
NonStop Server for Java 6.0 Programmer's
Reference

HP Part Number: 546595-006
Published: August 2013
Edition: J06.04 and all subsequent J-series RVUs and H06.15 and all subsequent H-series RVUs

© Copyright 2010, 2013 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Java is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, and X/Open are registered trademarks and IT DialTone and The Open Group are trademarks of The Open Group in the U.S.
and other countries.

“X” device is a trademark of X/Open Company Ltd. in UK and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in connection with the furnishing,
performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to which it relates are
derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation. © 1985, 1988,
1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991
Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business Machines Corporation.
© 1988, 1989 Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. ©
1987, 1988, 1989, 1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. ©
1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution under license from The Regents
of the University of California. OSF acknowledges the following individuals and institutions for their role in its development:
Kenneth C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

Contents
About this Manual...7

Manual Information..7
Intended Audience..7
New and Changed Information..8
Document Organization..12
Notation Conventions..12
Related Reading...14
Revision History..20
HP Encourages your Comments..20
Printing this Document...20
Abbreviations...20

1 Introduction to NonStop Server for Java 6.0...22
Java HotSpot Server Virtual Machine...22
Java Standard Edition Development Kit (JDK) Highlights...23
Java Naming and Directory Interface (JNDI) Highlights..23
IPv6 Support..24
Associated Java Based Products...24

BEA WebLogic Server for the HP NonStop Server..25
JDBC Drivers for NonStop SQL Database Access...26
JToolkit for NonStop Servers..26
NonStop CORBA...27
NonStop Servlets for JavaServer Pages...27
NonStop Server for Java Message Service (JMS)..27
NonStop Tuxedo: Jolt Client..28
Stored Procedures in Java...28

2 Getting Started..30
Learning About the Prerequisites...30

Learning About Java...30
Learning About Open System Services (OSS)...30

Verifying the Java Installation...32
Tutorial: Running a Simple Program, HelloWorld...32
Specifying the CPU and Process Name with Which an Application Runs..34
Configuring a Java Pathway Serverclass...35

ARGLIST...35
PROCESSTYPE...35
ENV...35
PROGRAM...35

3 Installation and Configuration..37
Installation Requirements..37
Configuration Requirements...37

Creating Larger or Additional Swap Files..37
Setting Environment Variables..38
Symbolic Link..40
Configuring TCP/IP and DNS for RMI...40

NonStop Server for Java 6.0 Directory Structure...41
Directory Contents..41
Demonstration Programs...41

4 Implementation Specifics...42
Headless Support...42

Contents 3

Additional Files..43
Additional Environment Variable...43
Java Native Interface (JNI)...43

Calling C or C++ Methods from Java...44
Calling Java Methods from C or C++...45
Linker and Compiler Options...45
How to Create Your Own Library of Native Code..46

IEEE Floating-Point Implementation..46
Floating-Point Values...46
Double-Precision Values..46
How to Call TNS Floating-Point Functions from JNI Code...47

Multithreaded Programming...47
Thread Scheduling...47
Threading Considerations for Java Code...49
Threading Considerations for Native Code..50

Java Print Service (JPS)..51
Using the Guardian Printer..51
ThreadDumpPath Support..52

Dynamic Saveabend File Creation...52
Creating Child Process Using the -Dnsk.java.fastExec=true Option..52
Preemptive User Threads On NonStop Server For Java..52

Java Authentication and Authorization Service (JAAS)..53
JavaBeans...53
Debugging Java Programs...54

Debugging Overview...54
Transports...55
java Command Line Options to Run a Debuggee...55
Starting the Java Debugger (jdb) Tool...57
Debugging JNI Code...57
Debugging Java and JNI Code..58

Deviations in JVM Specification Options..58
java: Java Application Launcher Command Line Option Deviations...58
jdb: Java Debugger Command Line Option Deviations...58

Garbage Collection (GC)..59
General Information on Garbage Collection..59
Heap Layout..59
Managing Generation Size...60
Implementation of Garbage Collector Types..61

Java Garbage Collector Tuning for Application Performance..62
Java GC Profiling...64

HeapDumpOnly option..64
JVM Tuning Tools..66
Tuning Application Performance...66

Memory Considerations: Moving QIO to KSEG2...66
Determining the Heap Manager..68
Determining the Heap Setting..68
Related Tuning Guides..69

Java Signal Handlers..69
Change in Loading of .hotspot_compiler and .hotspotrc files..70

5 Transactions...72
Controlling Maximum Concurrent Transactions..72
Current Class Methods..72
Java Transaction API (JTA)..73

javax.transaction Interfaces...74

4 Contents

javax.transaction Exceptions..74
Examples..74

6 Application Profiling...76
Monitoring live Java applications..76
Collecting profile data for analysis..76
Obtaining Garbage Collection Data for Analysis..78
Analyzing Garbage Collection Data...79
-Xeprof versus -agentlib:hprof (HPROF)...79

7 Migrating Applications..80
Installation Changes..81
Public Library Directory..81
Java Based JAR File Locations...81

For Java Based Products..81
User-Provided JAR Files...81

Dynamic Link Libraries (DLLs)..82
Makefile to Link Native Libraries...82
Compiling C++ Native Code with the -Wversion3 Option..82
Floating-Point Support..83
Using AWT Classes..83
POSIX Threads...84
Directories of Binary Files Moved..84
Character Handling..84
BigDecimalFormat Class..84
JAAS Enhancement...85
Miscellaneous Changes for Migration to TNS/E...85

JNI_OnLoad and JNI_OnUnLoad Functions...85
Debugger...85
Default Heap and Stack Sizes..85
dlfcn.h File..86

A Supported and Unsupported Features of NonStop Server for Java 6.0.............87
Java SE 6.0 Features not Implemented in NonStop Server for Java 6.0..87

B Addendum to HPjmeter 4.2 User's Guide..88
Completing Installation of HPjmeter...88

Agent Requirements...88
File Locations...88
Configuring your Application to Use HPjmeter Command Line Options.....................................89
Preparing to run Java...89
Attaching to the JVM Agent of a Running Application...89

Monitoring Applications..89
Managing Node Agents...89
Diagnosing Errors when Monitoring Running Applications...89

Profiling Applications..89
Collecting Profile Data..90

Troubleshooting..90
Identifying Version Numbers..90
Installation..90
Node Agent..90

Quick References..91
Determining which HPjmeter Features are Available with a Specific JVM Version........................91

Glossary..92

Contents 5

Tables
1 Document Structure..12
2 Headless Support for Visual Feature Packages...23
3 Subdirectories of the /usr/tandem/java Directory...41
4 Demonstration Programs...41
5 Floating-Point Ranges..46
6 Double-Precision Ranges...46
7 Summary of Garbage Collector Implementations..61
8 Reserved Signals List...69
9 Current Class Methods..72
10 Summary of Migration Changes for NonStop Server for Java Versions....................................80
11 Summary of Floating Point Support...83
12 Agent Requirements..88
13 Supported –Xeprof options..90
14 Supported —agentlib:hprof options..90

Examples
1 Example 1:..57
2 Example 2:...57
3 Example 3:...57
4 Using -agentlib to run the JVM agent...89
5 Setting –Xbootclasspath...89

About this Manual
This section explains these subsections:

• “Manual Information” (page 7)

• “Intended Audience” (page 7)

• “New and Changed Information” (page 8)

• “Document Organization” (page 12)

• “Notation Conventions” (page 12)

• “Related Reading” (page 14)

• “Revision History” (page 20)

• “HP Encourages your Comments” (page 20)

• “Printing this Document” (page 20)

• “Abbreviations” (page 20)

Manual Information

Abstract
This document describes the HP NonStop ™ Server for Java ™, based on Java
Platform Standard Edition 6.0, a Java environment that supports compact, concurrent,
dynamic, and portable programs for the enterprise server. The NonStop Server for
Java uses the HP NonStop operating system to add scalability and program
persistence to the Java environment.

Product Version
HP NonStop Server for Java, based on Java Platform Standard Edition 6.0.

Supported Hardware
All HP Integrity NonStop NS-series (TNS/E) servers.

Supported Release Version Updates (RVUs)
This manual supports J06.04 and all subsequent J-series RVUs and H06.15 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.
On J-series platform with IP CLIM configuration, NSJ6.0 is supported only on J06.06
and later RVUs. On H-series platform with IP CLIM configuration, NSJ 6.0 issupported
only on H06.17 and later RVUs.

Intended Audience
This NonStop Server for Java 6.0 Programmer's Reference is for all Java programmers who want
to use Java on HP Integrity NonStop systems.
For programmers new to Java, this document refers to documentation from Oracle, which explains
what the J2SE Development Kit (JDK) contains and where to learn more about the language in
general. This NonStop Server for Java Programmer's Reference does not teach Java or provide
detailed information about the JDK.
For experienced Java programmers who want to access SQL databases with NonStop SQL/MP
or NonStop SQL/MX, this manual refers you to the JDBC Driver for SQL/MP Programmer's Reference
and the JDBC Driver forSQL/MX Programmer's Reference, respectively.

Manual Information 7

For Java programmers who want to determine application performance and behavior, this manual
describes how to use the HPeprof and HPROF profilers to obtain runtime information for a NonStop
Server for Java 6.0 program and also analyze profile data using the HPjmeter.
For developers new to NonStop systems, this document:

• Explains NonStop system fundamentals as they apply to the NonStop Server for Java 6.0
product.

• Refers to other appropriate NonStop system documentation.

New and Changed Information
Changes added to this revision part number 546595–006 are:

• “Feature Changes” (page 8)

• “Document Changes” (page 8)

Feature Changes
From NSJ 6.0 SPR — T2766H60^ACH and later versions provide the option
-Djava.security.nativeRNG option. Enabling this option reduces the startup time for the
first invocation of SecureRandom. This option can be enabled using the command:
-Djava.security.nativeRNG=true

Document Changes
The document changes are:
• Added section “Java Signal Handlers” (page 69).

• Added section “Change in Loading of .hotspot_compiler and .hotspotrc files”
(page 70).

• Added section “Oracle’s Implementation” (page 79).

• Added unsupported information in “Supported and Unsupported Features of NonStop Server
for Java 6.0” (page 87).

• Updated the section “Node Agent” (page 90).

• Provided references to the HPjmeter 4.2 User's Guide in the appropriate sections.
Changes added to this revision part number 546595-005 are:

• “Feature Changes” (page 8)

• “Documentation Changes” (page 8)

Feature Changes
NonStop Server for Java 6.0 supports the following feature:

• address = transport-address-for-this-connection is updated to support a range of port values,
to be specified withcommand line options to run a debuggee.

Documentation Changes
The documentation changes are:

• Updated address=transport-address-for-this-connection for “java Command Line Options to
Run a Debuggee” (page 55).

• Added new Note in “java Command Line Options to Run a Debuggee” (page 55).

• Added new content to the Introduction of “Application Profiling” (page 76).

• Added new sub-section “Attaching to the JVM Agent of a Running Application” (page 89).

8

• Updated the content for the section “Managing Node Agents on a NonStop Operating System”
(page 89).

• Added new sub-section “Checking for Application Paging Problems” (page 89).
Changes added to this revision part number 546595-004 are:

• “Feature Changes” (page 9)

• “Documentation Changes” (page 9)

Feature Changes
• None

Documentation Changes
The documentation changes are:

• Added the new section under “Implementation Specifics” (page 42):

◦ “Using the Guardian Printer” (page 51)

Changes added to this revision part number 546595-003 are:

• “Feature Changes” (page 9)

• “Documentation Changes” (page 9)

Feature Changes
NonStop Server for Java 6.0 supports the following feature:

• Support for the HeapDumpOnly option.
This option is used to observe memory allocation in a running Java application by taking
snapshots of the heapover time.

Documentation Changes
The documentation changes are:

• Added information on “HeapDumpOnly option” (page 64) under “Java GC Profiling”
(page 64).

• Added new section “ThreadDumpPath Support” (page 52).

• Removed the 'Analyzing Garbage Collection data' section from Appendix B.

• Updated references and links to Java documentation to point to the correct Oracle websites.
Changes added to this revision part number 546595-002 are:

• “Feature Changes” (page 9)

• “Documentation Changes” (page 10)

Feature Changes
NonStop Server for Java 6.0 supports the following features:

• The JREHOME environment variable need not be set to launch Java installed in a nonstandard
location. The Javacore classes will be picked up based on the location of the Java executable
in the Java Development Kit installation.

New and Changed Information 9

NOTE: If the JREHOME environment variable is set, Java installed in the location pointed by
$JREHOME directory will take precedence.

• The Dnsk.java.fastExec=true option reduces the latency of the Java
Runtime.exe()API, which isused to spawn a child process.

• The Dynamic saveabend file creation feature helps to create a saveabend file of a running
Java process without aborting the Java process. Thus, the Java process continues normal
execution after a short pause, during which the saveabend file is created.

• The -XX:ThreadTimeSlice[=T] option specifies the time slice for JVM-forced preemptive
thread scheduling.

• The -XX:EnableCompilerSafepoints option improves the Garbage Collection
performance of an application on systems running J-series.

NOTE: The -XX:EnableCompilerSafepoints option must not be used if the application
uses a selectable segment.

Documentation Changes
The documentation changes are:

• Updated information on the JREHOME environment variable in the following sections:

“Verifying the Java Installation” (page 32)◦
◦ “ENV” (page 35)

• Added a note on the JREHOME variable in the “JREHOME” (page 39) section.

• Updated the “Calling Java Methods from C or C++” (page 45) section.

• Added information on the XX:ThreadTimeSlice option in the “Multithreaded Programming”
(page 47) section.

• Added a note on the “Preemptive User Threads On NonStop Server For Java” (page 52)
feature.

• Added the following sections:

“Dynamic Saveabend File Creation” (page 52)◦
◦ “Creating Child Process Using the -Dnsk.java.fastExec=true Option” (page 52)

◦ “GC Log Rotation” (page 78)

• Updated the procedure required to set up monitoring for a live Java applications in the
“Monitoring live Java applications” (page 76) section.

• Added a note on GC log rotation in the “Analyzing Garbage Collection Data” (page 79)
section.

• Provided references to the HPjmeter 4.0 User's Guide in the appropriate sections.

• Replaced 'Appendix B: Addendum to HPjmeter 3.1 Users Guide' with 'Appendix B: Addendum
to HPjmeter 4.0 Users Guide'.

Changes added to this revision part number 546595-001 are:

• “Feature Changes” (page 11)

• “Documentation Changes” (page 12)

10

Feature Changes
NonStop Server for Java 6.0 supports the following features:

• Non-Blocking I/O for OSS regular files feature in Java applications. By default, this feature
is enabled on NSJ6.0. It allows performing regular I/O operations on multiple OSS files
simultaneously, thereby enhancing the performance of standard I/O operations on OSS
regular files. To disable this feature, use the -Dnsk.java.nonblocking=false option.

• Java Programming Language and Tools API

Framework for compiling source files from within an application.◦
◦ Standardized capabilities of the existing annotation processing tool.

• Security and Networking

XML digital signatures.◦
◦ Smart Card I/O API.

◦ Default cookie manager implementation.

◦ Internationalization of domain names and resource identifiers.

◦ Programmatic access to network parameters.

• Java Management Extensions (JMX)

Improved JMX Monitor API using a thread pool.◦
◦ MBean descriptor support beyond Model MBean.

◦ User-defined MBeans for applications.

• Serviceability

Continued investment on diagnosing, monitoring, and management.◦
◦ Improved monitor and diagnostics for locks.

◦ Improved diagnosing of java.lang.OutOfMemoryError

◦ Improved thread dumps of running applications.

◦ JVM TI and JPDA improvements.

• Includes all -X options supported in earlier versions of Java.

• Supports APIs that are core to the Java SE platform, among them Remote Method Invocation
(RMI), Non-Blocking I/O (NIO) APIs and the Collections Framework. For information on Java
SE 6 API Specification, see the Java™ Platform, Standard Edition 6 API Specification.

• Uses headless mode. For more information, see the Using Headless Mode in the Java SE
Platform.

• Supports JavaTM Platform, Standard Edition 6 JDK. For information on JDK, see the JDK 6
Documentation.
For information about Java SE 6 features, see Features and Enhancements.
The NSJ6 HotSpot JVM (NSJ6 JRE) provides the following functionalities:

◦ Improved performance.

◦ Java Platform Debugger Architecture (JPDA)

New and Changed Information 11

http://download.oracle.com/javase/6/docs/api/index.html
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/index.html
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/index.html
http://download.oracle.com/javase/6/docs/api/index.html
http://download.oracle.com/javase/6/docs/api/index.html
http://www.oracle.com/technetwork/java/javase/features-141434.html

◦ Nonblocking I/O APIs

◦ -Xeprof option

◦ -XX:+HeapDump option

◦ -XX:+HeapDumpOnOutOfMemoryError command line option

Documentation Changes
This is a new manual for NonStop Server for Java 6.0.

Document Organization
This document includes the following sections:

Table 1 Document Structure

DescriptionSection

Explains NonStop software fundamentals as they apply to
NonStop Server for Java 6.0, describes associated Java

“Introduction to NonStop Server for Java 6.0” (page 22)

products on the NonStop system, and points out J2SE, JDK
highlights.

Explains the prerequisites for using the NonStop Server for
Java 6.0 for readers new to the Java language or HP

“Getting Started” (page 30)

NonStop Open System Services (OSS) . Includes
step-by-step instructions for running a simple program and
for verifying the NonStop Server for Java installation.

Explains installation and configuration requirements, the
NonStop Server for Java 6.0 directory structure, how to
run Java tools, and how to verify the installation.

“Installation and Configuration” (page 37)

Explains issues and features that are unique to the NonStop
Server for Java 6.0 implementation, such as JNI, IEEE

“Implementation Specifics” (page 42)

floating-point implementation, Java Print Service,
multithreading programming, JavaBeans, remote
debugging, garbage collectors, and so forth.

Explains how the NonStop Server for Java 6.0 allows to
work with transactions.

“Transactions” (page 72)

Describes the application profiling environment and how
to use HPeprof (that is Xeprof) and HPROF agent. Also,
describes the usage of HPjmeter profile data analysis tool.

“Application Profiling” (page 76)

Explains how to change your applications that run with
earlier versions of NonStop Server for Java.

“Migrating Applications” (page 80)

Summarizes the supported and unsupported features of
NonStop Server for Java 6.0.

“Supported and Unsupported Features of NonStop Server
for Java 6.0” (page 87)

Provides instructions for using the HPjmeter tool on the HP
NonStop TM platform.

“Addendum to HPjmeter 4.2 User's Guide” (page 88)

Notation Conventions

Bold Type
Bold type within text indicates terms defined in the Glossary. For example:
abstract class

12

Computer Type
Computer type letters within text indicate keywords, reserved words, command
names, class names, and method names; enter these items exactly as shown. For
example:
myfile.c

Italic Computer Type
Italic computer type letters in syntax descriptions or text indicate variable
items that you supply. For example:
pathname

[] Brackets
Brackets enclose optional syntax items. For example:
jdb [options]

A group of items enclosed in brackets is a list from which you can choose one item
or none. Items are separated by vertical lines. For example:
where [threadID|all]

{ } Braces
A group of items enclosed in braces is a list from which you must choose one item.
For example:
-c identity {true|false}

| Vertical Line
A vertical line separates alternatives in a list that is enclosed in brackets or braces.
For example:
where [threadID|all]

... Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:
print {objectID|objectName} ...

An ellipsis immediately following a single syntax item indicates that you can repeat
that syntax item any number of times. For example:
dump objectID ...

Punctuation
Parentheses, commas, equal signs, and other symbols not previously described
must be entered as shown. For example:
-D propertyName=newValue

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation
symbol such as a parenthesis or comma. If there is no space between two items,
spaces are not permitted. In the following example, spaces are not permitted before
or after the period:
subvolume-name.filename

Notation Conventions 13

Line Spacing
If the syntax of a command is too long to fit on a single line, each line that is to be
continued on the next line ends with a back slash (\) and each continuation line
begins with a greater-than symbol (>). For example:
/usr/bin/c89 -c -g -I /usr/tandem/java/include \
> -I /usr/tandem/java/include/oss -I . \
> -Wextensions -D_XOPEN_SOURCE_EXTENDED=1 jnative01.c

Related Reading
For background information about the features described in this guide, see the following documents:

• “NonStop Server for Java Library” (page 15)

• “NonStop System Computing Documents” (page 15)

• “Oracle Java Documents” (page 19)

NOTE: To find white papers with the NonStop Server for Java documentation, see the HP NonStop
Technical Library at Business Support Center (BSC).

14

http://h20000.www2.hp.com/bizsupport/TechSupport/Product.jsp?lang=en&cc=us&taskid=101&contentType=SupportManual&docIndexId=64255&prodTypeId=15351&prodCatId=407843

NonStop Server for Java Library
In addition to this manual, the NonStop Server for Java library includes:

• NonStop Server for Java 6.0 Tools Reference
Provides a page for each Java tool and links to the Oracle website where the detail information
on that site applies.

• NonStop Server for Java API
Provides the API description for these packages:

◦ com.tandem.os

◦ com.tandem.tmf

◦ com.tandem.util

NonStop System Computing Documents
The following NonStop system computing documents are available in the HP NonStop Technical
Library at Business Support Center (BSC).

• Additional Java Based Products

◦ JDBC Driver for SQL/MP Programmer's Reference
This document describes how to use the JDBC Driver for SQL/MP (JDBC/MP) on NonStop
servers .JDBC/MP gives Java applications JDBC access to NonStop SQL databases
through SQL/MP. JDBC/MP conforms to the JDBC API from Oracle.

◦ JDBC Driver for SQL/MX Programmer's Reference
This document describes how to use the JDBC Driver for SQL/MX (JDBC/MX) on NonStop
servers. JDBC/MX gives Java applications JDBC access to NonStop SQL databases
through SQL/MX. JDBC/MX conforms to the JDBC API from Oracle.

◦ JToolkit for NonStop Servers Programmer's Reference
This documentation describes the JToolkit for NonStop Servers, a set of additional features
that work in conjunction with NonStop Server for Java. These features include:

– Enscribe API for Java, which enables an application programmer to perform
operations on Enscribe files.

– Pathsend API for Java, which provides support for creating Pathway clients by using
the Pathsend interface.

– Pathway API for Java, which provides for creating Pathway servers by using
$RECEIVE.

– Scalable TCP/IP (SIP) , where SIP provides a transparent method of giving scalability
and persistence to a network server written in Java.

– ddl2java Tool, which generates Java code based on Data Definition Language
(DDL) Dictionary definitions.

◦ WebLogic Server for the HP NonStop Server Platform Guide
This manual describes the installation, configuration, and management of the BEA
WebLogic Server on HP NonStop servers.

• C/C++ Programmer's Guide
Describes the HP implementation of the C and C++ programming languages for NonStop
systems. For a NonStop Server for Java JDBC driver to access a SQL/MP database, the C

Related Reading 15

http://h20000.www2.hp.com/bizsupport/TechSupport/Product.jsp?lang=en&cc=us&taskid=101&contentType=SupportManual&docIndexId=64255&prodTypeId=15351&prodCatId=407843

compiler for the HP NonStop Open System Services (OSS) environment (c89) must be installed
and configured correctly. Also, you might need this document if you use the Java Native
Interface (JNI) to communicate between Java and a native library.

• DLL Programmer's Guide for TNS/E Systems
Provides an introduction to the process of creating and using Dynamic-Link Libraries (DLLs) on
TNS/Esystems.

• eld Manual
Describes how programmers can use eld, the object file linker to create loadfiles that run on
TNS/E systems.

• iTP Secure WebServer System Administrator's Guide
Provides an overview of NSJSP with reference to NonStop Servlets for JavaServer Pages
(NSJSP) System Administrator’s Guide.

• Kernel-Managed Swap Facility (KMSF) Manual
Explains how to use the NSKCOM tool to create additional or larger swap files, which might
be necessary before you can execute the Java HotSpot virtual machine.

• Native Inspect Manual
Explains how to use the Native Inspect, which is a system-level command line symbolic
debugger that can be used to debug TNS/E native processes and snapshots.

• NonStop Servlets for JavaServer Pages (NSJSP) System Administrator’s Guide
Describes how to develop NonStop Servlets for JavaServer Pages and use them with the iTP
Secure WebServer.

• ODBC (Open Database Connectivity) Documents
The following documents describe products that allow programs written for the Microsoft®
Open Database Connectivity (ODBC) product to access NonStop SQL/MX and NonStop
SQL/MP.

◦ ODBC Server Reference Manual
Contains reference information for the NonStop ODBC Server, describes the NonStop
ODBC or SQL/MP Server features and the statements that the NonStop ODBC Server
supports, and explains how the NonStop ODBC Server accommodates the differences
between the ODBC or SQL/MP Server and NonStop SQL/MP.

◦ SQL/MX Connectivity Service Manual
Describes how to install and manage the SQL/MX Connectivity Service, commonly known
as MXCS. This product enables applications developed for the Microsoft® Open Database
Connectivity (ODBC) application programming interface and other connectivity APIs to
use SQL/MX to access NonStop SQL databases on an HP NonStop system.

• Open System Services Installation Guide
Explains how to install the OSS environment.

• Open System Services Porting Guide
Includes information on differences between OSS POSIX Threads and Standard POSIX Threads
that are useful for migrating multithreaded native libraries used with NonStop Server for Java
3.1 to NonStop Server for Java 5.

• Open System Services Programmer's Guide
Describes how to write applications in C for the OSS environment and includes information
on using standard POSIX threads and TMF transaction jacket routines.

16

• Spooler FASTP Network Print Processes Manual
Describes the Spooler FASTP network print processes, which provide the ability to use the
Spooler subsystem to print documents on a printer attached to a particular type of local area
network (LAN) or wide area network (WAN).

• Spooler Utilities Reference Manual
Presents a general introduction to the Spooler subsystem and describes the Spooler
utilities—Peruse, Spoolcom, Font, RPSetup — presenting the complete syntax for these utilities.

• SQL/MP Documents
The NonStop Server for Java includes JDBC drivers that enable Java programs to interact with
NonStop SQL/MP databases.

◦ Introduction to SQL/MP
Provides an overview of the SQL/MP product.

◦ SQL/MP Reference Manual
Explains the SQL/MP language elements, expressions, functions, and statements.

◦ SQL/MP Installation and Management Guide
Explains how to plan, install, create, and manage a NonStop SQL/MP database; describes
the syntax of installation and management commands; and describes NonStop SQL/MP
catalogs and file structures.

◦ SQL/MP Query Guide
Explains how to retrieve and modify data from a NonStop SQL/MP database and how
to analyze and improve query performance.

◦ SQL/MP Report Writer Guide
Explains how to use report writer commands and SQL command interface (SQLCI) options
to design and produce reports.

◦ SQL/MP Version Management Guide
Explains the rules governing version management for the NonStop SQL software, catalogs,
objects, messages, programs, and data structures.

◦ SQL/MP Messages Manual
Explains NonStop SQL/MP messages for the conversational interface, the application
programming interface (API), and the utilities.

◦ SQL/MP Programming Manual for C
Describes the SQL/MP programmatic interface for ANSI C. Also describes embedded
SQL statements used in C applications.

◦ SQL/MP Programming Manual for COBOL
Describes the SQL/MP programmatic interface for ANSI COBOL. Also describes
embedded SQL statements used in COBOL applications.

