache Region]
 [NoLog]
 [OutputTimeout time-in-seconds]
 [Priority priority-increment]
 [PutScript CGI-script-location]
 [Redirect [status] [-replace /replace-spec] target-url]
 [RequiredFileExtension [-noexist] file-extension]
 [RequirePassword realm {-userfile userfile | -safeguard}
 [RequireSecureTransport]
 [ScriptTimeout time-in-seconds]
 [SendHeader header]
 [SI_Department departmentID -attribute value
 [-attribute value ...]]
 [SI_RequireSI departmentID group-list]
 [UserDir [-symlink-disable [-symlink-owner] user-dir
}

Description
Use the Region directive to control access to your server by path component. The command(s)
you specify are applied to allURLs matching URL-path. For example, you might want to deny
access to a certain region in your server to a certain class of users.
The Region directive allows you to apply the same access control to multiple objects on your
server; for example, all .cgi files.
You can use Tcl variables in Region directives to vary operation according to factors like the time
of day, the Web client host name, or HTTP header information. For more information and examples,
see “Using Tcl Variables” (page 120).
options

The Region directive takes two options:
-host host-addr
Use the -host option to cause a Region directive to be invoked only for
connections received on the IP address associated with host-addr.

-port port-num
Use the -port option to cause a Region directive to be invoked only for
connections received on the port-num.

These options allow you to designate specific regions as virtual hosts. For further information about
using multiple hosts, See “Implementing Multiple-Host Support” (page 123).

URL-path

The URL pattern you specify can contain special characters for matching URL patterns.
These characters are listed in Table 33 (page 233).

Table 33 URL Pattern-Matching Characters

DescriptionMatch Characters

Matches any sequence of characters in string, including
an empty string.

*

Matches any single character in string.?

Matches any character in the set given by chars. If a
sequence of the form x-y appears in chars, and then any
character between x and y, inclusive, will match.

[chars]

Matches the single character x. This method provides a
way of avoiding the special interpretation of the following
characters in pattern: * ? [] \

\x

Region 233

The pattern-matching mechanism is the same as that used for file-name expansion in UNIX shells.
Table 34 (page 234) displays some examples.

Table 34 URL Pattern-Matching Examples

DescriptionMatch Pattern

This pattern matches any URL path that begins with the
string /admin/.

/admin/*

This pattern matches any URL path that has the extension
.cgi.

*.cgi

This pattern matches any URL path that has the extension
.gif in or under the images directory.

/images/*.gif

Region Commands
A Region directive controls access by applying one or more special control commands, called
Region commands, to the region on the server that matches the URL path specified in the directive.
The Region commands you can specify are:
AddCGI env-var value

The AddCGI command sets a specified CGI environment variable (env-var) to a default (value)
for all CGI programs in a given region. For example:
Region /* {
 AddCGI CGI_LIBRARY /usr/tandem/webserver/lib
}

In this example, environment variable CGI_LIBRARY is set to /usr/tandem/webserver/lib
for all CGI programs within the region /*.
The setting of an AddCGI command has no effect on server objects that are not CGI programs.
For more information about CGI environment variables, see “Using Common Gateway Interface
(CGI) Programs” (page 138).
AllowHost [-noexist] host-pattern...

The AllowHost command returns an "access denied" message if a Web client's host or IP address
does not match one of the specified host patterns (host-pattern...). If the Web client's host
name or IP address does not match, no additional commands within the directive are evaluated.
In specifying a host pattern, you can use the special matching characters listed in Table 33
(page 233).
If you specify the -noexist option, the AllowHost command returns a "not found" message
instead of an "access denied" message.
For example, the command in the following directive restricts access to the /admin/ section of
the server to hosts in the domain company.com:
Region /admin/ {
AllowHost *.company.com
}

DefaultType mime-type

The DefaultType command sets the default MIME type (mime-type) for all files in a given
region. The type specified is returned by the server for any file that does not have a matching
MIME type extension (see “MimeType” (page 224)) or that has no extension. The DefaultType
command overrides the default specified by the DefaultType configuration directive (see
“DefaultType” (page 209)).
For example:
Region /cgi-bin/* {
DefaultType application/x-httpd-guardian
}

234 Configuration Directives

In this example, the default MIME type for all files in directory /cgi-bin is set to
application/x-httpd-guardian.
Deny [-noexist]

The Deny command returns an "access denied" message to a Web client. No additional commands
within the Region directive are evaluated.
If you specify the -noexist option, the Deny command returns a "not found" message instead
of an "access denied" message.
For example, the command in the following directive denies access to any client making a request
for an object below the directory /admin:
Region /admin/* {
Deny
}

 DenyHost [-noexist] host-pattern ...

The DenyHost command returns an "access denied" message if a Web client's host or IP address
matches one of the specified host patterns (host-pattern...). If the Web client's host name
or IP address matches, no additional commands within the directive are evaluated. In specifying
a host pattern, you can use the special matching characters listed in Table 33 (page 233).
If you specify the -noexist option, the DenyHost command returns a "not found" message
instead of an "access denied" message.
For example, the following command denies access to all objects on the server for any hosts from
the domain server.org:
Region * {
DenyHost *.server.org
}

DirectoryIndex

The DirectoryIndex command enables automatic generation of directory indexes. If a request
refers to a directory for which there is no existing index, an index of the files in the directory is
generated automatically.
For example, the command in the following directive enables automatic index generation for
requests for any directories under the directory /personal:
Region /personal/* {
DirectoryIndex
}

EnableIncludes [-restricted] [-nesting level]

The EnableIncludes command permits the full or partial use of server-side includes (SSIs) on
particular regions. For information about setting up SSIs on the server, see “Setting Up a Server-Side
Include (SSI)” (page 130)
The EnableIncludes command accepts the following arguments:

-restricted
Use the -restricted argument to fully enable the use of SSIs on a given region,
including the use of the exec command (see “SSI Directives” (page 131)). If you
specify the EnableIncludes command without the -restricted argument,
SSIs are enabled for the given region but the exec command is disabled.

-nesting level
Use the -nesting argument to specify the number of nesting levels (level) allowed
in a document include. The default is 3, meaning, for example, that document 1
can include document 2, which can include document 3, which can include
document 4 (four documents, three levels of nesting).

By default, SSIs are fully disabled.

Region 235

To use EnableIncludes in a Region directive, enter the following:
Region * {{
EnableIncludes -restricted 1 -nesting 1
}

EncodingType code-type extension-list

The EncodingType command specifies the identifier of the encoding type (code-type) to be
returned to a Web client requesting a file whose extension matches an extension listed in
extension-list. The returned encoding type identifies to the Web client the kind of decoding
it must perform on the file content before it can be viewed by the user. This decoding is usually a
form of decompression.
The items in extension-list are separated by blank spaces.
The EncodingType command overrides for specified regions any global specifications set for
the same items by the EncodingType directive. For further information about using the
EncodingType directive, see “EncodingType” (page 210).
Filemap [-symlink-disable] [-symlink-owner] prefix path

The Filemap command maps URLs to specific directories or files on the host machine. For URLs
having a path component beginning with prefix, the iTP Secure WebServer translates the URL
path into a new path name specified by path. the iTP Secure WebServer composes this new path
name by appending to path the URL component following prefix.
The options include:

-symlink-disable
This option disables symbolic links to files in the specified directory. As a result, the
iTP Secure WebServer returns "not found" in response to any attempt to access a
path that contains a symbolic link.

-symlink-owner
This option is similar in function to the -symlink-disable option: It also disables
symbolic links, but only if these symbolic links are owned by someone other than
the owner of the files to which the symbolic links point.

The Filemap command overrides for specified regions any global specifications set for the same
items by the Filemap directive. For further information about using the Filemap directive, see
“Filemap” (page 212).
HostMatch pattern pattern ...

Thex HostMatch command returns 1 (indicating true) if the Web client's host name or IP address
matches one of the specified patterns (pattern); otherwise it returns 0 (indicating false). For
example:
Region / {
 if [HostMatch *.widget.com] {
 Redirect /widget-welcome.html
 }
}

In this example, any homepage requests from *.widget.com are redirected to a special
homepage.
IndexFile filename1 filename2 ...

The IndexFile command specifies the file the iTP Secure WebServer is to return whenever a URL
refers to a directory instead of to a specific file. Typically, the IndexFile command is set to a
file that contains an index or other description of thecontents of the directory being referred to by
the URL.
The IndexFile command overrides for specified regions any global specifications set for the
same items by the IndexFile directive. For further information about using the IndexFile
directive, see “IndexFile” (page 214).
LanguagePreference language-tags

236 Configuration Directives

The LanguagePreference command specifies the natural languages that the server will favor
when making content negotiation decisions for the iTP Secure WebServer environment or a region.
Content negotiation is a protocol feature defined in the HTTP/1.1 specification.
The server consults this directive only if the configuration file also contains a Negotiation directive
with the Lang or Mult argument, and only if the client sends a request without an Accept-language
header.
The language-tags consist of one or more RFC 2068 language tags, separated by commas
with no intervening spaces. List the tags in order of preference and enclose the list in braces {}.
To see RFC 2068, use the following URL:
http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html
The LanguagePreference command overrides for specified regions any global specifications
set for the same items by the LanguagePreference directive. For further information about the
LanguagePreference directive, see “LanguagePreference” (page 218).
LogItem item-name item-value

The LogItem command causes the value (item-value)associated with a user-defined log item
(item-name) to be written to the extended log file for the current request. The extended log file
can also be activated by using the ExtendedLog directive. For information about using the
ExtendedLog directive, see “ExtendedLog” (page 211).
For example, the command
LogItem reason "Attempt to access from bad referring host"

causes the user-defined log item reason to be recorded, along with the value "Attempt to
access from bad referring host" in the extended log file for the current request.
MaxPostRequestSize size-in-kilo-bytes

With the MaxPostRequestSize directive, you can configure the maximum allowed Content-Length
for HTTP POST requests. If the Content-Length exceeds this limit, the request is rejected with HTTP
Error 403 FORBIDDEN. The default value is 2097152 kilo bytes (2GB). The maximum value
for size-in-kilo-bytes is 2147483647, which is the maximum value for an integer.
The MaxPostRequestSize command specified within any Region takes precedence over the
global value. You can configure the global value by setting the MaxPostRequestSize directive
outside any Region.
Message message-id text

The Message command associates text (text) with a specific message (message-id). This
command allows you tocustomize the iTP Secure WebServer messages to accommodate your
particular needs (for example, to conform to a particular language, locale, or application).
The Message command overrides for specified regions any global specifications set for the same
messages by the Message directive. For further information about using the Message directive,
see “Message” (page 222).
The maximum length of the message text is 4K.
MimeType mime-type extension-list

The MimeType command specifies the MIME type identifier (mime-type) to be returned to a
Web client requesting a file whose extension matches an extension listed in extension-list.
The returned MIME type identifies to the Web client the type of the data contained in the requested
files (text, audio, video, image, and so on). The Web client then can interpret the data correctly,
for example, as audio. The items in extension-list are separated by blank spaces.
The default MIME-type extensions specified in the mime-types.config file are lowercase. Therefore,
a file that has the extension .HTML displays as text unless you add HTML as an extension to the
default MimeType directive or command for HTML.
The MimeType command overrides, for specified regions, any global specifications set for the
same items by the MimeType directive. For further information about using the MimeType directive,
see “MimeType” (page 224).
Negotiation {None | Lang | Multi}

Region 237

http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html

The Negotiation directive specifies how the iTP Secure WebServer selects from available
representations of a requested page. For example, if the same content is available in multiple
languages, the server can provide the content in the user's preferred language. Content negotiation
is defined in the HTTP/1.1 specification; the iTP Secure WebServer supports server-driven content
negotiation, as described in that document.
The Negotiation command overrides for specified regions any global specifications set for the
same items by the Negotiation directive. For further information about using the Negotiation
directive, see “Negotiation” (page 224).
NoCache

The NoCache directive is used to disable file caching for all URLs matching the URL_path. In other
words, none of the file opens, file stats, or file contents in the region are cached.
The file caching mechanism is applied to all disk files on an iTP Secure WebServer. If a small
number of disk files require constant updates, frequent updates to the file cache might also be
required, and this might impact the overall performance of the iTP Secure WebServer. The NoCache
Region command can be used to exclude some of these files from file caching and allow the static
files to remain in the cache longer, and therefore help maintain a good performance.
However, the Region directive is evaluated for every request and, in this case, every file access.
Therefore, too many Region directives might also affect the efficiency of the iTP Secure WebServer.
It might be best to keep all constantly updated files in a single region.
When no Region directive or no NoCache command in the Region directives is present, the server
attempts to cache all files accessed.
For example:
Region /h/dynamic_files/* {
NoCache
}

NoLog

The NoLog command disableslogging for the current request. No entry is made in the server access
log, error log, or extended log files.
For example, the following command disables logging for all files ending with a .gif extension:
Region *.gif {
 NoLog
}

OutputTimeout time-in-seconds

The OutputTimeout command sets the time (in seconds) that the iTP Secure WebServer is to
spend sending a requested file to a Web client. If the entire file has not been sent within this limit,
the request is canceled and the connection is closed. The default value is 1200 seconds (20
minutes). The maximum value is 4294967295 (the maximum value permitted for an unsigned long
integer).
The OutputTimeout command overrides for specified regions the global specification set by the
OutputTimeout directive. For further information about using the OutputTimeout directive,
see “OutputTimeout” (page 226).
Priority priority-increment

The Priority command forces CGI programs to run at a lower process priority. The higher the
value of priority-increment (0 to 20), the lower the priority. If the Priority command is
not set, or if it is set to 0, the affected CGI programs run at the same priority as the iTP Secure
WebServer.
For example, the following command forces all CGI programs (*.cgi) to run at the lowest possible
priority:
Region *.cgi* {
Priority 20
}

238 Configuration Directives

PutScript CGI-script-filename

The PutScript command indicates that the server will handle PUT requests, and it specifies the
location of the script that authenticates the client and performs any other necessary validation
functions.
The PutScript command overrides for specified regions any global specifications set for the
same items by the PutScript directive. For further information about the PutScript directive,
see “PutScript” (page 231).
Redirect [status] [-replace / replace-spec] target-url

The Redirect command tells the server to return the specifiedURL (target-url) for the requested
object. For example, if you moved HTML document /info/stats.html to /statsinfo.html
at a different host machine, you could use the following Redirect command to redirect all requests
for this document:
Region /info/stats.html {
 Redirect http://www.widgets.com/statsinfo.html
}

The status variable indicates whether the specified redirection is temporary or permanent.
Accordingly, the value can be either temporary or permanent. When a request is satisfied by
redirection, the server returns a status code of 301 to the client if the requested file was moved
permanently, or a status code of 302 if the requested file was moved temporarily. If you omit this
variable from the command, the server behaves as if the redirect were temporary, returning a status
code of 302.
The -replace argument allows you to redirect requests for an entire directory. When you specify
this argument, the URL element specified by /replace-spec is removed from the front of the
requested URL. Then the remainder of the requested URL is appended to the target URL.
For example, you can use the following Redirect command to redirect requests for all the objects
under directory /info/stocks/* to the new location http://quote.widgets.com/stocks:
Region /info/stocks/* {
 Redirect -replace /info/stocks
http://quote.widgets.com/stocks
}

RequiredFileExtension [-noexist] file-extension

The RequiredFileExtension command restricts the file extensions in URLs used to request
content the region. For example, you could use this command to prevent an ATP script from being
downloaded as text. The ability to restrict the file extension in the URL is especially important for
content in a /G or /E namespace, because stored files in those namespaces do not have real
extensions.
The -noexist argument allows you to control the error reported if a received URL has an incorrect
extension for the region. If you specify the option, the response to a request with an incorrect
extension is "file not found." If you omit the option, the response to a request with an incorrect
extension is "access denied."
The file-extension variable specifies the required extension. (Do not include a period in the
value.)
For example, the following command requires that all URLs starting with /G have the extension
.html. If the URL in the request has some other extension, the server returns an "access denied"
error to the browser:
Region /G* {
RequiredFileExtension html
}

The following command requires that all URLs starting with /G have the extension .html. If the URL
in the request has some other extension, the server returns a "file not found" error to the browser.
Region /G* {
RequiredFileExtension -noexist html
}

Region 239

The following command requires that any URL referring to a Guardian subvolume whose name
ends in "atp" must have the extension .atp. If the URL in the request has some other extension, the
server returns an "access denied" error to the browser.
Region /G/vol/*atp/* {
RequiredFileExtension atp
}

The following command requires that any URL referring to a Guardian file whose name ends in
"atp" must have the extension .atp. If the URL in the request has some other extension, the server
returns an "access denied" error to the browser.
Region /G/*atp {
RequiredFileExtension atp
}

RequirePassword realm {-userfile userfile | -safeguard}

The RequirePassword command limits access to clients that provide a valid user name and
password (HTTP basic authentication). realm is a text string presented when the user's Web client
prompts for a user name and password; userfile is the name of the server file containing the
user-name/passworddatabase.
The -safeguard argument allows you to use the Safeguard user ID database for authentication.

NOTE: This usage is recommended for use with RequireSecureTransport since it is used with the
non-secure basic authentication scheme that sends the user name and password as radix64 encoded
strings.

If the Web client does not supply a valid user name and password, no additional commands in
the directive are evaluated.
For example, the command in the following directive requires a user name and password for access
to the /private/directory on the server:
Region /private/* {
 RequirePassword "Access username" -userfile
/server/passwords
}

The user-name/password database is stored in a simple ASCII file. Lines beginning with the pound
sign (#) are comments and are ignored. User-name/password entries consist of two components,
the user name and the password, separated by a colon. Each entry is confined to a single line.
The password is stored in encrypted form. For example:

#WebServer user database file

fred:bDzuF2kRWwkw2
brian:KFPjGuWCnLxBY

Use the useradm utility to create user-name/password databases, and to add or delete entries.
For details about using the useradm utility, See “Administering Passwords” (page 115) For information
specific to using Region directives, See “Controlling Access to the Server” (page 112).
RequireSecureTransport [-nossl -notls -notls1.0 -notls1.1 -notls1.2 -auth [user-list]]

The RequireSecureTransport command requires that the TLS or SSL secure transport protocol
be used for connections. This command supersedes the RequireSSL command available in earlier
versions of the iTP Secure WebServer.
The RequireSecureTransport command takes the following options:
-nossl

Prevent the use of SSL for connections.
-notls

Prevents the use of TLS for connections.
-notls1.0

Prevents the use of TLS 1.0 for connections.

