
Measure Reference Manual

HP Part Number: 523324-013
Published: March 2010
Edition: J06.03 and subsequent J-series RVUs, H06.03 and subsequent H-series RVUs, G06.03 and subsequent G-series RVUs, and D40.00 and
subsequent D-series RVUs.

© Copyright 2010 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP
shall not be liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Java is a U.S. trademark of Sun Microsystems, Inc.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The Open Group are trademarks of The Open
Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc. OSF MAKES
NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall not be liable for errors contained
herein or for incidental consequential damages in connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF software to which it relates are derived in part
from materials supplied by the following:© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation. ©
1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991 Hewlett-Packard
Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991, 1992 SecureWare, Inc. © 1990, 1991
Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.OSF software
and documentation are based in part on the Fourth Berkeley Software Distribution under license from The Regents of the University of California.
OSF acknowledges the following individuals and institutions for their role in its development: Kenneth C.R.C. Arnold, Gregory S. Couch, Conrad
C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University
of California.

Table of Contents

About This Document...15
Supported Release Version Updates (RVUs)..15
Intended Audience..15
New and Changed Information..15

New and Changed Information for 523324–013 Revision...15
New and Changed Information for H06.20/J06.09 RVUs (523324-012)...15
New and Changed Information for H06.18/J06.07 RVUs (523324-011)...16
New and Changed Information for H06.17/J06.06 RVUs (523324-010)...17
New and Changed Information for H06.16/J06.05 RVUs (523324-009)...19
New and Changed Information for H06.15/J06.04 RVUs (523324-008)...19
New and Changed Information for H06.14/J06.03 RVUs (523324-007) and J06.02 (523324-06)......20
New and Changed Information for H06.12 RVU (523324-05)...22

Document Organization...26
Notation Conventions...26

General Syntax Notation...26
Notation for Messages...29
Notation for Management Programming Interfaces...30

Related Information..30
Publishing History..31
HP Encourages Your Comments..31

1 Introduction to Measure...33
Operational Overview..33

The Measure Subsystem..33
The User Interfaces..33

Entities and Counters..34
The Three Steps of Measurement...34

Step 1. Configure the Measurement..34
Step 2. Take the Measurement...35
Step 3. Examine the Measurement..35

2 MEASCOM Commands..37
Summary of MEASCOM Commands...37
General Information About Using MEASCOM...39

Syntax Conventions for MEASCOM Commands...39
Running a MEASCOM Session...41
Creating a Custom Startup File...42

MEASCOM...42
Syntax ...42
Usage Note..42
Example...43

ADD entity-type...43
Syntax..43
Related Commands...43
Usage Note..43
Examples..44

ADD COUNTER...44
Syntax..45
Related Commands...46

Table of Contents 3

Usage Notes...46
Example...46

ADD MEASUREMENT..46
Syntax ...47
Usage Notes (All RVUs)..47
Usage Notes (G-Series and Later RVUs)...48
Usage Notes (H-Series and J-Series RVUs)..48
Related Commands...48
Examples..48

ADD PLOT..48
Syntax..49

ASSUME...51
Syntax ...51
Example...52

COMMENTS...52
Syntax ...52
Usage Notes...52
Example...52

DELETE entity-type..52
Syntax..53
Usage Notes...53
Related Commands...53
Examples..53

DELETE COUNTER...54
Syntax ...54
Related Commands...54
Example...54

DELETE MEASUREMENT...55
Syntax ...55
Related Command...55
Usage Note..55
Example...55

DELETE PLOT..55
Syntax ...55
Related Commands...56
Example...56

ENV...56
Syntax ...56
Usage Note..57
Examples..57

EXIT...58
Syntax ...58
Usage Notes...58
Example...59

FC..59
Syntax ...59
Related Command ..59
Examples..59

HELP...59
Syntax ...59
Usage Notes...61
Examples..61

HISTORY...61
Syntax ...61
Related Commands...62

4 Table of Contents

Example...62
INFO entity-type..62

Syntax ...62
Related Commands...63
Usage Notes...63
Examples..63

INFO COUNTER..63
Syntax..63
Related Commands...64
Usage Notes...64
Example...64

INFO MEASUREMENT..64
Syntax..65
Related Command...65
Usage Notes...65
Examples..66

INFO PLOT...67
Syntax ...67
Usage Note..68
Related Commands...68
Example...68

LIST entity-type..68
Syntax ...69
Related Commands...74
Usage Notes...74
Examples..75

LIST EXTNAMES..78
Syntax..79
DDL Record for EXTNAMES file..79
Example...80

LIST OSSNAMES..80
Syntax..80
Usage Notes...80
DDL Record for OSSNAMES file..80
Example...80

LIST PLOT...80
Syntax ...81
Related Commands...83
Examples..83

LISTACTIVE entity-type..85
Syntax ...85
LISTACTIVE Entity Specification Special Cases...87
Usage Notes...89
Related Commands...90
Examples..90

LISTALL entity-type...90
Syntax ...91
Usage Notes...96
Example...96

LISTENAME...96
Syntax..97
Example...97

LISTGNAME...97
Syntax..97
Usage Notes...98

Table of Contents 5

Examples..98
LISTPNAME...98

Syntax..98
Usage Notes...99
Examples..99

LOG...99
Syntax ...99
Usage Note...100
Example...100

OBEY...100
Syntax ..100
Usage Notes...100
Example...100

OSSPATH..100
Syntax...100
Example...101

OUT...101
Syntax ..101
Usage Note...101
Example...101

PAGESIZE...101
Syntax...101
Usage Notes...102
Example...102

RESET PLOT...102
Syntax...102

RESET REPORT..103
Syntax ..103

RUN...104
Syntax ..104
Usage Notes...104
Example...104

SET PLOT..104
Syntax ..105
Related Commands..107
Example...107

SET REPORT...108
Syntax...108
Related Commands..112
Examples..112

SQLCATALOG..114
Syntax...114
Example...114

SQLSCHEMA..114
Syntax...114
Example...114

SETPROMPT...114
Syntax ..115
Usage Notes...115
Examples..115

SHOW PLOT...116
Syntax ..116
Usage Notes...116
Example...116

SHOW REPORT..116

6 Table of Contents

Syntax...116
Usage Notes...117
Examples..117

START MEASSUBSYS...117
Syntax ..118
Related Command...118
Usage Notes...118

START MEASUREMENT..119
Syntax ..120
Related Command...122
Usage Notes...123
Examples..123

STATUS MEASSUBSYS...123
Syntax ..124
Usage Note...124
Examples..124

STATUS MEASUREMENT...125
Syntax ..125
Usage Note...126
Examples..126

STOP MEASSUBSYS...126
Syntax ..126
Usage Notes...127
Related Commands..127
Example...127

STOP MEASUREMENT..127
Syntax ..127
Examples..128

SWAPVOL...128
Syntax ..128
Usage Note...128

SYSTEM...128
Syntax ..128
Example...129

TIME..129
Syntax ..129
Examples..129

VOLUME...129
Syntax ..129
Examples..129

WARNINGS..130
Syntax ..130
Usage Note...130
Example...130

!..130
Syntax ..130
Related Commands..131
Examples..131

3 Entities and Counters...133
Counters Overview...134

Interpreting Counter Values..134
Identifying Data File Errors...140

Common Entity Header Fields...141

Table of Contents 7

DDL Header Fields (Legacy Style)..141
DDL Header Fields (ZMS Style)..142

Measure Support for Open System Services (OSS)...144
Handling of OSS File Pathnames...144
Guardian File-Name Reuse...145
Handling of the Creation Version Serial Number (CRVSN)...145
Measure Identification (MID)..145
OSS Journal Segment...145
Entity Report Formats..146

Measure Support for ANSI SQL Names...146
Handling of ANSI SQL Names..146
SQL Journal Segment...147
Entity Report Formats..147

Measure Support for DLLs...148
Measure G12 and later PVUs support measurement of DLLs..148
Aggregate Data Measurement...148
Additional Information About DLLs in This Manual...149

Accessing ZMS style Records (MEASDDLZ)...149
CLUSTER..150

Entity Specification Syntax for CLUSTER Entities..150
DDL Record for CLUSTER Entities (Legacy Style)...150
DDL Record for CLUSTER Entities (ZMS Style)...151
Usage Notes for All CLUSTER Entities...153
Usage Note for G-Series CLUSTER Entities..153
Usage Note for H-Series and J-Series ...153

CONTROLLER..154
Entity Specification Syntax for CONTROLLER Entities...154
DDL Record for CONTROLLER Entities..155
Usage Note for CONTROLLER Entities..156

CPU...156
Entity Specification Syntax for CPU Entities...156
DDL Record for CPU Entities (Legacy Style)..156
DDL Record for CPU Entities (ZMS Style)..159
Usage Notes for All CPU Entities..170
Usage Note for D-Series CPU Entities...170
Usage Notes for G-Series CPU Entities...170
Usage Notes for H-Series and J-Series CPU Entities...171

DEVICE...171
Entity Specification Syntax for DEVICE Entities...171
DDL Record for DEVICE Entities (Legacy Style)..173
DDL Record for DEVICE Entities (ZMS Style)..174
Usage Notes for All DEVICE Entities..179
Usage Notes for Measure H03 and J01 PVUs..179
Usage Note for G-Series DEVICE Entities...179
Usage Note for H-Series and J-Series Device Entities...180
Examples..180

DISC..180
Entity Specification Syntax for DISC Entities..180
DDL Record for DISC Entities (Legacy Style)...182
DDL Record for DISC Entities (ZMS Style)...184
Usage Notes for All DISC Entities...196
Usage Notes for G-Series DISC Entities..196
Usage Notes for H-Series and J-Series DISC Entities..198
Usage Notes for Measure H03 and J01 PVUs..198
Examples..198

8 Table of Contents

DISCOPEN..198
Entity Specification Syntax for DISCOPEN Entities..199
DDL Record for DISCOPEN Entities (Legacy Style)...200
DDL Record for DISCOPEN Entities (ZMS Style)...201
Usage Notes for All DISCOPEN Entities...205
Usage Notes for G-Series DISCOPEN Entities..206
Example...206

DISKFILE...207
Entity Specification Syntax for DISKFILE Entities..207
DDL Record for DISKFILE Entities (Legacy Style)...208
DDL Record for DISKFILE Entities (ZMS Style)...209
Usage Notes for All DISKFILE Entities...214
Usage Notes for G-Series DISKFILE Entities...215
Example...215

FILE...216
Measure and OSS File Opens...216
OSS Naming Conventions...217
ANSI SQL Naming Conventions...219
Entity Specification Syntax..219
DDL Record for FILE Entities (Legacy Style)..221
DDL Record for FILE Entities (ZMS Style)..223
Usage Notes for All FILE Entities..231
Usage Notes for G-Series FILE Entities...231
Usage Notes for H-Series and J-Series FILE Entities...232
Command Examples: OSS File Opens...232

LINE..236
Entity Specification Syntax for LINE Entities..236
DDL Record for LINE Entities (Legacy Style)...237
DDL Record for LINE Entities (ZMS Style)...238
Usage Notes for G-Series LINE Entities..243
Usage Notes for H-Series and J-Series LINE Entities..243

NETLINE...243
Entity Specification Syntax for NETLINE Entities..244
DDL Record for NETLINE Entities (Legacy Style)..245
DDL Record for NETLINE Entities (ZMS Style)...246
Usage Notes for All NETLINE Entities...251
Usage Notes for G-Series NETLINE Entities...251
Usage Notes for H-Series and J-Series NETLINE Entities...251

OPDISK...251
Entity Specification Syntax for OPDISK Entities...252
DDL Record for OPDISK Entities (Legacy Style) ...252
DDL Record for OPDISK Entities (ZMS Style)..253
Usage Notes for All OPDISK Entities..256

OSSCPU...256
Entity Specification Syntax for OSSCPU Entities..256
DDL Record for OSSCPU Entities (Legacy Style)...257
DDL Record for OSSCPU Entities (ZMS Style)...258
Usage Notes for OSSCPU Entities...265

OSSNS...266
Entity Specification Syntax for OSSNS Entities...266
DDL Record for OSSNS Entities (Legacy Style)..267
DDL Record for OSSNS Entities (ZMS Style)..268
Usage Notes for OSSNS Entities..271

PROCESS...272
Entity Specification Syntax for PROCESS Entities..272

Table of Contents 9

DDL Record for PROCESS Entities (Legacy Style)..274
DDL Record for PROCESS Entities (ZMS Style)...276
Usage Note for All PROCESS Entities...291
Usage Notes for G-Series PROCESS Entities...291
Usage Notes for H-Series and J-Series PROCESS Entities...291

PROCESSH..291
Entity Specification Syntax for PROCESSH Entities...292
DDL Record for PROCESSH Entities (Legacy Style)...295
DDL Record for PROCESSH Entities (ZMS Style)..296
Usage Notes for G-Series PROCESSH Entities..300
Usage Notes for H-Series and J-Series PROCESSH Entities..300
Examples of PROCESSH Measurements...301

SERVERNET..302
Entity Specification Syntax for SERVERNET Entities...302
DDL Record for SERVERNET Entities (Legacy Style)...303
DDL Record for SERVERNET Entities (ZMS Style)..304
Usage Notes for SERVERNET Entities..310
Usage Notes for ServerNet IPC and RIPC...311
Usage Notes for CLIMs...311
Examples of Configuring Measurements for ServerNet Cluster..312
Examples of Configuring Measurements for CLIMs..313

SQLPROC..313
Entity Specification Syntax for SQLPROC Entities...313
DDL Record for SQLPROC Entities (Legacy Style)...315
DDL Record for SQLPROC Entities (ZMS Style)..316
Usage Note for New Format SQLPROC Entities..319

SQLSTMT..319
Entity Specification Syntax for SQLSTMT Entities..320
DDL Record for SQLSTMT Entities (Legacy Style)...322
DDL Record for SQLSTMT Entities (ZMS Style)...323
Usage Notes for All SQLSTMT Entities...329
Example...330

SYSTEM...330
Entity Specification Syntax for SYSTEM Entities..331
DDL Record for All SYSTEM Entities (Legacy Style)..331
DDL Record for All SYSTEM Entities (ZMS Style)...332
Usage Notes for All SYSTEM Entities...333

TERMINAL...333
Entity Specification Syntax for TERMINAL Entities...333
DDL Record for TERMINAL Entities (Legacy Style)..335
DDL Record for TERMINAL Entities (ZMS Style)..335
Usage Notes for All TERMINAL Entities..337
Usage Notes for G-Series TERMINAL Entities...337
Usage Notes for H-Series and J-Series TERMINAL Entities...338

TMF...338
Entity Specification Syntax for TMF Entities...338
DDL Record for TMF Entities (Legacy Style)..338
DDL Record for TMF Entities (ZMS Style)..339
Usage Note for All TMF Entities...342

USERDEF..342
Entity Specification Syntax for USERDEF Entities..342
DDL Record for USERDEF Entities (Legacy Style)...343
DDL Record for USERDEF Entities (ZMS Style)...344
Usage Notes for All USERDEF Entities...347
Usage Notes for G-Series USERDEF Entities..348

10 Table of Contents

Usage Notes for H-Series and J-Series USERDEF Entities..348

4 Measure Callable Procedures..349
Summary of Measure Procedures...349
Measure Procedures Overview...351

Reading in Measure Records (DDL)..351
Legacy and ZMS Style Records...351
Reading in the Declaration Files..352
Allocating Space for the Measure Control Block...352
Specifying Entity Descriptors..352
Creating the Configuration Table..353
Interpreting Error Codes in Measure Procedures...355
Maintaining Compatibility With New Structures in MEASDDLS and MEASCHMA.................355
Using Timer Cells..355

MEAS_ADJUSTZMSRECORD_..356
Usage Notes...356

MEAS_ALLOCATE_TIMERCELLS_..356
MEAS_BUMP_TIMERCELL_...357
MEASCLOSE...358
MEAS_CODERANGENAME_DEMANGLE_..358
MEASCONFIGURE..358

Related Procedures..395
MEASCONTROL..395
MEASCOUNTERBUMP...396
MEASCOUNTERBUMPINIT..397
MEAS_DEALLOCATE_TIMERCELLS_...398
MEASGETVERSION...398
MEAS_GETDESCINFO_...400

Usage Notes...402
Examples..402

MEASINFO...403
Usage Notes...406

MEASLISTCONFIG..407
Usage Note...408

MEASLISTENAME...408
Usage Notes...411
Example...411

MEASLISTEXTNAMES..411
Usage Notes...412

MEASLISTGNAME..412
Usage Notes...415
Example...415

MEASLISTOSSNAMES...416
Usage Notes...416

MEASLISTPNAME...417
Usage Notes...418

MEASMONCONTROL...418
MEASMONSTATUS..419

Usage Notes...420
MEASOPEN..421

Usage Notes...423
MEASREAD..424
MEASREAD_DIFF_..426

Usage Notes...430

Table of Contents 11

MEASREADACTIVE..430
Usage Note...432

MEAS_READACTIVE_...433
Usage Notes...434

MEAS_READACTIVE_MANY_...434
Usage Notes...437

MEASREADCONF..437
Usage Notes...440

MEAS_RETRIEVE_TIMERCELLS_..440
MEAS_SQL_MAP_INIT_..441

Usage Notes...441
Example...441

MEAS_SQL_MAP_STOP_ ...442
MEAS_SQLNAME_COMPARE_..442

Usage Notes...443
MEAS_SQLNAME_RESOLVE_..443

Usage Notes...444
MEAS_SQLNAME_SCAN_..445

Usage Notes...445
Example...445

MEASSTATUS...446
Usage Notes...448

MEASWRITE_DIFF_...448
Usage Notes...452

A Error Messages..455

B Error Codes..471

C Subsystem Files..491
C and C++ Language Usage Notes..492
Process Identification Numbers..492

D Measure Data File Tool (MEASFT)...495
INFO Command..495

Syntax...495
Example...495

SPLIT Command...496
Syntax...496
Usage Note...498
Examples..498

HELP Command...499
Syntax...499

MEASFT Error and Warning Messages..500

Index...515

12 Table of Contents

List of Figures
1-1 Operational Overview of the Measure Performance Monitor..33

13

List of Tables
2-1 MEASCOM Commands ...37
3-1 Measure Entity Types ...133
3-2 Legacy Style Error Field Values...140
3-3 ZMS style Format Error Field Values ...140
4-1 Measure Callable Procedures ...349
4-2 Entity Descriptors and Type Values ...360
C-1 PIN Information for the Measure Product..492

14 List of Tables

About This Document
This manual describes the command and programmatic interfaces of the Measure performance
monitor. This manual lets you look up specific information quickly.

Supported Release Version Updates (RVUs)
This manual supports J06.03 and all subsequent J-series RVUs, H06.03 and all subsequent H-series
RVUs, G06.03 and all subsequent G-series RVUs, and D40.00 and all subsequent D-series RVUs,
until otherwise indicated by its replacement publication.

Intended Audience
This manual is for system analysts and performance-management specialists who monitor
performance on NonStop systems.

New and Changed Information

New and Changed Information for 523324–013 Revision
• Removed inaccurate reference to DEVICE-AST from “Average Service Time Counters (ZMS

style Only)” (page 135).
• Removed inaccurate reference to REQUEST-AST from “Usage Notes for All DISC Entities”

(page 196).
• Added description of no wait functionality to the FILE-BUSY-TIME counter in the “DDL

Record for FILE Entities (ZMS Style)” (page 223).
• Added note to “PROCESSH” (page 291) to indicate that the ALLINTR option for PROCESSH

sampling is disabled in H-series and J-series RVUs.
• Added information to “Usage Notes for All SQLSTMT Entities” (page 329) to indicate that

you do not need to explicitly add the SQLPROC entity for the SQLSTMT entity.
• Changed the description of the run-unit field of the SQLSTMT^DESC structure

in“MEASCONFIGURE” (page 358) to indicate that you can not use the asterisk (*) wild-card
character to include all run-units. To include all run-units, the name of the procedure should
be blank-filled.

New and Changed Information for H06.20/J06.09 RVUs (523324-012)
• Added information to plpt^flags indicating that you have to set the MEAS_PATH_SEL bit

to 1 in a MEASREADACTIVE, MEAS_READACTIVE_ or MEAS_READACTIVE_MANY_
procedure call

• Changed the description of the MEASREAD (page 424) nomtime option.
• Made the following changes under the DISC entity's DDL Record Description Fields

(page 185):
— Deleted the C[n].BLOCK-SIZE field and its description.
— Added Subfield, Description, and Counter Type information in the table under the C

(page 188) field.
— Added Subfield, Description, and Counter Type information in the table under the CN

(page 195) field.
• Under “MEASGETVERSION” (page 398), added three new optional parameters and their

definitions: sysidbuf, sysidbuflen, and sysidlen.
• Changed Cause, Effect, and Recovery information for error code 3230 in Appendix B: Error

Codes (page 471).

Supported Release Version Updates (RVUs) 15

• Made the following changes in description of the “PROCESS” (page 272) entity:
— Added the “IPU-NUM” (page 290) and “IPU-NUM-PREV” (page 290) fields to the “DDL

Record for PROCESS Entities (ZMS Style)” (page 276)
— Documented the subsystem versions for the PROCESS entity in “Usage Notes for

H-Series and J-Series PROCESS Entities” (page 291).
• Updated the Measure product versions to H05 and J03.

New and Changed Information for H06.18/J06.07 RVUs (523324-011)
• Changed the recovery information for error message 3204 to indicate that, if

MEASREADACTIVE encountered this error and requires a buffer larger than 32 KB, you
should use the MEAS_READACTIVE_ Procedure.

• Changed the recovery information for error message 3240 to indicate translations are
processed through the SQL/MX services, rather than the OSS file-system name server.

• Under Entity Specification Syntax for LINE Entities (page 236), changed the syntax
specification for the LINE entity.

• Under Entity Specification Syntax for NETLINE Entities (page 244), changed the syntax
specification for the NETLINE entity.

• Under Entity Specification Syntax for TERMINAL Entities (page 333), changed the syntax
specification for the TERMINAL entity.

• Under MEASCONFIGURE, added statement to config^name stating that the asterisk in the
first byte that indicates all configuration names can be set with config^name^s := "*".

• Under the DDL Record Description Fields (page 160) of the CPU entity, added statement to
the COMP-TRAPS field defining what a compatibility trap is: a data misalignment event,
an unexpected transition to or from accelerated or unaccelerated code, or a relative segment
2 or 3 problem. See the EPTRACE Manual for further details

• Under the DDL Record Description Fields (page 278) of the PROCESS entity, added statement
to the COMP-TRAPS field defining what a compatibility trap is: a data misalignment event,
an unexpected transition to or from accelerated or unaccelerated code, or a relative segment
2 or 3 problem. See the EPTRACE Manual for further details

• Under the SQL-STMT-RECOMPILES (page 317) DDL record description field of the SQLPROC
entity, indicated that the SQL-STMT-RECOMPILES counter is incremented when a similarity
check fails and automatic recompilation happens. Similarity checks and automatic
recompilation are explained in the SQL/MX Programming Manual for C and COBOL.

• Changed ERR^MISSINGSQLJOURNAL to ERR^MISSING^SQLJOURNAL in the error-code
table under MEASLISTGNAME (page 412).

• Under Measure Support for Open System Services (OSS) (page 144), changed the
FORMAT-VERSION (page 143) field to read: (ZMS Style only) The Measure product version
of the program that formatted the entity report or structured record.

• Changed Usage Notes (page 437) under MEAS_READACTIVE_MANY_ (page 434) to read:
For best performance, use the ZMS entity-template-version literal from the
MEASDDLS file for the current RVU. Using an earlier template version or requesting legacy
style records increases performance cost.

• Under MEAS_ADJUSTZMSRECORD_ (page 356), changed the in^record description to
indicate that the length of in^record is derived from the information encoded in the
template version of the header record pointed to by in^record.

• Changed Cause, Effect, and Recovery information for error message 3114.
• Changed Recovery information for error code 3257.
• Changed Cause and Recovery information for error code 3258.
• Under MEASINFO (page 403), indicated that in Measure G09 and later PVUs, MEASINFO

has a parameter for retrieving settings that reports the configuration of the journal segment
functions.

16

• Under MEASINFO (page 403), changed several of the settings.
• Under MEASREADCONF (page 437), indicated that in Measure G09 and later PVUs,

MEASREADCONF has a parameter for retrieving settings that reports the configuration of
the journal segment functions.

• Under MEASSTATUS (page 446), indicated that in Measure G09 and later PVUs,
MEASSTATUS has a parameter for retrieving settings that reports the configuration of the
journal segment functions.

• Under the SERVERNET (page 302) entity, added Usage Notes for CLIMs (page 311).
• Under DDL Header Fields (ZMS Style) (page 142) in the Common Entity Header Fields

(page 141) section of Chapter 3: Entities and Counters (page 133), changed
record-template-version to template-version. Changed the corresponding field description
title to TEMPLATE-VERSION.

• Under DDL Header Fields (ZMS Style) (page 142), added a note that you should always use
TEMPLATE-VERSION to get the external records corresponding to a format that you can
handle. Explained how to do this under the TEMPLATE-VERSION (page 143) field.

• Under the sections, LIST entity-type (page 68), MEASREAD_DIFF_ (page 426), and
MEASWRITE_DIFF_ (page 448), referred to the TEMPLATE-VERSION (page 143) field for
details on how to obtain external records corresponding to a format that you can handle.

New and Changed Information for H06.17/J06.06 RVUs (523324-010)

Measure Structured File Limits
• Under START MEASSUBSYS, Usage Notes (page 118), changed text to indicate that the

number of CIDs supported in a processor is now increased to 512,000 for each CPU for
Measure H04, J02, and later PVUs.
Changed list of ADD DEFINE commands to include =_SET_MAX_CIDS_TO_512000 option.
Indicated that each additional 32,000 CIDs requires an additional 3.5 MB of memory for
CIDs and 6.5 megabytes for counter space, a total of 10 megabytes for each CPU.

• Under STATUS MEASSUBSYS, Usage Note (page 124), changed text to indicate that the
number of CIDs supported in a processor is now increased to 512,000 for each CPU for
H-series and J-series RVUs.

• Under MEASMONSTATUS (page 419), changed the settings table to show 6 = 512,000
maximum CIDs.

• Under MEASMONSTATUS, Usage Notes (page 420), indicated that CID sizes of 512,000 are
supported.

• Under Usage Notes for the LISTentity-type (page 68), LISTALLentity-type (page 90),
and LISTACTIVE entity-type (page 85) commands, indicated that Measure H04 and
J02 and later PVUs will create a format 1 or format 2 structured file, depending upon the
measurement data file size, if the report output file is a structured file.

• Under MEASWRITE_DIFF_, Usage Notes (page 452), indicated that Measure H04 and J02
and later PVUs will create a format 1 or format 2 structured file, depending upon the
measurement data file size.

Added AF_UNIX Support
• Under DDL Record for OSSCPU Entities (ZMS Style) (page 258), added eight new LCL

counters and field descrptions for them:
— LS-sends
— LS-recvs
— LS-queues
— LS-send-bytes
— LS-recv-bytes

New and Changed Information 17

— LS-queue-bytes
— LS-awakes
— LS-selects

• Under the ADD PLOT (page 48) command, added Examples (page 50) using new counters
of the OSSCPU entity.

• Added information and a sample LIST FILE display to OSS Naming Conventions (page 217).
• Changed the description of LS-MESSAGES to indicate additional types of OSS support.
• Changed examples for these OSS file opens:

— OSS Opens of FIFOs (page 233)
— OSS Opens of Pipes (page 233)
— OSS Opens of AF_UNIX Sockets (page 233)
— OSS Opens of AF_UNIX Sockets Using socketpair() (page 234)
— OSS Opens of AF_UNIX Stream Sockets Using socket() or accept() (page 234)

• Added note to the LS-SENDS (page 264) field of OSSCPU (page 256) stating:
Processes can be spawned in other CPUs where the descendent inherits the file descriptors
(opened files) of the parent. A master socket is one created via a call to socket(), socketpair()
or accept(). A satellite socket is created when a process that has created a socket spawns a
process in another CPU.
Referred to this note in other fields that discuss satellite sockets.

Miscellaneous Changes
• Removed statement from DISC (page 180) entity, SWAPS counter, “memory manager swaps

two pages at a time.”
• Under the DDL Record Description Fields (page 185) of the DISC (page 180) entity's ZMS

style DDl record, changed definitions for these fields:
— STARTING-FREE-SPACE
— STARTING-FREE-BLOCKS
— ENDING-FREE-SPACE
— ENDING-FREE-BLOCKS

• Added statement to LISTALL Usage Notes (page 96):
Effective with Measure H04, J02, and later PVUs for the CPU and PROCESS entities, if the
PROCESSH sample count is unchanged from the start to the end of a measurement interval,
the NATIVE-BUSY-TIME, ACCEL-BUSY-TIME and TNS-BUSY-TIME fields will not be
displayed by MEASCOM even if a PROCESSH measurement is active. For the LISTALL
command, this means some intervals might display those fields and others might not.

• Under the ACCEL-BUSY-TIME, NATIVE-BUSY-TIME, and TNS-BUSY-TIME fields of the
CPU (page 156) and PROCESS (page 272) entities, added statement:
Effective with Measure H04, J02, and later PVUs, if the PROCESSH sample count is
unchanged from the start to the end of a measurement interval, the ACCEL-BUSY-TIME,
NATIVE-BUSY-TIME, and TNS-BUSY-TIME fields will not be displayed by MEASCOM
even if a PROCESSH measurement is active. For the LISTALL command, this means some
intervals might display those fields and others might not.

• Under the LIST entity DDL Record for EXTNAMES file (page 79), corrected FILE-NAME-MID
to MID.

18

New and Changed Information for H06.16/J06.05 RVUs (523324-009)
• Added the errDetail parameter to the MEASCONFIGURE (page 358) callable procedure.

The errDetail parameter may only be used with Measure H03-AFV and above, and
J01-AFW and above.

• Added a note to the Usage Notes (page 123) of the START MEASUREMENT (page 119)
command stating that you should consider stopping all measurements before using the
TACL SETTIME command or the SETSYSTEMCLOCK procedure in order to preserve
measurement interval accuracy.

• Flagged several counters legacy style only. For the CONTROLLER entity, these counters
are (see DDL Record for CONTROLLER Entities (page 155):
— IO-QLEN-MAX
For the PROCESS entity, these counters are (see DDL Record Description Fields (page 278):
— PRES-PAGES-MAX
— EXT-SEGS-MAX
— RECV-QLEN-MAX
— MAX-LCBS-INUSE
— MAX-MQCS-INUSE
— UCL-MAX

• Changed the CAPACITY (page 190) field description of the DDL Record for DISC Entities
(ZMS Style) (page 184) to read: “Disk volume capacity in bytes. It can be used in the IF and
BY clauses.”

• Added USERDEF information to the LISTentity-type (page 68) BY option and IF option.
• Deleted the phrase, “or the literal NAME to indicate all counters” from the PLOT counter

option of the ADD PLOT (page 48) command.
• Added the ZMS-style definition for STARTING-FREE-CIDS under the CPU (page 156) entity

type.
• Changed the value options under LIST entity-type (page 68) and LISTALL

entity-type (page 90) to read: “a number in the range 0 through 2147482.999. From
Measure G09 and later PVUs the range is 0 through 999999999999.”

New and Changed Information for H06.15/J06.04 RVUs (523324-008)

Added Telco CLIM (CLMO)
• Under SERVERNET DDL Record Description Fields, NODE-CLASS-S (page 306), added the

new CLMO node class for Telco CLIMs.
Indicated that CLIM is a wildcard for all CLIM node classes.

• Under Usage Notes for ServerNet IPC and RIPC (page 311), added notes to support node
class CLMO.
Indicated that CLIM is a wildcard for all CLIM node classes.

• Under SERVERNET Examples of Configuring Measurements for CLIMs (page 313), added
the example, ADD SERVERNET * (CLMO) with description.

• Under MEASCONFIGURE (page 358) node^class, added node^class^clim^open =
“CLMO”.

Miscellaneous Changes
Added a paragraph to the templateversion argument of these Measure callable procedures:
• MEAS_ADJUSTZMSRECORD_
• MEASREAD
• MEASREAD_DIFF_

New and Changed Information 19

• MEAS_READACTIVE_
• MEASREADACTIVE
• MEAS_READACTIVE_MANY_
• MEASWRITE_DIFF_
If it is passed as -1F, the templateversion for the current release will be used, starting with
the H06.15/J06.04 RVUs. Returned external records, in that case, may not match the counter
record definitions with which the application was compiled.

New and Changed Information for H06.14/J06.03 RVUs (523324-007) and J06.02
(523324-06)

Changes for the NSMA (NonStop Multicore Architecture) Product in Measure J01 and Later PVUs
• Under ADD PLOT (page 48), added IPU-specific counters.
• Under STATUS MEASSUBSYS, added an example that shows the total number of running

MEASIPs reported by this command.
• Under the CPU entity, section DDL Record for CPU Entities (ZMS Style), subsection, ID

Fields DDL Definition, added a new IPUS field.
• Under the CPU entity, section DDL Record for CPU Entities (ZMS Style) (page 159), subsection,

Counter Fields DDL Definition, added the IPU field and its three new IPU-specific counters:
IPU-BUSY-TIME
IPU-QTIME
IPU-DISPATCHES

• Under the CPU entity, section DDL Record for CPU Entities (ZMS Style) (page 159), subsection,
DDL Record Description Fields, added the IPU-BUSY-TIME field description:
The time during which this IPU was busy.

• Under the CPU entity, section DDL Record for CPU Entities (ZMS Style) (page 159), subsection,
DDL Record Description Fields, added the IPU-QTIME field description:
The time (in microseconds) that processes spent on the ready list. Same as CPU-QTIME but
for an IPU.

• Under the CPU entity, section DDL Record for CPU Entities (ZMS Style) (page 159), subsection,
DDL Record Description Fields, added the IPU-DISPATCHES field description:
The number of dispatches for that IPU.

• Under the CPU entity, section DDL Record for CPU Entities (ZMS Style) (page 159), subsection,
DDL Record Description Fields, changed the CPU-BUSY-TIME field description to add:
For NSMA systems in Measure J01 and later PVUs, CPU-BUSY-TIME is the aggregate of
the BUSY-TIMEs of the individual IPUs that comprise the logical CPU. With REPORT RATE
ON, the maximum value of this field is always 100%. With REPORT RATE OFF, this is the
raw aggregate value of the BUSY-TIMEs of all its IPUs.

• Under the CPU entity, section DDL Record for CPU Entities (ZMS Style) (page 159), subsection,
DDL Record Description Fields, changed the PROCESSH-SAMPLES field description to
add:
In Measure J01 and later PVUs, PROCESSH-SAMPLES reports the aggregate value of all
the number of samples on all the IPUs and hence is typically equal to n*sampling frequency
on that CPU.

• Under the PROCESS entity, section DDL Record for PROCESS Entities (ZMS Style) (page 276),
subsection, ID Fields DDL Definition, added a new IPUS field.

• Under the PROCESS entity, section DDL Record for PROCESS Entities (ZMS Style) (page 276),
subsection, Counter Fields DDL Definition, added a new IPU-SWITCHES field.

20

• Under the PROCESS entity, section DDL Record for PROCESS Entities (ZMS Style) (page 276),
subsection, DDL Record Description fields, added the IPU-SWITCHES field description:
An accumulating counter that indicates the total number of times that a process switched
IPUs while executing. On a non-NSMA system, this is always 0.

• Under Appendix C: Subsystem Files (page 491), changed the definition of the Measure
Interrupt Process (MEASIP) to the following:
MEASIP is the Measure Interrupt Process. It does the sampling for a PROCESSH
measurement. The MEASMON process creates one or more MEASIP processes that run in
each CPU of the local system when the Measure subsystem starts. This process is not present
in RVUs prior to H-series. MEASIP is stored in $SYSTEM.SYSnn.

• Added note after Figure 1-1 to indicate the differences for an NSMA system.

Changes for the CLIM (Cluster I/O module) Product in Measure H03, J01, and Later PVUs
• Under the ADD entity-type (page 43), DELETE entity-type (page 52), LIST

entity-type (page 68), LISTACTIVE entity-type (page 85), and LISTALL
entity-type (page 90) commands, added usage notes indicating that the commands
allow SERVERNET, DEVICE, and DISC entity specifications using CLIMs. Examples are
under the DEVICE and DISC entities.

• Under DEVICE (page 171), added syntax and descriptions, including the sac, lun and path
options, for CLIM-attached devices. Added the path option for FCSA storage devices.
Included examples.

• Under DDL Record for DEVICE Entities (ZMS Style) (page 174), updated the DDL record
and added the new field descriptions.

• Under DISC (page 180), added syntax and descriptions, including the sac, lun and path
options, for CLIM-attached devices. Added the path option for FCSA storage devices.
Included examples.

• Under DDL Record for DISC Entities (ZMS Style) (page 184), updated the DDL record and
added the new field descriptions.

• Under SERVERNET (page 302), added the port option, its description, and its values for
both HP Integrity NonStop BladeSystems and other systems (the values differ according to
system).

• Under SERVERNET (page 302), added the fiber option and its description. This option is
used on NonStop BladeSystems only.

• Under SERVERNET (page 302), added the CLIM node class, description, and examples.
CLIM is a wildcard for the CLMI (IP CLIM) or CLMS (Storage CLIM).

• Under DDL Record for SERVERNET Entities (ZMS Style) (page 304), updated the DDL record
and added the new field descriptions.

• Under error code 3402, changed the Cause information to read: “The entity could not be
accessed because of the current state. The CPU, group, module, slot number, SCSI ID, lun,
or path entered for the device may not be the correct number. Find out the correct number
from correct number from SCF and retry the command.”

• Under MEASCONFIGURE (page 358), SVNET^DESC, added the PF port-fiber structure for
CLIM and its two subfields, port and fiber.

• Under MEASCONFIGURE (page 358), added the DEVICE^CLIM^DESC record, which
contains the CLIM PLPT fields, with itsplpt^flags,path,lun, andtarget-id subfields.

• Added error message MEAS 3122 under Appendix A: Error Messages (page 455).
• Under Usage Notes for H-Series and J-Series PROCESSH Entities (page 300), indicated that

the sampling rate is per IPU for J-series RVUs.
• Under MEASGETVERSION (page 398), added the Itanium processors to the processor^type

designation.

New and Changed Information 21

Miscellaneous Changes
• Under error code 3071, changed the Recovery information to read:

Check the spelling and verify, using the appropriate report, that the name entered is a valid
item name. Legacy style report items that are no longer present in the equivalent ZMS style
report can only be plotted in the legacy style interface. And ZMS style report items that are
no longer present in the equivalent legacy style report can only be plotted in the ZMS style
interface.

• Changed the RESET PLOT and SET PLOT commands. The RESET command accepts
attributes, but no values. To set a plot to a value other than the default, refer to the SET
PLOT command.

• Changed the RESET REPORT and SET REPORT commands. The RESET command accepts
attributes, but no values. To set a plot to a value other than the default, refer to the SET
REPORT command.

• The MEASSQL_ procedures were published in the SOFTDOC in the Measure H01 PVU,
and renamed in the Measure H02 PVU:
MEASSQL_MAP_INIT is now MEAS_SQL_MAP_INIT_
MEASSQL_MAP_STOP_ is now MEAS_SQL_MAP_STOP_
MEASSQLNAME_COMPARE_ is now MEAS_SQLNAME_COMPARE_
MEASSQLNAME_RESOLVE_ is now MEAS_SQLNAME_RESOLVE_
MEASSQLNAME_SCAN_ is now MEAS_SQLNAME_SCAN_

• Added note to The Three Steps of Measurement (page 34) stating: The MEASCOM listings
shown in the Manual are only examples and can be changed without notice. They cannot
be used for parsing of output. For parsing, use the SET REPORT FORMAT STRUCTURED
command.

• Under the DELETE entity-type command, added Examples (page 53) to describe how
to include and exclude subsets of entities in a measurement. These examples are referred to
in the Usage Notes of the ADD entity-type command, as well.

• Changed the fields, STARTING-FREE-SPACE, ENDING-FREE-SPACE,
STARTING-FREE-BLOCKS, and ENDING-FREE-BLOCKS under the DDL Record for DISC
Entities (ZMS Style) (page 184).

• Added the DEVICE command to LISTACTIVE Entity Specification Special Cases (page 87).
• Under LISTACTIVE entity-type (page 85), indicated that an asterisk (*) cannot be used

for the DEVICE or DISK entities; a specific device or disk must be named.

New and Changed Information for H06.12 RVU (523324-05)

Changes for ANSI SQL Names
• Added general information under Handling of ANSI SQL Names.
• Added overview information for callable procedures under Specifying ANSI SQL Names

(page 353).
• Under the ADD entity-type (page 43) command, added a usage note and examples to

support ANSI SQL names as entity specifiers or as displayable entity attributes.
• Under the DELETE entity-type (page 52) command, added a usage note and examples

to support ANSI SQL names as entity specifiers or as displayable entity attributes.
• Under the ENV (page 56) command, changed syntax, usage note, and examples to support

ANSI SQL name-related enhancements.
• Under the INFO MEASUREMENT (page 64) command, added a usage note and example

to support ANSI SQL names.

22

• Under the LIST entity-type (page 68), added a usage note to support ANSI SQL names
as entity specifiers or as displayable entity attributes.

• Under the LISTALL entity-type (page 90), added a usage note to support ANSI SQL
names as entity specifiers or as displayable entity attributes.