◦ See also SQL Supplement for H-series RVUs.

Related Reading 17

• SQL/MX Documents
NonStop Server for Java includes JDBC drivers that enable Java programs to interact with
NonStop SQL databases with SQL/MX.

◦ SQL Supplement for H-series RVUs
This supplement provides information about HP NonStop SQL/MP™ and HP NonStop
SQL/MX that is specific to H-series release version updates (RVUs). The currently published
SQL/MP and SQL/MX manuals are intended for G-series users. To use G-series manuals,
H-series users should review and understand the exceptions noted in this supplement.

◦ SQL/MX Guide to Stored Procedures in Java
Describes how to develop and deploy stored procedures in Java (SPJs) in SQL/MX.

◦ SQL/MX Quick Start
Describes basic techniques for using SQL in the SQL/MX conversational interface (MXCI).
Also includes information about installing the sample database.

◦ SQL/MX Comparison Guide for SQL/MP Users
Compares SQL/MP and SQL/MX.

◦ SQL/MX Installation and Management Guide
Describes how to install and manage SQL/MX on a NonStop server.

◦ SQL/MX Glossary
Explains the terminology used in SQL/MX documentation.

◦ SQL/MX Query Guide
Explains query execution plans and how to write optimal queries for SQL/MX.

◦ SQL/MX Reference Manual
Describes SQL/MX language elements (such as expressions, predicates, and functions)
and the SQL statements that can be run in MXCI or in embedded programs. Also describes
MXCI commands and utilities.

◦ SQL/MX Messages Manual
Describes SQL/MX messages.

◦ SQL/MX Programming Manual for C and COBOL
Describes the SQL/MX programmatic interface for ANSI C and COBOL.

◦ SQL/MX Data Mining Guide
Describes the SQL/MX data structures and operations needed for the knowledge-discovery
process.

◦ SQL/MX Queuing and Publish/Subscribe Services
Describes how SQL/MX integrates transactional queuing and publish/subscribe services
into its database infrastructure.

• TCP/IP Configuration and Management Manual
Describes the installation, configuration, and management of the NonStop TCP/IP product
(see TCP/IP). For Java's Remote Method Invocation (RMI) application program interface (API)
to function correctly, TCP/IP and its component, Domain Name Server (DNS), must be installed
and configured correctly.

18

• TCP/IPv6 Configuration and Management Manual
Describes how to configure and manage the NonStop TCP/IPv6 subsystem on a NonStop
S-series server. For IPv6 support, you must use the NonStop TCP/IPv6 subsystem with NonStop
Server for Java.

• TMF Documents

TMF Introduction
Introduces the concepts of transaction processing and the features of the HP NonStop
Transaction Management Facility (TMF) product.

◦

◦ TMF Application Programmer's Guide
Explains how to design requester and server modules for execution in the TMF
programming environment and describes system procedures that are helpful in examining
the content of TMF audit trails.

• TS/MP Pathsend and Server Programming Manual
HP NonStop Transaction Services/MP supports the creation of Pathway servers to access
SQL/MP, SQL/MX, or Enscribe databases in an online transaction processing (OLTP)
environment. Using the NonStop Server for Java, you can communicate with Pathway servers
from Java programs. This document explains how to write Pathway programs, including
Pathsend processes.

• TS/MP System Management Manual
Provides information about Pathway applications. You must be familiar with Pathway
applications in order to configure Scalable TCP/IP (SIP) applications.

Oracle Java Documents
For Java SE 6 documentation, visit the Oracle website http://www.oracle.com/technetwork/java/
javase/overview/index-jsp-136246.html.
The following documents were available on Oracle websites when this document was published,
but HP cannot guarantee their continuing availability. If a link to a Oracle document fails, use the
Oracle documentation zipped up on the distribution CD.

• JNDI document
(http://www.oracle.com/technetwork/java/index-jsp-137536.html)

• JDBC documents
(http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/)

• Java Print Service (JPS) document
(http://download.oracle.com/javase/6/docs/technotes/guides/jps/index.html)

• Java Transaction API (JTA) document
(http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html)

• Java Transaction Service (JTS) document
(http://www.oracle.com/technetwork/java/javaee/tech/jts-140022.html)

• Java Remote Method Invocation (RMI) document
(http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html)

Related Reading 19

http://www.oracle.com/technetwork/java/javase/overview/index-jsp-136246.html
http://www.oracle.com/technetwork/java/javase/overview/index-jsp-136246.html
http://www.oracle.com/technetwork/java/index-jsp-137536.html
http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://download.oracle.com/javase/6/docs/technotes/guides/jps/index.html
http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html
http://www.oracle.com/technetwork/java/javaee/tech/jts-140022.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

Revision History

PublishedProduct VersionPart Number

March 2010HP NonStop Server for Java 6.0546595-001
April 2010HP NonStop Server for Java 6.0546595-002
January 2011HP NonStop Server for Java 6.0546595-003
April 2011HP NonStop Server for Java 6.0546595-004
November 2011HP NonStop Server for Java 6.0546595-005
August 2013HP NonStop Server for Java 6.0546595-006

HP Encourages your Comments
HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or
compliments to docsfeedback@hp.com.
Include the document title, part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

Printing this Document
To print this document, visit the HP NonStop Technical Library at Business Support Center (BSC).
For a list of the sections, see Table 1 (page 12).

NOTE: Some browsers require that you reduce the print size to print all the text displayed on the
screen.

Abbreviations

American National Standards InstituteANSI.

Abstract Window ToolkitAWT.

Application Program InterfaceAPI.

American Standard Code for Information InterchangeASCII.

JavaBeans Development KitBDK.

Compact DiskCD.

Common Gateway InterfaceCGI.

Common Business-Oriented LanguageCOBOL.

Common Object Request Broker ArchitectureCORBA.

Central Processing UnitCPU.

Data Definition LanguageDDL.

Domain Name ServerDNS.

Digital Signature AlgorithmDSA.

Graphical User InterfaceGUI.

Hypertext Markup LanguageHTML.

Hypertext Transfer ProtocolHTTP.

Interface Definition LanguageIDL.

International Electrotechnical CommitteeIEC.

Institute for Electrical and Electronic EngineersIEEE.

Internet Engineering Task ForceIETF.

20

mailto:docsfeedback@hp.com.
http://h20000.www2.hp.com/bizsupport/TechSupport/Product.jsp?lang=en&cc=us&taskid=101&contentType=SupportManual&docIndexId=64255&prodTypeId=15351&prodCatId=407843

International Organization for StandardizationISO.

Java 2 Platform Standard EditionJ2SE.

Java Authentication and Authorization ServiceJAAS.

Java ArchiveJAR.

Java Conformance KitJCK.

J2SE Development KitJDK.

Java Foundation ClassesJFC.

Java Database ConnectivityJDBC.

JDBC Driver for SQL/MPJDBC/MP.

JDBC Driver for SQL/MXJDBC/MX.

Java Naming and Directory InterfaceJNDI.

Java Native InterfaceJNI.

Java Print ServiceJPS.

J2SE Runtime EnvironmentJRE.

Java Transaction APIJTA.

Java Transaction ServiceJTS.

Java Virtual Machine Tool InterfaceJVM TI.

Local Area NetworkLAN.

NonStop Transaction Services/MPNonStop TS/MP.

Open Database ConnectivityODBC.

Online Transaction ProcessingOLTP.

Object Management GroupOMG.

Open System ServicesOSS.

Object Transaction ServicesOTS.

Portable Operating System Interface XPOSIX.

POSIX threadPthread.

Remote Database FacilityRDF.

Remote Method InvocationRMI.

Release Version UpdateRVU.

Scalable TCP/IPSIP.

Service Provider InterfaceSPI.

Stored Procedure in JavaSPJ.

embedded SQL in Java programsSQLJ.

Structured Query Language/MPSQL/MP.

Structured Query Language/MXSQL/MX.

HP Tandem Advanced Command LanguageTACL.

Transmission Control Protocol/Internet ProtocolTCP/IP.

Transaction Management FacilityTMF.

Uniform Resource LocatorURL.

Virtual MachineVM.

World Wide WebWWW.

Abbreviations 21

1 Introduction to NonStop Server for Java 6.0
The HP NonStop Server for Java 6.0 is a Java environment that supports compact, concurrent,
dynamic, portable programs for the enterprise server. The NonStop Server for Java 6.0 requires
the HP NonStop Open System Services (OSS) environment. The NonStop Server for Java 6.0 uses
the HP NonStop operating system to add the NonStop system fundamentals of scalability and
program persistence to the Java environment.
NonStop Server for Java 6.0 is based on the Java Platform Standard Edition (Java SE) 6.0 reference
Java implementation for Solaris, licensed by HP from Sun Microsystems, Inc. With the introduction
of support for Java SE 6.0, the product's informal name became the NonStop Server for Java 6.0.
The NonStop Server for Java 6.0 is a conformant version of the Sun Microsystems Java SE 6.0
because it is a fully compliant headless JDK as defined by passing the 6b version of the Java
Conformance Kit (JCK). NonStop Server for Java 6.0 is branded as "Java Compatible".
NonStop Server for Java 6.0 supports the Sun Microsystems enhancement to AWT called "headless
support" that allows a Java VM to indicate whether a display, keyboard, sound, or mouse operation
can be supported in a graphics environment. Because of the nonvisual nature of NonStop servers,
NonStop Server for Java 6.0 is always a headless Java VM. For implementation-specific information,
see “Headless Support” (page 42).
The NonStop Server for Java 6.0 supports the Java Platform Debugger Architecture (JPDA), which
consists of three interfaces designed for use by debuggers in development environments for desktop
systems. This is described in the Sun Microsystems documentation for JPDA
(http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/).
This NonStop Server for Java 6.0 Programmer's Reference identifies the changes in the HP
adaptation of the reference Java implementation, emphasizing the differences between the reference
implementation and the NonStop Server for Java 6.0. For more information on the standard
architecture, see the Sun Microsystems documentation.
This section explains these subjects:

• “Java HotSpot Server Virtual Machine” (page 22)

• “Java Standard Edition Development Kit (JDK) Highlights” (page 23)

• “Java Naming and Directory Interface (JNDI) Highlights” (page 23)

• “IPv6 Support” (page 24)

• “Associated Java Based Products” (page 24)

Java HotSpot Server Virtual Machine
The NonStop Server for Java 6.0 implements the HotSpot server compiler and the runtime Java
HotSpot virtual machine. The HotSpot Server Java VM, provides a fast, reliable technology for the
enterprise server environment. For more information about this VM, see The Java HotSpot Server
VM (http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html).
Also, For more information, see

• White paper, Java HotSpot Virtual Machine, v1.4.1
(http://java.sun.com/products/hotspot/docs/whitepaper/Java_Hotspot_v1.4.1/Java_HSpot_WP_v1.4.1_1002_1.html).

• Guide, Java Virtual Machines
(http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html)

NOTE: NonStop Server for Java 6.0 does not support the client Java VM, the Deadlock Detection
utility, signal chaining, parallel copying collector, mostly concurrent mark-sweep collector, garbage
collector ergonomics, and 64-bit operation described in white papers and other information sources.
For more information about garbage collection, see “Garbage Collection (GC)” (page 59).

22 Introduction to NonStop Server for Java 6.0

http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
http://java.sun.com/products/hotspot/docs/whitepaper/Java_Hotspot_v1.4.1/Java_HSpot_WP_v1.4.1_1002_1.html
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html

Java Standard Edition Development Kit (JDK) Highlights
The NonStop Server for Java 6.0 consists of the following standard Java components (and the HP
extensions described else where in this document):

• Java virtual machine (VM) based on the J ava SE Runtime Environment (JRE) 6.0

• Core Packages of the Java ™ SE Development Kit (JDK) 6.0

• Standard Java SE 6.0 tools as documented in the NonStop Server for Java 6.0 Tools Reference
Pages. All standard tools are supported, except graphical-user interface (GUI)—such as
appletviewer, policytool, and jconsole—and client-side tools—such as javaws
and HtmlConverter. Experimental tools are not supported.

NonStop Server for Java 6.0 supports the JDK 6.0 API packages (java, javax, and org packages)
described in the Java Platform Standard Edition 6.0 API Specification
(http://download.oracle.com/javase/6/docs/api/index.html).
Because of the nonvisual nature of NonStop servers, the NonStop Server for Java 6.0 supports the
following packages according to “Headless Support” (page 42).

Table 2 Headless Support for Visual Feature Packages

DescriptionPackage

Contains all of the classes for creating user interfaces and for painting graphics
and images.

java.awt and AWT-related packages

Defines a contract between user interface components and technology that
provides access to those components.

javax.accessibility

Provides an API for capturing, processing, and playing back audio and MIDI
(Musical Instrument Digital Interface) data. This API is supported by a sound

javax.sound and Sound-related
packages

engine that provides high-quality audio mixing and MIDI synthesis capabilities
for the platform.

Provides a set of Java components that, as much as possible, work in the same
manner on all platforms.

javax.swing and Swing-related
packages

If code that depends on a keyboard, display, mouse, or sound processing is called, NonStop
Server for Java 6.0 throws a java.awt.HeadlessException.
For more information on the Core Packages of Java SE Development Kit 6.0, see “Oracle Java
Documents” (page 19).

Java Naming and Directory Interface (JNDI) Highlights
The Java Naming and Directory Interface (JNDI) provides naming and directory functionality to
Java programs. It is independent of any specific directory service implementation; therefore, it
allows a variety of directories to be accessed in a common way.
The JNDI architecture consists of an Application Programming Interface (API) and a Service Provider
Interface (SPI). Java programs use the JNDI API to access a variety of naming and directory services.
The JNDI SPI enables a variety of naming and directory services to be plugged in transparently,
allowing Java programs that use the JNDI API to access their services.
NonStop Server for Java supports JNDI, which is a standard interface in Java implementations.
For more information about the JNDI, see the Sun Microsystems Java Naming and Directory Interface
1.1.1 Specification
(http://docs.oracle.com/cd/E17802_01/products/products/jndi/javadoc/overview-summary.html).

Java Standard Edition Development Kit (JDK) Highlights 23

http://download.oracle.com/javase/6/docs/api/index.html
http://docs.oracle.com/javase/6/docs/api/java/awt/package-summary.html
http://docs.oracle.com/javase/6/docs/api/javax/accessibility/package-summary.html
http://www.oracle.com/technetwork/java/index-139508.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/package-summary.html
http://docs.oracle.com/cd/E17802_01/products/products/jndi/javadoc/overview-summary.html
http://docs.oracle.com/cd/E17802_01/products/products/jndi/javadoc/overview-summary.html

IPv6 Support
The Java SE JRE 6.0 release includes Internet Protocol version (IPv6) support in Java Networking.
This support makes Java SE compliant with the following standards (RFCs):

• RFC2373: IPv6 Addressing Architecture

• RFC 2553: BasicSocket Interface Extensions for IPv6

• RFC 2732: Format for Literal IPv6 Addresses in URLs
Since the Java SE JRE does not support raw sockets, RFC 2292 (Advanced Sockets API for IPv6)
is not supported in this release.

NOTE: IPv6 support is supplied only if you use the NonStop TCP/IPv6 subsystem with NonStop
Server for Java.

Associated Java Based Products
Imagine developing standard Java applications and deploying and running them on NonStop
servers. You can develop these applications by using a wide-range of associated Java based
products that can use the NonStop Server for Java 6.0 runtime. The products are:

• “BEA WebLogic Server for the HP NonStop Server” (page 25)

• “JDBC Drivers for NonStop SQL Database Access” (page 26)

• “JToolkit for NonStop Servers” (page 26)

• “NonStop CORBA” (page 27)

• “NonStop Servlets for JavaServer Pages” (page 27)

• “NonStop Server for Java Message Service (JMS)” (page 27)

• “NonStop Tuxedo: Jolt Client” (page 28)

• “Stored Procedures in Java” (page 28)

NOTE: For versions of Java products on the Java CD that work with the NonStop Server for Java
6.0 version, see the Readme.txt file on the NonStop Server for Java 6.0 product CD.

The listed high-level middleware products are shown working with NonStop Server for Java 6.0
and NonStop SQL databases.
Java Based Products on NonStop Systems

24 Introduction to NonStop Server for Java 6.0

BEA WebLogic Server for the HP NonStop Server
The BEA WebLogic Server is a standards-based Java 2, Enterprise Edition (J2EE) application server
that provides a foundation for building applications and includes:

• Load balancing

• Fault tolerance

• Web services

• Network transparency

• Legacy integration

• Transaction management

• Security

• Multithreading

• Persistence

• Database connectivity

• Resource pooling

• Development, testing, and packaging facilities
The BEA WebLogic Server uses the Java platform for portability to a large number of operating
platforms supporting the Java platform. On properly configured NonStop servers, the WebLogic
Server runs unchanged like on other platforms.

Associated Java Based Products 25

The BEA WebLogic Server for the HP NonStop Server is an application server that provides a
framework for building and managing applications. WebLogic Server simplifies the development,
deployment, integration, and management of applications by surrounding the latest J2EE and Web
services standards with easy-to-use development and administration tools and powerful clustering,
security, integration, and management features. These built-in services alleviate developers’ need
to create these services manually.
For more information, see BEA WebLogic Products documentation at http://www.hp.com/go/
nonstop-doc s.

JDBC Drivers for NonStop SQL Database Access
JDBC drivers implement the JDBC API and provide access to NonStop SQL databases. You can
use the JDBC API calls in your Java programs to access SQL tables on NonStop systems. The
available drivers and the access they provide are:

• Type 2, which are native API drivers to use in Java programs running with NonStop Server
for Java on a NonStop system. The type 2 drivers are included on the NonStop Server for
Java distribution CD.

◦ JDBC Driver for NonStop SQL/MX (JDBC/MX) for use with SQL/MX

◦ JDBC Driver for NonStop SQL/MP (JDBC/MP) for use with SQL/MP

• JDBC Type 4, which uses network protocols built into the database engine. Type 4 drivers
talk directly to the database using Java sockets. You can use the HP NonStop JDBC Type 4
Driver in Java programs running on PCs, HP-UX systems, and other platforms for access to
NonStop SQL/MX. For the latest list of supported platforms, see the current JDBC Type 4
softdoc, which can be found online by accessing Scout for NonStop Servers.

To obtain detailed information on the standard JDBC API, you can download the JDBC API
documentation provided by Sun Microsystems (http://java.sun.com/products/jdbc/download.html).
For information on HP drivers that are provided to access SQL/MX or SQL/MP, see the JDBC
driver manuals at http://www.hp.com/go/nonstop-doc s.

JToolkit for NonStop Servers
The HP JToolkit for NonStop Servers includes three APIs as tools for using Java programs to access
legacy applications on NonStop servers. JToolkit also includes Scalable TCP/IP (SIP) for developing
network servers written in Java. The following paragraphs introduce these tools. For more information
on them, see the JToolkit Programmer's Reference at http://www.hp.com/go/nonstop-doc s.

Enscribe API for Java
The Enscribe API for Java allows access to the Enscribe Database Manager, supported by the
Guardian file system. This access is typically used to interact with legacy applications.

Pathway API for Java
The Pathway API for Java provides access to a special file called $RECEIVE, which is needed to
enable a process to act as a Pathway server. These servers are typically used in legacy applications.
Pathway server programs read requests from requester programs and act on those requests. The
Guardian requester/server model is described in the TS/MP Pathsend and Server Programming
Manual.
A process sends a message to another process by opening the recipient process file and writing
a message to it. Because a process might not know in advance which processes will send messages
to it and in which order, all messages to a process arrive using a single file-system connection. A
process receives a message -whether the message is a request from another user process or a
system message - by reading from $RECEIVE.

26 Introduction to NonStop Server for Java 6.0

http://www.hp.com/go/nonstop-doc
http://www.hp.com/go/nonstop-doc
http://www.hp.com/go/nonstop-doc
http://www.hp.com/go/nonstop-doc

Pathsend API for Java
The NonStop Transaction Services/MP (NonStop TS/MP) product supports the use of Pathway
servers to access NonStop SQL or Enscribe databases in an online transaction processing (OLTP)
environment. Using the Pathsend API for Java, programs can send requests to these Pathway servers
and receive replies from them. Pathway servers can be written in C, COBOL, or Java.

Scalable TCP/IP
Scalable TCP/IP (SIP) for the NonStop Server for Java provides a transparent way to give the
NonStop fundamentals of scalability and persistence to a network server (SIP server) written in
Java. Existing servers written in Java and their clients can take advantage of SIP without being
changed.

NonStop CORBA
HP NonStop CORBA provides the Common Object Request Broker Architecture (CORBA)
infrastructure and development environment that enables you to develop distributed object
applications and components that run on the NonStop operating system. The NonStop CORBA
infrastructure provides the services and tools to help software developers build object-oriented
components and distributed object systems using either the C++ or the Java programming language.
These systems can be implemented at the application level, the system level, or as middleware
software.
Because NonStop CORBA is based on a CORBA standard as defined by the Object Management
Group (OMG), application clients and components you develop using NonStop CORBA can
interoperate with other CORBA servers running on different platforms.
The NonStop CORBA system architecture combines the flexibility of object technology with the
robustness of a transaction-processing monitor. This unique combination provides the availability
and scalability required for mission-critical applications. In addition, NonStop CORBA ensures the
integrity of its own data stores and offers an object transaction service you can use to maintain a
secure environment for your applications. NonStop CORBA gives you a CORBA based,
object-oriented development system that provides differentiation in the areas of scalability,
availability, and data integrity (transaction protection). Due to tight integration between HP
transaction services and transaction monitors, NonStop CORBA contains the true functionality of
an object transaction monitor.
For more detailed information on developing NonStop CORBA objects with Java, see the NonStop
CORBA programmer’s guide for Java for the NonStop CORBA version compatible with your version
of NonStop Server for Java 6.0. You can find the NonStop CORBA manuals at http://www.hp.com/
go/nonstop-doc s.

NonStop Servlets for JavaServer Pages
NonStop Servlets for JavaServer Pages (NSJSP) are platform-independent server-side programs
that programmatically extend the functionality of web-based applications by providing dynamic
content from a Web Server to a client browser over the HTTP protocol. NSJSP is an extension of
that servlet functionality, primarily supplying a template of static content to be modified with dynamic
content from a servlet or another programmable resource.
NSJSP requires the use of the iTP Secure WebServer, which is based on Tomcat. Tomcat implements
the Java Servlet and JavaServer Pages specifications. For more information about NSJSP, see the
NonStop Servlets for JavaServer Pages (NSJSP) System Administrator's Guide at http://
www.hp.com/go/nonstop-doc s. For information about the iTP Secure WebServer, seethe iTP
WebServer documentation at http://www.hp.com/go/nonstop-doc s.

NonStop Server for Java Message Service (JMS)
NonStop Server for Java Message Service (NSJMS) is the JMS provider that implements Sun
Microsystems Java Message Service (JMS) API, on NonStop servers. NSJMS uses the performance

Associated Java Based Products 27

http://www.hp.com/go/nonstop-doc
http://www.hp.com/go/nonstop-doc
http://www.hp.com/go/nonstop-doc
http://www.hp.com/go/nonstop-doc
http://www.hp.com/go/nonstop-doc

and reliability inherent in SQL/MX products to provide standards-based messaging for local clients
running on NonStop servers. NSJMS enables scalability and load distribution through horizontal
partitioning and fault-tolerance through process-pair technology.
Features and functions of NSJMS include:

• Implements the JMS API on NonStop systems. Uses the publish and subscribe features of
NonStop SQL/MX.

• Uses a Java Naming and Directory Interface (JNDI) environment that allows access to NSJMS
connection factories, and queue objects or topic objects.

• Enables use of a persistent, reliable bridge environment to allow interoperability between
NSJMS and a locally hosted foreign JMS provider.

• Supports the NSJMS C++ API, which implements a subset of the functionality provided by the
Sun JMS API, and is used by C++ client applications running on a NonStop system to
interoperate with other JMS clients.

• Uses the NSJMS administrative utility to manage the NSJMS environment. You can invoke the
utility through a command line interface or XML interface.

NSJMS conforms to Sun Microsystems published specification, Java Message Service, except as
noted in NSJMS documentation. The specification is available on the Sun Microsystems Java
Message Service (JMS) web site (http://java.sun.com/products/jms/docs.html). For more
information about NSJMS, see the NonStop JMS User's Manual at http://www.hp.com/go/
nonstop-doc s.

NonStop Tuxedo: Jolt Client
The Jolt product is a Java based interface to the HP NonStop Tuxedo system that extends Tuxedo
services to the Internet. Jolt allows you to build client programs and applets that can remotely invoke
existing NonStop Tuxedo services allowing application messaging, component management, and
distributed transaction processing.
With Jolt, you can leverage existing Tuxedo services and extend your transaction environment to
the corporate intranet or world-wide Internet. The key feature of the Jolt architecture is its simplicity.
Using Jolt, you can build, deploy, and maintain robust, modular, and scalable electronic commerce
systems that operate over the Internet.
The Jolt product includes the JoltBeans toolkit, which provides a JavaBeans compliant interface to
Jolt for NonStop Tuxedo. The JoltBeans toolkit contains beans that wrap the existing Jolt class library
into reusable bean components such as, the JoltSessionBean or the JoltServiceBean. These beans
can be customized easily by giving application specific values to properties and connecting them
with other bean components. You can use the JoltBeans toolkit with your Integrated Development
Environment (IDE) to create Jolt clients that can access a Tuxedo application.
The Jolt product includes the Jolt Web Application Services Toolkit, which is an extension to the
Jolt 1.1 Java class library. The Toolkit allows the Jolt client class library to be used in a Web Server
to provide an interface between HTML clients or browsers, and Tuxedo services.
For more detailed information, see TUXEDO product documentation at http://www.hp.com/go/
nonstop-doc s.

Stored Procedures in Java
Stored procedures in Java (SPJs) provide an efficient and secure way to implement business logic
in an SQL/MX database. They allow you to write portable applications in Java and access an
industry-standard SQL database.
A SPJ is a type of user-defined routine (UDR) that operates within a database server. A UDR can
be either a stored procedure, which does not return a value directly to the caller, or a user-defined
function, which does return a value directly to the caller. (A stored procedure returns a value only
to a host variable or dynamic parameter in its parameter list.)

28 Introduction to NonStop Server for Java 6.0

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html
http://www.hp.com/go/nonstop-doc
http://www.hp.com/go/nonstop-doc
http://www.hp.com/go/nonstop-doc
http://www.hp.com/go/nonstop-doc

In the SQL/MX database, a SPJ is a Java method contained in a Java class, registered in SQL/MX,
and invoked by SQL/MX when an application issues a CALL statement to the method.
For more information on using SPJs, see the SQL/MX Guide to Stored Procedures in Java at
docs.hp.com.

Associated Java Based Products 29

2 Getting Started
Although this manual assumes that you are familiar with using Java and HP NonStop Open System
Services (OSS), this section provides background information for persons not familiar with these
products. Additionally, this section explains how to perform common tasks that are characteristic
to running Java applications on NonStop systems. The topics are:

• “Learning About the Prerequisites” (page 30)

• “Verifying the Java Installation” (page 32)

• “Tutorial: Running a Simple Program, HelloWorld” (page 32)

• “Specifying the CPU and Process Name with Which an Application Runs” (page 34)

• “Configuring a Java Pathway Serverclass” (page 35)

Learning About the Prerequisites
If you are not familiar with using Java and OSS, the following topics describe how you can get
this background information.