240 Configuration Directives

-notls1.1

Prevents the use of TLS 1.1 for connections.
-notls1.2

Prevents the use of TLS 1.2 for connections.
-auth [user-list]

Requires client authentication. The optional list of users (user-list) can be a Tcl list of acceptable
client DNs. If no list is present, any authentication can be used. The Web client’s certificate must
be validated by the iTP Secure WebServer. (To allow access when the iTP Secure WebServer
cannot validate the certificate, use the CGI variables either inside a region or in a CGI program.)
An error occurs if you try to use RequireSecureTransport -auth if authentication was not
requested or required by an AcceptSecureTransportdirective.
The following examples show how to use the RequireSecureTransport command in a Region
directive.
• To prevent any nonsecure connection from accessing an area prefixed by /secure:

Region /secure* {
RequireSecureTransport
}

• To prevent TLS connections from an area prefixed by SSL/:
Region /SSL/* {
RequireSecureTransport -notls
}

• To prevent SSL connections from an area prefixed by TLS/:
Region /TLS/* {
RequireSecureTransport -nossl
}

ScriptTimeout time-in-seconds

The ScriptTimeout command sets the period (in seconds) that the iTP Secure WebServer allows
a CGI program to send itsoutput to a Web client. The default value is 300 seconds; do not specify
a value greater than 1073741824. If the program has not exited within the set time, the request
is canceled, the connection is closed, and the CGI process is sent a termination signal.
The ScriptTimeout command overrides the global specification set by the ScriptTimeout
directive. For further information about using the ScriptTimeout directive, see “ScriptTimeout”
(page 246).
SendHeader header

The SendHeader command causes a specified HTTP header (header) to be included in the
server's response to a Web client request. Use HTTP headers to enable (or disable) particular client
features (such as caching) or to modify client behavior. For example:
SendHeader "Pragma: nocache"

Recognition of headers by clients is client-dependent. Consult the applicable client documentation
for header-recognition information concerning particular clients.
SI_Department departmentID -attribute value [- attribute value ...]

The SI_Department command functions in the same manner as the SI_Department directive
(see “SI_Department” (page 254)), but applies only to the specified region. It accepts all the attributes
listed in “Anonymous Ticket Attributes” (page 242).
Regions that do not contain an SI_Department command inherit the default attributes of the iTP
Secure WebServer or the department.
To use SI_Department command in a Region directive, enter the following:
Region /foo/* {
SI_Department 5 -ForceTicketInUrl On
SI_RequireSI 5 20 30
}

Region 241

SI_RequireSI department-id group-list

The SI_RequireSI command protects a region; requests for resources within the region are only
granted to users with a valid ticket.
The ticket's message authentication code (MAC) must be encoded with the proper secret, indicated
by the department ID (department-id).
The group ID specified in the ticket must match one of the groups listed in group-list. If the
group-list includes more than one group ID, list the broadest group first and the most specific
last.
This command has no defaults.
To use SI_RequireSI command in a Region directive, enter the following:
RequireSI 1 10 20

This example makes the region accessible only to users who are members of groups 10 or 20, in
department 1.
UserDir [-symlink-disable] [-symlink-owner] user-dir

The UserDir command sets the name of theuser directory (user-dir) that is to be accessed
whenever a URL begins with a tilde (~). Any URL beginning with a tilde (~) is mapped to the
specified directory within the indicated local user's home directory.
The options include:

-symlink-disable
This option disables symbolic links to files in the specified directory. As a result, the
iTP Secure WebServer returns a "not found" message in response to any attempt
to access a path that contains a symbolic link.

-symlink-owner
This option is similar in function to the -symlink-disable option; it disables symbolic
links, but only if these symbolic links are owned by someone other than the owner
of the files to which the symbolic links point.

The UserDir command overrides for specified regions the global specifications set for the same
items by the UserDir directive. For further information about using the UserDir directive, see
“UserDir” (page 258).

Anonymous Ticket Attributes
-AnonymousTicketExpiration time-in-seconds

The AnonymousTicketExpiration attribute specifies the lifespan of Session Identifiers generated
by the iTP Secure WebServer. When this period expires, the Session Identifier is no longer valid.
If access is attempted using an expired Session Identifier, the iTP Secure WebServer issues a new
ticket.
This attribute is effective only for anonymous ticketing (See “Anonymous Ticketing” (page 170))
The Session Identifier Specification 1.0 allocates 16 bits for the expiration field. To provide a useful
set of values within these 16 bits, the content server sets expiration times in increments of 8.5
minutes so that any expiration value between 0 and 511 results in an expiration time at the next
8.5-minute boundary. Likewise, any value between 512 and 1023 results in an expiration time of
approximately 17 minutes in the future.
The range of expiration times is approximately 8.5 minutes to 1 year.
The following default applies:
-AnonymousTicketExpiration 21600

where 21600 seconds equals 6 hours.
To use -AnonymousTicketExpiration in an SI_DefaultRegion command:
SI_Default -AnonymousTicketExpiration 1800

-CookiePersistence time-in-seconds

242 Configuration Directives

The CookiePersistence attribute specifies the number of seconds that a cookie remains valid,
from the time that the cookie is issued. (The time period is called the persistence of the cookie.)
Cookies that have a persistence greater than 0 can be stored in the Web client, across browser
sessions so that sessions can continue across browser restarts, whether or not the session is
anonymous.
This attribute is effective only for anonymous ticketing (See “Anonymous Ticketing” (page 170)) For
non-anonymous tickets, the ticketing agent controls how long the ticket is valid.
This default applies:
-CookiePersistence 0

To use -CookiePersistence in an SI_DefaultRegion command:
SI_Default -CookiePersistence 1800

-EnableAnonymousTicketing {GroupID GroupID ...}

The EnableAnonymousTicketing attribute turns on anonymous ticketing for regions accessible
to the specified groups. Anonymous ticketing enables you to track requests without performing
authentication or authorization. For more information about anonymous ticketing, See “Anonymous
Ticketing” (page 170)x.
The department ID in a directive or command that enables anonymous ticketing can be any string,
as long as it does not include spaces.
If you include only one group, you can omit the braces.
Omitting the group IDs turns off anonymous ticketing for all regions in the specified department.
The default is no anonymous ticketing.
To use -EnableAnonymousTicketing in an SI_DepartmentRegion command, enter the
following:
SI_Department Mydepartment -EnableAnonymousTicketing { 10 20 30 }

-PostExpirationExtension add-seconds

For requests using a POST method, the PostExpirationExtension attribute adds a specified
number of seconds (add-seconds) to the normal lifespan of the Session Identifier.
The PostExpirationExtension directive allows clients sufficient time to GET a form, fill it out,
and POST it back to the iTP Secure WebServer. Without the additional time specified by the
PostExpirationExtension directive, the session identifier might expire before the Web client
POSTs the form and cause the content server to redirect the POST message to the ticketing agent
for reauthentication; as a result, the data from the POST message would be lost.
Setting PostExpirationExtension to a reasonable number of additional seconds allows
POSTs to work reliably. The default is 3 hours.
This default applies:
SI_Default -PostExpirationExtension 10800

To use -PostExpirationExtension in an SI_DefaultRegion command:
SI_Default -PostExpirationExtension 3600

-RequireIP

The RequireIP attribute enables the iTP Secure WebServer to omit the Web client IP address in
the MAC for the Session Identifier, which is useful in the case where a Web client's IP address
changes from request to request. Omitting the IP address in the Session Identifier or Digital Receipt
stops those clients from being reticketed with a new anonymous user ID for each request.
If no -RequireIP attribute value is provided, the default is the value set by the server.
To use -RequireIP in an SI_DepartmentRegion command:
SI_Department 4567 -RequireIP

-RewriteHostAlias "alias-name alias-name ..."

The RewriteHostAlias attribute enables you to specify alias names for the iTP Secure
WebServer. Aliases are useful for some organizations where the Domain Name Server (DNS)
permits abbreviations of the host name.

Region 243

For example, the host name www.universal.com might be abbreviated as universal.com
or just universal. To support both these variations, enter the directive:
SI_Default -RewriteHostAlias \
"http://www.universal.com \
 http://universal.com \
 http://universal"

This example directs the iTP Secure WebServer to rewrite all references to www.universal.com,
universal.com, or universal to be references to the iTP Secure WebServer.
Setting this attribute is important when making references relative is enabled, because the iTP
Secure WebServer makes relative only those references that point to itself. Another way of looking
at this directive is that it specifies a list of hosts whose references should be made relative.
There is no default.
To use -RewriteHostAlias in an SI_DepartmentRegion command:
SI_Department 4567 -RewriteHostAlias \
"http://www.universal.com http://universal"

-RewriteHtmlLinks { Relative | Off }

The RewriteHtmlLinks attribute controls whether the content server:

• Converts absolute HTML references into relative references
• Performs no conversion on HTML references
For more information, See “Rewriting HTML References” (page 179).
This default applies:
-RewriteHtmlLinks Relative

To use - RewriteHtmlLinks in an SI_DepartmentRegion command:
SI_Department 5 -RewriteHtmlLinks Off

-RewriteImageLinks { Absolute | Relative | Off }

The RewriteImageLinks attribute controls whether the content server:

• Converts absolute image references into relative references
• Converts relative image references into absolute references
• Performs no conversion on image references
For more information, See “Rewriting HTML References” (page 179).
This default applies:
-RewriteImageLinks Off

To use -RewriteImageLinks in an SI_DepartmentRegion command:
SI_Department 5 -RewriteImageLinks absolute

-SignatureLength { 32 | 64 | 128 }

The SignatureLength attribute specifies how many bits long the message authentication code
(MAC) for tickets must be. The longer the MAC is, the more tamperproof the ticket.
This default applies:
-SignatureLength 32

To use -SignatureLength in an SI_DepartmentRegion command:
SI_Department 5 -SignatureLength 128

244 Configuration Directives

RegionSet

Syntax
RegionSet variable value

Description
Use the RegionSet directive to set a variable (variable) to a value (value) that can be referred
to in subsequent Region commands. This directive is useful for storing values (such as a list of
hosts allowed access) that need to be used in multiple Region commands. For example:
RegionSet allowedHosts "*.company.com *.foo.com" Region /* {
 AllowHost $allowedHosts
}

In this example, the variable allowedHosts is set to the compound value *.company.com
*.foo.com. Then this value is referred to (by allowedHosts) in the Region command
AllowHost.
Any number of RegionSet directives are allowed in the configuration file.

Default
None

Example
RegionSet startTime 7

RegionSet denyList "*.widgets.com *.company.com *.foo.com"

ReverseLookup

Syntax
ReverseLookup { yes | no }

Description
Use the ReverseLookup directive to enable or disable reverse lookup, which is converts a Web
client'sIP address into a host name. You enable reverse lookup whenever the Web client host name
is required by a CGI program or for host-based access control, or if you want the Web client host
name to be recorded in a log file.
If the Web client host name is not needed for these purposes, you can increase server performance
by disabling reverse lookup.
Only one ReverseLookup directive is allowed in the configuration file.

Default
ReverseLookup yes

which is set for all client connections.

Example
ReverseLookup no

RmtServer

Syntax
RmtServer pathname

RegionSet 245

Description
Use the RmtServer directive to specify the URL path name of the Resource Locator Service (RLS)
in relation to the root directory of the iTP Secure WebServer. The URL points to the server class
rmt.pway, which implements the service.
For detailed information about configuring RLS, see “Using the Resource Locator Service (RLS)”
(page 166).

Default
None

Example
RmtServer /bin/rmt/rmt.pway

ScriptTimeout

Syntax
ScriptTimeout time-in-seconds

Description
You set the ScriptTimeout directive to the time (in seconds) that the server is to allow a CGI
program to send its output to a Web client. If the program has not exited within the set time, the
request is canceled, the connection is closed, and the program process is sent a termination signal.
Only one ScriptTimeout directive is allowed in the configuration file.
Do not specify a value greater than 1073741824.

Default
ScriptTimeout 300

which assigns 5 minutes, measured in seconds.

Example
ScriptTimeout 300

SendBufferScale

Syntax
SendBufferScale double-value

Description
Use the SendBufferScale directive to scale the size of the socket send buffer. The value has a
range from 1 to 2.5.

NOTE: The SendBufferScale directive is effective only when the BigInBufSize directive
is set to yes. Use this directive only when it is recommended by HP development.

Default
SendBufferScale 1.5

Example
SendBufferScale 2.5

246 Configuration Directives

Server

Syntax
Server object-code-path {

 [Arglist argument ...]
 [CPUS cpu# cpu#...]
 [Createdelay seconds]
 [CWD oss-pathname]
 [Debug { ON][OFF }]
 [Deletedelay minutes]
 [Env name=value]
 [Hometerm file-name]
 [Linkdepth max-number]
 [Mapdefine define-name guardian-pathname]
 [Maxlinks max-number]
 [Maxservers max-number]
 [Numstatic max-number]
 [Createdelay max-number]
 [Priority priority-value]
 [ServerClassName server-name]
 [Security security-attribute]
 [Stdin file-name]
 [Stdout file-name]
 [Stderr file-name] }

Description
The Server directive is required to configure the application servers to be added and started by
the PATHMON process. For additional information about configuring PATHMON, see the NonStop
TS/MP System Management Manual or the NonStop TS/MP Management Programming Manual.
Server object-code-path

specifies the name of the server class for the application server.
object-code-path is broken down into directory/file name/extension. The file name portion
is used to create a server class name automatically. Extensions are stripped from the file name
portion and the result is checked against Pathway server-class name rules.
The maximum number of characters for the object-code-path after extensions are stripped is
15. The first character must be an alphabetic or legal character, except the underscore.
If there is an extension (any text including and subsequent to the period in the file name), it is
stripped off. The resulting token is used as the server class name.
For example:
Server /cw/xyz.pway

Creates the xyz server class
Server foo

Creates the foo server class

Server Commands
The following Server commands control the creation of the PATHMON environment that the server
executes in. For more information about many of these commands and their relationships, see the
NonStop TS/MP System Management Manual.
Arglist argument ...

specifies a NonStop Open System Services (OSS) startup argument list, which is a list of strings
separated by commas that is made available to OSS server processes in the argv[] array.
You can specify from 0 to 24,000 characters for the Arglist command; a null string is valid.
The following example of the Arglist command is part of the definition of the httpd server class:

Server 247

Arglist -server [HTTPD_CONFIG_FILE]

This command is optional.
CPUS cpu# cpu#...

specifies the processors in which a server process is allowed to execute.
If you specify all available processors or if you do not include the CPUS command, the PATHMON
process chooses the processors.
An example of the CPUS command is:
CPUS 0 1 2

This command is optional.
Createdelay seconds

TS/MP creates dynamic servers of a serverclass when there are no free links available to servers
in that serverclass. Creating dynamic servers incurs some processing overhead. In some cases, it
is worthwhile to wait till a link is available to an existing server rather than immediately creating
a dynamic server. The Createdelay command specifies the time in seconds to wait before
creating a dynamic server for the server class.
seconds must be a value from 0 to 1092. The default value is 0 seconds.
CWD oss-pathname

specifies the absolute OSS path name of the current working directory of an OSS server process.
This value resolves relative path names specified for other OSS server process attributes in the
server class.
An example of the CWD command is:
CWD $root/root/pathway-cgi

This command is optional.
 Debug { ON | OFF }

specifies whether the servers in this server class start up in debug mode.
ON
directs the servers to enter debug mode when started.

OFF
directs the servers not to enter debug mode.

If you omit this command, the default is OFF.
This command is optional and is intended only for debugging NonStop TS/MP applications. If
you use this command, the home terminal is used for the standard input, output, and error files,
even if you specify other file names in the Stdin, Stdout, and Stderr directives.
[Deletedelay minutes]

Unused links to dynamic servers are returned to the PATHMON process by the Link Manager. The
Deletedelay specifies the amount of time (in minutes) to wait before returning these unused links.
minutes must be a value from 0 to 1080 (18 hours is the maximum number allowed by PATHWAY).
If you omit this command and the Auto-Accept feature is enabled, and then the default value is 60
(1 hour). If you omit this command and the Auto-Accept feature is not enabled, and then the default
value is 10 minutes (just as it is in conventional TCP/IP support).

NOTE: When all the links of a dynamic server are returned, the dynamic server will be stopped.

For further information on the reasons for using Deletedelay, consult “Migration Considerations
For TCP/IPv6 and IP CIP Support” (page 48).
Env name=value

allows user-defined environment variables to be passed to the server in name-value pairs. These
values are reinitialized each time the server is initialized.
This command is optional.
Hometerm oss-pathname

248 Configuration Directives

specifies the name of the Guardian home terminal being used by the server process executing on
this system. If you do not specify the Hometerm command, the default home terminal is the home
terminal used by the PATHMON process on this machine. It is recommended that you use an
asynchronous terminal for the PATHMON home terminal.
An example of the Hometerm command is:
Hometerm /G/terma

This command is optional.
Linkdepth max-number

specifies the maximum number of concurrent links that a specific LINKMON process can have to
any server process in the class defined by this Server directive. A LINKMON process manages
the links for all requesters in the same processor as the LINKMON process.
The value of Linkdepth should not exceed the value of Maxlinks and cannot exceed 255.
If you omit this command, the default is 1.

NOTE: In order to achieve the load-balancing enhancement described in iTP Secure WebServer
httpd on page 1-8, the Linkdepth command value must be set to 1 (the default value) for the httpd
configuration.

Typically, you use the Linkdepth command to allow multithreaded servers; for servers that are
not multithreaded, use the default value of 1 for Linkdepth.
The following Linkdepth command would allow two concurrent requests from each LINKMON
process to any server in the server class:
Linkdepth 2

MapDefine define-name OSS-path

allows a server to be propagated with a define set.
An example of the MapDefine command is:
MapDefine =TCPIP^PROCESS^NAME /G/ztc0
MapDefine =abc /G/system/sql

where the first token is a legal define name and the second token is the OSS form of a Guardian
file name.
This command is optional.
Maxlinks max-number

specifies the maximum number of concurrent links permitted between all LINKMON
processes—therefore, between requesters in all processors—and a server process in the class
defined by this Server directive.
max-number must be a value from 1 through 4096. This command establishes the maximum
number of concurrent send operations to a single server process. A LINKMON process does not
check how many links a server has with other LINKMON processes.
If the value for this attribute is too large, the requests to the server process are queued at the server.
For example, if Maxlinks is equal to 20, there could be 20 concurrent requests outstanding to
a server. If the transaction service time is 1 second, a response time of more than 20 seconds can
occur.
If you omit this command, the default is 1.
The following Maxlinks command would allow only three concurrent requests, from all processors
combined, to any server in the server class:
Maxlinks 3

This command is optional.
Maxservers max-number

specifies the maximum number of servers in this server class that can run at the same time.
max-number must be a value from 1 through 4095. If you omit this command, the default is 1.

Server 249

The operating system assigns process names in the form $X nnn, $Ynnn, or $Z nnn after the last
predefined process name is used.
An example of the Maxservers command is:
Maxservers 5

This command is optional.