• Under the LISTACTIVE entity-type (page 85) command, added description and a usage
note to support ANSI SQL names as entity specifiers or as displayable entity attributes.

• Under the LISTGNAME (page 97) command, added description and an example to support
ANSI SQL names as entity specifiers or as displayable entity attributes.

• Added new SQLCATALOG (page 114) command with syntax, description, and examples to
support ANSI SQL names.

• Added new SQLSCHEMA (page 114) command with syntax, description, and examples to
support ANSI SQL names.

• Under the STATUS MEASSUBSYS (page 123) command, updated the example data for the
SQL journal and MEASIP.

• Under SQL Journal Segment (page 147), added a paragraph stating: “ANSI SQL object names
can be fully or partially qualified. If partially qualified, the omitted catalog and schema fields
are resolved using MEASCOM session environment values (see the SQLCATALOG and
SQLSCHEMA commands).”

• Under the LIST EXTNAMES (page 78) command, added DDL record description fields for
the EXTNAMES File to show OSS pathname and ANSI SQL name (EXTNAME) external
structured records.

• Under DISKFILE (page 207), Entity Specification Syntax, changed syntax, description, fields,
and examples to support ANSI SQL object names and SQL/MX partition names.

• Under DISCOPEN (page 198), Entity Specification Syntax, changed syntax, description, fields,
and examples to support ANSI SQL object names and SQL/MX partition names.

• Under FILE (page 216), Entity Specification Syntax, changed syntax, fields, description, and
example to support ANSI SQL object names.

• Under the SQLSTMT (page 319) entity, added and changed syntax, descriptions, DDL fields,
and examples to support ANSI SQL object names. Deleted the field, disk fname-set,
which is not in use.

• Under MEASCONFIGURE (page 358), added DISKFILE entity descriptor field,
DISKFILE^ANSI^DESC, to specify an ANSI SQL object.

• Under MEASCONFIGURE (page 358), added FILE and DISCOPEN entity descriptor field,
FILE^OPEN^ANSI^DESC, to specify an ANSI SQL object.

• Under MEASCONFIGURE (page 358), changed the SQLSTMT^DESC entity to link to
SQLSTMT^ANSI^DESC for information on ANSI SQL names.

• Under MEASCONFIGURE (page 358), added SQLSTMT entity descriptor field,
SQLSTMT^ANSI^DESC, to specify an ANSI SQL object.

• Added new callable procedure, MEAS_GETDESCINFO_ (page 400), for translating an ANSI
SQL name to its corresponding entity descriptor components.

• Added new callable procedure, MEAS_SQL_MAP_INIT_ (page 441), to initiate the SQL/MX
mapping session.

• Added new callable procedure, MEAS_SQL_MAP_STOP_ (page 442) to stop the SQL/MX
mapping session.

• Added new callable procedure, MEAS_SQLNAME_COMPARE_ (page 442), to compare two
fully qualified ANSI SQL names in external format.

• Added new callable procedure, MEAS_SQLNAME_RESOLVE_ (page 443), to combine ANSI
SQL name parts to create a fully qualified name in normalized external format.

• Added new callable procedure, MEAS_SQLNAME_SCAN_ (page 445), to parse a fully
qualified, possibly wildcarded, ANSI SQL name in external format. This routine verifies the
syntax of an ANSI SQL name.

New and Changed Information 23

• Under MEASCONFIGURE (page 358), added syntax and description information.
• Under MEASINFO (page 403), added description information.
• Under MEASLISTENAME (page 408), added description, usage note, and example

information.
• Under MEASLISTEXTNAMES (page 411), changed description information.
• Under MEASLISTGNAME (page 412), added syntax, description, usage note, and example

information.
• Under MEASMONSTATUS (page 419), changed description information.
• Under MEASOPEN (page 421), changed syntax and usage note information to reflect SQL/MX.
• Under MEASREAD (page 424), changed description information.
• Under MEASREADACTIVE (page 430)_, added description and usage note information.
• Under MEAS_READACTIVE_ (page 433), added description and usage note information.
• Under MEAS_READACTIVE_MANY_ (page 434), added description and usage note

information.
• Under MEASREADCONF (page 437), changed description information and added usage

note.
• Under MEASREAD_DIFF_ (page 426), changed description information and added usage

note.
• Under MEASSTATUS (page 446), changed description information.
• Under MEASWRITE_DIFF_ (page 448), added description and usage note information.
• Added new error messages in Appendix A: Error Messages (page 455): 3025, 3118, and 3121.

Changed error message 3117.
• Added new error codes in Appendix B: Error Codes (page 471): 3239

(ERR^BADFORMATSQLNAME), 3295 (ERR^SQL^API^INTERNAL), 3296
(ERR^SQLMX^MAP^PROCESS), 3297 (ERR^SQLMX^MAP^DUPCONNECTION), and 3298
(ERR^SQLMX^MAP^INIT). Changed description information in error codes 3238, 3240,
3242, and 3292.

Changes for Measure Limits Removal
• Under INFO MEASUREMENT (page 64), added a usage note that states: “In Measure H02

and later PVUs, the output produced by the MEASCOM INFO MEASUREMENT command
displays whether counter data records have been suppressed for the measurement.”

• Under INFO MEASUREMENT (page 64), added an example that displays “Counter data
records suppressed.”

• Under START MEASUREMENT (page 119), added a usage note that states: “In Measure H02
and later PVUs, the MEASCOM START MEASUREMENT command allows the user to
select the measurement data file size, suppress counter data records in the measurement
data file, or both.”

• Under START MEASUREMENT (page 119), indicated that this command is enhanced to
allow options to be specified in any order.

• Under START MEASUREMENT (page 119), added syntax and description for the parameters,
FILESIZE and NOCOUNTERS.

• Under START MEASUREMENT (page 119), changed the data-file option to state: “If the
measurement data file does not exist, Measure will create it as an unstructured file with a
file code of 175, primary and secondary extent sizes of 2048 pages each, and a maximum
number of extents of 256. This results in a default file size (capacity) of 1024 MB.”

• Under STATUS MEASUREMENT (page 125), added a usage note that states: “In Measure
H02 and later PVUs, the output produced by the MEASCOM STATUS MEASUREMENT
command is enhanced to display statistics for very large data files and to display whether
counter data records have been suppressed for the measurement.”

24

• Under STATUS MEASUREMENT (page 125), added description and an example that displays
“Counter Suppression OFF.”

• Under MEASINFO (page 403), added settings.9 information to the settings option.
• Under MEASOPEN (page 421), added a usage note that states: “In Measure H02 and later

PVUs, the MEASOPEN callable procedure allows the caller to select the measurement data
file size, suppress counter data records in the measurement data file, or both.”

• Under MEASOPEN (page 421), added options.9 information to the settings option.
• Under MEASOPEN (page 421), added the new filesize option and its description.
• Under MEASREADCONF (page 437), added settings.9 information to the settings option.
• Under MEASSTATUS (page 446), added settings.9 information to the settings option.
• In Appendix A: Error Messages (page 455), added new error messages, MEAS 3026 and 3027.
• In Table C-1: PIN Information for the Measure Product (page 492), indicated that MEASFH

can run at high PIN and defaults to high PIN as of Measure H02 and later PVUs.

Miscellaneous Corrections
• In Measure G12 or later G-series PVUs, it is no longer necessary to move a G-series data file

to a system running an H-series RVU in order to split the file. See Appendix D: Measure
Data File Tool (MEASFT) (page 495).

• Changed the values under the Usage Note (page 498) in Appendix D: Measure Data File Tool
(MEASFT) (page 495) to read 1024 MB (instead of 128 MB) and 1,073,741,824 bytes (instead
of 134,217,728 bytes).

• Under the ABORT-TRANS PROCESS entity field, changed the description to read: “Number
of times the process invokes the TMF ABORTTRANSACTION procedure, thus causing a
TMF transaction to be rolled back.”

• Under ADD MEASUREMENT (page 46) Usage Notes (All RVUs), changed second sentence
to read: “This disk space is either on the same disk as the MEASCOM swap volume or on
the volume specified for swap files through the SWAPVOL command.”

• Under ENV (page 56), changed the description of env-param SWAPVOL to read: “Displays
the swap volume name if it is different from the MEASCOM swap volume.”

• Under INFO entity-type (page 62), deleted entity-spec option.
• Under SWAPVOL (page 128) $volume, indicated that if the volume name is omitted, the

swap volume uses the default volume. In the Usage note, stated that the default volume is
the MEASCOM swap volume.

• Under Usage Notes for H-Series and J-Series PROCESSH Entities (page 300), added an item
that states: “If the process-spec is either a process-name or a cpu,pin combination,
a code-file-spec needs to be specified to configure a PROCESSH measurement. If an
object filename is specified as process-spec, the code-file-spec is optional. For LIST
commands, it is not necessary to specify a code-file-spec.”

• Added notes about the usage of the descriptors to MEASCONFIGURE, SQLSTMT^DESC,
SQLSTMT^OSS^DESC, and SQLSTMT^ANSI^DESC. Under SQLSTMT^DESC, indicated
that run-unit and stmt^index are “Not used for ANSI SQL.”

• Under MEASINFO (page 403), changed setting to settings under the settings parameter list.
• Under MEASLISTCONFIG (page 407), added usage note to say: “If MEASLISTCONFIG is

called at the same time a ServerNet device is dynamically added or deleted (e.g., with an
SCF ADD or SCF DELETE command), the returned configuration data could contain duplicate
entries or have missing entries.” Also, corrected error code number to 3022 for
WARN^NO^MORE^DATA.

• Under MEASOPEN (page 421), changed swapvol to say: “If swapvol is not specified, swap
files are created on the swap volume of the calling process.”

• Under ENV (page 56), changed SWAPVOL to say: “Displays the swap volume name if it
is different from the MEASCOM swap volume.”

New and Changed Information 25

• In Appendix A: Error Messages (page 455) under MEAS 3098, changed 528 to 2100 characters.
• In Appendix A: Error Messages (page 455) under MEAS 3100, changed 528 to 2100 characters

and change nnn to nnnn.
• In Appendix B: Error Codes (page 471), added new error code 3320 for G09 and later RVUs.
• In Appendix B: Error Codes (page 471), changed error code 3256 (ERR^ISEGOVERFLOW)

Cause and Recovery information to: “Cause: The MEASFH process received an error while
attempting to sort a data file index segment.” “Recovery: Close the file and retry the
operation.”

• In Appendix B: Error Codes (page 471), changed error code 3292
(ERR^CANNOTMAKEJOURNAL) to reword the Cause, Effect, and Recovery text.

Document Organization
This document is organized as follows:
Chapter 1: Introduction to Measure

Provides an overview of the Measure performance monitor
Chapter 2: MEASCOM Commands

Describes the Measure command interface
Chapter 3: Entities and Counters

Describes how to identify each system resource to be measured
Chapter 4: Measure Callable Procedures

Describes the Measure programmatic interface
Appendix A: Error Messages

Describes messages you might see while using the command interface
Appendix B: Error Codes

Describes codes that might be returned from the programmatic interface
Appendix C: Subsystem Files

Describes the files that make up the Measure software
Appendix D: Measure Data File Tool (MEASFT)

Describes the utility you can use to split a measurement data file into multiple smaller files

Notation Conventions

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.
UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
Items not enclosed in brackets are required. For example:
MAXATTACH

Italic Letters

Italic letters, regardless of font, indicate variable items that you supply. Items not enclosed
in brackets are required. For example:
file-name

Computer Type

Computer type letters indicate:

26

• C and Open System Services (OSS) keywords, commands, and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For example:
Use the cextdecs.h header file.

• Text displayed by the computer. For example:
Last Logon: 14 May 2006, 08:02:23

• A listing of computer code. For example
if (listen(sock, 1) < 0)
{
perror("Listen Error");
exit(-1);
}

Bold Text

Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
[] Brackets

Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of
the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces
A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:

Notation Conventions 27

M address [, new-value]…

 -] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required
character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation symbol
such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no spaces
are permitted between the period and any other items:

$process-name.#su-name

Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing
distinguishes items in a continuation line from items in a vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o
In procedure calls, the !i notation follows an input parameter (one that passes data to the
called procedure); the !o notation follows an output parameter (one that returns data to the
calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o
In procedure calls, the !i,o notation follows an input/output parameter (one that both passes
data to the called procedure and returns data to the calling program). For example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i
In procedure calls, the !i:i notation follows an input string parameter that has a corresponding
parameter specifying the length of the string in bytes. For example:

28

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i
In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in bytes.
For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed messages in this
manual.
Bold Text

Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
Nonitalic Text

Nonitalic letters, numbers, and punctuation indicate text that is displayed or returned exactly
as shown. For example:
Backup Up.

Italic Text

Italic text indicates variable items whose values are displayed or returned. For example:

p-register

process-name

[] Brackets
Brackets enclose items that are sometimes, but not always, displayed. For example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be displayed, of
which one or none might actually be displayed. The items in the list can be arranged either
vertically, with aligned brackets on each side of the list, or horizontally, enclosed in a pair of
brackets and separated by vertical lines. For example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces
A group of items enclosed in braces is a list of all possible items that can be displayed, of
which one is actually displayed. The items in the list can be arranged either vertically, with
aligned braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate

Notation Conventions 29

{ Operator Request. }
{ Unknown. }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:

Transfer status: { OK | Failed }

% Percent Sign
A percent sign precedes a number that is not in decimal notation. The % notation precedes
an octal number. The %B notation precedes a binary number. The %H notation precedes a
hexadecimal number. For example:

%005400

%B101111

%H2F

P=% p-register E=% e-register

Notation for Management Programming Interfaces
This list summarizes the notation conventions used in the boxed descriptions of programmatic
commands, event messages, and error lists in this manual.
UPPERCASE LETTERS

Uppercase letters indicate names from definition files. Type these names exactly as shown.
For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters
Words in lowercase letters are words that are part of the notation, including Data Definition
Language (DDL) keywords. For example:

token-type

!r
The !r notation following a token or field name indicates that the token or field is required.
For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o
The !o notation following a token or field name indicates that the token or field is optional.
For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Related Information
Refer to the Measure Users Guide for basic information on using Measure. Refer to the Operator
Messages Manual for a list of Measure operator messages.

30

Publishing History

Publication DateProduct VersionPart Number

August 2002Measure D45
Measure G10

523324-001

April 2004Measure D45
Measure G11

523324-002

December 2004Measure D45
Measure G12

523324-003

February 2007Measure D45
Measure G12
Measure H01

523324-004

November 2007Measure H01
Measure H02

523324-005

March 2008Measure H03
Measure J01

523324-006

May 2008Measure H03
Measure J01

523324-007

August 2008Measure H04
Measure J02

523324-008

November 2008Measure H04
Measure J02

523324-009

February 2009Measure H04
Measure J02

523324-010

May 2009Measure H04
Measure J02

523324-011

February 2010Measure H05
Measure J03

523324-012

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or
compliments to docsfeedback@hp.com.
Include the document title, part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

Publishing History 31

mailto:docsfeedback@hp.com

32

1 Introduction to Measure
The Measure performance monitor is a tool that collects performance statistics about system
resources. It lets you gather data from system components, network components, and your own
business applications. You can use the data to balance and tune your system, detect bottlenecks,
balance workloads, and do capacity planning. Multiple users can run Measure sessions at the
same time, and each user can configure and take measurements independently.

Operational Overview
Figure 1-1 shows the major components of the Measure performance monitor: the Measure
subsystem, the user interface, and the subsystem instrumentation.

Figure 1-1 Operational Overview of the Measure Performance Monitor

NOTE: For NSMA systems, Figure 1-1 would show one MEASIP process per IPU, with MEASIP
process names of the form "$XPnna," where nn is the CPU number (00-15) and a is a letter
denoting the IPU number, starting with "A" for IPU 0.

The Measure Subsystem
The Measure subsystem must be running before any measurement can be made. Starting the
subsystem requires a super-group user (a member of user group 255). The subsystem has minimal
impact on performance. It can be started and allowed to run continuously. In some installations,
an operator starts the subsystem as part of the system-load operation.

The User Interfaces
The Measure performance monitor provides two interfaces:
• The command interface is a set of commands you can enter at the terminal or input from a

file. Each command calls a procedure, and each procedure performs a function such as
configuring a measurement, starting the measurement, displaying collected data, and so

Operational Overview 33

on. For a description of the command interface, see Chapter 2: MEASCOM Commands
(page 37) and Chapter 3: Entities and Counters (page 133).

• The programmatic interface is a set of callable procedures. By calling these procedures from
your applications, you can access all Measure functions. For example, you can write an
application that configures a measurement, starts the measurement, stops it, and writes the
data to a file for analysis. For a description of the programmatic interface, see Chapter 4:
Measure Callable Procedures (page 349).

A sample measurement that shows the command interface appears later in this section. But first,
you need to know two basic terms: entity and counter.

Entities and Counters
An entity is the system resource to be measured. The Measure performance monitor recognizes
the types of entities in Table 3-1: Measure Entity Types (page 133).
In this manual, a class of entities (such as processes or disks) is called an entity type. The identifier
for a specific individual entity in a class is called an entity specification. Thus, FILE is an entity
type, and \NY.$SALES.Q1.JAN is an entity specification.
Each entity type is associated with a predefined set of counters. A counter is a programmatic
structure that collects a specific type of performance data. For example, the CPU entity type has
a SWAPS counter, which counts the number of swaps that occur in each measured CPU.
The system software associated with each supported entity type includes built-in calls to Measure
procedures. When a measurable event occurs, the controlling software calls a procedure that
increments the appropriate counter.
You can add custom instrumentation to your measurements by defining your own counters and
using Measure procedure calls in your programs to increment those counters. For example, you
can create a counter that is incremented each time a program executes a particular loop. Processes
that carry out custom measurements are identified by the entity type USERDEF, for user-defined.

The Three Steps of Measurement
The three steps of measurement are:
1. Configure the measurement.
2. Take the measurement.
3. Examine the measurement.
The next three subsections describe a sample measurement session using the command interface.
In this example, the commands you would enter are shown in boldface type. The Measure screen
displays are shown in regular type.
A measurement session that uses the programmatic interface instead of the command interface
follows the same basic operations, but the operations are implemented by procedure calls within
a program.

NOTE: The MEASCOM listings shown in the Manual are only examples and can be changed
without notice. They cannot be used for parsing of output. For parsing, use the SET REPORT
FORMAT STRUCTURED command.

Step 1. Configure the Measurement
The measurement configuration determines which entities are measured.
The first three lines of this sample measurement are:
21> MEASCOM
1+ ADD CPU 5
2+ ADD CPU 6

34 Introduction to Measure

The first line starts MEASCOM, the Measure command interface. The plus sign (+) is the
MEASCOM command prompt. The next two lines configure the measurement, instructing
Measure to take measurements on CPUs 5 and 6. In these commands, CPU is the entity type,
and 5 and 6 are entity specifications.

Step 2. Take the Measurement
To start the sample measurement:
3+ START MEASUREMENT MYDATA

The file name MYDATA identifies the output file—that is, the file in which the Measure
performance monitor is to save the measurement data. Each time you start a measurement, you
must identify a new or existing measurement file.
This measurement uses many defaults. You can specify options such as a starting time for the
measurement, a duration, and a measurement interval. The measurement interval causes Measure
to write counters to the data file at a specified interval rather than just at the beginning and end
of the measurement. For example, you might have counter values recorded at 30-minute intervals.
When you examine the measurement, you can see results for successive time periods, as well as
the totals.

Step 3. Examine the Measurement
To stop the sample measurement and display the results of the measurement:
4+ STOP MEASUREMENT MYDATA
5+ LIST CPU *

Cpu 5 Cyclone Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 483 Page Size 2048
Local System \TSII From 17 Jul 1993, 15:06:38 For 30 Minutes

Cpu-Busy-Time 34.83 % Swaps 0.34
Cpu-Qtime 0.39 # Cpu-Qlen-Max 58 #
Mem-Qtime 0.02 # Mem-Qlen-Max 13 #
Dispatches 83.27 Intr-Busy-Time 1.45 %
Process-Ovhd 0.02 % Send-Busy-Time 0.61 %
Disc-IOs 9.56 Cache-Hits 17.42
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000

++

Cpu 6 Cyclone Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 483 Page Size 2048
Local System \TSII From 17 Jul 1993, 15:06:38 For 30 Minutes

Cpu-Busy-Time 16.40 % Swaps 0.58
Cpu-Qtime 0.22 # Cpu-Qlen-Max 58 #
Mem-Qtime 0.03 Mem-Qlen-Max 13 #
Dispatches 35.14 Intr-Busy-Time 0.61 %
Process-Ovhd 0.05 % Send-Busy-Time 0.17 %
Disc-IOs 5.34 Cache-Hits 10.24
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000

The LIST command displays the results of the measurement on the screen. Each measured CPU
has its own report. The counter values appear as percentages or totals.

The Three Steps of Measurement 35

Other output options exist as well. If you specified a measurement interval, you can examine
the counter values taken at each interval, in addition to the final values. You can display
uninterpreted values—that is, values that are not converted to percentages—and you can choose
between a full report and an abbreviated report.
For most entity types, you can also view counter values while the measurement is in progress.
When a measurement is complete, you can display one or more counter values as a plot. The
plot provides a graphical view that makes the values easier to analyze. To identify a counter to
be plotted and create the plot:
6+ ADD PLOT CPU-BUSY-TIME
7+ LIST PLOT

 0::::::+:::20.0::::::+:::40.0::::::+:::60.0::::::+ ...
A ************************|
B ***********|
 0::::::+:::20.0::::::+:::40.0::::::+:::60.0::::::+ ...

 Min value = 16.036 Max value = 34.827

 A: CPU-BUSY-TIME Cpu 5
 B: CPU-BUSY-TIME Cpu 6

The resulting plot shows the CPU-BUSY-TIME counter values from the two measured CPUs.
This plot is in bar-graph format, with each counter value represented by a horizontal row of
asterisks. You can also use a two-axis format in which one axis represents counter values and
the other axis represents time intervals. For either type of plot, you can change the orientation
(horizontal or vertical), the scale of values, and the time window of the plot.

36 Introduction to Measure

2 MEASCOM Commands
This chapter explains how to use the Measure command interface, MEASCOM, and describes
each MEASCOM command. For more information, see General Information About Using
MEASCOM (page 39).

Summary of MEASCOM Commands
Table 2-1 MEASCOM Commands

PageFunctionCommand

Subsystem Control Commands

117Start the Measure subsystem.START MEASSUBSYS

123Display status of the Measure subsystem.STATUS MEASSUBSYS

126Stop the Measure subsystem.STOP MEASSUBSYS

Measurement Commands

43Select an entity to measure.ADD entity-type

44Select a user-defined counter.ADD COUNTER

52Delete an entity from those selected to measure.DELETE entity-type

54Delete a user-defined counter.DELETE COUNTER

62Display entities selected to measure.INFO entity-type

63Display information about user-defined counters.INFO COUNTER

114Specify a default catalog for expanding partially qualified
ANSI SQL names.

SQLCATALOG

114Specify a default schema for expanding partially
qualified ANSI SQL names.

SQLSCHEMA

119Start a measurement.START MEASUREMENT

125Display information about a measurement.STATUS MEASUREMENT

127Stop a measurement.STOP MEASUREMENT

Display Commands

46Select a measurement data file to examine.ADD MEASUREMENT

55Delete a measurement data file from those selected to
examine.

DELETE MEASUREMENT

64Display information about the measurement data files.INFO MEASUREMENT

108Set the report format options.SET REPORT

103Reset the report format options to default values.RESET REPORT

116Display the current report format options.SHOW REPORT

68Display a report on selected entities.LIST entity-type

78Create or append to a key-sequenced file of records for
mapping Measure OSS PATHID values to OSS
pathnames, or Guardian file names or MIDs to ANSI
SQL names and Guardian file names.

LIST EXTNAMES

Summary of MEASCOM Commands 37

Table 2-1 MEASCOM Commands (continued)

PageFunctionCommand

80Create or append to a key-sequenced file of records that
map Measure OSS PATHID values to OSS pathnames,
or Guardian file names or Measure MID values to their
OSS file pathname equivalents.

LIST OSSNAMES

90Display a report about selected entities by interval
records.

LISTALL entity-type

85Display a report on an active entity.LISTACTIVE entity-type

96Translate a Guardian file name and creation version
serial number (CRVSN) to its corresponding external
name (ANSI SQL name or OSS pathname).

LISTENAME

97Translate an OSS file pathname to its corresponding
Guardian file name and creation version serial number
(CRVSN).

LISTGNAME

98Translate a Guardian file name and creation version
serial number (CRVSN) to its OSS file pathname
equivalent.

LISTPNAME

100Declare a default directory for use in expanding OSS file
pathnames.

OSSPATH

101Set the number of output lines to be displayed before
the double prompt (++).

PAGESIZE

Plot Commands

48Select a counter to plot.ADD PLOT

55Delete a counter from those selected to plot.DELETE PLOT

67Display information about the counters selected to plot.INFO PLOT

104Set the plot format options.SET PLOT

102Reset the plot format options to default values.RESET PLOT

116Display the current plot format options.SHOW PLOT

80Display a plot of selected counters.LIST PLOT

Basic Commands

51Select a command object.ASSUME

52Selectively display or suppress comment messages.COMMENTS

56Display the environment parameters.ENV

58End the MEASCOM session.EXIT

59Change and execute a command.FC

59Display command syntax and error messages.HELP

61List previously entered commands.HISTORY

99Log commands and responses to a file.LOG

100Execute a command (OBEY) file.OBEY

101Redirect command responses to a file.OUT

104Run another process without exiting Measure.RUN

114Display environmental information in the MEASCOM
prompt.

SETPROMPT

38 MEASCOM Commands

Table 2-1 MEASCOM Commands (continued)

PageFunctionCommand

128Specify the swap file volume.SWAPVOL

128Select a default system.SYSTEM

129Display the current date and time from a specified
system.

TIME

129Select a default volume.VOLUME

130Selectively display or suppress warning messages.WARNINGS

130Reexecute a command.!

General Information About Using MEASCOM

Syntax Conventions for MEASCOM Commands

Multiple Commands on a Line
A MEASCOM command line can contain more than one command. Use a semicolon (;) to separate
multiple commands.

Multiline Commands
To continue a command to the next line, end the line with an ampersand (&). MEASCOM displays
a continuation prompt (also an ampersand) on the next line. Text you enter on that next line is
treated as part of the preceding command. Each line can contain up to 132 characters. You can
continue a command over several lines, up to a total of 1100 characters.

Comments Within a Command
To embed comments in a command, put a blank, two hyphens, and a blank (--) before and after
the comment. (Blanks are recommended but not required. They prevent problems because
hyphens are valid in user-defined names.) The end of a line also ends any comment ahead of it.

Command Prompts and Display
MEASCOM displays a plus sign (+) prompt when it is ready to accept a new command or an
ampersand (&) when it is ready for you to continue a command from the preceding line. The
prompts distinguish between lines that you enter and lines that MEASCOM generates (lines
without prompts).
The LIST commands generate several reports in succession, pausing between each to let you
examine the report. A double prompt (++) indicates that another report follows. To display the
next report, press the Return key. To skip any remaining reports and return to the input prompt,
press Ctrl-Y (the BREAK key sequence, which is also available from the BREAK key on some
keyboards).
Some Measure online help displays use the double prompt (++) to indicate that more information
is available. Again, press Return to display the next screen, or press Ctrl-Y to return to command
entry.
In Measure G09 and later PVUs, you have some control over the scrolling of Measure entity
reports on your screen. The PAGESIZE command on page 101 lets you declare the number of
lines to display before another prompt is issued. The presence of OSS file pathnames in the
displays makes the report formats variable in length. To prevent information from scrolling from
a display before it can be read, use PAGESIZE to directly control the output length.

General Information About Using MEASCOM 39

Disk File Names
To designate a disk file, you can use any of these forms:
filename
subvolume.filename
$volume.subvolume.filename
$volume.#filenum

You can use an asterisk as a wildcard to replace an element of the file name. For example:
• $SR8.QUAL.* refers to all files in the subvolume QUAL on the volume $SR8.
• $*.QUAL.STATUS refers to files named STATUS in subvolume QUAL on any volume.
• $SR8.*.* refers to all subvolumes and all files on volume $SR8.
• $*.*.* refers to all files in all subvolumes on all volumes.
You cannot use an asterisk to represent only part of a file-name element. For example, it would
be invalid to specify $SR* as the volume name.
MEASCOM uses the file-system procedures to parse file names. You can also use logical DEFINE
and device names in place of file names. For example, to configure measurement of a FILE entity
whose name is defined by =_myfile:
1+ ADD FILE =_myfile

To configure measurement for the DISC volume corresponding to LDEV 14:
2+ ADD DISC $14

If the file system cannot convert the logical file name to a physical file name, or if the physical
name does not correspond to the specified entity type, an error is returned.

NOTE: Logical device numbers are specific to a given system. If a data file is moved from one
system to another, any existing logical device number for that file becomes invalid.
On systems running G-series or later RVUs, logical device numbers are determined dynamically
at system startup. Therefore, the logical number for a given device is likely to change as other
devices are added to or deleted from the system. For this reason, do not use logical device numbers
in command (OBEY) files or other noninteractive files on systems running G-series or later RVUs.

Abbreviations in Commands
When you enter MEASCOM commands interactively at the + prompt, you can abbreviate the
keywords for commands, objects, attributes, and counter names. For example, instead of entering
STATUS MEASUREMENT, you can enter STAT MEASU.
• MEASCOM matches abbreviations word by word and gives priority to exact matches. For

example, LIST is always recognized as the LIST command, not as an abbreviation of LISTALL.
• MEASCOM recognizes DISK as an alternate spelling for the keyword DISC, so you cannot

use DISK as an abbreviation for DISKFILE.
• For commands, objects, and attributes, MEASCOM compares each abbreviation against all

other commands, objects, and attributes. Each abbreviation you use must be unique. For
example, RE is not accepted as an abbreviation for the RESET command because it also
matches the REPORT object.

• For counter names, MEASCOM compares abbreviations only against other counter names
for the specified entity type. For example, the DISC entity has counters named
REQUEST-QTIME and REQUEST-QLEN-MAX. You could abbreviate these names as
REQUEST-QT and REQUEST-QL. Hyphens are treated as part of the name, not as spaces.
You cannot abbreviate REQUEST-QTIME as REQ-QT.

• As new keywords are added to MEASCOM, you might need to modify the abbreviations
you use.

• You cannot use abbreviations in noninteractive command entry (that is, when you execute
a MEASCOM command from the TACL prompt).

40 MEASCOM Commands

• You cannot use abbreviations in a command (OBEY) file or in an input file used during
noninteractive command entry. Because abbreviations might change from RVU to RVU,
this restriction prevents command files from becoming obsolete.

• You cannot abbreviate the topic in a HELP command. For example, you must enter HELP
ADD TERMINAL, not HELP ADD TER.

Running a MEASCOM Session
The Measure subsystem must be running before any measurement can be made through the
command interface or the programmatic interface. Many installations start the subsystem as part
of the system-load operation, then let it run continuously.

Starting the Measure Subsystem
Only a super-group user (255,n) can start the subsystem.
To start the subsystem using MEASCOM, at the TACL prompt:
> MEASCOM START MEASSUBSYS

To start the subsystem programmatically, use the MEASMONCONTROL procedure. For a
description, seeMEASMONCONTROL (page 418).

Starting and Stopping MEASCOM
You can use MEASCOM interactively or noninteractively. These examples of each usage assume
that the Measure subsystem is already running:
• To use MEASCOM interactively, type the command MEASCOM at your command interpreter

prompt. The system starts a MEASCOM process, the process prompts for input using a plus
sign (+), then you enter commands interactively. At the end of the session, type EXIT or
press Ctrl-Y to return to your operating-system command interpreter. For example:
34> MEASCOM
MEASURE - T9086D30 - (31OCT94) - \HATI
1+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 1
 $DATA1.PERF.MAY04

Number of Active MEASCTL Processes = 9
 in CPU(s): 0, 1, 2, 3, 4, 5, 6, 7, 8
2+ EXIT
35>

• To use MEASCOM noninteractively, type MEASCOM followed by one or more Measure
commands. A MEASCOM process starts, executes the specified commands, then returns
control to your command interpreter. For example:
34> MEASCOM STATUS MEASSUBSYS
MEASURE - T9086D30 - (31OCT94) - \HATI
Number of Active (or Configured) Measurements = 1
 $DATA1.PERF.MAY04

Number of Active MEASCTL Processes = 9
 in CPU(s): 0, 1, 2, 3, 4, 5, 6, 7, 8
35>

As an alternative to entering commands after the keyword MEASCOM, you can specify an
input file that contains Measure commands. For example:
35> MEASCOM /IN $MEAS.CMDS.MCONFIG /

MCONFIG is a file containing these commands:
ADD CPU *
ADD DISC *
START MEASUREMENT $DATA.PERF.MAY04

General Information About Using MEASCOM 41

For the full syntax of the MEASCOM command, see MEASCOM (page 42).

Creating a Custom Startup File
You can create a file of MEASCOM commands, similar to a command (OBEY) file, to execute
each time MEASCOM is invoked. The file must be an edit file, named MEASCSTM, that contains
only MEASCOM commands.
MEASCOM searches for the MEASCSTM file on the current subvolume. If it does not find the
file, MEASCOM searches your default subvolume. This lets you set up different MEASCSTM
files for different measurements and analysis environments.
This example shows a MEASCSTM file:
COMMENTS SUPPRESS 2000
WARNINGS SUPPRESS 3013
SETPROMPT VOLUME
SET REPORT RATE OFF
SET REPORT LOADID TEST

MEASCOM
This command starts a measurement session by starting the Measure command interface
(MEASCOM).

Syntax
MEASCOM [/ [IN filename] [, OUT listfile] /]
 [command [; command] ...]

filename

is an existing disk file, a device other than a disk, or a process where MEASCOM is to read
commands. If omitted, filename defaults to the current input file for your command
interpreter, usually the terminal.

listfile

is a disk file, a device other than a disk, or a process to which MEASCOM is to write output.
If omitted, listfile defaults to the current output file for your command interpreter,
usually the terminal.
MEASCOM writes command output to listfile:
• If listfile is an existing disk file, MEASCOM appends output to the file.
• If listfile is a tape file, MEASCOM writes two consecutive file marks after writing

to the file and before closing it.
• If listfile is a line printer or a process, MEASCOM writes a page eject after opening

the file and before writing to it.
• If listfile does not exist, MEASCOM creates it as a new disk file.
MEASCOM writes no more than 80 characters per line to a terminal. When plotting data,
MEASCOM writes more than 80 characters if the output device can handle the wider line.

command

is a Measure command. If omitted, MEASCOM reads commands from filename. If
commands are specified, MEASCOM executes them and then returns control to the operating
system command interpreter.

Usage Note
If multiple calls are needed while attempting to retrieve data from MEASFH, MEASCOM checks
for BREAK before each call.

42 MEASCOM Commands

Example
To start the Measure command interface, check the status of the Measure subsystem, and stop
the command interface:
34> MEASCOM
MEASURE - T9086D30 - (31OCT94) - \HATI
1+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 1
 $DATA1.PERF.MAY04

Number of Active MEASCTL Processes = 9
 in CPU(s): 0, 1, 2, 3, 4, 5, 6, 7, 8
2+ EXIT
35>

ADD entity-type
This command designates which entity type (for example, CPU) to measure.
To measure several entity types simultaneously, enter an ADD entity-type command for
each entity type before starting the measurement.

Syntax
ADD [entity-type] entity-spec [, entity-spec] ...

entity-type

is one of:
CLUSTER DISCOPEN OPDISK SERVERNET TMF
CONTROLLER DISKFILE OSSCPU SQLPROC USERDEF
CPU FILE OSSNS SQLSTMT
DEVICE LINE PROCESS SYSTEM
DISC NETLINE PROCESSH TERMINAL

The entity-type keyword is optional if you specified it as the default object by using the
ASSUME command.

entity-spec

identifies the entity to be measured. The identifiers you use are specific to each entity type.
For identifier syntax, see the description of the specified entity type in Chapter 3: Entities
and Counters (page 133).

Related Commands

PageFunctionCommand

52Deletes an entity from the configurationDELETE

62Displays the entities in the configurationINFO

119Starts a measurement after defining the configurationSTART MEASUREMENT

Usage Note
• In Measure H01 and later PVUs, the ADD command allows DISCOPEN, DISKFILE, and

FILE entity specifications using ANSI SQL names. For the specification syntax, see DISCOPEN
(page 198), DISKFILE (page 207), or FILE (page 216).

• In Measure H03, J01, and later PVUs, the ADD command allows SERVERNET, DEVICE,
and DISC entity specifications using CLIMs. For specification syntax and examples, refer to
the SERVERNET (page 302), DEVICE (page 171) and DISC (page 180) entities.

• For a description of how to include and exclude subsets of entities in a measurement, refer
to the DELETE entity-type command under Examples (page 53).

ADD entity-type 43

Examples
• To define a configuration that measures all CPUs, all disks, and all processes:

+ ADD CPU *
+ ADD DISC *
+ ADD PROCESS *

• To measure both logical (FILE) and physical (DISCOPEN) I/O operations performed on file
NWREG.ACCOUNTS when that file is opened by process 6,234:
+ ADD FILE $*.NWREG.ACCOUNTS (6,234)
+ ADD DISCOPEN $*.NWREG.ACCOUNTS (6,234)

• To add all processes running a specific object file to a measurement and collect procedure
(code-range) execution data:
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.TCPIP)

• To add measurement of specific code ranges and provide recognizable names via an EDIT
(code 101) file, either ranges or range offsets can be specified. This example shows use of
offsets to define code ranges:
OBJECT $a.b.prog1
CSS^6100^LEVEL3 130206
FIRST^LOCATION +000000
PROCESS^EVENT +000401
PROCESS^EVENT^1 +001401
PROCESS^EVENT^2 +002401
PROCESS^EVENT^3 +003401
PROCESS^EVENT^4 +004401
PROCESS^EVENT^5 +005401
L4^PROTOCOL +006577
CMI^PROTOCOL +006743

• This example, on H-series, shows the use of system DLLs INITDLL and MCPDLL in place
of the symbol file TSYSCLR used on G-series:
Add Processh $SYSTEM.SYS01.TSYSDP2 (2, *) ($SYSTEM.SYS01.TSYSDP2)
Add Processh $SYSTEM.SYS01.TSYSDP2 (2, *) ($SYSTEM.SYS01.INITDLL)
Add Processh $SYSTEM.SYS01.TSYSDP2 (2, *) ($SYSTEM.SYS01.MCPDLL)

Add Processh $SYSTEM.SYS01.TSYSDP2 (11, *) ($SYSTEM.SYS01.TSYSDP2)
Add Processh $SYSTEM.SYS01.TSYSDP2 (11, *) ($SYSTEM.SYS01.INITDLL)
Add Processh $SYSTEM.SYS01.TSYSDP2 (11, *) ($SYSTEM.SYS01.MCPDLL)
Add Processh Alltime 1 ($SYSTEM.SYS00.INITDLL)
Add Processh Alltime 1 ($SYSTEM.SYS00.MCPDLL)
Add Processh Alltime 1 (SL $SYSTEM.SYS00.TSL)
Add Processh Alltime 8 ($SYSTEM.SYS00.INITDLL)
Add Processh Alltime 8 ($SYSTEM.SYS00.MCPDLL)
Add Processh Alltime 8 (SL $SYSTEM.SYS00.TSL)

• To specify entities using ANSI SQL names:
+ add file ’TABLE CATALOG_12.SCHEMA_34.TABLE_56’
+ add discopen ’SCHEMA CATALOG_12.SCHEMA_34’
+ add diskfile ’CATALOG CATALOG_12’

NOTE: If an added table is being dropped and later recreated during the same measurement,
only the first instance of that table is measured.

ADD COUNTER
This command adds a user-defined counter from a specified process to the current configuration.

44 MEASCOM Commands

Before configuring a user-defined counter, you must configure the process associated with that
counter. To configure the process, use the ADD USERDEF command (the ADD entity-type
command with USERDEF as the entity type).
For information about counter types, see Interpreting Counter Values (page 134).

Syntax
ADD [COUNTER] counter-name, PROCESS process-spec, counter-type [, ARRAY size]

COUNTER
is optional if you specified COUNTER as the command object by using the ASSUME
command.

counter-name

is a counter name. Counter names can contain 1 to 16 letters, numbers, and hyphens. The
first character must be a letter.

process-spec

is the name of a process that maintains the counter. This process specification must match
exactly the process specification in the ADD USERDEF command.
You can use a wild-card template, such as \MAIN.$ACCTS.BILLING.*, as a process
specification. However, all processes indicated by the template must modify the same counters.

counter-type

is the type of counter to create. In D-series and G-series RVUs, counter-type must be one
of:

Accumulating counter (length = 3 words)ACCUM

64-bit accumulating counter (length = 5 words)FACCUM

Busy counter (length = 6 words)BUSY

Queue counter (length = 7 words)QUEUE

In H-series RVUs counter-type must be one of:

Accumulating counter (length = 2 words)ACCUM

64-bit accumulating counter (length = 4 words)FACCUM

Busy counter (length = 4 words)BUSY

Queue counter (length = 8 words)QUEUE

Queue busy counter (length = 8 words)QBUSY

Busy counter, maintained with timer cells (length = 4 words)TCELLBUSY

Queue counter, maintained with timer cells (length = 8 words)TCELLQUEUE

Queue busy counter, maintained with timer cells (length = 8 words)TCELLQBUSY

size

is the length of the counter array (1 through 127). Array indexes start at 0, so a size of 1 creates
a two-element array, a size of 2 creates a three-element array, and so on.
By default, a counter name is associated with a single counter value (array length of 0). You
can also associate a counter name with an array of counter values.