• “Learning About Java” (page 30)

• “Learning About Open System Services (OSS)” (page 30)

Learning About Java
Many tutorials and books about the Java programming language are available publicly.
The Sun Microsystems web site provides links to many tutorials, including:

• Tutorials page of the Sun Developer Network, http://www.oracle.com/technetwork/java/
index-jsp-135888.html

• Java Technology Learning, http://java.sun.com/learning/index.jsp

• Java Standard Edition JDK 6.0 documentation, for example, http://docs.oracle.com/javase/
6/docs/index.html

A bookseller may have many Java tutorials and guides. However, the number of books available
about Java is too great to list in this manual and new books or new editions are published often.
When choosing a Java tutorial or book, check that the information is appropriate for use with the
JDK 6.0 implementation. Also, books and tutorials about how to write graphical user interfaces
are not useful because the NonStop Server for Java 6.0 is a headless implementation.

Learning About Open System Services (OSS)
OSS is the open computing interface to the HP NonStop operating system—the operating system
for NonStop servers. Java applications run in the OSS environment.
The user interface in the OSS environment is called the "OSS shell". The OSS shell is a program
that interprets the commands you enter, runs the programs you ask for, and sends output to your
screen. The OSS shell supports the Korn shell (sh), a shell common to UNIX systems.
The default shell prompt is a $ (dollar sign). (This is the default prompt for the Korn shell.) Throughout
this manual, a $ is used to represent the OSS shell prompt.
Depending on your programming experience with NonStop systems or UNIX systems, use the
following sources to gain the prerequisite knowledge to run Java applications on NonStop systems.

• “The Open System Services User's Guide” (page 31)

• “UNIX Tutorials” (page 31)

30 Getting Started

http://www.oracle.com/technetwork/java/index-jsp-135888.html
http://www.oracle.com/technetwork/java/index-jsp-135888.html
http://java.sun.com/learning/index.jsp
http://docs.oracle.com/javase/6/docs/index.html
http://docs.oracle.com/javase/6/docs/index.html

If you are familiar with using the Korn shell, you only need to peruse the Open System Services
User's Guide (especially Section 2, OSS File System) for pertinent platform-specific information to
get started using Java in the OSS environment.

The Open System Services User's Guide
The Open System Services User's Guide describes the OSS user environment; the shell, file system,
and user commands. Topics of particular interest for beginning users follow.

NOTE: Although this guide is available only for G-series RVUs in the NTL Library at docs.hp.com,
J-series and H-series users should read it, too. For H-series users, the definitive discussions are in
the Open System Services Programmer's Guide.

The OSS File System
Discusses OSS files, directories, subdirectories, and pathnames. Also, describes
how files in the OSS file system relate to the Guardian file system (for those familiar
with the Guardian file system).

The OSS Shell
Discusses the features and environment of the OSS shell and how they can be used
and modified.

OSS Commands and Utilities
Lists and describes user commands and utilities.

Running the OSS Shell
Describes how to run the OSS shell using the osh command.

Creating Files
Describes how to create new files in the OSS environment using the vi text editor.
Note that you can avoid using the vi text editor by creating the files in another
environment and using the File Transfer Protocol (FTP), the ftp command, or another
utility to put the files in the OSS file system. The HelloWorld (“Tutorial: Running a
Simple Program, HelloWorld” (page 32)) sample, shown later in this section, uses
this method.

The following sections are a tutorial that introduces many of the frequently used OSS user commands
and utilities to perform the particular tasks:

• Creating files

• Managing files

• Managing directories

• Managing access to files and directories

• Managing processes

UNIX Tutorials
Public sources of information—such as, classes and tutorials—on using UNIX systems through the
Korn shell are highly applicable to using the OSS environment. You might find these sources a
good first step in learning about the file system, commands, and utilities characteristic of the OSS
environment.

Learning About the Prerequisites 31

Verifying the Java Installation
Ask your system administrator where the NonStop Server for Java Server 6.0 software is installed.
Knowing that, you can verify the installation and verify your environment. This example assumes
that NonStop Server for Java 6.0 is installed in a nonstandard location—the /home/lee/jdk60
directory:

NOTE: If your NonStop Server for Java 6.0 software is installed in the standard location
(/usr/tandem), or if you are using NonStop Server for Java 6.0 version T2766H60^ABP or
later, skip Step 4 and Step 5 and specify the location values accordingly.
For more information about the operating system requirements, see the T2766H60^ABP softdoc
or the Readme.txt file packaged with the NonStop Server for Java 6.1 software distribution CD.

1. Set the PATH environment variable by using the following command at the OSS prompt:
$export PATH=/home/lee/jdk60/java/bin:$PATH

2. Confirm that the path is set correctly by typing the whence command:
$whence java
/home/lee/jdk60/java/bin/java

3. Determine the version of the Java virtual machine (JVM) by typing the vproc command, which
displays the product versions of the java binary file and any products bound into the java
binary. For the version of the NonStop Server for Java 6.0 installation, look for the product
number T2766 following a line that begins Version Procedure: The displayed version
identifier changes with every update of NonStop Server for Java 6.0.
The version identifier has the following form:

T2766Hnn

A vproc example is:
Version procedure: T2766H60_30Jan2009_jdk60...

4. To set the JREHOME shell variable, type the following command at the OSS prompt:
$export JREHOME=/home/lee/jdk60/java/jre

5. To confirm that your JREHOME shell variable is set correctly, type the following echo command
at the OSS prompt:

$echo $JREHOME
/home/lee/jdk60/java/jre

Tutorial: Running a Simple Program, HelloWorld
After the NonStop Server for Java 6.0 is installed, follow these steps to create and run the
HelloWorld program.
The default OSS prompt is the dollar sign ($). The commands show the prompt, so do not type it.
In text showing computer input and output, the input you type is shown in bold.
1. Create a java Source File.

Perform either steps a, b, and c or step d only.
a. Using your favorite editor, create a file that contains the following source code.
b. Name the file HelloWorld.java.
c. Place the file in the OSS file space by using FTP.

/**
* The HelloWorld application implements a java class that
* displays "Hello World!" to the standard output.
*/

32 Getting Started

class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

d. Alternatively, at the OSS prompt, use the cat command to create the HelloWorld.java
file and type the contents of the HelloWorld program listed previously.
$cat> HelloWorld.java
type-contents-of-the-file
(Ctrl+y)

2. Set the JREHOME Shell Variable.
If you know that the NonStop Server for Java 6.0 product is installed on your system in the
standard location, you can omit this step. The standard location for the NonStop Server for
Java 6.0 installation is:

/usr/tandem/

If you do not know where the NonStop Server for Java 6.0 product is installed, ask your system
administrator.
The JREHOME shell variable must point to the jre directory of your installation of the NonStop
Server for Java 6.0 product.
The default value for JREHOME is:

/usr/tandem/java/jre

If the NonStop Server for Java 6.0 is installed in a different location, for example /test_dir,
type the following command at the OSS prompt set the JREHOME shell variable:

$export JREHOME=/test_dir/java/jre

3. Set the PATH Environment Variable.
Add the directory where the NonStop Server for Java 6.0 executable file is installed to your
PATH environment variable.
For the standard installation, type the following command at the OSS prompt:

$export PATH=/usr/tandem/java/bin:$PATH

If the NonStop Server for Java 6.0 is installed in a nonstandard location, /test_dir, type:
$export PATH=/test_dir/java/bin:$PATH

4. Check Your Path Settings.
Optionally, you can check whether your path is set correctly by using the whence command.
Type:

$whence -v java

This command should display the fully qualified name of the java executable found in your
path. If no Java executable is found, the command displays the message, "java not found".

5. Compile the Java Source Code by Using the javac Tool.
a. Ensure you have performed step 3 so that javac is in your current path.
b. At the OSS prompt, change the directory (cd command) to where your Java source file

is stored.

Tutorial: Running a Simple Program, HelloWorld 33

c. Compile the Java source code by using the Java compiler, javac, which is part of the
installed NonStop Server for Java 6.0 product. Type the following command at the OSS
prompt:

$javac HelloWorld.java

If compilation is successful, the compiler produces a Java class file called
HelloWorld.class. Once you have the class file, your program is ready to run.

d. Check to see that the HelloWorld.class file has been created by typing:
$ls -l HelloWorld.class

If the file is not present or if you received an error message, check for typographical
errors in your source code. Fix them, and perform sub-steps c and d again until you have
a class file.

6. Run the Program by Using the java Tool.
a. At the OSS prompt, ensure that the position is in the directory where your

HelloWorld.class file is stored. For information about changing position, see step
5b.

b. To run the HelloWorld program (also called an application), type the following command
at the OSS prompt:

$java HelloWorld

Note that you should not type java HelloWorld.class. All Java classes have the
.class extension. Typing .class at the end causes an error message.
Your Java application displays the message, "Hello World!".

Specifying the CPU and Process Name with Which an Application Runs
You can specify which CPU an application process runs in and its process name by using options
of the run utility. The run utility starts OSS programs with specific attributes.
The format of the command to specify the CPU where a Java application is to run is:

run -cpu=cpu_number java class_name

For example, the command to run Java in CPU 3 is:
$run -cpu=3 java HelloWorld

The format of the command to give a java process a process name is:
run -name=/G/process_name java class_name

For example, the command to give Java the process name $APPJ is:
$run -name=/G/appj java HelloWorld

where the /G directory identifies the Guardian fileset. For information about the
/G directory, see the Open System Services User's Guide.

The following example combines more than one run option in a single command:
$run -name=/G/japp -cpu=3 java HelloWorld

For more information about the run(1) utility, see the Open System Services Shell and Utilities
Reference Manual.

34 Getting Started

Configuring a Java Pathway Serverclass
The following is a brief overview of the specific Java requirements for configuring a Java program
to run as a Pathway serverclass. Complete information about the topic is available in the TS/MP
System Management Manual.
The serverclass attributes that have specific Java requirements follow. Typically, the attribute settings
would be put in a configuration file, but the examples here show setting them in the OSS
environment.

ARGLIST
The ARGLIST should appear as follows:

-Xabend,class-name[,arguments]

where [,arguments] is an optional, comma-separated list of arguments that are to be passed
to the named serverclass. For example from the OSS prompt, start a PATHMON (process monitor)
named $foo and set the ARGLIST at the PATHCOM prompt:

$gtacl -p pathcom \$foo
PATHCOM
=set serverclass ARGLIST -Xabend,MyClass,3000

This is similar to entering java -Xabend MyClass 3000 at an OSS shell prompt. The -Xabend
argument to the java executable causes java to abend instead of exiting with a non-zero exit
code. Pathway servers must abend rather than merely stop when a fatal error occurs, so that the
PATHMON process can restart them. MyClass is the name of the Java class to be invoked, and
"3000" is an argument to the MyClass class.
Note that, in the OSS environment, the dollar sign ($) has special meaning; therefore, the process
name $foo must be preceded by a backslash (\), the escape character.

PROCESSTYPE
Set this attribute to OSS .

ENV
Environment variables are set using the ENV serverclass attribute. For Java use, you must set the
CLASSPATH environment variable so that the Java runtime can find your classes. If you are either
using NonStop Server for Java 6.0 versions earlier than the T2766H60^ABP SPR or running java
executable in a location other than the standard location of /usr/tandem, you must set the
JREHOME environment variable to the jre directory. For a JREHOME example, the set server
command shown entered at the PATHCOM prompt follows. (However, you would typically type
these commands in a configuration file to be used with PATHCOM.)

$gtacl -p pathcom \$foo
PATHCOM
=set server ENV /home/lee/jdk60/java/jre

NOTE: If you are using NonStop Server for Java 6.0 version T2766H60^ABP or later, you need
not set the JREHOME variable. The standard location for all NonStop Server for Java 6.0 installations
is /usr/tandem .

PROGRAM
Set the PROGRAM attribute to the java executable. The java executable is located by default in
/usr/tandem/java/bin/. For example from the OSS prompt, start a PATHMON (process
monitor) named $foo and set the PROGRAM attribute at the PATHCOM prompt:

Configuring a Java Pathway Serverclass 35

$gtacl -p pathcom \$foo
PATHCOM
=set server PROGRAM /usr/tandem/java/bin/java

36 Getting Started

3 Installation and Configuration
This section explains these subsections:

• “Installation Requirements” (page 37)

• “Configuration Requirements” (page 37)

• “NonStop Server for Java 6.0 Directory Structure” (page 41)
For information about how to verify a NonStop Server for Java 6.0 installation, see “Verifying the
Java Installation” (page 32).

Installation Requirements
Regarding hardware, NonStop Server for Java 6.0 can run on these systems:

All HP Integrity NonStop NS-series servers

The software requirements for the NonStop Server for Java 6.0 are described in the README file
and SOFTDOC on the product CD. Read those documents before installing the product. The software
requirements list the earliest acceptable versions of the required software. You can substitute later
versions of the same products.
HP recommends that NonStop Server for Java 6.0 be installed in the standard location whenever
possible as described under “Symbolic Link” (page 40). You can install NonStop Server for Java
6.0 in a non-standard location. To do that kind of installation, use the File Transfer Protocol (FTP)
to transfer the file from the CD to the NonStop system. Then follow the directions in the product
Softdoc for a nonstandard installation.
You can install NonStop Server for Java 6.0 with earlier versions of NonStop Server for Java on
the system.

Configuration Requirements
This subsection explains how to configure your system for the Java SE JDK by understanding the
following:

• “Creating Larger or Additional Swap Files” (page 37)

• “Setting Environment Variables” (page 38)

• “Symbolic Link” (page 40)

• “Configuring TCP/IP and DNS for RMI” (page 40)

NOTE: Do not install any JAR or native library files under the NonStop Server for Java installation
directory.

Creating Larger or Additional Swap Files
HP recommends a total swap files size of 512 MB (1024 Extents, 255 MaxExtents) for each
processor that runs the
Java virtual machine (JVM). If you plan to run multiple large processes in the same processor, you
might need to create additional swap files because processes running in the same processor share
the same swap file.
Your system administrator can use the NSKCOM tool to create additional swap files.
To add swap files, you must log on to your NonStop operating system as a super-group user. Then,
from the Guardian TACL prompt, run the NSKCOM tool. From the NSKCOM tool, use the help
add and help start commands to get more information. For further information, see the
Kernel-Managed Swap Facility (KMSF) Manual.

Installation Requirements 37

Setting Environment Variables
The following subsections describes the variables that define the environment in which Java operates.

PATH
The environment variable PATH enables Open System Services (OSS) to find the Java executable
files. As a convenience so that you do not have to fully qualify the Java executable, add the absolute
path of the java/bin directory to the PATH environment variable.
To add the absolute path, use this command:

export PATH=/install_dir/java/bin:$PATH

where install_dir is the directory in which the NonStop Server for Java 6.0 is installed. By
default, this is /usr/tandem.
The PATH shell variable must be created in each shell in which you plan to run java or one of its
tools. For this reason, it is a good idea to set the PATH in the .profile file in your home directory
that is executed each time you logon to an OSS shell. See the Open System Services User's Guide
for information on how to set the path in your startup file.

Class Path
The class search path (more commonly, “class path”) is the path that the Java runtime environment
searches for classes and other resource files. The class path tells the JDK tools and applications
where to find third-party and user-defined classes. The class path can be set either by using the
-classpath option when calling a JDK tool (such as, java or javac), or by setting the
CLASSPATH environment variable.
The preferred method is using the -classpath option because you can set that option individually
for each application without affecting other applications and without other applications modifying
the option's value.

Syntax
jdkTool -classpath classpath1:classpath2...

-or-
export CLASSPATH=classpath1:classpath2...

jdkTool

A command line tool, such as java or javac . For the tools list, see the NonStop
Server for Java 6.0 Tools Reference .

classpath1:classpath2

Class paths to the .jar , .zip, or .class files. Each class path should end
with a filename or directory name depending on the particular setting.
• For a .jar or .zip file that contains. class files, the class path ends with the

name of the .jar or .zip file.
• For .class files in an unnamed package, the class path ends with the directory

name that contains the .class files.
• For .class files in a named package, the class path ends with the directory

name that containsthe "root" package (the first package in the full package
name).

Multiple path entries are separated by colons.
The default class path is the current directory. Setting the CLASSPATH variable or using the
-classpath command line option overrides that default, so if you want to include the current
directory in the search path, you must include a dot (.) in the new settings.

38 Installation and Configuration

Class path entries that are neither directories nor archives (.zip or .jar files) are ignored.

Example: Setting Class Path in a java Command
Suppose you want the Java runtime to find a class named Cool.class in the package
utility.myapp. If the path to that directory is: /java/MyClasses/utility/myapp, you
would set the class path so that it contains /java/MyClasses.
To run that application, you could use the following java command:

$java -classpath /java/MyClasses utility.myapp.Cool

Example: Setting the CLASSPATH Environment Variable
Using the same situation as in the preceding example, except that you want to set the CLASSPATH
environment variable so that the Java runtime can find the class named Cool.class, you would
use the following command to set and export the CLASSPATH environment variable and then run
Java.
To run that application, you could use the following commands:

$ export CLASSPATH=/java/MyClasses
$ java utility.myapp.Cool

For further information about setting class path, see the documentation provided by Sun Microsystems
(http://docs.oracle.com/javase/6/docs/technotes/tools/index.html). Note that when applying
that documentation to the NonStop Server for Java 6.0, you must follow the instructions given for
sh and ksh instead of those for csh and tcsh. Instructions for the setenv and unsetenv
commands do not apply to the NonStop Server for Java 6.0.

JREHOME
The JREHOME shell variable is used by the Java runtime to determine where the core Java classes
are located. If you install NonStop Server for Java 6.0 in the standard location, you do not need
to set up the JREHOME shell variable because it has the default value of /usr/tandem/java/jre.

NOTE: If you are using NonStop Server for Java 6.0 version T2766H60^ABP or later, you need
not set the JREHOME variable because the Java classes will be located based on the location of
the Java executableof a given JDK installation.

If you install the NonStop Server for Java 6.0 in a location other than the /usr/tandem/java
directory, you must do the following:
1. Create a shell variable called JREHOME and set it to the location of the jre directory. For

example, if you installed the NonStop Server for Java 6.0 at /h/myjava instead of
/usr/tandem, do the following to create and set the JREHOME variable:

$ export JREHOME=/h/myjava/java/jre

2. You must create the JREHOME shell variable in each shell in which you plan to run java or
one of its tools. For this reason, it is a good idea to put a creation mechanism in the .profile
file in your home directory that is executed each time you log on to an OSS shell. See the
Open System Services User's Guide for information on how to set the path in your startup file.

Failure to specify the JREHOME variable may cause the JVM to fail to start, prompting the following
Java error message:

Can't find class java.lang.NoClassDefFoundError. (Wrong classpath?)

Alternatively, the JVM starts successfully but the jar files in the directory /usr/tandem/java/jre
are used instead of the files under the directory where NonStop Server for Java 6.0 is installed.
This can produce unpredictable results.

Configuration Requirements 39

http://docs.oracle.com/javase/6/docs/technotes/tools/index.html

_RLD_LIB_PATH
The _RLD_LIB_PATH environment variable specifies the library path for DLLs. You need to use
this environment variable only if you use user DLLs. You can specify one or more directories as
necessary. Separate each directory in the list by using a colon (:). Set this environment variable
as follows:

_RLD_LIB_PATH=dll_path[:dll_pathn]...

where dll-path and dll-pathn are the directories where the user DLLs reside.
For example:

export _RLD_LIB_PATH=/home/me/mydll

Symbolic Link
The link /usr/tandem/java is created when NonStop Server for Java 6.0 is installed. It is a
symbolic link to the actual JDK directory, which has the form:

/usr/tandem/nssjava/jdk60x_hyy

where x refers to the version number of the Sun Microsystems update upon which NonStop Server
for Java 6.0 is based and yy refers to the particular product version update (PVU) of NonStop
Server for Java 6.0. For example, for NonStop Server for Java 6.0, based on Java SE 6.0, the
symbolic link is /usr/tandem/nssjava/jdk160_h60.
The /usr/tandem/java is a shorthand way to refer to the latest version of the JDK installed on
the system. When you unpax a NonStop Server for Java 6.0 pax file, the symbolic link is created
or reset to refer to the JDK directory that is being unpaxed, which means that the symbolic link
refers to the version of NonStop Server for Java 6 that was last installed. You are not required to
use the symbolic link. To make sure you are always using the 6.0 version of the JDK, even if a
later version has been installed, you can put the bin directory in your PATH, for example:

export PATH=/usr/tandem/nssjava/jdk160_h60/bin:$PATH

You can also reset the symbolic link yourself by using the ln command with the -s option. For
example, if you install a PVU based on version 1.4.2 of the JDK, but still want version 6.0 to be
the one referred to by /usr/tandem/java, you can reset the symbolic link instead of unpaxing
version 6.0 again:

$ cd /usr/tandem
$ rm java
$ ln -s /usr/tandem/nssjava/jdk160_h60 java

The symbolic link is always put in the directory where NonStop Server for Java 6.0 is installed, so
if you use the -s option to specify an alternative installation directory during the unpaxing step,
the symbolic link is install_dir/java instead of /usr/tandem/java. For example, if
nssjava/jdk160_h60 is installed in /h/myjava, the symbolic link is /h/myjava/java, and
this symbolic link points to the directory /h/myjava/nssjava/jdk160_h60.

Configuring TCP/IP and DNS for RMI
For Remote Method Invocation (RMI) API to work, TCP/IP and its component, DNS, must be
configured correctly. For the correct version of TCP/IP, see the NonStop Server for Java 6.0 Softdoc.
A network administrator usually configures TCP/IP and DNS, but you can determine if an incorrect
TCP/IP configuration is causing a JVM problem. To check the TCP/IP configuration, use the Java
Checker, javachk, which is available in the /usr/tandem/java/install directory. Execute
javachk in the same environment as the JVM has (that is, using the same defines that were used
to run the JVM). The Java Checker will identify failing socket routine calls. When you know which
calls are failing, you can fix or work around the problems.
For information about javachk, see the file /usr/tandem/java/install/README_javachk.

40 Installation and Configuration

NonStop Server for Java 6.0 Directory Structure
This subsection explains:

• “Directory Contents” (page 41)

• “Demonstration Programs” (page 41)

Directory Contents
The /usr/tandem/java directory contains release documents and subdirectories. Table 3
(page 41) lists the subdirectories and describes their contents.

Table 3 Subdirectories of the /usr/tandem/java Directory

ContentsSubdirectory

Executable binary files that make up the JDK . These files include tools that are not
part of the Java SE Runtime Environment, such as javac and javah .

/bin

Additional subdirectories, each containing a README file and a complete example./demo

C-language header files that support native code programming using the Java Native
Interface and the Java Virtual Machine Interface.

/include

The javachk file./install

The root directory of the Java SE Runtime Environment. Includes core classes, classes
supplied by HP, and runtime libraries. The core Java classes are in the lib/rt.jar
file.

/jre

Classes other than core classes for support of the tools and utilities in the JDK software./lib

Demonstration Programs
The /demo directory contains subdirectories, each of which contains a demonstration program
and a README file that documents how the demonstration program should be used. Demonstration
programs provided include the following:

Table 4 Demonstration Programs

IllustratesDemonstration Program

How to properly build an executable that can create its own Java virtual machine
(JVM).

invocation_api

How to create a native library and how to use IEEE floating point.javahjni

Many of the demonstration programs require you to edit some files before the demonstration
programs can be run, as described in the accompanying README file.
Additional demonstration programs are provided if you install a JDBC Driver for NonStop SQL
product. These programs are located with the driver software.

NonStop Server for Java 6.0 Directory Structure 41

4 Implementation Specifics
This section explains these subjects regarding HP implementations of NonStop Server for Java,
based on Java Platform Standard Edition 6.0, for Integrity NonStop systems:

• “Headless Support” (page 42)

• “Additional Files” (page 43)

• “Additional Environment Variable” (page 43)

• “Java Native Interface (JNI)” (page 43)

• “IEEE Floating-Point Implementation” (page 46)

• “Multithreaded Programming” (page 47)

• “Java Print Service (JPS)” (page 51)

• “Using the Guardian Printer” (page 51)

• “ThreadDumpPath Support” (page 52)

• “Java Authentication and Authorization Service (JAAS)” (page 53)

• “JavaBeans” (page 53)

• “Debugging Java Programs” (page 54)

• “Deviations in JVM Specification Options” (page 58)

• “Garbage Collection (GC)” (page 59)

• “Java Garbage Collector Tuning for Application Performance” (page 62)

• “Java GC Profiling” (page 64)

• “JVM Tuning Tools” (page 66)

• “Tuning Application Performance” (page 66)

• “Java Signal Handlers” (page 69)

• “Oracle’s Implementation” (page 79)

• “Change in Loading of .hotspot_compiler and .hotspotrc files” (page 70)
In addition, see “Application Profiling” (page 76).

Headless Support
Because the HP NonStop operating system does not provide support for windowing operations,
NonStop Server for Java 6.0 is a headless JVM that conforms to the Sun Microsystems headless
support standard regarding Java Abstract Window Toolkit (AWT) classes and methods. For similar
reasons, the NonStop Server for Java 6.0 does not support the AppletViewer tool.
If your Java programs use classes and methods that require a display, keyboard, sound, or mouse
operation, the class or method will throw a HeadlessException if invoked when
GraphicsEnvironment.isHeadless returns true. This value is always true in NonStop Server
for Java 6.0.
Classes and methods that support printing, fonts, and imaging are fully supported in a headless
JVM.
While the Sun Microsystems documentation for the reference implementation states that you must
set the system property –Djava.awt.headless=true to run a headless JVM, setting this system
property is unnecessary for NonStop Server for Java 6.0.

42 Implementation Specifics

The following Java SE features are not applicable (and, therefore, not available):

• Class data sharing (CDS), a feature intended to reduce application startup time and footprint,
that is available only with a Java HotSpot client VM.

• Server-class machine detection because a server-class machine is always assumed

• Java user-interface features because they are desktop related

General deployment features, such as klist◦
◦ Java Web Start Technology

◦ Sound Java API

Additional Files
In addition to the standard Java packages, the NonStop Server for Java 6.0 provides these files:
jtatmf.jar

File containing classes for the version of the NonStop Java Transaction Agent that
uses TMF.

javachk

The Java Checker program, which determines whether a problem with the JVM is
caused by an incorrect TCP/IP configuration.

Additional Environment Variable
NonStop Server for Java 6.0 has an implementation-specific environment variable that you can
use to control the runtime environment. The JAVA_PTHREAD_MAX_TRANSACTIONS environment
variable specifies the maximum number of TMF transactions allowed per process. The default
number allowed is 1000. For more information, see “Controlling Maximum Concurrent Transactions”
(page 72).

Java Native Interface (JNI)
The Sun Microsystems Java Native Interface (JNI) standard defines both the C-language APIs that
enable Java methods to call C and C++ methods and the way that C and C++ methods can start
and interact with a Java Virtual Machine (JVM). The NonStop Server for Java 6.0 supports JNI
and the Invocation API with the following modifications:

• Set the _RLD_LIB_PATH environment variable to point the location of the user DLLs.
export _RLD_LIB_PATH=dll-path[:dll_pathn]...

where: dll-path and dll-pathn are the directories where the user DLLs reside.