NOTE: To support sessions, the SSC's Numstatic and Maxservers attributes must have the
same value.

Numstatic max-number

specifies the maximum number of static servers within this server class.
max-number must be a value from 0 to 4095.
The value for Maxservers minus the value for Numstatic is the number of dynamic servers for
the server class. Links to dynamic servers are granted to a LINKMON process by PATHMON when
a link request cannot be satisfied by a static server. Dynamic server processes are started by
PATHMON only as the result of a link request; they are not started by the START SERVER command.
The value of Numstatic cannot exceed the value of Maxservers.
If you omit this command, the default is 1.
An example of the Numstatic command is:
Numstatic 2

This command is optional.

NOTE: To support sessions, the SSC's Numstatic and Maxservers attributes must have the
same value.

Createdelay max-number

Specifies the time delay in minutes to create a dynamic server for this server class.
max-number must be a value from 0 to 1092. The default value is 0 minutes.
For more information about Createdelay, see the TS/MP System Management Manual.
Priority
priority-value

specifies the execution priority to be used when creating the server.
priority-value can be a value from 1 through 199. If you omit this command, the default is
the priority specified for the PATHMON process in the PATHMON section.
An example of the Priority command is:
Priority 150

This command is optional.
ServerClassName server-name

specifies the name with which serverclass is created. server-name must be according to the
serverclass naming conventions of pathway. This command is optional and is not configured by
default.
An example of the ServerClassName command is:
ServerClassName httpdA

Considerations:
1. This directive is not supported when distributor server class is used.

distributor server class is initiated with default server class name distributor).

250 Configuration Directives

httpd server class cannot have name other than httpd when distributor is used (The distributor
continues to work with the httpd server class that has httpd as the default name). If httpd
is renamed when distributor is used, startup fails with a relevant error.

2. Standard values such as gcache, distributor, httpd are default values for gcache,
distributor, and httpd respectively and must not be used as server class names for server
classes.

3. This directive is to support renaming of server classes. Multiple Server definitions for httpd and
gcache with different ServerClassName value must not be specified in the same configuration
file. The iTP Secure WebServer would start successfully with these conditions, but would not
function normally. For multiple httpds and gcache, use –add feature of httpd.

4. While using restarth, value for ServerClassName must not be changed for httpd
serverclass.

5. If multiple httpds for secure version are configured along with gcache enabled for all configured
httpds using the –add feature of httpd, gcache server class must have different server
class names for different httpds.

6. You cannot rename the Admin serverclasses.
Security security-attribute

specifies the users, in relation to the owner of the server, who can access a server class from a
Pathsend requester.
The security attributes are the same as the Guardian file-security attributes. The values are:

Any local userA

A group member or ownerG

Owner onlyO

Local super ID-

Any local or remote userN

Any member of owner's community (local or remote user having same group ID as owner)C

Any member of owner's user class (local or remote user having same group ID and user ID as owner)U

If you do not specify the Security command for a server, the default is O.
An example of the Security command is:
Security O

This command is optional.
Stdin file-name

specifies the standard input file for the server. The value is an OSS path name. If you do not specify
standard files, the process starts without a standard file environment.
If you specify Stdin, you also must specify Stdout and Stderr. If you specify the Debug directive,
the home terminal becomes the standard input file, regardless of the value you specified for Stdin.
The following example specifies the home terminal as the standard input file and two different log
files as the standard output and error files.
set env(HOMETERM) [exec tty]
eval $DefaultServerAttributes
Stdin $env(HOMETERM)
Stdout /web/xyz/startup/t8997/logs/stdout.log
Stderr /web/xyz/startup/t8997/logs/stderr.log

If the server you are defining is a CGI server class, specifying the home terminal as the standard
input file is useful only for debugging your program outside the iTP Secure WebServer environment.
For a CGI server class in the iTP Secure WebServer environment, specify a value of /dev/null.
Stdout file-name

specifies the standard output file for the server. The value is an OSS path name. If you do not
specify standard files, the process starts without a standard file environment.

Server 251

If you specify Stdout, you also must specify Stdin and Stderr. If you specify the Debug directive,
the value you specify for Stdout does not take effect.
The following example specifies the home terminal as the standard input file and two different log
files as the standard output and error files:
set env(HOMETERM) [exec tty]
eval $DefaultServerAttributes
Stdin $env(HOMETERM)
Stdout /web/xyz/startup/t8997/logs/stdout.log
Stderr /web/xyz/startup/t8997/logs/stderr.log

Stderr file-name

specifies the standard error file for the server. The value is an OSS path name. If you do not specify
standard files, the process starts without a standard file environment.
If you specify Stderr, you also must specify Stdin and Stdout. If you specify the Debug directive,
the value you specify for Stderr does not take effect.
The following example specifies the home terminal as the standard input file and two log files as
the standard output and error files:
set env(HOMETERM) [exec tty]
eval $DefaultServerAttributes
Stdin $env(HOMETERM)
Stdout /web/xyz/startup/t8997/logs/stdout.log
Stderr /web/xyz/startup/t8997/logs/stderr.log

ServerAdmin

Syntax
ServerAdmin mail-addr

Description
Use the ServerAdmin directive to set the e-mail address (mail-addr) of the server administrator.

Default
None

Example
ServerAdmin webmaster@widgets.com

ServerPassword

Syntax
ServerPassword password

Description
Use the ServerPassword directive in the httpd.stl.config file to specify a password to be
used to encrypt the key database file.
The password specified by ServerPassword must match the password used to encrypt the key
database file, as specified by the keyadmin utility. When using the keyadmin utility to change
the password used to encrypt the keys file, use ServerPassword to check that the passwords
match.
You either can specify the password explicitly in the directive or supply the name of a file from
which to read the password using the KeyDatabase directive. For information about the
KeyDatabase directive, see KeyDatabase (page 217).
You must run keyadmin to change the password before you use the ServerPassword directive
to specify the new password.

252 Configuration Directives

Because the password is reused when you restart the iTP Secure WebServer, you must start and
stop the environment, rather than simply restart it, when you change the password.
Only one ServerPassword directive is allowed in the configuration file.

Default
None

Example
ServerPassword —file StartDate2812

ServerRoot

Syntax
ServerRoot directory

Description
You can set the ServerRoot directive to either of the following:

• The directory to be designated as the current directory while the iTP Secure WebServer is
running.

• The directory in which the iTP Secure WebServer process is to place its core file if the iTP
Secure WebServer crashes.

The specified directory must be writable.
When other directives include relative path names for files, these paths are always relative to the
directory specified by ServerRoot directive.
For example, if the server configuration file (httpd.config) contains the following directives
ServerRoot /var/httpd
Region * {
RequirePassword "Your account" -userfile user.db
}

the iTP Secure WebServer assumes the full path name for users.db to be
/var/httpd/users.db

Only one ServerRoot directive is allowed in the configuration file.

Default
The default is the directory where the server is started.

Example
ServerRoot /usr/tandem/webserver

ServerTokens

Syntax
ServerTokens { Prod | Major | Minor }

Description
Use the ServerTokens directive to request a portion of the Server field being displayed in the
response header information returned by iTP Secure WebServer. The option provided with this
directive will decide the information to be displayed in the Server field of the response header. If
this directive is not specified in the server configuration file (httpd.config), the complete information
will be returned.

ServerRoot 253

Default
None
If you do not specify any value with the ServerTokens directive, an error message will be
displayed prompting to specify one.

Examples
ServerTokens Prod

Only the product name will be displayed in the Server field of the response header. Server: iTP
WebServer (for T8996) or iTP Secure WebServer (for T8997).
ServerTokens Major

The product name and the server version will be displayed in the Server field of the response
header. Server: iTP WebServer/7.2 (for T8996) or iTP Secure WebServer/7.2 (for T8997).
ServerTokens Minor

The complete server information will be displayed in the same manner when the directive is not
specified in the httpd.config file. Server: iTP WebServer/7.2 (for T8996) or iTP Secure
WebServer/7.2 (for T8997).

set

Syntax
set variablename value

Description
You can use the set directive to assign a value to a variable.

Default
None

Example
set transport/G/ZTCO

SI_Default

Syntax
SI_Default -attribute value [-attribute value ...]

Description
Use the SI_Default directive to specify one or more default ticket attributes. For a list of the
ticket attributes, see “Anonymous Ticket Attributes” (page 242).

Default
None

Example
SI_Default -SignatureLength 128

SI_Department

Syntax
SI_Department departmentID [- attribute value -attribute value ...]

254 Configuration Directives

Description
Use the SI_Department directive to initialize a department for later use with anonymous tickets.
After you initialize a department, you can use the departmentID value in Region commands to
divide your content into separate administrative areas.
You also can use this directive to specify department-wide ticket attributes. For more information,
see “Anonymous Ticketing Attributes” (page 174).
See also the SI_Department Region command in “Region” (page 232).

Default
None

Example
SI_Department 25

SI_Department 25 -EnableAnonymousTicketing

SI_Enable

Syntax
SI_Enable { On | Off }

Description
Use the SI_Enable directive to enable or disable the use of Session Identifiers on the iTP Secure
WebServer.

Default
SI_Enable On

Example
SI_Enable Off

SK_CacheExpiration

Syntax
SK_CacheExpiration time-in-seconds

Description
Use the SK_CacheExpiration directive to indicate the time period, in seconds, for which each
of the entries in the session key cache is valid. This value (time-in-seconds) is set for each
entry when the entry is first added to the cache.
The expiration time can be set to a maximum of 24 hours. If you set the time to more than 24
hours, a warning message appears and the actual expiration time is reset to 24 hours.
The iTP Secure WebServer removes an entry from the session key cache if the entry's time has
expired or if the cache is full, in which case all expired entries are removed.
Only a positive integer is accepted as a valid value. If you set an invalid value, the iTP Secure
WebServer prints an error message during configuration-file processing, and startup fails. If you
set the value to a negative integer, an error message is printed.
Setting the value of either SK_CacheExpiration or SK_CacheSize to 0 disables session key
caching. Note, however, that a warning message is printed if only one of these configuration
directives is set to 0. Therefore, to disable session key caching, you should set both directives to
0.

SI_Enable 255

Default
SK_CacheExpiration 3600

which assigns 1 hour, measured in seconds.
The default value is used if you do not specify SK_CacheExpiration in the configuration file.

Example
SK_CacheExpiration 100

This example sets the cache-expiration time to 100 seconds.

SK_CacheSize

Syntax
SK_CacheSize size

Description
Use the SK_CacheSize directive to indicate the size of the session key cache in terms of the
maximum number of entries that the cache can hold at one time.
Only a positive integer is accepted as a valid value. If you set an invalid value, the iTP Secure
WebServer prints an error message during configuration-file processing, and startup fails. If you
set the value to a negative integer, an error message is printed.
Setting the value of either SK_CacheExpiration or SK_CacheSize to 0 disables session key
caching. Note that a warning message is printed if only one of these configuration directives is
set to 0. Therefore, to disable session key caching, you should set both directives to 0.

Default
1000 entries

The default value is used if you do not specify SK_CacheSize in the configuration file.

Example
SK_CacheSize 100

This example sets the cache size to 100 entries.

SK_GlobalCache

Syntax
SK_GlobalCache {On|Off}

Description
Use the SK_GlobalCache directive to enable or disable the use of the Global Session Key Cache
server.

Default
SK_GlobalCache Off

Example
SK_GlobalCache On

256 Configuration Directives

SK_GlobalCacheTimeout

Syntax
SK_GlobalCacheTimeout hundredths-of-seconds

Description
The SK_GlobalCacheTimeout directive can be used in conjunction with the SK_GlobalCache
directive. It specifies the amount of time that the httpd server should wait for a response from the
Global Session Key Cache server.

Default
SK_GlobalCacheTimeout 50

which assigns 5 seconds, measured in hundredths-of-seconds.

Example
SK_GlobalCacheTimeout 100

TCPNoDelay

Syntax
TCPNoDelay <ON/OFF>

Description
The TCPNoDelay option is used to disable Nagle's Algorithm during data transmission.
iTP Secure WebServer currently works in conjunction with Nagle's Algorithm and the TCP Delayed
Acknowledgements algorithm. At some point, the iTP Secure WebServer will need to send two
data buffers in a row, with the second one typically being less than the full-sized segment. If the
iTP Secure WebServer does not have the Nagle's Algorithm disabled on its socket, NonStop TCP/IP
sends a large packet first, and then waits for the acknowledgement from the client's TCP/IP before
sending the second smaller packet.
Because most of the client TCP/IPs uses the TCP Delayed Acknowledgements (Delayed ACK)
Algorithm, by default, with a delay timer of 200ms, it does not send an acknowledgement right
away for the initial large packet, but waits until its Delay-ACK timer expires. When that timer
expires, ACK is sent to NonStop TCP/IP and then iTP Secure WebServer sends the smaller packet.
Thus, there may be significant delay, of up to 500 milliseconds, when two successive write
operations are in progress. This issue is resolved by disabling the Nagle's algorithm using
TCPNoDelay configuration directive.

Default
TCPNoDelay OFF

By default, the value of this configuration directive is set to 'OFF' and iTP Secure WebServer will
transmit the data in accordance with Nagle's algorithm.

Examples
TCPNoDelay ON

CAUTION: This configuration directive must be used after completely understanding the Nagle's
Algorithm and TCP Delayed Acknowledgements options, and the data transfer requirements,
otherwise it may lead to performance issues.

SK_GlobalCacheTimeout 257

User

Syntax
User user-name

Description
Use the User directive to specify the OSSuser name that the server is to run under. This directive
is effective only if the server is started as root (super-super). If the server is started as other than
super ID, the server sends a warning message.
The argument user-name must be a valid user name on the system hosting the server. For security
reasons, you should create an account other than super ID specifically for your server to run under.
For more information about creating a user name, see your system administrator or your system
documentation.
Only one User directive is allowed in the configuration file.

Default
None. If you do not set the User directive, the server runs under the user name that starts the
server.

Example
User httpd

NOTE: Only httpd processes are switched by the User directive. Consequently, httpd processes
might encounter a Pathsend error 904 when communicating with the Pathway or generic-CGI
server if the application server's security value is not set correctly. To avoid this problem, be sure
that you configure the Pathway or generic-CGI server to use the appropriate security values. For
information about security values, see “Server” (page 247). For information about Pathsend error
904, see the NonStop TS/MP Pathsend and Server Programming Manual.

UserDir

Syntax
UserDir [-symlink-disable] [-symlink-owner] user-dir

Description
Set the UserDir directive to the name of theuser directory (user-dir) that is to be accessed
whenever a URL begins with a tilde (~). When UserDir is set, any access to aURL beginning with
a tilde (~) is mapped to the specifieddirectory within the indicated local user's home directory.
The options include the following:

-symlink-disable

This option disables symbolic links to files in the specified directory. As a result, the
iTP Secure WebServer returns "not found" in response to any attempt to access a
path that contains a symbolic link.

-symlink-owner

This option is similar in function to the -symlink-disable option: it also disables
symbolic links, but only if these symbolic links are owned by someone other than
the owner of the files to which the symbolic links point.

This directive also has a corresponding Region command, which if found within a region, overrides
this directive. For further information about using the UserDir command in a Region directive,
see “Region Commands” (page 234).
For example, if UserDir is set to hypertext, and a Web client accesses the URL

258 Configuration Directives

/~black/home.html

the iTP Secure WebServer maps this request to the file hypertext/home.html in Black's home
directory.
Assuming Black's home directory on the host UNIX machine is /udir/black, the iTP Secure
WebServer accesses the file
/udir/black/hypertext/home.html

Similarly, if the Web client accesses the URL
/~white/home.html

and White's home directory on the same host UNIX machine is /udir/white, the iTP Secure
WebServeriTP Secure WebServer accesses the file
/udir/white/hypertext/home.html

Only one UserDir directive is allowed in the configuration file.

Default
None. If UserDir is not set, any attempt to access URLs beginning with a tilde (~) is denied.

Example
UserDir public_html

UserDir 259

B Error Messages
The iTP Secure WebServer reports error messages to the Event Management Service (EMS), a set
of uniform interfaces for capturing and analyzing errors from most NonStop software products.
The text part of each message also appears in the iTP Secure WebServer error log file if such a
file is defined and open.
These iTP Secure WebServer components report errors to EMS:
• WebServer (httpd process)

These messages have event numbers less than 1000 and contain the identifier httpd.

• Security subsystem (TLS and SSL)
These messages have event numbers between 1000 and 1999 and contain the identifier tls.

• Distributor process
These messages have event numbers between 2000 and 2999 and contain the identifier dist.

• Common Gateway Interface (CGI server processes and CGI library)
These messages have event numbers between 3000 and 3999 and contain the identifier cgi.

• Resource Locator Service (RLS)
These messages have event numbers between 5000 and 6000 and contain the identifier rls.

• Servlet Server Class (SSC)
These messages have event numbers between 7000 and 8000 and contain the identifier ssc.

All EMS messages from iTP Secure WebServer components have a subsystem identifier (SSID) of
WEBSERV. All messages are sent to the EMS primary collector, named $0.
Several interfaces are available for displaying EMS messages. To display the text, you should
configure your system to look for the template files NEWNRES and NEWRES in the subvolume
$SYSTEM.ZWEB. (The iTP Secure WebServer installation script does this configuration.) You also
can write filters and applications to process messages programmatically; the files ZWEBDDL,
ZWEBC, ZWEBTAL, ZWEBCOBOL, and ZWEBTACL in $SYSTEM.ZWEB contain the declarations
you need for various programming languages.
For information about the EMS interactive and programmatic interfaces, see the EMS Manual.

NOTE: If you do not choose to install the EMS templates with the iTP Secure WebServer, EMS
messages from iTP Secure WebServer components will have the subsystem ID of OSS and event
numbers in the range of 0 through 10, representing severity levels. This behavior would be consistent
with past iTP Secure WebServer releases but makes it difficult to recognize and process the
messages.

260 Error Messages

C Server Log File Formats
This appendix describes the formats used in the log files generated by the iTP Secure WebServer:
• “Access Log Format” (page 261)
• “Error Log Format” (page 262)
• “Hypertext Transfer Protocol (HTTP) Status Codes” (page 262)
• “Extended Log Format” (page 264)
• “Logging through an External ServerClass” (page 266)
An entry in these files is structured into a set of distinct components. These components vary by file
type.
Some products and components you use with the iTP Secure WebServer can report configuration,
status, and error messages to other files you specify. For example, the Servlet Server Class (SSC)
reports configuration and status information to the standard output file, and reports error and
exception information to the standard error file. For information about reporting by the SSC, see
NonStop Servlets for JavaServer Pages (NSJSP) System Administrator's Guide.