ADD COUNTER 45

Related Commands

PageFunctionCommand

43Adds to the configuration a process that modifies one or more
user-defined counters

ADD USERDEF

54Deletes a user-defined counter from the configurationDELETE COUNTER

63Displays the user-defined counters in the configurationINFO COUNTER

Usage Notes
• To place a user-defined counter in an application, modify the source code to call the

MEASCOUNTERBUMPINIT and MEASCOUNTERBUMP procedures at appropriate times.
(For descriptions of these procedures, see MEASCOUNTERBUMP (page 396) and
MEASCOUNTERBUMPINIT (page 397).) To collect information from a user-defined counter:
1. Add the processes that modify the counter to the configuration by using the ADD

USERDEF command.
2. Add the counter to the configuration by using the ADD COUNTER command. Identify

each process that modifies the counter by specifying an entity-spec exactly as
specified in the ADD USERDEF command.

• The record for user-defined counters can be up to 1000 words long. Each process can maintain
up to 85 named user-defined counters, and each counter can be an array of up to 128 counter
values, as long as the 1000-word limit is not exceeded. Each entity in an array is considered
a counter and counts against the 1000-word limit. If you have long counter arrays, a counter
record overflow is possible.
Each USERDEF entity is limited to 256 total array elements. To calculate the number of array
elements, add the number of elements in each array (ARRAY size) plus 1 for each array
defined. For example:
ADD COUNTER COUNTER1, PROCESS MEASTEST, ACCUM, ARRAY 20
ADD COUNTER COUNTER2, PROCESS MEASTEST, BUSY, ARRAY 20

The total number of array elements in this example is 42 (20 + 20 + 1 + 1). If the total number
of array elements exceeds 256, error 3251 (configuration error) is returned.

• More than one process can maintain a counter. However, you can measure only one set of
user-defined counters for a process. That is, if you start a measurement using a set of
user-defined counters in a process, you cannot start another measurement using a different
set of user-defined counters in that same process until the first measurement stops.

Example
This example adds two user-defined counters to the current configuration: TRANSACTIONS,
an accumulating counter, and WAITING, a busy counter. Both counters are modified by the
BILLING process.
+ ADD USERDEF BILLING
+ ADD COUNTER TRANSACTIONS, PROCESS BILLING, ACCUM
+ ADD COUNTER WAITING, PROCESS BILLING, BUSY

ADD MEASUREMENT
This command makes a measurement data file accessible to MEASCOM, so you can generate
reports or plots from the data file. You must issue ADD MEASUREMENT before using the LIST,
LISTALL, or LISTACTIVE commands to display data.
ADD MEASUREMENT makes a data file accessible by creating a file-handling process (MEASFH)
for the file. The MEASFH process performs all I/O for that measurement data file. MEASFH is

46 MEASCOM Commands

created the first time you issue ADD MEASUREMENT for a file and remains active until you
delete access to the data file or end the Measure session.
Although you can access only one data file at a time, you need not delete access to a data file
before making a different file accessible. For example, you can issue an ADD MEASUREMENT
command for FILE1, display data from FILE1, then issue an ADD MEASUREMENT command
for FILE2. FILE2 becomes the currently accessible data file, and access to FILE1 is suspended
(but not deleted). This feature lets you move between data files without stopping and starting
the associated MEASFH processes.

Syntax
ADD [MEASUREMENT] data-file [, MEASFH measfh]

MEASUREMENT
is optional if you specified MEASUREMENT as the command object by using the ASSUME
command.

data-file

is a disk file (local or remote) containing measurement data. You can specify a currently
active data file.

MEASFH measfh

specifies a MEASFH process other than the default for your system. measfh is an object file
name. Specify an alternate MEASFH process when you:
• Need to process a measurement data file created by an earlier product version of the

Measure subsystem. MEASFH and measurement data files are release dependent. You
must use D40 MEASFH with a D40 data file, and so on.

• Specify a data file on a remote system. Although you are not required to use the MEASFH
on the remote system, it is much faster to have the remote MEASFH perform the I/O to
the remote data file than to perform the I/O over the network.

MEASFH object files are typically named $SYSTEM.SYSnn.MEASFH. To find the subvolume
name for your system, use the STATUS * command. SYSnn is the subvolume that contains
the OSIMAGE file.

NOTE: To examine data files from D-series or previous RVUs on systems running G-series
RVUs, you must use a Dnn product version of MEASCOM as well as the appropriate MEASFH.
For maximum compatibility with a variety of data files, always use the most recent Dnn product
version of MEASCOM.

Usage Notes (All RVUs)
• MEASFH requires disk space three times the size of the data file for creating file indexes

and external counter records. This disk space is either on the same disk as the MEASCOM
swap volume or on the volume specified for swap files through the SWAPVOL command.

• Your user ID must have read access to the data file.
• If you try to access too many measurements during the same session,

SEGMENT_ALLOCATE_ returns error 5 (invalid segment size). For a complete list of error
numbers and their definition, see the Guardian Procedure Calls Reference Manual.

• The ADD MEASUREMENT command processes the MEASFH clause the first time ADD
MEASUREMENT is issued for a given data file. To use a different MEASFH process on the
same data file during a session, delete the current MEASFH. Use the DELETE
MEASUREMENT command, reissue the ADD MEASUREMENT command, and specify a
new MEASFH.

ADD MEASUREMENT 47

Usage Notes (G-Series and Later RVUs)
• Prior to Measure G05, a limit of 127.5 MB existed on the size of the measurement data file

that could be opened for analysis. With Measure G05 and later PVUs, the Measure data file
size is 890 MB. However, to create data files larger than the default size of 127.5 MB, you
must allocate the data file prior to measurement. You might also need to adjust the extent
size or max extents values for the data file.
Prior to starting MEASCOM for analysis of large data files, check for sufficient disk space
(for example, twice the size of the data file) to accommodate swap files. Do not use $SYSTEM
for disk swap space. Swapping might interfere with system performance and memory
availability to other applications. If insufficient swap space exists on the $VOLUME where
MEASCOM was started, the MEASCOM segment (SEGMENT_allocate error 21) might
overflow and cause a trap.

• On systems running G-series RVUs, some data files are smaller than the files for comparable
measurements on systems running D-series RVUs due to a change in how MEASCTL writes
data records when there is a collection interval. The difference is most noticeable in large
measurements, especially those that measure all FILE and DISCOPEN entities.

Usage Notes (H-Series and J-Series RVUs)
In H-series and J-series RVUs starting with H06.07, you can use the MEASFT utility to divide
the measurement data file according to split criteria such as processor number or entity type.
Measurement configuration and OSS or ANSI journal data are included in both files.
You can also use MEASFT to split an existing G-series data file. In this case, you must first move
the G-series data file onto a system running an H-series RVU. After running MEASFT to split
the data file, either move the new data files back to the G-series RVU for analysis or run the
appropriate G-series version of MEASFH on the system where you ran MEASFT, using the
MEASFH parameter to specify the object file.
For information about the MEASFT utility, see Appendix D: Measure Data File Tool (MEASFT)
(page 495)).

Related Commands

PageFunctionCommand

55Closes a data file and deletes its current MEASFH processDELETE MEASUREMENT

64Determines which data files are accessible and which file is
used for reports and plots (current data file)

INFO MEASUREMENT

Examples
• To make two measurement data files accessible to MEASCOM (the data file

$DATA.MEAS.MAY04 is the current data file):
+ ADD MEASUREMENT $DATA.MEAS.MAY03
+ ADD MEASUREMENT $DATA.MEAS.MAY04

If you subsequently type this command, MAY03 becomes the current data file:
+ ADD MEASUREMENT $DATA.MEAS.MAY03

• To specify a remote measurement data file as the current data file:
+ ADD MEASUREMENT \NY.$METS.MEAS.MAY06, &
& MEASFH \NY.$SYSTEM.SYS14.MEASFH

ADD PLOT
This command adds a counter to the current plot definition.

48 MEASCOM Commands

If you already started a plot definition, adding a counter from a second data file causes MEASCOM
to display a warning message, delete the current plot definition, then start a new plot definition
for the new data file.

Syntax
For all entity types except PROCESSH and USERDEF, the syntax is:
ADD [PLOT] counter [(record-number)]

PLOT
is optional if you specified PLOT as the command object by using the ASSUME command.

counter

is a counter name chosen from the last report generated by the LIST command. If the report
displayed multiple entities, ADD PLOT adds the specified counter from each entity to the
plot definition. You can plot as many as 26 counters in one plot.

record-number

is the ordinal number of a single record to be plotted (1 through 200).
For the PROCESSH entity type, the syntax is:
ADD [PLOT] counter [(code-space)]

PLOT
is optional if you specified PLOT as the command object by using the ASSUME command.

counter

is one of:

Adds an individual procedure to the plot.procedure-name

Adds all code samples. Measurements for accelerated, unaccelerated,
and native mode object-code execution are combined in one plot
item. When you use CODE-RANGE, depending on what is running
at the time, some of the counters might not exist.

CODE-RANGE

Adds accelerated code samples.ACCEL-BUSY-SAMPLES

Adds TNS code samples.TNS-BUSY-SAMPLES

Adds TNS/R native code samples. (G-series only)TNSR-BUSY-SAMPLES

Adds TNS/R native code space. (G-series only)TNSR-BUSY-TIME

Adds native code samples. (G-series or H-series)NATIVE-BUSY-SAMPLES

Adds native code space. (G-series or H-series)NATIVE-BUSY-TIME

Adds IPU busy-time code space. (J-series), wheren is the IPU numberIPUn-BUSY-TIME

Adds IPU queue-time code space. (J-series), where n is the IPU
number

IPUn-QTIME

Adds IPU dispatches. (J-series), where n is the IPU numberIPUn-DISPATCHES

code-space

is a code-space specification. For accelerated and TNS code:

TNSAcceleratedSpecificationSpace

0-150-31UC[.n], where n is in the range:User code

0-150-31UL[.n], where n is in the range:User library

ADD PLOT 49

TNSAcceleratedSpecificationSpace

00-31SC[.n], where n is in the range:System code

0-310-31SL[.n], where n is in the range:System library

n defaults to all code spaces of the specified type.
Some additional restrictions apply to the number of code spaces you can specify. For more
information, see PROCESSH on page 3-209.
For TNS/R native code:

SpecificationsSpace

UCRUser code

ULRUser library

SCRSystem code

SLRSystem library

For H-series RVUs, no code-space specification applies. Any value you specify will be
accepted but ignored.

For the USERDEF entity type, the syntax is:
ADD [PLOT] counter [(array-index)]

PLOT
is optional if you specified PLOT as the command object by using the ASSUME command.

counter

is the name of a user-defined counter.
array-index

is the index number of an item in an array (0 through 127).

Related Commands

PageFunctionCommand

55Deletes a counter from the plot definitionDELETE PLOT

67Displays the plot definitionINFO PLOT

80Displays the plotLIST PLOT

Usage Note
You cannot plot data displayed by the LISTACTIVE command.

Examples
• To add two counters to the plot definition:

+ LIST CPU 1
 .
 . (CPU report appears here)
 .
+ ADD PLOT CPU-BUSY-TIME
+ LIST FILE $DATA1.ACCT.BOOKS
 .
 . (FILE report appears here)

50 MEASCOM Commands

 .
+ ADD PLOT FILE-BUSY-TIME

• This example adds the FILE-BUSY-TIME counter from each file displayed by the LIST
command. Counters are added to the plot in the same order the LIST command displays
them. In this example, if more than 26 files are displayed, the counters from the 26 files that
have the largest FILE-BUSY-TIME values are added to the plot definition:
+ LIST FILE *, BY FILE-BUSY-TIME
 .
 . (FILE reports appear here)
 .
+ ADD PLOT FILE-BUSY-TIME

• This example adds the ACCEL-BUSY-TIME, TNS-BUSY-SAMPLES, and TNSR-BUSY-TIME
counters (by using CODE-RANGE, which is a sum of the counters) from the object file
$DATA.APPL.UPDKEYS. When you generate a plot with TIME-BASE OFF, the three counters
are plotted on one line. For an example, see LIST PLOT (page 80).
+ LIST PROCESSH $DATA.APPL.UPDKEYS
 .
 . (PROCESSH report appears here)
 .
+ ADD PLOT CODE-RANGE

• This example lists the OSSCPU records by ascending order of the C0-LS-SENDS counter,
where C0 is the CPU number of the other CPU involved in the socket operation.
LIST OSSCPU *, BY C0-LS-SENDS (ASCENDING)

This example lists the OSSCPU record for CPU 1 and then will show a plot of the values for
the C6-LS-AWAKES counter, where C6 is the CPU number of the other CPU involved in
the socket operation.
LIST OSSCPU 1
ADD PLOT C6-LS-AWAKES
LIST PLOT

Refer to the DDL Record for OSSCPU Entities (ZMS Style) (page 258) for a list of counters
that can be used by the ADD PLOT command and the IF and BY clauses.

ASSUME
This command sets the default command object. Most MEASCOM commands consist of an action
and an object. The object name is optional. If it is omitted, MEASCOM uses the default command
object specified by the most recent ASSUME command. Initially, the default command object is
MEASUREMENT.

Syntax
ASSUME object

object

is one of:
COUNTER MEASSUBSYS MEASUREMENT PLOT REPORT entity-type

entity-type

is one of:
CLUSTER DISCOPEN OPDISK SERVERNET TMF
CONTROLLER DISKFILE OSSCPU SQLPROC USERDEF
CPU FILE OSSNS SQLSTMT
DEVICE LINE PROCESS SYSTEM
DISC NETLINE PROCESSH TERMINAL

ASSUME 51

Example
To use the ASSUME command to shorten command lines:
+ ADD $DATA.MEAS.MAY04 -- MEASUREMENT is default object
+ ASSUME REPORT
+ SET FORMAT BRIEF
+ SET TOTALS INCLUDE
+ ASSUME CPU
+ LIST 2
 .
 . (report for CPU 2 appears here)
 .
+ LIST 4
 .
 . (report for CPU 4 appears here)
 .
+ LIST 6
 .
 . (report for CPU 6 appears here)
 .

COMMENTS
This command specifies which comment messages are displayed. Comments are identified by
the word COMMENT and a number in the range 2000 through 2999.

Syntax
COMMENTS { DISPLAY { ALL | comm-num [, comm-num] ... } }
 { SUPPRESS { ALL | comm-num [, comm-num] ... } }

DISPLAY ALL
causes all comments to be displayed except those specified by one or more succeeding
COMMENTS SUPPRESS commands. COMMENTS DISPLAY ALL is the default.

SUPPRESS ALL
causes all comments to be suppressed except those specified by one or more succeeding
COMMENTS DISPLAY commands.

comm-num

is the number of a comment (2000 through 2999).

Usage Notes
• Measure includes only one comment, numbered 2000.
• To suppress warnings (identified with the word WARNING), use the WARNINGS command

on page 130.

Example
To suppress comment 2000:
+ COMMENTS SUPPRESS 2000

DELETE entity-type
This command deletes entities of the specified type from the current configuration.
Use the DELETE entity-type command in combination with the ADD entity-type *
command. DELETE entity-type lets you exclude a specific resource from a measurement.

52 MEASCOM Commands

Syntax
DELETE [entity-type] entity-spec [, entity-spec] ...

entity-type

is one of:
CLUSTER DISCOPEN OPDISK SERVERNET TMF
CONTROLLER DISKFILE OSSCPU SQLPROC USERDEF
CPU FILE OSSNS SQLSTMT
DEVICE LINE PROCESS SYSTEM
DISC NETLINE PROCESSH TERMINAL

The entity-type keyword is optional if you specified it as the command object by using
the ASSUME command.

entity-spec

identifies the entity to be measured. The identifiers you use are specific to each entity type.
For identifier syntax, see the description of the specified entity type in Chapter 3: Entities
and Counters (page 133).

Usage Notes
• For the PROCESSH entity, you can delete the entire entity from a measurement, but you

cannot delete an individual code-space specifier.
• In Measure H01 and later PVUs, the DELETE command allows DISCOPEN, DISKFILE, and

FILE entity specifications using ANSI SQL names. For the specification syntax, see DISCOPEN
(page 198), DISKFILE (page 207), or FILE (page 216).

• In Measure H03, J01, and later PVUs, the DELETE command allows SERVERNET, DEVICE,
and DISC entity specifications using CLIMs. For specification syntax and examples, refer to
the SERVERNET (page 302), DEVICE (page 171) and DISC (page 180) entities.

Related Commands

PageFunctionCommand

43Adds an entity to the configurationADD entity-type

62Displays the configurationINFO entity-type

Examples
• To define a configuration that measures all CPUs except CPU 6:

+ ADD CPU *
+ DELETE CPU 6
+ INFO CPU
Add cpu *
Delete cpu 6

• To measure the TRANSACTIONS counter in all programs of the ACCT subvolume except
ACCT.BILLING:
+ ADD USERDEF ACCT.*
+ DELETE USERDEF ACCT.BILLING
+ ADD COUNTER TRANSACTIONS, PROCESS ACCT.*, TYPE ACCUM

• To specify entities using ANSI SQL names:
+ delete file ’TABLE CATALOG_12.SCHEMA_34.TABLE_56’
+ delete discopen ’TABLE CATALOG_12.SCHEMA_34.TABLE_56 PARTITION PART_78’
+ delete diskfile ’SCHEMA SCHEMA_34’

DELETE entity-type 53

• To exclude a subset of entities from being measured, first use the ADD command to add
the set, then use the DELETE command to delete the subset. For example, if you want to
measure all CPUs except CPU 0, enter the following:
+ ADD CPU *
+ DELETE CPU 0
+ START MTEST

• To measure all files on all discs except $SYSTEM, and only measure files in subvolume SYS00
of disc $SYSTEM, add each individual disc except $SYSTEM, then add the $SYSTEM.SYS00
subvolume:
+ ADD FILE $DISC1.*.*
+ ADD FILE $DISC2.*.*
+ ADD FILE $DISC3.*.*
+ ADD FILE $DISC4.*.*
+ ADD FILE $DISC5.*.*
+ ADD FILE $SYSTEM.SYS00.*

NOTE: You cannot use a wildcard to specify all files, then delete the $SYSTEM volume
and add back the SYS00 subvolume of the $SYSTEM volume, for it is not possible to add a
subset of an item that has been deleted. Accordingly, the following example willNOTwork:
+ ADD FILE $*

+ DELETE FILE $SYSTEM.*.*

+ ADD FILE $SYSTEM.SYS00.*

If there are too many discs in the system to add separately, you can measure all files by
using + ADD FILE $* and then use the LIST command to view the files you want.

DELETE COUNTER
This command deletes one or more user-defined counters from the current configuration.

Syntax
DELETE [COUNTER] counter-name [, counter-name] ...

COUNTER
is optional if you specified COUNTER as the command object by using the ASSUME
command.

counter-name

is the name of the counter to be deleted. To delete all user-defined counters from the current
configuration, use an asterisk (*).

CAUTION: DELETE COUNTER deletes all configured counters of the specified name even
if they are modified by different processes.

Related Commands

PageFunctionCommand

44Adds a user-defined counter to the configurationADD COUNTER

63Displays the user-defined counters in the configurationINFO COUNTER

Example
To delete the user-defined counter TRANSACTIONS (both TRANSACTIONS counters are deleted
even though they are modified by two different processes):

54 MEASCOM Commands

+ INFO COUNTER *
Add counter TRANSACTIONS, process $PERF.QUOTAS.BILLING, accum
Add counter WAITING, process $PERF.QUOTAS.BILLING, busy
Add counter TRANSACTIONS, process $PERF.QUOTAS.INCOMING, accum
+ DELETE COUNTER TRANSACTIONS
+ INFO COUNTER *
Add counter WAITING, process $PERF.QUOTAS.BILLING, busy

DELETE MEASUREMENT
This command deletes one or more measurement data files from the set of those accessible by
MEASCOM.

Syntax
DELETE [MEASUREMENT] data-file [, data-file] ...

MEASUREMENT
is optional if you specified MEASUREMENT as the command object by using the ASSUME
command.

data-file

is the name of the measurement data file to be deleted. To indicate all accessible data files,
use an asterisk (*).

Related Command

PageFunctionCommand

46Makes a measurement data file accessibleADD MEASUREMENT

Usage Note
Use this command to discontinue access to data files you are not using. Deleting a measurement
saves system resources by stopping the file-handling process (MEASFH) associated with the
measurement and releasing the temporary structures maintained for the data file.

Example
To make two data files accessible by MEASCOM and subsequently make $DATA.MEAS.MAY03
inaccessible:
+ ADD MEASUREMENT $DATA.MEAS.MAY03
+ ADD MEASUREMENT $DATA.MEAS.MAY04
 .
 .
 .
+ DELETE MEASUREMENT $DATA.MEAS.MAY03

DELETE PLOT
This command deletes counters from the current plot description.

Syntax
DELETE [PLOT] counter [(char)] [, counter [(char)] ...]

PLOT
is optional if you specified PLOT as the command object by using the ASSUME command.

DELETE MEASUREMENT 55

counter

For all entity types except PROCESSH and USERDEF, COUNTER is the name of the counter
to delete. Use an asterisk (*) to indicate all counters in the plot description.
For the PROCESSH entity type, counter is a procedure name. To delete all PROCESSH
procedures, specify counter as CODE-RANGE.
For the USERDEF entity type, counter is the user-defined counter name. To delete all
user-defined counters, specify counter as NAME.

char

is the character previously designated for plotting the counter. Use an asterisk (*) to indicate
all counters named counter.
You must specify char if the current plot definition contains multiple counters that have the
same name.

Related Commands

PageFunctionCommand

48Adds a counter to the plot descriptionADD PLOT

67Displays the plot descriptionINFO PLOT

80Displays the plotLIST PLOT

Example
To delete one of two CPU-BUSY-TIME counters (the warning message appears when two or
more counters have the same name):
+ INFO PLOT *
Add measurement $SPOOL.QUOTAS.DATAGO
--A-- List Cpu 6, &
 To 20 Aug 1994, 14:29:08
 Add plot CPU-BUSY-TIME
--B-- List Cpu 7, &
 To 20 Aug 1994, 14:29:08
 Add plot CPU-BUSY-TIME
+ DELETE PLOT CPU-BUSY-TIME
MEAS 3057 Ambiguous DELETE command;
 specify which occurrence to delete.
+ DELETE PLOT CPU-BUSY-TIME (A)
+ INFO PLOT *
Add measurement $SPOOL.QUOTAS.DATAGO
--B-- List Cpu 7, &
 To 20 Aug 1994, 14:29:08
 Add plot CPU-BUSY-TIME

ENV
This command displays the value of one or all MEASCOM session environmental parameters.
In Measure G09 and later PVUs, the ENV command also displays the current settings for
OSSPATH and PAGESIZE.
In Measure H01 and later PVUs, the ENV command displays the current setting for the
SQLCATALOG (page 114) and SQLSCHEMA (page 114) commands.

Syntax
ENV [/ OUT filename /] [env-param]

56 MEASCOM Commands

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
edit file by that name and writes command output to it. If filename does exist, MEASCOM
opens the file and appends command output to it.
After the ENV command executes, MEASCOM resumes writing its output to the current
OUT file (typically, the terminal).
The OUT option does not affect the contents of the log file. For information about the log file,
see LOG (page 99).

env-param

is one of:

Displays the default command objectASSUME

Displays the current settings for the COMMENTS commandCOMMENTS

Displays the name of the default log fileLOG

Displays the current default OSSPATHOSSPATH

Displays the name of the default output fileOUT

Displays the current PAGESIZE settingPAGESIZE

Displays the current prompt textSETPROMPT

Displays the current default catalog value used to resolve partially
qualified ANSI SQL names

SQLCATALOG

Displays the current default schema value used to resolve partially
qualified ANSI SQL names

SQLSCHEMA

Displays the swap volume name if it is different from the MEASCOM
swap volume.

SWAPVOL

Displays the name of the default systemSYSTEM

Displays the name of the default volume and subvolumeVOLUME

Displays the current settings for the WARNINGS commandWARNINGS

If env-param is omitted, all environment parameter values are displayed.

Usage Note
MEASCOM displays the environment information in the form of the commands you would use
to set the environmental parameters. This method lets you use /OUT filename/ to create a
command (OBEY) file. You can use the command file to restore a given set of environmental
parameters.

Examples
• To display environment parameters (if explicitly set, the OUT, LOG, and SWAPVOL

parameters would be included in this display):
+ ENV
 System \BUYER
 Volume $DATA.MEAS
 Assume MEASUREMENT
 Setprompt Assume
 Comments Display All
 Warnings Display All

• In Measure G09 and later PVUs, to display the current default path for OSSPATH and the
current setting for PAGESIZE, respectively:

ENV 57

+ ENV
 System \BUYER
 Volume $DATA.MEAS
 OSSpath "/This/is/the/path/"
 Assume MEASUREMENT
 Setprompt Assume
 Pagesize 24
 Comments Display All
 Warnings Display All

+ ENV OSSPATH
 OSSpath "/This/is/the/path"

• In Measure H01 and later PVUs, to display environment parameters, including ANSI SQL
names:
+ ENV
 System \BUYER
 Volume $DATA.MEAS
 OSSpath “/This/is/the/path/”
SQLCATALOG ’CATALOG_12’

 SQLSCHEMA ’SCHEMA_34’
 Assume MEASUREMENT
 Setprompt Assume
 Pagesize 24
 Comments Display All
 Warnings Display All

For example, if an ANSI SQL table name is specified as:
‘TABLE table_56’

MEASCOM will prepend the default catalog and schema, if set, and the fully qualified name
will be (with the values above):
‘TABLE CATALOG_12.SCHEMA_34.table_56’

EXIT
This command ends a MEASCOM session.

Syntax
EXIT

Usage Notes
• MEASCOM returns a completion code when it stops or abends. The completion codes are:

MeaningCode

Normal voluntary termination. No warnings or errors were issued.0

Normal voluntary termination. Warnings were issued.1

Abnormal voluntary termination. Error messages were issued.2

Abnormal premature termination. MEASCOM encountered an error condition that caused
it to terminate prematurely.

3

If the code is 0, no message is displayed, but the TACL prompt reappears. If the code is 1,
2, or 3, an explanatory message appears.

• If you specify an IN file when invoking MEASCOM, reaching the end of the file is equivalent
to the EXIT command.

58 MEASCOM Commands

Example
This example shows the EXIT display for an abnormal voluntary termination:
46+ EXIT
CPU time 0:00:02.430
2: Process terminated with fatal errors or diagnostics

FC
This command operates like the TACL FC command. FC retrieves a command from the history
buffer, displays it so you can modify it, then executes the modified command. For a complete
description of FC, see the TACL Reference Manual.

Syntax
FC [number]
 [-number]
 [text]

number

is the number of the line in the history buffer that contains the command to retrieve.
-number

is the number of history-buffer lines to subtract from the current line to arrive at the command
to be retrieved.

text

is a text string. The most recently entered command that begins with the text string is retrieved.
If no option is specified, the last command entered is retrieved.

Related Command

PageFunctionCommand

130Immediately reexecutes a previous command without modifying it!

Examples
• To retrieve the command on history buffer line 15:

21+ FC 15

• To retrieve the command three lines before the current line:
24+ FC -3

• To retrieve the most recently entered command that begins with the text string SE (for
example, a SET REPORT FORMAT BRIEF command):
25+ FC SE

• To retrieve the last command entered:
28+ FC

HELP
The HELP command displays quick-reference information about commands, objects, entities,
and error messages.

Syntax
HELP [/ OUT filename /] [command-name]
 [command-name object]
 [command-name ENTITY]

FC 59

 [command-name entity]
 [object]
 [entity]
 [counter]
 [entity COUNTERS]
 [error-number]
 [ABBREVIATIONS]
 [ALL]

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
edit file by that name and writes command output to it. If filename does exist, MEASCOM
opens the file and appends command output to it.
After the HELP command executes, MEASCOM resumes writing to the current OUT file
(typically, the terminal).
The OUT option does not affect the contents of the log file.

command-name

provides a brief description of the specified command. (Example: HELP ADD.)
command-name object

shows the complete syntax of the specified command. (Example: HELP ADD
MEASUREMENT.)

command-name ENTITY
provides general syntax information for commands in which the object is an entity type.
(Example: HELP ADD ENTITY.)

command-name entity

provides detailed syntax information for the specified entity type. (Example: HELP ADD
CPU.)

object

describes the attributes of the specified object, including values for each attribute. (Example:
HELP REPORT.)

entity

provides a brief description of the specified entity type. (Example: HELP CONTROLLER.)
counter

provides a brief description of the specified counter and identifies the entities that use a
counter of this name. (Example: HELP RESPONSE-TIME.)

entity COUNTERS
lists counter values for the specified entity. (Example: HELP CPU COUNTERS.)

error-number

provides cause, result, and recovery information about the specified Measure error message.
(Example: HELP 3100.)

ABBREVIATIONS
lists all Measure keywords (commands, objects, and entities) in alphabetical order. Use this
list to determine the number of characters required to abbreviate a keyword uniquely.

ALL
lists all Measure keywords (commands, objects, and attributes) by category and provides a
guide to more specific help topics. Issuing HELP with no parameters is the same as issuing
HELP ALL.

60 MEASCOM Commands

Usage Notes
• You cannot abbreviate the help topic. For example, you must enter HELP START

MEASUREMENT, not HELP START MEASU.
• A double prompt (++) signals that more information is available for a topic. Press Return

(or any other key) to see the additional information. Press Ctrl-Y or type BREAK at the
double prompt to return to command entry.

Examples
• To get information about the SET command:

+ HELP SET
The SET command can operate on the PLOT and REPORT objects.
SET's function is to change the value of the attribute
specified to the value entered. Each time MEASCOM is
started, the PLOT and REPORT objects are initialized to
default values. These values can be changed by using the SET
command, or can be temporarily changed by setting the
attribute on the LIST (LISTALL, and LISTACTIVE) command. In
this case the value is changed only for the duration of the
command.

For specific command syntax perform:
 HELP SET PLOT
 HELP SET REPORT

• To get the syntax of the SET PLOT command:
+ HELP SET PLOT
SET [PLOT] <plot attribute> <value> [, <plot attribute>
<value>]...

See HELP PLOT for <plot attribute> and <value>.

• To identify the entities that use a READY-TIME counter and get an explanation of the
meaning of the counter:
+ HELP READY-TIME
CPU Report:
 Time processes were executing or waiting on the ready list.
 Counter type: Queue

Process Report:
 Time this process was executing or waiting on the ready list.
 Counter type: Busy

• To display information about Measure error 3014:
+ HELP 3014
Cause: A three-digit sequence-id is added to LOADID to
 designate each interval of the measurement, when
 "LISTALL" is used. It is suppressed if 3 characters
 are not available for use.
Result: Sequencing is suppressed.
Recovery: Use 5 or fewer characters for LOADID.

HISTORY
This command lists one or more of the most recently entered commands.

Syntax
HISTORY [number]

HISTORY 61

number

specifies the number of history-buffer lines to display. If you do not specify a number, the
last 10 lines in the history buffer appear. If the buffer contains fewer than the specified number
of lines, HISTORY lists the existing lines.

Related Commands
Use the HISTORY command with:

PageFunctionCommand

59Displays, modifies, and executes a previously entered commandFC

130Reexecutes a previously entered command!

Example
This example shows both the HISTORY command and the FC command. The HISTORY command
lists the last five lines in the history buffer (lines 28 through 32). The FC command redisplays
line 31 from the history buffer. After using FC, you can either reexecute the command or edit
the command, and then reexecute it.
32+ HISTORY 5

28+ LIST PROCESS (0,*), RATE OFF
29+ INFO MEASUREMENT *
30+ LIST DISC $SYSTEM
31+ LIST CPU *, BY CPU-BUSY-TIME
32+ HISTORY 5

33+ FC 31
33+ LIST CPU *, BY CPU-BUSY-TIME
33..

INFO entity-type
This command displays all entities of the specified type in the current configuration.

Syntax
INFO [/ OUT filename /] [entity-type]

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends command output to it.
After the INFO command executes, MEASCOM resumes writing to the current OUT file
(typically, the terminal). The OUT option does not affect log file contents.

entity-type

is one of:
CLUSTER DISCOPEN OPDISK SERVERNET TMF
CONTROLLER DISKFILE OSSCPU SQLPROC USERDEF
CPU FILE OSSNS SQLSTMT
DEVICE LINE PROCESS SYSTEM
DISC NETLINE PROCESSH TERMINAL

The entity-type keyword is optional if you specified it as the command object by using
the ASSUME command.

62 MEASCOM Commands

Related Commands

PageFunctionCommand

43Adds an entity to the configurationADD entity-type

52Deletes an entity from the configurationDELETE entity-type

Usage Notes
• If the INFO display shows an entity as both added and deleted, the delete operation takes

precedence.
• MEASCOM displays the information as a list of the commands used to define the

configuration. This lets you use /OUT filename/ to create a command (OBEY) file, with
which you can later restore the current measurement configuration.

• The output of the INFO PROCESSH command is a list of the commands used to define the
current PROCESSH measurement configuration. /OUT filename/ can be used to create a
command (OBEY) file that stores a given PROCESSH configuration.

• In Measure G12 and later PVUs, code-space identifiers are displayed only for TNS code files
(including accelerated TNS code files).

• In Measure H01 and later PVUs, the INFO entity-type command shows DISCOPEN,
DISKFILE, and FILE entity specification using ANSI SQL names if the ANSI SQL names
were used for measurement configuration. For the specification syntax, seeDISCOPEN
(page 198) , DISKFILE (page 207), or FILE (page 216).

Examples
• To display all CPU entities in the current configuration:

+ INFO CPU
Add cpu *
Delete cpu 6

• This example is on G-series. Notice that it does not display code-space identifiers:
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP (UCR $SYSTEM.SYS00.TCPIP)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP (ULR $SYSTEM.SYS00.ZCRESRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP (ULR $SYSTEM.SYS00.ZINETSRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP (ULR $SYSTEM.SYS00.ZLANCSRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP (ULR $SYSTEM.SYS00.ZCRTLSRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP (SCR $SYSTEM.SYS00.TSYSCLR)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP (SLR $SYSTEM.SYS00.TSYSCLR)
+ INFO PROCESSH
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.TCPIP)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.ZCRESRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.ZINETSRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.ZLANCSRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.ZCRTLSRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.TSYSCLR)
+

INFO COUNTER
This command displays, for one or more user-defined counters, the counter name and type, and
the names of any processes that modify the counter.

Syntax
INFO [/ OUT filename /] [COUNTER] counter-name
 [, counter-name] ...

INFO COUNTER 63

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filename exists, MEASCOM
opens the file and appends command output to it.
After the INFO command executes, MEASCOM resumes writing its output to the current
OUT file (typically, the terminal).
The OUT option does not affect the contents of a log file.

COUNTER
is optional if you have specified COUNTER as the command object by using the ASSUME
command.

counter-name

is a counter name or an asterisk (*) to indicate all counters.

Related Commands

PageFunctionCommand

44Adds a user-defined counter to the configurationADD COUNTER

54Deletes a user-defined counter from the configurationDELETE COUNTER

Usage Notes
• MEASCOM displays the information as a list of the commands used to define the counters.

This lets you use /OUT filename/ to create a command (OBEY) file where you can later
restore the current set of counters.
When you save user-defined counter information, you might also want to save the current
USERDEF configuration information. To save the user-defined configuration information,
use INFO USERDEF with an OUT parameter.

• In Measure G12 and later PVUs, code-space identifiers are displayed only for TNS code files
(including accelerated TNS code files).

Example
To display all user-defined counters in the current configuration:
+ INFO COUNTER *
Add counter TRANSACTIONS, process $PERF.QUOTAS.BILLING, accum
Add counter WAITING, process $PERF.QUOTAS.BILLING, busy
Add counter TRANSACTIONS, process $PERF.QUOTAS.INCOMING, accum

INFO MEASUREMENT
This command displays this information for one or more of the measurement data files currently
accessible by MEASCOM:
• File name, displayed as an ADD MEASUREMENT command.
• Start time, stop time, and the collection interval of the measurement. The stop time appears

for a currently active measurement only if you specified a stop time when you started the
measurement.

• Information about system data space usage during the measurement. For each entity type,
this includes:
— The entity type name
— The maximum number of entities of that type under concurrent measurement
— The maximum number of words in system data space allocated to entities of that type

64 MEASCOM Commands

These values do not appear for a currently active data file.

• The measurement configuration, displayed as comments containing ADD and DELETE
commands.

• The OSS journal segment in the data file and the current status of the OSS journal segment
in the MEASCOM session (Measure G09 and later PVUs only).

• The ANSI SQL journal segment in the data file and the current status of the ANSI SQL
journal segment in the MEASCOM session (Measure G11 and later PVUs only).

Syntax
INFO [/ OUT filename /] [MEASUREMENT] data-file
 [, data-file] ...

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends command output to it.
After the INFO command executes, MEASCOM resumes writing its output to the current
OUT file (typically, the terminal).
The OUT option does not affect the contents of the log file.

MEASUREMENT
is optional if you specified it as the command object using the ASSUME command.

data-file

is the name of an accessible measurement data file. Use an asterisk (*) to indicate all accessible
data files.

Related Command

PageFunctionCommand

46Makes a data file accessible by MEASCOMADD MEASUREMENT

Usage Notes
• In the display, the name of the current data file (the file MEASCOM uses when generating

reports) is followed by the comment “Current Data File.” To make a different file the current
data file, use the ADD MEASUREMENT command.

• The output of the INFO MEASUREMENT command is a list of the commands used to define
the configuration. You can use /OUT filename/ to create a command (OBEY) file, which
you can then edit to create a new configuration file.

• In Measure G09 and later PVUs, the OSS journal segment status appears if Measure attempted
to construct a journal segment in the data file. (Measure attempts to construct a journal
segment if you requested one either explicitly, in the START MEASUREMENT command,
or by making journal segment construction the default, as described in the usage notes for
START MEASSUBSYS (page 117).) OSS journal segment states can be:
— OSS journal segment attached
— OSS journal segment under construction
— OSS journal segment error: nnnn
Journal segment construction occurs after the measurement is stopped. When construction
is complete, current openers of the file are not notified. MEASCOM sessions that have a
data file open can use the OSS file-system name server to resolve OSS file pathname
references. To access the journal segment, issue a DELETE MEASUREMENT command and
then repeat the original ADD MEASUREMENT command.

INFO MEASUREMENT 65

• In Measure G11 and later PVUs, the ANSI SQL journal segment status appears if journal
segment construction was attempted. (Measure attempts to construct a journal segment if
you requested one either explicitly, in the START MEASUREMENT command, or by making
journal segment construction the default, as described in the usage notes for START
MEASSUBSYS (page 117).) ANSI SQL name segment states can be:
— SQL journal segment attached
— SQL journal segment under construction
— SQL journal segment error: nnnn
Journal segment construction occurs after the measurement is stopped. When construction
is completed, current openers of the file are not notified. MEASCOM sessions that have a
data file open can use ANSI SQL to resolve ANSI SQL name references. To access the journal
segment, issue a DELETE MEASUREMENT command and then repeat the original ADD
MEASUREMENT command.

• If OSS file pathnames are used in measurement specification, the specified pathname must
be translatable at the time the INFO MEASUREMENT report is formatted. If not, a formatting
error occurs. This translation can come from the system under measurement or an attached
OSS file pathname. The final example highlights this behavior.

• In Measure G12 and later PVUs, code-space identifiers are displayed only for TNS code files
(including accelerated TNS code files).

• In Measure H01 and later PVUs, the INFO MEASUREMENT command shows DISCOPEN,
DISKFILE, and FILE entity specifications using ANSI SQL names if the ANSI SQL names
were used for measurement configuration. For the specification syntax, see DISCOPEN
(page 198) , DISKFILE (page 207), or FILE (page 216).

• In Measure H02 and later PVUs, the output produced by the MEASCOM INFO
MEASUREMENT command displays whether counter data records have been suppressed
for the measurement.