For example, if the user DLLs are in the directory /home/mydll
export _RLD_LIB_PATH=/home/mydll

• Multithreaded native C or C++ routines must use the same Pthread library that the JVM uses,
but HP recommends that any multithreaded code be written in Java.

• If native C or C++ routines must invoke Transaction Management Facility (TMF) calls, you
must use TMF transaction jacket routines as described in the Open System Services
Programmer's Guide in the "Application Programming With Standard POSIX Threads" section
under the topic "TMF Transaction Jacket Routines." The calls are:

◦ SPT_ABORTTRANSACTION()

◦ SPT_BEGINTRANSACTION()

Additional Files 43

◦ SPT_ENDTRANSACTION()

◦ SPT_RESUMETRANSACTION()

NOTE: The Open System Services Programmer's Guide states that the maximum
concurrent transactions allowed in a process is 100; however, the JVM is an exception
where the maximum allowed is 1000 as described under “Controlling Maximum
Concurrent Transactions” (page 72).

• When calling a C or C++ routine, where the function passes or returns parameters of type
float or double, NonStop Server for Java 6.0 performs no conversion. All float and double
values remain in IEEE floating-point format when crossing the JNI boundary. For more
information, see “IEEE Floating-Point Implementation” (page 46).

• When using the JNI_OnLoad function, use the following format:
jint JNI_OnLoad(JavaVM *vm, void *reserved);

• The JNI_OnUnload function is supported by NonStop Server for Java 6.0 on NS-series
servers, but not supported on S-series servers.

When naming library files, observe the following rules:

• Do not use names that begin with Tandem, tandem , or tdm .

• NonStop Server for Java 6.0 requires that all DLLs be named with a prefix lib and a sufix
.so. So you must name your DLL as follows:
libname.so

where (name) signifies the string that is passed to the System.loadLibrary
() call. libname.so

The remainder of this subsection explains:

• “Calling C or C++ Methods from Java” (page 44)

• “Calling Java Methods from C or C++” (page 45)

• “Linker and Compiler Options” (page 45)
For more information about JNI, see the Sun Microsystems JNI document
(http://docs.oracle.com/javase/6/docs/technotes/guides/jni/index.html).

Calling C or C++ Methods from Java
To call C or C++ methods from Java, follow these steps:
1. Compile the Java code.
2. Use javah to generate header files. The function declarations listed in the generated header

file are those that must be exported by the user-JNI DLL. To export functions, either specify
export$ in the function definition or use the linker option -export_all.

3. Compile the C or C++ code. C++ code must be compiled using the following compiler
command line options: -Wversion2 or -Wversion3, and -WIEEE_float.
If the native code has large variables on the stack, calling this native code might exceed the
default stack space provided for each thread. If the native code exceeds the amount of stack
space allocated for it, unpredictable results can occur. To prevent overflowing the available
stack space, consider allocating large variables on the heap rather than using the stack.
Otherwise, you can increase the default stack size for each thread by specifying the -Xss
option when starting java. This option increases the stack size for every thread. For more

44 Implementation Specifics

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/index.html

information about the -Xss option, see java in the NonStop Server for Java 6.0 Tools
Reference Pages.

4. Create a DLL file (.so file type) and specify the linker option -set float type
IEEE_float. Then set the _RLD_LIB_PATH environment variable to point to where the
created DLL file resides by using the following command:
export _RLD_LIB_PATH=dll-path

where dll-path is the directory where the user DLL resides. For more information,
see “_RLD_LIB_PATH” (page 40).

The javahjni demo shows an example of how to create a library file. This demo also shows
converting between the TNS and the IEEE floating point.

Calling Java Methods from C or C++
You can create your own C or C++ program and use the Invocation API to load the JVM into an
arbitrary native program. Be sure to follow these guidelines:

• Compile code written in C++ by using the -Wversion2 or -Wversion3 compiler, and the
-WIEEE_float compiler command line options.

• The NonStop Server for Java 6.0 provides DLLs. Therefore, you can build your own executable
and link it to the JVM DLL, libjvm.so. For details, see the invocation_api demo provided
with the NonStop Server for Java 6.0 installation.

• Do not set signal handlers for the following signals: SIGSEGV , SIGPIPE , SIGCHLD ,
SIGINT , SIGQUIT , SIGTERM ,and SIGHUP .

• Set the executable to use IEEE floating point.
NonStop Server for Java 6.0 does not support the signal-chaining facility implemented in some
other vendors' JVMs.
When a program uses the Invocation API to start a JVM, its function returns are parameters of type
float or double that are in IEEE floating-point format. Any parameters of type float or double
that are passed to NonStop Server for Java 6.0 must also be in IEEE floating-point format. If such
a program wants to convert between TNS floating-point format and IEEE floating-point format, the
Guardian Procedure Calls Reference Manual documents a series of procedures with names
beginning with NSK_FLOAT_ that can be used to convert float and double data between the
two formats.
To run the Invocation API demo, follow the instructions for the Invocation API demo in the README
file in the directory /usr/tandem/java/demo/invocation_api.

Linker and Compiler Options

Compiler Options
When you compile C++ source for use with NonStop Server for Java 6.0, you must use the following
compiler options to identify which dialect of the C++ compiler is to be used:

-Wversion2 or-
-Wversion3

In addition, for a compilation unit containing JNI code that has any floating-point parameters being
passed across the JNI boundary and that is directly called by the JVM, you must use the compiler
option:

-WIEEE_float

Any compilation units not called directly by the JVM can be compiled without the –WIEEE_float
option; however, the complications that can occur while using such mixed modes are beyond the

Java Native Interface (JNI) 45

scope of this document. However, the javahjni demo shows an example of mixed modes. (For
information on demos, see “Demonstration Programs” (page 41).)

Linker Options
When building native libraries, you must use the following linker option:

–set floattype IEEE_float

How to Create Your Own Library of Native Code
The javahjni demonstration program that comes with NonStop Server for Java 6.0 shows how
to create a native library.
You can find the javahjni demonstration program in the install-dir/demo/javahjni
directory.

IEEE Floating-Point Implementation
Java uses IEEE floating-point arithmetic.

NOTE: In NonStop Server for Java 6.0, you cannot specify whether your Java classes use TNS
format.

Incompatibilities between the IEEE floating point and TNS floating-point representations might cause
loss of precision or accuracy when you convert between TNS float or double and IEEE float
or double.
This subsection explains the following subjects:

• “Floating-Point Values” (page 46)

• “Double-Precision Values” (page 46)

• “How to Call TNS Floating-Point Functions from JNI Code” (page 47)

Floating-Point Values
For floating-point values, TNS floating-point representations have larger exponents (and therefore,
a larger range) than IEEE floating-point representations, but they are less precise, as Table 5
(page 46) shows:

Table 5 Floating-Point Ranges

Maximum Decimal ValueMinimum Positive Decimal ValueFloating-Point Representation

1.1579208e77F1.7272337e-77FTNS

3.40282347e+38F1.40239846e-45FIEEE

Double-Precision Values
For double-precision values, TNS floating-point representations have smaller exponents (and
therefore, a smaller range) than IEEE floating-point representations, but they are more precise, as
Table 6 (page 46) shows:

Table 6 Double-Precision Ranges

Maximum Decimal ValueMinimum Positive Decimal ValueFloating-Point Representation

1.15792089237316192e771.7272337110188889e-77TNS

1.79769313486231570e+308/4.94065645841246544e-324IEEE

46 Implementation Specifics

How to Call TNS Floating-Point Functions from JNI Code
This topic describes how to call a TNS floating-point function from an IEEE floating-point function.
When using TNS floating-point compiled functions in native code linked into the java executable:

• Do not call the Common Runtime Environment (CRE) functions with TNS floating-point values
because CRE functions are expecting IEEE floating-point values.

• Do not pass floating-point values (float and double) across mixed float compilation units.
When passing or returning floating-point values between IEEE floating-point compiled functions
and TNS floating-point compiled functions, pass or return.

◦ A float as one of the 32-bit structures defined in $SYSTEM.SYSTEM.KFPCONVH
(NSK_float_ieee32 or NSK_float_tns32)

◦ A double as one of the 64-bit structures defined in $SYSTEM.SYSTEM.KFPCONVH
(NSK_float_ieee64 or NSK_float_tns64)

• You can call a native function that accepts or returns a TNS float or double value if you
create an intermediate function that sits between the IEEE floating-point compiled JNI method
that the JVM calls and the native function that accepts or returns a TNS float or double .
Either the JNI method or the intermediate method can be responsible for calling one of the
NSK_float_* procedures to convert between IEEE and TNS floating-point formats.
The intermediate function:

◦ Is compiled with TNS floating point.

◦ Accepts float and double arguments as one of the special structures defined in the
$SYSTEM.SYSTEM.KFPCONVH file.

◦ Calls the TNS compiled native function passing TNS float or double arguments.

◦ Converts any float or double return value to an IEEE floating-point value of the JNI
caller expects the value.

◦ Returns the float or double in one of the special structures defined in the
$SYSTEM.SYSTEM.KFPCONVH file.

For an example, see the javahjni “Demonstration Programs” (page 41).

Multithreaded Programming
The Java virtual machine for the NonStop Server for Java 6.0 is multithreaded. It uses Standard
POSIX Threads, which conforms to IEEE POSIX Standard 1003.lc. Threads are scheduled for
execution by the Standard POSIX Threads library, not by the operating system. All threads created
within a process share the same process address space in the same CPU. With Standard POSIX
Threads on NonStop systems, one thread can never be preempted by another thread if the
–XX:ThreadTimeSlice option is not used.
The topics in this discussion are:

• “Thread Scheduling” (page 47)

• “Threading Considerations for Java Code” (page 49)

• “Threading Considerations for Native Code” (page 50)

Thread Scheduling
The Java runtime supports a simple, deterministic, scheduling algorithm known as fixed-priority
scheduling. By default, the Java runtime does not time-slice. You can enable time slicing by using
the –XX:ThreadTimeSlice option.

Multithreaded Programming 47

For the NonStop system, the thread-scheduling algorithm is not preemptive; that is, a thread
continues to run until it explicitly yields or otherwise causes a yield by invoking a blocking operation
on the thread. However, you can assign time-slice to each thread using the
–XX:ThreadTimeSlice option.
When a thread gives up control, the runnable threads of the highest priority are run in first-in-first-out
order. A lower priority thread is run (also in first-in-first-out order) only when no runnable threads
of a higher priority are available. Where no runnable user threads are available, an internal NULL
thread is run. This NULL thread wakes up and gives control to other threads on events, such as
signals, timer completions, and I/O completions.
When a Java thread is created, the thread inherits its priority from the thread that created it. The
priority of the thread varies from MIN_PRIORITY (1) to MAX_PRIORITY (10), where the
default priority is NORM_PRIORITY (5). After a thread is created, the setPriority method
can be used to alter the priority of the thread.
The Java virtual machine threads use predetermined priorities, some of which are higher than the
priority of any of the user threads. By default, the -XX:+UseThreadPriorities option is true
and any attempt to alter the option has no effect. Although attempts to use –XX: options, which
affect thread priorities, might be accepted at the command line, these options have no effect when
used on the NonStop system.
A selfish thread (a thread that executes in a tight loop without giving up control) could, theoretically,
run forever. However, after a while, the operating system will periodically reduce the priority of
the process in stages, until its priority reaches a very low value.
Timers are never guaranteed to be exact. Invocation of timer callbacks and detection of I/O
completions can be severely impacted by long-running threads.
For a demonstration of scheduling on a NonStop system, review the output of the following program
and its results when run:

RaceDemo.java
public class RaceDemo {
 private final static int NUMRUNNERS = 2;
 public static void main(String[] args) {

 SelfishRunner[] runners=new SelfishRunner[NUMRUNNERS];
 for (int i = 0; i < NUMRUNNERS; i++) {
 runners[i] = new SelfishRunner(i);
 runners[i].setPriority(2);
 }
 for (int i = 0; i < NUMRUNNERS; i++)
 runners[i].start();
 }
}

SelfishRunner.java
public class SelfishRunner extends Thread {

 private int tick = 1;
 private int num;

 public SelfishRunner(int num) {
 this.num = num;
 }

 public void run() {
 while (tick < 400000) {
 tick++;
 if ((tick % 50000) == 0)
 System.out.println("Thread #"+num+", tick = "+tick);
 }

48 Implementation Specifics

 }
}

On the NonStop system, the execution of threads is not time-sliced. Messages from one thread
precede those from the other thread as shown below for thread 0 and thread 1.
Thread #0, tick = 50000
Thread #0, tick = 100000
Thread #0, tick = 150000
Thread #0, tick = 200000
Thread #0, tick = 250000
Thread #0, tick = 300000
Thread #0, tick = 350000
Thread #0, tick = 400000
Thread #1, tick = 500000
Thread #1, tick = 100000
Thread #1, tick = 150000

When the SelfishRunner.java program is run with the –XX:ThreadTimeSlice option, time slicing
is enabled and the messages from one thread do not precede messages from the other threads.
Instead, the messages are displayed in the following manner:
Thread #0, tick = 50000
Thread #0, tick = 100000
Thread #0, tick = 150000
Thread #0, tick = 200000
Thread #0, tick = 250000
Thread #1, tick = 50000
Thread #1, tick = 100000
Thread #1, tick = 150000
Thread #1, tick = 200000
Thread #0, tick = 300000
Thread #0, tick = 350000
Thread #0, tick = 400000

NOTE: The NonStop Java 6.0 T2766H60^ABP release includes a beta version of the JVM-forced,
preemptive thread scheduling feature. This feature also provides an option to specify the time slice
for threads. A thread will run for the specified time slice, after which another thread will get
dispatched from the ready queue. This helps in force-yielding a thread which consumes large
processor time so that the other ready threads also get the processor time to run.

To enable preemptive user threads, use the following option:
-XX:ThreadTimeSlice[=T]

where,
T specifies the time in milliseconds.

NOTE:
• T is an optional argument.

• The default value of T is 40 milliseconds.

• The value of T can range between 0 to 32767. If the specified value of T is above 32767,
the value is time-sliced to 32767.

Threading Considerations for Java Code
A thread-aware function blocks only the thread calling that function, rather than blocking all threads
in the process. At the Java program level, the following blocking operations are thread-aware and,
therefore, block only the thread performing the operation rather than blocking all threads in Java:

• Socket I/O

• Terminal I/O

Multithreaded Programming 49

• Pipe I/O

• TMF transactions (com.tandem.tmf package)
JToolkit provides a thread-aware API for performing I/O to Enscribe files, $RECEIVE, and Pathway
servers by using Pathsend procedure calls. For more information, see the JToolkit Programmer's
Reference.

Thread-Aware I/O Support for OSS regular files
By default, the NonStop Server for Java 6.0 enables Non-Blocking I/O for OSS regular files on
SUT versions J06.04 and greater and H06.15 and greater. This means that regular file I/O
operations on multiple OSS files can be performed simultaneously by the Java application. Therefore,
this feature is useful for multithreaded Java programs that perform regular OSS file I/O operations.
To turn the Non-Blocking I/O mode off, use the following java command line option:

-Dnsk.java.nonblocking=false.

Threading Considerations for Native Code
All threaded code should be written in Java rather than native code. If a user native library linked
into Java creates a thread, non thread-aware operations executed in the user library might impact
the operation of the Java virtual machine. If the user library creates multiple user threads, the
program needs to be all the more careful to ensure that the operations performed in the user threads
are thread-safe on the NonStop system.
You need to consider the issues discussed below when using threads in native code linked to a
Java program on a NonStop system:

• NonStop Server for Java 6.0 does not use the POSIX threads SRL.
Instead, NonStop Server for Java 6.0 contains its own version of POSIX threads. Therefore,
your code should include the Standard POSIX Threads header files shipped with NonStop
Server for Java 6.0. The header files for this version of POSIX threads can be found in the
directory:
[install-dir]/java/include/oss

where install-dir is the NonStop Server for Java 6.0 installation directory.

• Creating a thread for a task does not make the task run faster.
The NonStop system does not have an implementation of native threads; threads run at a user
level. Even on a multiprocessor NonStop system, all threads in a process are executed in the
same processor as the process. If you create a thread whose only purpose is to run a certain
task, the thread-creation overhead makes the task run marginally slower than the same task
being performed without creating the thread.

• The thread-scheduling algorithm is not preemptive.
A thread executes until it explicitly yields. For more information, see the discussion of “Thread
Scheduling” (page 47).

• In a very long-running, CPU-intensive thread, having your native code occasionally invoke the
yield() method allows timer completions and I/O completions to be detected. Invocation
of timer callbacks and detection of I/Ocompletions can be severely impacted by long-running
threads.

• Be familiar with the issues discussed in the “Application Programming with Standard POSIX
Threads” section of the OSS Programmer’s Guide.
This section contains information about the jacket routines that make many of the available
system calls thread-aware. The interfaces themselves, however, are documented in the OSS
System Calls Reference Manual.
To use these jacket routines, you need to add the following define in your native code.

50 Implementation Specifics

#define SPT_THREAD_AWARE

Adding this define in the native C/C++ code, transparently provides you the thread-aware
equivalents of many of the interfaces, for example, the Socket interface. Additionally, the
interfaces are available to determine if a socket is read-ready (spt_fd_read_ready) or
write-ready (spt_fd_write_ready). The Socket implementation on NonStop systems supports
streaming; multiple sends and receives are outstanding at a time.

• Be careful when using thread-aware interfaces.
The OSS Programmer’s Guide lists thread-aware equivalents of NonStop system-specific
interfaces. These interfaces have an explicit spt_ prefix.
For example, when using a thread-aware function, do not attempt to control the set of files
that are enabled for completion or directly attempt to wait for a completion on a file registered
with pthreads (FILE_COMPLETE_SET_,FILE_COMPLETE_, AWAITIO, or AWAITIOX
procedure).

Java Print Service (JPS)
The Java Print Service is implemented in NonStop Server for Java 6.0. The Java Print Service allows
you to print on printers directly to NonStop systems and to network printers attached to a local
area network (LAN) or wide area network (WAN). For information on configuring network printers,
see the Spooler FASTP Network Print Processes Manual. For information on the Spooler subsystem,
see the Spooler Utilities Reference Manual.
The Java Print Service implemented into NonStop Server for Java 6.0 uses the headless version of
the javax.print API. All printing features and attributes in the JPS classes listed below work when
the NonStop spooler and printer support the API. However, the NonStop operating system
requirement for sending text and postscript files to separate printers also applies when printing
under JPs The JPs classes are:

• javax.print

• javax.print.attribute

• javax.print.attribute.standard

• javax.print.event

NOTE: For applications using the java.awt.print.PrinterJob class, the printer should be
postscript enabled. For information on enabling postscript printing, see the Spooler FASTP Network
Print Processes Manual.

Using the Guardian Printer
NonStop Java API accepts the Guardian printer filenames.
The following code fragment shows how to set the Guardian printer filename and print the
print.txt file.
..
String printer = "\$s.#<guardian-printer-name>";
FileInputStream stream = new FileInputStream("print.txt"); // file to print
..
PrintServiceAttributeSet prAttr = new HashPrintServiceAttributeSet();
prAttr.add(new PrinterName(printer, null));
PrintServiceLookup lookup = new UnixPrintServiceLookup();
PrintService[] services = null;
..
services = lookup.getPrintServices(null, prAttr);
..
DocPrintJob job = services[0].createPrintJob();
SimpleDoc doc = new SimpleDoc(stream, DocFlavor.INPUT_STREAM.AUTOSENSE, null);
..
job.print(doc, null);

Java Print Service (JPS) 51

http://docs.oracle.com/javase/6/docs/api/javax/print/package-summary.html
http://docs.oracle.com/javase/6/docs/api/javax/print/package-summary.html
http://docs.oracle.com/javase/6/docs/api/javax/print/attribute/package-summary.html
http://docs.oracle.com/javase/6/docs/api/javax/print/attribute/standard/package-summary.html
http://docs.oracle.com/javase/6/docs/api/javax/print/event/package-summary.html

..

..

ThreadDumpPath Support
The execution stack trace of all Java threads in a NonStop Java 6.0 process can be dumped by
sending a SIGQUIT signal to the Java process, using the following OSS command:

$ kill -QUIT <pid>

By default, the thread stack dump is written in text format on stdout. NSJ 6.0 SPR- T2766H60^ABX
introduces the ability to redirect this output to a user-defined file using the following Java command
line option:

-XX:ThreadDumpPath=<path/filename>

Dynamic Saveabend File Creation
The Dynamic Saveabend File Creation feature helps to create a saveabend file of a running Java
process, without abending (aborting) the Java process, by issuing a signal to the process. This
feature allows the Java process to continue execution even after the abend file is created. The time
taken to create the abend file, that is, the application pause time is low (measurable in milliseconds).
The saveabend file enables you to analyze any observed Java runtime problems, such as observed
high memory consumption, low responsiveness, without impacting the running Java process.
To create a saveabend file in the working directory of the process, complete the following steps:
1. Export DUMP_CORE=1.
2. Start the Java application.
3. Press Ctrl-break while the process is running.

Creating Child Process Using the -Dnsk.java.fastExec=true Option
For applications that use the Runtime.exec method to create a child process, NonStop Java
6.0 version T2766H60^ABP and later provides a faster method to create a child process using
the -Dnsk.java.fastExec=true option. The Runtime.exec method forks a child process
and overlays its image with the new executable. Forking the child process duplicates the parent
process image, which is discarded when the exec is executed. The -Dnsk.java.fastExec=true
option builds the child process image from the executable. It does not inherit the parent process
image, thereby reducing the time required to create a child process.

Preemptive User Threads On NonStop Server For Java
The preemptive user threads feature enables you to specify the time slice for threads and thus helps
in thread scheduling on the NSK systems. A thread will run for the specified time slice, after which
another thread will get dispatched from the ready queue. This helps in yielding a thread which
consumes large processor time and allowing the other ready threads to run.
To enable preemptive user threads, use the -XX:ThreadTimeSlice[=T] option.
Syntax:
-XX:ThreadTimeSlice[=T]

where,
T specifies the time in milliseconds.

52 Implementation Specifics

NOTE:
• T is an optional argument.

• The default value of T is 40 milliseconds.

• Values of T can range between 0 to 32767. If the specified value of T is above 32767, the
value is time-sliced to 32767.

Java Authentication and Authorization Service (JAAS)
The Java Authentication and Authorization Service (JAAS) is integrated into the NonStop Server
for Java 6.0. JAAS augments the core Java 2 platform with facilities to authenticate and enforce
access controls upon users. JAAS, also, has the ability to enforce access controls based on who
runs the code.
JAAS implements a Java version of the standard Pluggable Authentication Module (PAM) framework.
This pluggability permits applications to remain independent from underlying authentication
technologies. New or updated authentication technologies can be plugged in without requiring
modifications to the application itself. Applications enable the authentication process by instantiating
a LoginContext object, which in turn references a Configuration to determine the authentication
technology, or LoginModule, to be used in performing the authentication. The LoginModule
interface gives developers the ability to implement different kinds of authentication technologies
that can be plugged in under an application. For example, one type of LoginModule may perform
a username-password-based form of authentication. Other LoginModules may involve more
sophisticated authentication mechanisms.
The NonStop Server for Java 6.0 product includes LoginModule interfaces implemented by Sun
Microsystems, such as JndiLoginModule and KeyStoreLoginModule, but does not provide
a LoginModule that interfaces to the Safeguard subsystem on NonStop Systems. You can also
develop your own LoginModule implementation.
For more information on writing a LoginModule implementing an authentication technology, see
the JAASLoginModule Developer's Guide.
(http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html)

JavaBeans
JavaBeans are reusable software components that can run in both a design environment (inside a
s fsfbuilder tool) and a runtime environment.
The design environment is highly visual and requires that JavaBeans provide design information
to the programmer and allow the end user to customize its behavior and appearance.
In the runtime environment, JavaBeans might be visible, as in the case of a Graphical User Interface
(GUI), or invisible, as in the case of a data feed control.
Because of the nonvisual nature of the NonStop operating system, the NonStop Server for Java
6.0 supports only runtime execution of invisible JavaBeans. The NonStop Server for Java 6.0 does
not support design-time execution or runtime execution that requires a GUI operation. For this
reason, in the NonStop Server for Java 6.0, the Boolean expression java.beans.Beans
isGuiAvailable returns the value false.
The NonStop Server for Java 6.0 includes the JavaBeans Development Kit (BDK).
For more information about JavaBeans, see the Sun Microsystems JavaBeans document
(http://java.sun.com/javase/6/docs/technotes/guides/beans/index.html).

Java Authentication and Authorization Service (JAAS) 53

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/beans/index.html

Debugging Java Programs
This subsection discusses the debugger architecture and how to run the programs involved in
debugging Java applications. The topics are:

• “Debugging Overview” (page 54)

• “Transports” (page 55)

• “java Command Line Options to Run a Debuggee” (page 55)

• “Starting the Java Debugger (jdb) Tool” (page 57)

• “Debugging JNI Code” (page 57)

• “Debugging Java and JNI Code” (page 58)

Debugging Overview
NonStop Server for Java 6.0 supports Java Platform Debugger Architecture (JPDA) that provides
debugging support for the Java platform. JPDA consists of a three-layered set of APIs:
JDI

Java Debug Interface—A high-level Java language interface, includes support for
remote debugging that is used by debugger applications

JDWP
Java DebugWire Protocol—Defines the format of the request between the debugger
and the debuggee (the application that is being debugged)

JVM TI
Java Virtual Machine Tool Interface—A programming interface used by development
and monitoring tools that provides both a way to inspect the state and to control
the execution of applications running in the Java VM, and thereby, defines the
debugging services a VM provides.

The structure of JPDA is shown in the diagram below.
The Java Platform Debugger Architecture Structure

54 Implementation Specifics

For more details, see the Sun Microsystems Java Platform Debugger Architecture Documentation
(http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/architecture.html).
JDI specification does not provide in-process debugging. Hence, a Java based tool called a
debugger is used to debug another JVM running the Java application. This JVM, called the
debuggee, also contains the back-end of the debugger that is responsible to accept the request
from the front-end of the debugger and to respond to these requests.
NonStop Server for Java 6.0 ships a terminal oriented non-GUI debugging tool. This Java Debugger
Tool (JDB) can be used on a NonStop system platform to debug the Java applications running on
the same NonStop system or on another NonStop system or any other platform.
You can also use the non-GUI debugging jdb and other vendors' GUI debuggers running on
Microsoft Windows and other platforms to debug NonStop Server for Java 6.0 applications running
on a NonStop system.

Transports
A JPDA transport is a form of inter-process communication used by a debugger application and
the debuggee. NonStop Server for Java 6.0 provides a socket transport that uses the standard
TCP/IP sockets to communicate between debugger and the debuggee.
NonStop Server for Java 6.0 defaults to socket transport. NonStop Server for Java 6.0 does not
support shared memory transport.

java Command Line Options to Run a Debuggee
For remote debugging, you need to start the Java application to be debugged (debuggee) as a
server using the following command:
java -Xdebug -Xnoagent

Debugging Java Programs 55

http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/architecture.html

-Xrunjdwp:transport=dt_socket,server=y,address=port_no,suspend=y
classname arguments

-Xdebug

Enables debugging.

-Xnoagent

Disables the old Sun.tools.debug agent. This is the default.

-Xrunjdwp:sub-options

sub-options are specified in the following format:

name1[=value1],name2.=[=value2]...