Access Log Format
The accesslog file records the request history of a server. The information in this file is structured
in the commonlog format (CLF). CLF is used by other Web servers and supports a number of widely
available tools for analyzing logs and generating reports.
The location of the access log file is specified by the AccessLog directive in the server configuration
file. If this directive is not explicitly set, no access log file is generated.

Access Log Entry Format
An entry in the access log file consists of a single line of ASCII text. Each entry logs a single client
request and consists of seven fields of information:

host-nameField 1

-Field 2

user-nameField 3

timeField 4

requestField 5

http-statusField 6

bytes-sentField 7

Table C-1 describes the fields that can appear in an access log entry.

Table 35 Access Log Fields

DescriptionField

Gives the host name of the Web client making a request.
If the Web client’s host name is not available (from the

hostname

Domain Name Server), the server reports the Web client’s
IP address instead.

Reports the Web client user name as identified by the
Internet Authentication Protocol (as defined in RFC 931).

-

The server does not support the Web client user-name field;
it fills this field with a single hyphen (-).
To see RFC 931, use the following URL:
http://www.ietf.org/rfc/rfc931.txt

Access Log Format 261

http://www.ietf.org/rfc/rfc931.txt

Table 35 Access Log Fields (continued)

DescriptionField

Reports the user name that the user entered (together with
a password) to gain access. If the user did not enter a user

username

name, or did not enter a valid user name, this field is filled
with a hyphen (-).

Reports the time of the request in Universal Coordinated
Time (UTC, also known as Greenwich Mean Time, or

time

GMT). The last component in this field specifies the offset,
in hours and minutes, between the server’s local time and
UTC.

Reports the Web client’s request. For example:
GET /dirsite.gif HTTP/1.0

request

The request field consists of the following items:

• The HTTP method: Typically the method is GET, POST,
or HEAD; in this case, it is GET.

• The URL that is being accessed: In this case, /dirsite.gif.

• The Web client’s protocol version: In this case,
HTTP/1.0.

Reports the HTTP status code returned to the Web client.
200 indicates a normal result (completed without error).

HTTP-status

For a complete list of the other possible status codes, see
Table 36 (page 262).

Reports the number of bytes sent to the Web client.bytes-sent

Example
This example displays typical entries in the access log file:
150.180.13.54 - - [24/Jan/1995:12:27:13 -0500] "GET /dirsite.gif
HTTP/1.0" 200 7114

quinton.jax.org - - [24/Jan/1995:12:27:14 -0500] "GET /
HTTP/1.0" 200 1280

tucano.cv.com - - [24/Jan/1995:12:27:16 -0500] "POST
/dir/search.cgi HTTP/1.0" 200 15691

Error Log Format
The error log file records all request and server errors. The information in this file is structured in
the common log format (CLF). CLF is generally used by Web servers and supports a number of
widely available tools for analyzing server logs and generating reports.
The location of the error log file is specified by the ErrorLog directive in the server configuration
file. If this directive is not explicitly set, no error log file is generated.

Hypertext Transfer Protocol (HTTP) Status Codes
Table 36 (page 262) lists theHTTP status codes that might appear in the extended log file and in
the access log file.

Table 36 HTTP Status Codes

DescriptionStatus Code

Continue. The server received the previous part of the
request, so the client should send the next part.

100

Normal result. The request completed without error.200

Created. A new object was created.201

262 Server Log File Formats

Table 36 HTTP Status Codes (continued)

No content. The request was processed successfully; the
response does not contain a new document but might
contain metainformation to apply to the current document.

204

Partial content. The server fulfilled a request for a byte
range.

206

Moved permanently. The requested resource now resides
at a new location. The request was satisfied by redirection,

301

and any future requests for the resource should use the new
URL.

Found/Moved temporarily. The requested resource
temporarily resides at a different location. The request was

302

satisfied by redirection, but any future requests for the
resource should use the original URL.

Not modified. The requested object was not modified after
the date specified in the Web client’s “If-modified-since”
header.

304

Bad request. The Web client sent a request the server could
not understand.

400

Unauthorized. The request requires authorization (such as
a user name and password) for access to the requested
resource.

401

Forbidden. Access to the requested object is not allowed.
For example, the WebServer configuration might restrict
access to this region.

403

Not found. The requested object cannot be found on the
server, or access was denied. For example, the WebServer

404

configuration might restrict access to this region; several
configuration commands have a -noexist option, causing
the server to report that the file was not found, rather than
that access was denied.

Method not allowed. The request specifies a method not
permitted for this resource.

405

Not acceptable. The requested resource does not comply
with the characteristics specified in the Accept headers.

406

For example, the content is not available in the requested
language.

Request Timeout. The Request took too much time to
complete

408

Precondition failed. The requested resource did not meet
a condition specified in one or more request headers, for
example If-Modified-Since.

412

Request entity too large. The server cannot process the
request.

413

Requested range not satisfiable. The range specified in the
request does not exist in the resource; for example, the

416

starting position of a byte range specification has a value
greater than the length of the requested resource.

Expectation failed. A condition specified in the Expect
header cannot be satisfied by the server.

417

Security retry. The Secure HTTP enhancements on the
request were not acceptable to the server, but a retry with
different enhancements might be.

420

Hypertext Transfer Protocol (HTTP) Status Codes 263

Table 36 HTTP Status Codes (continued)

Bogus header. A Secure HTTP request was not formed
properly.

421

The server encountered an internal error while processing
the Web client’s request. An internal error usually involves
a configuration problem or a CGI script returning an error.

500

Not implemented. The request cannot be performed by the
server.

501

HTTP version not supported. The request specifies a protocol
version that the server does not support.

505

Extended Log Format
The extended log file combines the functions of the access log and the error log files, recording
information concerning requests and errors. This format places errors in context with the relevant
request.
If –remotePort is used then the entries in the access log file as follows:
150.180.13.54 - - [24/Jan/1995:12:27:13 -0500] "GET /dirsite.gif HTTP/1.0" 200 7114 2168 quinton.jax.org - -
[24/Jan/1995:12:27:14 -0500] "GET / HTTP/1.0" 200 1280 6935 tucano.cv.com - - [24/Jan/1995:12:27:16 -0500] "POST
 /dir/search.cgi HTTP/1.0" 200 15691 6985

If CombinedLogFormat is set to On and –cookie option is also used, the format for log entries is
as follows:
150.180.13.54 - - [24/Jan/1995:12:27:13 -0500] "GET /dirsite.gif HTTP/1.0" 200 7114 "http://www.abc.com/"
"Mozilla/4.05 [en] (WinNT; I)" "USERID=CustomerA; IMPID=01234"

Extended Log Entry Format
An entry in the extended log file consists of a single line of ASCII text. Each entry consists of the
tag log followed by one or more items composed of an item-name and an item-value:
log {item-name1 item-value1} {item-name2 item-value2} ...

Table C-2 lists the items that might appear in an extended log entry.

Table 37 Extended Log Items

DescriptionName

Contains the HTTP method sent by the Web client for the
current request. Typically, this method is HEAD, GET, or

method

POST. This item is absent if the Web client's request was
not completely received by the server.

Contains the URL part of the Web client request. For
example:
/personal/payne/home.html

url

This item will be missing if the Web client's request was
not completely received by the server.

Contains the name of the Web client's browser software.
For example:
NCSA Mosaic for the X Window System/2.4

agent

This item is absent if the Web client's browser software
does not send this information to the server.

Contains the URL of the page that contained the link for
the current request. For example:
http://www.directory.net/index.html

referrer

This item is absent if the Web client's browser software
does not send this information to the server.

Contains the host name of the Web client machine. If no
host name is available, this item contains an ASCII

host

264 Server Log File Formats

Table 37 Extended Log Items (continued)

representation of the IP address. This field is present for all
requests.

Contains any output a CGI script writes to the standard
error log.

stderr

Contains the error message generated when a request
results in an error.

error

Contains the numeric HTTP status result for the current
request. See Table 36 (page 262) for a complete list of the
HTTP status results.

status

Contains the number of bytes returned to the Web client.bytes

Contains the exit status generated when a CGI script exits
with a nonzero exit status.

exit

Contains the number of any signal that causes termination
of a CGI script.

signal

Contains the time stamp (expressed as fractional seconds
since January 1, 1970) of the beginning of the current
request.

start

Contains the size of the encryption key used.keysize

Contains the time stamp (expressed as fractional seconds
since January 1, 1970) of the end of the current request.

end

Contains the department numbersi-departmentid

Contains the entire Session Identifier.si-si

Contains the user ID in the ticket.si-uid

Contains the group number in the ticket.si-group

Contains the user context field in the ticket.si-uctx

Contains the DN of the direct issuer of the client certificate.
The DN is taken from the issuer field within the client

issuer

certificate. If client authentication is requested but the Web
client did not authenticate, or if a problem was found while
verifying the certificate, this field is present but empty.

Contains the cipher type used for the connection.
Example:

cipher

EXP-RC4-MD5

Contains the client certificate status if client authentication
is used. Values include the following:

client-status

• no-certificate

• error-in-certificate

• not-verified

• forged

• not-valid-yet

• expired

• issuer-not-ca

• max-path-exceeded

• issuer-cant-sign,

• valid-but-root-certificates-do not-match

• valid-no-extensions

• valid

Extended Log Format 265

Table 37 Extended Log Items (continued)

For more information about each value, see “Using the
-requestauth Option” (page 73).

Contains the DN of the certificate that is in error, if client
authentication is used and a problem is found while
verifying the client certificate.

client-error-dn

Contains the security protocol being used: either TLSV1.0,
TLSV1.1, TLSV1.2 or SSLV3.

security

Contains the DN of the certificate that is in error, if client
authentication is used and a problem is found while
verifying the client certificate.

client-error-dn

Contains the DN as taken from the subject field of the client
certificate, if client authentication is used. If client

client

authentication is requested and not provided, this field is
present but empty.

Item values might contain arbitrary characters, including white space (for example, spaces, tabs,
and new lines). Any values containing white space are enclosed by curly braces. For example:
{WinMosaic/Version 2.0 (ALPHA 2)}

Single (unpaired) instances of brace and backslash characters ({ } \) within a value must be
preceded by a backslash (\). Optionally, paired instances of these characters might be preceded
by a backslash. For example:
{Here's a brace: \{; and another \}; all done!}

Example
This example displays a typical entry in the extended log file:
log {start 793224627.766481} {method GET} {url /~payne}
{bytes 0} {error {file not found}}...

...{status 404} {end 793224627.818003} {host n8kei.tiac.net}

If –remotePort option is used then:
log {start 793224627.766481} {method GET} {url /~payne}
{bytes 0} {error {file not found}}...
...{status 404} {end 793224627.818003} {host n8kei.tiac.net}
{host_port 6677}

In this example, start, method, url, bytes, error, status,host, and host_port are
the entry items. Each of these items is immediately followed by the item's logged value. For example,
the value of method is GET.

NOTE: Future versions of the extended log format might include entries that begin with some tag
other than log. Programs that read log files should be constructed to ignore any unrecognized
tags.

Logging through an External ServerClass
During an online transaction, a web client may send customer credentials directly in a GET request
in the URL encoded format. iTP Secure WebServer logs all these parameters along with sensitive
customer information (such as credit/debit card numbers or CVV numbers) in the webserver log
files. This is a security concern, wherein information must be restricted from being logged in the
webserver log files. Therefore the need for clients to maintain their own log repository in a secured
location arises.
This is achieved through a user-written logging serverclass. You must develop your own TS/MP
serverclass to read, manipulate and, if required, return the log strings generated by httpd.
The easiest way to create the logging server is to write it as a CGI application. iTP Secure
WebServer ships with a samples logging server application called as logservclass.pway along

266 Server Log File Formats

with its source. This application can be referred as a guideline and is available in the following
location:
<iTP WebServer installation directory>/samples/C_Demo/

You must provide the name of the logging serverclass using the following LoggingServerClass
configuration directive:
LoggingServerClass <serverclass name >

For example,
LoggingServerClass LogServ

“Logging Using External Serverclass” (page 267) displays the functional overview of the
LoggingServerClass directive.

Figure 12 Logging Using External Serverclass

Repository

HTTPD

User

User-written
logging server class

Sends the modified
log strings back to a

seprate log repository

Sends the modified
log strings back to

iTP WebServer

Sends the request containing
card information

HTTPD generates
log strings

Following are the design guidelines for developing the logging serverclass:
1. If a logging serverclass is used, httpd does not initially log any information to access.log

and httpd.log.
2. Log strings are sent to the configured logging serverclass through Pathsend.
3. If the Pathsend operation fails, corresponding Pathway error gets logged in the error log
4. httpd sends these log strings in the following format to the Pathway buffer:

ExtendedLog:\n<extended log string>\nCommonLog:\n<access logstring>\n

NOTE: If the logging server is not written as a CGI application, you must ignore any other
data in the Pathway buffer (which is used internally by the CGI library) other than the one
mentioned above.

5. If either one of the logs are not enabled in the iTP Secure WebServer configuration, then only
the corresponding log strings are sent.

6. You can retrieve these log strings, manipulate them if necessary and log them into a separate
log repository.

7. If a separate repository is not maintained, you can send back the modified log strings (one
or both) through Pathsend in the same format as mentioned above. httpd would retrieve
these strings and log them into the respective log files.

Logging through an External ServerClass 267

8. If no log strings are sent back, httpd will not log anything in the access.log and
httpd.logfiles .

9. Even when the logging serverclass is used, webserver errors will still be logged in the error
log.

NOTE: Two new configuration directives have been added for these modifications. For more
information, see “Configuration Directives” (page 198).

268 Server Log File Formats

D Security Concepts
This appendix describes basic concepts relevant to setting up and administering the iTP Secure
WebServer:
• “Open Network Security” (page 269)
• “Cryptographic Techniques” (page 270)
• “Managing Key Certificates” (page 272)
• “Transport Layer Security (TLS)” (page 273)
• “Secure Sockets Layer (SSL)” (page 274)
• “Deploying TLS and SSL” (page 274)
• “Comparing TLS and SSL” (page 275)

Open Network Security
This section discusses these security topics as they relate to security systems on open networks:
• “Encryption” (page 269)
• “Authentication” (page 270)

Encryption
Encryption is the transformation of data into a form that only persons who have access to the proper
decryption key can read. Encryption ensures privacy by keeping information hidden from anyone
for whom it is not intended. For example, to keep competitive bidding data from falling into the
hands of your rivals, you might want to encrypt your data before transmitting it to a prospective
client across a public communications link. Or to keep your department's personnel records secure,
you might want to encrypt these records before storing them on hard disk.
In general, encryption works as described and as shown in Figure 13 (page 269): Romeo wants to
send a private message to Juliet over a public communications link. Romeo encrypts his message
(called the plaintext) with an encryption key, and then sends the encrypted message (called the
ciphertext) to Juliet. Using a decryption key associated with the encryption key used by Romeo,
Juliet decrypts Romeo's ciphertext back into human-readable form.

Figure 13 Basic Encryption
Romeo Juliet

Encryption Key Decryption Key

A

B

C

#

%

&

#

%

&

A

B

C

If Capulet, Juliet's father, were to intercept Romeo's ciphertext during transmission, he could not
read Romeo's message unless he could access Juliet's decryption key or broke the code by some
other means.

Open Network Security 269

Juliet's decryption key might be the same secret key Romeo uses to encrypt his messages to Juliet,
or it might be the private component of a public/private key pair: Romeo uses Juliet's public key
to encrypt his message, and then Juliet uses the associated private key to decrypt it.
For a discussion about public keys, see “Public Key Systems” (page 270).

Authentication
Authentication is encryption's complement. While encryption ensures against eavesdroppers,
authentication ensures against imposters. Often, it is not enough to check that only its intended
receiver can read a message; there must also be a way to verify that the sender of a message is
in fact who he or she says they are. In fact, used alone, encryption can make a message appear
to be what it is not: an authentic message from a authentic sender.
Authentication often employs digital signatures, which are pieces of data that function for digital
documents much as handwritten signatures function for printed documents. Digital signatures are
both unique and unforgeable. Many authentication systems, therefore, consist of two parts: (1) a
method of applying a unique, unforgeable digital signature to a message and (2) a method of
verifying the authenticity of a digital signature that has been applied to a message.
Capulet, posing as Romeo, might send a message to Juliet. Capulet's message might even be
encrypted, using Juliet's public encryption key. However, when Juliet tests the digital signature on
the message, she discovers that it does not match Romeo's. She knows, therefore, she has received
a bogus message.
Because digital signatures cannot be forged, they cannot be repudiated. That is, anyone who
applies his or her digital signature to a message cannot later disown it by claiming forgery.

Cryptographic Techniques
This section introduces the two primary cryptographic techniques:
• “Secret Key Systems” (page 270)
• “Public Key Systems” (page 270)

Secret Key Systems
In secret key systems, the sender and receiver of a message each use the same secret key. The
sender uses it to encrypt a message, and the receiver uses it to decrypt this message. This method
is simple and straightforward, but it has an inherent vulnerability.

Key Vulnerability
The secret key system is inherently vulnerable in that both parties must possess the same key. In
other words, the same key must be communicated between both parties without anyone else coming
into possession of it, either inadvertently or through sinister intent. If these parties are proximate,
the chance of compromise is not a large one. However, if the parties are in separate physical
locations, which is most often the case, they must entrust a third party, such as a telecommunications
system, to distribute the secret key between both parties without anyone else coming into possession
of it.

Key Management
The effort to protect and control keys is called key management (see “Secure Sockets Layer (SSL)”
(page 274)). Key management is of paramount importance in secret key cryptography because of
the inherent vulnerability of keys.

Public Key Systems
Inpublic key systems, each party is assigned a pair of keys: a public key and an associated private
key. The owner of a key pair distributes her public key to any sender wanting to communicate
privately with her, while retaining, and keeping absolutely secret, her private key (see “Public-Key
Systems” (page 271)). The sender uses the owner's public key to encrypt his message; the owner
then uses her private key to decrypt it.

270 Security Concepts

In other words, in public key systems, only half of the encryption mechanism (the public key) is
shared among the parties to a communication; the other half (the private key) never leaves the
possession of its owner. Neither key is of any value without the other.
Public key cryptography can be used for both privacy (encryption) and authentication (digital
signatures).

Figure 14 Public-Key Systems

Web Client

Internet

iTP Secure WebServer

Subsequent requests are
sent with the same ticket

...so the resource is returned
immediately

URL Request with Ticket

Requested Resource

Encryption
For encryption,public key systems work as follows: To send a private message to Juliet, Romeo
looks up Juliet's public key in a public directory. Using this public key, he encrypts his message
and then sends it to Juliet across a normal (nonsecure) communications channel. Upon receiving
Romeo's message, Juliet uses her private key, which is uniquely associated with her public key, to
decrypt it.
Because only Juliet has access to her private key, no one else can decrypt Romeo's message.
Therefore, even if Capulet, Juliet's father, intercepts Romeo's message, he cannot read it – unless
he gains access to Juliet's private key.