Examples
• This example displays information about all currently accessible data files. The current file

is an active data file. Therefore, INFO MEASUREMENT cannot display the stop time of the
measurement or the contents of the file.
+ INFO MEASUREMENT *
Add measurement $DATA.CAPTURE.CPUPROC - Current Data File --
Data collected from system \MEASURE, Measure release version G11.2
From 29 Aug 2003, 07:00:00
-- Add cpu *
-- Add process *
Add measurement $DATA.CAPTURE.NEWPH
Data collected from system \MEASURE, Measure release version G11.2
From 28 Aug 2003, 20:15:00, To 28 Aug 2003, 20:30:00
Process 525 Entities 115500 Words
Processh 525 Entities 435317 Words
-- Add Processh $SYSTEM.SYS00.TSYSDP2 ($SYSTEM.SYS00.TSYSDP2)
-- Add Processh $SYSTEM.SYS00.MEASCOM ($SYSTEM.SYS00.MEASCOM)
+

• For an OSS measurement data file, this example shows the active measurement:
+ INFO MEASUREMENT *
Add measurement $SPOOL.MEASDATA.MDATA
Data collected from system \DEV, MEASURE release version G09
From 17 Nov 2000,11:19:18
OSS journal segment attached
Cpu 6 Entities 1992 Words
Process 909 Entities 156348 Words
-- Delete Process system-processes

66 MEASCOM Commands

-- Add CPU *
-- Add Process "/bin"

• This example shows an INFO MEASUREMENT report with an OSS file pathname translation
error (indicated by "*OSSPath*"):
+ INFO MEASUREMENT *
Add measurement $SPOOL.MEASDATA.MDATA -- Current Data File --
Data collected from system \DEV, MEASURE release version G09.
From 17 Nov 2000, 11:19:15, To 17 Nov 2000, 11:19:18
Cpu 6 Entities 1992 Words
Process 909 Entities 156348 Words
-- Add Cpu *
-- Add Process "*OSSPath*"

• This example displays information about all currently accessible data files. Because the
current file is an active data file, INFO MEASUREMENT cannot display the stop time of the
measurement or the contents of the file.
+ INFO MEASUREMENT *

Add measurement $DATA.CAPTURE.CPUPROC - Current Data File --
Data collected from system \MEASURE, Measure release version G11

From 29 Aug 2003, 07:00:00
-- Add cpu *
-- Add process *

Add measurement $DATA.CAPTURE.NEWPH
Data collected from system \MEASURE, Measure release version G11

From 28 Aug 2003, 20:15:00, To 28 Aug 2003, 20:30:00
Process 525 Entities 115500 Words
Processh 525 Entities 435317 Words
-- Add Processh $SYSTEM.SYS00.TSYSDP2 ($SYSTEM.SYS00.TSYSDP2)
-- Add Processh $SYSTEM.SYS00.MEASCOM ($SYSTEM.SYS00.MEASCOM)
+

• This example shows an INFO MEASUREMENT report that includes ANSI SQL names:
+ info measurement $guest.measure.demo
Add measurement $GUEST.MEASURE.DEMO -- Current Data File --
Data collected from system \DEMO, MEASURE release version H01.
From 26 Feb 2003, 15:59:54
-- Add File ‘TABLE CATALOG_12.SCHEMA_34.TABLE_56’
-- Add Discopen ‘TABLE CATALOG_12.SCHEMA_34.TABLE_56’
-- Add Diskfile ‘TABLE CATALOG_12.SCHEMA_34.TABLE_56’

• This example shows an INFO MEASUREMENT report where counter data record suppression
was specified for the measurement. Measure H02 and later PVUs enable this suppression
feature.
+ INFO MEASUREMENT MEASXX
Add measurement $PERF.GREG.MEASXX -- Current Data File --
Data collected from system \YOSPRD, MEASURE release version H02.
From 16 Aug 2007, 13:52:32
Counter data records suppressed
-- Add Cpu 0

INFO PLOT
This command displays the current plot definition.

Syntax
INFO [/OUT filename/] [PLOT] counter [(char)]
 [, counter [(char)]] ...

INFO PLOT 67

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends command output to it.
After the INFO command executes, MEASCOM resumes writing its output to the current
OUT file (typically, the terminal).
The OUT option does not affect the contents of the log file.

PLOT
is optional if you specified PLOT as the command object by using the ASSUME command.

counter

for all entity types except PROCESSH and USERDEF, COUNTER is a counter name. Use an
asterisk (*) to indicate all counters.
• For the PROCESSH entity type,counter is a procedure name. To display all procedures

in the plot, specify counter as CODE-RANGE.
• For the USERDEF entity type, counter is the user-defined counter name. To display

all user-defined counters in the plot, specify counter as NAME.
char

is the plot character of the plotted counter to display or an asterisk (*) to indicate all counters
named counter. If omitted, the default is the asterisk (*).

Usage Note
The output of INFO PLOT is a list of the commands used to add the counters to the plot definition.
You can use /OUT filename/ to create a command (OBEY) file that stores a given plot definition.

Related Commands

PageFunctionCommand

48Adds a counter to the plot definitionADD PLOT

55Deletes a counter from the definitionDELETE PLOT

80Displays the plotLIST PLOT

Example
To display the current plot definition:
+ INFO PLOT *

Add measurement $SPOOL.QUOTAS.DATAGO
--A-- List Cpu 6, &
 To 20 Aug 1994, 14:29:08
 Add plot CPU-BUSY-TIME
--B-- List Cpu 7, &
 To 20 Aug 1994, 14:29:08
 Add plot CPU-BUSY-TIME

LIST entity-type
This command reads data from the current data file (the file most recently specified in an ADD
MEASUREMENT command) and displays a report for each entity included in the entity-spec
parameter.

68 MEASCOM Commands

A double prompt (++) signals that another report follows the one on the screen. Press Return (or
any other key) to view the next report. Press Ctrl-Y or type BREAK at the double prompt to
ignore subsequent reports:
• If you entered multiple commands on the previous command line, BREAK causes the current

command to be interrupted and the next command to be executed.
• If you did not enter multiple commands, BREAK interrupts the current command, and the

MEASCOM prompt returns.

Syntax
LIST [/ OUT filename /] [entity-type] entity-spec
 [, list-option] ...

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends command output to it.
After the LIST command executes, MEASCOM resumes writing its output to the current
OUT file (typically, the terminal).
The OUT option does not affect the contents of the log file.

entity-type

is one of:
CLUSTER DISCOPEN OPDISK SERVERNET TMF
CONTROLLER DISKFILE OSSCPU SQLPROC USERDEF
CPU FILE OSSNS SQLSTMT
DEVICE LINE PROCESS SYSTEM
DISC NETLINE PROCESSH TERMINAL

The entity-type keyword is optional if you specified it as the command object by using
the ASSUME command.
For special considerations for the FILE and PROCESS entities, see Usage Notes (page 74).

entity-spec

identifies the entity to be measured. The identifiers you use are specific to each entity type.
For identifier syntax, see the description of the specified entity type in Chapter 3: Entities
and Counters (page 133).

list-option

is one of:
BY item-name [(ASCENDING) | (DESCENDING)]

sorts the report in ascending or descending order.
item-name is one of:
{ counter }
{ identification-item }
where
counter is a counter name. By default, counter items are sorted in descending order.
Special considerations for the PROCESSH, DISC, CPU, and USERDEF entity types include:
• For PROCESSH, counter is a procedure name.
• For legacy style DISC cache counters, counter must be preceded by C0-, C1-, C2-,

or C3- to specify the size of the cache blocks to be considered. For ZMS style DISC
cache counters, counter must be preceded by Cn- where n is a value from 0 to 7.

• For CPU, if a counter is not specified, the CPUs are listed in numeric order.
• For USERDEF, the valid counter names are name, value, type, and index.

LIST entity-type 69

identification-item is an identification item such as CPU-NUM or PROCESS-NAME.
You can use any valid identification item for the specified entity. By default, identification
items are sorted in ascending order.

CR-NAME-LEN { SHORT | LONG }
controls the displayed length of procedure (code-range) names. The default is SHORT.
SHORT

truncates procedure (code-range) names (if necessary) at 32 characters. Mangled
procedure names are not demangled prior to display.

LONG
procedure (code-range) names both in their SHORT form and, if longer than 32
characters, in their entirety on a subsequent line. Mangled procedure names are not
demangled for display.

CR-NAME-FORM { STANDARD | DEMANGLED | BOTH }
controls whether demangled procedure (code-range) names are displayed (if applicable).
The default is STANDARD.
STANDARD

displays procedure (code-range) names in the form specified in the code file (mangled)
or EDIT file (demangled).

DEMANGLED
demangles procedure (code-range) names, if necessary, prior to display.

BOTH
displays procedure (code-range) names in both STANDARD and DEMANGLED
forms.

CR-NAME-QUAL { UNQUALIFIED | QUALIFIED }
controls whether procedure (code-range) names are displayed with object file name
qualifiers, if available, in the Code-Range Name column on the line immediately following
the traditional line of code-range output. The default is UNQUALIFIED.
UNQUALIFIED

displays procedure names in traditional form with no qualifiers.
QUALIFIED

displays procedure names with the Guardian or OSS object file name of the associated
code. This can be useful in differentiating between like-named procedures in different
object files. Guardian file names have their associated CRVSN appended to the end
of the name.

DOTS { ON } { OFF }
specifies whether report displays include connecting dots between labels and numeric
values. Valid only if STYLE is ZMS. The default is OFF.
ON

displays dots to connect labels to formatted numbers.
OFF

does not display dots to connect labels to formatted numbers.
FOR duration

specifies the duration of the report window. FOR and TO are mutually exclusive. If you
omit both, the window ends when the measurement ends or when measurement of the
entity ends, whichever is earlier.

70 MEASCOM Commands

duration

is a time interval in one of these formats:
n SECOND[S] n MINUTE[S] n HOUR[S]
where n is an integer in the range 1 through 9999.

FORMAT { BRIEF } { NORMAL } { STRUCTURED }
sets the format of the report. The default is NORMAL.
BRIEF

displays an abbreviated report that contains the most commonly used counters for
each entity type.
For information about which counters are included in brief-format reports, see the
DDL record for the specified entity type in Chapter 3: Entities and Counters (page 133).
Counters included in brief-format reports are in boldface type in each DDL record.

NORMAL
displays all counters.

STRUCTURED
writes the report to a structured file for subsequent examination using Enform. A
single record consists of all counters for a single entity. (For DDL record formats, see
the description of the specified entity type in Chapter 3: Entities and Counters
(page 133).)
Reports for entities of the same entity type are written to the same file, and the file is
named for the entity type. If the file already exists, MEASCOM appends the data to
the file. If the file does not exist, MEASCOM creates it. (Structured files are closed
when you modify the FORMAT attribute.)

FROM [[start-date,] start-time-of-day]
specifies the start of the report window. If you omit FROM, the start time of the
measurement or the start time of the measurement of the entity is used, whichever is
later.
start-date

is the date on which the report window starts, in one of these formats:
{ [d]d mmm[yyyy] }
{ mmm [d]d[yyyy] }
where
dd is a day of the month, a number in the range 1 to 31.
mmm is the first three letters of the month; for example, JAN, MAR, OCT.
yyyy is the year. Valid years are 1984 through 2047.
If you omit date, the start date of the measurement is used.

start-time-of-day

is the time the report window starts, in the format:
hh:mm[:ss]
where
hh is the hour (0 through 23).
mm is minutes (0 through 59).
ss is seconds (0 through 59).
If you omit time-of-day, the start time of the measurement is used.

LIST entity-type 71

IF { item-name operation value }
determines which data records are included in the report. Only records that meet the
specified condition are included.
item-name

is one of:
{ counter }
{ identification-item }
where
counter is a counter name. Special considerations for these entity types include:
• For the PROCESSH entity type, counter is a procedure name.
• For the cache counters of the DISC entity type, counter must be preceded by

C0-, C1-, C2-, or C3- to specify the size of the cache blocks to be considered.
identification-item is a numeric entity identification item of INT or INT(32)
type. To determine which identification items can be used, see the MEASDDLS file
or the descriptions of each entity descriptor in MEASCONFIGURE (page 358).
Character string items such as PROCESS-NAME and fixed-length items such as
FROM-TIMESTAMP cannot be used in the IF clause.
An exception to the rules above is the USERDEF entity, for which a character string
can be used if the counter equals name. For example:
+ list userdef *, if name = MYCOUNTER

operation

is one of:

= (equal to)> (greater than)

<> (not equal to)< (less than)

value

is a number in the range 0 through 2147482.999. From Measure G09 and later PVUs
the range is 0 through 999999999999.

LOADID loadid

specifies the name to be placed in the loadid field of the records generated by this
command. The LOADID option applies only to structured reports.
loadid

is an alphanumeric string, 1 through 8 characters long. The string can contain letters,
numbers, carets (^), hyphens (-), and underscores (_). The first character must be a
letter.

RATE { OFF | ON }
determines how counter values are displayed. The RATE attribute has no effect on
structured files. The default is ON.
OFF

displays uninterpreted counter values.
ON

displays interpreted counter values (counts per second and percent busy).
STYLE { LEGACY } { ZMS }

sets whether displays or structured data are formatted using the ZMS style interface or
using the legacy interface compatible with pre-G11 Measure PVUs. In G-series RVUs,
the default is LEGACY; in H-series RVUs, the default is ZMS.

72 MEASCOM Commands

LEGACY
displays and structured records use the legacy style.

ZMS
displays and structured records use the ZMS style.

TO [end-date,] end-time-of-day
specifies the end of the report window. FOR and TO are mutually exclusive. If you omit
both, the window ends when the measurement ends or when measurement of the entity
ends, whichever is earlier.
end-date

is the date on which the report window ends, in the same format as the start-date.
If you omit end-date, the end date of the measurement is used.

end-time-of-day

is the end time of the report window, in the same format as thestart-time-of-day.
If you omit end-time-of-day, the end time of the measurement is used.

TOLERANCE { ON | OFF }
is the tolerance to be applied in deciding which measurements are included in the report:
• TOLERANCE OFF applies the FROM and TO limits exactly as specified.
• TOLERANCE ON (the default) interprets the FROM and TO limits as a range bounded

by plus or minus one-half of the measurement interval. For example, if the specified
FROM time is 8:00 and the measurement interval is 30 minutes, the actual FROM
time can be as early as 7:45. Similarly, if the specified TO time is 10:00, the actual TO
time can be as late as 10:15.

TOTALS { INCLUDE | ONLY | SUPPRESS }
determines whether TOTALS are displayed. The default is SUPPRESS.
INCLUDE

indicates that both the per-process and aggregated totals are displayed. When
aggregated totals are displayed, the set of totals is enclosed in brackets ([…]), and the
number of processes that were executing the code being totaled precedes the individual
code-range results, also enclosed in brackets (that is, [Totals across 3 processes]).

ONLY
For all entities except PROCESSH and USERDEF, displays only the final TOTALS
report. If only one entity report is generated, the TOTALS report is not displayed.
For the PROCESSH entity, only aggregated PROCESSH data is displayed.

NOTE: PROCESSH data can be collected on either a per-code-file basis or a
per-procedure basis, depending on whether a code-file-spec was supplied when the
PROCESSH measurement was configured (via the ADD PROCESSH command).
Thus, the displayed totals can cover an entire code-file or each of a set of code ranges
within the code-file.

SUPPRESS
displays only the entity reports. (The TOTALS attribute is ignored if a report contains
only measurements for one entity.)
For PROCESSH, SUPPRESS indicates only per-process data is displayed (aggregated
data is not displayed).
SUPPRESS has no effect on USERDEF reports.

LIST entity-type 73

ZERO-REPORTS { INCLUDE | SUPPRESS }
determines whether records containing all zero values are displayed. The default is
SUPPRESS.
INCLUDE

displays entity reports even if all counter values are zero.
SUPPRESS

does not display entity reports if all counter values are zero.
ZERO-VALUES { INCLUDE | SUPPRESS }

determines whether values less than 0.005 are displayed as zeros or blanks. The default
is SUPPRESS.
INCLUDE

displays zeros if counter values are less than 0.005.
SUPPRESS

displays blanks if counter values are less than 0.005.
The ZERO-VALUES attribute has no effect on structured files.

Related Commands

PageFunctionCommand

108Specifies the report formatSET REPORT

85Displays an active measurementLISTACTIVE

Usage Notes
• The FILE and PROCESS entities display the names of open files. A file can include resources

whose names do not conform to file name syntax, such as a process. To display reports for
these entities, specify the CPU, PIN, and file number of the resource rather than its file name.
For an example, see Examples (page 75).

• If you use the FROM, FOR, or TO clauses to specify a report window to view only a portion
of the measurement data, LIST generates the report:
— If the data was collected with no collection interval, only entities that started and stopped

within the specified report window are included in the report.
— If the data was collected with a collection interval, for each entity you specify,

MEASCOM reads the record written nearest to the beginning of the report window
and the record nearest to the end of the report window. MEASCOM then generates the
report from the differences between the two records. Both records must be within the
report window or within one collection interval of the start or end time of the window.

• You cannot generate a sorted report (BY item-name) if the report output file is a structured
file. The FORMAT option of the REPORT object determines the output format.

• In G-series RVUs, IF clauses cannot refer to fields that appear only in ZMS style records and
reports, even in the ZMS style report mode.

• In H-series RVUs, IF clauses cannot refer to fields that appear only in legacy style records
and reports, even in the legacy style report mode.

• The list options CR-NAME-LEN, CR-NAME-FORM, and CR-NAME-QUAL are valid for
the PROCESSH entity only.

• In Measure G12 and later PVUs, code-space identifiers are displayed only for TNS code files
(including accelerated TNS code files).

• In Measure H01 and later PVUs, the LIST command allows DISCOPEN, DISKFILE, FILE,
and SQLSTMT entity specifications using ANSI SQL names. For the specification syntax,
see DISCOPEN (page 198), DISKFILE (page 207), FILE (page 216), or SQLSTMT (page 319).

74 MEASCOM Commands

• In Measure H03, J01, and later PVUs, the LIST command allows SERVERNET, DEVICE, and
DISC entity specifications using CLIMs. For specification syntax and examples, refer to the
SERVERNET (page 302), DEVICE (page 171) and DISC (page 180) entities.

• Measure H04, J02, and later PVUs will create a format 1 or format 2 structured file, depending
upon the measurement data file size, if the report output file is a structured file.

• To obtain external records corresponding to a format that you can handle, see
TEMPLATE-VERSION (page 143).

Examples
• To display a CPU report, using the NORMAL report format (NORMAL means all counters

are displayed):
+ LIST CPU 5
Cpu 5 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 491 Page Size 2048
Local System \BUYER From 22 Oct 1994, 12:20:47 For 118 Secs

Cpu-Busy-Time 21.46 % Swaps 0.21
Cpu-Qtime 0.27 # Cpu-Qlen-Max 62 #
Mem-Qtime 0.01 # Mem-Qlen-Max 26 #
Dispatches 31.80 Intr-Busy-Time 0.49 %
Process-Ovhd 0.02 % Send-Busy-Time 0.12 %
Disc-IOs 2.00 Cache-Hits 4.39
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000

• To display all CPU reports, using the BRIEF format (BRIEF causes a Measure-defined subset
of the counters to be displayed):
+ LIST CPU *
Cpu 5 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 491 Page Size 2048
Local System \BUYER From 22 Oct 1994, 12:20:47 For 118 Secs

Cpu-Busy-Time 21.46% Swaps 0.21
Ending-Free-Mem 4092 Ending-UCME
++
Cpu 6 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 100 Page Size 2048
Local System \BUYER From 22 Oct 1994, 12:20:47 For 118 Secs

Cpu-Busy-Time 18.42% Swaps 0.27
Ending-Free-Mem 4092 Ending-UCME 0
++
Cpu 7 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 100 Page Size 2048
Local System \BUYER From 22 Oct 1994, 12:20:47 For 118 Secs

Cpu-Busy-Time 5% Swaps 0.19
Ending-Free-Mem 4092 Ending-UCME 0

• To display the same CPU reports in ascending order according to the SWAPS counter:
+ LIST CPU *, BY SWAPS (ASCENDING)
Cpu 7 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 100 Page Size 2048
Local System \BUYER From 22 Oct 1994, 12:20:47 For 118 Secs

Cpu-Busy-Time 5% Swaps 0.19
Ending-Free-Mem 4092 Ending-UCME 0
++

LIST entity-type 75

Cpu 5 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 491 Page Size 2048
Local System \BUYER From 22 Oct 1994, 12:20:47 For 118 Secs

Cpu-Busy-Time 21.46% Swaps 0.21
Ending-Free-Mem 4092 Ending-UCME 0
++
Cpu 6 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 100 Page Size 2048
Local System \BUYER From 22 Oct 1994, 12:20:47 For 118 Secs

Cpu-Busy-Time 18.42% Swaps 0.27
Ending-Free-Mem 4092 Ending-UCME 0
++

• To display only CPU reports in which the CPU-BUSY-TIME value is greater than 5:
+ LIST CPU *, IF CPU-BUSY-TIME > 5
Cpu 6 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 100 Page Size 2048
Local System \BUYER From 22 Oct 1994, 12:20:47 For 118 Secs

Cpu-Busy-Time 18.42% Swaps 0.27
Ending-Free-Mem 4092 Ending-UCME 0
++
Cpu 5 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 491 Page Size 2048
Local System \BUYER From 22 Oct 1994, 12:20:47 For 118 Secs

Cpu-Busy-Time 21.46% Swaps 0.21
Ending-Free-Mem 4092 Ending-UCME 0

• To display two reports for CPU 1, one of which averages CPU activity over the entire
measurement window, and the second of which averages CPU activity over a smaller report
window:
+ LIST CPU 1
Cpu 1 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 256 Page Size 2048
Local System \BUYER From 5 Nov 1994, 10:29:24 For 3.5 Hours

Cpu-Busy-Time 36.29% Swaps 0.42
Ending-Free-Mem 4092 Ending-UCME 0

+ LIST CPU 1, FROM 12:30, TO 12:45
Cpu 1 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 256 Page Size 2048
Local System \BUYER From 5 Nov 1994, 12:30:24 For 15 Minutes

Cpu-Busy-Time 15.05% Swaps 0.05
Ending-Free-Mem 4092 Ending-UCME 0

• If you are examining a measurement data file from a remote system, you must use complete
specifications when referencing files within the data file. To display a FILE report:
+ LIST FILE *
File Open $NEW01.MEAS.QCPU4A
Device Type 3
Opener Process: CPU 3 PIN 37 File Number 1
Local System \BILLS From 24 Oct 1994, 10:01:08 For 0.1 Seconds

Reads 45.46
Writes
++
File Open \BILLS.03,037
Device Type 0
Opener Process: CPU 3 PIN 39 File Number 2

76 MEASCOM Commands

Local System \BILLS From 24 Oct 1994, 10:01:08 For 0.2 Seconds

Reads
Writes 86.28
++

• The local system for the measurement was \BILLS. Assuming that you are examining the
file on \ACCT, to display the first file of the previous example:
+ LIST FILE \BILLS.$NEW01.MEAS.QCPU4A

To display the second file, you must use the CPU, PIN, and file number because the file
name (as listed by MEASCOM) points to a different system:
+ LIST FILE \BILLS.$*.*.* (3,39,2)

• To display collected PROCESSH samples in BRIEF format:
+ RESET REPORT *
+ SET REPORT FORMAT BRIEF
+ LIST PROCESSH *, RATE OFF, IF CODE-RANGE > 0
Process 1,47 Pri 168 Device Name $SYSTEM
Program $SYSTEM.SYS46.FUP
Userid 255,255 Creatorid 255,255 Ancestor 1,37 ($Z02M)
Local System \RAMBLER From 10 Sep 2004, 13:22:08 For 22.2 Seconds
Total samples = 69 #
Code-Map UC.0 Samples 1 # 1.45 % of total
Code file $SYSTEM.SYS46.FUP:134451329318623
Code-Map UC.1 Samples 2 # 2.90 % of total
Code file $SYSTEM.SYS46.FUP:134451329318623
Code-Map NATIVE Samples 65 # 94.20 % of total
Code file $SYSTEM.SYS46.OSIMAGE:134451333766514
Code-Map NATIVE Samples 1 # 1.45 % of total
Code file $SYSTEM.SYS46.OSIMAGE:134451333766514

• To display collected PROCESSH samples in the default format (with CR-NAME-LEN SHORT,
CR-NAME-FORM STANDARD, and CR-NAME-QUAL UNQUALIFIED):
+ list processh 1,47,by code-range,if code-range > 0
 Process 1,47 Pri 168 Device Name $SYSTEM
 Program $SYSTEM.SYS46.FUP
 Userid 255,255 Creatorid 255,255 Ancestor 1,37 ($Z02M)
 Local System \RAMBLER From 10 Sep 2004, 13:22:08 For 22.2 Seconds
 Total samples = 69 #
 Code-Map UC.0 Samples 1 # 1.45 % of total
 Code file $SYSTEM.SYS46.FUP:134451329318623
 Percent Percent
 Code-Range Name Accel TNS of Code-Map of Total
------------------------------ ----------- ----------- ----------- ----------
FILE^HAS^FORMAT1 1 # 100 % 1.45
 Code-Map UC.1 Samples 2 # 2.90 % of total

 Code file $SYSTEM.SYS46.FUP:134451329318623
 Percent Percent
Code-Range Name Accel TNS of Code-Map of Total
------------------------------ ----------- ----------- ----------- ----------
 START^LARGE^READ 1 # 50 % 1.45
 READ^BLOCK 1 # 50 % 1.45
 Code-Map NATIVE Samples 65 # 94.20 % of total

 Code file $SYSTEM.SYS46.OSIMAGE:134451333766514
 Percent Percent
Code-Range Name NATIVE of Code-Map of Total
 -------------------------------- ----------- ----------- -----------
 dbio_xsums_validate_ 31 # 47.69 % 44.93 %
 dbio_xsums_generate_ 6 # 9.23 % 8.70 %
 tser__transfer 3 # 4.62 % 4.35 %
 WAIT 3 # 4.62 % 4.35 %
 tip_avtrelease_flags 2 # 3.08 % 2.90 %
 tip_avtsetup_data 2 # 3.08 % 2.90 %

LIST entity-type 77

 LOCKMEMORY 2 # 3.08 % 2.90 %
 searchInitIndex__45NSKOrderedArr 1 # 1.54 % 1.45 %

• To display collected PROCESSH samples with demangled names (with CR-NAME-LEN
LONG, CR-NAME-FORM DEMANGLED and CR-NAME-QUAL UNQUALIFIED). Code
range name "searchInitIndex__45NSKOrderedArr" becomes
"NSKOrderedArrayOf<NSKM_MOPSTEntry, unsigned long>::searchInitIndex(unsigned
long, unsigned int) const" which is more familiar to the programmer:
+ list processh 1,47,by code-range,if code-range > 0
 Process 1,47 Pri 168 Device Name $SYSTEM
 Program $SYSTEM.SYS46.FUP
 Userid 255,255 Creatorid 255,255 Ancestor 1,37 ($Z02M)
 Local System \RAMBLER From 10 Sep 2004, 13:22:08 For 22.2 Seconds

 Total samples = 69 #

 Code-Map UC.0 Samples 1 # 1.45 % of total
 Code file $SYSTEM.SYS46.FUP:134451329318623

 Percent Percent
 Code-Range Name Accel TNS of Code-Map of Total
------------------------------ ----------- ----------- ----------- ----------
 FILE^HAS^FORMAT1 1 # 100 % 1.45
 FILE^HAS^FORMAT1
 Code-Map UC.1 Samples 2 # 2.90 % of total
 Code file $SYSTEM.SYS46.FUP:134451329318623
 Percent Percent
 Code-Range Name Accel TNS of Code-Map of Total
------------------------------ ----------- ----------- ----------- ----------
 START^LARGE^READ 1 # 50 % 1.45
 START^LARGE^READ
 READ^BLOCK 1 # 50 % 1.45
 READ^BLOCK

 Code-Map NATIVE Samples 65 # 94.20 % of total
 Code file $SYSTEM.SYS46.OSIMAGE:134451333766514

 Percent Percent
 Percent Percent
 Code-Range Name NATIVE of Code-Map of Total
-------------------------------- ----------- ----------- -----------
dbio_xsums_validate_ 31 # 47.69 % 44.93 %
dbio_xsums_validate_()
dbio_xsums_generate_ 6 # 9.23 % 8.70 %
dbio_xsums_generate_()
tser__transfer 3 # 4.62 % 4.35 %
tser__transfer()
WAIT 3 # 4.62 % 4.35 %
WAIT()
tip_avtrelease_flags 2 # 3.08 % 2.90 %
tip_avtrelease_flags()
tip_avtsetup_data 2 # 3.08 % 2.90 %
tip_avtsetup_data()
LOCKMEMORY 2 # 3.08 % 2.90 %
LOCKMEMORY()
searchInitIndex__45NSKOrderedArr 1 # 1.54 % 1.45 %
NSKOrderedArrayOf<NSKM_MOPSTEntry
, unsigned long>::searchInitIndex(unsigned long
, unsigned int) const

LIST EXTNAMES
In Measure G11 and later PVUs, this command creates or appends to a key-sequenced file of
records for mapping:
• Measure OSS PATHID values to OSS pathnames and Guardian file names
• MIDs to ANSI SQL names and Guardian file names

78 MEASCOM Commands

The file EXTNAMES contains EXTNAME name records and is assumed to be located in the
current default subvolume.
This command has no options or qualifiers. It can be issued only within the context of the REPORT
FORMAT STRUCTURED option.

Syntax
SET REPORT FORMAT STRUCTURED

LIST EXTNAMES

DDL Record for EXTNAMES file
The DDL record for EXTNAMES, defined in MEASDDLS, is:
RECORD extname. FILE is "extnames" KEY-SEQUENCED.
 02 MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 FILE-SYSTEM-NAME type character 8.
 02 FILE-NAME.
 03 VOLUME type character 8.
 03 SUBVOL type character 8.
 03 FILENAME type character 8.
 02 NAME-TYPE type binary 16 unsigned.
 02 FULL-NAME-LEN type binary 16 unsigned.
 02 FULL-NAME type character 1100.
end

DDL Record Description Fields
For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

FILE-NAME-MID

A Measure identifier for an OSS file or SQL/MX file. For OSS and SQL/MX files, the
FILE-NAME-MID can be used as a key to the EXTNAMES file to retrieve the corresponding
Guardian file name and external format OSS pathname or ANSI SQL name. FILE-NAME-MID
has two subfields: PATHID and CRVSN.
• PATHID is an internal format representation of an OSS file or SQL/MX file.
• CRVSN is a creation version serial number that identifies a unique instance of an OSS or

SQL/MX file.

FILE-SYSTEM-NAME

The EXPAND system name of a file described by file-name if the file is located on a node other
than that measured in the data file. Otherwise, this field contains spaces.

FILE-NAME

The Guardian local-internal-format file name for the OSS file or SQL/MX file. Also known as the
gname of the file.

NAME-TYPE

Name types are: 0 - not used, 1 - OSS, 2 - ANSI SQL.

FULL-NAME-LEN

The length, in bytes, of the external-format OSS pathname or ANSI SQL name stored in the
FULL-NAME field. The maximum value is 1100 in Measure G11 and later PVUs.

LIST EXTNAMES 79

FULL-NAME

The left-justified external-format OSS pathname or ANSI SQL name. The field is defined as 1100
characters, but the length of the actual name is reported in FULL-NAME-LEN. Remaining
characters are undefined.

Example
To create an EXTNAMES structured output file:
+ SET REPORT FORMAT STRUCTURED
+ LIST EXTNAMES

LIST OSSNAMES
In Measure G09 and later PVUs, this command creates or appends Guardian file names or
Measure MID values to their OSS file pathnames equivalent. The key-sequenced file is named
OSSNAMES and is assumed to be in the current default subvolume.
The LIST OSSNAMES command has no options or qualifiers. The command can only be issued
following the REPORT FORMAT STRUCTURED command.
In Measure G11 and later PVUs, LIST OSSNAMES is still available but is superseded by LIST
EXTNAMES (page 78), which supports both OSS file pathnames and ANSI SQL names.

Syntax
LIST OSSNAMES

Usage Notes
This warning or error message might be displayed:
3114 OSS journal segment is required in this context and is not available for access.

DDL Record for OSSNAMES file
The DDL record for OSSNAMES, defined in MEASDDLS, is:
RECORD OSSNAMES. FILE is "OSSNAMES" KEY-SEQUENCED.
 02 MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 file-system-name type character 8.
 02 file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 pathname-len type binary 16 unsigned.
 02 pathname type character 1024.
* key is MID duplicates not allowed
end

Example
To create an OSSNAMES structured output file:
+ SET REPORT FORMAT STRUCTURED
+ LIST OSSNAMES

LIST PLOT
This command displays the currently designated plot, as specified by one or more ADD PLOT
commands.
In Measure G11 and later PVUs, ANSI SQL names appear in plots.

80 MEASCOM Commands

Syntax
LIST [/ OUT filename /] [PLOT]
 [, FROM [start-date,] start-time-of-day]
 [, FOR duration]
 [, TO [stop-date,] stop-time-of-day]
 [, INTERVAL interval]

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filename exists, MEASCOM
opens the file and appends command output to the end of it.
After the LIST PLOT command executes, MEASCOM redirects its output to the current OUT
file (typically, the terminal). This option does not affect the contents of the log file.

PLOT
is optional if you specified PLOT as the command object by using the ASSUME command.

FROM [start-date ,] start-time-of-day
specifies the start of the plot window. If you omit FROM, the start time of the measurement
or of the entity measurement is used, whichever is later.
start-date

is the date on which the plot window starts, in one of these formats:
{ [d]d mmm[yyyy] }
{ mmm [d]d[yyyy] }

where
dd is a day of the month, a number in the range 1 through 31.
mmm is the first three letters of the month; for example: JAN, MAR, OCT.
yyyy is the year. Valid years are 1984 through 2047.
If you omit start-date, the start date of the measurement or of the measurement of
the entity is used, whichever is later.

start-time-of-day

is the time the plot window starts, in the format:
hh:mm[:ss]
where
hh is the hour (0 through 23).
mm is minutes (0 through 59).
ss is seconds (0 through 59).
If you omit start-time-of-day, the start time of the measurement is used.

FOR duration

specifies the duration of the plot window. FOR and TO are mutually exclusive. If you
omit both, the window ends when the measurement or the entity measurement ends,
whichever is earlier.
duration

is a time interval in one of these formats:
n SECOND[S]
n MINUTE[S]
n HOUR[S]
where n is an integer in the range 1 through 9999.

LIST PLOT 81

INTERVAL interval

specifies the time interval for the time line in the plot.
interval

is a time interval in one of these formats:
n SECOND[S]
n MINUTE[S]
n HOUR[S]
where n is an integer in the range 1 through 9999 and a multiple of the collection
interval specified when the data was collected.
If you omit INTERVAL, MEASCOM uses the collection interval specified when the
data was collected.

SCALE-FROM number

sets the lower boundary of the data-value axis.
number

is a number in the range 0 through 999999999999.999. The default is 0.
SCALE-TO number

sets the upper boundary of the data-value axis.
number is a number in the range 0 through 999999999999.999. The default is 100.

TIME-BASE { OFF | ON }
displays a bar graph or a two-axis plot of counter values. If a time interval was specified
when the data was collected, the default is TIME-BASE ON. Otherwise, the default is
TIME-BASE OFF.
OFF

displays a bar graph of average counter values.
ON

displays a plot of counter values over time.
TO [end-date ,] end-time-of-day

specifies the end of the plot window. FOR and TO are mutually exclusive. If you omit
both, the window ends when the measurement or the entity measurement ends, whichever
is earlier.
end-date

is the end date of the data used for the plot, in the same format as start-date.
end-time-of-day

is the end time of the data used for the plot, in the same format as
start-time-of-day.

VERT-BASE { OFF | ON }
controls the display of the time axis. The default is ON.
OFF

for a two-axis plot, displays time on the horizontal axis. For a bar graph, displays the
bars vertically (base on the horizontal axis).

ON
for a two-axis plot, displays time on the vertical axis. For a bar graph, displays the
bars horizontally (base on the vertical axis).

WIDE-ITEM { OFF | ON }
sets the density of the plot. The default is OFF.

82 MEASCOM Commands

OFF
for a two-axis plot, displays a single plot character for each counter value at each time
interval. For a bar graph, displays bars one character wide.

ON
for a two-axis plot, fills in the area between the time axis and the lowest counter value.
For a bar graph, displays bars two characters wide to six characters wide depending
on the number of counter values on the graph.

Related Commands

PageFunctionCommand

48Adds a counter to the current plot descriptionADD PLOT

55Deletes a counter from the current plot descriptionDELETE PLOT

67Displays the current plot descriptionINFO PLOT

67Specifies the plot formatSET PLOT

Examples
• To display a plot in the default format, assuming that the measurement data was collected

using a collection interval of 4 seconds:
+ LIST CPU *
 .
 . (reports for CPUs appear here)
 .
+ ADD PLOT CPU-BUSY-TIME
+ LIST PLOT

 0::::::+:::20.0::::::+:::40.0::::::+:::60.0 ...
14:28:19 - B A
14:28:23 - B A
14:28:27 - B A
14:28:31 -B A
14:28:35 - B A
14:28:39 -B A
14:28:43 -B A
14:28:47 - B A
14:28:51 -B A
14:28:55 -B A
14:28:59 -B A
14:29:03 -B A
14:29:07 - B A
 0::::::+:::20.0::::::+:::40.0::::::+:::60.0 ...

 Min. value = 2.000 Max value = 88.000

 A: CPU-BUSY-TIME Cpu 6
 B: CPU-BUSY-TIME Cpu 7

• To display a plot in the default format, assuming that the measurement data was collected
without a collection interval:
+ LIST CPU *
 .
 . (reports for CPUs appear here)
 .
+ ADD PLOT CPU-BUSY-TIME
+ LIST PLOT

 0::::::+:::20.0::::::+:::40.0::::::+:::60.0 ...

LIST PLOT 83

 A ************|
 B ***|
 0::::::+:::20.0::::::+:::40.0::::::+:::60.0 ...

 Min. value = 2.000 Max value = 88.000

 A: CPU-BUSY-TIME Cpu 6
 B: CPU-BUSY-TIME Cpu 7

• This example displays a PROCESSH plot that shows how many samples of accelerated code
and TNS code were measured. The asterisk (*) represents accelerated code, and the plus
sign (+) represents TNS code. The plot also shows the results for TNS code plotted separately.
+ LIST PROCESSH $SYSTEM.SYS02.MEASCOM (UC.0)
 .
 . (report for PROCESSH entity appears here)
 .
+ ADD PLOT CODE-RANGE
+ ADD PLOT TNS-BUSY-SAMPLES
+ SET PLOT TIME-BASE OFF

+ LIST PLOT

 0::::::+:::20.0::::::+:::40.0::::::+:::60.0:::::+:::80.0:::+::::100
 A **************************+++++++++++++++++++| -
 B **********************************++| -
 C ***++++++++++-
 ++++++++++++++++++++++++| -
 D +++++++++++++++| -
 E + -
 F +++++++++++++++++++++++++++++++++++++| -
 0::::::+:::20.0::::::+:::40.0::::::+:::60.0:::::+:::80.0:::+::::100

 Min. value = 2.000 Max value = 88.000

 A: FORMAT ProcessH $SYSTEM.SYSO2.MEASCOM (7,37)
 B: PRINT^T RESULT ProcessH $SYSTEM.SYSO2.MEASCOM (7,37)
 C: FIND^T ProcessH $SYSTEM.SYSO2.MEASCOM (7,37)
 D: FORMAT ProcessH $SYSTEM.SYSO2.MEASCOM (7,37)
 (TNS)
 E: PRINT^T RESULT ProcessH $SYSTEM.SYSO2.MEASCOM (7,37)
 (TNS)
 F: FIND^T ProcessH $SYSTEM.SYSO2.MEASCOM (7,37)
 (TNS)

• To display a PROCESSH plot that shows how many samples of TNS/R native code were
measured (the pound symbol (#) represents TNS/R native code):
+ LIST PROCESSH $SYSTEM.SYS02.TSYSDP2 (UCR)
 .
 . (report for PROCESSH entity appears here)
 .

+ ADD PLOT TNSR-BUSY-TIME
+ ADD PLOT TIME-BASE OFF
+ LIST PLOT

 0::::::+:::20.0::::::+:::40.0::::::+:::60.0:::::+:::80.0:::+::::100
 A ##| -
 B ##################################| -
 C #| -
 0::::::+:::20.0::::::+:::40.0::::::+:::60.0:::::+:::80.0:::+::::100

 Min. value = 2.000 Max value = 65.000

 A: AC1^CKPT^GET^BLOCK ProcessH $SYSTEM.SYSO2.TSYSDP2 (7,20)
 (TNSR)
 B: AC1^RECMOVE^DATA ProcessH $SYSTEM.SYSO2.TSYSDP2 (7,20)
 (TNSR)
 C: AC1^REDCHAIN^PURGE ProcessH $SYSTEM.SYSO2.TSYSDP2 (7,20)
 (TNSR)

84 MEASCOM Commands

LISTACTIVE entity-type
This command assembles data from the active measurement and displays a report for each entity
included in the entity-spec parameter.
A double prompt (++) at the bottom of the screen signals that another report follows the one
currently on the screen. Press Return (or any other key) to view the next report. Press Ctrl-Y or
type BREAK at the double prompt to ignore subsequent reports:
• If you entered multiple commands on the previous command line, BREAK interrupts the

current command and executes the next command.
• If you did not enter multiple commands, BREAK interrupts the current command and

returns the MEASCOM prompt.
The value in an active counter record reflects the activity of the counter from the time it was
initialized:
• For a CPU entity, the system initializes the active counter record when the CPU is loaded.
• For an entity of any other type, the Measure subsystem initializes the active counter record

when the measurement starts.
• If multiple measurements include the same entity, all measurements use the same active

counter record. The first measurement started initializes the counter record.

Syntax
LISTACTIVE [/ OUT filename /] [entity-type]

entity-spec [, list-option] ...

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends command output to it.
After the LISTACTIVE command executes, MEASCOM resumes writing its output to the
current OUT file (typically, the terminal). This option does not affect the log file contents.

entity-type

is one of:
CLUSTER DISKFILE OSSCPU SQLPROC USERDEF
CONTROLLER FILE OSSNS SQLSTMT
CPU LINE PROCESS SYSTEM
DEVICE NETLINE PROCESSH TERMINAL
DISC OPDISK SERVERNET TMF

The entity-type keyword is optional if you specified it as the command object by using
the ASSUME command.
LISTACTIVE has special entity specification syntax for the FILE, LINE, NETLINE, PROCESS,
SQLPROC, USERDEF, and TERMINAL entities. For details, see LISTACTIVE Entity
Specification Special Cases (page 87).