The sub-options are:
transport

Name of the transport to use. DT_socket is the value for this option. NonStop
Server for Java 6.0 defaults to DT_socket.

server=y

y means listen for a debugger application

address= transport-address-for-this-connection
The transport address is the port number in which the debuggee is listening on for
the debugger or a range of port value from which the debuggee selects the first
available port to listen for the debugger.
The following syntax is used:
address=[<name>:]<port> | <start port>-<end port>

where,
<name> is the host name.
<port> is the socket port number.
<start port> is the starting port number for a range of ports.
<end port> is the ending port number for a range of ports.

suspend=y

Suspends the debuggee just before the main class loads.

Optionally, you can specify the -Xint argument to specify, by using only the interpreter and not
the HotSpot compiler.

NOTE: Specifying a range of port numbers for address is available from SPR T2766H60^ACC
or later. This option is specific to NonStop. The following examples show the various ways in which
the connection address is specified:

56 Implementation Specifics

Example 1 Example 1:
java -Xdebug -Xnoagent

-Xrunjdwp:transport=dt_socket,server=y,address=4000,

suspend=y classname arguments

The port number is specified in this example.

Example 2 Example 2:
java -Xdebug -Xnoagent

-Xrunjdwp:transport=dt_socket,server=y,address=4000-4050,

suspend=y classname arguments

The range of ports is specified in this example and the hostname is implicit.

Example 3 Example 3:
java -Xdebug -Xnoagent

-Xrunjdwp:transport=dt_socket,server=y,address=someMachine:4000-4050,

suspend=y classname arguments

The machine name and the port range is specified in this example.

Starting the Java Debugger (jdb) Tool
Now, the Java Debugger (jdb) tool can be started to communicate with the debuggee by using
the jdb command as described for various situations.

• If you are using JDB on the same NonStop system where the debuggee runs, use
jdb -attach portnum

• If you are using JDB on a different NonStop system from where the debuggee runs, use
jdb -attach host-name:portnum

• If you are using JDB from Microsoft Windows or any other platform, use
jdb -connect com.sun.jdi.SocketAttach:hostname=hostname,port=portnum

Further Information
If you are using a GUI debugger, refer to the vendors' documentation to configure the debugger
to communicate with the debuggee.
Remote debugging of NonStop Server for Java 6.0 applications has been tested with Eclipse 3.4
of the Eclipse Project. For information and software downloads, see the website at http://
www.eclipse.org/.
For more details on command line options, see Connection and Invocation Details
(http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/conninv.html).

Debugging JNI Code
To debug native code that the application writers wrote and linked with the Java program, use the
inspect debugger tool available on the NonStop system. Use Visual Inspect (the preferred debugger)
or Native Inspect; for further information, see the Native Inspect Manual.
You can use the following command to start java under an inspect debugger:

Debugging Java Programs 57

http://www.eclipse.org/
http://www.eclipse.org/
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/conninv.html

run -debug java java_options

To debug native code, load the DLL first. Visual Inspect lets you stop the program after the DLL is
loaded so you can set breakpoints.
You can see and debug only the native routine to be debugged and other native routines that
routine calls. All other scopes above the native routine are compiled or interpreted Java code,
which the inspect debugger has no knowledge about.

Using Visual Inspect To Add an Event Breakpoint on DLL Open Event
Because Visual Inspect does not support deferred breakpoints, you need to ensure that a DLL is
loaded before setting a breakpoint. Visual Inspect supports the DLL Open event breakpoint that
suspends the program just after a DLL is loaded but before initialization routines are invoked.
To add an Event Breakpoint on DLL Open event:
1. In Visual Inspect, choose View —> Breakpoints in Application or Program Control view.
2. Click the Event tab.
3. Click Add Breakpoint and select DLL Open from Event Name drop-down menu.
4. Click OK .

Debugging Java and JNI Code
You can use the Native Inspect debugger tool to debug the native code and the Java Debugger
tool to debug the Java code at the same time. You need to start the Java debuggee process under
a debugger. For example, type the following command.

run -debug java -Xdebug -Xnoagent -Xrunjdwp:sub-options

Then, you can use the Java Debugger tool to communicate with the debuggee process as explained
under Debugging Overview“Debugging Overview” (page 54).

Deviations in JVM Specification Options
The compiler specification options for both the java and jdb tools deviate from standard Java
because NonStop Server for Java 6.0 implements only the HotSpot server VM and does not
implement a client VM. Accordingly, the options that specify running the client VM are not valid.

java: Java Application Launcher Command Line Option Deviations
-client

Selects the Java HotSpot Client virtual machine (VM).

NOTE: The -client option is not valid with NonStop Server for Java 6.0.

-server

Selects the Java HotSpot Server virtual machine (VM).

NOTE: -server the default option for NonStop Server for Java 6.0; therefore,
specifying -server is optional.

For more information about the java tool and additional deviations from standard Java, see
“Implementation of Garbage Collector Types” (page 61) and java in the NonStop Java Tools
Reference Pages.

jdb: Java Debugger Command Line Option Deviations
-tclient

Runs the application in the Java HotSpot client VM.

58 Implementation Specifics

NOTE: The -tclient option is not valid with NonStop Server for Java 6.0.

-tserv

Runs the application in the Java HotSpot server VM.

NOTE: -tserv is the default option for NonStop Server for Java 6.0; therefore,
specifying -tserv is optional.

For more information about jdb and how to start a Java program so that jdb can attach to it, see
jdb in the NonStop Java 6.0 Tools Reference Pages.

Garbage Collection (GC)
This subsection discusses implementation-specific information about garbage collection for NonStop
Server for Java 6.0. The topics are:

• “General Information on Garbage Collection” (page 59)

• “Heap Layout” (page 59)

• “Managing Generation Size” (page 60)

• “Implementation of Garbage Collector Types” (page 61)

General Information on Garbage Collection
In general, garbage collectors, the various GC algorithms, and modeling in the NonStop Server
for Java 6.0 are the same as those implemented by Sun Microsystems in their JVM. Accordingly,
you should refer to the SunMicrosystems web site for details about garbage collection. But keep
in mind that some of the information is not applicable to NonStop Server for Java 6.0. Links to
pertinent information (but not all the information) on the SunMicrosystems web site are:

• Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html)

• Turbo-charging the Java HotSpot Virtual Machine, v1.4.x to Improve the Performance and
Scalability of Application Servers by Alka Gupta and Michael Doyle
(http://java.sun.com/developer/technicalArticles/Programming/turbo/)

• Improving Java Application Performance and Scalability by Reducing Garbage Collection
Times and Sizing Memory Using JDK 1.4.1 by Nagendra Nagarajayya and J. Steven Mayer
(http://developers.sun.com/mobility/midp/articles/garbagecollection2/)

Heap Layout
In NonStop Server for Java 6.0, the memory is managed in generations (or memory pools) based
on objects at different ages for Java objects. “Layout for Generations” (page 60) is illustrated and
described below.

Garbage Collection (GC) 59

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://java.sun.com/developer/technicalArticles/Programming/turbo/
http://java.sun.com/developer/technicalArticles/Programming/turbo/
http://developers.sun.com/mobility/midp/articles/garbagecollection2/
http://developers.sun.com/mobility/midp/articles/garbagecollection2/

Layout for Generations

The generations are:

• Young (also called new) generation—The JVM allocates objects in the young generation pool.
Minor garbage collection happens when this young generation is full and the JVM is unable
to allocate new objects. The young generation also includes two survivor spaces. One survivor
space is empty at any time and serves as a destination of the next GC operation, which copies
the collection of any live objects in Eden and the other survivor space. Objects are copied
between survivor spaces in this way until they are old enough to be tenured—copied to the
tenured generation.

• Tenured (also called old) generation—The JVM moves objects that survived minor garbage
collections from the young generation to the old generation.

• Permanent generation—Class objects and metadata objects are allocated in permanent
generation.

The young and tenured generations each have an area called "Reserved," which is allocated at
initialization and used when garbage collection does not have free sufficient space to satisfy the
allocation request. In a Sun Microsystems implementation, the address range for this area is reserved
but memory space is not allocated until it is used.

Managing Generation Size
Several java command options allow you to manage the initial size and maximum size of the
combined young and tenured generations.
-Xms

Sets the initial size for the combined young and tenured generation. The default
initial size is 3058 kilobytes (K). Smaller values lead to shorter but more frequent
garbage collections, larger values lead to longer but less frequent garbage
collections. For large server applications, HP recommends that the initial size be
equal to the maximum size.

-Xmx

Sets the maximum size for the combined young and tenured generation. The default
maximum size is 64 megabytes (MB).

-XX:MaxPermSize

60 Implementation Specifics

Sets the maximum size for the permanent generation. The default value for
MaxPermSize is 32 MB. The initial size of the permanent generation PermSize
option is ignored.

NOTE: At initialization time, the maximum size of the combined young and tenured
generations and the maximum size of permanent generation are allocated.

Implementation of Garbage Collector Types
The default garbage collectors in NonStop Server for Java 6.0 are:

• Copying collector for the young generation

• Mark-sweep collector for the tenured generation
NonStop Server for Java 6.0 uses these garbage collectors because they are the most efficient on
the NonStop system. A summary of garbage collector implementations appears in Table 7
(page 61). Paragraphs that follow discuss various implementations to help you understand
performance issues.

Table 7 Summary of Garbage Collector Implementations

Implementation StatusCollector Type

Default collector for the young generationCopying collector

Default collector for the tenured generationMark-sweep collector

Disabled“Parallel Collector” (page 61)

Disabled“Concurrent Low-Pause Collector”
(page 62)

Allowed“Incremental Low-Pause Collector”
(page 62)

Parallel Collector
The parallel collector (or throughput collector) uses the parallel version of the young generation
collector. The parallel collector is disabled in NonStop Server for Java 6.0 because this collector
applies only for Symmetric Multiprocessing (SMP) type machines. NonStop systems are not SMP
type machines.
The following java command options that specify a parallel collector or apply to a parallel collector
are not valid for NonStop Server for Java 6.0:
-XX:+UseParallelGC

Specifies a parallel garbage collector. If you specify this option, the JVM exits with
the error: -XX:+UseParallelGC option is not supported on this platform.

-XX:+UseParNewGC

Specifies a parallel garbage collection. This option is disabled. If you specify this
option, the JVM exits with the error: -XX:+UseParNewGC option is not supported
on this platform.

-XX:+UseAdaptiveSizePolicy

Specifies an adaptive size policy. This option applies only for a parallel collector
and, therefore, is disabled. If you specify this option, the JVM exits with the error:
-XX:+UseAdaptiveSizePolicy option is not supported on this platform.

-XX:+AggressiveHeap

Obtains the platform resources and configures the heap layout accordingly, uses
parallel collector, and enables AdaptiveSizePolicy option. This option applies

Garbage Collection (GC) 61

only for a parallel collector and, therefore, is disabled. If you specify this option,
the JVM exits with the error: -XX:+AggressiveHeap option is not supported on
this platform.

-XX:GCHeapFreeLimit=space-limit

Specifies the lower limit on the amount of space freed during a garbage collection
in percentage of the maximum heap.

-XX:GCTimeLimit=time-limit

Specifies the upper limit on the amount of time spent in garbage collection in percent
of total time.

Also, the following flags of the Garbage Collector Ergonomics technology for a parallel collector
are not supported. These specify performance goals for the application.

-XX:MaxGCPauseMillis=nnn
-XX:GCTimeRatio=nnn

Concurrent Low-Pause Collector
A concurrent low-pause collector is for tenured generation. This collector does most of the collection
concurrently with the application execution. This collector divides the collection into different phases
and does some phases concurrently with the application execution and others in "stop the world"
mode. This collection technique does not perform well as the default collector when the phases of
the collection cannot run concurrently with the application thread. This garbage collector, therefore,
is disabled in NonStop Server for Java 6.0.
The following java command options that specify a concurrent low-pause collector are not valid
for NonStop Server for Java 6.0:
-XX:+UseConcMarkSweepGC

Specifies using the concurrent mark-sweep garbage collector. If you specify this
option, the JVMexits with the error: -XX:+UseConcMarkSweepGC option is not
supported on this platform.

-Xconcgc

Enables a concurrent mark-sweep garbage collector. This option is disabled. If you
specify this option, the JVM exits with the error: -Xconcgc option is not supported
on this platform.

Incremental Low-Pause Collector
By careful book-keeping, the incremental low-pause collector collects just a portion of the tenured
generation at each minor collection. The collector tries to spread the large pause of a major
collection over many minor collections. In overall throughput, this collector is slower than the default
tenured generation collector.
To use the incremental low-pause collector, specify the following java command option:
-Xincgc

Specifies using the incremental low-pause garbage collector.

Java Garbage Collector Tuning for Application Performance
The NonStop Server for Java 6.0 incorporates the HotSpot VM. This topic discusses the options
available for tuning the JVM, suggests flags and values to tune the Java HotSpot VM, and points
to HotSpot tuning information on the Internet. GC tuning is assisted by GC profile data which can
be collected and analyzed as explained in the next section.
Since GC takes place when generations fill up, the amount of available total heap memory has
direct impact on the performance. The parameters that affect the heap are listed below.

62 Implementation Specifics

-Xms : the startup size of memory allocation pool (the GC heap)
-Xmx : the maximum memory allocation pool

The maximum value for the NonStop system depends on the location of the QIO
segment. If the segment is moved to KSEG2, the maximum value can be as high
as 900 MB, otherwise, the maximum value may stay around 350 MB. For
information on QIO segment location, see “Memory Considerations: Moving QIO
to KSEG2” (page 66). Also, for more information on the -Xms and -Xmx options,
see “Managing Generation Size” (page 60).

For large server applications, the default values of the two options listed are usually not adequate.
In general, you should grant as much memory to the JVM as possible.
Another important factor that affects performance is the proportion of the heap that is assigned to
the young generation. The parameters for the young-generation heap are listed below:

• -XX:NewRatio=nn The ratio between the young and old.

• -XX:NewSize=nn The lower size bound.

• -XX:MaxNewSize=nn The upper size bound.

• -XX:SurvivorRatio=nn Tune the survivor spaces (illustrated in the “Layout for Generations”
(page 60)).

For example:
java -Xms512m -Xmx512m -XX:NewSize=256m -XX:MaxNewSize=256m \
-XX:SurvivorRatio=2 class

These options inform the JVM to set the initial size of the heap to 512 MB, the maximum heap to
512 MB, the new generation to 256 MB (128 MB belongs to Eden and 2x64 MB survivor) and
the old generation to 256 MB.
For details about all these parameters, see Java HotSpot VM Options
(http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html)
For details about tuning garbage collection with the Java SE 6 HotSpot virtual machine and for
general performance tuning information, see:

• Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning
(http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html)

• The article Tuning Java I/O Performance
(http://java.sun.com/developer/technicalArticles/Programming/PerfTuning/)

• The article, Turbo-charging Java HotSpot Virtual Machine, v1.4.x to Improve the Performance
and Scalability of Application Servers
(http://java.sun.com/developer/technicalArticles/Programming/turbo/)

• Java Performance Documentation (http://java.sun.com/docs/performance/)

Java Garbage Collector Tuning for Application Performance 63

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://java.sun.com/developer/technicalArticles/Programming/PerfTuning/
http://java.sun.com/developer/technicalArticles/Programming/turbo/
http://java.sun.com/developer/technicalArticles/Programming/turbo/
http://java.sun.com/docs/performance/

NOTE:
• As described earlier, the NonStop Server for Java 6.0 does not support the throughput collector

(specified with the option –XX:+UseParallelGC) or the concurrent low pause collector
(specified with the option –XX:+UseConcMarkSweepGC).

• Also, the following options do not apply either for the NonStop Server for Java 6.0 or the
NonStopsystem:
-XX:+UseBoundThreads — Option to bind user level threads; Solaris specific
-XX:+UseAltSigs — Solaris specific.
-XX:+UseV8InstrsOnly — Only for Sparc (Solaris)
-XX:-AllowUserSignalHandlers — Solaris specific
-XX:AltStackSize=nn — Solaris specific
-XX:+MaxFDLimit — Solaris specific
-XX:-UseBoundThreads — Solaris specific
-XX:-UseLWPSynchronization — Solaris specific
-XX:PreBlockSpin=nn — Only for Linux
-XX:-UseISM — Solaris specific
-XX:-UseMPSS — Solaris specific
-XX:-UseSpinning — Only for Linux

Java GC Profiling
The NonStop Server for Java 6.0 supports an HP proprietary option, -Xverbosegc to capture
the java application's GC activity. The output of this tool can be used to view and analyze the
detailed statistics in an offline mode with HPjmeter. The -Xverbosegc option prints out detailed
information about the spaces within the Java Heap before and after the garbage collection.
The syntax :
-Xverbosegc[:help]|[0|1][:file=[stdout|stderr|<filename>]]

Fore more information on the syntax options of -Xverbosegc, see java in the NonStop Server
for Java 6.0 Tools Reference Pages.

HeapDumpOnly option
The -XX:+HeapDump option can be used to observe memory allocation in a running Java application
by taking snapshots of the heap over time.
Another way to get heap dumps is to use the _JAVA_HEAPDUMP environment variable; setting this
environment variable enables you to take memory snapshots without making any modifications to
the Java command line. To enable this functionality, either use the command line option or set the
environment variable (for example, export _JAVA_HEAPDUMP=1) before starting the Java
application.
The HeapDumpOnly log contains only the heap dump and not the thread stack trace dump. If
required, you can use the –Xrunhprof:heap=dump option to produce a log that contains both
the heap dump and thread stack trace dump.
With the -XX:+HeapDump option enabled, each time the process is sent a SIGQUIT signal, the
Java VM produces a snapshot of the Java heap in hprof ASCII format:

java_<pid>_<date>_<time>_heapDump.hprof.txt.

If you set the _JAVA_HEAPDUMP_ONLY option, heap dumps are triggered by SIGWINCH instead
of SIGQUIT. Only the heap dump is produced; that is, the thread and trace dump of the application

64 Implementation Specifics

to stdout is suppressed. Setting the _JAVA_BINARY_HEAPDUMP environment variable along with
_JAVA_HEAPDUMP_ONLY produces a binary format heap dump and instead of ASCII, the
SIGWINCH is sent to the process.

NOTE: Before producing the heap dump, JVM performs a full GC.

Other HeapDump Options
In addition to -XX:+HeapDump, there are three other HeapDump options available:
-XX:+HeapDumpOnCtrlBreak, -XX:+HeapDumpOnOutOfMemoryError, and
-XX:+HeapDumpOnly. The following table lists the heap dump options.

FilenameFormatTriggerOption

Set the _JAVA_BINARY_HEAPDUMP environment variable to
get binary
java_<pid>_<date>_<time>_heapDump.hprof.txt

ASCIISIGQUIT-XX:+HeapDump

java_<pid>.hprof.<millitime>BinarySIGQUIT-XX:+HeapDumpOnCtrlBreak

java_<pid>.hprof or the file specified by
-XX:HeapDumpPath=file

BinaryOut of
Memory

-XX:+HeapDumpOnOutOfMemoryError

Set the _JAVA_BINARY_HEAPDUMP environment variable to
get binary
java_<pid>_<date>_<time>_heapDump.hprof.txt

ASCIISIGWINCH-XX:+HeapDumpOnly

The heap dump options are described as follows:

-XX:+HeapDumpOnCtrlBreak

It enables taking snapshots of the Java heap when a SIGQUIT signal is sent to the Java process,
without using the JVMTI-based -Xrunhprof:heap=dump option. This option is similar to the
-XX:+HeapDump option, except the output format, which is in binary hprof format and the output
is placed into a filename with the following naming convention:
java_<pid>.hprof.<millitime>.
If the HP environment variable _JAVA_HEAPDUMP is set and the -XX:+HeapDumpOnCtrlBreak
option is specified, both hprof ASCII and binary dump files are created when a SIGQUIT is sent
to the process. For example, the following files are created: java_27298.hprof.1152743593943
and java_27298_060712_153313_heapDump.hprof.txt. If JAVA_BINARY_HEAPDUMP is set
and the -Xrunhprof:heap=dump command is run, both hprof ASCII and binary files are produced
for this option.

-XX:+HeapDumpOnOutOfMemoryError

This option enables dumping the Java heap when the Java process encounters a
java.lang.OutOfMemoryError exception. . The heap dump file name defaults to
java_pid<pid>.hprof in the current working directory. The option -XX:HeapDumpPath=file
can be used to specify the heap dump file name or a directory where the heap dump file must be
created. The only heap dump format generated by the -XX:+HeapDumpOnOutOfMemoryError
option is the hprof binary format.

NOTE: The -XX:+HeapDumpOnOutOfMemoryError option does not work with the low-pause
collector (option -XX:+UseConcMarkSweepGC).

-XX:+HeapDumpOnly

The -XX:+HeapDumpOnly option or the _JAVA_HEAPDUMP_ONLY environment variable can be
used to enable heap dumps using the SIGWINCH signal (signal 12). This interface is provided to
separate the generation of thread and trace information triggered via SIGQUIT from the heap

Java GC Profiling 65

dump information. If the -XX:+HeapDumpOnly option is specified or the _JAVA_HEAPDUMP_ONLY
environment variable is set, the heap dump functionality is triggered by sending SIGWINCH to
the process. The printing of thread and trace information to stdout is suppressed.
The heap dump is written to a file with the following filename format:
java_<pid>_<date>_<time>_heapDump.hprof.txt.

The default output format is ASCII. The output format can be changed to hprof binary format by
setting the _JAVA_BINARY_HEAPDUMP environment variable. This environment variable can also
be used with the -XX:+HeapDump option to generate hprof binary format with the SIGQUIT signal.

Using Heap Dumps to Monitor Memory Usage
By creating a series of heap dump snapshots, you can see how the number and size of objects
varies over time. It is a good idea to collect at least three snapshots. The first one serves as a
baseline. It should be taken after the application has finished initializing and has been running for
a short period. The second snapshot can be taken after the residual heap size has grown
significantly. You can monitor the residual heap size using -Xverbosegc and HPjmeter. Take the
last snapshot just before the heap has grown to a point where it causes problems resulting in the
application spending the majority of its time doing full GCs. If you take other snapshots, spread
them out evenly based on residual heap size throughout the running of the application. The leak
is easier to track down if the difference in size between heap dumps is large.
After you have collected the snapshots, read them into HPjmeter (run with -Xverbosegc to monitor
memory usage).
When creating heap dumps, running the application with smaller heap sizes will result in smaller
heap dump files. Smaller heap dump files enable HPjmeter analysis to use less memory. Read two
files in HPjmeter and compare them using the File->Compare option. You should be able to find
out the types of objects that are accumulating in the Java heap. Select a type using the Mark to
Find option and go back to a view of one of the snapshots. Go to the Metric->Call Graph Tree
option and do a Find. You should be able to see the context of the object retention.

JVM Tuning Tools
PrintGCStats is a tool for mining “verbose:gc” logs that can aid analyzing and tuning garbage
collection. You can download this tool from the following location:
http://java.sun.com/developer/technicalArticles/Programming/turbo/PrintGCStats.zip
Additionally, for a discussion of profiling tools, see “Application Profiling” (page 76) section.

Tuning Application Performance
The topics are

• “Memory Considerations: Moving QIO to KSEG2” (page 66)

• “Determining the Heap Manager” (page 68)

• “Determining the Heap Setting” (page 68)

• “Related Tuning Guides” (page 69)

Memory Considerations: Moving QIO to KSEG2
Java server-side applications are typically configured with large Java heap sizes, in excess of 128
MB. In addition, the JVM and its native components (for example, NonStop Servlets for JavaServer
Pages (NSJSP) transport library, JDBC Driver for SQL/MP, JDBC Driver for SQL/MX, SQL/MX
call-level interface, and potentially any custom-user JNI code) allocate memory for their own use.
Thus, the overall heap space required by a JVM process can be considerably higher than the
configured Java heap space.

66 Implementation Specifics

When a process uses the parallel TCP/IP transport provider for socket operations (like the iTP
Secure WebServer httpd daemon Server process instance), the process becomes a QIO client. For
NonStop™ Server QIO shared-memory segments, when a QIO client process makes a socket
request, a portion of the process address space is reserved for the QIO segment. This reserved
space limits the maximum usable heap size for the JVM process.
The size of the QIO segment is determined by the configured physical memory for a processor
(CPU) on the NonStop system. For a processor on a NonStop system configured with 4 GB of
physical memory, 512 MB are used for the QIO segment. In addition, 512 MB of the user address
space are reserved for the QIO segment, if the process is also a QIO client.
To overcome the problem of losing address space to QIO, you can configure the QIO segment so
that the segment is moved to a special region of the privileged address space, called the KSEG2
region. Moving the QIO segment to the KSEG2 region means that the maximum size of the QIO
segment is restricted to 128 MB (instead of the default512 MB). Before moving QIO to KSEG2,
check that the current maximum QIO segment size in use is within the 128 MB limit (allowing for
future requirements that may increase the QIO segment size). If the maximum QIO segment size
is within the limit, you can move QIO to KSEG2.
Example: Determining the QIO Segment Size in Use
To determine the QIO segment size in use, use the following SCF command from the TACL prompt:
TACL> scf
SCF - T9082G02 - (30APR03) (01APR03) - 03/19/2004 02:20:31 System \NAVAE1
(C) 1986 Tandem (C) 2003 Hewlett Packard Development Company, L.P.
(Invoking \NAVAE1.$DATA11.RAMR.SCFCSTM)
1-> status segment $ZM00, detail.

QIO Detailed Status SEGMENT \NAVAE1.$ZM00

State.................. DEFINED
Segment State.......... STARTED
Segment Type........... FLAT_UA
Segment Size........... 536870912
MDs in Use............. 1258
Max MDs Used........... 1589
Last Fail Size......... 0
Current Pool Size...... 16774788 Initial Pool Size...... 16776992
Max Pool Size.......... 16776992 Min Pool Size.......... 16776992
Current Pool Alloc..... 5039616 Max Pool Alloc.......... 5128320
Current Pool Frags..... 12 Max Pool Frags............... 18

The maximum pool size used in this case is 16 MB, which is well below the 128 MB limit, so QIO
can be moved to KSEG2.
Example: QIO Segment Moved to KSEG2
The following SCF output shows the QIO segment as moved to KSEG2.
TACL> scf
SCF - T9082G02 - (30APR03) (01APR03) - 03/19/2004 02:20:00 System \GOBLIN
(C) 1986 Tandem (C) 2003 Hewlett Packard Development Company, L.P.
(Invoking \GOBLIN.$DATA11.RAMR.SCFCSTM)
1-> status segment $ZM00, detail

QIO Detailed Status SEGMENT \GOBLIN.$ZM00

State.................. DEFINED
Segment State.......... STARTED
Segment Type........... RESIDENT
Segment Size........... 134217728
MDs in Use............. 1248
Max MDs Used........... 2357
Last Fail Size......... 0
Current Pool Size...... 16774788 Initial Pool Size...... 16776992
Max Pool Size.......... 16776992 Min Pool Size.......... 16776992

Tuning Application Performance 67

Current Pool Alloc..... 4516992 Max Pool Alloc.......... 4715520
Current Pool Frags..... 375 Max Pool Frags.............. 382

The QIO segments on this system (\GOBLIN) have been moved to KSEG2 based on the value of
the segment type.
The value is RESIDENT if QIO is moved to KSEG2.
The first SCF output for \NAVAE1 shows QIO to be in FLAT_UA, which means that QIO has not
been moved to KSEG2.