Session Keys
In practice, encrypting data with a public key system is computationally slow and therefore
expensive. Secret key systems, based on a technology such as the Data Encryption Standard (DES),
are much faster.
To save time, instead of encrypting his message with Juliet's public key, Romeo could generate a
random key on the basis of a secret key technology, and then use this key (called a session key)
to encrypt his message. After using Juliet's public key to encrypt his session key, Romeo would
send Juliet both his encrypted message and the encrypted session key. Upon receiving the encrypted
message and key, Juliet would use her private key to decrypt Romeo's session key, and then use
the session key to decrypt Romeo's message. The net result is more steps, but less time.

Digest Functions
Generating a digital signature by encrypting an entire message is also computationally expensive.
To speed things up, many signature systems first compute a digest of a message. A digest is a
string of bits (128 bits, for example) constructed such that it would be highly unlikely for any two
digests to be identical. It would also be essentially impossible to re-create a message on the basis
of its digest or to find another message with the same digest.
After generating a digest from his message, Romeo could sign this digest instead of the entire
message. Upon receiving Romeo's message and its accompanying digest, Juliet could verify
Romeo's signature by independently computing the digest and verifying the signature.

Cryptographic Techniques 271

Authentication
For authentication,public key systems work as follows: Romeo and Juliet want to make sure the
messages they receive are in fact from each other and not from someone else, Juliet's father, for
example. When Juliet generates a message to Romeo, she performs a special computation involving
both her private key and the plaintext of her message. She attaches the result of this computation,
called her digital signature, to her message and sends it (encrypted with Romeo's public key) to
Romeo.
On the other end, after decrypting Juliet's message, Romeo wants to make sure it is really from
Juliet. To verify the authenticity of Juliet's message, Romeo performs a special computation that
involves Juliet's message along with her digital signature and her public key. If this computation
produces the expected result, Romeo knows Juliet's digital signature is genuine; if it does not
produce the expected result, Romeo knows he should ignore the message.

Managing Key Certificates
Certificates are digital documents attesting to the binding of a public key to an individual or other
entity. They allow verification of the claim that a given public key does in fact belong to a given
individual.Certificates help prevent an imposter from using a key to impersonate someone else.
In their simplest form, certificates contain a public key and a name. As commonly used, they also
contain the expiration date of the key, the name of the Certificate Authority (CA) that issued the
certificate, the serial number of the certificate, and perhaps other information. Most important,
certificates contain the digital signature of the certificate issuer.
A CA issues the certificate and signs it with its private key.

Using Certificates
Public key certificates generate confidence in the legitimacy of the public keys to which the
certificates are bound. Recipients of these certificates can use them to verify not only the signature
of the certificate owner but the certificate itself. This level of verification strongly ensures against
any possibility of forgery or false representation.
Two or morecertificates can be enclosed with the same message such that one certificate testifies
to the authenticity of the previous certificate. Such a hierarchy of authentication is called thecertificate
chain. At the end of such a chain is a top-level CA that is trusted without a certificate from any
other CA (see Figure 15 (page 272)).

Figure 15 Certificate Chain

Sender Sender

CA

CA CA

Top Level (Trusted) CA

272 Security Concepts

The most secure form of authentication involves enclosing multiple public key certificates with every
signed message sent. However, the more familiar the sender is (or becomes) to the receiver of a
message, the less need there is to enclose multiple certificates. For example, Juliet might send
Romeo multiple certificates with her first message to him but only a single certificate thereafter,
after Romeo has had a chance to verify all the certificates accompanying her first message.
The best practice is probably to enclose a certificate chain of sufficient length so that the issuer of
the highest-level certificate in the chain is well-known to the receiver.
In accordance with the Public Key Certificate Standards (PKCS), every signature points to a certificate
that validates the public key of the signer. In other words, each signature contains the name of the
issuer of the certificate and the serial number of the certificate. Therefore, even if no certificates
are enclosed with a message, a verifier can still use the certificate chain to check the status of the
public key.

Obtaining Certificates
To obtain a public key certificate, Juliet first generates her own key pair. She then sends the public
key part of her key pair to an appropriate CA, along with convincing proof of her identity. After
validating Juliet's identity, the CA sends Juliet a certificate attesting to the binding between Juliet
Capulet and her public key. It also sends her a certificate chain verifying the CA's own public key.
As discussed in “Using Certificates” (page 272), Juliet can now use her certificate and inherited
chain to demonstrate the legitimacy of her public key.
CAs require varying forms of proof for verifying an applicant's identity. One CA might require a
driver's license, another might require notarization of the certificate request form, yet another might
require fingerprints. The Apple Computer Open Collaborative Environment (OCE), for example,
requires that the certificate request form be notarized.

Transport Layer Security (TLS)
TLS is an Internet protocol, which is defined by the Internet Engineering Task Force (IETF) and
described in RFC 4346. This protocol ensures confidentiality, and authentication layers over reliable
transport layers. It allows client/server applications to communicate across a network without any
threat of eavesdropping or data tampering. Among other features, TLS provides the following:
• Endpoint authentication and communications confidentiality over public networks using

cryptography.
• RSA security with 1024 and 2048-bit strengths.
The TLS protocol is composed of the following layers:
• The TLS Record Protocol
• The TLS Handshake Protocol

TLS Record Protocol
The TLS Record Protocol encapsulates other higher level protocols and provides connection security.
When implemented, the TLS Record Protocol ensures that the connection is private and reliable.
The secured connection has the following properties:
• Data encryption is achieved using symmetric cryptography (such as DES, RC4 encryptions

algorithms). The TLS library generates unique keys for each connection. These keys are
generated in accordance with the protocols agreed by both, the client and the server.

• The message is transmitted securely using hashed MAC algorithms instead of simple MAC
algorithms. The hash algorithms supported are SHA256, SHA1 and MD5. In cases when the
communicating protocol negotiates security parameters, the TLS Record Protocol can operate
without a MAC.

TLS Handshake Protocol
The TLS Handshake protocol is an encapsulated protocol. This protocol facilitates client/server
authentication and enables them to agree on an encryption algorithm and the cryptographic keys.

Transport Layer Security (TLS) 273

The TLS Handshake Protocol provides connection security where:
• The communicating entities are authenticated using asymmetric cryptography or public key

cryptography (for example, RSA, DSS).
• The secret keys shared between the communicating entities cannot be accessed by

eavesdroppers or any other entity placed in the connection.
• The secret keys shared cannot be modified by any other party without the knowledge of the

communicating entities.

Secure Sockets Layer (SSL)
This subsection describes:
• “What SSL Does” (page 274)
• “SSL 3.0 Protocol Enhancements Over SSL 2.0” (page 274)
• “Deploying TLS and SSL” (page 274)

What SSL Does
The Secure Sockets Layer (SSL) protocol provides channel security for all communications between
a Web client and a server during any session for which SSL is operative.
SSL provides the following types of security between a Web client and a server:

After a simple handshake to define a secret key, all messages between the Web client
and server are encrypted.

Private

The server is always authenticated with its public key certificate. The Web client is
optionally authenticated to the server.

Authenticated

The message transport uses a message authentication code (MAC) to check that
messages are not modified in transit.

Reliable

Because SSL and HTTP are different protocols and typically use different port numbers (such as
443 and 80, respectively), the iTP Secure WebServer can handle secure and standard clients
simultaneously. As a result, some information can be provided to users in unencrypted form while
other information can be provided only in encrypted form.

SSL 3.0 Protocol Enhancements Over SSL 2.0
SSL 3.0 includes a number of enhancements over SSL 2.0:
• Requires fewer handshake messages, therefore allowing faster handshakes.
• Supports additional key-exchange and encryption algorithms (for example, Diffie-Hellman,

Fortezza). However, the iTP Secure WebServer supports only the RSA key-exchange algorithm.
• Supports hardware tokens in the form of Fortezza cards. This is the first step toward more

general support for cryptography-capable smart cards.
• Includes an improved client certificate request protocol, allowing a server to specify a list of

CAs that it trusts to issue client certificates. The Web client returns a certificate signed by one
of those CAs; if the server does not have such a certificate, the connection handshake fails.
This improvement frees users from having to choose a certificate for each connection. (For
more information about the certificate request protocol, see “Requesting a Certificate”
(page 59).)

Deploying TLS and SSL
To deploy TLS or SSL on a server:
1. Configure and enable a server to use the TLS or SSL security protocol.
2. Use the Region command to use TLS or SSL on specific server contents.

274 Security Concepts

For example, to enable secure access to the file secret-recipes.html, you might include the
following directive in the server configuration file (httpd.config):
Region /cookbook/secret-recipes.html {
RequireSecureTransport
}

The reference to this file in the HTML document accessing your secret recipes might then look like
this:
Here are the <a href="https://cookbooks.org/cookbook/
secret-recipes.html">secret recipes!

To enable TLS or SSL connections and specify the certificate to be used for TLS or SSL connections,
you specify the AcceptSecureTransport directive in the server configuration file (httpd.config).
The AcceptSecureTransport directive sets the default certificate for all regions on the server,
similarly to the following example:
AcceptSecureTransport -cert {CN=Juliet,O=Capulet's House of
Keys}

Comparing TLS and SSL
This section compares http:compared the design and relative advantages of TLS and SSL.

Design Goals
SSL was designed to provide a secure channel of communication between a Web client and a
server. The entire data stream between the Web client and the server is encrypted; clients and
servers do not negotiate about the application of particular security enhancements to individual
documents. In most cases, clients can verify that servers have a certificate issued by a trusted CA.
However, servers cannot authenticate clients.
Unlike SSL, the advantage of TLS is that it is independent of application protocol. Higher-level
protocols can be transparently layered on top of the TLS Protocol. The TLS standard does not specify
how protocols add security when layered on top of TLS. TLS allows you to decide how to initiate
TLS handshaking, how to interpret the authentication certificates exchanged, and design and
implement your protocols accordingly.

Relative Advantages
Both SSL and TLS provide private communication capability. They allow user names and passwords
to be carried in encrypted messages for authentication.
When selecting a protocol for your server, in addition to the relative advantages, you also must
consider which protocol your clients will be using. The best solution is for your server to service
both protocols.

Comparing TLS and SSL 275

E Tool Command Language (Tcl) Basics
This section describes the basic Tcl concepts and language elements you must know to write iTP
Secure WebServer configuration scripts.
iTP Secure WebServer configuration scripts are written in theTool Command Language (Tcl). It is
important to note that any new directives you specify in the server configuration file do not take
effect until the server is restarted. (See “Managing the iTP Secure WebServer Using Scripts”
(page 82).)
You configure the iTP Secure WebServer to your particular requirements by creating a configuration
script. This script contains a series of directives expressed in the syntax of Tcl commands. The script
sources in other files that you can customize to describe the configurations of optional features like
secure transport and Java servlet support. For information about the nature and locations of all the
configuration scripts, see “Configuring the iTP Secure WebServer” (page 94).
Although Tcl is a complete programming language, the subset of Tcl commands and features
described in this section is likely to be sufficient for most needs. Should you require additional Tcl
commands and features, you might want to refer to a Tcl resource (See “Bibliography” (page 285)).
To write a iTP Secure WebServer configuration script in Tcl, you must understand basic elements
or concepts in each of these areas:
• “Tcl Syntax Rules” (page 277)
• “Tcl Commands” (page 277)
• “Script Commands” (page 279)

276 Tool Command Language (Tcl) Basics

Tcl Syntax Rules
A Tcl script consists of a series of commands and comments entered into a file. The following
syntactical rules apply:
• A comment consists of any single line beginning with the pound sign (#). Comments are not

executed.
For example, the following four lines are comments and therefore not executed by the Tcl
interpreter:

The following directive specifies the
location of the server contents
#

• Multiplearguments in a command are separated by spaces or tabs.
For example, the following Filemap configuration directive has two arguments separated
by tabs:
Filemap /personal/unerd/ /udir/unerd

• If an argument itself contains spaces or tabs, it must be delimited with either double quotation
marks (") or curly braces ({}). If you delimit an argument with curly braces, no command or
variable substitution (described) will occur within the argument.
For example:
Message error-forbidden {
<TITLE>Access Denied</TITLE><H1>Access Denied</H1>
You have been denied access.
}

• Arguments delimited with curly braces can be nested. These arguments can consist of
commands.
For example:
Region / {
 if [HostMatch *.widget.com] {
Redirect /widget-welcome.html
 }
}

• Multiple commands are separated by semicolons or by end-of-lines.
For example:
puts stdout "Hello world!" ; exit

• The backslash (\) character indicates that the next character is to be interpreted literally. This
feature is useful for including special characters (such as $, [, and]) in command arguments.
A backslash at the end of a line indicates that the command is continued on the next line.
For example:
DenyHost *.openmarket.com *.foo.com *.bar.com *.widgets.com \
*.unerd.org

• A dollar sign prefixed to a variable name indicatesvariable substitution: the value of the named
variable is substituted for its name.
For example, in the following example, the path resolves to /httpd/logs/httpd.log:
set root /httpd
ExtendedLog $root/logs/httpd.log

• Square brackets delimiting a command indicatecommand substitution: the delimited command
is to be executed immediately and its return value is substituted for the bracketed command.
For example, in the following example, if [pwd] resolves to /httpd/logs, and then path is
set to /httpd/logs:
set path [pwd]

Tcl Syntax Rules 277

Tcl Commands
This section describes Tcl commands in general and then discusses specific Tcl commands commonly
used in configuration scripts.
A Tcl command consists of a command procedure (keyword) followed by zero or more arguments.
For example:
puts stdout "Hello world!" ; exit

In this example, puts is a command procedure with two arguments: stdout and the string Hello
world! It writes Hello world! to standard output. The second procedure, exit, has no
arguments; it simply causes the Tcl script to terminate.

278 Tool Command Language (Tcl) Basics

Tcl commands can take five different kinds of arguments:
• Numeric

Numeric arguments consist of either integers or floating-point numbers. Tcl command procedures
expect number-valued arguments to be a single value (for example, 13 or 1.34).Expressions
can be used in arguments if they are evaluated by the Tcl command procedure expr, which
returns a single value. For example:
set my_num [expr 2*3]

Tcl provides the same arithmetic, logical, bit-wise, and relationaloperators, in addition tomath
functions, used in the C language. The one exception is that the relational operators are also
used on string values for comparison.

• String
String arguments consist of sequences of ASCII characters, including spaces. For example:
"Access Denied!"

Note the required use of quotes.

• List
List arguments consist of zero or more elements separated by spaces. For example:
"*.status.com *.money.com *.power.com"

Note the required use of quotes.

• Script
A command argument can be an embedded Tcl script. A Tcl script argument is always delimited
with curly braces.
Tcl script arguments can be nested, as in the following example. Several of the iTP Secure
WebServer command procedures (configuration directives) use Tcl script arguments. Tcl script
arguments are also used extensively in the Tcl looping and branching procedures. For example:
Region / {
if [HostMatch *.widget.com] {
Redirect /widget-welcome.html
 }
}

• Variable
There are two kinds of variables in Tcl: scalar variables and associative arrays. These variables
store assigned values that can be referenced in subsequent commands.
You assign values to Tclvariables with the set command. For example, the command
set root /usr/tandem/webserver

assigns the value /usr/tandem/webserver to the variable root.
After a variable is set with a value, you canreference this value later in a Tcl script by prefixing
the variable name with a dollar sign ($). Referencing a variable in this way is calledvariable
substitution. For example, if the variable root currently holds the value assigned by the set
command immediately, and then the reference to root in the command (configuration directive)
ExtendedLog $root/logs/httpd.log

is replaced by the current value of root, which is /usr/local/httpd. As a result, the
ExtendedLog configuration directive specifies the path:
/usr/tandem/webserver/logs/httpd.log

Script Commands
This subsection describes Tcl core commands that are commonly used in writing configuration
scripts for the iTP Secure WebServer:
pid

Script Commands 279

The pid command returns the numeric process ID of the server startup process. This ID is useful
for composing unique file names for configuration files or log scripts. Note that the process ID
returned by this command might not be the same as the ID for the server daemon process. See
“Configuration Directives” (page 198).
pwd

The pwd command returns the current working directory, which is the directory containing the
configuration script. The information returned by the pwd command is especially useful for composing
path names that are relative to the location of the configuration script.
expr expression

The expr command interprets expression as either a numeric expression or a string comparison
and returns the result.
For example:

Return ValueCommand

9expr 4+5

40expr 10*4

1expr "foo" == "foo"

0expr "foo" !="foo"

Table 38 (page 280) lists the operators allowed inTclexpressions; they are grouped in decreasing
order of precedence.

Table 38 Tcl Expression Operators

DescriptionOperator

Unary minus, bit-wise NOT, logical NOT. None of these
operators might be applied to string operands. Bit-wise
NOT might only be applied to integers.

- ~ !

Multiply, divide, remainder. None of these operators might
be applied to string operands; remainder might only be

* / %

applied to integers. The remainder always has the same
sign as the divisor and an absolute value smaller than the
divisor.

Add and subtract. Valid for all numeric operands.+ -

Left and right shift. Valid only for integer operands.<< > <

Boolean less, greater, less than or equal, greater than or
equal. Each operator produces 1 if the condition is true;

< > <= > =

0 if false. When applied to strings, these operators perform
comparison.

Boolean equal, not equal. Each operator produces a 0 or
1 result. Valid for all operand types.

== !=

Bit-wise AND. Valid only for integer operands.&

Bit-wise exclusive OR. Valid only for integer operands.^

Bit-wise OR. Valid only for integer operands.|

Logical AND. Produces a 1 result if both operands are
nonzero; 0 otherwise. Valid only for numeric operands
(integers or floating-point).

&&

280 Tool Command Language (Tcl) Basics

Table 38 Tcl Expression Operators (continued)

DescriptionOperator

Logical OR. Produces a 0 result if both operands are zero;
1 otherwise. Valid only for numeric operands (integers or
floating-point).

||

If-then-else, as in C. If x evaluates to nonzero, the result is
the value of y. Otherwise, the result is the value of z. The
x operand must have a numeric value.

x?y:z

if expression if_true [else if_false]

The if command provides conditional execution for controlling the flow of execution in a Tcl script.
If expression evaluates to a nonzero result, the if_true statement is executed; otherwise, the
if_false statement (if specified) is executed. For example, the following command sets the
variable x to zero if its value was previously negative:
if {$x < 0} { set x 0 }

switch value { pattern command pattern command ...}

The switch command provides conditional execution on the basis of a pattern matching a specified
value. The switch command compares value against each listed pattern and executes the
command associated with the first match. If one of the patterns is default, the command associated
with this pattern will be executed if no match occurs. For example:
switch $x {
*.company.com { set flag 1 }
*.widgets.com { set flag 2 }
default { set flag 3 }
}

In this example, if the value of x matches *.company.com, flag is set to 1. If x matches
*.widgets.com, flag is set to 2. If no match occurs, flag is set to 3.
string match pattern string

The string match command provides string matching. If pattern matches string, the command
returns 1 (indicating true); otherwise, it returns 0.
info exists variable

The info exists command determines if a variable or array element exists. If variable exists,
the command returns 1 (indicating true); otherwise, it returns 0. For example, the following command
will return 1 if the array element HEADER(item) exists:
source filename

The source command executes the contents of filename as a Tcl script. For example, the
command
source config.tcl

executes the contents of config.tcl as a Tcl script.
Tcl provides a core set of command procedures, a complete list of which you can find in any Tcl
resource.
The Tcl command procedures provided by the iTP Secure WebServer are called configuration
directives. These are described in detail in “Configuration Directives” (page 198).