NOTE: For a LISTACTIVE command, an asterisk (*) cannot be used for the DEVICE or
DISK entities; a specific device or disk must be named.

entity-spec

identifies the entity to be measured. The identifiers you use are specific to each entity type.
For identifier syntax, see the description of the specified entity type in Chapter 3: Entities
and Counters (page 133).

LISTACTIVE entity-type 85

NOTE: Because LISTACTIVE uses entity-spec to access the entity control block directly
(which in turn is used to access the counter record in system counter space), entity-spec
must specify only one entity and must indicate the processor in which it resides.
Thus, DISKFILE accepts ANSI SQL partition names but not ANSI SQL object names.

list-option

is one of:
DOTS { ON } { OFF }

sets whether report displays include connecting dots between labels and numeric values.
Valid only if STYLE is ZMS. The default is OFF.
ON

displays use dots to connect labels to formatted numbers.
OFF

displays do not use dots to connect labels to formatted numbers.
FOR duration

for each field in the record, displays the difference between the immediate value and the
value after duration. If FOR is omitted, the field values reflect activity since the
measurement began.
duration is a time interval in one of these formats:
n SECOND[S]
n MINUTE[S]
n HOUR[S]
where n is an integer in the range 1 through 9999.

FORMAT { BRIEF } { NORMAL } { STRUCTURED }
sets the format of the report. The default is NORMAL.
BRIEF

displays an abbreviated report that contains the most commonly used counters for
each entity type.
For information on which counters are included in brief-format reports, see the DDL
record for the specified entity type in Chapter 3: Entities and Counters (page 133).
Counters included in brief-format reports are in boldface type in each DDL record.

NORMAL
displays all counters.

STRUCTURED
writes the report to a structured file for subsequent examination using Enform. A
single record consists of all counters for a single entity. (For DDL record format, see
the description of the specified entity type in Chapter 3: Entities and Counters
(page 133).)
Reports for entities of the same entity type are written to the same file, and the file is
named for the entity type. If the file already exists, MEASCOM appends the data to
the file. If the file does not exist, MEASCOM creates it. (Structured files are closed
when you modify the FORMAT attribute.)

86 MEASCOM Commands

LOADID loadid

specifies the name to be placed in the loadid field of the records generated by this
command. The LOADID option applies only to structured reports.
loadid is an alphanumeric string, 1 through 8 characters long. The string can contain
letters, numbers, carets (^), hyphens (-), and underscores (_). The first character must be
a letter.

RATE { OFF | ON }
determines how counter values are displayed. The RATE attribute has no effect on
structured files. The default is ON.
OFF

displays uninterpreted counter values.
ON

displays interpreted counter values (counts per second and percent busy).
STYLE { LEGACY } { ZMS }

sets whether displays or structured data are formatted using the ZMS style interface or
using the legacy interface compatible with G10 and earlier Measure PVUs. In G-series
RVUs, the default is LEGACY; in H-series RVUs, the default is ZMS.
LEGACY

displays and structured records use the legacy style.
ZMS

displays and structured records use the ZMS style.
ZERO-REPORTS { INCLUDE | SUPPRESS }

determines whether records containing all zero values are displayed. The default is
SUPPRESS.
INCLUDE

displays entity reports even if all counter values are zero.
SUPPRESS

does not display entity reports if all counter values are zero.
ZERO-VALUES { INCLUDE | SUPPRESS }

determines whether values less than 0.005 are displayed as zeros or blanks. The default
is SUPPRESS.
INCLUDE

displays zeros if counter values are less than 0.005.
SUPPRESS

displays blanks if counter values are less than 0.005.
The ZERO-VALUES attribute has no effect on structured files.

LISTACTIVE Entity Specification Special Cases
The LISTACTIVE command has special entity specification syntax for several entities.

DEVICE and DISC
LISTACTIVE [DEVICE | DISC] [device-spec [, listactive-spec]

device-spec

identifies the device or disc to measure, specified as:
Non-CLIM syntax:
{ devicename (cpu , svnet , group , module , slot [, scsi-id])
}

LISTACTIVE entity-type 87

CLIM syntax:
{ devicename (cpu , svnet , sac , lun) }

Syntax for disc only:
{ devicename-path (cpu) }

NOTE: For a LISTACTIVE command, you must name specific devices to be measured; a wildcard
(*) cannot be used.

Examples
FCSA disk: LISTACTIVE DISC $SYSTEM (0,X,110,3,1)
 LISTACTIVE DISC $SYSTEM (0,X,110,3,1,101)
CLIM disk: LISTACTIVE DISC $SYSTEM (0,X,C1002531,201) Path option: LISTACTIVE DISC $SYSTEM-P (0)

FILE
LISTACTIVE [FILE] [file-spec [, listactive-spec]

file-spec

identifies the file to measure, specified as:
filename (cpu, pin, filenum)

where cpu, pin is the PID of the opener, and filenum is in the range 0 through 255.

LINE and NETLINE
LISTACTIVE [LINE] [WAN-spec [, listactive-spec]

WAN-spec

identifies the line to measure, specified as one of:
{ cpu (line-name) }
{ cpu (trackid , clip , line) }

line-name

is the name of the line, in the form $name7, where name7 is up to seven characters.
cpu

is the number of the processors, in the range 0 through 15. The default is all CPUs.
trackid

is the number of the track, in the form%Hhexnum6, wherehexnum6 is up to six characters.
The default is all track IDs.

clip

is the number of the CLIPs, in the range 1 through 6. The default is all CLIPs.
line

is the number of the lines, either 0 or 1. The default is both lines.

PROCESS, SQLPROC, and USERDEF
LISTACTIVE [PROCESS] [process-spec [, listactive-spec]

process-spec

identifies the process to measure, specified as one of:
{ cpu,pin }
{ $process-name (cpu,) }
{ disk-filename (cpu, pin)
where cpu is in the range 0 through 15, and pin is in the range 0 through 65534.

TERMINAL
LISTACTIVE [TERMINAL] [terminal-spec [, listactive-spec]

88 MEASCOM Commands

terminal-spec

identifies the terminal to measure, specified as:
cpu (line-name.subdevice)

cpu is the number of the processor, in the range 0 through 15.
line-name is the name of the line, specified as: { $name7 | $num |
logical-Define-name }
subdevice is the name of the subdevice, specified as: { #name7 }

Usage Notes
• You can use LISTACTIVE to read the active records of DISKFILE entities. When you use

the command LISTACTIVE DISKFILE, the disk file spec must be a valid and unique disk
file name. MEASCOM expands partially specified file names with current SYSTEM and
VOLUME defaults.

• In Measure G12 and later PVUs, code-space identifiers are displayed only for TNS code files
(including accelerated TNS code files).

• LISTACTIVE cannot be used to read DISCOPEN or PROCESSH counters:
— The DISCOPEN record is unavailable to LISTACTIVE because you have no way to

uniquely determine the Open Control Block (OCB) number of an active file. MEASCTL
needs the OCB to locate the record.

— PROCESSH records are unavailable because the complexity of the measurement could
degrade system performance.

If you have specified a collection interval, you can use the LIST command to read DISCOPEN
and PROCESSH counters from a currently active data file. When you use a collection interval,
data is collected in an internal buffer and written to the data file when the buffer is full. One
or more collection intervals might pass before data is written to the file.

• The FILE and PROCESS entities display the names of open files. Because a process can open
resources other than files (such as a process or $0), the reports for these entities sometimes
include file names that are invalid according to Measure syntax. To display such reports,
specify the CPU, PIN, and file number of the resource rather than its file name. See the
examples under LIST entity-type (page 68).

• Information displayed by the LISTACTIVE command can differ from information displayed
by the LIST command:
— For a LISTACTIVE command, MEASCOM requests data from the Measure control

process (MEASCTL) in the respective CPU. MEASCTL reads the requested data from
the active counter record in system data space.

— For a LIST command, MEASCOM requests data from the Measure file-handling process
(MEASFH) for the respective data file. MEASFH uses information stored in the data
file to determine the activity of the counter during the measurement window (or during
the report window in the LIST command).

• In Measure H01 and later PVUs, the LISTACTIVE command allows DISKFILE, FILE, and
SQLSTMT entity specifications using ANSI SQL names. For the specification syntax, see
DISKFILE (page 207), FILE (page 216) or SQLSTMT (page 319).

• In Measure H03, J01, and later PVUs, the LISTACTIVE command allows SERVERNET,
DEVICE, and DISC entity specifications using CLIMs. For specification syntax and examples,
refer to the SERVERNET (page 302), DEVICE (page 171) and DISC (page 180) entities.

• Measure H04, J02, and later PVUs will create a format 1 or format 2 structured file, depending
upon the measurement data file size, if the report output file is a structured file.

LISTACTIVE entity-type 89

Related Commands

PageFunctionCommand

68Reads counter values from a data fileLIST

108Specifies a default report formatSET REPORT

Examples
• To display information about the disk $NEW01 on a NonStop K-series server:

+ SET REPORT FORMAT BRIEF
+ LISTACTIVE DISC $NEW01 (2,0,25,2)
Disc $NEW01 (4160 -- 895MB) PID 2,8 Ldev 5 C,C,U (0,%25,%2)
Local System \BILLS From 18 Oct 1994, 14:35:33 For 113 Seconds

Disc-Busy-Time 39.53 % Disc-Rate 16.04
Request Qtime 0.62 # Request-Qlen-Max 3 #

• To display information about the disk $DATA01 on a NonStop S-series server:
+ LISTACTIVE DISC $DATA01 (X, DISK-DEVICE-14)
Disc $DATA01 (4160 -- 4GB) Type 3 Subtype 23 PID 0,287
Cfg: DISK-DEVICE-14
SAC: CONTROLLER-2
GMS 1,4,402 SvNet X Logical Device 34
Local System \ACCT From 28 Oct 1995, 16:43:24 For 179 seconds

Disc-Busy-Time 43.51 % Disc-Rate 13.24
Request-Qtime 0.42 # Request-Qlen-Max 2#

• This example displays a report for CPU 1. The CPU record is initialized at system load, so
the measurements reflect CPU activity from system load to when the report was generated.
+ LISTACTIVE CPU 1
Cpu 1 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 200 Page Size 2048
Local System \BILLS From 10 Oct 1994, 18:45:18 For 187 Hours

Cpu-Busy-Time 0.67% Swaps 0.01
Cpu-Qtime 0.01# Cpu-Qlen-Max 13#
Mem-Qtime Mem-Qlen-Max 4#
Dispatches 5.63 Intr-Busy-Time 0.35%
Process-Ovhd Send-Busy-Time
Disc-IOs 0.02 Cache-Hits 0.01
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000

LISTALL entity-type
This command reads data from the current data file (the file most recently specified in an ADD
MEASUREMENT command) and displays a report for each entity included in the entity-spec
parameter.
The LISTALL command is similar in function and syntax to the LIST entity-type command.
However, LISTALL differs in that it lists each interval record within the specified measurement
window.

90 MEASCOM Commands

A double prompt (++) signals that another report follows the one on the screen. Press Return (or
any other key) to view the next report. Press Ctrl-Y or type BREAK at the double prompt to
ignore subsequent reports:
• If you entered multiple commands on the previous command line, BREAK causes the current

command to be interrupted and the next command to be executed.
• If you did not enter multiple commands, BREAK interrupts the current command, and the

MEASCOM prompt returns.

Syntax
LISTALL [/ OUT filename /] [entity-type] entity-spec
 [, list-option] ...

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends command output to it.
After the LISTALL command executes, MEASCOM resumes writing its output to the current
OUT file (typically, the terminal). This option does not affect the contents of the log file.

entity-type

is one of:
CLUSTER DISCOPEN OPDISK SERVERNET TMF
CONTROLLER DISKFILE OSSCPU SQLPROC USERDEF
CPU FILE OSSNS SQLSTMT
DEVICE LINE PROCESS SYSTEM
DISC NETLINE PROCESSH TERMINAL

The entity-type keyword is optional if you specified it as the command object by using
the ASSUME command.

entity-spec

identifies the entity to be measured. The identifiers you use are specific to each entity type.
For identifier syntax, see the description of the specified entity type in Chapter 3: Entities
and Counters (page 133).

list-option

is one of:
BY item-name [(ASCENDING) |(DESCENDING)]

sorts the report in ascending or descending order.
item-name

is one of:
{ counter }
{ identification-item }
where
counter is a counter name. By default, counter items are sorted in descending order.
Special considerations exist for the PROCESSH, DISC, and CPU entity types:
• For PROCESSH, counter is a procedure name.
• For DISC cache counters, counter must be preceded by C0-, C1-, C2-, or C3- to

specify the size of the cache blocks to be considered.
• For CPU, if a counter is not specified, the CPUs are listed in numeric order.
identification-item is an identification item such as CPU-NUM or
PROCESS-NAME. You can use any valid identification item for the specified entity.
By default, identification items are sorted in ascending order.

LISTALL entity-type 91

CR-NAME-LEN { SHORT | LONG }
controls the displayed length of procedure (code-range) names. The default is SHORT.
SHORT

truncates procedure (code-range) names (if necessary) at 32 characters. Mangled
procedure names are not demangled prior to display.

LONG
displays procedure (code-range) names both in their SHORT form and, if longer than
32 characters, in their entirety on a subsequent line. Mangled procedure names are
not demangled for display.

CR-NAME-FORM { STANDARD | DEMANGLED | BOTH }
controls whether demangled procedure (code-range) names are displayed (if applicable).
The default is STANDARD.
STANDARD

displays procedure (code-range) names in the form specified in the code file (mangled)
or EDIT file (demangled).

DEMANGLED
demangles procedure (code-range) names, if necessary, prior to display.

BOTH
displays procedure (code-range) names in both STANDARD and DEMANGLED
forms.

CR-NAME-QUAL { UNQUALIFIED | QUALIFIED }
controls whether procedure (code-range) names are displayed with object file name
qualifiers, if available, in the Code-Range Name column on the line immediately following
the traditional line of code-range output. The default is UNQUALIFIED.
UNQUALIFIED

displays procedure names in traditional form with no qualifiers.
QUALIFIED

displays procedure names together with the Guardian or OSS object file name of the
associated code. This can be useful in differentiating between like-named procedures
in different object files. Guardian file names have their associated CRVSN appended
to the end of the name.

DOTS { ON } { OFF }
specifies whether report displays include connecting dots between labels and numeric
values. Valid only if STYLE is ZMS. The default is OFF.
ON

displays dots to connect labels to formatted numbers.
OFF

does not display dots to connect labels to formatted numbers.
FOR duration

specifies the duration of the report window. FOR and TO are mutually exclusive. If you
omit both, the window ends when the measurement ends or when measurement of the
entity ends, whichever is earlier.
duration

is a time interval in one of these formats:
n SECOND[S]
n MINUTE[S]
n HOUR[S]

92 MEASCOM Commands

where n is an integer in the range 1 through 9999.
FORMAT { BRIEF } { NORMAL } { STRUCTURED }

sets the format of the report. The default is NORMAL.
BRIEF

displays an abbreviated report that contains the most commonly used counters for
each entity type. For information on which counters are included in brief-format
reports, see the DDL record for the specified entity type in Chapter 3: Entities and
Counters (page 133). Counters included in brief-format reports are in boldface type
in each DDL record.

NORMAL
displays all counters.

STRUCTURED
writes the report to a structured file for subsequent examination using Enform. A
single record consists of all counters for a single entity. (For DDL record format, see
the description of the specified entity type in Chapter 3: Entities and Counters
(page 133).)
Reports for entities of the same entity type are written to the same file, and the file is
named for the entity type. If the file already exists, MEASCOM appends the data to
the file. If the file does not exist, MEASCOM creates it. (Structured files are closed
when you modify the FORMAT attribute.)

FROM [[start-date,] start-time-of-day]
specifies the start of the report window. If you omit FROM, the start time of the
measurement or of the measurement of the entity is used, whichever is later.
start-date

is the date on which the report window starts, in one of these formats:
{ [d]d mmm[yyyy] }
{ mmm [d]d[yyyy] }
where
dd is a day of the month, a number in the range 1 through 31.
mmm is the first three letters of the month; for example: JAN, MAR, OCT.
yyyy is the year (1984 through 2047).
If you omit date, the start date of the measurement is used.

start-time-of-day

is the time the report window starts, in the format:
hh:mm[:ss]
where
hh is the hour (0 through 23).
mm is minutes (0 through 59).
ss is seconds (0 through 59).
If you omit start-time-of-day, the start time of the measurement is used.

IF { item-name operation value }
determines which data records are included in the report. Only records that meet the
specified condition are included.
item-name

is one of:
{ counter }

LISTALL entity-type 93

{ identification-item }
where
counter is a counter name.
• For the PROCESSH entity type, counter is a procedure name.
• For the cache counters of the DISC entity type, counter must be preceded by

C0-, C1-, C2-, or C3- to specify the size of the cache blocks to be considered.
identification-item is a numeric entity identification item of INT or INT(32)
type. To determine which identification items can be used, see the MEASDDLS file
or the descriptions of each entity descriptor in MEASCONFIGURE (page 358). Character
string items such as PROCESS-NAME and fixed-length items such as
FROM-TIMESTAMP cannot be used in the IF clause.

operation

is one of:
> (greater than)
< (less than)
= (equal to)
<> (not equal to)

value

is a number in the range 0 through 2147482.999. From Measure G09 and later PVUs
the range is 0 through 999999999999.

LOADID loadid

specifies the name to be placed in the loadid field of the records generated by this
command. The LOADID option applies only to structured reports.
loadid

is an alphanumeric string, 1 through 8 characters long. The string can contain letters,
numbers, carets (^), hyphens (-), and underscores (_). The first character must be a
letter.
When used in the LISTALL command, LOADID should not exceed five characters.
Leave three blank characters on the right. The LISTALL command inserts the interval
sequence number (for example, 001, 002, 003, ...) in these three right-hand character
positions.

STYLE { LEGACY } { ZMS }
sets whether displays or structured data are formatted using the ZMS style interface or
using the legacy interface compatible with pre-G11 Measure PVUs. In G-series RVUs,
the default is LEGACY; in H-series RVUs, the default is ZMS.
LEGACY

displays and structured records use the legacy style.
ZMS

displays and structured records use the ZMS style.
TO [end-date,] end-time-of-day

specifies the end of the report window. FOR and TO are mutually exclusive. If you omit
both, the window ends when the measurement ends or when measurement of the entity
ends, whichever is earlier.
end-date

is the date on which the report window ends, in the same format as the start-date.
If you omit end-date, the end date of the measurement is used.

94 MEASCOM Commands

end-time-of-day

is the end time of report window, in the same format as the start-time-of-day.
If you omit end-time-of-day, the end time of the measurement is used.

TOLERANCE { ON | OFF }
is the tolerance to apply in deciding which measurements to include in the report:
• TOLERANCE OFF applies the FROM and TO limits exactly as specified.
• TOLERANCE ON (the default) interprets the FROM and TO limits as a range bounded

by plus or minus one-half of the measurement interval. For example, if the specified
FROM time is 8:00 and the measurement interval is 30 minutes, the actual FROM
time can be as early as 7:45. Similarly, if the specified TO time is 10:00, the actual TO
time can be as late as 10:15.

TOTALS { INCLUDE | ONLY | SUPPRESS }
specifies whether TOTALS are displayed. The default is SUPPRESS.
INCLUDE

indicates that both the per-process and aggregated totals are displayed. When
aggregated totals are displayed, the set of totals is enclosed in brackets ([…]), and the
number of processes that were executing the code being totaled precedes the individual
code-range results, also enclosed in brackets (that is, [Totals across 3 processes]).

ONLY
For all entities except PROCESSH and USERDEF, displays only the final TOTALS
report. If only one entity report is generated, the TOTALS report is not displayed.
For the PROCESSH entity, only aggregated PROCESSH data is displayed.

NOTE: PROCESSH data can be collected on either a per-code-file basis or a
per-procedure basis, dependent on whether a code-file-specwas supplied when
the PROCESSH measurement was configured (via the ADD PROCESSH command).
Thus, the displayed totals can cover an entire code file or each of a set of code ranges
within the code file.

SUPPRESS
displays only the entity reports. (The TOTALS attribute is ignored if a report contains
only measurements for one entity.)
For PROCESSH, SUPPRESS indicates only per-process data is displayed (Aggregated
data is not displayed.)
SUPPRESS has no effect on USERDEF reports.

ZERO-REPORTS { INCLUDE | SUPPRESS }
determines whether records containing all zero values are displayed. The default is
SUPPRESS.
INCLUDE

displays entity reports even if all counter values are zero.
SUPPRESS

does not display entity reports if all counter values are zero.
ZERO-VALUES { INCLUDE | SUPPRESS }

determines whether values less than 0.005 are displayed as zeros or blanks. The default
is SUPPRESS.
INCLUDE

displays zeros if counter values are less than 0.005.

LISTALL entity-type 95

SUPPRESS
displays blanks if counter values are less than 0.005.

The ZERO-VALUES attribute has no effect on structured files.

Usage Notes
• If a measurement has no intervals or if entity-type is PROCESSH, LISTALL produces

the same result as the LIST entity-type command.
• The LISTALL command can be used only with data file versions C20 and later.
• If the STRUCTURED report option is used (to send the report to a structured file), these list

options are not allowed:
BY item-name
RATE ON

• In G-series RVUs, IF clauses cannot refer to fields that appear only in ZMS style records and
reports, even in the ZMS style report mode.

• In H-series RVUs, IF clauses cannot refer to fields that appear only in legacy style records
and reports, even in the legacy style report mode.

• In Measure G12 and later PVUs, code-space identifiers are displayed only for TNS code files
(including accelerated TNS code files).

• In Measure H01 and later PVUs, the LISTALL command allows DISCOPEN, DISKFILE,
FILE, and SQLSTMT entity specifications using ANSI SQL names. For the specification
syntax, see DISCOPEN (page 198), DISKFILE (page 207), FILE (page 216), or SQLSTMT
(page 319).

• In Measure H03, J01, and later PVUs, the LISTALL command allows SERVERNET, DEVICE,
and DISC entity specifications using CLIMs. For specification syntax and examples, refer to
the SERVERNET (page 302), DEVICE (page 171) and DISC (page 180) entities.

• Measure H04, J02, and later PVUs will create a format 1 or format 2 structured file, depending
upon the measurement data file size, if the report output file is a structured file.

• Effective with Measure H04, J02, and later PVUs for the CPU and PROCESS entities, if the
PROCESSH sample count is unchanged from the start to the end of a measurement interval,
the NATIVE-BUSY-TIME, ACCEL-BUSY-TIME and TNS-BUSY-TIME fields will not be
displayed by MEASCOM even if a PROCESSH measurement is active. For the LISTALL
command, this means some intervals might display those fields and others might not.

Example
Assume these commands to establish hourly intervals for measuring CPU activity:
+ ADD CPU *
+ START MEASDATA, INTERVAL 1 HOUR, FROM 8:00, TO 14:00

This LISTALL command yields three records, showing the activity of CPU 0 during the intervals
9:00-10:00, 10:00-11:00, and 11:00-12:00:
+ LISTALL CPU 0, FROM 9:00, TO 12:00

In contrast, this LIST command yields a single record, showing the activity of CPU 0 from
9:00-12:00:
+ LIST CPU 0, FROM 9:00, TO 12:00

LISTENAME
In Measure G11 and later PVUs, this command translates a Guardian file name and CRVSN into
its corresponding external name (ANSI SQL name or OSS pathname). In cases of file name reuse,
the CRVSN distinguishes a specific instance of a Guardian file name.

96 MEASCOM Commands

Syntax
LISTENAME [/ OUT filename /] guardian-name[:crvsn]

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends the command output to it.

guardian-name

is the Guardian file name to be translated.
crvsn

is the creation version serial number associated with a specific instance of a Guardian file
name. To obtain a CRVSN value, view the MEASCOM entity display. The CRVSN is appended
to the Guardian file name using a colon.

Example
This example shows a Guardian file name translated to an ANSI SQL name:
+ LISTENAME $DATA01.ZSD12345.Z1234567:340359
$DATA.ZSD12345.Z1234567:340259 ’TABLE CATALOG_12.SCHEMA_34.TABLE_56
PARTITION PARTITION_78’

LISTGNAME
The LISTGNAME command can translate an OSS file pathname (Measure G09 and later PVUs)
or an ANSI SQL name (Measure H01 and later PVUs) to its corresponding Guardian file name
(gname) and creation version serial number (CRVSN). In the case of file name reuse, CRVSN
identifies a specific instance of a Guardian file name.
If the OSS file pathname specified identifies a directory, the contents of the directory are listed.
Subdirectories of a directory are listed by their OSS file pathname, and files are listed by their
Guardian file name and fully qualified OSS file pathname.
The OSS file pathname translation is affected by the current MEASCOM session and the type of
data files being added or deleted. These examples describe how this pathname translation is
determined:

MEASCOM Session HistoryBasis for OSS File Pathname Translation

MEASCOM session is not performing an ADD MEASUREMENT
command. or MEASCOM session is performing an ADD MEASUREMENT
command for an active data file or a data file from the current system that
does not contain an OSS journal segment.

OSS file-system interfaces

MEASCOM session is performing an ADD MEASUREMENT command
for a data file that contains an OSS journal segment.

Content of the OSS journal

MEASCOM session is performing an ADD MEASUREMENT command
for a data file that does not contain an OSS journal segment, and the data
file is not from the current node. An error message appears.

Cannot be determined

Syntax
LISTGNAME [/ OUT filename /] name

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends the command output to it.

LISTGNAME 97

“name”
can be a fully qualified and valid OSS file pathname or a partial OSS file pathname (in double
quotes), or a fully qualified ANSI SQL name.
To get a fully qualified and valid OSS file pathname, combinenamewith the current OSSPATH
setting. If the OSS file pathname does not begin with a backslash (/), expand it by putting the
current setting for OSSPATH before the backslash.
A fully qualified ANSI SQL name requires either a TABLE or an INDEX, optionally followed
by a PARTITION.

Usage Notes
• OSS file pathnames can be long and have the potential to exceed both the display width of

a screen and the maximum line length of a Guardian EDIT file. Output containing long OSS
file pathnames wraps to subsequent lines of the display or edit file in 80-character segments.

• These warning or error messages might appear:
3116 Unable to translate OSS file pathname.

Examples
• This information appears when name specifies an OSS file:

+ LISTGNAME "/Path/to/the/file"
$DATA01.ZYQ00001.Y00003D2:340359 "/Path/to/the/file"

• This information appears when name specifies an OSS directory:
+ LISTGNAME "/Path/to/the"
Directory: "/Path/to/the/Sourcefiles"
Directory: "/Path/to/the/Objectfiles"
$DATA01.ZYQ00001.Y00003D2:340359 "/Path/to/the/file"
$DATA01.ZYQ00001.Y00003D2:340223 "/Path/to/the/file1"
$DATA01.ZYQ00001.Y00003D2:340864 "/Path/to/the/file2"

• This information appears when name specifies an ANSI SQL file:
+ LISTGNAME ’TABLE CATALOG_12.SCHEMA_34.TABLE_56’
$DATA01.ZSD12345.Z1234567:340259
’TABLE CATALOG_12.SCHEMA_34.TABLE_56 PARTITION PARTITION_01’
$DATA01.ZSD12345.Z1234567:340282
’TABLE CATALOG_12.SCHEMA_34.TABLE_56 PARTITION PARTITION_02’
$DATA01.ZSD12345.Z1234567:340276
’TABLE CATALOG_12.SCHEMA_34.TABLE_56 PARTITION PARTITION_03’

LISTPNAME
In Measure G09 and later PVUs, the LISTPNAME command translates a Guardian file name (
gname) and creation version serial number (CRVSN) to the corresponding OSS file pathname.
The CRVSN distinguishes a specific instance of a Guardian file name in cases of file name reuse.
If the Guardian file name specified identifies a file that is accessible through more than one path,
all paths are listed.
OSS file pathname translation is affected by the current MEASCOM session and the type of data
files being added or deleted. For examples that describe how this pathname translation is
determined, see the table in LISTGNAME (page 97).
In Measure G11 and later PVUs, LISTPNAME is still available but is superseded by LISTENAME
(page 96), which supports both OSS file pathnames and ANSI SQL names.

Syntax
LISTPNAME [/ OUT filename /] gname [:crvsn]

98 MEASCOM Commands

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends the command output to it.

gname

is the Guardian file name to be translated.
crvsn

is the creation version serial number associated with a specific instance of a gname. crvsn
can be obtained from the MEASCOM entity displays and is appended to the Guardian file
name using a colon.

Usage Notes
• The /G form of a Guardian file name is always assumed to exist as a valid OSS file pathname.

The /G name is listed in a LISTPNAME output only if translation was through an OSS journal
segment and the access information recorded in the measurement data file indicates that
the /G form was used to access the file for a particular record.

• These warning or error messages might appear with this command:
3023 WARNING. CRVSN was not specified, translation may be incorrect.

3114 OSS journal segment is required in this context and is not available for access.

Examples
This example shows the output from a LISTPNAME command where the CRVSN is not specified.
In this case, a warning indicates a potentially incorrect OSS file pathname translation.
+ LISTPNAME $DATA01.ZYQ00001.Y00003D2
 MEAS 3023 WARNING. Crvsn was not specified, OSS file pathname translation
 may not be correct.
 $DATA01.ZYQ00001.Y00003D2:340259 "/Path/to/the/file"
 $DATA01.ZYQ00001.Y00003D2:340259 "/Another/Path/to/the/file"
 $DATA01.ZYQ00001.Y00003D2:340259 "/Still/another/path"

This example shows the output from a LISTPNAME command where the CRVSN was specified:
+ LISTPNAME $DATA01.ZYQ00001.Y00003D2:340359
 $DATA01.ZYQ00001.Y00003D2:340259 "/Path/to/the/file"
 $DATA01.ZYQ00001.Y00003D2:340259 "/Another/Path/to/the/file"
 $DATA01.ZYQ00001.Y00003D2:340259 "/Still/another/path"

LOG
This command starts and stops logging of a session. The log contains all commands entered and
their output.

Syntax
LOG { TO filename | STOP }

TO filename

starts logging a session to the specified file. If logging is already in process, MEASCOM closes
the log file, opens filename, and logs the session to the newly opened file.
filename is the name of the log file. If filename already exists, data is appended to the
existing file. If filename does not exist, MEASCOM creates it.

STOP
stops logging the session and closes the log file.

LOG 99

Usage Note
Logging does not affect MEASCOM command output, and the OUT command does not affect
the contents of a log file.

Example
This example starts logging the session. The ENV command shows environmental information,
including the current log file:
+ LOG TO $DATA.MEAS.LOG04
+ ENV
 System \BUYER
 Volume $DATA.MEAS
 Log to $DATA.MEAS.LOG04
 Assume MEASUREMENT

OBEY
This command reads MEASCOM commands from a specified file.

Syntax
OBEY filename [NOECHO]

filename

is the name of a command file that contains MEASCOM commands.
NOECHO

prevents the command file from echoing its commands to an output file.

Usage Notes
• The terms command file and OBEY file are often used interchangeably.
• You can nest up to four command files. When MEASCOM reaches the end of the primary

command file, it resumes reading commands from the device where the first OBEY command
was entered. Nested files can have different echoing options.

• Much of the command output for MEASCOM is in the correct format for a command file.
You can use the OUT command, or the OUT option in some MEASCOM commands, to
direct output to a file. With a little editing, you can then use that file as a command file.

Example
This example shows the execution of a command file. The commands and comments following
the OBEY command were read from the command file named DAILY:
+ OBEY DAILY
+ -- begin obey file
+ Add cpu 7
+ Add process *
+ Add file $*.*.ACCOUNT
+ -- end obey file

OSSPATH
Starting with the Measure G09 PVU, the OSSPATH command specifies a default directory for
use in expanding OSS file pathnames. OSS file pathnames encountered in MEASCOM that do
not begin with a slash (/) are expanded using the current setting of OSSPATH.

Syntax
OSSPATH "directory"

100 MEASCOM Commands

"directory"
is a fully qualified OSS file pathname that identifies a directory to be used as the default
directory. Subsequent OSS file pathnames that do not begin with a slash (/) are appended to
the default directory name to form a fully qualified OSS file pathname. The default value is
slash (/).

Example
This example shows the output from using the OSSPATH command to declare a default directory:
+ OSSPATH "/Path/to/the/SourceFiles"
+ LISTGNAME "Server"
 $DATA01.ZYQ00001.Y000019F.340568 "/Path/to/the/SourceFiles/Server"

OUT
This command directs command output to a specified file. You can use the OUT command to
create a command (OBEY) file based on MEASCOM command output. For example, the output
of the INFO MEASUREMENT command can be used, with little editing, to rerun a measurement.

Syntax
OUT filename

filename

is the name of the listing file. If filename already exists, command output is appended to
the file. If filename does not exist, MEASCOM creates an edit file by that name and sends
command output to it.

Usage Note
If command output is already being sent to another file, that file is closed before the new output
file is opened.

Example
This example directs command output to the file $DATA.MEAS.OUT04. Output from subsequent
commands (such as the ENV command in this example) is not displayed at the terminal.
+ OUT $DATA.MEAS.OUT04
+ ENV

PAGESIZE
In Measure G09 and later PVUs, this command designates the number of output lines, including
the prompt, to be displayed before the double prompt (++). Many of the entity report formats
exceed the display area of a standard 24-line by 80-column screen. Because displaying OSS file
pathnames can wrap to several lines of text, the length of many entity report formats varies. To
prevent data from scrolling off the display area before it is read, use the PAGESIZE command
to set a double prompt (++).
MEASCOM also presents a double prompt (++) between individual reports when a group of
reports is displayed. The double prompt (++) between reports is not affected by the setting of
PAGESIZE and continues to exist between reports.

Syntax
PAGESIZE [integer]

OUT 101

integer

is a value from 6 through 128. When specified, integer - 1 lines of report are displayed followed
by the double prompt (++). If no value is set, the default value of 128 is used, and double
prompts (++) are displayed only between individual reports.

Usage Notes
• To continue with the display of report data, press ENTER.
• To terminate the display and return to the main MEASCOM prompt, press the BREAK key

or enter Ctrl-Y.
• The PAGESIZE command has no effect on reports listed to a spooler or disk output file.
• These warning or error messages might appear with this command:

3053 Value out of range; value must be 6:128.

Example
To prevent data from scrolling out of a standard 24-line by 80 character display area:
+ PAGESIZE 24

RESET PLOT
This command resets one or more plot options to their default values.

NOTE: The RESET command accepts attributes, but no values. To set a plot to a value other
than the default, refer to the SET PLOT (page 104) command.

Syntax
RESET [PLOT] { * | plot-attribute [, plot-attribute] ... }

PLOT
is optional if you specified PLOT as the command object by using the ASSUME command.

plot-attribute

is one of:
FOR

resets the duration of the plot window to extend to the measurement end date and time.
FROM

resets the start of the plot window to the measurement start date and time.
SCALE-FROM

resets the lower boundary of the data-value axis to 0.
SCALE-TO

resets the upper boundary of the data-value axis to 100.
TIME-BASE

resets the TIME-BASE attribute to the default value. If a time interval was specified when
the data was collected, the default is TIME-BASE ON. Otherwise, the default is TIME-BASE
OFF.

TO
resets the end of the plot window to the measurement end date and time.

VERT-BASE
resets the display of the time axis to ON.

WIDE-ITEM
resets the density of the plot to OFF.

102 MEASCOM Commands

RESET REPORT
This command sets one or more report options to default values.

NOTE: The RESET command accepts attributes, but no values. To set a report to a value other
than the default, refer to the SET REPORT (page 108) command.

Syntax
RESET [REPORT] { * | report-attribute [, report-attribute] ... }

REPORT
is optional if you specified REPORT as the command object by using the ASSUME command.

report-attribute

includes:
CR-NAME-LEN

resets the displayed length of procedure (code-range) names to SHORT.
CR-NAME-FORM

resets the demangled procedure (code-range) names to STANDARD.
CR-NAME-QUAL

resets the procedure (code-range) names to UNQUALIFIED.
DOTS

resets the report displays to not include connecting dots between labels and numeric
values.

FOR
resets the duration of the report window to extend to the measurement end date and
time.

FORMAT
resets the format of the report to NORMAL.

FROM
resets the beginning of the report window to the measurement start date and time.

LOADID
resets the name to be placed in the loadid field of structured records as unspecified.

RATE
resets the display of counter values to ON.

STYLE
In G-series RVUs, resets the default to LEGACY; in H-series RVUs, resets the default to
ZMS.

TO
resets the end of the report window to the measurement end date and time.

TOTALS
resets the display of TOTALS to SUPPRESS.

ZERO-REPORTS
resets the display of reports with all zero counter values to SUPPRESS.

ZERO-VALUES
resets the display to show blanks (SUPPRESS) if values are less than 0.005.
The ZERO-VALUES attribute has no effect on structured files.

RESET REPORT 103

RUN
The RUN command lets you run another process without exiting from Measure. The MEASCOM
RUN command is similar to the TACL RUN command.

Syntax
RUN [/OUT out-file /] run-file [/ options /]
 ["parameter string"]

out-file

is an output file for any error messages generated by the RUN command.
run-file

is the program file to be run.
options

are run options. Commonly used run options include:

Specifies an input file for the process being run.IN filename

Specifies an output file for the process being run.OUT filename

Causes the MEASCOM prompt to return immediately after the RUN command
executes. If you do not use NOWAIT, Measure pauses until the run-file
process completes.

NOWAIT

Measure does not support all TACL run options. See Usage Notes.
"parameter"

is a parameter or a string of parameters to be passed to the newly created process. The
parameters must be enclosed in double quotation marks (" ").

Usage Notes
• For basic information about the RUN command and a complete description of its options,

see the TACL Reference Manual.
• If you specify a program name with no volume or subvolume (for example, RUN FUP),

Measure checks the current subvolume. If the file cannot be found or is not an object file,
Measure checks $SYSTEM.SYSTEM and $SYSTEM.SYSnn. If you specify a remote system
(for example, RUN \REMOTE.SURVCOM), Measure checks $SYSTEM.SYSTEM and
$SYSTEM.SYSnn on the remote system.

• Measure does not fully support certain TACL options:
— Only the OFF and ON keywords for INSPECT and DEFMODE are supported.
— The RUN options HIGHPIN and EXTSWAP are not supported.
— The RUND command is not directly supported. To use DEBUG, enter:

RUN program-file / DEBUG /

Example
To run FUP INFO from the MEASCOM prompt:
+ RUN FUP INFO MYSUBVOL.*

SET PLOT
This command sets one or more plot attributes that govern subsequent plots, until changed by
a new SET PLOT or RESET PLOT command.

104 MEASCOM Commands

Syntax
SET [PLOT] plot-attribute value [, plot-attribute value] ...

PLOT
is optional if you specified it as the command object by using the ASSUME command.

plot-attribute value

is one of:
FOR duration

is the duration of the plot window. FOR and TO are mutually exclusive. This attribute
becomes the default for subsequent plots until changed by a new SET PLOT or RESET
PLOT command.
duration

is a time interval in one of these formats:
n SECOND[S]
n MINUTE[S]
n HOUR[S]
where n is an integer in the range 1 through 9999.

FROM { [date,] time-of-day }
specifies the start of the plot window. This attribute becomes the default for all subsequent
plots until changed by a new SET PLOT or RESET PLOT command. If you omit FROM,
the start time of the measurement or the start time of the entity measurement is used,
whichever is later.
date

is the start date of the data to be used for the plot, in one of these formats:
{ [d]d mmm[yyyy] }
{ mmm [d]d[yyyy] }
where
dd is a day of the month, a number in the range 1 through 31.
mmm is the first three letters of the month; for example: JAN, MAR, OCT.
yyyy is the year. Valid years are 1984 through 2047.
If you omit date, the measurement start date is used.

time-of-day

is the start time of the data to be used for the plot, in the format:
hh:mm[:ss]
where
hh is the hour (0 through 23).
mm is minutes (0 through 59).
ss is seconds (0 through 59).
If you omit time-of-day, the measurement start time is used.

SCALE-FROM number

sets the lower boundary of the data-value axis.
number

is a number in the range 0 through 999999999999.999. The default is 0.
SCALE-TO number

sets the upper boundary of the data-value axis.

SET PLOT 105

number

is a number in the range 0 through 999999999999.999. The default is 100.
TIME-BASE { OFF | ON }

displays a bar graph or a two-axis plot of counter values. If a time interval was specified
when the data was collected, the default is TIME-BASE ON. Otherwise, the default is
TIME-BASE OFF.
OFF

displays a bar graph of average counter values.
ON

displays a plot of counter values over time.
TO [date,] time-of-day

specifies the end of the plot window. TO and FOR are mutually exclusive. This attribute
becomes the default for subsequent plots until changed by a new SET PLOT or RESET
PLOT command.
date

is the end date of the plot in one of these formats:
{ [d]d mmm[yyyy] }
{ mmm [d]d[yyyy] }
where
dd is a day of the month, a number in the range 1 through 31.
mmm is the first three letters of the month; for example: JAN, MAR, OCT.
yyyy is the year. Valid years are 1984 through 2047.
If you omit date, the measurement end date is used.

time-of-day

is the end time of the data to be used for the plot, in the format:
hh:mm[:ss]
where
hh is the hour (0 through 23).
mm is minutes (0 through 59).
ss is seconds (0 through 59).
If you omit time-of-day, the measurement end time is used.