Determining the Heap Manager
The C Runtime Heap manager (T1269) offers a substantial performance boost over the older heap
manager (T8431). While this performance boost might not affect any pure Java code, the JVM
contains native (C and C++) code; therefore, using the T1269 heap manager will boost the JVM
performance.
To find the C Runtime Heap Manager being used on your NonStop system, use the vproc command
output from the ZCRESRL library; at the TACL prompt, type.
TACL> vproc $SYSTEM.sysnn.ZCRESRL

Where sysnn is the system number.

Determining the Heap Setting
You should set the Java heap to a value appropriate for your application. For most application-server
environments, the heap size is set high to optimize performance. This size can be more than 256
MB (after QIO has been moved to KSEG2).
To study the frequency and length of the JVM Garbage Collection operation, use the -verbose:gc
(-Xverbosegc) option in the JVM arguments. Then use this data to tune the heap usage of the
JVM based on your application requirements.

NOTE: The JVM allocates the maximum required heap for the JVM usage at startup, so the swap
space considerations for the JVM process are the maximum Java heap space specified in addition
to other JVM memory requirements and the memory requirements for all native components.

To identify the swap usage of a process or the swap requirements for a CPU, use the NSKCOM
utility. For example, to identify the swap usage of all the processes or a particular process, enter
the following commands at the OSS prompt. Sample NSKCOM output follows the command line.
$ gtacl –p nskcom

NSKCOM - T5838G05 BASE (22JUL02) - Nov 5 2002
Copyright 1995 Compaq Computer Corporation

$SYSTEM.SYSTEM.ZSYSCFG
KMS.SWAPFILE = 0 $DATA03.SWAP.CPU0A STOP
KMS.SWAPFILE = 0 $DATA03.SWAP.CPU0B STOP
 .
 .
 .
KMS.SWAPFILE = 5 $SWAP45.SWAP4.CPU05
NSK-status swap-usage 1,423 ,detail

SYSTEM : \GOBLIN LOGTIME : March 19, 2004 02:50:29
TYPE : (E=Extensible S=Shared O=Owner)
(CPU Page size is 16384 Bytes)

Program File NameUser-IDPriProcess

$DATA11.ZYQ0000T.Z00001VH103,431551,423$JSV1

68 Implementation Specifics

Z00001VHKMSF-BACKED SEGMENTS: (Process Space Guarantee = 1904KB)

SEG-ID TYPE SIZE RESERVATION
 KBYTE PAGES KBYTE

2101 8B 1 16
2100 8B 1 16
Heap+Global+SRL+Stack 330MB 21187 331MB
--
TOTAL 21187 331MBFILE
331MBFILE-BACKED SEGMENTS: None
__
NSK-

In the preceding output, the JVM process ($JSV1) uses 331 MB of swap space and has two
segments allocated. This JVM process was started with a heap size of 256 MB, which shows that
apart from the Java heap, the process requires about 75 MB for process-specific and
application-specific data.

NOTE: To get an applicable sample of the swap usage for a particular JVM process, check this
swap usage at steady state, where all the native components used by the JVM have been fully
initialized and are running.

Related Tuning Guides
For related tuning guides, BEA WebLogic Server on HP NonStop Server and Tuning Guide for iTP
Secure WebServer and NonStop Servlets for JavaServer Pages (NSJSP) on HP NonStop Servers,
see http://www.hp.com/go/nonstop-docs.

Java Signal Handlers
A Java program installs signal handlers for the signals that the current application interacts with.
However, there is one restriction for an application when it installs handler for the signals. The
restriction is that the application cannot install handlers for the signals that are used by the Java
Virtual Machine (reserved signals). If the application attempts to install handlers for the reserved
signals, java.lang.IllegalArgumentException is thrown. There are two types of reserved
signals for which a user cannot install handlers:
1. Signals for which the user cannot install handlers always.
2. Signals for which the user can install handlers, if the application does not enable specific

command line options.
Table 8 (page 69) provides information about the reserved signals for which signal handlers cannot
be installed, and also about the reserved signals which can be installed by enabling or disabling
some options from command line.

Table 8 Reserved Signals List

Reserved Signals (depending upon command line options)1Reserved Signals (Always)

“SIGWINCH” (page 70)SIGFPE

“SIGALRM” (page 70)SIGILL

“SIGUSR2” (page 70)SIGSEGV

“SIGHUP” (page 70)SIGQUIT

“SIGINT” (page 70)SIGUSR1

“SIGTERM” (page 70)SIGSTK

Java Signal Handlers 69

http://www.hp.com/go/nonstop-docs

1 Click on the specific signal to obtain information about how to install signal handlers for the corresponding signals.

SIGWINCH
HeapDumpOnly feature uses SIGWINCH signal. Hence, the application installs signal handler
for this signal, provided HeapDumpOnly option is not enabled.
HeapDumpOnly option is either enabled by using XX:+HeapDumpOnly Java command line
option or by setting 1 for the environment variable (_JAVA_HEAPDUMP_ONLY).

NOTE: By default, HeapDumpOnly option is false, hence, the application can install signal
handler if it does not explicitly enable HeapDumpOnly option.

SIGALRM
Zero preparation verbose garbage collection feature uses SIGALRM signal. By default,
ZeroPrepVerboseGC is enabled.
ZeroPrepVerboseGC must be disabled to use SIGALARM for other purposes.

SIGUSR2
Zero preparation profiling feature (HP specific feature) uses this signal. The profiling can be enabled
or disabled for the entire runtime of the application or for a selected duration. The details are as
follows:
• If —Xeprof::off is specified in the Java command line, the zero preparation profiling feature

is disabled for the entire duration for which the application runs, and hence the application
can install signal handler for SIGUSR2 signal.

• If —Xeprof is specified in the Java command line, the zero preparation profiling feature is
enabled for the entire duration for which the application runs, and hence the application
cannot install signal handler for SIGUSR2 signal.

• An alternate signal for zero preparation profiling feature can be specified by using:
Xeprof:time_on=<SIGUSR1|SIGUSR>,time_slice=<SIGUSR1|SIGUSR2>.
If SIGUSR2 is not specified as the signal for zero profiling feature, then application can install
signal handler for SIGUSR2.

SIGHUP
JVM uses this signal to support shut down hook if —Xrs is not specified in the command line option
(reduce signal usage). If –Xrs is specified in the command line option, the application can install
signal handlers for SIGHUP signal.

SIGINT
JVM uses this signal to support shut down hook if —Xrs is not specified in the command line option
(reduce signal usage). If –Xrs is specified in the command line option, the application can install
signal handlers for SIGINT signal.

SIGTERM
JVM uses this signal to support shut down hook if —Xrs is not specified in the command line option
(reduce signal usage). If –Xrs is specified in the command line option, the application can install
signal handlers for SIGTERM signal.

Change in Loading of .hotspot_compiler and .hotspotrc files
From NSJ 6.0 SPR — T2766H60^ACH and later versions, the default implicit loading of the
.hotspot_compiler and .hotspotrc files from the current working directory is changed.

70 Implementation Specifics

These files are no longer loaded by default. For existing deployments that rely on
.hotspot_compiler (for example, to exclude a method from hotspot compilation), and
.hotspotrc, an unsupported behavioral option is provided to simulate the old loading behavior.
The following command line options support old behavior:
—XX:Flags=.hotspotrc

reverts to old behavior for .hotspotrc.
—XX:CompileCommandFile=.hotspot_compiler

reverts to old behavior for the .hotspot_compiler.

Change in Loading of .hotspot_compiler and .hotspotrc files 71

5 Transactions
The NonStop Server for Java 6.0 lets you work with transactions in several ways. You can:

• Use the Current class methods to define transactions across transaction services, such as
transactions that include JDBC calls.

• Use the Java Transaction API (JTA) .
This section explains these topics:

• “Controlling Maximum Concurrent Transactions” (page 72)

• “Current Class Methods” (page 72)

• “Java Transaction API (JTA)” (page 73)
If you use JNI and transactions, see “Java Native Interface (JNI)” (page 43). When you use JNI,
the information under “Controlling Maximum Concurrent Transactions” (page 72) applies.

Controlling Maximum Concurrent Transactions
NonStop Server for Java 6.0 application processes can start, by default, a maximum of 1000
concurrent transactions in each process. By setting the JAVA_PTHREAD_MAX_TRANSACTIONS
environment variable, you can limit the maximum number of TMF transactions allowed per process
to less than 1000. The syntax follows:
JAVA_PTHREAD_MAX_TRANSACTIONS environment variable
Specifies the maximum number of TMF transactions allowed per process.
Allowed values are 100 through 1000. The default value of 1000 is used when:

• The variable is not set.

• The variable is set to a value less than 100 or to a value greater than 1000.
For example, to specify 200 transactions per process, use the following command.
export JAVA_PTHREAD_MAX_TRANSACTIONS=200

NOTE: The maximum number of concurrent transactions allowed is 1000.

Current Class Methods
The Current class is based on version 0.5 of the Java Transaction Services (JTS) specification.
The following table describes the Current class methods. For the API specification, see the
tandem.com.tmf package description in the NonStop Server for Java API Reference

Table 9 Current Class Methods

DescriptionMethod

Starts a new transaction and associates it with the calling thread .begin

Commits the transaction associated with the calling thread.commit

Gets a Control object representing the transaction associated with the
calling thread.

get_control

Gets the status of the transaction associated with the calling thread.get_status

Gets a descriptive name of the transaction associated with the calling thread.get_transaction_name

Sets or resumes association of a transaction with the calling thread.resume

Rolls back the transaction associated with the calling thread.rollback

72 Transactions

Table 9 Current Class Methods (continued)

DescriptionMethod

Marks the transaction associated with the calling thread so that the only
possible outcome is to roll back the transaction.

rollback_only

Modifies the time-out value associated with transactions started by subsequent
invocations of the begin method.

set_timeout

Suspends the association of the calling thread with a transaction context.suspend

The following code fragment shows how to use the begin() and commit() methods of the
Current class:
import com.tandem.tmf.Current;

Current tx = new Current();

// start a new transaction in the current thread
tx.begin();
// ... access Pathway server

// commit current transaction (JDBC and Pathway)
tx.commit(true);

For more information on the Current class, see the tandem.com.tmf package description in
the NonStop Server for Java API Reference.

Java Transaction API (JTA)
NonStop Server for Java 6.0 supports transactions by means of the NonStop Server for Java
Transaction API, which is an implementation of the Sun Microsystems JTA Version 1.0. NonStop
Server for Java Transaction API implements parts of the Sun Microsystems JTA package,
javax.transaction. NonStop Server for Java 6.0 includes the NonStop Server for Java
Transaction API package com.tandem.jta.
The NonStop Server for Java Transaction API provides a standard interface for transactions on
both homogeneous NonStop systems by means of TMF and heterogeneous CORBA systems by
means of JTS.
The version of NonStop Server for Java Transaction API that uses TMF is called NonStop Server
for Java Transaction API-TMF; the version of NonStop Server for Java Transaction API that uses JTS
is called NonStop Server for Java Transaction API-JTS. NonStop Server for Java Transaction API-TMF
and NonStop Server for Java Transaction API-JTS have identical interfaces. You can specify TMF
or JTS when you use JTAFactory.getUserTransaction to get a reference to
javax.transaction.UserTransaction. (See “Examples” (page 74)). The default is TMF.
NonStop Server for Java Transaction API-TMF is intended for applications other than CORBA
applications. NonStop Server for Java Transaction API-JTA is intended for CORBA applications. If
you use NonStop Server for Java Transaction API-JTS for non-CORBA applications, results are
unpredictable.
This subsection explains the following subjects:

• “javax.transaction Interfaces” (page 74)

• “javax.transaction Exceptions” (page 74)

• “Examples” (page 74)
For more information about JTA, see the Sun Microsystems JTA document
(http://java.sun.com/products/jta/index.html).

Java Transaction API (JTA) 73

http://java.sun.com/products/jta/index.html

javax.transaction Interfaces
The Sun Microsystems JTA package, javax.transaction, defines the following interfaces:

• Status

• Synchronization

• Transaction

• TransactionManager

• UserTransaction

NonStop Server for Java Transaction API supports all of the preceding interfaces, but only
UserTransaction is available to client programs.
UserTransaction allows the client to control transaction boundaries programmatically.
UserTransaction methods do the following:

• Begin transaction

• Commit transaction

• Obtain transaction status

• Mark transaction for rollback

• Rollback transaction

• Set timeout for transaction

javax.transaction Exceptions
The Sun Microsystems JTA package, javax.transaction, defines the following exceptions.
NonStop Server for Java Transaction API supports all of them.

• HeuristicCommitException

• HeuristicMixedException

• HeuristicRollbackException

• InvalidTransactionException

• NotSupportedException

• TransactionRequiredException

• TransactionRolledbackException

• SystemException

Examples
The following examples are identical except that:

• The first example uses “NonStop Server for Java Transaction API-TMF by Default” (page 74)

• The second example requests “NonStop Server for Java Transaction API-TMF by Request”
(page 75)

• The third example requests “NonStop Server for Java Transaction API-JTS” (page 75)

NonStop Server for Java Transaction API-TMF by Default
The following code gets a reference to UserTransaction based on TMF (by default). It then
starts and ends a transaction.
import javax.transaction.UserTransaction;
import com.tandem.jta.JTAFactory;

74 Transactions

// Get a reference to UserTransaction based on TMF (by default).
UserTransaction utx = JTAFactory.getUserTransaction();

// Start transaction
utx.begin();

// Do work
...

// Commit transaction
utx.commit();

NonStop Server for Java Transaction API-TMF by Request
The following code gets a reference to UserTransaction based on TMF (which it requests). It
then starts and ends atransaction.
import javax.transaction.UserTransaction;
import com.tandem.jta.JTAFactory;

// Get a reference to UserTransaction based on TMF (by request).
UserTransaction utx = JTAFactory.getUserTransaction(JTAFactory.TMF);

// Start transaction
utx.begin();

// Do work
...//

Commit transaction
utx.commit();

NonStop Server for Java Transaction API-JTS
The following code gets a reference to UserTransaction based on JTS. It then starts and ends
a transaction.
import javax.transaction.UserTransaction;
import com.tandem.jta.JTAFactory;

// Get a reference to UserTransaction based on JTS.
UserTransaction utx = JTAFactory.getUserTransaction(JTAFactory.JTS);

// Start transaction
utx.begin();// Do work...

// Commit transaction
utx.commit();

NOTE: NonStop Server for Java Transaction API-TMF is intended for applications other than
CORBA applications. NonStop Server for Java Transaction API-JTA is intended for CORBA
applications. If you use NonStop Server for Java Transaction API-JTS for non-CORBA applications,
results are unpredictable.

Java Transaction API (JTA) 75

6 Application Profiling
Application profiling and monitoring are supported through HPjmeter tool, which works in
combination with NSJ options, -Xeprof and -agentlib:hprof as explained in this chapter.
The NonStop Server for Java 6.0 supports the profiling of live Java applications. The HPjmeter
console is a GUI tool that runs on Java platforms that support GUI, such as HP-UX, Linux, and
Windows. It is used to perform the following profiling activities:

• “Monitoring live Java applications” (page 76)

• “Analyzing Garbage Collection Data” (page 79)

• “Collecting profile data for analysis” (page 76)

• “-Xeprof versus -agentlib:hprof (HPROF)” (page 79)

Monitoring live Java applications
The Java application must be prepared for live mode of profiling by running HPjmeter agents. The
HPjmeter agents are shipped on the NSJ 6.0 product CD as a new product T0866H31.
To set up monitoring for a live Java application:
1. Install the T0866H31 PAX file in the default installation directory: /usr/tandem/hpjmeter
2. Run a node agent:

a. export JMETER_HOME=/usr/tandem/hpjmeter/
b. $ JMETER_HOME/bin/nodeagent –port port_number

3. Launch the Java application using the HPjmeter JVM agent:
a. export _RLD_LIB_PATH=$JMETER_HOME/lib/oss/
b. export JAVA_HOME=/usr/tandem/java
c. java -agentlib:jmeter[=options] <application>

4. Start the HPjmeter console from a local installation on your client workstation (HP-UX, Windows,
or Linux). To download HPjmeter consoles for these platforms, visit http://www.hp.com/go/
hpjmeter.

5. Connect to the Node Agent from the Console.

NOTE:
• For information on monitoring capabilities and tips , see the HPjmeter 4.2 User's Guide

available at www.hp.com/go/hpjmeter.
• The instructions for using the HPjmeter tool on the NonStop platform are provided in “Addendum

to HPjmeter 4.2 User's Guide” (page 88).

Collecting profile data for analysis
There are three ways to collect application profile data for offline analysis using the HPjmeter
console:
1. The eprof profiler (start Java application with -Xeprof option).
2. Zero-preparation profiling (start and stop profile data collection by sending signal to the

running Java application—this uses the Xeprof profiler, internally, to profile the application
dynamically).

3. The HPROF profiler (start Java application -agentlib:hprof).

76 Application Profiling

http://www.hp.com/go/hpjmeter
http://www.hp.com/go/hpjmeter
www.hp.com/go/hpjmeter

NOTE:
• For information on analyzing profile data, see the HPjmeter 4.2 User’s Guide available at

www.hp.com/go/hpjmeter.
• The instructions for using the HPjmeter tool on the NonStop platform are provided in “Addendum

to HPjmeter 4.2 User's Guide” (page 88).

—Xeprof

The —Xeprof option generates profile data for HPjmeter. —Xeprof focuses primarily on
performance problems that characterize large server applications. It collects method clock and
CPU times, method call count and call graph, and lock contention statistics.
This option creates profile data file with a file extension .eprof. This file can be opened in the
HPjmeter console and the collected metrics can be viewed.
For more information on this option, see NonStop Server for Java 6.0 Tools Reference.

Zero Preparation Profiling
Profiling can be started from the command line by sending a signal to the Java process indicating
JVM to start eprof. Engaging zero preparation profiling may have a short term impact on application
performance as the JVM adjusts to the demands of performing dynamic measurements.
To collect profiling data without interrupting your application, perform the following from the
command line:
1. Confirm that no —Xeprof option has been specified on the command line.
2. Find the process ID of the running Java application.
3. Start the profiling interval — send a signal to the JVM by typing the following command: kill

–USR2 pid

The following message is displayed.
eprof: starting profiling

Allow the profiling to continue for a desired length of time.
4. Stop the profiling interval by sending the same signal to the JVM:

kill -USR2 pid

The following message is displayed.
eprof: terminating profiling

Writing profile data to ./filename.eprof.

5. You can now open the saved file in the HPjmeter console and view the collected metrics.

HPROF Profiler
HPROF is a profiling agent that is based on a profiling interface called JVMTI. By using HPROF,
you can get information about your application's CPU usage, heap allocation, and threads. This
agent creates profile data files that can be interpreted after the program terminates. Currently
HPjmeter can read text and binary files.
To run your application with profiling, use the following command:
$ java ... -agentlib:hprof[=options] ApplicationClassName

For more information on HPROF, see HPjmeter 4.2 User’s Guide available at www.hp.com/go/
and the Oracle documentation at http://docs.oracle.com/javase/7/docs/technotes/

Collecting profile data for analysis 77

www.hp.com/go/hpjmeter
www.hp.com/go/
http://docs.oracle.com/javase/7/docs/technotes/

NOTE: The following HPROF option is not supported on NSJ 6.0 :
-agentlib:hprof=cpu=samples

Obtaining Garbage Collection Data for Analysis
Garbage collection data can be collected in either one of the following two ways:
1. Data collection with —Xverbosegc.

Launch the Java application using the –Xverbosegc option. For more information on the
option, see NonStop Server for Java 6.0 Tools Reference.

2. Data collection with Zero preparation.
Data collection can be started from the command line by sending a signal to the Java process
to indicate JVM to start GC data collection.
To collect GC data without interrupting an already running application, perform the following
from the command line:
a. Confirm that —Xverbosegc or —Xloggc option is not specified.
b. Locate the process ID of the running Java application.
c. Start the profiling interval. Send a signal to the JVM by typing the following command:

kill -ALRM pid or kill -14 pid

d. The GC data is written to a file named java_pid.vgc in the current directory of the
JVM process.
Allow the profiling to continue for a desired length of time.

e. Stop the data collection interval by sending the same signal to the JVM:
kill -ALRM pid

f. You can now open the saved file in the HPjmeter console and view the collected metrics.

GC Log Rotation

HP’s Implementation
When GC logging is enabled using the -Xverbosegc or -Xloggc option, by default, the GC
data is written to a single log file of unlimited size. Starting with the NonStop Java 6.0
T2766H60^ABP release, NonStop Java supports controlling the size and number of the GC log
files. The GC log records are written into the specified number of GC log files in a round-robin
fashion. This allows GC data to be archived easily and helps to limit the amount of disk space
consumed by the GC log files. Log rotation is also supported when using zero-preparation
-Xverbosegc.
To enable log rotation, use the following option together with -Xverbosegc, -Xloggc, or
zero-preparation Xverbosegc:
-XX:GCLogLimits=M,N

where,
M is a non-negative integer that specifies the number of rotating GC log records
per file.

NOTE: Each GC log record corresponds to a GC event. A value of 0 specifies
an unlimited number of GC log records per file.

N is a non-negative integer that specifies the maximum number of rotating GC log
files. A value of 0 specifies an unlimited number of files.

78 Application Profiling

You must use both M and N when you use the -XX:GCLogLimits=M,N option. If this option is
not specified, the default behavior is to write a single GC log file with unlimited size.
When rotation is in effect, a sequence number is appended to the GC filename (0 through N-1).
(Examples of file names are: filename.0, filename.1, and filename.2).
With log rotation, when the specified maximum number of files (N) is reached, logging cycles
back to the first file in the sequence (filename.0), thereby overwriting the old GC data with
new data. If the maximum number of files (N) is never reached, then no log rotation occurs.

Examples:
To rotate between two log files, each with a maximum of 100,000 GC records, use:

-XX:GCLogLimits=100000,2

To maintain an unlimited number of smaller files, each with a maximum of 1,000 GC records,
use:

-XX:GCLogLimits=1000,0

Oracle’s Implementation
From NSJ 6.0 SPR — T2766H60^ACH and later versions, Oracle command line options support
GC log file rotation. The options are as follows:
• —XX:+UseGCLogFileRotation —XX:NumberOfGCLogFiles=<num_of_files>

• —XX:GCLogFileSize=<logsize>

NOTE: —Xverbosegc supports the listed options.

HP’s GC log rotation option, —XX:GCLogLimits, remains unchanged and still supports both
—Xloggc and —Xverbosegc options.

NOTE: HP’s LogRotation option —XX:GCLogLimits=M,N overrides Javasoft’s LogRotation
options. If HP's —XX:GCLogLimits is specified, GC logs rotate to new log file after N records.

Analyzing Garbage Collection Data
After completing the data file collection, perform the following steps:
1. Transfer the data file to an HPjmeter console compatible platform (HP-UX, Windows, or Linux).
2. Run the HPjmeter console and open the data file.

NOTE:
• Starting with NonStop Java 6.0 T2766H60^ABP release, NonStop Java supports rotational

GC logging into multiple GC log files to help control the GC log file size. For information on
GC log rotation, see “GC Log Rotation” (page 78).

• For information on analyzing GC profile data , see the HPjmeter 4.2 User’s Guide available
at www.hp.com/go/hpjmeter.

• The instructions for using the HPjmeter tool on the NonStop platform are provided in “Addendum
to HPjmeter 4.2 User's Guide” (page 88).

-Xeprof versus -agentlib:hprof (HPROF)
Xeprof is a superior profiling tool compared to HPROF in terms of the richness of data. However,
Xeprof has a little higher performance impact on an application than HPROF. For a comparison
of the features of Xeprof and HPROF, before using either of the profiles, see Table 5-4 in the
HPjmeter 4.2 User’s Guide.

Analyzing Garbage Collection Data 79

www.hp.com/go/hpjmeter

7 Migrating Applications
This appendix describes the changes required to migrate applications that use earlier versions of
the NonStop Server for Java. Note the terminology:

• NonStop Server for Java 4 refers to the product based on J2SE SDK 1.4.x

• NonStop Server for Java 5.1 refers to the product based on J2SE JDK 5.0

• NonStop Server for Java 6.0 refers to the product based on Java SE JDK 6.0
See theTable 10 (page 80) for the topics that apply to migrating from particular versions.

Table 10 Summary of Migration Changes for NonStop Server for Java Versions

NonStop Server for
Java 6.0 (T2766H60)

NonStop Server for
Java 5.1 (T2766H50)

NonStop Server for
Java 4 (T2766H10
onTNS/E)

Version 2 of NonStop
Server for Java 4
(T2766V20 onTNS/R)Migration Topic

ApplicableApplicableApplicableApplicable“Installation Changes”
(page 81)

N/AN/AN/AApplicable“Public Library
Directory” (page 81)

N/AN/AN/AN/A“Java Based JAR File
Locations” (page 81)

N/AN/AN/AApplicable“Dynamic Link
Libraries (DLLs)”
(page 82)

N/AN/AN/AApplicable“Makefile to Link
Native Libraries”
(page 82)

N/AN/AN/AApplicable“Compiling C++
Native Code with the
-Wversion3 Option”
(page 82)

N/AN/AN/AN/A“Floating-Point
Support” (page 83)

N/AN/AN/AN/A“Using AWT Classes”
(page 83)

N/AN/AN/AN/A“POSIX Threads”
(page 84)

N/AN/AN/AN/A“Directories of Binary
Files Moved”
(page 84)

ApplicableApplicableApplicableApplicable“Character Handling”
(page 84)

N/AN/AApplicableApplicable“BigDecimalFormat
Class” (page 84)

N/AN/AN/AN/A“JAAS Enhancement”
(page 85)

N/AN/AN/AApplicable“Miscellaneous
Changes for Migration
to TNS/E” (page 85)

For information about earlier Java version changes, see the release notes at the Sun Microsystems
web site for the particular version of Java. For information about changes in NonStop Server for

80 Migrating Applications

Java 6.0, see “Supported and Unsupported Features of NonStop Server for Java 6.0” (page 87)and
“New and Changed Information” (page 8).

Installation Changes
The standard location for the NonStop Server for Java 6.0 is a location of the form:
/usr/tandem/nssjava/jdk160_h60

where jdk60 refers to the version number of the Sun Microsystems update upon
which NonStop Server for Java 6.0 is based. The number h60 identifies the
particular NonStop Server for Java 6.0 > PVU.

When the PAX file is extracted, a symbolic link is created at the standard location:
/usr/tandem/java.
If you want to install NonStop Server for Java 6.0 in a nonstandard location, you can do so as
with earlier releases. To do that kind of installation, use the File Transfer Protocol (FTP) to transfer
the file from the CD to the NonStop system. Then follow the directions in the product Softdoc for
a nonstandard installation.

NOTE: HP recommends that NonStop Server for Java 6.0 be installed in the standard location
whenever possible.

Public Library Directory
The public library directory does not apply to NonStop Server for Java 4, 5, 5.1, or 6.0 hosted
on TNS/E because DLLs are used on TNS/E. For information about migrating native libraries, see
“Dynamic Link Libraries (DLLs)” (page 82).