Script Commands 281

F HTTP/1.1 Feature List
Table 39 (page 282) lists many of the HTTP/1.1 features supported by Release 4.0 of the iTP Secure
WebServer. The section numbers in the first column correspond to section numbers in Revision 3
of the IETF draft specification for the protocol. Future revisions of that specification might have
different section numbering.
In addition to these features, the iTP Secure WebServer supports Basic Authentication, as defined
in RFC 2617. To see RFC 2617, use this URL:
http://www.ietf.org/rfc/rfc2617.txt
For background information about any feature, consult the protocol specification.

Table 39 HTTP/1.1 Features Supported by iTP Secure WebServer

FeatureSection

Persistent Connections8.1

Use of 100 (Continue) status8.2.4

OPTIONS9.2

GET9.3

HEAD9.4

POST9.5

PUT9.6

TRACE9.8

100 Continue10.1.1

200 OK10.2.1

201 Created10.2.2

204 No content10.2.5

206 Partial content10.2.7

301 Moved Permanently10.3.2

302 Found10.3.3

304 Not Modified10.3.5

400 Bad Request10.4.1

401 Unauthorized10.4.2

403 Forbidden10.4.4

404 Not Found10.4.5

405 Method Not Allowed10.4.6

406 Not Acceptable10.4.7

408 Request Timeout10.4.9

412 Precondition Failed10.4.13

413 Request Entity Too Large10.4.14

416 Requested Range Not Satisfiable10.4.17

417 Expectation Failed10.4.18

282 HTTP/1.1 Feature List

http://www.ietf.org/rfc/rfc2617.txt

Table 39 HTTP/1.1 Features Supported by iTP Secure WebServer (continued)

FeatureSection

500 Internal Server Error10.5.1

501 Not Implemented10.5.2

505 HTTP Version Not Supported10.5.6

Strong Entity Tags13.3.3

Weak Entity Tags13.3.3

Accept14.1

Accept-Charset14.2

Accept-Encoding14.3

Accept-Language14.4

Accept-Ranges14.5

Allow14.7

Authorization14.8

Content-Encoding14.11

Content-Language14.12

Content-Length14.13

Content-Location14.14

Content-Range14.16

Content-Type14.17

Date14.18

ETag14.19

Expect14.20

Host14.23

If-Match14.24

If-Modified-Since14.25

If-None-Match14.26

If-Range14.27

If-Unmodified-Since14.28

Last-Modified14.29

Location14.30

Range14.35

Referrer14.36

Server14.38

TE14.39

Trailer14.40

Transfer-Encoding14.41

User-Agent14.43

283

Table 39 HTTP/1.1 Features Supported by iTP Secure WebServer (continued)

FeatureSection

Vary14.44

WWW-Authenticate14.47

Keep-Alive19.7.1.1

284 HTTP/1.1 Feature List

G Bibliography
Bibliography

These publications are useful sources of information about Web-related technology and usage
issues:
• Albitz, Paul, and Liu, Cricket. DNS and BIND. Sebastopol, CA: O’Reilly & Associates, 1998.

This book provides useful information about working with the Domain Name Server (DNS).

• Cheswick, William R., and Bellovin, Steven M. Firewalls and Internet Security: Repelling the
Wily Hacker. Reading, MA: Addison-Wesley, 1994.
This book offers practical information about running a secure Internet site.

• Garfinkel, Simson, and Spafford, Gene. Practical UNIX and Internet Security. Sebastopol,
CA: O’Reilly & Associates, 1996.
This book offers practical information about running a secure UNIX site.

• Hunt, Craig. TCP/IP Network Administration. Sebastopol, CA: O’Reilly & Associates, 1998.
This book is useful for anyone who has to administer a UNIX system attached to a TCP/IP
network.

• Liu, Cricket et al. Managing Internet Information Services. Sebastopol, CA: O’Reilly &
Associates, 1994.
This book describes how to set up Internet servers for the World Wide Web, Gopher, FTP,
Finger, WAIS, or e-mail services.

• Ousterhout, John K. Tcl and the Tk Toolkit. Reading, MA: Addison-Wesley, 1994.
This book provides a complete description of the Tcl language. The author of the book is also
the creator of the language.

• Wrox Press, Ltd. Professional Java Server Programming (J2EE Edition)
This publication is a useful source of information about programming Java Servlets and the
J2EE environment. It provides useful information about the Servlet API and servlets/JSP
programming.

• Subrahmanyam Allamaraju, et al. Professional Java Server Programming (J2EE Edition). Wrox
Press Ltd, 2000.

Online Reference Information
These URL references are available and can be retrieved by using standard Web clients over the
Internet:
• General references:

http://www.w3.org

• Hypertext Transfer Protocol (HTTP) references:
http://www.w3.org/Protocols/rfc2616/rfc2616.html

• Common Gateway Interface (CGI) references:
http://www.ietf.org/rfc/rfc3875

• Digital ID from VeriSign reference:
http://www.verisign.com/

• For a list of materials on Web technology, see the “Bibliography” (page 285).

Bibliography 285

http://www.w3.org
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.ietf.org/rfc/rfc3875
http://www.verisign.com/

Glossary
This glossary defines terms used both in this manual and in other HP manuals. Both
industry-standard terms and HP-specific terms are included.

browser. A graphical user interface (GUI) used to access sites on the World Wide Web. Netscape, Internet
Explorer, Mosaic, and Lynx are commonly used browsers.

CERN. The European Laboratory for particle physics. The originators of the Hypertext Transport Protocol
(HTTP) and Hypertext Markup Language (HTML) concepts.

CGI. See Common Gateway Interface (CGI)
CommerceNet. A consortium that was formed in Silicon Valley to promote electronic commerce over the Internet.
Common Gateway
Interface (CGI).

A standard protocol used as the interface between Web servers and the programs these servers
use to process requests from Web clients.

connection. The path between two protocol modules that provides reliable stream delivery service. In the
Internet, a connection extends from a Transmission Control Protocol (TCP) module on one machine
to a TCP module on another machine.

deployment
descriptor.

The web.xml file that contain resource definitions such as MIME types, mapping of requests to
servlets, access control and servlet initialization parameters.

disk files. Standard POSIX or Guardian style disk files. The file names of POSIX disk files comply with the
POSIX specifications.

distinguished
name (DN).

The complete name of a directory entry, consisting of the Relative Distinguished Name (RDN) of
the entry and the RDNs of its superior entries.

DN. See distinguished name (DN)
DNS. See Domain Name Server (DNS).
Domain Name
Server (DNS).

A method for naming resources. The basic function of the DNS is to provide information about
network objects by answering queries.

domain. In the Internet, a part of the naming hierarchy. Syntactically, a domain name consists of a sequence
of names (labels) separated by periods (dots).

Ethernet. A popular local area network (LAN) technology invented at the Xerox Corporation Palo Alto
Research Center. An Ethernet itself is a passive coaxial cable; the interconnections all contain
active components. Ethernet is a best-effort delivery system that uses CSMA/CD technology. Xerox
Corporation, Digital Equipment Corporation, and Intel Corporation developed and published the
standard for 10 Mbps Ethernet.

File Transfer
Protocol (FTP).

The Internet standard, high-level protocol for transferring files from one machine to another.
Usually implemented as application-level programs, FTP uses the TELNET and Transmission Control
Protocol (TCP) protocols. The server side requires a Web client to supply a login identifier and
password before it will honor requests.

FTP. See File Transfer Protocol (FTP).
gateway. A special-purpose, dedicated computer that attaches to two or more networks and routes packets

from one to the other. In particular, an Internet gateway routes Internet Protocol (IP) datagrams
among the networks to which it is connected. Gateways route packets to other gateways until
they can be delivered to the final destination directly across one physical network. The term is
loosely applied to any machine that transfers information from one network to another, as in mail
gateway.

GESA. See Gigabit Ethernet ServerNet Adapter (GESA).
Gigabit Ethernet
ServerNet Adapter
(GESA).

A single-port ServerNet adapter that provides Gigabit connectivity on NonStop servers. The GESA
installs directly into an existing Ethernet port, and multiple GESAs are supported in a system
enclosure.

hierarchical
routing.

Routing based on a hierarchical addressing scheme. Most Internet routing is based on a two-level
hierarchy in which an Internet address is divided into a network portion and a host portion.
Gateways use only the network portion until the datagram reaches a gateway that can deliver
it directly. Subnetting introduces additional levels of hierarchical routing.

286 Glossary

Hypertext Markup
Language (HTML).

The tagging language used to format Hypertext documents on the World Wide Web. It is built
on top of Standard Generalized Markup Language (SGML).

Hypertext
Transport Protocol
(HTTP).

The communications protocol used for transmitting data between servers and Web clients
(browsers) on the World Wide Web.

IEEE. See Institute of Electrical and Electronics Engineers (IEEE).
Institute of
Electrical and
Electronics
Engineers (IEEE).

An international industry group that develops standards for many areas of electrical engineering
and computers.

Instrumentation. The procedure of collecting statistics from the desired WebServer on certain configured parameters
Internet address. The 32-bit address assigned to hosts that want to participate in the Internet using TCP/IP. Internet

addresses are the abstraction of physical hardware addresses, just as the Internet is an abstraction
of physical networks. Actually assigned to the interconnection of a host to a physical network,
an Internet address consists of a network portion and a host portion. The partition makes routing
efficient.

Internet Protocol
(IP).

The Internet standard protocol that defines the Internet datagram as the unit of information passed
across the Internet and that provides the basis for the Internet connectionless, best-effort packet
delivery service.

Internet. Physically, a collection of packet-switching networks interconnected by gateways, along with
protocols that allow them to function logically as a single, large, virtual network. When written
in uppercase, INTERNET refers specifically to the DARPA Internet and the TCP/IP protocols it
uses.

interoperability. The ability of software and hardware on multiple machines from multiple vendors to communicate
meaningfully.

IP. See Internet Protocol (IP).
ITU-T. A division of the United Nations International Telecommunications Union that coordinates

standards-setting activities.
Joint Photographic
Expert Group
(JPEG).

An image format used to transmit graphics on the World Wide Web (WWW).

JPEG. See Joint Photographic Expert Group (JPEG).
key database file. The file in which you maintain keys you generated using the keyadmin command with either the

-mkpair or -keydb argument. These are the keys you use to generate certificates for software
encryption.

Key Exchange Key
(KEK).

An encryption key used to encrypt other keys.

local area network
(LAN).

Any physical network technology that operates at high speed (usually from tens of megabits per
second to several gigabits per second) over short distances (up to a few thousand meters).

Mosaic. See browser.
Nagle’s Algorithm. Nagle's algorithm is a means of improving the efficiency of TCP/IP networks by reducing the

number of packets that must be sent over the network. This algorithm provides a relief for
'small-packet' problem by controlling the congestion in TCP/IP. The 'small packet' problem arises
when an application repeatedly emits data in small chunks, frequently only 1 byte in size. Since
TCP packets have a 40 byte header (20 bytes for TCP, 20 bytes for IPv4), this results in a 41
byte packet for 1 byte of useful information, a huge overhead. The situation becomes worse, over
slow links, where many such packets can be in transit at the same time, potentially leading to
congestion collapse.
Nagle's algorithm works by coalescing a number of small outgoing messages, and sending them
all at once. Specifically, as long as there is a sent packet for which the sender has received no
acknowledgment, the sender should keep buffering its output until it has a full packet's worth of
output, so that output can be sent all at once.

Netscape. See browser.

287

NonStop Servlets
for JavaServer
Pages (NSJSP).

NonStop Servlets for JavaServer Pages (NSJSP) are platform-independent server-side programs
that programmatically extend the functionality of Web-based applications by providing dynamic
content from a webserver to a client browser over the HTTP protocol.

nowait mode. In Guardian file-system operations and in some APS operations, the mode in which the called
procedure initiates an input/output (I/O) operation but does not wait for it to complete before
returning control to the caller. In order to make the called procedure wait for the completion of
the operation, the application calls a separate procedure. Compare wait mode.

Open System
Services (OSS).

An open system environment available for interactive or programmatic use with the NonStop
operating system. Processes that run in the OSS environment use the OSS application program
interface (API); interactive users of the OSS environment use the OSS shell for their command
interpreter.

OSS applications. POSIX compliant applications.
OSS. See Open System Services (OSS).
packet. The unit of data sent across a packet-switching network. While some Internet literature uses it to

refer specifically to data sent across a physical network, other literature views the Internet as a
packet-switching network and describes IP datagrams as packets.

PATHMON. The central controlling process for a NonStop TS/MP application.
Pathway. The former name of NonStop TS/MP, a product providing transaction services for persistent,

scalable, transaction-processing applications.
physical layer. Layer 1 in the OSI Reference Model. This layer establishes the actual physical connection between

the network and the computer equipment. Protocols at the Physical Layer include rules for the
transmission of bits across the physical medium and rules for connectors and wiring.

process. A running entity that is managed by the operating system, as opposed to a program, which is a
collection of code and data. When a program is taken from a file on a disk and run in a processor,
the running entity is called a process.

protocol. A formal description of the message formats and rules two or more machines must follow to
exchange messages. Protocols can describe low-level details of machine-to-machine interfaces
(for example, the order in which the bits from a byte are sent across a wire) or high-level exchanges
between application programs (for example, the way in which two programs transfer a file across
the Internet). Most protocols include both intuitive descriptions of the expected interactions and
more formal specifications using finite state-machine models.

QIO subsystem. A product that provides buffers and control blocks for protocol processes, including TCP/IP,
TLAM, and NonStop IPX/SPX running on the same processor.

Request for
Comments (RFC).

The name of a series of notes that contain surveys, measurements, ideas, techniques, and
observations, along with proposed and accepted Internet protocol standards. RFCs are edited
but not referenced. They are available across the Internet.

RFC. See Request for Comments (RFC).
Secure Sockets
Layer (SSL).

A protocol for private communication on the World Wide Web and authentication of a Web
server by a Web client.

server class. A grouping of duplicate copies of a single server program, all of which execute the same object
program.

server process. A process that implements requests for an application and returns replies to the requester.
server programs. In NonStop TS/MP, programs that handle the data manipulation and data output activities for

online transaction processing applications. Server programs are designed to receive request
messages from requester programs; perform the desired operations, such as database inquiries
or updates, security verifications, numeric calculations, or data routing to other computer systems;
and return reply messages to requester programs.

server. A process or set of processes that satisfy requests from Web clients in a clientserver environment.
Simple Mail
Transfer Protocol
(SMTP).

The Internet standard protocol for transferring e-mail messages from one machine to another.
SMTP specifies how two mail systems interact, and specifies the format of control messages the
two mail systems exchange to transfer mail.

SSL. See Secure Sockets Layer (SSL)..

288 Glossary

subnet address. An extension of the Internet addressing scheme that allows a site to use a single Internet address
for multiple physical networks. Outside of the site using subnet addressing, routing continues as
usual by dividing the destination address into an Internet portion and local portion. Gateways
and hosts inside a site using subnet addressing interpret the local portion of the address by
dividing it into a physical network portion and host portion.

subsystem. The software or hardware facilities that provide users with access to a set of communications
services.

TCP Delayed
Acknowledgements.

For every data packet received, TCP/IP sends an 'ACK' packet for synchronization purposes.
This is done in order to ensure that the data packet has reached its destination. If anything goes
wrong with the data packet during transmission, the acknowledgement packet 'ACK' will not be
received at the sender's end. In this condition, the data packet will be re-transmitted. There is a
fair possibility that these 'ACK' packets may cause the network congestion. TCP Delayed
Acknowledgments is a feature introduced into TCP which uses the Delayed ACK Algorithm, by
default with a delay timer of 200 milliseconds. It does not send an ACK right away. The hope is
to have data ready in that time frame of 200 milliseconds. Then, the 'ACK' can be sent
(piggy-backed) along with a data segment.

TELNET. The Internet standard protocol for remote terminal connection service. TELNET allows a user at
one site to interact with remote timesharing systems at another site just as if the user’s terminal is
connected directly to the remote machine. That is, the user invokes a TELNET application program
that connects to a remote machine, prompts for a login ID and password, and then passes
keystrokes from the user’s terminal to the remote machine and displays output from the remote
machine on the user’s terminal.

Transmission
Control Protocol
(TCP).

The Internet standard transport-level protocol that provides the reliable, full-duplex stream service
on which many application protocols depend. TCP allows a process on one machine to send a
stream of data to a process on another. It is connection-oriented, in the sense that before
transmitting data participants must establish a connection. Software implementing TCP usually
resides on the operating system and uses the Internet Protocol (IP) to transmit information across
the Internet. It is possible to terminate (shut down) one direction of flow across a TCP connection,
leaving a one-way (simplex) connection. The Internet protocol suite is often referred to as TCP/IP
because TCP is one of the two most fundamental protocols.

Transport Layer
Security (TLS).

A security protocol that provides a secure channel for private communication on the World Wide
Web, through encryption and authentication.

Unicode. The 16-bit character encoding used by Java for the char and java.lang.String data types.
URL. Uniform Resource Locator.
wait mode. In the NonStop operating system, the mode in which the called procedure waits for the completion

of an input/output (I/O) operation before returning a condition code to the caller. Compare
nowait mode.

Web clients. Programs that execute on IBM-compatible PC, Apple Macintosh, or Unix platforms, among others.
They provide a graphic user interface (GUI) for access to documents and programs on the Web.
A Web browser is the most familiar example of a Web client.

Web Container. A Java run-time environment that manages the lifecycle of servlets and JSP.
Web server. Web servers are programs that execute on a variety of server platforms. These include

IBM-compatible servers, Apple Macintosh servers, Unix servers, and a large number of proprietary
hosts. Web server functions can be divided into two parts. A file server part performs normal file
server functions such as file transfer and buffering. A message switching facility allows messages
from Web clients to be forwarded to application programs.

World Wide Web
(WWW) protocols.