VERT-BASE { OFF | ON }
controls the display of the time axis. The default is ON.
OFF

for a two-axis plot, displays time on the horizontal axis. For a bar graph, displays the
bars vertically (base on the horizontal axis).

ON
for a two-axis plot, displays time on the vertical axis. For a bar graph, displays the
bars horizontally (base on the vertical axis).

WIDE-ITEM { OFF | ON }
sets the density of the plot. The default is OFF.
OFF

for a two-axis plot, displays a single plot character for each counter value at each time
interval. For a bar graph, displays bars one character wide.

106 MEASCOM Commands

ON
for a two-axis plot, fills in the area between the time axis and the lowest counter value.
For a bar graph, displays bars two to six characters wide, depending on the number
of counter values on the graph.

Related Commands

PageFunctionCommand

48Specifies a plotADD PLOT

80Displays a plotLIST PLOT

Example
This example displays a two-axis plot and a bar graph. Both were made using the same data.
+ SET PLOT SCALE-TO 8
+ SET PLOT VERT-BASE OFF
+ SET PLOT WIDE-ITEM ON
+ LIST PLOT, INTERVAL 1 MINUTE
 7.99 -------------------
 7.62 - -
 7.26 - -
 6.90 - -
 6.53 - -
 6.17 - -
 5.81 - B -
 5.45 - -
 5.08 - B -
 4.72 - -
 4.36 - -
 3.99 - -
 3.63 -B A A -
 3.27 - * * -
 2.90 - * * B -
 2.54 -A * * -
 2.18 -* * * A B -
 1.82 -* * * * B -
 1.45 -* * * B * -
 1.09 -* * * * B A -
 .726 -* * * A * * -
 .363 -* * * * * A * A -
 0 -*-*-*-*-*-*-*-*-A-
 11:43:14 45 47 49 51
 44 46 48 50

 Min Value = 0 Max Value = 5.86
 A: READ-BUSY-TIME Disk $BOOKS1 (6, 1, 17, 1)
 B: READ-BUSY-TIME Disk $BOOKS1 (6, 1, 17, 2)

+ SET PLOT TIME-BASE OFF
+ LIST PLOT, INTERVAL 1 MINUTE
 7.99 ---
 7.62 - -
 7.26 - -
 6.90 - -
 6.53 - -
 6.17 - -
 5.81 - -
 5.45 - -
 5.08 - -
 4.72 - -
 4.36 - -

SET PLOT 107

 3.99 - -
 3.63 - -
 3.27 - -
 2.90 - ----- -
 2.54 - | | -
 2.18 - | | -
 1.82 - -----| | -
 1.45 -| | | -
 1.09 -| | | -
 .726 -| | | -
 .363 -| | | -
 0 -| | |---------------------------
 A B

 Min Value = 1.80 Max Value = 2.92
 A: READ-BUSY-TIME Disk $BOOKS1 (6, 1, 17, 1)
 B: READ-BUSY-TIME Disk $BOOKS1 (6, 1, 17, 2)

SET REPORT
This command governs the format of subsequent reports until changed by a new SET REPORT
command, a RESET REPORT command, or the addition of a new data file.

Syntax
SET [REPORT] report-attribute value [, report-attribute value] ...

REPORT
is optional if you specified REPORT as the command object by using the ASSUME command.

report-attribute value

includes:
CR-NAME-LEN { SHORT | LONG }

specifies the displayed length of procedure (code-range) names. The default is SHORT.
SHORT

truncates procedure (code-range) names (if necessary) at 32 characters. Mangled
procedure names are not demangled prior to display.

LONG
displays procedure (code-range) names both in their SHORT form and, if longer than
32 characters, in their entirety on a subsequent line. Mangled procedure names are
not demangled for display.

CR-NAME-FORM { STANDARD | DEMANGLED | BOTH }
specifies whether demangled procedure (code-range) names are displayed (if applicable).
The default is STANDARD.
STANDARD

displays procedure (code-range) names in the form was specified in the code file
(mangled) or EDIT file (demangled).

DEMANGLED
demangles procedure (code-range) names, if necessary, prior to display.

BOTH
displays procedure (code-range) names in both STANDARD and DEMANGLED
forms.

CR-NAME-QUAL { UNQUALIFIED | QUALIFIED }
specifies whether procedure (code-range) names are displayed with object file name
qualifiers, if available, in the "Code-Range Name" column on the line immediately
following the traditional line of code-range output. The default is UNQUALIFIED.

108 MEASCOM Commands

UNQUALIFIED
displays procedure names in traditional form with no qualifiers.

QUALIFIED
displays procedure names with the Guardian or OSS object file name of the associated
code. This can be useful in differentiating between like-named procedures in different
object files. Guardian file names have their associated CRVSN appended to the end
of the name.

DOTS { ON } { OFF }
indicates whether report displays should include connecting dots between labels and
numeric values. Valid only if STYLE is set to ZMS. The default is OFF.
ON

displays dots to connect labels to formatted numbers.
OFF

does not display dots to connect labels to formatted numbers.
FOR duration

is the duration of the report window. FOR and TO are mutually exclusive.
duration

is a time interval in one of these formats:
n SECOND[S]
n MINUTE[S]
n HOUR[S]
where n is an integer in the range 1 through 9999.

FORMAT { BRIEF } { NORMAL } { STRUCTURED }
sets the format of the report. The default is NORMAL.
BRIEF

displays a subset of the counters. The DDL records listed in this section list the counters
for each entity type. The counters that belong to the BRIEF subset are in boldface type.
For PROCESSH entities, if TOTALS INCLUDE or TOTALS ONLY is also specified,
only code-file level totals (not per-process totals) are displayed.
For more information about which counters are included in brief-format reports, see
the boldface counters in the DDL record for the specified entity type in Section 3,
Entities and Counters.

NORMAL
displays all counters.

STRUCTURED
writes the report to a structured file for subsequent examination using Enform. A
single record consists of all counters for a single entity. Reports for entities of the same
entity type are written to the same file, and the file is named for the entity type. If the
file already exists, MEASCOM appends the data to the file. If the file does not exist,
MEASCOM creates it. (Structured files are closed when you modify the FORMAT
attribute.)

FROM [start-date], start-time-of-day
specifies the beginning of the report window. If you omit FROM, the start time of the
measurement or the start time of the entity measurement is used, whichever is later.
start-date

is the start date of the data to be used for the report, in one of these formats:
{ [d]d mmm[yyyy] }
{ mmm [d]d[yyyy] }

SET REPORT 109

where
dd is a day of the month, a number in the range 1 through 31.
mmm is the first three letters of the month; for example: JAN, MAR, OCT.
yyyy is the year. Valid years are 1984 through 2047.
If you omit start-date, the measurement start date is used.

start-time-of-day

is the start time of the data to be used for the report, in the format:
hh:mm[:ss]
where
hh is the hour (0 through 23).
mm is minutes (0 through 59).
ss is seconds (0 through 59).
If you omit start-time-of-day, the measurement start time is used.

LOADID loadid

specifies the name to be placed in the loadid field of structured records.
loadid

is an alphanumeric string, 1 through 8 characters long. The string can contain letters,
numbers, carets (^), hyphens (-), and underscores (_). The first character must be a
letter.

RATE { OFF | ON }
determines how counter values are displayed. The RATE attribute has no effect on
structured files. The default is ON.
OFF

displays uninterpreted counter values.
ON

displays interpreted counter values (counts per second and percent busy).
STYLE { LEGACY | ZMS }

indicates whether displays and structured data are formatted using the ZMS style external
interface (Measure G11 or later) or using the external interface compatible with pre-G11
Measure PVUs. In G-series and earlier RVUs, the default is LEGACY; in H-series RVUs,
the default is ZMS.
LEGACY

displays and structured records use the pre-G11 Measure PVU style.
ZMS

displays and structured records use the style introduced in Measure G11.
TO [end-date,] end-time-of-day

specifies the end of the report window. TO and FOR are mutually exclusive.
end-date

is the end date of the report, in one of these formats:
{ [d]d mmm[yyyy] }
{ mmm [d]d[yyyy] }
where
dd is a day of the month, a number in the range 1 through 31.
mmm is the first three letters of the month; for example: JAN, MAR, OCT.
yyyy is the year. Valid years are 1984 through 2047.

110 MEASCOM Commands

If you omit end-date, the measurement end date is used.
end-time-of-day

is the end time of the data to be used for the report, in the format:
hh:mm[:ss]
where
hh is the hour (0 through 23).
mm is minutes (0 through 59).
ss is seconds (0 through 59).
If you omit end-time-of-day, the measurement end time is used.

TOTALS { INCLUDE | ONLY | SUPPRESS }
specifies whether TOTALS are displayed. The default is SUPPRESS.
INCLUDE

indicates that both the per-process and aggregated totals are displayed. When
aggregated totals are displayed, the set of totals is enclosed in brackets ([…]), and the
number of processes that were executing the code being totaled precedes the individual
code-range results, also enclosed in brackets (that is, [Totals across 3 processes]).

ONLY
For all entities except PROCESSH and USERDEF, displays only the final TOTALS
report. If only one entity report is generated, the TOTALS report is not displayed.
For the PROCESSH entity, only aggregated PROCESSH data is displayed.

NOTE: PROCESSH data can be collected on either a per-code-file basis or a
per-procedure basis, depending on whether a code-file-spec was supplied when the
PROCESSH measurement was configured (via the ADD PROCESSH command).
Thus, the displayed totals can cover an entire code file or each of a set of code ranges
within the code file.

SUPPRESS
displays only the entity reports. (The TOTALS attribute is ignored if a report contains
only measurements for one entity.)
For PROCESSH, SUPPRESS indicates only per-process data is displayed. (Aggregated
data is not displayed.)
SUPPRESS has no effect on USERDEF reports.

ZERO-REPORTS { INCLUDE | SUPPRESS }
determines whether records containing only zero values are displayed. The default is
SUPPRESS.
INCLUDE

displays entity records even if all counter values are zero.
SUPPRESS

does not display entity records if all counter values are zero.
ZERO-VALUES { INCLUDE | SUPPRESS }

determines whether values less than 0.005 are displayed as zeros or blanks.
INCLUDE

displays zeros if counter values are less than 0.005.
SUPPRESS

displays blanks if counter values are less than 0.005.
The ZERO-VALUES attribute has no effect on structured files. The default is SUPPRESS.

SET REPORT 111

*
resets all report attributes to default values.

Related Commands

PageFunctionCommand

46Specifies reportsADD MEASUREMENT

68
85
90

Displays reportsLIST entity-type
LISTACTIVE entity-type
LISTALL entity-type

Examples
• To display all CPU reports in the brief format, total the counter values across the reports,

and produce a final report containing the totaled counter values:
+ SET REPORT FORMAT BRIEF, TOTALS INCLUDE
+ LIST CPU *

Cpu 6 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 100 Page Size 2048
Local System \SAIID From 7 Aug 1994, 14:53:01 For 75 Seconds

Cpu-Busy-Time 17.86% Swaps 0.03
Ending-Free-Mem Ending-UCME
++
Cpu 7 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 100 Page Size 2048
Local System \SAIID From 7 Aug 1994, 14:53:01 For 75 Secs

Cpu-Busy-Time 2.22% Swaps
Ending-Free-Mem Ending-UCME
++
Totals for 2 Records
From 7 Aug 1994, 14:53:01 For 75 Seconds

Cpu-Busy-Time 20.07% Swaps 0.03
Ending-Free-Mem Ending-UCME

• To display a full report, with counter values displayed as counts and seconds busy rather
than rates and percent busy:
+ SET REPORT FORMAT NORMAL, RATE OFF
+ LIST CPU 6

Cpu 6 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 100 Page Size 2048
Local System \SAIID From 7 Aug 1994, 14:53:01 For 75 Seconds

Cpu-Busy-Time 13.52s Swaps 2#
Cpu-Qtime 18.56s Cpu-Qlen-Max 14#
Mem-Qtime 82.42m Mem-Qlen-Max 5#
Dispatches 3,297# Intr-Busy-Time 2.49s
Process-Ovhd Send-Busy-Time 46.65m
Disc-IOs 143# Cache-Hits 67#
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000

• To display a report using the ZMS style available in Measure G11 and later PVUs:

112 MEASCOM Commands

+ SET REPORT STYLE ZMS
+ LIST CPU 3, RATE OFF

Cpu 3 NSR-T Init Lock Pgs 269 Mem Pages 131072
Memory MB 2048 PCBs 2200 Pg Size 16384 Bytes
Format Version: G11 Data Version: G09 Subsystem Version: 1
Local System \MEASURE From 27 Mar 2002, 5:55:53 For 47 Minutes
------------ Processor --
Cpu-Busy-Time 1.94 sec Dispatches 3,647 #
Cpu-Qtime 4.41 sec Intr-Busy-Time 123.95 ms
Process-Ovhd 155.45 ms Send-Busy-Time
Comp-Traps 1,298 #
Native-Busy-Time 1.63 sec Accel-Busy-Time 165.03 ms
TNS-Busy-Time 18.22 ms PROCESSH-Samples
------------ Memory ---
Starting-Free-Mem 111,999 # Ending-Free-Mem 128,999 #
Swaps 1,999 # Page-Requests 3,999 #
MM-Page-Scans 3,999 # Page-Scans 14,995 #
Unsp-Pages-Qtime 499,999 sec Mem-Qtime
Unsp-Pages-Start 14 # Unsp-Pages-End 14 #
Starting-SCL 29,999 # Ending-SCL 7,999 #
Starting-UCL 25,999 # Ending-UCL 1,999 #
Starting-Free-CIDs 31,999 # Ending-Free-CIDs 31,999 #
Ending-UCME
------------ Device I/O ---
Disc-IOs 4 # Cache-Hits 141 #
Transactions Response-Time
------------ Messaging --
Link-Prepush-Msgs 7,989,999 # Readlinkcache-All 7,289,999 #
Link-Readlink-Msgs 102,999 # Readlinkcache-Ctrl 22,959,999 #
Link-Large-Msgs 102,999 # Readlinkcache-None
 Replyctrlcache-Msgs 7,289,999 #
------------ ServerNet Transfers Initiated by this Local Processor ----------
to/fm READS INTO CPU READ BYTES WRITES FROM CPU WRITE BYTES
CPU-0 458 # 337,750 # 452 # 195,478 #
CPU-1
 .
 .
 .
CPU-15
See TOTAL for sum over all initiating CPUs: total data into & from each CPU.

• To display a report using dots to connect labels to formatted numbers:
+ SET REPORT STYLE ZMS
+ SET REPORT DOTS ON
+ LIST DISKFILE *

Diskfile &D0TAE.SAFE.GUARD File Format 1
Device Name $D10D Pool
Local CPU 2 File Type Key Sequenced File Code 889
Format Version: G11 Data Version: G09 Subsystem Version: 1
Local System \SYSTEM From 27 Mar 2002, 5:55:53 For 69.9 Seconds
------------ File ---
Open-Qtime 999799 sec Transient-Opens 238 #
Ending-EOF 45,989 B File-Growth-Ratio 1.00
Extent-Allocations
------------ Logical I/O --
Lockwait-Time 3.14 sec Requests 2,999 #
Max-Lockwait-Time 3.14 sec Requests-Blocked
Lock-Timeouts Lock-Bounces
Cache-Read-Hits 2,999 # Cache-Write-Hits 2,479 #
Block-Splits Cache-Write-Cleans
Driver-Input-Calls 3,999 # Driver-Output-Calls2,999 #
DBIO-Input-Calls 178 # DBIO-Output-Calls 29 #
SQL-Inserts 1 # SQL-Deletes
SQL-Updates SQL-Ending-Rows 1 #
OSS-Cache-Callbacks OSS-Callback-Writes
OSS-Block-Writes OSS-Block-Write-Bytes

• This example, on G-series, displays collected PROCESSH samples with full, demangled,
and qualified code-range names (LONG, DEMANGLED, QUALIFIED):

SET REPORT 113

+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.TCPIP)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.ZCRESRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.ZINETSRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.ZLANCSRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.ZCRTLSRL)
+ ADD PROCESSH $SYSTEM.SYS00.TCPIP ($SYSTEM.SYS00.TSYSCLR)
+ SET REPORT CR-NAME-LEN LONG
+ SET REPORT CR-NAME-FORM DEMANGLED
+ SET REPORT CR-NAME-QUAL QUALIFIED
+ LIST PROCESSH *, RATE OFF, IF CODE-RANGE > 0
+

SQLCATALOG
In Measure H01 and later PVUs, this command specifies a default catalog for use in expanding
partially qualified ANSI SQL names.

Syntax
SQLCATALOG [’catalog-name’]

catalog-name

is an ANSI SQL catalog identifier. If catalog-name is not specified, the default empty value
is used.

Example
To specify a default catalog for expanding partially qualified ANSI SQL names:
+ SQLCATALOG ’CATALOG_12’

SQLSCHEMA
In Measure H01 and later PVUs, this command specifies a default schema, and optionally a
default catalog, for use in expanding partially qualified ANSI SQL names.

Syntax
SQLSCHEMA [’[catalog-name.]schema-name’]

catalog-name

is an ANSI SQL catalog identifier. If no default catalog is specified and there is no previous
default catalog, a warning message is displayed.

schema-name

is an ANSI SQL schema identifier.
If neither catalog-name nor schema-name is specified, the default empty value is used.

Example
To specify a default schema for expanding partially qualified ANSI SQL names:
+ SQLSCHEMA ’SCHEMA_34’

SETPROMPT
This command is similar to the TACL SETPROMPT command. SETPROMPT lets you redefine
the MEASCOM input prompt to include environmental information, such as the current assumed
object or the current log file. For more information on the TACL SETPROMPT command, see
the TACL Reference Manual.

114 MEASCOM Commands

Syntax
SETPROMPT { ASSUME }
 { LOG }
 { NONE }
 { OUT }
 { SYSTEM }
 { VOLUME }
 { SWAPVOL }
 { COMMENTS }
 { WARNINGS }

ASSUME
displays the current assumed object.

LOG
displays the current log file.

NONE
displays the standard MEASCOM prompt (the line number and a plus sign). The default is
NONE.

OUT
displays the current output file.

SYSTEM
displays the current system name.

VOLUME
displays the current volume and subvolume name.

SWAPVOL
displays the current swap volume.

COMMENTS
displays either DISPLAY ALL or SUPPRESS ALL, whichever is currently active for the
COMMENTS command. To determine which comments are individually displayed or
suppressed, use the ENV command.

WARNINGS
displays either DISPLAY ALL or SUPPRESS ALL, whichever is currently active for the
WARNINGS command. To determine which warnings are individually displayed or
suppressed, use the ENV command.

Usage Notes
• If you set the MEASCOM prompt to a parameter that is currently inactive, no information

appears in the prompt. For example, if you set the prompt to LOG while logging is not in
effect, the prompt does not display a log file name. However, when logging starts, the prompt
changes to the current log file name.

• The prompt reverts to the default setting (NONE) when you exit Measure.

Examples
• To set the MEASCOM prompt to display the current volume name:

12+ SETPROMPT VOLUME
$DATA MEAS13+

• To set the MEASCOM prompt to display the current assumed object, then change the assumed
object:
14+ SETPROMPT ASSUME
MEASUREMENT 15+ ASSUME PLOT
PLOT 16+

SETPROMPT 115

SHOW PLOT
This command displays the setting of one or all plot attributes.

Syntax
SHOW [/ OUT filename /] [PLOT] [attribute]

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends command output to it.
Following execution of the SHOW PLOT command, MEASCOM redirects its output to the
current OUT file (typically, the terminal). This attribute does not affect the contents of the
log file.

PLOT
is optional if you specified PLOT as the command object by using the ASSUME command.

attribute

is one of:

TIME-BASEFOR

TOFROM

VERT-BASESCALE-FROM

WIDE-ITEMSCALE-TO

For descriptions of these attributes, see SET PLOT (page 104).
If you omit attribute, MEASCOM displays all attributes.

Usage Notes
• The SHOW PLOT command output is a list of the commands used to set the plot attributes.

Use /OUT filename/ to create a command (OBEY) file that you can later use to restore the
current set of attributes.

• MEASCOM terminates a PLOT with TIME-BASE ON when it detects that no more records
match the time range.

Example
To display all plot attributes:
+ SHOW PLOT
 Set Plot Vert-Base on
 Set Plot Time-Base
 Set Plot Scale-From 0.000
 Set Plot Scale-To 100.000
 Set Plot Wide-Item off
 Set Plot From
 Set Plot To
 Set Plot For

SHOW REPORT
This command displays the setting of one or all report attributes.

Syntax
SHOW [/ OUT filename /] [REPORT] [attribute]

116 MEASCOM Commands

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends command output to it.
Following execution of the SHOW REPORT command, MEASCOM redirects its output to
the current OUT file (typically, the terminal). This attribute does not affect the contents of
the log file.

REPORT
is optional if you specified it as the command object by using the ASSUME command.

attribute

is one of:

TOFORMATCR-NAME-FORM

TOTALSFROMCR-NAME-LEN

ZERO-REPORTSLOADIDCR-NAME-QUAL

ZERO-VALUESRATEFOR

For descriptions of these attributes, see SET REPORT (page 108).
If you omit attribute, MEASCOM displays all attributes.

Usage Notes
• The SHOW REPORT command output is a list of the commands used to set the report

attributes. Use /OUT filename/ to create a command (OBEY) file that you can later use to
restore the current set of attributes.

• In Measure G12 and later PVUs, code-space identifiers are displayed only for TNS code files
(including accelerated TNS code files).

Examples
• To display all report attributes:

+ SHOW REPORT
Set Report Format normal
Set Report Rate on
Set Report Totals suppress
Set Report Zero-Values suppress
Set Report Zero-Reports suppress
Set Report From
Set Report For
Set Report LoadId
Set Report CR-NAME-LEN short
Set Report CR-NAME-FORM standard
Set Report CR-NAME-QUAL unqualified
+

• To only display the current value of the CR-NAME-LEN:
+ SHOW REPORT CR-NAME-LEN
Set Report CR-NAME-LEN short

START MEASSUBSYS
This command starts the Measure subsystem.

START MEASSUBSYS 117

Syntax
START [MEASSUBSYS]
START [MEASSUBSYS] , cpu

MEASSUBSYS
is optional if you specified MEASSUBSYS as the command object by using the ASSUME
command.

cpu

is the number of a CPU on your system. Specify cpuwhen the Measure subsystem is already
running and you need to restart MEASCTL in a specific CPU.
Under normal conditions, you should not have to use thecpuparameter. If a CPU goes down
and then is restarted, MEASMON automatically starts a new MEASCTL process in that CPU.
However, if an attempt to start a MEASCTL using MEASMON fails, you can start MEASCTL
manually by issuing START MEASSUBSYS with the cpu parameter.
The cpu parameter is valid only when the Measure subsystem is running.

Related Command

PageFunctionCommand

126Stops the Measure subsystemSTOP MEASSUBSYS

CAUTION: Do not stop the MEASCTL swap volume while Measure is running. Doing so causes
system failure. For more information, see Usage Notes.

Usage Notes
• The START MEASSUBSYS command can be executed only by a super-group user—that is,

a user who has user ID (255,n).
• To avoid having the MEASCTL swap volume brought down inadvertently, use only $SYSTEM

or a mirrored volume as the swap volume. If you start MEASSUBSYS by using a swap
volume other than $SYSTEM, MEASCOM issues a warning message. If possible, stop
MEASSUBSYS and then restart it:
MEASCOM/SWAP $SYSTEM/ START MEASSUBSYS

• If large measurements take excessively long to start, add these DEFINE statements before
the START MEASSUBSYS command in your measurement application:
ADD DEFINE =_MEASCTL_SKEW_COPYTIME, FILE A
ADD DEFINE =_LOCK_THE_CID_TABLE, FILE A

NOTE: The second ADD DEFINE statement applies to Measure G08 and earlier PVUs.

The FILE A addendum is required for syntax but is not used by TACL.
These DEFINE statements do not impact the startup time for small measurements.

• The CID table is an internal structure that determines how many entities can be measured.
The table assigns one counter identifier (CID) to each measured entity. For example, if you
request measurement of five different files, the CID table assigns one CID per file, no matter
how many counters the measurement includes for each file. In Measure product versions
earlier than G05, the CID table has an upper limit of 32,000 CIDs per processor. In product
versions D45, G05, and later, you can increase the CID table limit according to the DEFINE

118 MEASCOM Commands

statements, shown below. For H-series and J-series RVUs, the default size of the CID table
is 64,000 CIDs per processor.
To increase the CID table limit, issue one of these DEFINE statements before issuing the
START MEASSUBSYS command. Table limits of 192,000 and 256,000 are valid only for
H-series and J-series RVUs. Table limits of 512,000 are valid only for Measure H04, J02, and
later PVUs.
ADD DEFINE =_SET_MAX_CIDS_TO_64000, file a
ADD DEFINE =_SET_MAX_CIDS_TO_96000, file a
ADD DEFINE =_SET_MAX_CIDS_TO_128000, file a
ADD DEFINE =_SET_MAX_CIDS_TO_192000, file a
ADD DEFINE =_SET_MAX_CIDS_TO_256000, file a
ADD DEFINE =_SET_MAX_CIDS_TO_512000, file a

The file a parameter is required for syntactical correctness but is not used by Measure.
For each additional 32,000 CIDs, the Measure performance monitor requires an additional
3.5 megabytes of memory for CIDs and 6.5 megabytes for counter space (a total of 10
megabytes) for each CPU. Increasing the CID table limit might have a noticeable impact on
system performance.

• In Measure G09 and later PVUs, the default operation for Measure is not to journal OSS file
pathname information. This avoids the potentially performance-intensive task of journal
file resolution at measurement shutdown. To override the default, use the OSS qualifier
with the START MEASUREMENT request.
You can also use this DEFINE statement in the TACL session prior to issuing a START
MEASSUBSYS command. The DEFINE changes the Measure default mode of operation to
always collect and resolve OSS file pathname information unless explicitly requested not to
do so in the START MEASUREMENT command:
ADD DEFINE =_OSS_JOURNAL_DEFAULT_ON, FILE A

To query the current setting of default journaling mode, use the STATUS MEASSUBSYS
command.

• In Measure G11 and later PVUs, the default operation for Measure is not to journal ANSI
SQL name information. This avoids the potentially performance-intensive task of journal
file resolution at measurement shutdown. To override the default, use the SQL qualifier
with the START MEASUREMENT request.
You can also use this DEFINE statement in the TACL session prior to issuing a START
MEASSUBSYS command. The DEFINE changes the Measure default mode of operation to
always collect and resolve ANSI SQL name information unless explicitly requested not to
do so in the START MEASUREMENT command:
ADD DEFINE =_SQL_JOURNAL_DEFAULT_ON, FILE A

To query the current setting of default journaling mode, use the STATUS MEASSUBSYS
command.

START MEASUREMENT
This command specifies the file where the measurement data is to be written and starts the
measurement.
In Measure G09 and later PVUs, you can enable or disable OSS journal segment construction for
the resolution of internal OSS path information in data records.
In Measure H02 and later PVUs, you can use the FILESIZE and NOCOUNTERS options to select
the measurement data file size and suppress counter data records. The START MEASUREMENT
command is enhanced to allow options to be specified in any order.

START MEASUREMENT 119

Syntax
START [MEASUREMENT] data-file
 [, FROM [start-date] , start-time-of-day]
 [, FOR duration]
 [, TO [end-date] , end-time-of-day]
 [, INTERVAL interval]
 [, { OSS | NOOSS }]
 [, { SQL | NOSQL }]
 [, FILESIZE file-size [MB | GB]]
 [, NOCOUNTERS]

MEASUREMENT
is optional if you specified MEASUREMENT as the command object by using the ASSUME
command.

data-file

is the file to which the measurement data is written. If you allocate your own data file, the
maximum segment size is 127.5 MB.
If data-file exists, the Measure file-handling process (MEASFH) clears the file before
starting the measurement. If data-file is currently active, MEASFH returns an error
message.
If data-file does not exist, MEASFH creates it as an unstructured file with a file code of
175. Primary and secondary extent sizes are 2048 pages each, and the maximum number of
extents is 256. This results in a default file size (capacity) of 1024 MB.
If data-file is a disk file, MEASCOM performs an implicit ADD MEASUREMENT
data-file, so you can examine the collected data (using one of the LIST commands) without
explicitly entering the ADD MEASUREMENT command.
If data-file is a tape file, you must copy that file to a disk file before using MEASCOM to
examine the collected data.

FROM [start-date ,] start-time-of-day
specifies the start of the measurement. If you omit FROM, the measurement begins
immediately.
start-date

is the start date of the measurement, in one of these formats:
{ [d]d mmm[yyyy] }
{ mmm [d]d[yyyy] }
where
dd is a day of the month, a number in the range 1 through 31.
mmm is the first three letters of the month; for example: JAN, MAR, OCT.
yyyy is the year. Valid years are 1984 through 2047.
If you omit start-date, the current date is used.

start-time-of-day

is the start time of the measurement, in the format:
hh:mm[:ss]
where
hh is the hour (0 through 23).
mm is minutes (0 through 59).
ss is seconds (0 through 59).
If you omit start-time-of-day, the current time is used.

120 MEASCOM Commands

FOR duration

specifies the duration of the measurement. FOR and TO are mutually exclusive. If you omit
both, you must use the STOP MEASUREMENT command to stop the measurement.
duration

is a time interval in one of these formats:
n SECOND[S]
n MINUTE[S]
n HOUR[S]
where n is an integer in the range 1 through 9999.

TO [end-date ,] end-time-of-day
specifies the stop time of the measurement. TO and FOR are mutually exclusive. If you omit
both, you must use the STOP MEASUREMENT command to stop the measurement.
end-date

is the date the measurement is to stop, in one of these formats:
{ [d]d mmm[yyyy] }
{ mmm [d]d[yyyy] }
where
dd is a day of the month, a number in the range 1 through 31.
mmm is the first three letters of the month; for example: JAN, MAR, OCT.
yyyy is the year. Valid years are 1984 through 2047.
If you omit end-date, the current date is used.

end-time-of-day

is the time the measurement is to stop, in the format:
hh:mm[:ss]
where
hh is the hour (0 through 23).
mm is minutes (0 through 59).
ss is seconds (0 through 59).
If you omit end-time-of-day, you must use the STOP MEASUREMENT command to
stop the measurement.

INTERVAL interval

specifies the collection interval—that is, the length of time for which Measure collects data
before writing it to the measurement data file. If you omit INTERVAL, the Measure control
process writes the counter values to the file twice: once when the measurement (or
measurement of a transient entity) begins and once when the measurement (or measurement
of a transient entity) ends.
interval

is a collection interval in one of these formats:
n SECOND[S]
n MINUTE[S]
n HOUR[S]

START MEASUREMENT 121

where n is an integer in the range 1 through 9999.

CAUTION: A collection interval increases the load on system resources and can affect
performance during measurement. For information about collection intervals and
performance, see Usage Note (page 124).

OSS
specifies that an OSS journal segment for OSS file pathname resolution is constructed as part
of the measurement data. This option overrides the default setting for OSS journal segment
construction.

NOOSS
specifies that an OSS journal segment for OSS file pathname resolution is not constructed as
part of the measurement data. This option overrides the default setting for OSS journal
segment construction.

SQL
specifies that the SQL journal segment for SQL name resolution is constructed as part of the
measurement data. This option overrides the default setting for SQL journal segment
construction.

NOSQL
specifies that the SQL journal segment for SQL name resolution is not constructed as part of
the measurement data. This option overrides the default setting for SQL journal segment
construction.

FILESIZE file-size [MB | GB]
specifies the desired file size (capacity). If qualified by GB, the file size is interpreted as a
gigabyte count (count * 1,0243). If qualified by MB, or if the qualification is omitted, the file
size is interpreted as a megabyte count (count * 1,0242). This option is similar to the
corresponding option in the TMF ADD/ALTER AUDITTRAIL command. The minimum
value for FILESIZE is 127 MB. The maximum value is 1048572 MB, 1023 GB, or the maximum
disk size (if less than 1,048,572 MB, or 1 TB – 4 MB). The default value is 1024 (resulting in
files of 1024 MB). The file will have the specified capacity as a minimum; the actual capacity
may be larger. If the file already exists, this option is ignored, and the capacity of the existing
file is used.

NOCOUNTERS
suppresses counter data records from the measurement data file. A measurement data file
is created which contains configuration information only. Active counter records are
maintained in system counter space; this option can be used to conserve disk space when
only active counter records are intended to be used. If PROCESSH counters are defined as
part of the measurement, warning 3026 is displayed to the user that active counters are not
available for these counter types. If the OSS or SQL option is specified, warning 3027 is
displayed to the user that the OSS/SQL journal segment is not produced with the
NOCOUNTERS option in effect.

Related Command

PageFunctionCommand

43Configures a measurementADD entity-type

122 MEASCOM Commands

Usage Notes
• You should consider stopping all measurements before using the TACL SETTIME command

or the SETSYSTEMCLOCK procedure in order to preserve measurement interval accuracy.
• Use INTERVAL only if you must examine data for specific time intervals within a

measurement. INTERVAL writes to the data file all counters in all measured CPUs for every
interval specified, thus increasing the number of I/Os performed. The smaller the interval
value, the heavier the drain on system resources (CPU, disk, memory) and the faster the
data-file growth. To conserve system resources, set the INTERVAL value to the longest
interval that will provide useful information.
Very large measurements and small interval times can cause severe performance problems.
If you experience problems, reduce the number and type of entities measured or run the
measurement without a collection interval.

• In Measure G09 and later PVUs, the Measure subsystem default is not to build an OSS file
pathname journal segment unless specifically requested to do so in a START
MEASUREMENT command. To switch the default to always build the OSS file pathname
journal segment, use a DEFINE before the START MEASSUBSYS command. For more
information, see the Usage Notes for START MEASSUBSYS (page 117).

• In Measure G11 and later PVUs, the Measure subsystem default is not to build the SQL
name journal segment unless specifically requested to do so in a START MEASUREMENT
command. To switch the default to always build the SQL name journal segment, use a
DEFINE before the START MEASSUBSYS command. For more information, see the Usage
Notes for START MEASSUBSYS (page 117).

• In Measure H02 and later PVUs, the MEASCOM START MEASUREMENT command allows
the user to select the measurement data file size, suppress counter data records in the
measurement data file, or both.

Examples
• To start a measurement immediately that writes to the data file MAY07 once each hour and

stops in eight hours:
+ START MEASUREMENT MAY07, FOR 8 HOURS, INTERVAL 1 HOUR

• To start a measurement at 12:00 on October 19, 2004, continue the measurement until 12:00
on October 26, 2004, and have the measurement write to the data file OCTDATA every six
hours:
+ START MEASUREMENT OCTDATA, FROM 19 OCT 2004, 12:00 &
& TO 26 0CT 2004, 12:00, INTERVAL 6 HOURS

• In Measure G09 and later PVUs, to build an OSS file pathname journal segment and have
it appended to a Measure data file at measurement shutdown:
+ START MEASUREMENT MDATA, OSS

• In Measure G11 and later PVUs, to build the SQL name journal segment and have it appended
to a Measure data file at measurement shutdown:
+ START MEASUREMENT MDATA, SQL

STATUS MEASSUBSYS
This command displays this status information:
• The number of active or configured measurements and a list of the measurement-data file

names
• The number of active MEASCTL processes and a list of the CPUs where they are active

STATUS MEASSUBSYS 123

• In Measure G09 and later PVUs, the current setting of several subsystem environmental
settings such as the number of CIDs supported, CID table locking, and the current default
setting for OSS journal segment construction

• In Measure G11 and later PVUs, the current setting for SQL journal segment construction
(ON or OFF)

If you specified MEASSUBSYS as the command object (see the ASSUME (page 51) command),
you can omit MEASSUBSYS from the command line.

Syntax
STATUS [/ OUT filename /] [MEASSUBSYS]

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends command output to it.
Following execution of the STATUS MEASSUBSYS command, MEASCOM redirects its output
to the current OUT file (typically, the terminal).
The OUT option does not affect the contents of the log file.

MEASSUBSYS
is optional if you specified it as the command object by using the ASSUME command.

Usage Note
CID stands for counter identifier. For each counter record in a processor—a counter record
corresponds to a measured entity, such as a file or a process—Measure allocates and tracks the
counter record through a CID. The number of CIDs supported in a processor is limited. This
limit can be specified at START MEASSUBSYS time to be 32,000, 64,000, 96,000, 128,000, 192,000,
256,000, or 512,000 for each CPU. (Values of 192,000 and 256,000 are valid only in H-series and
J-series RVUs, and the value of 512,000 is valid only for Measure H04, J02, and later PVUs.) The
CID value reported is the CID table size. The current number of CIDs in use is reported in the
CPU entity report of each processor.

Examples
• To display the active measurements and MEASCTL processes:

+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 1
 $DATA1.PERF.MAY04

Number of Active MEASCTL Processes = 9
 in CPU(s): 0, 1, 2, 3, 4, 5, 6, 7, 8

• In Measure G09 and later PVUs, to show the active measurement and Measure subsystem
status, including active MEASCTL processes:
+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 1
 $DATA1.SUBVOL.MDATA

Number of Active MEASCTL Processes = 6
 in CPU(s): 0, 1, 2, 3, 4, 5
OSS ON, Skew copy time OFF, Lock CID table OFF, CIDs = 128K/CPU

• In Measure G11 and later PVUs, to show the active measurement and Measure subsystem
status, including active MEASCTL processes, indicating whether SQL journal segment
construction is on:
+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 1

124 MEASCOM Commands

 $DATA1.SUBVOL.MDATA

Number of Active MEASCTL Processes = 8
 in CPU(s): 0, 1, 2, 3, 4, 5, 6, 7
SQL OFF, OSS OFF, Skew copy time OFF, Lock CID table OFF, CIDs = 32K/CPU

• In Measure H01 and later PVUs, to show information about the MEASIP processes:
+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 3
 $SYSTEM.SYSTEM.ZASPAA
 $SYSTEM.SYSTEM.ZASPZOO
 $SYSTEM.MEASURE.DOFF3

Number of Active MEASCTL Processes = 8
 in CPU(s): 0, 1, 2, 3, 4, 5, 6, 7
Number of Active MEASIP Processes = 8
 in CPU(s): 0, 1, 2, 3, 4, 5, 6, 7

OSS OFF, SQL OFF, Skew copy time OFF, Lock CID table ON,
CIDs = 64K/CPU

• In Measure J01 and later PVUs, a MEASIP process is active on each IPU. This is reflected in
the total number of running MEASIP processes:
+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 0

Number of Active MEASCTL Processes = 4
 in CPU(s): 0, 1, 2, 3
Number of Active MEASIP Processes = 8
 in CPU(s): 0, 1, 2, 3
OSS OFF, SQL OFF, Skew copy time OFF, Lock CID table ON,
CIDs = 64K/CPU

STATUS MEASUREMENT
This command displays this information about currently active measurements:
• Number of entities being measured
• Number of words in system data space currently allocated for each entity type
• Start time, stop time, and the collection interval of the measurement
• Current size of the data file
• Maximum size of the data file
• Percent of the file used
• In Measure G09 and later PVUs, the indication of whether OSS journal segment construction

is ON or OFF
• In Measure G11 and later PVUs, the indication of whether SQL journal segment construction

is ON or OFF

Syntax
STATUS [/OUT filename/] [MEASUREMENT] data-file

OUT filename

directs command output to filename. If filename does not exist, MEASCOM creates an
EDIT file by that name and writes command output to it. If filenamedoes exist, MEASCOM
opens the file and appends command output to it.
Following execution of the STATUS MEASUREMENT command, MEASCOM redirects its
output to the current OUT file (typically, the terminal). This option does not affect the contents
of the log file.

STATUS MEASUREMENT 125

data-file

is an active measurement data file. The data file need not be accessible by the MEASCOM
(through the ADD MEASUREMENT command) because MEASCOM requests the information
from the Measure coordinating process (MEASMON) rather than reading it from the data
file.

MEASUREMENT
is optional if you specified MEASUREMENT as the command object by using the ASSUME
command.

Usage Note
• Stop time is displayed only if you explicitly specified the time in a START MEASUREMENT

command.
• In Measure H02 and later PVUs, the output produced by the MEASCOM STATUS

MEASUREMENT command is enhanced to display statistics for very large data files and to
display whether counter data records have been suppressed for the measurement.

Examples
• To display information about the currently active measurement writing to OCT18:

+ STATUS MEASUREMENT OCT18
From 18 Oct 1994, 14:35:33
Cpu 1 Entities 46 Words
Disc 64 Entities 7552 Words
Current EOF 178 B Maximum EOF 1556480 B
 Percentage Used 0.3 %

• In Measure G11 and later PVUs, to show the active measurement and the status of OSS and
SQL journal segment construction:
+ STATUS MEASUREMENT MDATA
From 26 Feb 2003, 15:59:54
File 13 Entities 1144 Words
Current EOF 8192 B Maximum EOF 133693440 B
OSS Journal OFF SQL Journal OFF Percentage Used 0.00 %

• In Measure H02 and later PVUs, output produced by STATUS MEASUREMENT can display
whether counter data record suppression was specified for the measurement. If counter data
records are suppressed, the display shows “Counter Suppression ON.” Otherwise, the
display shows “Counter Suppression OFF.” Here is an example with the counter suppression
turned off:
+ STATUS MEASUREMENT MEASXX
From 16 Aug 2006, 13:52:32
Cpu 1 Entities 380 Words
Current EOF 8192 B Maximum EOF 1099510579200 B
OSS Journal OFF SQL Journal OFF Percentage Used 0.00 %
Counter Suppression OFF

STOP MEASSUBSYS
This command stops all measurements and the subsystem processes.