Java Based JAR File Locations
For users of NonStop Server for Java 3.1.x or earlier versions, guidelines have changed for placing
Java Archive files (JAR or .jar) both “For Java Based Products” (page 81) and “User-Provided
JAR Files” (page 81).

For Java Based Products
Before version 1 of the NonStop Server for Java 4 (based on J2SE SDK 1.4.0), no guidelines were
provided for where Java based products should install their JAR files. Many of these products
installed their JAR files in the /usr/tandem/java/jre/lib/ext directory. Occasionally, the
installation of a Java based product would overwrite a JAR file required by another Java based
product, possibly causing a version mismatch.
In addition, Java based products had to be reinstalled whenever NonStop Server for Java issued
a new product version.
For these reasons, beginning with version 1 of the NonStop Server for Java 4, HP recommends
that the JAR files associated with Java based products remain in a product-specific directory.
When you follow this recommendation, you must include the JAR files of the Java based product
in either your CLASSPATH environment variable setting or the -classpath (-cp) command
line argument.

User-Provided JAR Files
Previously, many users also installed JAR files in /usr/tandem/java/jre/lib/ext because
they did not have to include such JAR files in their CLASSPATH. Beginning with version 1 of the
NonStop Server for Java 4 (based on J2SESDK 1.4.0), HP recommends you do not install
user-provided JAR files in any directory of versions 1 and 2 of the NonStop Server for Java 4 tree.
You should leave the JAR files in user-specific directories. If you follow this recommendation, you

Installation Changes 81

will not have to reinstall user-provided JAR files for new product releases of NonStop Server for
Java 4. You, however, have to place the JAR files in your CLASSPATH.

Dynamic Link Libraries (DLLs)
On the TNS/E platform, NonStop Server for Java 4 , 5, 5.1, and 6.0 support Dynamic-Link Libraries
(DLLs). All NonStop Server for Java applications migrating from TNS/R to TNS/E must convert
native libraries to DLLs.
Consider these issues when migrating applications to use DLLs with the NonStop Server for Java
6.0:

• All the Java libraries are built as DLLs.

• When using the JNI code, use DLLs instead of static libraries. For further information, see “Java
Native Interface (JNI)” (page 43). A public library directory does not apply for Java applications
on the TNS/E platform.

• All DLLs must be in the files that have specific naming requirements. For further information
see DLL names.

• On TNS/E, the -Dcompaq.liblist option is not supported.

• The customer Makefile no longer exists in the NonStop Server for Java 4 , 5, 5.1, and 6.0
on TNS/E because DLL support precludes the need to bind user native code into the java
executable.

• The _RLD_LIB_PATH environment variable, used only on the TNS/E platform, specifies the
library path for user DLLs. For further information, see “_RLD_LIB_PATH” (page 40) (TNS/E
Only).

• The invocation API uses the JVM as a DLL; therefore, if you use this API, you do not need to
statically link Java into your programs.

Makefile to Link Native Libraries
The customer Makefile no longer exists for NonStop Server for Java 4 , 5, 5.1, and 6.0 on TNS/E
because DLL support precludes the need to bind user native code into the java executable. For
information about migrating native libraries, see “Dynamic Link Libraries (DLLs)” (page 82).

Compiling C++ Native Code with the -Wversion3 Option
For TNS/E, you can use C++ code compiled using either a dialect of version 2 or version 3 for
user DLLs because the NonStop Server for Java 4 , 5, 5.1, and 6.0 on TNS/E is built with a C++
version neutral flag (the -setCPlusPlusDialect neutral option for the linker).
If you are migrating NonStop Server for Java applications based on JDK 1.3.x or earlier, you
might need to change your source code. Whether your native code needs source-code changes
depends on whether the code uses C++ features that have changed in version 3. To identify
required source-code changes, run a migration check on your source code on TNS/R by invoking
the version 2 compiler and using the pragma MIGRATION_CHECK. Running this migration check
causes the compiler to issue a warning when a class or member function is present that has changed
or become obsolete for version 3. See the C/C++ Programmers Guide for more information about
this pragma and the warnings it can produce.
Note that the VERSION3 directive specifies the use of the Standard C++ Library ISO/IEC version
3 and the C++ Standard headers. VERSION3 enforces the ISO/IEC IS 14882:1998 standard for
C++. The ISO C++ standard is identical to the ANSI C++ standard.
For invocation API users, you build your own executable and link that executable against the JVM
DLL. For a demo, see the invocation API demo provided by NonStop Server for Java 6.0 in
install_dir/demo/invocation_api.
For more information, see “Linker and Compiler Options” (page 45).

82 Migrating Applications

Floating-Point Support
By default, NonStop Server for Java 3.1.x and earlier versions converted any floating-point value
that crossed the Java Native Interface (JNI) boundary to a TNS float. This default could be overridden
by supplying a line in the file TandemVMClassFP.properties. If a particular class needed
IEEE floating-point values passed to its JNI code instead of TNS float values; users added a property
(with the name of the class being the name of the property) to this file. Users also set the value of
the property to IEEE_FP to indicate that they wanted IEEE floating-point values passed to their
JNI code or TANDEM_FP to indicate that they wanted TNS floating-point values passed to their JNI
code.
A user program cannot specify the floating-point type by using the
TandemVMClassFP.properties file. Thus, any user-program or Java based product with JNI
code that obtains floating-point values from Java must call the NSK_FLOAT_* Guardian routines
to convert these values to TNS floats. Likewise, any float value passed to Java must be an IEEE
float value. Table 11 (page 83) illustrates the NonStop Server for Java 6.0 application’s
floating-point usage compared to earlier versions.

Table 11 Summary of Floating Point Support

NSJ 6.0NSJ 5.xNSJ 4.xNSJ 3.xNSJ 2.x

IEEE floatIEEE floatIEEE floatIEEE floatIEEE floatJava
floating-point
usage

IEEE floatIEEE floatIEEE floatEither IEEE or
Tandem float

Either IEEE or
Tandem float

JNI code floating
point

IEEE floatIEEE floatIEEE floatEither IEEE or
Tandem float

Tandem floatJNI calling
convention

IEEE floatIEEE floatIEEE floatIEEE floatTandem floatJava compiler
flag

IEEE floatIEEE floatIEEE floatTandem floatTandem floatJava linker flag

Since NonStop Server for Java 3.1.x and earlier set the linker flag for the process to TNS float,
any use of the C runtime library used routines that handled TNS floats. For NonStop Server for
Java 4 , 5, 5.1, and 6.0 versions, the linker flags described under “Linker and Compiler Options”
(page 45) are used to specify IEEE floating point. Accordingly, the C runtime library uses routines
that handle IEEE floating point.
For NonStop Server for Java 4 , 5, 5.1, and 6.0 versions, any C runtime library calls such as
sprintf or sscanf, made from JNI code, assumes IEEE float values and calling conventions.
For example, assume that JNI code, written for a previous version of Java, converts a TNS
floating-point value to a string, which is then passed to Java. To migrate the program, you must
change the JNI code to convert the TNS floating-point value to an IEEE floating-point value and
then call sprintf to convert the floating-point value to a string.
For more information, see “IEEE Floating-Point Implementation” (page 46).

Using AWT Classes
If your Java programs use AWT classes with NonStop Server for Java 3.1.x or earlier versions,
change your program code to catch a HeadlessException rather than an
UnsupportedClassException.
Because the NonStop operating system does not provide support for windowing operations,
previous versions of NonStop Server for Java supported only those Abstract Windowing Toolkit
(AWT) classes and methods that did not require a display, keyboard, sound, or mouse operation.
Any class or method that required such an operation threw an UnsupportedClassException.

Floating-Point Support 83

NonStop Server for Java 6.0 supports the Sun Microsystems enhancement to AWT called "headless
support" that allows a JVM to indicate whether a display, keyboard, sound, or mouse operation
can be supported in a graphics environment.
Sun implemented headless support by supplying two new methods in the GraphicsEnvironment
class: is Headless and is HeadlessInstance. In addition, Sun created a new exception
java.awt.HeadlessException. HeadlessException will be thrown by any class or method
that requires a display, keyboard, sound, or mouse operation if such a class or method is invoked
when GraphicsEnvironment.isHeadless returns true. Classes and methods that support
printing, fonts, and imaging are fully supported in a headless JVM and are fully supported by
NonStop Server for Java 4, 5, 5.1, and 6.0.
For further information, see “Headless Support” (page 42) in the HP Implementation specifics
section.

POSIX Threads
NonStop Server for Java 3.1.x and earlier versions used OSS POSIX Threads (product number
T5819) that conformed to an earlier standard (Draft 4) for POSIX threads. NonStop Server for
Java 4, 5, 5.1, and 6.0 use Standard POSIX Threads (product number T1248), which conforms
to IEEE POSIX Standard 1003.lc.
The POSIX threads calls in T1248 have changed to conform to the standard; therefore, any native
code for NonStop Server for Java 3.1.x applications that makes POSIX threads calls might have
to change to use the standard pthread routine. For more information, see Appendix D in the Open
System Services Porting Guide, which contains a list of differences between the POSIX thread
routines in T5819 and the routines in T1248.
Additionally, you must change any JNI code that made calls to routines beginning with cma… to
use the Wrapper or Development Toolkit routines (spt….) supplied with T1248.

NOTE: Any user-developed code that makes such POSIX threads calls must change.

Directories of Binary Files Moved
If your NonStop Server for Java programs have references to bin/oss/posix_threads in
Pathway configuration files or elsewhere, you must change them to use the NonStop Server for
Java 6.0 installation bin directory.
In NonStop Server for Java 3.1.x or earlier versions, the bin and jre/bin directories contained
a shell script that ran the real executable that was located in bin/oss/posix_threads. In the
NonStop Server for Java 6.0 version, the bin directory contains the real executable, no shell script
wrapper, and no bin/oss/posix_threads directory. The jre/bin directory contains the
executables in the bin directory.

Character Handling
With NonStop Server for Java 6.0, character handling is based on version 4.0 of the Unicode
standard. This new basis affects the Character and String classes in the java.lang package,
the collation and bidirectional text analysis functionality in the java.text package, character
classes in the java.util.regex package, and many other parts of the Java SE 6.0. Support
for supplementary characters has been specified by the Java Specification Request (JSR) 204 expert
group and implemented throughout the Java SE 6.0. See the article Supplementary Characters in
the Java Platform and the Character class documentation for more information.

BigDecimalFormat Class
In JDK 6.0, the DecimalFormat class was enhanced to format and parse BigDecimal and
BigInteger values without loss of precision. The formatting of these values is enhanced

84 Migrating Applications

http://java.sun.com/developer/technicalArticles/Intl/Supplementary/
http://java.sun.com/developer/technicalArticles/Intl/Supplementary/
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html

automatically. To enable parsing into BigDecimal, you need to use the setParseBigDecimal
method.

JAAS Enhancement
In NonStop Server for Java 3.x and earlier versions, the Java Authentication and Authorization
Service (JAAS) was an optional package (extension). JAAS is integrated into the NonStop Server
for Java 6.0. JAAS augments the core Java 2 platform with APIs that allow authenticating users
and enforcing access controls upon users. Traditionally, Java 2 provided code-source-based access
controls (access controls based on where the code originated and who signed the code). However,
Java 2 lacked the ability to additionally enforce access controls based on who runs the code. In
NonStop Server for Java 6.0, JAAS provides a framework that augments the Java 2 security
architecture with this additional capability.
For more information on JAAS, see “Java Authentication and Authorization Service (JAAS)”
(page 53).

Miscellaneous Changes for Migration to TNS/E
• “JNI_OnLoad and JNI_OnUnLoad Functions” (page 85)

• “Debugger” (page 85)

• “Default Heap and Stack Sizes” (page 85)

• “dlfcn.h File” (page 86)

JNI_OnLoad and JNI_OnUnLoad Functions
All applications migrating from TNS/R systems must change the JNI_OnLoad function. The
format you use depends on the system type:

• On TNS/R systems, you use the following name:
JNI_OnLoad_libname

where libname is the name of the library that your program passed to the
System.loadLibrary function.

• On TNS/E systems, use:
JNI_OnLoad

On TNS/R systems, the JNI_OnUnload function is not supported by NonStop
Server for Java 6.0. On TNS/E systems, the JNI_OnUnload function is supported.

Debugger
Visual Inspect is the preferred debugger for applications on TNS/E. For debugging native code,
you can also use Native Inspect ($System.SYSnnn.EINSPECT command).

Default Heap and Stack Sizes
The default heap and stack sizes have changed for TNS/E hosted applications.

• On TNS/E systems, the default stack size is 512 KB; the minimum stack size is 64 KB.

• On TNS/E systems, the initial heap size is 18.25 MB; the default maximum heap size is 64
MB.

JAAS Enhancement 85

dlfcn.h File
All applications migrating from TNS/R that use the dlfcn.h file require code changes. On TNS/E
the NonStop Server for Java 4 , 5, 5.1, and 6.0 do not use their own special version of dlfcn.h.
Use the file that exists in the include directory (/usr/include) of the system.

86 Migrating Applications

A Supported and Unsupported Features of NonStop Server
for Java 6.0

NonStop Server for Java 6.0 includes all the features of NonStop Server for Java 5.1 and it is
based on Java SE 6.0.
For information about Java SE 6.0 new features, see New Features and Enhancements Java SE
6.0
(http://docs.oracle.com/javase/1.5.0/docs/relnotes/features.html).

Java SE 6.0 Features not Implemented in NonStop Server for Java 6.0
Java SE 6.0 features that do not apply to a server-side HotSpot VM are not implemented in NonStop
Server for Java 6.0.
For information about Java SE 6.0 features that are not implemented, see the following
implementation-specific topics:
• “Headless Support” (page 42)
• “Java Standard Edition Development Kit (JDK) Highlights” (page 23)
• “Parallel Collector” (page 61) (including garbage collector ergonomics)
• UseBiasedLocking (JVM internal locking optimization, useful for SMP architectures)
• —XX:+TieredCompilation option is not supported

Java SE 6.0 Features not Implemented in NonStop Server for Java 6.0 87

http://docs.oracle.com/javase/1.5.0/docs/relnotes/features.html
http://docs.oracle.com/javase/1.5.0/docs/relnotes/features.html

B Addendum to HPjmeter 4.2 User's Guide
This appendix provides instructions for using the HPjmeter tool on NonStop system. It is based on
the HP-UX HPjmeter 4.2 User's Guide, available at the following web address: www.hp.com/go/
hpjmeter/.
The following sections correspond one-to-one to those in the HP-UX HPjmeter 4.2 User's Guide.
• “Completing Installation of HPjmeter” (page 88)
• “Monitoring Applications” (page 89)
• “Profiling Applications” (page 89)
• “Troubleshooting” (page 90)
• “Quick References” (page 91)

NOTE: The information provided here must be used as additional or substitute to the information
provided in the corresponding sections of the HP-UX HPjmeter 4.2 User's Guide.

Completing Installation of HPjmeter

Agent Requirements
Table 12 (page 88) lists the agent requirements.

Table 12 Agent Requirements

Operating system and architecture • NonStop Operating System H06.15 and later release version updates
(RVUs) on NonStop Integrity servers.

• NonStop Operating System J06.04 and later RVUs on HP Integrity
NonStop BladeSystem

• NonStop Server for Java 6.0 and later software product revisions (SPRs)

NOTE:
1. The HPjconfig tool is not supported on a NonStop operating system.
2. Zero-preparation profiling is supported on NSJ 6.0 and later versions only.

File Locations
Starting with HPjmeter 4.2, you can find the directory structure of HPjmeter available at the location
/usr/tandem/hpjmeter in the following way:

DescriptionDirectory

Consists of top level nodeagent binary, spt version of
nodeagent at ./spt/nodeagent and put version of
nodeagent at ./put/nodeagent.

./bin

Consists of JVM agent library to support NSJ6 versions
(./oss), 32–bit NSJ7 (./oss32), and 64–bit NSJ7
(./oss64).

./lib

Consists of demo directory../demo

Consists of HPjmeter document../doc

Consists of ./log and ./fifos folder../var

The default installation path on the NonStop operating system is /usr/tandem/hpjmeter.

88 Addendum to HPjmeter 4.2 User's Guide

www.hp.com/go/hpjmeter/
www.hp.com/go/hpjmeter/

Configuring your Application to Use HPjmeter Command Line Options

Preparing to run Java
Complete the following steps to prepare the Java application to run with the JVM agent:
• On NSJ6 and later SPRs, you must set the _RLD_LIB_PATH as follows:

$JMETER_HOME/lib/oss

where,
JMETER_HOME is set to /usr/tandem/hpjmeter.

Example 4 Using -agentlib to run the JVM agent

$ java -Xms256m -Xmx512m -agentlib:jmeter myapp

Example 5 Setting –Xbootclasspath

$ java -agentlib:jmeter –Xbootclasspath/a:$JMETER_HOME/lib/agent.jar

NOTE: -Xrunjmeter is not supported on NSJ 6.0.

Attaching to the JVM Agent of a Running Application
The dynamic attach feature is not supported on NSJ6.

Monitoring Applications

Managing Node Agents

Managing Node Agents on a NonStop Operating System
In a NonStop Operating System, the HPjmeter installation process does not automatically start the
node agent as a daemon process. You must manually start the node agent as a daemon process.
The top level binary nodeagent available at /usr/tandem/hpjmeter/bin starts the spt or
put version of nodeagent based on the underlying SUT version.

Diagnosing Errors when Monitoring Running Applications

Checking for Application Paging Problems
HPGlancePlus tool is not available in NonStop. Therefore, references of HPGlancePlus available
in HPjmeter 4.2 User Guide are not applicable for NonStop.

Profiling Applications
For a complete list of profiling options and instructions on how to use profile options, see
“Application Profiling” (page 76). This section lists the options that are not supported on Nonstop
and describes the difference in behavior of some options.

Monitoring Applications 89

Collecting Profile Data

Profiling with —Xeprof
Table 13 Supported –Xeprof options

On NonStop operating systems, the time interval between the start and stop signals
must be more than 5 minutes.

time_on

This is because the Java thread switching process is slow due to the non-preemptive
nature of the NonStop operating system. As a result, the asynchronous signals might
be lost if they are posted to the NonStop OS Java process at very short intervals.

time_slice

This option is not supported on NonStop operating systems.times=quick|thorough

Profiling with Zero Preparation
This feature is supported on NSJ 6.0 and later versions only.

Profiling with –agentlib:hprof
Table 14 (page 90) lists the supported –agentlib:hprof options.

Table 14 Supported —agentlib:hprof options

cpu=samples is not supported on NonStop operating
systems.

cpu=samples|times|old

Troubleshooting

Identifying Version Numbers
To identify the version number for HPjmeter components, run the following command:
• JVM agent for Integrity NonStop:

$ vproc $JMETER_HOME/lib/oss/libjmeter.so

Installation
On NonStop operating systems, only the agents are installed by default at the following location:
/usr/tandem/hpjmeter

The scripts found in /usr/tandem/hpjmeter/bin, use the standard /usr/tandem/java
installation as the reference JDK installation. There is no special installer for NonStop operating
systems that modifies the scripts, as is done by the HP-UX installer.

Node Agent
FIFOs are used for communication between JVM and node agents. On NonStop operating systems,
FIFOs are located in the following directory:
/usr/tandem/hpjmeter/var/fifos

From HPjmeter 4.2, the node agent at location $JMETER_HOME/bin cannot be started as a named
process. If the node agent needs to start as a named process, following requirements must be
considered:
• If the SUT version is lower than H06.26/J06.15, start the node agent at location

$JMETER_HOME/bin/spt as a named process.
For example, run –name=/G/nod1 /usr/tandem/hpjmeter/bin/spt/nodeagent

• If the SUT version is H06.26/J06.15 or higher, start the node agent at location
$JMETER_HOME/bin/put as a named process.
For example, run –name=/G/nod1 /usr/tandem/hpjmeter/bin/put/nodeagent

90 Addendum to HPjmeter 4.2 User's Guide

Quick References

Determining which HPjmeter Features are Available with a Specific JVM Version
For HPjmeter features available in JVM version see, “Table A-2 HPjmeter Features Available by
JVM Version” in HPjmeter 4.2 User's Guide.

NOTE:
• HPjmeter features are supported on NSJ 6.0 and later releases.
• All instances of PROF must be read as ALRM.
• All instances of signal 21 must be read as 14.

Quick References 91

Glossary
A

abstract class In Java, a class designed only as a parent from which subclasses can be derived, which is not
itself suitable for instantiation. An abstract class is often used to "abstract out" incomplete sets of
features, which can then be shared by a group of sibling subclasses that add different variations
of the missing pieces.

Abstract Window
Toolkit (AWT)

The package that implements graphical user interfaces for Java. For more information, see the
Sun Microsystems AWT Home Page
(http://java.sun.com/javase/6/docs/technotes/guides/awt/index.html).

American National
Standards Institute
(ANSI)

The United States government body responsible for approving US standards in many areas,
including computers and communications. ANSI is a member of ISO . ANSI sells ANSI and ISO
(international) standards.

American
Standard Code for
Information
Interchange (ASCII)

The predominant character set encoding of present-day computers. ASCII uses 7 bits for each
character. It does not include accented letters or any other letter forms not used in English (such
as the German sharp-S or the Norwegian ae-ligature). Compare to Unicode.

ANSI See American National Standards Institute (ANSI).
API See application program interface (API).
application
program

A software program written for or by a user for a specific purpose.1.
2. A computer program that performs a data processing function rather than a control function.

application
program interface
(API)

A set of functions or procedures that are called by an application program to communicate with
other software components.

ASCII See American Standard Code for Information Interchange (ASCII).
AWT See Abstract Window Toolkit (AWT).

B

BDK See JavaBeans Development Kit (BDK).
branded A Java virtual machine that Sun Microsystems, Inc. has certified as conformant.
browser A program that allows you to read hypertext . The browser gives some means of viewing the

contents of nodes and of navigating from one node to another. Internet Explorer, Netscape
Navigator, NCSA Mosaic, Lynx, and W3 are examples for browsers for the WWW . They act
as clients to remote servers.

bytecode The code that javac, the Java compiler, produces.

C

C language A widely used, general-purpose programming language developed by Dennis Ritchie of Bell Labs
in the late 1960s. C is the primary language used to develop programs in UNIX environments.

C++ language A derivative of the C language that has been adapted for use in developing object-oriented
programs.

CGI See Common Gateway Interface (CGI).
class path The directories where a Java virtual machine and other Java programs that are located in the

/usr/tandem/java/bin directory search for class libraries (such as classes.zip). You can set
the class path explicitly or with the CLASSPATH environment variable.

client A software process, hardware device, or combination of the two that requests services from a
server . Often, the client is a process residing on a programmable workstation and is the part of
a program that provides the user interface . The workstation client might also perform other
portions of the program logic. Also called a requester.

92 Glossary

command The operation demanded by an operator or program; a demand for action by, or information
from, a subsystem. A command is typically conveyed as an interprocess message from a program
to a subsystem.

Common Gateway
Interface (CGI)

The World Wide Web standard interface for servers , often written in C . The NonStop Server
for Java 6.0 supports CGI-like use of Java using servlets with iTP Secure WebServer . See also
Pathway CGI.

Common Object
Request Broker
Architecture
(CORBA)

The OMG standard that allows objects that adhere to it to interact over a network regardless of
the types of machines or operating systems on which they reside. Java interoperates with this
standard using Java IDL and JTS .

Compiler (C3) A JVM Hotspot Compiler back-end for application performance.
concurrency A condition in which two or more transactions act on the same record in a database at the same

time. To process a transaction, a program must assume that its input from the database is consistent,
regardless of any concurrent changes being made to the database. TMF manages concurrent
transactions through concurrency control .

concurrency
control

Protection of a database record from concurrent access by more than one process. TMF imposes
this control by dynamically locking and unlocking affected records to ensure that only one
transaction at a time accesses those records.

conformant A Java implementation is conformant if it passes all the tests for Java SE 6.
CORBA See Common Object Request Broker Architecture (CORBA).
Core Packages The required set of APIs in a Java platform edition which must be supported in any and all

compatible implementations.

D

Data Control
Language (DCL)

The set of data control statements within the SQL language.

Data Definition
Language (DDL)

A language that defines all attributes and properties of a database, especially record layouts,
field definitions, key fields, field locations, file locations, and storage strategy.

DCL See Data Control Language (DCL).
DDL See Data Definition Language (DDL).
debuggee A process being debugged. The process consists of the application being debugged and the

Java VM running the application.
debugger A program designed to use the Java Debugging Interface (JDI) and connect to the (debuggee)

so that a programmer can step through the debuggee process, examine the data, and monitor
conditions such as the values of variables.

deserialization,
object

The reverse of Object Serialization.

digital signature A way of automatically identifying the sender of an electronic message or document, without the
possibility of alteration.

DNS See Domain Name Server (DNS).
Domain Name
Server (DNS)

An HP product, part of TCP/IP , that provides the facilities for the maintenance and automated
distribution of network resource name information. DNS permits decentralized administration of
resource names and specifies redundancy of servers to provide a reliable query service for users.

driver A class in JDBC that implements a connection to a particular database management system such
as NonStop SQL/MX . The NonStop Server for Java 6.0 has these driver implementations: JDBC
Driver for SQL/MP(JDBC/MP) and JDBC Driver for SQL/MX (JDBC/MX) .

E-F

Enscribe HP database management software that provides a record-at-a-time interface between servers
and a database. As an integral part of the operating system distributed across two or more
processors, Enscribe helps ensure data integrity if a processor module, I/O channel, or disk drive

93

fails. Files on a NonStop system can be Enscribe files, SQL/MP tables, or SQL/MX tables. Enscribe
files can be either structured or unstructured.

exception An event during program execution that prevents the program from continuing normally; generally,
an error. Java methods raise exceptions using the throw keyword and handle exceptions using
try, catch, and finally blocks.

Expand The HP NonStop operating system network that extends the concept of fault tolerance to networks
of geographically distributed NonStop systems. If the network is properly designed, communication
paths are constantly available even if there is a single line failure or component failure.

expandability See scalability.
fault tolerance The ability of a computer system to continue processing during and after a single fault (the failure

of a system component) without the loss of data or function.

G

garbage collection The process that reclaims dynamically allocated storage during program execution. The term
usually refers to automatic periodic storage reclamation by the garbage collector (part of the
runtime system), as opposed to explicit code to free specific blocks of memory.

graphical user
interface (GUI)

Software that provides user control using a graphic display format. GUI software provides a
bit-mapped, icon-oriented, windowing, graphical environment.

Guardian An environment available for interactive and programmatic use with the NonStop operating
system . Processes that run in the Guardian environment use the Guardian system procedure calls
as their API . Interactive users of the Guardian environment use the TACL or another HP product's
command interpreter. Compare to OSS.

GUI See graphical user interface (GUI).

H

Hotspot virtual
machine

See Java Hotspot virtual machine.

HP JDBC Driver for
SQL/MP
(JDBC/MP)

The product that provides access to SQL/MP and conforms to the JDBC API.

HP JDBC Driver for
SQL/MX
(JDBC/MX)

The product that provides access to SQL/MX and conforms to the JDBC API.

HP NonStop
operating system

The operating system for NonStop systems.

HPNonStop Server
for Java
Transaction API

An implementation of Java Transaction API (JTA) . One version of the NonStop Server for Java
Transaction API uses JTS and another uses TMF.