The WWW protocols were first defined by the CERN project in Switzerland and were later
extended by a number of groups, most notably by the National Center for SuperComputing
Applications (NCSA) at the University of Illinois. These WWW protocols were originally developed
to improve communications over the Internet by providing the ability to access and display
Web-client hardware-independent documents that not only contained ASCII text but that also
contained pictures, graphics, and voice and video elements. In addition to accessing documents,
the WWW protocols can also be used to provide document searching facilities and also interaction
with user-written or vendor-provided servers.

WWW. See World Wide Web (WWW) protocols..

289

Index

Symbols
-symlink-disable, 212, 236, 242, 258
-symlink-owner, 212, 236, 242, 258
<$endrange>CGI programs

variables in Region commands, 75
<$endrange>client authentication, 72
<$endrange>log files

error, 109
<$endrange>Region commands

description of;, 113
<$startrange>CGI programs

variables in Region commands, 75
<$startrange>client authentication, 72
<$startrange>log files

error, 109
<$startrange>Region commands

description of;, 113

A
Accept directive, 198
Accept headers, 101
AcceptSecureTransport directive

description of;, 200
access

controlling, 112, 233
directory, 101
information, recording, 206
log format, 261

AccessLog directive, 109, 206, 261
AddCGI command;Region commands

AddCGI, 234
admin httpd server class

defining, 184
description of;, 183

admin server class
defining, 184
description of;, 183

Administration Server
architecture, 182
configuring, 183
installing, 183
invoking, 183
menu of functions, 185
screens, 185

algorithms (ciphers), specifying;ciphers
description of;, 75

aliases
benefits of, 111
host machine, 111
registering, 111
setting up, 112

AllowHost command, 113
AllowHost command;Region commands

AllowHost, 234
AnonymousTicketExpiration attribute, 174, 242

application servers, configuring, 247
applications

persistent, 26
Arglist parameter, 247
AUTH_TYPE, 148
authentication, 270, 272, 273
authenticity, verifying, 270
Auto Accept Feature

TCP/IP, 47
TCP/IPv6, 47

AutomatedLogRolloverSize directive, 110
automatic indexing

disabling, 118
enabling, 117, 235

AUTOMATIC_FORM_DECODING, 150

B
BackupCPU attribute, 228
BigInBufSize, 207
Bourne shell, accessing environment variables from, 153
Browser directive, 207

C
C shell, 138
C/C++, accessing environment variables from, 152
CacheTime, 106
CacheTime directive, 208
certificate chains defined, 272
certificates

adding, 59
deleting, 60
disabling;keyadmin utility:disabling a certificate, 61
enabling;keyadmin utility:enabling a certificate, 61
issuing, 272
listing;keyadmin utility:listing certificates, 63
managing, 55, 272
multiple, 272
obtaining, 273
public-key, 74
requesting, 59
top level, 273
using, 272

CGI library, linking with applications, 141
CGI programs

configuring for, 142
denying access to, 146
description of;, 138
iTP Secure WebServer, as used by, 138
languages used in, 138
library, 140, 159
library:including in Pathway CGI application, 161
location of, 142
output, 156, 241, 246
passing input to, 155
Pathway, 140
priority of, 238

290 Index

response headers, 157
using, 75

CGI_Capture procedure, 159
CGI_connection_abort procedure, 161
CGI_feof procedure, 160
CGI_fflush procedure, 160
CGI_fgets procedure, 160
CGI_fread procedure, 160
CGI_fwrite procedure, 160
CGI_getc procedure, 161
CGI_initialize procedure, 161
CGI_main procedure, 160
CGI_printf procedure, 160
CGI_puts procedure, 161
CGI_set_fflush_timer, 160
CGI_terminate procedure, 161
cgilib.h file, 161
Chunked-transfer encoding

configuring, 221
support of, 29

ciphers
AcceptSecureTransport, using with, 76
list of;, 201

ciphertext, 269
clickable images

setting up, 127
testing, 129

CNAME, 111
Common Name attribute, 55
configuration directives

for content negotiation, 102
session identifiers<$endrange>, 255
session identifiers<$startrange>, 254

configuration files
creating, 276
format, 49
introduced, 94
Region directives in, 112

Configuring Your Server
TCP/IPv6 or IP CIP, 97

content negotiation
configuring, 101, 218, 225
language-only;language-only content negotiation, 102
multiview;multiview content negotiation, 103
support of, 29

Content-encoding\
header, 157

Content-length\
header, 157

Content-type\
header, 157

CONTENT_LENGTH, 148, 156
CONTENT_TYPE, 148
CookiePersistence attribute, 174, 243
core dumps

protecting, 52
secure transmission of, 52

core file, location of, 253
Country attribute, 56

CPUS attribute, 228, 248
Createdelay attribute, 250
cryptographic techniques, 270
Current Server Information screen, 186

D
database

key, 62, 217, 252
password, 240
user-name/password, 240

DATE_GMT, 133
DATE_LOCAL, 133
DAY, 121
DBACCESS table, RLS, 167
default root certificates;certificates

default root;root certificates, default, 64
DefaultType command, 143
DefaultType command;Region commands

DefaultType, 234
DefaultType directive, 209
Deletedelay attribute, 248
Deny command, 146
Deny command;Region commands

Deny, 235
DenyHost command, 114
DenyHost command;Region commands

DenyHost, 235
DES, 271
digest, message, 271
digital signatures, 270, 271, 272
directories

accessing, 101
structure, 44

DirectoryIndex command, 117
DirectoryIndex command;Region commands

DirectoryIndex, 235
Distributor

server class, 183
DNs

attributes of, 55
for new key, 57, 58, 62

DNS cache
description of;, 209, 210
entry expiration time, 210
size, 209

DNSCacheSize directive, 209
DNSExpiration directive, 210
DOCUMENT_NAME, 133
DOCUMENT_URI, 133

E
E-mail address;, 252
eavesdroppers, 270
Edit Configuration File screen, 190
EnableAnonymousTicketing attribute, 174, 243
EnableIncludes command;Region commands

EnableIncludes, 235
EncodingType command, 236
EncodingType command;Region commands

291

EncodingType, 236
EncodingType directive, 210
encryption

description of;, 269, 271
Env parameter;environment variables, 248
environment variables

accessing, 75
passing, 146

error logging
controlling, 159
rotating files, 110

error messages
customizing, 126, 222, 237
list of;, 260

error-maximum-connection, 223
error-unavailable, 222
ErrorLog directive, 109, 159, 211, 262
ErrorLog file, 158
errors

error-badrequest, 222
error-forbidden, 223
error-notfound, 223
error-redirect, 223
error-security-retry, 223
error-server, 223
error-shortredirect, 223
error-unauthorized, 222
recording, 211, 262, 264

Evaluating Performance, 133
Event Management Service (EMS)

installing templates;templates, EMS, 37
iTP WebServer event reporting, 260

Expires\
header, 157

Exporting a database entry;keyadmin utility
exporting a database entry, 67

expr command, 280
extended log format (ELF), 264
ExtendedLog directive, 109, 159, 211
ExtendedLog file, 158
extra path information, 155

F
Filemap command;Region commands

Filemap, 236
Filemap directive

described, 212
mapping requests to contents, 99
multiple, 212
supplying extra path info with, 156
with overlapping prefixes, 212

FileStatsCheckTime, 106, 213
FORM_DECODING_PREFIX, 151

G
GATEWAY_INTERFACE, 146
Gsubvol attribute, 228
Guardian files, using, 104

H
hardware requirements;requirements

hardware, 35
HEADER, 121, 122
headers, client, 153
Hometerm attribute, 228, 248
host name

caching, 209
deny access by, 114
grant access by, 113
in ServerAddress, 124
matching the, 236

HostMatch command;Region commands
HostMatch, 236

HOUR, 121
HTML

documents, moving, 239
forms, 155, 156

HTTP headers
in HEADER variable, 122
response, 156
variables for, 153

HTTP status codes, 158, 262
httpd

command, 85
configuration file;httpd.config file, 94
load balancing, 249
process, 85

httpd.adm.config file, 183
httpd.adm_stl.config, 183
httpd.stl.config file, 74
HTTPS

environment variable, 148
protocol specifier, 55

HTTPS_CLIENT TCL/CGI variables, 73
HTTPS_CLIENT_CERT, 149
HTTPS_CLIENT_CERTTYPE, 149
HTTPS_CLIENT_ERROR_DN, 149
HTTPS_CLIENT_ISSUER, 149
HTTPS_CLIENT_STATUS, 149
HTTPS_CLIENT_SUBJECT, 149
HTTPS_KEYSIZE, 148
HTTPS_PORT, 149
HTTPS_PROTOCOL, 149
HTTPS_PROTOCOL_VERSION, 149
HTTPS_SERVER_ISSUER, 148
HTTPS_SERVER_SUBJECT, 148
HTTPTraceMethodEnable directive, 213

I
if command, 120, 281
if_false statement, 120, 281
if_true statement, 120, 281
imagemap directive

described, 127
URL formats in, 128

imagemap files
creating, 127
description of;, 127

292 Index

sample, 129
images, in-line, 128
imposters, 270
index files

automatic generation of, 101
description of;, 101
for automatic indexing;, 117
for home pages, 101
specifying, 214, 236

IndexFile command;Region commands
IndexFile, 236

IndexFile directive, 101, 214
info exists command, 122, 281
input parameters, format of, 156
InputBufferScale directive, 215
InputTimeout directive, 215
IP addresses

assigning, 124
converting, 245
matching, 235, 236
multiple, 124

IP CIP, 31, 43
ISMAP tag, 128
iTP Secure WebServer

restarting, 187
starting, 83, 187
stopping, 83, 188

iTP WebServer Statistics screen, 194

J
Java

accessing environment variables from, 153
Javascript, 182

K
KeepAlive directive, 215
KeepAliveMaxRequest directive, 216
KeepAliveTimeout directive, 216
key database file

secure transmission of, 52
updating, 64

Key Generation DN
adding certificates with DNs different from, 59

key management, 270
keyadmin utility

configuring, 54
creating a certificate request;certificates:creating, 58
creating certificate chains<$endrange>, 72
creating certificate chains<$startrange>, 72
displaying information about, 67
generating key pairs, 56

KeyDatabase directive, 74, 217
keys

decryption, 269
encryption, 269
length of, 57
management of, 270
private, 55, 74, 270
public, 55, 270, 272, 273

secret, 270
session, 271
vulnerability of, 270

Korn shell, accessing environment variables from, 153

L
Language Preference directive, 102
Language Suffix directive, 102
LanguagePreference command;Region commands

LanguagePreference, 237
LanguagePreference directive, 218
LanguageSuffix directive, 218
LAST_ MODIFIED, 133
libcgi.a, linking with applications;applications

linking with CGI library, 141
Linkdepth attribute, 249
Linkdepth command, 249
Locality attribute, 56
Location\

header, 157, 158
log analysis tools, 109
log files

access, 109, 206, 261
analyzing, 109, 262
error, 211
error;error log format, 262
extended, 211
formats, 261
rotating, 110
space for, 109

log format
combined log format;combined log format (CLF), 109
common, 206, 211
common;common log format (CLF), 109, 261, 262
extended;extended log format (ELF), 109

Log-\
header, 157

logging, disabling, 118, 238
LogItem command;Region commands

LogItem, 237

M
MapDefine attribute, 249
MaxConnections directive, 219
MaxFileCacheContentSize, 107, 220
MaxFileCacheEntries, 107, 220
Maxlinks attribute, 249
MaxPostRequestSize, 221
MaxPostRequestSize command, 237
MaxRequestBody directive, 221
MaxServerClasses attribute, 228
MaxServerProcesses attribute, 228
Maxservers attribute, 249
Message command;Region commands

Message, 237
Message directive, 127, 222
messages

authentic, 270
digests of, 271

293

METHOD, 121
Migration Considerations

TCP/IPv6 Support, 48
MIME type, 157

application/x-httpd-cgi, 224
application/x-imagemap, 224
CGI, 142
default, 234
servers, 143
specifying, 209, 224, 237

MimeType command;Region commands
MimeType, 237

MimeType directive, 224
MINUTE, 121
MONTH, 121
multiple servers, configuring, 123
multithreading a server, 49

N
Negotiation command;Region commands

Negotiation, 238
Negotiation directive, 102, 225
networks, open, 269
newdn.txt file

software encryption, 59
NewEmsMessageFormat directive, 226
NoCache Region Command, 108
NoLog command;Region commands

NoLog, 238
non-parsed headers, 158
Numstatic attribute, 250

O
OPTIONS request method, support of, 29
Organization attribute, 55
Organizational Unit attribute, 55
OSS Command screen, 194
output

timing out, 227, 238, 241, 246
OutputTimeout command;Region commands

OutPutTimeout, 238
OutputTimeout directive, 227
overhead, computational, 271

P
PASSTHROUGH_CONTENT_LENGTH variable, 167
passwords

administering, 115
changing, 116
changing;keyadmin utility:changing passwords, 62
encrypting key database file, for, 54, 74
requiring, 114
specifying, 252

PATH, 121
PATH_INFO, 147, 155, 156
PATH_TRANSLATED, 147, 155, 156
Pathmon directive, 227
PATHMON environment

configuration, 227

Pathway CGI
description of, 140
extensions, 32

PathwayMimeMap directive, 143, 230
pattern matching, 234
persistent

applications;web-based interfaces, development of, 26
connections;connections, persistent, 26, 29, 216

pid command, 280
Pidfile directive, 231
plaintext, 269
port number, assigning, 123
post method, 243
PostExpirationExtension attribute, 174, 243
PrimaryCPU attribute, 228
Priority attribute, 228, 250
Priority command;Region commands

Priority, 238
privacy, ensuring, 269
process ID, recording, 231
process priority, CGI, 238
public-key systems, 270, 271, 272
PUT request method, configuring, 231
PutScript command;Region commands

PutScript, 239
PutScript directive, 231
pwd command, 280

Q
query strings, 155
QUERY_STRING, 121, 147, 155

R
RecvBufferScale directive, 232
Redirect command;Region commands

Redirect, 239
redirecting clients, 158
Region commands

conditional, 120
description of;, 74, 234
multiple, 118, 245
ordering of, 118

Region directive, 112, 233
RegionSet directive, 245
REMOTE_ADDR, 121, 122, 148
REMOTE_HOST, 120, 122, 147
REMOTE_IDENT, 148
REMOTE_PORT, 121
REMOTE_USER, 148
replicated servers, 166
REQUEST_METHOD, 147
requests

recording, 264
timing out, 215

RequiredFileExtension command;Region commands
RequiredFileExtension, 239

RequireIP attribute, 174, 243
RequirePassword command, 114

294 Index

RequirePassword command;RequirePassword command,
240

RequireSecureTransport command
example, 75

RequireSecureTransport command;Region commands
RequireSecureTransport, 240

restart script, 84
restarth script, 83
restarting

after reconfiguring, 276
dynamically, 83

reverse lookup, disabling, 245
ReverseLookup directive, 245
RewriteHostAlias attribute, 243
RewriteHtmlLinks attribute, 174, 244
RewriteImageLinks attribute, 174, 244
RLS

architecture, 166
configuring, 166

rmt server class;RLS
server class for, 167

RmtServer directive, 167

S
SCRIPT_NAME, 147
ScriptTimeout command;Region commands

ScriptTimeout, 241
ScriptTimeout directive, 246
Search Configuration Files screen, 193
secret-key systems, 270
secure transport configuration file;httpd.stl.config file, 97
security

enhancements, 53
PATHMON environment planning for;PATHMON

environment:planning, 50
Security attribute, 229, 251
SendBufferScale directive, 246
SendHeader command;Region commands

SendHeader, 241
server

administrator, 252
DNS, 209
password protecting, 52
performance, 245

server certificate chains
creating, 72
described, 72

server contents
adding, 100
indexing, 214, 236
managing, 99
moving, 116
partitioning, 100

Server Control Restart screen, 187
Server Control Start screen, 187
Server Control Stop screen, 188
Server directive, 247

CGI server classes, for, 145
SERVER_ADDR, 121, 146

SERVER_NAME, 121, 146
SERVER_PORT, 121, 147
SERVER_PROTOCOL, 147
SERVER_SOFTWARE, 146
ServerAddress directive, 124
ServerAdmin directive, 252
ServerPassword directive, 54, 74, 252
ServerRoot directive, 253
set command, 279
Setup

TCP/IPv6 support, 42
shell scripts, 138
SI_Default directive, 254
SI_DEPARTMENT, 149
SI_Department command;Region commands

SI_Department, 241
SI_Department directive, 255
SI_Enable directive, 255
SI_GROUP, 149
SI_RequireSI command;Region commands

SI_RequireSI, 242
SI_SI, 150
SI_UCTX, 150
SI_UID, 150
SIGALARM, 152, 160
SignatureLength attribute, 174, 244
single-threading a server, 49
SK_CacheExpiration directive, 255
SK_CacheSize directive, 256
SK_GlobalCache, 256
SK_GlobalCacheTimeout, 257
software requirements;requirements

software, 34
source command, 281
SQL/MP

Resource Locator Service, for, 166
SSI

defined, 130
directives, 131
specifying the use of, 130

SSL
connections, 54

standard error, 158
standard files, 159
standard input, 138, 155, 156, 159
standard output, 138, 156, 159
stats-form server class, 183
status response, 158
Status\

header, 157, 158
Stderr, 159
Stderr;standard error, 252
Stdin, 159
Stdin;standard input, 251
Stdout, 159
Stdout;standard output, 251
string match command, 281
supported systems, 34
switch command, 122, 281

295

symbolic links, disabling, 212, 236, 242, 258
system requirements;requirements

system, 34

T
TANDEM_CGI_FFLUSH_TIMER, 151
TANDEM_CGI_RELATIVE_PATH_SUPPORT, 152
TANDEM_CGI_SET_FFLUSH_TIMER, 160
TANDEM_RECEIVE_DEPTH, 49
Tcl

accessing environment variables from, 152
argument types, 279
arrays, 279
assigning variables in, 279
command arguments, 277
command procedures, 278
command substitution, 277
commands, 276, 278
comments, 277
common core commands, 279
concepts, 276
configuration scripts, in, 276
core command procedures, 281
description of;, 94
expressions, 279, 280
language elements, 276
list arguments, 279
looping and branching, 279
math functions, 279
multiple commands, 277
nested arguments, 279
numeric arguments, 279
operators, 279, 280
script arguments, 279
string arguments, 279
syntactical rules, 277
variable substitution, 277
variables, 120, 233, 279
variables in Region command, 180

threading
multithreading;server:multithreading, 49
single-threading;server:single-threading, 49

TLS, 32, 53, 273
configuration, 74
encryption, 46
environment variables, 75

TLS Handshake Protocol, 273
TLS Record Protocol, 273
TRACE method, support of, 29