Syntax
STOP [MEASSUBSYS]

MEASSUBSYS
is optional if you specified MEASSUBSYS as the command object by using the ASSUME
command.

126 MEASCOM Commands

Usage Notes
• The STOP MEASSUBSYS command can be executed only by a super-group user; that is, a

user who has user ID (255,*).
• If you enter this command interactively while measurements are active, MEASCOM warns

you about the measurements and asks you to confirm the command. If you enter this
command noninteractively or from a command (OBEY) file, MEASCOM stops the subsystem
without asking you for confirmation.

Related Commands

PageFunctionCommand

117Starts the Measure subsystemSTART MEASSUBSYS

123Determines whether any measurements are activeSTATUS MEASSUBSYS

Example
To start MEASCOM, check the status of the Measure subsystem, then stop the subsystem:
43> MEASCOM
MEASURE Performance Monitor- T9086D30 - (01 MAR 95)
Copyright Tandem Computers Incorporated 1986-1995
1+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 0
2+ STOP MEASSUBSYS

STOP MEASUREMENT
This command stops the specified measurement.

Syntax
STOP [MEASUREMENT] data-file [, NO ADD]
 [, { TO | AT } [end-date ,] end-time-of-day]

MEASUREMENT
is optional if you specified MEASUREMENT as the command object by using the ASSUME
command.

data-file

is an active measurement data file.
If data-file is a disk file and the NO ADD option is not specified, MEASCOM performs
an implicit ADD MEASUREMENT data-file, allowing you to examine the collected data
(using one of the LIST commands) without first explicitly entering an ADD MEASUREMENT
command.
If data-file is a tape file, you must copy the file to a disk file before using MEASCOM to
examine the collected data.

NO ADD
prevents the implicit ADD MEASUREMENT data-file command from being performed
when the measurement stops. Use the NO ADD option when you want to stop a measurement
but do not want to look at the data file.

{ TO | AT } [end-date ,] end-time-of-day
specifies the time the measurement is to stop. TO and AT are synonymous. If you omit the
TO or AT clause, MEASCOM stops the measurement immediately.
end-date

is the date the measurement is to stop, in one of these formats:

STOP MEASUREMENT 127

{ [d]d mmm[yyyy] }
{ mmm [d]d[yyyy] }
where
dd is a day of the month, a number in the range 1 through 31.
mmm is the first three letters of the month; for example: JAN, MAR, OCT.
yyyy is the year. Valid years are 1984 through 2047.
If you omit date, the current date is used.

end-time-of-day

is the time the measurement is to stop, in the format:
hh:mm[:ss]
where
hh is the hour (0 through 23).
mm is minutes (0 through 59).
ss is seconds (0 through 59).
If you omit end-time-of-day, MEASCOM stops the measurement immediately.

Examples
• To stop a measurement immediately and start the MEASFH process, which prepares the

data file so you can use the LIST command to view the data:
+ STOP MEASUREMENT $DATA.MEAS.MAY04

• To stop a measurement immediately but not start the MEASFH process; thus, the data is
not available to the LIST command:
+ STOP MEASUREMENT $DATA.MEAS.MAY04, NO ADD

SWAPVOL
This command specifies the swap volume where work files are created. The command applies
for the remainder of the MEASCOM session or until another SWAPVOL command is executed.

Syntax
SWAPVOL [$volume]

$volume
is the name of a volume. If the volume name is omitted, the swap volume resets to the
MEASCOM swap volume, which is the default.

Usage Note
By default, swap files are created on the MEASCOM swap volume, which might have insufficient
space for temporary files. In this case, use the SWAPVOL command at the beginning of the
MEASCOM session so MEASCOM puts its temporary files on a volume that has enough space.

SYSTEM
This command sets the default system name used in file-name expansions. Initially, the system
is specified by the operating system command interpreter (TACL).

Syntax
SYSTEM [\system]

128 MEASCOM Commands

\system
is a system name. If omitted, the default defined by your command interpreter becomes the
MEASCOM default.

Example
To change the default system name:
+ SYSTEM \SELL

TIME
This command displays the current system date and time.

Syntax
TIME [\system]

\system
is a system name. TIME returns the local civil time of this system. If you do not specify a
system, TIME returns your local system time.

Examples
• To display the time of the local system:

+ TIME
20 November 1994 18:02:25

• To display the time of the system \NY:
+ TIME \NY
20 November 1994 21:02:30

VOLUME
This command sets the default device name, subvolume name, or both for file-name expansions.
Initially, the default device and subvolume are specified by the command interpreter.

Syntax
VOLUME [$device]
 [[$device.]subvolume]

$device
is a device name. If you omit $device, the default device does not change. If you omit both
$device and subvolume, the defaults specified by the command interpreter become the
MEASCOM defaults.

subvolume

is a subvolume name. If you omit subvolume, the default subvolume does not change. If
you omit both $device and subvolume, the defaults specified by the command interpreter
become the MEASCOM defaults.

Examples
• To change the default volume and subvolume:

+ VOLUME $DATA2.MAINT

• To change the default volume and subvolume to those defined by your command interpreter:
+ VOLUME

TIME 129

WARNINGS
This command specifies which warning messages are displayed. Warning messages are identified
by the word WARNING and a number in the range 3000 through 3049. You can have MEASCOM
display all warnings except those you specify or suppress all warnings except those you specify.

Syntax
WARNINGS { DISPLAY { ALL | warn-num [, warn-num ...]}}
 { SUPPRESS { ALL | warn-num [, warn-num ...]}}

DISPLAY ALL
causes all warnings to be displayed except those specified by one or more succeeding
WARNINGS SUPPRESS commands. The default is WARNINGS DISPLAY ALL.

SUPPRESS ALL
suppresses all warnings except those specified by one or more succeeding WARNINGS
DISPLAY commands.

warn-num

is the number of a warning (3000 through 3049).

Usage Note
To suppress comments (identified with the word COMMENT), use the COMMENTS command.

Example
To suppress warning message 3013:
+ WARNINGS SUPPRESS 3013

!
This command retrieves a previously executed command from the history buffer and executes
it again.

Syntax
! [number]
 [-number]
 [text]

number

is the number of the line in the history buffer that contains the command to be reexecuted.
(See the first example in Examples.)

-number
is the number of history buffer lines to subtract from the current line to arrive at the command
to be reexecuted. (See the second example in Examples.)

text

is a text string. The most recently entered command that starts with the text string is retrieved.
(See the third example in Examples.)

If no option is specified, the last command entered is reexecuted. (See the fourth example in
Examples.)

130 MEASCOM Commands

Related Commands

PageFunctionCommand

61Displays the history bufferHISTORY

59Retrieves, modifies, and reexecutes a previous MEASCOM commandFC

Examples
• To reexecute the command on history buffer line 15:

21+ ! 15

• To reexecute the command in the history buffer 3 lines before the current line (in this case,
line 24 is the current line, so the command from history buffer line 21):
24+ ! -3

• To reexecute the most recently entered command that begins with the text string SE (for
example, SET REPORT FORMAT BRIEF):
25+ ! SE

• To reexecute the last command entered:
28+ !

! 131

132

3 Entities and Counters
This chapter describes the Measure entity types and their associated counters:

PageTopic

134Counters Overview

141Common Entity Header Fields

144Measure Support for Open System Services (OSS)

146Measure Support for ANSI SQL Names

149Accessing ZMS style Records (MEASDDLZ)

Table 3-1 Measure Entity Types

PageMeasured System ResourceEntity Type

150Fiber Optic Extension (FOX) and ServerNet/FX cluster traffic.
Does not apply to H-series and J-series RVUs.

CLUSTER

154I/O activity on device controllers on HP NonStop K-series
servers only. (Disabled in Measure D30 (T9086ACV), D44
(T9086ACR), and D45 (T9086ACQ). To enable it, use the
define on page 154.)

CONTROLLER

156Processors.CPU

171I/O devices, such as tape drives. Does not include disks,
communication lines, subdevices, and asynchronous
terminals. Each of these devices has its own entity type. For
G-series and later RVUs, this entity applies to Tape and Open
SCSI IOPs.

DEVICE

180Disks.DISC or DISK

198I/O operations performed by a single opener process on a
specified disk file (physical file access).

DISCOPEN or DISKOPEN

207I/O operations performed by all opener processes on a
specified disk file (physical file access).

DISKFILE

n.a.A file containing an external record format for ANSI SQL.
EXTNAMES, not a formal Measure entity in the command
interface, is a record format and structured output file that
results from a LISTOSSNAMES command.

EXTNAMES

216I/O operations performed by a local user process on an
explicitly opened file (logical file access).

FILE

236Communications lines, such as SNAX/XF and X25AM lines.LINE

243Network communications lines, such as Expand lines.NETLINE

251Optical disks (D-series and Himalaya K-series servers).OPDISK

256OSS elements in each system processor.OSSCPU

n.a.OSS file pathname mapping. The OSSNAMES file, not a
formal Measure entity in the command interface, is a record
format and structured output file that results from a
LISTOSSNAMES command. The file is used for linking
internal format OSS PATHID and CRVSN data in other record
types to the external OSS file pathname translation.

OSSNAMES

266OSS name server processes.OSSNS

133

Table 3-1 Measure Entity Types (continued)

PageMeasured System ResourceEntity Type

272Processes.PROCESS

291Process code range histograms.PROCESSH

302ServerNet addressable controllers (SACs) and interprocessor
communication (IPC) on HP NonStop S-series and NS-series
servers. In G08 Measure, this entity applies to HP NonStop
ServerNet Cluster and remote interprocessor communication
(RIPC).

SERVERNET

313SQL/MP or SQL/MX processes.SQLPROC

319SQL/MP or SQL/MX statements within the SQL process.SQLSTMT

330Network traffic through Expand line handlers (local end
only).

SYSTEM

333Terminal and subdevice I/O.TERMINAL

338HP NonStop Transaction Management Facility (TMF)
transactions.

TMF

342User-defined application instrumentation.USERDEF

Counters Overview

Interpreting Counter Values
The Measure performance monitor uses various types of counters to accumulate data. When
counters are displayed in a MEASCOM report, the value displayed is affected by the current
REPORT RATE and REPORT FORMAT attributes.

Counter Values Are Shown as...REPORT RATE Setting

Raw data; no mathematical operations are performed on them.OFF

Averages or percentages; specific interpretation depends on the counter type.ON

To create structured files of Measure data that other products, such as Enform, can access, use
the REPORT FORMAT STRUCTURED attribute. IF REPORT FORMAT is STRUCTURED, counter
values are written to the output file as raw data. REPORT FORMAT STRUCTURED is not affected
by the REPORT RATE setting.

NOTE: Counter descriptions in this section assume REPORT FORMAT NORMAL or BRIEF
and REPORT RATE OFF.

Measure scales displayed values to fit within 10 characters, including commas and periods. Units
for the formatted value are indicated by these symbols:

indicates decimal units of ones#

indicates decimal units of thousands (kilo)K

indicates decimal units of millions (mega)M

indicates decimal units of billions (giga)G

indicates decimal units of trillions (tera)T

For example, a megabyte would be displayed as 1048576 #.

134 Entities and Counters

Accumulating Counters
Accumulating counters count the number of bytes passing to or from a file, disk, or other entity.
A value is added to the counter whenever data is transferred to or from the entity.

Units Displayed As...Output Value Is...Attribute Setting

The number of bytes transferred
during the time interval

REPORT FORMAT is STRUCTURED

#, K, M, G, or TThe number of bytes transferred
during the time interval

REPORT RATE is OFF

per-second values: /s, K/s, M/s, G/s, or
T/s1

The number of bytes transferred for
each second during the time interval

REPORT RATE is ON

1 ZMS style only. No units are displayed in the legacy format. It is assumed to be /s with no scaling, and might overflow.

Measure supports both 32-bit and 64-bit accumulating counters. In G-series RVUs, some
accumulating counters exist in two versions, a 32-bit version and a 64-bit version. The 64-bit
version is distinguished by a counter name ending in the characters -F. For example, SENT-BYTES
is a 32-bit counter; SENT-BYTES-F is the corresponding 64-bit counter. In H-series and J-series
RVUs, all such accumulating counters have 64 bits, and no counter in ZMS style records has a
name ending in -F. For example, on H-series and J-series RVUs SENT-BYTES is a 64-bit counter.
SENT-BYTES-F is no longer a counter name in ZMS style but remains available to applications
requesting data in legacy style.
For an example of an accumulating counter, see the FILE entity counter MESSAGE-BYTES
(page 227).

Average Queue Time Counters (ZMS style Only)
Average queue time counters measure the average time that each item visiting a queue spends
there. This derived counter is formed by dividing a queue counter by a corresponding
incrementing counter for items visiting the queue.
The implementation of the queue counter affects whether the average queue time counter includes
the average service time to process the event and whether it is exclusively queueing time, as
indicated by the counter’s suffix:

Includes Service TimeSuffix

No-AQT

Yes-ART

Average queue time counters are not affected by setting RATE ON or OFF. Units are displayed
as ms, sec, hr, day, or wk.
For an example of an average queue time counter, see Home-Trans in the ZMS style report in
TMF (page 338).

Average Service Time Counters (ZMS style Only)
Average service time counters measure the average time to satisfy each request of a resource.
This derived counter is formed by dividing a busy or queue-busy counter for a resource by a
corresponding incrementing counter for requests of the resource. Average service time counters
are identified in displays by the suffix -AST.
Average service time counters are not affected by setting RATE ON or OFF. Units are displayed
as ms, sec, hr, day, or wk.

Counters Overview 135

Busy Counters
Busy counters measure the time a resource is busy. The counter uses a busy or idle state word
and a 64-bit busy-time accumulator to record the cumulative busy time in microseconds.

Units Displayed As...Output Value Is...Attribute Setting

ms (milliseconds), sec, hr, day, or wkThe time busy during the intervalREPORT RATE is OFF.

a percentage of the interval lengthThe percent of time busy during the
interval

REPORT RATE is ON.

The time busy expressed in
microseconds

REPORT FORMAT is STRUCTURED.

For an example of a busy counter, see the CPU entity counter CPU-BUSY-TIME (page 161).
In H-series and J-series RVUs, there are two types of busy counters:
• BUSY counters, maintained with conventional timers
• TCELLBUSY counters, maintained with timer cells
For an overview of timer cells and related counters, see Timer Cell Counters (page 139).

Elapsed Counters
Elapsed counters measure start-to-finish time for an event.

Units Displayed As...Output Value Is...Attribute Setting

ms, sec, hr, day, or wkThe elapsed timeREPORT RATE is OFF.

ms, sec, hr, day, or wkThe average elapsed time for each
event

REPORT RATE is ON.

The elapsed time expressed in
microseconds

REPORT FORMAT is STRUCTURED.

For an example of an elapsed counter, see the SQLSTMT entity counter ELAPSED-SORT-TIME
(page 326).

Incrementing Counters
Incrementing counters count events. The counter is advanced each time the event occurs.

Units Displayed As...Output Value Is...Attribute Setting

The number of increments during the
time interval

REPORT FORMAT is STRUCTURED.

#, K, M, G, or TThe number of increments during the
time interval

REPORT RATE is OFF.

per-second values: /s, K/s, M/s, G/s, or
T/s

The number of increments for each
second during the time interval

REPORT RATE is ON.

Measure supports both 32-bit and 64-bit incrementing counters. In G-series RVUs, some
incrementing counters exist in two versions, a 32-bit version and a 64-bit version. The 64-bit
version is distinguished by a counter name ending in the -F. In H-series and J-series RVUs, all
counters that had existed in two versions now exist in only one, 64-bit version. Counter names
ending in -F do not exist in ZMS style but remain available to applications requesting data in
legacy style.
For an example of an incrementing counter, see the CLUSTER entity counter MESSAGES
RECEIVED.

136 Entities and Counters

Max Queue Counters (Legacy Style Only)
Max queue counters track the maximum length of a queue. Report format options do not affect
max queue counters.
Due to the sharing of counter records among up to 64 measurement requests, there is no way to
reset max queue values. As records exist in the system longer, the value of max queue counters
diminishes. The reported value becomes irrelevant to the measured period.
In G11 and later Measure PVUs, max queue counters are no longer tracked in the instrumentation.
They are removed from new format records, and are reported as 1 in Legacy Style records and
displays of G11 or later data.
For an example of a max queue counter, see the PROCESS entity counter MAX-MQCS-INUSE
(page 283).

Max Value Counters
Max value counters track the maximum value of a given measurement during the measurement
interval. Report format options do not affect max value counters.
The only use of a max value counter is Max-Lockwait-time in the DISCOPEN record. Units are
formatted as ms, sec, hr, day, or wk.
For an example of a max value counter, see the DISCOPEN entity counter MAX-LOCKWAIT-TIME
(page 204).

Queue Counters
Queue counters measure the total amount of time that all queued elements spend on the queue.

Units Displayed As...Output Value Is...Attribute Setting

ms, sec, hr, day, or wkThe total amount of time all elements spent
on the queue, expressed in seconds or
milliseconds. For example, if one process is
queued for two seconds and another process
is queued for three seconds, the total queue
time is five seconds.

REPORT RATE is OFF.

AQL (average queue length) in
decimal units

The average number of queued elements
(AQL) during the time interval. For queue
counters, RATE ON is not simply an average
or percentage of RATE OFF. RATE ON
provides average queue length, not average
time spent on the queue.

REPORT RATE is ON.

The total amount of time all elements spent
on the queue, expressed in microseconds.

REPORT FORMAT is STRUCTURED.

For an example of a queue counter, see the CPU entity counter CPU-QTIME (page 161).
In H-series and J-series RVUs, there are two types of busy counters:
• QUEUE counters, maintained with conventional timers
• TCELLQUEUE counters, maintained with timer cells
For an overview of timer cells and related counters, see Timer Cell Counters (page 139).

Counters Overview 137

Queue-Busy Counters
Queue-busy counters measure the time during which a resource accessed through a queue is
busy. They are used to measure device busy time in the ServerNet environment where multiple
requests (I/Os) can be queued to a device at the same time.

Units Displayed As...Output Value Is...Attribute Setting

ms, sec, hr, day, or wkThe total amount of time the queue was busy
during the interval, independent of how
many requests were on the queue at any
time. For example, for two processes placed
on the queue simultaneously, if both
processes are queued for one second and one
of the processes remains queued for two
more seconds, the total queue-busy time is
three seconds.

REPORT RATE is OFF.

a percentage of the interval
length

The percent of time busy during the interval.REPORT RATE is ON.

The total amount of time that there were
elements on the queue, expressed in
microseconds.

REPORT FORMAT is STRUCTURED.

For an example of a queue-busy counter, see the DEVICE entity counter READ-QBUSY-TIME
(page 177).
In H-series and J-series RVUs, there are two types of queue busy counters:
• QBUSY counters, maintained with conventional timers
• TCELLQBUSY counters, maintained with timer cells
For an overview of timer cells and related counters, see Timer Cell Counters (page 139).

Response Time Counters
Response time counters measure the interval, in microseconds, between a read from a terminal
and the subsequent write to it. Whenever a value is added to a response time counter, a
corresponding transaction counter is advanced.

Units Displayed As...Output Value Is...Attribute Setting

ms, sec, hr, day, or wkThe accumulated response timeREPORT RATE is OFF.

ms, sec, hr, day, or wkThe average response time for each
transaction

REPORT RATE is ON.

The accumulated response time in
microseconds

REPORT FORMAT is STRUCTURED.

In reports with RATE ON, response time counters are a special case of queue time counters in
that the accumulated response time value is divided by a transaction count.
For an example of a response time counter, see the TERMINAL entity counter RESPONSE-TIME
(page 337).

Sampling Counters
Sampling counters measure the approximate busy time for PROCESSH code ranges. At random
time intervals, the Measure subsystem activates a sampling interrupt that examines the interrupted
process. If the process is under PROCESSH measurement, the sampling procedure increments

138 Entities and Counters

the process-busy-samples counter, increments the code-space-busy-samples counter if a measured
code space is busy, and increments the appropriate code-range-busy-samples counter.

Units Displayed As...Output Value Is...Attribute Setting

The number of sampling interrupts that
found the measured code executing.

REPORT FORMAT is STRUCTURED.

#, K, M, G, or TThe number of sampling interrupts that
found the measured code executing.

REPORT RATE is OFF.

percentage of total samples for
the code space

The percent of sampling interrupts that
found the measured code space executing.

REPORT RATE is ON.

For an example of a sampling counter, see the PROCESSH entity counter
PROCESS-BUSY-SAMPLES (page 297).

Snapshot Counters
Snapshot counters return a measurement value taken at a specific moment, such as at the start
or end of a measurement. No computation is done on the returned value; it is simply reported.
Report format options do not affect snapshot counters.
Snapshot counters are not affected by setting RATE ON or OFF. Units are displayed as #, K, M,
G, or T.
For examples of snapshot counters, see the DISC entity counters STARTING-FREE-SPACE and
ENDING-FREE-SPACE (page 191).

Syslink Counters
Syslink counters measure the time required to complete a message link to a remote system.
Whenever a value is added to a syslink counter, a corresponding link counter is advanced. The
syslink counter is a special case of a response time counter where the transaction is a message
link.

Output Value Is...Attribute Setting

The link time in secondsREPORT RATE is OFF.

The average link time (in seconds) for each transactionREPORT RATE is ON.

The link time in microsecondsREPORT FORMAT is STRUCTURED.

For examples of syslink counters, see the SYSTEM entity counters LINKS (page 332) and
LINK-TIME (page 332).

Timer Cell Counters
The dynamics of loose processor synchronization in HP Integrity NonStop NS-series systems
(which run H-series and J-series RVUs) make the standard time-of-day functions less accurate
than on systems running G-series RVUs when viewed at microsecond granularity.
For very fine resolution measurements, events that can complete within the context of a dispatch
or a simple message exchange between two processes in the same processor, measured time
values might be distorted. This is not an issue for longer running timers that encompass the
completion of interprocessor messages or I/O. The degree of error in such measurements is
marginal relative to the length of the event.
To provide more accurate timing services for Measure and other applications, the H-series and
J-series architecture provides a mechanism called timer cells. This mechanism makes it possible
to keep accurate fine granularity timers without incurring the cost of loose processor

Counters Overview 139

synchronization on all timer updates. Timer cell values are synchronized only when copied at
intervals or reported to the requesting application.
The timer cell counter types are TCELLBUSY, TCELLQUEUE, and TCELLQBUSY. They operate
under the same instrumentation logic as the BUSY, QUEUE, and QBUSY counter types,
respectively. Measure uses the new counter types for several predefined entities. You can also
specify the new types for user-defined (USERDEF) entities.

Identifying Data File Errors
The first field of the output record for each measured entity type indicates whether a problem
prevented measurement or record allocation.

Table 3-2 Legacy Style Error Field Values

MeaningValue

No problem.0

The data record was not allocated because the maximum number of entries allowed under
concurrent measurement was exceeded.

1

The data record was not allocated because the maximum counter space allowed was
exceeded.

2

The entity was not measured because code sampling was already in progress. Applies to
PROCESSH entity type only.

3

The entity was not measured because of a MEASCTL internal error. The XPTR, an internal
addressing structure, could not be found.

4

A field overflowed in an accumulating or incrementing counter. The data record is written,
but the capacity of one or more 32-bit fields was exceeded. Accurate values are contained
in equivalent 64-bit fields. This is a warning, not an error.

65535

(G-series RVUs) Byte-count field overflow. The capacity of one or more 16-bit byte-count
fields has been exceeded. See the equivalent 32-bit fields for byte-count data. This is a
warning rather than an error. It applies to the DISC entity type only.

65534

Values of 0 or -1 indicate that there is data in the record. If you have older applications that
determine the presence of data by testing for 0, you might need to change those applications.
For example, test for a positive value, which indicates an error condition.

Table 3-3 ZMS style Format Error Field Values

MeaningValue

No errors or warnings regarding data in the record.ERROR = 0

Error occurred, data is not present. The object to measure is identified but a counter record
was not started because of:
1 = ERR^NOCIDENTRY — Data record error: CID table overflow
2 = ERR^NOCOUNTERSPACE — Data record error: Counter space overflow
3 = ALREADY^INUSE — Data record error: Sampling conflict
4 = ERR^XPTR^INSTALL — Data record error: Measure internal error

ERROR > 0

Warning, data is present but with noted exceptions. For the specific cause, see the remaining
values:

ERROR < 0

Numeric overflow. In totals record accumulation, one or more counter fields overflowed..<1>

Subsystem version mismatch. The Measure PVU that formatted the record is earlier than
that of the instrumented product subsystem that produced this data record. There is more
data in the internal record than MEASFH can format. Update the Measure PVU on the
measured system.

.<2>

140 Entities and Counters

Table 3-3 ZMS style Format Error Field Values (continued)

MeaningValue

Template-version mismatch. The application requesting the data record is compiled with
an older version of MEASDDLS, or the structured data file was created with a record
template older than the MEASFH version that produced the record. More data is available
for reporting but could not be passed in the interface. Update the application or convert
the structured data file to the new size.

.<3>

Reserved for future use..<4:11>

ZMSPROC record only, PROCESSH instrumentation for this process is delayed..<12>

ZMSPROC record only, USERDEF instrumentation for this process is delayed..<13>

ZMSPROC record only, SQL instrumentation for this process is delayed..<14>

ZMSPROC record only, OSSNS instrumentation for this process is delayed..<15>

Common Entity Header Fields
These fields appear in the header of all entity records and are defined once here instead of being
repeated in every entity description.

DDL Header Fields (Legacy Style)
RECORD entity. FILE is "entity" ENTRY-SEQUENCED.
 02 error type binary 16 unsigned.

* time items:
 02 from-timestamp type binary 64.
 02 to-timestamp type binary 64.
 02 delta-time type binary 64.

* measurement identification items:
 02 system-name type character 8.
 02 os-version.
 03 letter type character 1.
 03 number type binary 8.
 02 loadid type character 8.
 02 load-id redefines loadid.
 03 prefix-id type character 5.
 03 interval-id type character 3.
 02 cpu-num type binary 16 unsigned.

Common Entity Header Fields 141

DDL Header Fields (ZMS Style)

NOTE: You should always use TEMPLATE-VERSION (page 143) to get the external records
corresponding to a format that you can handle.
There are three ways to do this:
• Use MEASCOM, which uses the template version for the current version.
• From a user program, call Measread_diff_() with the requested template version.
• For structured files, use a pre-created structured file, with a record length corresponding to

the requested template version for the entity in question. When data collected on systems
of differing product versions are stored in the same structured files, the template version
for all records will be the one used to create the structured file. The template version from
the first record will be used to format all records in the file.

If there are fields in the data file that do not exist in the version indicated by the requested
template version, they will not be present in the requested records.
If there are fields in the version indicated by the requested template version that do not exist in
the data file, they will be present in the requested records, filled with zeros, and you can use the
DATA-VERSION (page 144) field to judge if those zero-filled fields are valid or not.

RECORD zmsentity. FILE is "zmsentity" ENTRY-SEQUENCED.
 02 loadid type character 8.
 02 load-id redefines loadid.
 03 prefix-id type character 4.
 03 interval-id type character 4.
 02 system-name type character 8.
 02 cpu-num type binary 16 unsigned.
 02 os-version.
 03 letter type character 1.
 03 number type binary 8.
 02 reserved type character 4.
 02 object-uid type character 16.
 02 from-timestamp type binary 64.
 02 to-timestamp type binary 64.
 02 delta-time type binary 64.
 02 template-version type binary 64.
 02 format-version.
 03 letter type character 1.
 03 number type binary 8.
 02 data-version.
 03 letter type character 1.
 03 number type binary 8.
 02 subsystem-version type binary 16 unsigned.
 02 error type binary 16.
end

ERROR
Indicates whether an error prevented Measure from collecting data or writing an output record
for this entity. For values, see Identifying Data File Errors (page 140).

OBJECT-UID
(ZMS Style only) Reserved for future use.

FROM-TIMESTAMP
Starting time of the measurement or transient entity. Specified as Julian-based, local civil time
(LCT).

142 Entities and Counters

TO-TIMESTAMP
Ending time of the measurement or transient entity. Specified as Julian-based, local civil time
(LCT).

DELTA-TIME
Duration of the measurement, in microseconds.

SYSTEM-NAME
Name of the system on which the measurement was taken.

OS-VERSION
Version ID of the operating system when the measurement was taken. This field is divided into
two subfields: LETTER and NUMBER.

LOADID
Redefined. See LOAD-ID.

LOAD-ID
Used only for structured files. If the LOADID clause of the MEASCOM LIST command is used
when this record is written to the structured file, this field contains a unique identification string
for the record. If the LOADID clause is not used, this field contains blanks. The default is blanks
(no LOADID).
A value provided by the user when requesting structured record output. LOADID is a string 8
characters long that can contain letters, numbers, carets (^), hyphens (-), and underscores (_).
The first character must be a letter. If fewer than 8 characters are specified, the string can be
space-filled or can contain a generated interval sequence number.
When used with the LISTALL command, if LOADID is 5 characters or fewer, the LOADID is
generated with an appended sequence number indicating the interval the data record represents.
Date intervals are numbered sequentially, from one. If LOADID is 3 characters or fewer, the
generated LOADID might contain spaces.
If you want interval numbering in LISTALL requests for ZMS style structured records, specify
a 4-character LOADID. If you use a 5-character LOADID, the fifth character is put in the
INTERVAL-ID portion of the field. Generated LOADIDs are not often used for LISTALL data.
Applications that use this feature should be evaluated to determine whether 4-character or
5-character LOADIDs should be specified in the future.

CPU-NUM
Number of the CPU on which the measurement was taken. For interprocessor communications
(IPC) records, CPU-NUM is MYCPU.

TEMPLATE-VERSION
(ZMS Style only) The record template version from MEASDDLS for the format of the external
record. When data collected on systems of differing product versions are stored in the same
structured files, the template version for all records is the one used to create the structured file.
The template version from the first record will be used to format all records in the file.

FORMAT-VERSION
(ZMS Style only) The Measure product version of the program that formatted the entity report
or structured record.

Common Entity Header Fields 143

DATA-VERSION
(ZMS Style only) The Measure product version of the system that collected the Measure data file
that produced this record, and the MEASFH product version compatible with the data file.

SUBSYSTEM-VERSION
(ZMS Style only) This value is set to 1 for the initial H-series and J-series versions of all subsystems.
If the value is greater than one, consult the subsystem documentation for information about
changes that affect the Measure counters. In G-series RVUS, the value is 0.

Measure Support for Open System Services (OSS)
For more information on the interoperability between the OSS and Guardian environments, see:
• Open System Services Library Calls Reference Manual
• Open System Services Management and Operations Guide
• Open System Services Shell and Utilities Reference Manual
• Open System Services System Calls Reference Manual
• Open System Services User’s Guide

Handling of OSS File Pathnames
• OSS file pathnames are always entered and displayed in double quotation marks (" ") and

are case sensitive. OSS file pathnames can refer to specific files or to a set of files within a
specific directory. If a directory is specified, only files within that immediate directory are
included. Files contained within directories subordinate to the specified directory are not
included.

• To support both the Guardian and OSS environments, the use and intended meaning of
pname is standardized. pname is a long-established abbreviation for a Guardian process
name, as well as an OSS shell command:
— pname in double quotation marks ("pname") is an OSS file pathname.
— pname preceded by a dollar sign ($pname) or alone (pname) is a Guardian process

name.
• OSS file pathnames can be long (up to 1023 characters in length). In displaying these long

OSS file pathnames, Measure displays the first 80 characters and wraps any remaining
characters to the next line. Measure displays the name in 80-character blocks until the entire
OSS file pathname is displayed. Additionally, if you use the cut-and-paste feature on these
longer OSS file pathnames, you might need to cut and paste the name in sections to avoid
picking up extraneous carriage return characters from the end of each 80-character line.

• The POSIX standards allow the use of nonprintable (nondisplayable) characters in OSS file
pathnames. However, names that use these characters might be handled differently according
to differences in the user interface, workstation, and terminal environments. Neither the
OSS utilities nor Measure deal with this issue.

• Although Measure G09 and later PVUs provide entity support for OSS file pathnames, be
cautious when you use OSS file pathnames in measurement specifications because pathnames
can overrun the buffer limit. For detailed measurements, break the measurement into several
separate measurement configurations. Measure supports up to 64 concurrent measurements.

• Do not confuse the meanings of OSSPID and PID:
— OSSPID is a numeric value displayed in many Measure entity reports, and PID is a

Guardian process identifier consisting of CPU, PIN.
— PID is used extensively in the Measure command interface, but the Measure command

interface does not support OSSPID.
• OSS file pathnames are null-terminated strings. In Measure, the length of a string field is

required and includes the null character

144 Entities and Counters

Guardian File-Name Reuse
Guardian file-name values are based on an internal value or cell in the OSS file system, commonly
referred to as an inode number. When a file and all references to it are deleted, reuse of the inode
number and the file name can occur.
When a file is created on disk, a unique creation version serial number (CRVSN) is assigned to
the file. The CRVSN provides a mechanism to distinguish between various instances of a Guardian
file name. Measure uses the mechanism to avoid file-name resolution problems due to inode
number reuse. If Guardian file name and CRVSN values do not match those currently associated
in the OSS name server data, assume that reuse occurred and that no OSS file pathname will be
displayed.
If Guardian file name and CRVSN values do not match the values currently associated in the
OSS Name Server data, it is assumed that file-name reuse occurred. When file-name reuse occurs,
no associated OSS file pathname is displayed, and this message is generated: *** Translation
Not Available ***.

Handling of the Creation Version Serial Number (CRVSN)
The Creation Version Serial Number (CRVSN) is a 48-bit value. Measure displays the CRVSN
as a decimal string of up to 15 characters following the Guardian name (for example,
$DATA01.ZYQ00001.Y00003D2:340359). Measure stores the CRVSN value in data records as a
string of six characters (48 bits).

Measure Identification (MID)
OSS file pathnames are contained within a data structure called a PATHID. PATHIDs are internal
and are passed around in control blocks. When an OSS file pathname is externalized, it is passed
to the OSS Name Server for file pathname translation.
To support reporting of OSS file pathnames, Measure captures PATHID and CRVSN information
for each OSS file pathname and stores the information in Measure data. The association of a
PATHID and a CRVSN value in Measure data is a Measure ID (MID). The addition of the MID
data does not increase the size of your Measure data file because the MID information and
representation of the internal file name are compressed.

OSS Journal Segment
The OSS Journal Segment is a set of OSS file pathname translations captured for Measure data
collection. It provides OSS file pathname translations for data records in the Measure data file
when such translations are no longer available from the OSS Name Server. The OSS Name Server
cannot translate the OSS file pathname due to time constraints and the relocation of the data file
to another node or network.
The main feature of OSS file pathname support in Measure is the creation of an OSS journal
segment. The OSS journal segment ensures portability of OSS file pathnames translation between
systems and over time. It also eliminates the need to access the OSS Name Server of the system
being measured to analyze or report on OSS objects in Measure data.
OSS journal segment construction is not required when you use or view OSS file pathnames in
Measure data or when you analyze Measure data on the local system. OSS journal segment
construction is required when OSS file pathname translation must be available to reporting
applications in structured Measure data output.
Measure builds the OSS journal segment at measurement shutdown and inserts it in the Measure
data file. The journal segment is loaded into memory and attached to an application process or
MEASCOM when a Measure data file is opened for analysis. This feature is optional. The default
is no journal segment.

Measure Support for Open System Services (OSS) 145

Entity Report Formats
The length of entity reports varies because the display of OSS file pathnames might add a variable
number of lines to a report if the name is longer than a single line can display.
To control scrolling of Measure entity reports, use the PAGESIZE command. PAGESIZE lets you
specify the exact number of lines to display before another prompt is issued. For details, see
PAGESIZE (page 101).

Measure Support for ANSI SQL Names
SQL/MX objects such as tables and indexes have ANSI SQL names in addition to their underlying
Guardian names. Measure G11 and later PVUs can provide ANSI SQL names in certain Measure
output.
For more information on ANSI SQL names and SQL/MX, see the SQL/MX Reference Manual and
the SQL/MX Installation and Management Guide.

Handling of ANSI SQL Names
• ANSI SQL names are always displayed and entered in single quotes (') and are case-sensitive.

ANSI SQL delimited identifiers enclosed in double quotes (") are permitted inside the single
quotes. For example:
‘Catalog_12.Schema_34.Table_56’
‘Catalog_12."A.B.C PARTITION D$”” <>".Table_56’

NOTE: When an ANSI SQL name is passed as an argument to a callable procedure, it
should not be enclosed in single quotes. See Chapter 4: Measure Callable Procedures
(page 349).

• ANSI SQL names can refer to specific objects or to a set of objects within a specific schema
and catalog. If a catalog is specified, only files within that immediate catalog are included.
Files contained within schema subordinate to the specified catalog are not included.

• Measure compresses any white space (one or more blanks) within single quotes that is not
within double quotes.

• Measure wraps displayed ANSI SQL names from one line to the next, as needed. If you cut
and paste a wrapped ANSI SQL name from a Measure display, carriage return characters
might be included that are not part of the name. To avoid this, cut and paste the name one
line at a time.

• To enter commands longer than 132 characters, continuation characters (“&”) must be used
to break the command input lines into smaller pieces. Entering a text string terminated by
the ampersand character will cause the next input line to be treated as a continuation of the
input. Successive input lines entered in this fashion are treated as if they were entered as
one string. For example:
+ ADD DISKFILE ‘long_long_long_long_long_long_long_long_&
& long_catalog.short_schema.short_object PARTITION&
& short_partition2’

• ANSI SQL identifiers can be long (up to 128 characters). The maximum length of an identifier
in delimited form is 258 characters (two double-quotes to delimit the identifier, plus 256
double-quote characters to express an identifier consisting of 128 double-quote characters).
— An ANSI SQL object name without a name space qualifier has a maximum undelimited

length of 386 characters (three undelimited identifiers of 128 characters plus two periods).
In delimited form, an object name has a maximum length of 776 characters (three
delimited identifiers of 258 characters, plus two periods).

— An ANSI SQL object name with a name space qualifier has a maximum undelimited
length of 393 characters (7 additional characters for the MODULE keyword, plus a

146 Entities and Counters

space). In delimited form, an object name has a maximum length of 783 characters (7
plus 776).

— An SQL/MX partition name without a name space qualifier has a maximum undelimited
length of 525 characters (four undelimited identifier fields of 128 characters, plus two
periods, plus nine characters for the PARTITION keyword, plus two spaces). In delimited
form, a partition name has a maximum length of 1045 characters (four delimited
identifiers of 258 characters, plus two periods, plus nine characters for the PARTITION
keyword, plus two spaces).

— An SQL/MX partition name with a name space qualifier has a maximum undelimited
length of 531 characters (6 additional characters for the TABLE or INDEX keyword
followed by a space). In delimited form, a partition name has a maximum length of
1051 characters (6 plus 1045).

— The maximum ANSI SQL name length is 1051 characters for a maximum length partition
name expressed in delimited form.

SQL/MX does not support all of these theoretical limits. And when SQL/MX returns a syntax
error, Measure reports a syntax error. See the SQL/MX Reference Manual.

SQL Journal Segment
A measurement data file can include the SQL journal segment for use in translating between
ANSI SQL, Guardian names, and ANS UIDs. The SQL journal segment ensures portability of
SQL name translation between systems and over time.
The journal segment includes information such as the SQL/MX object and partition names,
Guardian name, ANS UIDs, ANSI name space, and SQLMID (an internal Measure handle that
represents a particular instance of the SQL/MX file).
SQL journal segment construction is not required when you analyze Measure data on the system
where the measurement occurred. SQL journal segment construction is required when name
translation must be available to reporting applications in structured Measure data output (see
MEASLISTEXTNAMES (page 411)).
Measure builds the SQL journal segment during the measurement and inserts it into the Measure
data file during measurement shutdown. The journal segment is loaded into memory and attached
to an application process or MEASCOM when a Measure data file is opened for analysis.
This feature is optional. The default is no journal segment.
ANSI SQL object names can be fully qualified or partially qualified. If partially qualified, the
omitted catalog and schema fields are resolved using MEASCOM session environment values
(see the SQLCATALOG (page 114) and SQLSCHEMA (page 114) commands).

Entity Report Formats
The length of entity reports varies because the display of ANSI SQL names might add a variable
number of lines to a report if the name is longer than a single line can display.
To control scrolling of Measure entity reports, use the PAGESIZE command. PAGESIZE lets you
specify the exact number of lines to display before another prompt is issued. For details, see
PAGESIZE (page 101).

Measure Support for ANSI SQL Names 147

Measure Support for DLLs

Measure G12 and later PVUs support measurement of DLLs.