HPNonStop Server
for Java, based on
Java Standard
Edition 6.0

The formal name of the NonStop Server for Java product whose Java HotSpot virtual machine
conforms to the Java SE 6.0. See also NonStop Server for Java 6.0.

HP NonStop
SQL/MP (SQL/MP)

HP NonStop Structured Query Language/MP, the HP relational database management system
for NonStop servers.

HP NonStop
SQL/MX (SQL/MX)

HP NonStop Structured Query Language/MX, the HP next-generation relational database
management system for business-critical applications on NonStop servers.

HP NonStop
system

HP computers (hardware and software) that support the NonStop operating system.

HP NonStop
Technical Library

The browser-based interface to NonStop computing technical information.

94 Glossary

HP NonStop
Transaction
Management
Facility (TMF)

An HP product that provides transaction protection, database consistency, and database recovery.
SQL statements issued through a JDBC driver against a NonStop SQL database call procedures
in the TMF subsystem.

HP NonStop
TS/MP (TS/MP)

An HP product that supports the creation of Pathway servers to access NonStop SQL/MP or
Enscribe databases in an online transaction processing (OLTP) environment.

HP Tandem
Advanced
Command
Language (TACL)

The command interpreter for the operating system, which also functions as a programming
language, allowing users to define aliases, macros, and function keys.

HTML See Hypertext Markup Language (HTML).
HTTP See Hypertext Transfer Protocol (HTTP).
hyperlink A reference (link) from a point in one hypertext document to a point in another document or

another point in the same document. A browser usually displays a hyperlink in a different color,
font, or style. When the user activates the link (usually by clicking on it with the mouse), the
browser displays the target of the link.

hypertext A collection of documents (nodes) containing cross-references or links that, with the aid of an
interactive browser, allow a reader to move easily from one document to another.

Hypertext Mark-up
Language (HTML)

A hypertext document format used on the World Wide Web.

Hypertext Transfer
Protocol (HTTP)

The client - server TCP/IP protocol used on the World Wide Web for the exchange of HTML
documents.

I

IEC See International Electrotechnical Commission (IEC).
IEEE Institute for Electrical and Electronic Engineers (IEEE).
inlining Replacing a method call with the code for the called method, eliminating the call.
interactive Question-and-answer exchange between a user and a computer system.
interface In general, the point of communication or interconnection between one person, program, or

device and another, or a set of rules for that interaction. See also API .
International
Electrotechnical
Commission (IEC)

A standardization body at the same level as ISO.

International
Organization for
Standardization
(ISO)

A voluntary, nontreaty organization founded in 1946, responsible for creating international
standards in many areas, including computers and communications. Its members are the national
standards organizations of 89 countries, including ANSI.

Internet The network of many thousands of interconnected networks that use the TCP/IP networking
communications protocol . It provides e-mail, file transfer, news, remote login, and access to
thousands of databases. The Internet includes three kinds of networks:

• High-speed backbone networks such as NSFNET and MILNET

• Mid-level networks such as corporate and university networks

• Stub networks such as individual LANs

Internet Protocol
version 6 (IPv6)

IP specifies the format of packets and the addressing scheme. The current version of IP is IPv4.
IPv6 is a new version of IP designed to allow the Internet to grow steadily, both in terms of number
of hosts connected and the total amount of data traffic transmitted. (IP is pronounced eye-pea)

interoperability The ability to communicate, execute programs, or transfer data between dissimilar
environments, including among systems from multiple vendors or with multiple versions of

1.

95

operating systems from the same vendor. HP documents often use the term connectivity in
this context, while other vendors use connectivity to mean hardware compatibility.

2. Within a NonStop system node , the ability to use the features or facilities of one environment
from another. For example, the gtacl command in the OSS environment allows an interactive
user to start and use a Guardian tool in the Guardian environment.

interpreter The component of a Java virtual machine that interprets bytecode into native machine code.
Invocation API The C-language API that starts a Java virtual machine and invokes methods on it. The Invocation

API is a subset of the JNI .
IPv6 See Internet Protocol version 6 (IPv6).
ISO See International Organization for Standardization (ISO).
iTP Secure
WebServer

The HP web server with which the NonStop Server for Java integrates using servlets.

J

jar The Java Archive tool, which combines multiple files into a single Java Archive (JAR) file. Also,
the command to run the Java Archive Tool.

JAR file A Java Archive file, produced by the Java Archive Tool, jar.
java The Java application launcher, which launches an application by starting a Java runtime

environment, loading a specified class, and invoking that class's main method.
Java 2 Platform,
Enterprise Edition
(J2EE platform)

An environment for developing and deploying enterprise applications. The J2EE platform consists
of a set of services, application programming interfaces (APIs) and protocols that provide the
functionality for developing multi-tiered, Web-based applications.

Java Conformance
Kit (JCK)

The collection of conformance tests that any vendor's JDK must pass in order to be conformant
with the Sun Microsystems specification.

Java Database
Connectivity (JDBC)

An industry standard for database-independent connectivity between the Java platform and
relational databases such as NonStop SQL/MP or NonStop SQL/MX . JDBC provides a call-level
API for SQL-based database access.

Java HotSpot
virtual machine

The Java virtual machine implementation designed to produce maximum program-execution speed
for applications running in a server environment. This virtual machine features an adaptive compiler
that dynamically optimizes the performance of running applications.

Java IDL See Java Interface Development Language (Java IDL)
Java Interface
Development
Language (Java
IDL)

The library that supports CORBA and Java interoperability . For more information, see the Sun
Microsystems Java IDL documentation (http://java.sun.com/products/jdk/idl/index.html).

Java Naming and
Directory Interface
(JNDI)

A standard extension to the Java platform, which provides Java technology-enabled application
programs with a unified interface to multiple naming and directory services.

Java Native
Interface (JNI)

The C-language interface used by C functions called by Java classes. Includes an Invocation API
that invokes a Java virtual machine from a C program.

Java Platform
Standard Edition
(Java SE 6)

The core Java technology platform, which provides a complete environment for applications
development on desktops and servers and for deployment in embedded environments. For more
information, see the Sun Microsystems JDK 6.0 Documentation .

Java runtime See Java SE Runtime Environment.
Java SE
Development Kit
(JDK)

The development kit delivered with the Java SE platform. Contrast with Java SE Runtime Environment
(JRE). See also, Java Platform Standard Edition 6.0 (Java SE)

Java SE Runtime
Environment (JRE)

The Java virtual machine and the Core Packages. This is the standard Java environment that the
java command invokes. Contrast with Java SE Development Kit (JDK). See also, Java Platform
Standard Edition 6.0 (Java SE).

Java Transaction
API (JTA)

The Sun Microsystems product that specifies standard Java interfaces between a transaction
manager and the parties involved in a distributed transaction system: the resource manager, the

96 Glossary

application server, and the transactional applications. For more information, see the Sun
Microsystems JTA document (http://java.sun.com/products/jta/index.html).

Java Transaction
Service (JTS)

The transaction API , modeled on OMG's OTS . The NonStop Server for Java 6.0 includes an
implementation of the jts.Current interface .

Java virtual
machine (JVM)

The process that loads, links, verifies, and interprets Java bytecode . The NonStop Server for Java
6.0 implements the Java HotSpot Server virtual machine .

Java Virtual
Machine Tool
Interface (JVM TI)

A programming interface used by development and monitoring tools. It is used to inspect the
state and to control the execution of applications running in the Java VM, thereby defining the
debugging services a VM provides.

JavaBeans A platform-neutral component architecture supported by Java, intended for developing or
assembling software for multiple hardware and operating system environments. For more
information, see the Sun Microsystems JavaBeans document
(http://java.sun.com/javase/6/docs/technotes/guides/beans/index.html).

JavaBeans
Development Kit
(BDK)

A set of tools for creating JavaBeans that is included with the NonStop Server for Java 6.0.

javac The Java compiler, which compiles Java source code into bytecode. Also, the command to run
the Java compiler.

javachk The Java Checker, which determines whether a problem with the Java virtual machine is due to
an incorrect TCP/IP configuration. Also, the command to run the Java checker.

javadoc The Java API documentation generator, which generates API documentation in HTML format from
Java source code. Also, the command to run the Java API documentation generator.

javah The C header and Stub file generator, which generates C header files and C source files from a
Java class, providing the connections that allow Java and C code to interact. Also, the command
to run the C header and stub file generator.

javap The Java class file disassembler, which disassembles compiled Java files and prints a representation
of the Java bytecode . Also, the command to run the Java class file disassembler.

JCK See Java Conformance Kit (JCK).
jdb The Java Debugger, which helps you find and fix errors in Java programs. Also, the command

to run the Java Debugger .jdb uses the Java Debugger API.
JDBC See Java Database Connectivity (JDBC).
JDBC/MP See HP JDBC Driver for SQL/MP (JDBC/MP).
JDBC/MX See HP JDBC Driver for SQL/MX (JDBC/MX).
JDK See Java SE Development Kit (JDK).
JNDI See Java Naming and Directory Interface (JNDI).
JNI See Java Native Interface (JNI).
jre The Java runtime environment, which executes Java bytecode. See also Java SE Runtime

Environment (JRE).
JTA See Java Transaction API (JTA).
JTS See Java Transaction Service (JTS).
jts.Current A JTS interface that lets you define transaction boundaries. The NonStop Server for Java 6.0

includes an implementation of jts.Current.
JVM See Java virtual machine (JVM).
JVM TI See Java Virtual Machine Tool Interface (JVM TI).

K-M

key A value used to identify a record in a database, derived by applying a fixed function to the
record. The key is often simply one of the fields (a column if the database is considered as

1.

97

a table with records being rows). Alternatively, the key can be obtained by applying a
function to one or more of the fields.

2. A value that must be fed into the algorithm used to decode an encrypted message in order
to reproduce the original plain text. Some encryption schemes use the same (secret) key to
encrypt and decrypt a message, but public key encryption uses a private (secret) key and
a public key that is known by all parties.

LAN See local area network (LAN).
local area network
(LAN)

A data communications network that is geographically limited (typically to a radius of 1 kilometer),
allowing easy interconnection of terminals, microprocessors, and computers within adjacent
buildings. Ethernet is an example of a LAN.

macro A sequence of commands that can contain dummy arguments. When the macro runs, actual
parameters are substituted for the dummy arguments.

N

native In the context of Java programming, something written in a language other than Java (such as C
or C++) for a specific platform.

native method A non-Java routine (written in a language such as C or C++) that is called by a Java class.
native2ascii The Native-to-ASCII converter, which converts a file with native-encoded characters into one with

Unicode-encoded characters. Also, the command to run the Native-to-ASCII converter.
node An addressable device attached to a computer network.1.

2. A hypertext document.

NonStop Server for
Java 6.0

The informal name for the NonStop Server for Java products based on the Java Platform Standard
Edition 6.0 product. This product is a Java environment that supports compact, concurrent,
dynamic, and portable programs for the enterprise server. See also, HP NonStop Server for Java,
based on the Java Platform Standard Edition 6.0 .

NonStop Technical
Library

The browser-based interface to NonStop computing technical information. NonStop Technical
Library replaces HP Total Information Manager (TIM).

NSK See HP NonStop operating system.
NSKCOM A program management tool for swap space.

O

Object
Management
Group (OMG)

The standards body that defined CORBA.

Object
Serialization

A Sun Microsystems procedure that extends the core Java Input/Output classes with support for
objects by supporting the following:

• The encoding of objects, and the objects reachable from them, into a stream of bytes.

• The complementary reconstruction of the object graph from the stream.

Object Serialization is used for lightweight persistence and for communication by means of
sockets or RMI. The default encoding of objects protects private and transient data, and supports
the evolution of the classes. A class can implement its own external encoding and is then solely
responsible for the external format.

Object Transaction
Service (OTS)

The transaction service standard adopted by the OMG and used as the model for JTS.

ODBC See Open Database Connectivity (ODBC).
OLTP See online transaction processing (OLTP).
OMG See Object Management Group (OMG).
online transaction
processing (OLTP)

A method of processing transactions in which entered transactions are immediately applied to
the database. The information in the databases is always current with the state of company and
is readily available to all users through online screens and printed reports. The transactions are

98 Glossary

processed while the requester waits, as opposed to queued or batched transactions, which are
processed at a later time. Online transaction processing can be used for many different kinds of
business tasks, such as order processing, inventory control, accounting functions, and banking
operations.

Open Database
Connectivity
(ODBC)

The standard Microsoft product for accessing databases.

Open System
Services (OSS)

An environment available for interactive and programmatic use with the NonStop operating
system . Processes that run in the OSS environment use the OSS API . Interactive users of the OSS
environment use the OSS shell for their command interpreter . Compare to Guardian.

OSS See Open System Services (OSS).
OTS See Object Transaction Service (OTS).

P

package A collection of related classes; for example, JDBC.
Pathsend API The application program interface to a Pathway system that enables a Pathsend process to

communicate with a server process.
Pathsend process A client (requester) process that uses the Pathsend interface to communicate with a server process.

A Pathsend process can be either a standard requester, which initiates application requests, or
a nested server, which is configured as a server class but acts as a requester by making requests
to other servers. Also called a Pathsend requester.

Pathway A group of software tools for developing and monitoring OLTP programs that use the client /
server model. Servers are grouped into server classes to perform the requested processing. On
NonStop systems, this group of tools is packaged as two separate products: TS/MP and
Pathway/TS .

Pathway CGI An extension to iTP Secure WebServer that provides CGI -like access to Pathway server classes.
Extended in the NonStop Server for Java so that Java servlets can be invoked from a
ServletServerClass, a special Pathway CGI server.

Pathway/TS An HP product that provides tools for developing and interpreting screen programs to support
OLTP programs in the Guardian environment on NonStop servers . Pathway/TS screen programs
communicate with terminals and intelligent devices. Pathway/TS requires the services of the
TS/MP product.

persistence A property of a programming language where created objects and variables continue to
exist and retain their values between runs of the program.

1.

2. The capability of continuing in existence, such as a program running as a process.

portability The ability to transfer programs from one platform to another without reprogramming. A
characteristic of open systems. Portability implies use of standard programming languages such
as C .

Portable Operating
System Interface X
(POSIX)

A family of interrelated interface standards defined by ANSI and IEEE . Each POSIX interface is
separately defined in a numbered ANSI/IEEE standard or draft standard. The standards deal
with issues of portability, interoperability, and uniformity of user interfaces.

POSIX See Portable Operating System Interface X (POSIX).
private key An encryption key that is not known to all parties.
protocol A set of formal rules for transmitting data, especially across a network. Low-level protocols define

electrical and physical standards, bit-ordering, byte-ordering, and the transmission, error detection,
and error correction of the bit stream. High-level protocols define data formatting, including the
syntax of messages, the terminal-to-computer dialogue, character sets, sequencing of messages,
and so on.

Pthread A POSIX thread.
public key An encryption key that is known to all parties.
pure Java Java that relies only on the Core Packages, meaning that it can run anywhere.

99

R

RDF See Remote Duplicate Database Facility (RDF).
Remote Duplicate
Database Facility
(RDF)

The HP software product that does the following:

Assists in disaster recovery for OLTP production databases.•

• Monitors database updates audited by the TMF subsystem on a primary system and applies
those updates o a copy of the database on a remote system.

Remote Method
Invocation (RMI)

The Java package used for homogeneous distributed objects in an all-Java environment.

requester See client.
RMI See Remote Method Invocation (RMI).
rmic The Java RMI stub compiler, which generates stubs and skeletons for remote objects.
rmicregistry The Java Remote Object Registry, which starts a remote object registry on the specified port on

the current host.

S

scalability The ability to increase the size and processing power of an online transaction processing system
by adding processors and devices to a system, systems to a network, and so on, and to do so
easily and transparently without bringing systems down. Sometimes called expandability.

Scalable TCP/IP
(SIP)

A NonStop Server for Java feature that transparently provides a way to give scalability and
persistence to a network server written in Java.

serialization See Object Serialization.
serialized object An object that has undergone object serialization.
serialver The Serial Version Command, which returns the serialVersionUID of one or more classes.

Also, the command to run the Serial Version Command.
server An implementation of a system used as a stand-alone system or as a node in an Expand

network.
1.

2. The hardware component of a computer system designed to provide services in response
to requests received from clients across a network. For example, NonStop system servers
provide transaction processing, database access, and other services.

3. A process or program that provides services to a client. Servers are designed to receive
request messages from clients; perform the desired operations, such as database inquiries
or updates, security verifications, numerical calculations, or data routing to other computer
systems; and return reply messages to the clients.

servlet A server -side Java program that any World Wide Web browser can access. It inherits scalability
and persistence from the Pathway CGI server that manages it.
The Java class named servlets executes in server environments such as World Wide Web servers.
The Servlet API is defined in a draft standard by Sun Microsystems. The servlets class is not
in the Core Packages for the JDK.

shell The command interpreter used to pass commands to an operating system; the part of the operating
system that is an interface to the outside world.

SIP See Scalable TCP/IP (SIP).
skeleton In RMI , the complement of the stub . Together, skeletons and stubs form the interface between

the RMI services and the code that calls and implements remote objects.
socket A logical connection between two application programs across a TCP/IP network.
SQL/MP See HP NonStop SQL/MP.
SQL/MX See HP NonStop SQL/MX.
SQLJ Also referred to SQLJ Part 0 the "Database Language SQL—Part 10: Object Language Bindings

(SQL/OLB) part of the ANSI SQL-2002 standard that allows static SQL statements to be embedded
directly in a Java program.

100 Glossary

Standard Extension
API

An API outside the Core Packages for which Sun Microsystems, Inc. has defined and published
an API standard. Some of the Standard Extensions might migrate into the Core Packages. Examples
of standard extensions are servlets and JTS .

stored procedure A procedure registered with NonStop SQL/MX and invoked by NonStop SQL/MX during execution
of a CALL statement. Stored procedures are especially important for client/server database systems
because storing the procedure on the server side means that it is available to all clients. And
when the procedure is modified, all clients automatically get the new version.

stored procedure
in Java (SPJ)

A stored procedure whose body is a static Java method.

stub A dummy procedure used when linking a program with a runtime library. The stub need not
contain any code. Its only purpose is to prevent "undefined label" errors at link time.

1.

2. A local procedure in a remote procedure call (RPC). A client calls the stub to perform a task,
not necessarily aware that the RPC is involved. The stub transmits parameters over the network
to the server and returns results to the caller.

T

TACL See HP Tandem Advanced Command Language (TACL).
TCP/IP See Transmission Control Protocol/Internet Protocol (TCP/IP).
Technical
Documentation

HP's Technical documentation is found at docs.hp.com.

thread A task that is separately dispatched and that represents a sequential flow of control within a
process.

threads The nonnative thread package that is shipped with Sun Microsystems Java SE 6.0.
throw Java keyword used to raise an exception.
throws Java keyword used to define the exceptions that a method can raise.
TMF See HP NonStop Transaction Management Facility (TMF)
TNS/E The hardware platform based on the Intel® Itanium® architecture and the HP NonStop operating

system, and the software specific to that platform. All code is PIC (position independent code).
TNS/R The hardware platform based on the MIPS™ architecture and the HP NonStop operating system,

and the software specific to that platform. Code might be PIC (position independent code) or
non-PIC.

transaction A user-defined action that a client program (usually running on a workstation) requests from a
server .

Transaction
Management
Facility (TMF)

A set of HP software products for NonStop systems that assures database integrity by preventing
incomplete updates to a database. It can continuously save the changes that are made to a
database (in real time) and back out these changes when necessary. It can also take online
"snapshot" backups of the database and restore the database from these backups.

Transmission
Control
Protocol/Internet
Protocol (TCP/IP)

One of the most widely available nonvendor-specific protocols , designed to support large,
heterogeneous networks of systems.

TS/MP See HP NonStop TS/MP.

U-Z

-Xeprof Java application profile collection option.
-Xeverbosegc Java application's Garbage Collector (GC) activity profile collection option.
Unicode A character-coding scheme designed to be an extension of ASCII . By using 16 bits for each

character (rather than ASCII's 7), Unicode can represent almost every character of every language
and many symbols (such as "&") in an internationally standard way, eliminating the complexity
of incompatible extended character sets and code pages. Unicode's first 128 codes correspond
to those of standard ASCII.

101

uniform resource
locator (URL)

A draft standard for specifying an object on a network (such as a file, a newsgroup, or, with
JDBC, a database). URLs are used extensively on the World Wide Web . HTML documents use
them to specify the targets of hyperlinks .

URL See uniform resource locator (URL).
virtual machine
(VM)

A self-contained operating environment that behaves as if it is a separate computer. See also
Java virtual machine and Java Hotspot virtual machine .

VM See virtual machine (VM).
World Wide Web
(WWW)

An Internet client - server hypertext distributed information retrieval system that originated from
the CERN High-Energy Physics laboratories in Geneva, Switzerland. On the WWW everything
(documents, menus, indexes) is represented to the user as a hypertext object in HTML format.
Hypertext links refer to other documents by their URLs. These can refer to local or remote resources
accessible by FTP, Gopher, Telnet, or news, as well as those available by means of the HTTP
protocol used to transfer hypertext documents. The client program (known as a browser) runs
on the user's computer and provides two basic navigation operations: to follow a link or to send
a query to a server.

wrapper A shell script that sets up the proper execution environment and then executes the binary file that
corresponds to the shell's name.

WWW See World Wide Web (WWW).

102 Glossary

	NonStop Server for Java 6.0 Programmer's Reference
	Contents
	About this Manual
	Manual Information
	Intended Audience
	New and Changed Information
	Document Organization
	Notation Conventions
	Related Reading
	Revision History
	HP Encourages your Comments
	Printing this Document
	Abbreviations

	1 Introduction to NonStop Server for Java 6.0
	Java HotSpot Server Virtual Machine
	Java Standard Edition Development Kit (JDK) Highlights
	Java Naming and Directory Interface (JNDI) Highlights
	IPv6 Support
	Associated Java Based Products
	BEA WebLogic Server for the HP NonStop Server
	JDBC Drivers for NonStop SQL Database Access
	JToolkit for NonStop Servers
	Enscribe API for Java
	Pathway API for Java
	Pathsend API for Java
	Scalable TCP/IP

	NonStop CORBA
	NonStop Servlets for JavaServer Pages
	NonStop Server for Java Message Service (JMS)
	NonStop Tuxedo: Jolt Client
	Stored Procedures in Java

	2 Getting Started
	Learning About the Prerequisites
	Learning About Java
	Learning About Open System Services (OSS)
	The Open System Services User's Guide
	UNIX Tutorials

	Verifying the Java Installation
	Tutorial: Running a Simple Program, HelloWorld
	Specifying the CPU and Process Name with Which an Application Runs
	Configuring a Java Pathway Serverclass
	ARGLIST
	PROCESSTYPE
	ENV
	PROGRAM

	3 Installation and Configuration
	Installation Requirements
	Configuration Requirements
	Creating Larger or Additional Swap Files
	Setting Environment Variables
	PATH
	Class Path
	JREHOME
	_RLD_LIB_PATH

	Symbolic Link
	Configuring TCP/IP and DNS for RMI

	NonStop Server for Java 6.0 Directory Structure
	Directory Contents
	Demonstration Programs

	4 Implementation Specifics
	Headless Support
	Additional Files
	Additional Environment Variable
	Java Native Interface (JNI)
	Calling C or C++ Methods from Java
	Calling Java Methods from C or C++
	Linker and Compiler Options
	Compiler Options
	Linker Options

	How to Create Your Own Library of Native Code

	IEEE Floating-Point Implementation
	Floating-Point Values
	Double-Precision Values
	How to Call TNS Floating-Point Functions from JNI Code

	Multithreaded Programming
	Thread Scheduling
	Threading Considerations for Java Code
	Thread-Aware I/O Support for OSS regular files

	Threading Considerations for Native Code

	Java Print Service (JPS)
	Using the Guardian Printer
	ThreadDumpPath Support
	Dynamic Saveabend File Creation
	Creating Child Process Using the -Dnsk.java.fastExec=true Option
	Preemptive User Threads On NonStop Server For Java

	Java Authentication and Authorization Service (JAAS)
	JavaBeans
	Debugging Java Programs
	Debugging Overview
	Transports
	java Command Line Options to Run a Debuggee
	Starting the Java Debugger (jdb) Tool
	Debugging JNI Code
	Using Visual Inspect To Add an Event Breakpoint on DLL Open Event

	Debugging Java and JNI Code

	Deviations in JVM Specification Options
	java: Java Application Launcher Command Line Option Deviations
	jdb: Java Debugger Command Line Option Deviations

	Garbage Collection (GC)
	General Information on Garbage Collection
	Heap Layout
	Managing Generation Size
	Implementation of Garbage Collector Types
	Parallel Collector
	Concurrent Low-Pause Collector
	Incremental Low-Pause Collector

	Java Garbage Collector Tuning for Application Performance
	Java GC Profiling
	HeapDumpOnly option
	Other HeapDump Options
	Using Heap Dumps to Monitor Memory Usage

	JVM Tuning Tools
	Tuning Application Performance
	Memory Considerations: Moving QIO to KSEG2
	Determining the Heap Manager
	Determining the Heap Setting
	Related Tuning Guides

	Java Signal Handlers
	Change in Loading of .hotspot_compiler and .hotspotrc files

	5 Transactions
	Controlling Maximum Concurrent Transactions
	Current Class Methods
	Java Transaction API (JTA)
	javax.transaction Interfaces
	javax.transaction Exceptions
	Examples
	NonStop Server for Java Transaction API-TMF by Default
	NonStop Server for Java Transaction API-TMF by Request
	NonStop Server for Java Transaction API-JTS

	6 Application Profiling
	Monitoring live Java applications
	Collecting profile data for analysis
	Obtaining Garbage Collection Data for Analysis
	Analyzing Garbage Collection Data
	-Xeprof versus -agentlib:hprof (HPROF)

	7 Migrating Applications
	Installation Changes
	Public Library Directory
	Java Based JAR File Locations
	For Java Based Products
	User-Provided JAR Files

	Dynamic Link Libraries (DLLs)
	Makefile to Link Native Libraries
	Compiling C++ Native Code with the -Wversion3 Option
	Floating-Point Support
	Using AWT Classes
	POSIX Threads
	Directories of Binary Files Moved
	Character Handling
	BigDecimalFormat Class
	JAAS Enhancement
	Miscellaneous Changes for Migration to TNS/E
	JNI_OnLoad and JNI_OnUnLoad Functions
	Debugger
	Default Heap and Stack Sizes
	dlfcn.h File

	A Supported and Unsupported Features of NonStop Server for Java 6.0
	Java SE 6.0 Features not Implemented in NonStop Server for Java 6.0

	B Addendum to HPjmeter 4.2 User's Guide
	Completing Installation of HPjmeter
	Agent Requirements
	File Locations
	Configuring your Application to Use HPjmeter Command Line Options
	Preparing to run Java
	Attaching to the JVM Agent of a Running Application

	Monitoring Applications
	Managing Node Agents
	Managing Node Agents on a NonStop Operating System

	Diagnosing Errors when Monitoring Running Applications
	Checking for Application Paging Problems

	Profiling Applications
	Collecting Profile Data
	Profiling with —Xeprof
	Profiling with Zero Preparation
	Profiling with –agentlib:hprof

	Troubleshooting
	Identifying Version Numbers
	Installation
	Node Agent

	Quick References
	Determining which HPjmeter Features are Available with a Specific JVM Version

	Glossary