U
URLs

advertising, 111
components of, 99
default, 128
extra path information in, 155
full, 128
mapping, 99, 212, 236
matching, 233, 234

query strings in, 155
redirect, 239
referring, 122
relative, 128
relative server, 128
tilde, beginning with, 242, 258
translating, 212, 236

User directive, 258
user directories

accessing, 242, 258
creating, 104, 242, 258
requests for, 104

user name
passwords assigned to, 240
requiring for client authentication, 114
specifying, 258

useradm utility, 115, 240
UserDir command;Region commands

UserDir, 242
UserDir directive, 104, 258

V
variables

assigning, 279
environment, 146, 234
in Region commands, 245
referencing, 279
SSL, 75
substitution of, 279
Tcl, 180, 279
time of day, 121

View Configuration Files screen, 189
View EMS Logs screen, 191
View Server Logs screen, 193
virtual hosts, 124
Virtual IP addresses, 123

W
Web clients, 30
WEEKDAY, 121
Welcome screen, 185

Y
YEAR, 121

296 Index

	iTP Secure WebServer System Administrator’s Guide
	Contents
	About This Document
	Supported Release Version Updates (RVUs)
	Intended Audience
	New and Changed Information in This Edition
	Document Organization
	Notation Conventions
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces
	General Syntax Notation

	Related Information
	TCP/IP Manuals
	Open System Services (OSS) Manuals
	NonStop TS/MP Manuals
	NonStop Java Manuals
	Other Related Manuals

	Publishing History
	HP Encourages Your Comments

	1 Introduction to the iTP Secure WebServer
	Features and Standards Supported by iTP Secure WebServer
	iTP Secure WebServer Architecture
	Web Clients
	TCP/IP Subsystem
	Conventional TCP/IP
	TCP/IPv6

	IP CIP
	iTP Secure WebServer httpd
	PATHMON Process
	Active Transaction Pages (ATP)
	Pathway CGI Server
	Generic Common Gateway Interface (CGI) Server
	Servlet Server Class (SSC)
	Resource Locator Service (RLS)
	iTP Secure WebServer Admin httpd
	Administration Server

	iTP Secure WebServer Encryption

	2 Installing the iTP Secure WebServer
	iTP Secure WebServer System Requirements
	Supported NonStop Systems
	Required and Optional Software
	Required Hardware

	Preparing Your System for the iTP Secure WebServer
	Event Management Service (EMS) Template Installation
	Installing and Configuring the iTP Secure WebServer
	Before You Begin the Installation
	Beginning the Installation
	Using DSM/SCM
	Running the IPSetup Program
	Copying the iTP Secure WebServer Software from the Distribution Medium
	Running the Setup Script
	Setup for iTP Secure WebServer on systems using TS/MP 2.2 or lower versions
	Setup for iTP Secure WebServer using TS/MP 2.3 or higher versions

	Setup for TCP/IPv6 support
	LNP Support for TCP/IPv6

	Generate Diffie-Hellman Parameters
	Setup for IP CIP Support
	Installing the Resource Locator
	Installation Considerations

	Verifying the Configuration
	Upgrading iTP Secure WebServer online
	The Ninety-Day Test Certificate
	Test-starting the Administration Server and the iTP Secure WebServer
	If You Plan to Use TLS or SSL Encryption
	If You Are Using the Nonsecure Version

	3 Planning the iTP Secure WebServer PATHMON Environment
	Conventional TCP/IP: The Distributor Process
	TCP/IPv6 and IP CIP:The Auto Accept Feature
	Migration Considerations For TCP/IPv6 and IP CIP Support

	Configuring the PATHMON Environment
	Threading Considerations for the httpd Server
	Security for the Server's Pathway Environment
	Who Can Modify the Configuration Files?
	Who Can Start/Stop the iTP Secure WebServer?
	What TCP/IP Port Is the Distributor Process Monitoring?
	Common Gateway Interface (CGI) Application Security Considerations
	Pathway CGI Server Class Considerations

	Other Security Considerations
	Protecting the Key Database File
	Protecting the Server Password
	Protecting Core Dumps
	Protecting Transmission of Key Database Files and Core Dumps

	4 Configuring for Secure Transport
	Using the Administration Server Securely
	Overview of Server Configuration
	Keyadmin Utility Configuration
	Server Configuration

	Managing Certificates
	Formatting Distinguished Names (DNs)
	Using the Keyadmin Utility to Manage Keys and Certificates
	Generating a New Key Pair
	Creating a Certificate Request
	Requesting a Certificate
	Adding a Certificate to the Key Database File
	Adding certificates with DNs that are different from the key generation DN

	Deleting a Certificate
	Renewing a Certificate
	Disabling or Enabling a Certificate
	Changing the Key Database File Password
	Creating a List of Key Database File Contents
	Updating the Default Root Certificates
	Exporting a Database Entry
	Displaying Keyadmin Utility Information
	Importing a Private Key into iTP Secure WebServer's Key Database File
	Exporting a Private Key to a User-defined Disk File
	Generating Diffie-Hellman Parameters

	Using Server Certificate Chains With the iTP Secure WebServer

	Managing Client Authentication
	Using the -requireauth Option
	Using the -requestauth Option
	Updating TLS and SSL Configuration
	Controlling Access and Privacy
	Specifying Content Access Using the Region Command
	Using TLS and SSL Environment Variables in CGI Programs
	Controlling Encryption and Integrity Checking
	Using Ciphers With the AcceptSecureTransport Directive
	Hashing Ciphers Used by iTP Secure WebServer Ciphers
	Negotiating Selection Among Available Ciphers
	Migrating the key database from iTP Secure WebServer 7.0 to 7.2 and later
	Configuring Trusted Client Root Certificate Database
	Configuring Support For Certificates with Non-English Characters

	5 Managing the iTP Secure WebServer Using Scripts
	The httpd Command
	Starting the iTP Secure WebServer Using the start Script
	Stopping the iTP Secure WebServer Using the stop Script
	Restarting the iTP Secure WebServer Using the restarth Script
	For TCP/IPv6 and IP CIP Support
	For Classical TCP/IP Support

	Restarting the iTP Secure WebServer Using the restart Script
	Updating the serverclasses Using the updatesc Script
	Using the httpd Command
	Syntax
	Description

	PATHMON Environment's Autorestart for the iTP Secure WebServer and Related Processes
	Collecting httpd Statistics Using statscom
	statscom Command
	Using the statscom Command
	Sample Commands for Statistics Collection When WebServer is Running Under a Single Pathmon
	Sample Commands of Statistics Collection When WebServer is Running Under a Domain (Two PATHMONs)

	Sample Configuration File for statscom

	Collecting Webserver Statistics Using timestat script
	Syntax

	6 Configuring the iTP Secure WebServer
	Configuring Your Server
	The httpd Configuration File
	Configuring Your Server for Use With TCP/IPv6 or IP CIP
	The Secure Transport Configuration File (httpd.stl.config)
	Configuring Global Session Key Caching
	Other Configuration Files

	Managing Server Contents
	Understanding How URLs Work
	Mapping Requests to Contents
	Using Multiple Filemap Directives
	Handling DirectoryAccesses
	Content Negotiation
	Configuration Directives for Content Negotiation
	Storing Content for Negotiation

	Establishing User Directories
	Using Guardian Files

	Controlling File Caching
	FileStatsCheckTime
	CacheTime
	MaxFileCacheEntries
	MaxFileCacheContentSize
	NoCache Region Command

	Managing Log Files
	Choosing a Log Format
	Common Log Format (CLF)
	Combined Log Format
	Extended Log Format (ELF)

	Planning Space for Logs
	Rotating Log Files
	Using the rollover and rollstarth Scripts to Rotate Log Files
	Using the httpd command to Rotate Log Files
	Log File Naming Conventions

	Setting Up Server Aliases
	How Aliases Work
	Why Aliases Are Useful
	Setting Up an Alias

	Controlling Access to the Server
	Using Region Directives
	Granting Access by Host Name/IP Address
	Denying Access by Host Name/IP Address
	Requiring Client Authentication
	Administering Passwords
	Checking the useradm Utility Version
	Creating a New Password File
	Adding a New User to a Password File
	Deleting a User From a Password File
	Changing a User's Password
	Example of Password Administration

	Redirecting Access
	Enabling Automatic Directory Indexing
	Disabling Logging
	Using Multiple Region Commands
	Using Pattern Variables (Lists)
	Using Conditional Commands
	Using Tcl Variables
	Example 1: Time of Day Variables
	Example 2: REMOTE_HOST and REMOTE_ADDR Variables
	Example 3: HEADER Variable

	Allowing Byte Ranges
	Implementing Multiple-Host Support
	Implementing Multiple Servers
	Using Different Ports
	Using Different IP Addresses
	Establishing Alias IP Addresses
	Assigning Servers to Specific IP Addresses

	Implementing Virtual Hosts for iTP Secure WebServer
	Setting Up Virtual Hosts

	Implementing Virtual Hosts for iTP Secure WebServer
	Setting Up Port Based Virtual Hosts
	Setting Up Name Based Virtual Hosts
	Setting Up IP Based Virtual Hosts

	Customizing Server Error Messages
	Setting Up Clickable Images
	Creating an Image Map File
	Image Map Directives
	URL Formats
	Full URL
	Server-Relative URL
	Relative URL

	Adding a Hypertext Anchor
	Testing the Image Setup
	Setting Up a Server-Side Include (SSI)
	Specifying SSI Use
	SSI Directives
	SSI Environment Variables

	Evaluating Performance

	Configuring Multiple Daemons Under Same Pathmon with Alternate Names
	Specifications for Different Configuration Files
	Script to Configure Multiple httpds and their Configuration Files

	7 Using Common Gateway Interface (CGI) Programs
	CGI Support in the iTP Secure WebServer Environment
	Generic-CGI Server Class
	Pathway CGI Server Classes
	Servlet Server Class (SSC)

	CGI Configuration and Programming
	Configuring for CGI Programs
	MIME Types
	Mapping MIME Types to Server Classes
	Server Class Configuration
	Program Access Restrictions

	Passing CGI Environment Variables
	HTTP Header Variables
	Passing Input
	Command Line
	Query Strings
	Extra Path Information
	HTML Forms

	Returning Output
	Response Headers
	Server Headers
	Location Header
	Status Header

	Nonparsed Headers

	Logging Error Information
	CGIStandard File Environment
	Standard Input
	Standard Output
	Standard Error
	Customizing the Standard File Environment

	CGI Library
	Pathway CGI Coding Considerations
	Including the CGI Library
	Design Guidelines

	Examples of a Pathway CGI Implementation

	8 Using NonStop Servlets for JavaServer Pages (NSJSP)
	9 Using the Resource Locator Service (RLS)
	Resource Locator Service (RLS) Architecture
	Configuring the Resource Locator Service (RLS)
	Defining the Server Class
	Creating the Database
	Example

	Modifying the Database

	Building and Installing the Resource Locator Service (RLS)

	10 Administering Session Identifiers for Anonymous Sessions
	Anonymous Ticketing
	Tracking
	Ticketing and Tracking Example
	Configuring for Anonymous Ticketing
	Enabling Session Identifiers
	Enabling Anonymous Ticketing
	Initializing a Department
	Activating Ticketing for Regions

	Advanced Configuration Options
	Anonymous Ticketing Attributes
	Setting the Anonymous Ticket Expiration Time
	Browser Caching
	How Proxy Servers Affect Ticketing

	Ticketing Strategies
	iTP Secure WebServer Default Ticketing Strategy
	Dynamically Rewriting References
	HTML and Image References
	Rewriting HTML References
	Rewriting Image References

	Using Session Identifiers for Reporting
	Using Tcl Variables for Anonymous Sessions

	11 Managing the iTP Secure WebServer From Your Browser
	Administration Server Architecture
	Installing the Administration Server
	Invoking the Administration Server
	Configuring the Administration Server
	Defining the admin Server Class
	Defining the admin httpd Server Class
	Defining the stats-form Server Class

	Administration ServerScreens
	Welcome
	What You See
	What You Do

	Current Server Information
	What You See
	What You Do

	Server Control: Start
	What You See
	What You Do
	What Happens Next

	Server Control: Restart
	What You See
	What You Do
	What Happens Next

	Server Control: Stop
	What You See
	What You Do
	What Happens Next

	View Configuration Files
	What You See
	What You Do
	What Happens Next

	Server Control: Add
	What You See
	What You Do
	What Happens Next

	Server Control: Delete
	What You See
	What You Do
	What Happens Next

	Edit Configuration File
	What You See
	What You Do
	What Happens Next

	View EMS Logs
	What You See
	What You Do
	What Happens Next

	View Server Logs
	What You See
	What You Do
	What Happens Next

	Search Configuration Files
	What You See
	What You Do
	What Happens Next

	OSSCommands
	What You See
	What You Do
	What Happens Next

	iTP WebServer Statistics
	What You See: Enter PATHMON/Domain Name
	What You Do: Enter PATHMON/Domain Name
	What You See: Select httpd Process
	What You Do: Select httpd Process
	What You See: Select Parameters
	What You Do: Select Parameters
	What You See: Statistics Display
	What You Do: Statistics Display
	What Happens Next

	A Configuration Directives
	Accept
	Syntax
	Description
	SCF TCP/IP Configuration
	Default
	Examples

	AcceptSecureTransport
	Syntax
	Description
	SCF TCP/IP Configuration
	Default
	Examples
	Examples of Secure Transport Protocol Support (Port 4430)
	Examples of Cipher Support
	Examples of hashAlgorithm Support

	AccessLog
	Syntax
	Description
	Default
	Example

	AutomatedLogRolloverSize
	Syntax
	Description
	Default
	Example

	BigInBufSize
	Syntax
	Description
	Default
	Example

	Browser
	Syntax
	Description
	Default
	Example

	CacheTime
	Syntax
	Description
	Default
	Example

	ClientCADatabase
	Syntax
	Description
	Default
	Example

	CombinedLogFormat
	Syntax
	Description
	Default
	Example

	DefaultType
	Syntax
	Description
	Default
	Example

	DNSCacheSize
	Syntax
	Description
	Default
	Example

	DNSExpiration
	Syntax
	Description
	Default
	Example

	EncodingType
	Syntax
	Description
	Default
	Example

	ErrorLog
	Syntax
	Description
	Default
	Example

	ExtendedLog
	Syntax
	Description
	Default
	Example

	Filemap
	Syntax
	Description
	Default
	Example

	FileStatsCheckTime
	Syntax
	Description
	Default
	Example

	HTTPTraceMethodEnable
	Syntax
	Description
	Default
	Example

	HeaderFieldSize
	Syntax
	Description
	Default
	Example

	IndexFile
	Syntax
	Description
	Default
	Example

	InputBufferScale
	Syntax
	Description
	Default
	Example

	InputTimeout
	Syntax
	Description
	Default
	Example

	KeepAliveHeader
	Syntax
	Description
	Default
	Example

	KeepAliveTimeout
	Syntax
	Description
	Default
	Example

	KeepAliveMaxRequest
	Syntax
	Description
	Default
	Example

	KeyDatabase
	Syntax
	Description
	Default
	Example

	LanguagePreference
	Syntax
	Description
	Default
	Example

	LanguageSuffix
	Syntax
	Description
	Default
	Example

	LoggingServerClass
	Syntax
	Description
	Default
	Example

	MaxConnections
	Syntax
	Description
	Default
	Examples

	MaxFileCacheContentSize
	Syntax
	Description
	Default
	Example

	MaxFileCacheEntries
	Syntax
	Description
	Default
	Example

	MaxPostRequestSize
	Syntax
	Description
	Default
	Example

	MaxRequestBody
	Syntax
	Description
	Default
	Example

	Message
	Syntax
	Description
	Default
	Example

	MimeType
	Syntax
	Description
	Default

	Negotiation
	Syntax
	Description
	Default
	Example

	NewEmsMessageFormat
	Syntax
	Description
	Default
	Examples

	OutputTimeout
	Syntax
	Description
	Default
	Example

	PasswordValidity
	Syntax
	Description
	Default
	Example

	Pathmon
	Syntax
	Description
	Examples

	PathwayMimeMap
	Syntax
	Description
	Examples

	Pidfile
	Syntax
	Description
	Default
	Example

	PutScript
	Syntax
	Description

	RecvBufferScale
	Syntax
	Description
	Default
	Example

	Region
	Syntax
	Description
	Region Commands
	Anonymous Ticket Attributes

	RegionSet
	Syntax
	Description
	Default
	Example

	ReverseLookup
	Syntax
	Description
	Default
	Example

	RmtServer
	Syntax
	Description
	Default
	Example

	ScriptTimeout
	Syntax
	Description
	Default
	Example

	SendBufferScale
	Syntax
	Description
	Default
	Example

	Server
	Syntax
	Description
	Server Commands

	ServerAdmin
	Syntax
	Description
	Default
	Example

	ServerPassword
	Syntax
	Description
	Default
	Example

	ServerRoot
	Syntax
	Description
	Default
	Example

	ServerTokens
	Syntax
	Description
	Default
	Examples

	set
	Syntax
	Description
	Default
	Example

	SI_Default
	Syntax
	Description
	Default
	Example

	SI_Department
	Syntax
	Description
	Default
	Example

	SI_Enable
	Syntax
	Description
	Default
	Example

	SK_CacheExpiration
	Syntax
	Description
	Default
	Example

	SK_CacheSize
	Syntax
	Description
	Default
	Example

	SK_GlobalCache
	Syntax
	Description
	Default
	Example

	SK_GlobalCacheTimeout
	Syntax
	Description
	Default
	Example

	TCPNoDelay
	Syntax
	Description
	Default
	Examples

	User
	Syntax
	Description
	Default
	Example

	UserDir
	Syntax
	Description
	Default
	Example

	B Error Messages
	C Server Log File Formats
	Access Log Format
	Access Log Entry Format
	Example

	Error Log Format
	Hypertext Transfer Protocol (HTTP) Status Codes
	Extended Log Format
	Extended Log Entry Format
	Example

	Logging through an External ServerClass

	D Security Concepts
	Open Network Security
	Encryption
	Authentication

	Cryptographic Techniques
	Secret Key Systems
	Key Vulnerability
	Key Management

	Public Key Systems
	Encryption
	Session Keys
	Digest Functions

	Authentication

	Managing Key Certificates
	Using Certificates
	Obtaining Certificates

	Transport Layer Security (TLS)
	TLS Record Protocol
	TLS Handshake Protocol

	Secure Sockets Layer (SSL)
	What SSL Does
	SSL 3.0 Protocol Enhancements Over SSL 2.0

	Deploying TLS and SSL
	Comparing TLS and SSL
	Design Goals
	Relative Advantages

	E Tool Command Language (Tcl) Basics
	Tcl Syntax Rules
	Tcl Commands
	Script Commands

	F HTTP/1.1 Feature List
	G Bibliography
	Bibliography
	Online Reference Information

	Glossary
	Index