Code Space Specification
With the introduction of DLLs, which are implemented in position-independent code (PIC), this
traditional model of code-space is no longer applicable:
• User code
• User library
• System code
• System library
Except for legacy TNS code (including accelerated TNS code), a code space is no longer required
when adding PROCESSH entities and is no longer displayed by commands that show PROCESSH
data.
These MEASCOM commands are affected by this change:
• The ADD PROCESSH command no longer requires you to specify a code space, except for

legacy TNS code (including accelerated TNS code).
• Output of these commands is now organized around code files rather than code spaces,

except for legacy TNS code (including accelerated TNS code):
— INFO PROCESSH
— INFO MEASUREMENT
— LIST PROCESSH
— LISTALL PROCESSH

Aggregate Data Measurement
In order to collect, analyze and display information about DLL execution, Measure now supports
the collection and display of aggregate data about library code across all processes executing the
same version of that code. This enhancement required the TOTALS attribute to be extended to
the PROCESSH entity through these MEASCOM commands:
• LIST entity-type (page 68)
• LISTALL entity-type (page 90)
• RESET REPORT (page 103)
• SET REPORT (page 108)
You can accommodate these settings:
• TOTALS ONLY

Only aggregate counts are displayed.

• TOTALS INCLUDE
Both per-process and aggregate counts are displayed.

• TOTALS SUPPRESS
No aggregate counts are displayed.

If only one process is executing code specified in a measurement, per-process and aggregated
counts are identical.

148 Entities and Counters

Additional Information About DLLs in This Manual

Command Interfaces
• LIST entity-type (page 68)
• LISTALL entity-type (page 90)
• LISTACTIVE entity-type (page 85)
• RESET REPORT (page 103)
• SET REPORT (page 108)
• SHOW REPORT (page 116)

Information Displays
• INFO entity-type (page 62)
• INFO MEASUREMENT (page 64)
• LIST entity-type (page 68)
• LISTACTIVE entity-type (page 85)
• LISTALL entity-type (page 90)

Entity Specifications
• PROCESSH (page 291)

External Record Definitions
• See the PROCESSH external record definition in DDL Record for PROCESSH Entities (ZMS

Style) (page 296).
• See the zmsproch-id. external record definition in DDL Record for PROCESSH Entities (ZMS

Style) (page 296).

Callable Procedures
• MEAS_CODERANGENAME_DEMANGLE_ (page 358)

Accessing ZMS style Records (MEASDDLZ)
The MEASDDLZ file lets applications access ZMS style data records with minimal impact.
The ZMS style record structure adds a level of naming to each component of the record. The
Legacy Style does not have this additional naming level. For example, the field cpu.dispatches
in a legacy style record is equivalent to the zmscpu.ctr.dispatches in the ZMS style record structure.
Converting existing applications and ENFORM reports from the legacy naming format to the
ZMS style naming format is a significant edit of record references. It also involves removal of
fields that might be referenced by programs, and the possible combination of equivalent fields
that appeared in two sizes (for example, process.sent-bytes and process.sent-bytes-f).
To simplify this process, use the MEASDDLZ file as described in the Measure User’s Guide.
MEASDDLZ presents the ZMS style counter widths and locations in the record using the legacy
style record naming convention. Record template names use legacy style names (for example,
PROCESS rather than ZMSPROC). Fields that have been combined are referenced by redefines.
MEASDDLZ and the ZMS style format are available in the Measure G11 PVU. In H01 and later
PVUs, the ZMS style interface is the default. The legacy interface will no longer be enhanced,
and MEASDDLZ will no longer be maintained to reflect changes in the ZMS style records.
Counters will be added or modified only in ZMS style records.

Accessing ZMS style Records (MEASDDLZ) 149

CLUSTER
The CLUSTER entity type provides information about the number of FOX messages sent and
received by all processes on the local system. In this manual, the term FOX refers to:

ServerComponent

Cyclone or VLXFOX II

NonStop K-seriesTorusNet

NonStop S-seriesServernet/FX

A FOX link involves at least two processes on different systems: the linker that initiated the link
and the listener that accepted the link. Because the Measure subsystem can measure only the
local system, the measurement data reflects only one side of each FOX link: that of the linker or
the listener, but not both.

PageTopic

150Entity specification syntax

150DDL record for CLUSTER entities

153Usage notes for all CLUSTER entities

153Usage notes for G-series CLUSTER entities

The CLUSTER entity is not relevant to H-series and J-series RVUs. A similar entity on H-series
and J-series RVUs is SERVERNET.

Entity Specification Syntax for CLUSTER Entities
To describe CLUSTER entities:
CLUSTER entity-spec

CLUSTER
collects information about FOX traffic.

entity-spec

is specified as:
{ * } { \system [(cpu)] }
*

indicates all FOX traffic between the local system and all remote systems.
\system

is the system name or number of a remote system. If you specifysystem, the measurement
includes all FOX traffic between the local system and this remote system.

cpu

is the number of a CPU on the local system. If you specify cpu, the measurement includes
all FOX messages sent or received by this CPU. The default is all CPUs.

DDL Record for CLUSTER Entities (Legacy Style)
This is the DDL record for CLUSTER entities. The fields included in BRIEF reports are in boldface
type.

150 Entities and Counters

The CLUSTER DDL record for G-series entities is identical to the record for D-series entities
except:
• Longer byte-count fields are provided to reduce the possibility of field overflow. Each 32-bit

byte-count field has a 64-bit counterpart. For information on using the 64-bit fields, see Usage
Note for G-Series CLUSTER Entities (page 153).

• The ERROR field can indicate a field overflow in a 32-bit byte-count field.
RECORD cluster. FILE is "cluster" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 remote-system type binary 16 unsigned.
 02 remote-system-name type character 8.

* counter value items:
02 messages-sent type binary 32 unsigned.
 02 sent-bytes type binary 32 unsigned.
 02 returned-bytes type binary 32 unsigned.
02 messages-received type binary 32 unsigned.
 02 received-bytes type binary 32 unsigned.
 02 reply-bytes type binary 32 unsigned.

* F40 counter value items:
 02 sent-bytes-f type binary 64.
 02 returned-bytes-f type binary 64.
 02 received-bytes-f type binary 64.
 02 reply-bytes-f type binary 64.
end

DDL Record for CLUSTER Entities (ZMS Style)
The ZMS Style DDL record for CLUSTER entities is supported on Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsclstr-id.
 02 remote-system-name type character 8.
 02 remote-system type binary 16 unsigned.
 02 reserved-1 type character 6.
end

Counter Fields DDL Definitions
DEFINITION zmsclstr-ctrs.
 02 messages-sent type binary 64.
 02 sent-bytes type binary 64.
 02 returned-bytes type binary 64.
 02 messages-received type binary 64.
 02 received-bytes type binary 64.
 02 reply-bytes type binary 64.
end

DDL Record Description Fields
RECORD zmsclstr. FILE is "zmsclstr" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsclstr-ctrs.

CLUSTER 151

 02 id type zmsclstr-id.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

REMOTE-SYSTEM

System number of the remote system for which FOX traffic was measured.

REMOTE-SYSTEM-NAME

System name of the remote system for which FOX traffic was measured.

MESSAGES-SENT

Number of FOX messages sent by all linker processes running on the local system.
Counter type: Incrementing.

SENT-BYTES

Number of FOX message bytes sent by all linker processes running on the local system.
When a process sends or receives a FOX message, the MESSAGES-SENT or
MESSAGES-RECEIVED counter of the PROCESS record for that process is also advanced.
For D-series and G-series RVUs, this is a 32-bit counter.
For G-series RVUs, SENT-BYTES-F field is a 64-bit version of SENT-BYTES.
Counter type: Accumulating.

RETURNED-BYTES

Number of FOX message bytes received by all linker processes running on the local system.
For D-series and G-series RVUs, this is a 32-bit counter.
For G-series RVUs, the RETURNED-BYTES-F field is a 64-bit version of RETURNED-BYTES.
Counter type: Accumulating.

MESSAGES-RECEIVED

Number of FOX message requests received by all listener processes running on the local system.
Counter type: Incrementing.

RECEIVED-BYTES

Number of FOX message bytes received by all listener processes running on the local system.
For D-series and G-series RVUs, this is a 32-bit counter.
For G-series RVUs, the RECEIVED-BYTES-F field is a 64-bit version of RECEIVED-BYTES.
Counter type: Accumulating.

REPLY-BYTES

Number of FOX message bytes sent by all listener processes running on the local system in reply
to messages from remote linker processes.
For D-series and G-series RVUs, this is a 32-bit counter.
For G-series RVUs, the REPLY-BYTES-F field is a 64-bit version of REPLY-BYTES.
Counter type: Accumulating.

152 Entities and Counters

SENT-BYTES-F

For G-series RVUs, same as SENT-BYTES but accommodates larger values (64 bits rather than
32 bits).

RETURNED-BYTES-F

For G-series RVUs, same as RETURNED-BYTES but accommodates larger values (64 bits rather
than 32).

RECEIVED-BYTES-F

For G-series RVUs, same as RECEIVED-BYTES but accommodates larger values (64 bits rather
than 32).

REPLY-BYTES-F

For G-series RVUs, same as REPLY-BYTES but accommodates larger values (64 bits rather than
32).

Usage Notes for All CLUSTER Entities
• CLUSTER counters are advanced by the message system during network operations that

send data directly to another system over a FOX link.
CLUSTER does not count messages sent through the network line handler. Those messages
are counted in the NETLINE and SYSTEM counter records. For systems connected by a FOX
link, only messages requiring security checks go through the network line handler.
For example, assume you use FUP COPY to copy a file to a remote system connected by a
FOX link. Because the file security must be checked, the OPEN message is sent through the
network line handler and is counted by the NETLINE and SYSTEM counters. The file data
is sent over the FOX line and is counted by the CLUSTER entity.

• When a process sends or receives a FOX message, the MESSAGES-SENT or
MESSAGES-RECEIVED counter of the PROCESS record for that process is also advanced.

• For detailed information on FOX transfers and Expand line handlers, see the Expand
Configuration andManagementManual and theExpandNetworkManagement and Troubleshooting
Manual.

Usage Note for G-Series CLUSTER Entities
The 64-bit byte-count fields (fields ending in -F) collect the same data as older 32-bit byte-count
fields. For example, the 64-bit field SENT-BYTES-F collects the same data as the 32-bit field
SENT-BYTES. The 64-bit fields are less subject to overflow caused by high levels of I/O activity.
The 32-bit fields are still active and continue to return values. If no field overflow occurs, the
32-bit fields and the 64-bit fields return the same value. If a 32-bit field overflows, the
corresponding 64-bit field returns the correct value, and the 32-bit field returns a value of -1. The
ERROR field for the measured entity also returns -1 to indicate an overflow condition.
Convert your applications to use the 64-bit fields; 32-bit fields might be deactivated in a future
PVU.
In MEASCOM commands and in command (OBEY) files, use the names of the 32-bit fields. For
example, issue the command LIST DEVICE BY SENT-BYTES, not LIST DEVICE BY
SENT-BYTES-F. MEASCOM uses the names of the 32-bit fields in output displays such as reports
and plots.

Usage Note for H-Series and J-Series
CLUSTER entities are not supported in H-series and J-series RVUs, because the underlying
component is no longer supported on the system. MEASCOM does not return a syntax error if

CLUSTER 153

you configure a CLUSTER entity (so old scripts that configure CLUSTER entities don’t have to
be modified right away), but no records are configured or returned.

CONTROLLER
This entity measures I/O activity on controllers for disks, tape, terminals, and other devices on
systems running D-series RVUs. Starting with the D45 product version of Measure, the default
is to have the CONTROLLER entity disabled. For more information on this default setting, see
Usage Note for CONTROLLER Entities (page 156).
To enable the CONTROLLER entity, before starting the Measure subsystem:
ADD DEFINE =_MEASURE_CONTROLLERS, FILE A

To measure ServerNet addressable controllers (SACs) on systems running G-series RVUs, use
the SERVERNET entity.

NOTE: You can measure ServerNet addressable controllers with a D-series measurement
application if it specifies all controllers (ADD CONTROLLER *) or only a CPU number (ADD
CONTROLLER 2). To measure specific SACs, you must modify the entity identifiers.

PageTopic

154Entity specification syntax

155DDL record for CONTROLLER entities

156Usage notes for all CONTROLLER entities

Entity Specification Syntax for CONTROLLER Entities
To describe a CONTROLLER entity:
CONTROLLER entity-spec

CONTROLLER
collects information about one or more controllers on the system.

entity-spec

is specified as:
{ * [(type)] }
{ cpu [, channel [, ctrl]] [(type)] }

*
measures all controllers in all CPUs.

cpu

is the number of the CPU in which the controller to be measured is configured.
channel

is the channel number of the controller to be measured. Use an asterisk (*) to indicate all
channels. The default is all channels.

ctrl

is the controller number of the controller to be measured (0 through 31). Use an asterisk
(*) to indicate all controllers. The default is all controllers.

type

is the HP product number of the controller (such as 3128). The default is all controller
types matching the specified cpu, channel, ctrl set.

154 Entities and Counters

DDL Record for CONTROLLER Entities
This is the DDL record for CONTROLLER entities. The fields included in BRIEF reports are in
boldface type.
RECORD contrl. FILE is "contrl" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 channel type binary 16 unsigned.
 02 ctrl type binary 16 unsigned.
 02 ctrl-type type binary 16 unsigned.

* counter value items:
 02 requests type binary 32 unsigned.
 02 total-io-bytes type binary 64.
 02 io-qtime type binary 64.
 02 io-qlen-max type binary 16 unsigned.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

CHANNEL
Number of the channel on which the measurement was taken.

CTRL
Number of the controller on which the measurement was taken.

CTRL-TYPE
The product number, such as 3128.

REQUESTS
Total number of requests to the controller by all I/O processes (IOPs) connected to this controller
path.
Counter type: Incrementing.

TOTAL-IO-BYTES
Total number of bytes transferred to and from the controller by all IOPs connected to this controller
path.
Counter type: Accumulating.

IO-QTIME
The time that the controller is busy performing I/Os. If the average number of I/Os is less than
1, the number can be interpreted as the controller busy percentage.
Counter type: Queue.

IO-QLEN-MAX
(Legacy Style only) Maximum number of outstanding I/Os on the controller queue described by
the IO-QTIME counter.

CONTROLLER 155

Counter type: Max queue.

Usage Note for CONTROLLER Entities
Because of differences in implementation, CONTROLLER counters are not directly comparable
to device-level counters. For example, a CONTROLLER REQUESTS counter value is not equal
to the sum of the REQUESTS counter values for all devices that share that controller.
Measuring controller activity has questionable usefulness and is not generally advised.
Architectural differences between the communication and disk subsystems preclude correct data
being collected for communication devices. In addition, compatibility problems between controller
entity measurements and the online configuration utility program (COUP) can cause serious
system stability issues (for example, system halts). Therefore, do not use the CONTROLLER
entity.
The requests and data bytes returned from storage controllers are valid and can potentially be
useful in assessing system performance. To enable the CONTROLLER entity in a test environment,
set the define outlined in CONTROLLER (page 154).

CPU
The CPU entity type provides information about one or more CPUs in the local system:

PageTopic

156Entity specification syntax

156DDL record for CPU entities (Legacy Style)

159DDL record for CPU entities (ZMS Style)

170Usage notes for all CPU entities

170Series-specific usage notes for CPU entities

Entity Specification Syntax for CPU Entities
To describe a CPU entity:
CPU entity-spec

CPU
collects information about one or more CPUs in the local system.

entity-spec

is specified as:
{ * }
{ cpu } [, cpu] ...

*
indicates all CPUs.

cpu

is the number of a CPU to be measured. To measure multiple CPUs, specify a
comma-separated list of CPU numbers.
The default value is all CPUs.

DDL Record for CPU Entities (Legacy Style)
This is the DDL record for CPU entities. This record will not change after the G10 Measure PVU.
The fields included in BRIEF reports are in boldface type.

156 Entities and Counters

The CPU DDL record for G-series entities is identical to the CPU record for D-series entities
except:
• Counters are added to support direct bulk I/O transfers.
• The existing DISK-IOS counter also includes direct bulk I/O requests.
• The SEND-BUSY-TIME field is no longer used.
• Fields are added to support changes in memory handling, and the activity measured by

some existing fields changed.
• Longer byte-count fields are provided to reduce the possibility of field overflow. Each 32-bit

byte-count field has a 64-bit counterpart. For information on using the 64-bit fields, see Usage
Notes for G-Series CPU Entities (page 170).

• The ERROR field can signal a field overflow in a 32-bit byte-count field.
• As of G05, CPU-QTIME does not measure the amount of time processes stay on the ready

list for page faults. As such, MEM-QTIME is always zero.
• As of G08, instrumentation for the ServerNet Cluster is added.

RECORD cpu. FILE is "cpu" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
 * entity identification items:
 02 cpu-type type binary 16 unsigned.

 * redefinition for D25
 02 memory-pages type binary 16 unsigned.
 02 mem-mb type binary 16 unsigned
 redefines memory-pages.

 02 pcbs type binary 16 unsigned.
 02 lcbs type binary 16 unsigned.

* counter value items:
 02 cpu-busy-time type binary 64.
 02 cpu-qtime type binary 64.
 02 cpu-qlen-max type binary 16 unsigned.
 02 mem-qtime type binary 64.
 02 mem-qlen-max type binary 16 unsigned.
 02 dispatches type binary 32 unsigned.
 02 swaps type binary 32 unsigned.
 02 intr-busy-time type binary 64.
 02 process-ovhd type binary 64.
 02 send-busy-time type binary 64.
 02 disc-ios type binary 32 unsigned.
 02 cache-hits type binary 32 unsigned.
 02 transactions type binary 32 unsigned.
 02 response-time type binary 64.
 * redefinition for D25:
 02 memory-pages32 type binary 32 unsigned.
 02 mem-frames type binary 32 unsigned.
 redefines memory-pages32.

 02 cpu-subtype type binary 16 unsigned.

* fields for TNS/R specific counters:
 02 accel-busy-time type binary 64.
 02 tns-busy-time type binary 64.
 02 comp-traps type binary 32 unsigned.

CPU 157

* Native Mode busy time
 02 tnsr-busy-time type binary 64.

* New memory counters for D25:
 02 page-size-bytes type binary 16 unsigned.
 02 mem-initial-lock type binary 32 unsigned.
 02 page-requests type binary 32 unsigned.
 02 page-scans type binary 32 unsigned.
 02 Starting-free-mem type binary 32 unsigned.
02 Ending-free-mem type binary 32 unsigned.
 02 Starting-UCME type binary 32 unsigned.
02 Ending-UCME type binary 32 unsigned.

 02 Starting-UDS type binary 32 unsigned.
 02 Ending-UDS type binary 32 unsigned.
 02 Starting-UDS-lock type binary 32 unsigned.
 02 Ending-UDS-lock type binary 32 unsigned.

 02 Starting-SDS type binary 32 unsigned.
 02 Ending-SDS type binary 32 unsigned.
 02 Starting-SDS-lock type binary 32 unsigned.
 02 Ending-SDS-lock type binary 32 unsigned.

 02 Starting-UCL type binary 32 unsigned.
 02 Ending-UCL type binary 32 unsigned.
 02 Starting-UCL-lock type binary 32 unsigned.
 02 Ending-UCL-lock type binary 32 unsigned.

 02 Starting-SCL type binary 32 unsigned.
 02 Ending-SCL type binary 32 unsigned.
 02 Starting-SCL-lock type binary 32 unsigned.
 02 Ending-SCL-lock type binary 32 unsigned.
 02 Ending-Free-CIDs type binary 32 unsigned
 redefines Ending-SCL-Lock.

* New counters for G04
 02 unsp-pages-qtime type binary 64.
 02 unsp-pages-qlen-max type binary 16 unsigned.
 02 unsp-pages-start type binary 32 unsigned.
 02 unsp-pages-end type binary 32 unsigned.

* New identifier in G05:
 02 processor-status type binary 32 unsigned.

* New counters for G05:
 02 disc-ios-f type binary 64.
 02 cache-hits-f type binary 64.
 02 svnet occurs 16 times.
 03 read-requests type binary 32 unsigned.
 03 write-requests type binary 32 unsigned.
 03 read-bytes type binary 64.
 03 write-bytes type binary 64.

 * New counters for G08:
 02 link-prepush-msgs type binary 64.
 02 link-readlink-msgs type binary 64.
 02 link-large-msgs type binary 64.
 02 readlinkcache-all type binary 64.
 02 readlinkcache-ctrl type binary 64.
 02 readlinkcache-none type binary 64.
 02 replyctrlcache-msgs type binary 64.
 02 ending-free-cids type binary 32 unsigned.
 redefines ending-scl-lock
 02 reserved type character 40.

158 Entities and Counters

 end

DDL Record for CPU Entities (ZMS Style)
The ZMS Style DDL record for CPU entities is supported on Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmscpu-id.
 02 cpu-type type binary 16 unsigned.
 02 cpu-subtype type binary 16 unsigned.
 02 mem-mb type binary 16 unsigned.
 02 pcbs type binary 16 unsigned.
 02 page-size-bytes type binary 32 unsigned.
 02 mem-frames type binary 32 unsigned.
 02 mem-initial-lock type binary 32 unsigned.
 02 ipus type binary 16 unsigned.
 02 reserved-1 type character 2.
end

Counter Fields DDL Definition
DEFINITION zmscpu-ctrs.
 02 cpu-busy-time type binary 64.
 02 cpu-qtime type binary 64.
 02 dispatches type binary 64.
 02 swaps type binary 64.
 02 intr-busy-time type binary 64.
 02 process-ovhd type binary 64.
 02 disc-ios type binary 64.
 02 cache-hits type binary 64.
 02 transactions type binary 64.
 02 response-time type binary 64.
 02 comp-traps type binary 64.
 02 native-busy-time type binary 64.
 02 accel-busy-time type binary 64.
 02 tns-busy-time type binary 64.
 02 page-requests type binary 64.
 02 page-scans type binary 64.
 02 mm-page-scans type binary 64.
 02 Starting-free-mem type binary 32 unsigned.
 02 Ending-free-mem type binary 32 unsigned.
 02 Starting-UCME type binary 32 unsigned.
 02 Ending-UCME type binary 32 unsigned.
 02 Starting-UCL type binary 32 unsigned.
 02 Ending-UCL type binary 32 unsigned.
 02 Starting-SCL type binary 32 unsigned.
 02 Ending-SCL type binary 32 unsigned.
 02 Starting-Free-CIDs type binary 32 unsigned.
 02 Ending-Free-CIDs type binary 32 unsigned.
 02 unsp-pages-qtime type binary 64.
 02 unsp-pages-start type binary 32 unsigned.
 02 unsp-pages-end type binary 32 unsigned.
 02 link-prepush-msgs type binary 64.
 02 link-readlink-msgs type binary 64.
 02 link-large-msgs type binary 64.
 02 readlinkcache-all type binary 64.
 02 readlinkcache-ctrl type binary 64.
 02 readlinkcache-none type binary 64.
 02 replyctrlcache-msgs type binary 64.
 02 processh-samples type binary 64.

CPU 159

* New Counters for H01
 02 Starting-timer-cells type binary 32 unsigned.
 02 Ending-timer-cells type binary 32 unsigned.

* New IPU specific counters for H03/NSMA
* (a new array must be inserted before an existing array)
 02 ipu occurs 16 times.
 03 ipu-busy-time type binary 64.
 03 ipu-qtime type binary 64.
 03 ipu-dispatches type binary 64.

 02 svnet occurs 16 times.
 03 read-requests type binary 64.
 03 write-requests type binary 64.
 03 read-bytes type binary 64.
 03 write-bytes type binary 64.
end

DDL Record Description Fields
RECORD zmscpu. FILE is "zmscpu" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmscpu-ctrs.
 02 id type zmscpu-id.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

CPU-TYPE

One of these values:

TNS II1

TXP2

VLX3

CLX (except CLX 2000)4

Cyclone5

NSR-L6

NSR-N, NSR-P, or NSR-K7

NSR-W8

NSR-G, NSR-T, NSR-V, NSR-X, NSR-Y, NSR-Z, NSR-D, NSR-E, NSR-H, NSR-J, NSR-Y9

NSE10

CPU-SUBTYPE

Binary value indicating the subtype for the CPU.

MEMORY-PAGES

Redefined. See MEM-MB.

MEM-MB

Total memory size in megabytes.

PCBS

Number of process control blocks (PCBs) configured by the SYSGEN program.

160 Entities and Counters

LCBS

No longer used; returns 0.

PAGE-SIZE-BYTES

Number of bytes in a memory frame for the CPU being measured. This value is 2048 for CISC
processors, 4096 for Cyclone/R, CLX/R, and K1000 processors, and 16384 for newer processors.

MEM-FRAMES

Number of frames (physical pages) in the CPU configuration. (This value is the PHYSCL value
in the PEEK utility.)

MEM-INITIAL-LOCK

Number of page frames locked by the SYSGEN program. The difference between MEM-FRAMES
and MEM-INITIAL-LOCK is called SWAPBL in PEEK. The value is the number of memory page
frames locked during system load and available for use by the operating system. The value
depends on the operating system.

IPUS

In Measure J01 and later PVUs, supports the reporting of the number of IPUs comprising the
logical CPU. IPU-specific counters are:

IPU-DISPATCHESIPU-QTIMEIPU-BUSY-TIME

IPU-BUSY-TIME
The time during which this IPU was busy.

IPU-QTIME
The time (in microseconds) that processes spent on the ready list. Same as CPU-QTIME but
for an IPU.

IPU-DISPATCHES
The number of dispatches for that IPU.

CPU-BUSY-TIME

The time that the CPU was busy.
For TNS/R systems, CPU-BUSY-TIME is the sum of ACCEL-BUSY-TIME, TNS-BUSY-TIME,
TNSR-BUSY-TIME, and INTR-BUSY-TIME.
For TNS/E systems, CPU-BUSY-TIME is the sum of ACCEL-BUSY-TIME, TNS-BUSY-TIME, and
NATIVE-BUSY-TIME, and includes the INTR-BUSY-TIME
For NSMA systems in Measure J01 and later PVUs, CPU-BUSY-TIME is the aggregate of the
BUSY-TIMEs of the individual IPUs that comprise the logical CPU. With REPORT RATE ON,
the maximum value of this field is always 100%. With REPORT RATE OFF, this is the raw
aggregate value of the BUSY-TIMEs of all its IPUs.
Counter type: Busy.

CPU-QTIME

The time (in microseconds) that processes spent on the ready list. Prior to the G05 Measure PVU,
the ready list includes processes waiting on page faults. The CPU MEM-QTIME counter shows
the time spent waiting for arrival of message system data.
For G05 and later PVUs, a process no longer remains active in the ready list timer, so the value
of MEM-QTIME is zero.
Counter type: Queue.

CPU 161

CPU-QLEN-MAX

(Legacy Style only) Maximum number of items on the queue described by the CPU-QTIME
counter. After a system is loaded, all system processes are placed on the ready list. Because this
counter is initialized only at system load, it generally reflects a one-time, very long CPU queue.
Counter type: Max queue.

MEM-QTIME

Amount of CPU time that processes in the measured processor spent waiting on page faults. (A
page fault does not cause the system to remove the process from the ready list.)
For G05 and later product versions, the activity measured by this counter has changed somewhat
because of changes in memory handling. In earlier G-series RVUs (and all D-series RVUs),
page-fault requests are handled by the memory manager ($VIRTUAL). Concurrent requests
must queue for processing.
As of G05, the handling of page-faulting is a system library function. No queueing occurs because
multiple requests are processed concurrently. As a result, MEM-QTIME is always zero.

PageFunctionRelated Counter

161Measures the time all processes spent on the ready
list, including time spent waiting on page faults

CPU-QTIME

162Measures the time a process spent waiting on page
faults

PROCESS MEM-QTIME

280Counts the number of page faults generated by a
process

PROCESS PAGE-FAULTS

Counter type: Queue.

MEM-QLEN-MAX

(Legacy style only) Maximum number of items on the queue described by the MEM-QTIME
counter.
For G05 and later product versions, zero. For earlier product versions, the maximum number of
queued page faults since the processor was loaded.
Counter type: Max queue.

MM-PAGE-SCANS

(ZMS Style only) Reserved for future use.

DISPATCHES

Number of times a process was selected from the ready list and executed by the CPU. The
DISPATCHES counter for the PROCESS entity shows the number of times a particular process
was dispatched (selected and run).
Counter type: Incrementing.

SWAPS

Number of swap operations (both into and out of memory) performed by the memory manager.
The memory manager swaps one or two pages at a time. The CPU SWAPS counter is advanced
once for each swap regardless of the number of pages swapped. (The CPU SWAPS counter differs
from the DISC SWAPS counter.)
Only pages that are updated are swapped. Code pages are swapped into memory, but because
they cannot be updated, they are never swapped out. Data pages are swapped both into and out
of memory. However, a data page that has no initial data is not swapped in until it is used.

162 Entities and Counters

Depending on memory requirements and the types of pages being swapped in and out, a page
fault (as counted by the PROCESS entity) can cause no swaps, one swap, or two swaps:

SwapsSituation

0Code removed or free page available in memory; no initial data page swapped in

1Code removed or free page available; code or data page with initial data swapped in

2Used data page swapped out and used data page swapped in

Counter type: Incrementing.

INTR-BUSY-TIME

The time that the CPU spent executing interrupt handlers. Most interrupts are caused by the
processing of messages and I/O operations. The appropriate system description manual describes
each type of interrupt.
For TNS/E systems, this is the total time spend executing system Interrupt Processes (IPs) and
system Auxiliary Processes (APs).
Counter type: Busy.

PROCESS-OVHD

The time spent initializing and terminating processes.
Counter type: Busy.

SEND-BUSY-TIME

For D-series RVUs, the time that the CPU spent sending data to other CPUs; that is, the time
spent executing SEND instructions. This counter partially overlaps the INTR-BUSY-TIME counter.
For G-series RVUs, no longer used.
Counter type: Busy.

DISC-IOS

Number of I/O disk transfers performed by disk processes in the measured CPU. This count
includes direct bulk I/O requests initiated by this CPU for other CPUs.
For D-series and G-series RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the DISC-IOS-F field is a 64-bit version of DISC-IOS.
Counter type: Incrementing.

CACHE-HITS

Number of times the required block was found in cache during an I/O operation.
For a read operation (or the read part of a write operation), a cache hit saves a disk I/O. For a
write operation, the result of a cache hit depends on the type of file I/O. For buffered I/O, the
cache hit saves a disk I/O. For write-through I/O, it does not.
A write operation causes a read in a number of cases. For example, in a key-sequenced file,
writing to a data block can require reads of one or more index blocks. Or, if you write a partially
filled block to disk, the disk process must read the block from disk, merge the new data into the
block, and then write the block to disk.
The DISC entity provides additional cache and I/O information.
For D-series and G-series RVUs, this is a 32-bit counter. For H- J-series RVUs, this is a 64-bit
counter.

CPU 163

For G-series RVUs, the CACHE-HITS-F field is a 64-bit version of CACHE-HITS.
Counter type: Incrementing.

TRANSACTIONS

Number of transactions performed by terminal processes on the measured CPU that are in
currently active measurements. A transaction is a read from a terminal followed by a write to
the terminal. Response time is the interval between the end of the read and the beginning of the
write.

PageFunctionRelated Counter

164Measures the response timeRESPONSE-TIME

337Measures response time and transactions for a particular
terminal

TERMINAL RESPONSE-TIME and
TRANSACTIONS

Counter type: Incrementing.

RESPONSE-TIME

The time that terminal processes in the CPU and in active measurements spent on terminal
responses. A transaction is a read from a terminal followed by a write to the terminal. Response
time is the interval between the end of the read and the beginning of the write.

PageFunctionRelated Counter

337Measures the number of transactionsTRANSACTIONS

337Measures response time and transactions for a particular
terminal

TERMINAL RESPONSE-TIME and
TRANSACTIONS

Counter type: Response time.

MEMORY-PAGES32

Redefined. See MEM-FRAMES.

ACCEL-BUSY-TIME

The time that the CPU was busy executing accelerated code. This counter applies only to
measurements taken on a TNS/R system or a TNS/E system.
For H-series, J-series and later RVUs, this counter value is calculated, returned, and displayed
only if a PROCESSH measurement is active on the CPU. Otherwise, the counter is not displayed,
and its value in the returned record is zero. The counter is calculated based on the number of
PROCESSH samples observed in the applicable code region, and so for more accurate numbers,
you can increase the frequency of PROCESSH samples. The PROCESSH-SAMPLES counter
reports the current sampling frequency.
Effective with Measure H04, J02, and later PVUs, if the PROCESSH sample count is unchanged
from the start to the end of a measurement interval, the ACCEL-BUSY-TIME,
NATIVE-BUSY-TIME, and TNS-BUSY-TIME fields will not be displayed by MEASCOM even if
a PROCESSH measurement is active. For the LISTALL command, this means some intervals
might display those fields and others might not.
Counter type: Busy.

NATIVE-BUSY-TIME

(ZMS Style only) Amount of time the processor was busy executing native code.

164 Entities and Counters

For H-series, J-series, and later RVUs, this counter value is calculated, returned, and displayed
only if a PROCESSH measurement is active on the CPU. Otherwise, the counter is not displayed,
and its value in the returned record is zero. The counter is calculated based on the number of
PROCESSH samples observed in the applicable code region, and so for more accurate numbers,
you can increase the frequency of PROCESSH samples. The PROCESSH-SAMPLES counter
reports the current sampling frequency.
Effective with Measure H04, J02, and later PVUs, if the PROCESSH sample count is unchanged
from the start to the end of a measurement interval, the ACCEL-BUSY-TIME,
NATIVE-BUSY-TIME, and TNS-BUSY-TIME fields will not be displayed by MEASCOM even if
a PROCESSH measurement is active. For the LISTALL command, this means some intervals
might display those fields and others might not.
Counter type: Busy

TNS-BUSY-TIME

The time that the CPU was busy executing TNS code. This counter applies only to measurements
taken on a TNS/R or TNS/E system.
For H-series, J-series, and later RVUs, this counter value is calculated, returned, and displayed
only if a PROCESSH measurement is active on the CPU. Otherwise, the counter is not displayed,
and its value in the returned record is zero. The counter is calculated based on the number of
PROCESSH samples observed in the applicable code region, and so for more accurate numbers,
you can increase the frequency of PROCESSH samples. The PROCESSH-SAMPLES counter
reports the current sampling frequency.
Effective with Measure H04, J02, and later PVUs, if the PROCESSH sample count is unchanged
from the start to the end of a measurement interval, the ACCEL-BUSY-TIME,
NATIVE-BUSY-TIME, and TNS-BUSY-TIME fields will not be displayed by MEASCOM even if
a PROCESSH measurement is active. For the LISTALL command, this means some intervals
might display those fields and others might not.
Counter type: Busy.

PROCESSH-SAMPLES

(ZMS Style only) This counter is valid only for H-series, J-series, and later RVUs. It reports the
raw count of the number of PROCESSH samples in the processor, if PROCESSH measurement
is active. If no PROCESSH measurement is active, this counter is not displayed, and its value in
the record is zero.
For NSMA systems in Measure J01 and later PVUs, PROCESSH-SAMPLES reports the aggregate
value of all the number of samples on all the IPUs and hence is typically equal to n*sampling
frequency on that CPU.

COMP-TRAPS

Number of times a compatibility trap occurred on the processor. A compatibility trap is a data
misalignment event, an unexpected transition to or from accelerated or unaccelerated code, or
a relative segment 2 or 3 problem. See the EPTRACE Manual for further details.
Counter type: Incrementing.

TNSR-BUSY-TIME

(Legacy Style only) The time that the CPU was busy executing TNS/R native code. This counter
applies only to measurements taken on a TNS/R system and is derived from other counters:
CPU-BUSY-TIME - (INTR-BUSY-TIME + TNS-BUSY-TIME + ACCEL-BUSY-TIME) =
TNSR-BUSY-TIME

Counter type: Busy.

CPU 165

PAGE-REQUESTS

Number of times the memory manager was invoked to obtain a page frame. (In the PEEK utility,
this value is called CLOCK:CALLS.)
Counter type: Incrementing.

PAGE-SCANS

Number of page frames the memory manager examined to obtain a replaceable page. (The PEEK
utility provides a SCANS/CALLS value that shows the average number of frames examined to
find a replaceable page.)
Counter type: Incrementing.

STARTING-FREE-MEM

Number of free memory frames at the start of the measurement interval.
Counter type: Snapshot.

ENDING-FREE-MEM

Number of free memory frames at the end of the measurement interval.
Counter type: Snapshot.

STARTING-UCME

Number of UCME (uncorrectable memory error) frames at the start of the measurement interval.
Counter type: Snapshot.

ENDING-UCME

Number of UCME (uncorrectable memory error) frames at the end of the measurement interval.
Counter type: Snapshot.

STARTING-UDS

(Legacy Style only) Number of user process data segment frames allocated in physical memory
at the start of the measurement interval. This counter includes the number of frames allocated
for user process stack segments, extended data segments, and process file segments (PFS). With
SPRs to T9050G05 and later PVUs, STARTING-UDS frames are included in the STARTING-UCL
counter.
Counter type: Snapshot.

ENDING-UDS

(Legacy Style only) Number of user process data segment frames allocated in physical memory
at the end of the measurement interval. With SPRs to T9050G05 and later PVUs, ENDING-UDS
frames are included in the ENDING-UCL counter.
Counter type: Snapshot.

STARTING-UDS-LOCK

No longer used.

ENDING-UDS-LOCK

No longer used.

STARTING-SDS

(Legacy Style only) Number of system process data segment frames allocated in physical memory
at the start of the measurement interval. This counter includes the number of frames allocated

166 Entities and Counters

for system process stack segments, extended data segments, and process file segments (PFS) as
well as the CPU system global data segment (SG) and any other extended data segments or
frames allocated for operating system use. A system process is any process that falls under the
Measure PROCESS entity category of system processes. With SPRs to Measure G05 and later
PVUs, STARTING-SDS frames are included in the STARTING-SCL counter.
Counter type: Snapshot.

ENDING-SDS

(Legacy Style only) Number of system process data segment frames allocated in physical memory
at the end of the measurement interval. With SPRs to Measure G05 and later PVUs, ENDING-SDS
frames are included in the ENDING-SCL counter.
Counter type: Snapshot.

STARTING-FREE-CIDS

(ZMS style only) Number of counter ID control blocks available for new counter records in this
processor at the beginning of the reported measurement interval.

ENDING-FREE-CIDS

Number of counter ID control blocks available for new counter records in this processor at the
end of the reported measurement interval.

STARTING-SDS-LOCK

No longer used.

ENDING-SDS-LOCK

No longer used.

STARTING-UCL

Number of user process code and library segment frames allocated in physical memory at the
start of the measurement interval. This counter includes the number of frames allocated for user
process TNS, accelerated, and native code segments for the short address spaces designated as
user code (UC) and user library (UL).
Counter type: Snapshot.

ENDING-UCL

Number of user process code segment frames and library segment frames allocated in physical
memory at the end of the measurement interval.
Counter type: Snapshot.

STARTING-UCL-LOCK

No longer used.

ENDING-UCL-LOCK

No longer used.

STARTING-SCL

Number of system process code and library segment frames allocated in physical memory at the
start of the measurement interval. This counter includes the number of frames allocated for TNS,
accelerated, and native code for system process code segments and the short address spaces
designated as system code (SC) and system library (SL). It also includes frames allocated for
interrupt procedures and millicode (for TNS/R systems).

CPU 167

Counter type: Snapshot.

ENDING-SCL

Number of system process code and library segment frames allocated in physical memory at the
end of the measurement interval.
Counter type: Snapshot

STARTING-SCL-LOCK

No longer used.

ENDING-SCL-LOCK

No longer used.

UNSP-PAGES-QTIME

The time that unsponsored pages (shared pages not owned by any process) spent in main memory.
For a description of unsponsored pages, see Usage Notes for G-Series CPU Entities (page 170).
Counter type: Queue.

UNSP-PAGES-QLEN-MAX

(Legacy Style only) Maximum number of items on the queue described by the
UNSP-PAGES-QTIME counter.
In H-series and J-series RVUs, this counter has a value of 1.
Counter type: Max Queue.

UNSP-PAGES-START

The number of pages on the UNSP-PAGES-QTIME queue at the start of the measurement interval.
Counter type: Snapshot.

UNSP-PAGES-END

The number of pages on the UNSP-PAGES-QTIME queue at the end of the measurement interval.
Counter type: Snapshot.

PROCESSOR-STATUS

(Legacy Style only) Number of processors on the system (16 for all NonStop S-series systems)
and status of each processor at the start of the measurement (1 for up, 0 for down.) Obtained
from the Guardian PROCESSORSTATUS procedure call. Not used for systems running H-series
and J-series RVUs.

DISC-IOS-F

In G-series RVUs, same as DISC-IOS but accommodates larger values (64 bits rather than 32 bits).

CACHE-HITS-F

In G-series RVUs, same as CACHE-HITS but accommodates larger values (64 bits rather than
32 bits).

SVNET

ServerNet activity for the measured processor. This field is divided into these subfields:

WRITE-BYTESREAD-BYTESWRITE-REQUESTSREAD-REQUESTS

168 Entities and Counters

In Measure reports, ServerNet activity values are provided separately for each processor to or
from which the measured processor transferred data.
If you generate a report for all processors and use the TOTALS option, the report shows the total
ServerNet data transfer activity for each processor. The fields for each specific processor can be
interpreted as the total ServerNet data demand by that processor. I/O requests are counted once
in these totals, but message system interprocessor communication (IPC) requests are counted
twice, once in each processor involved in the transfer.

READ-REQUESTS

Number of ServerNet transfers initiated in the measured processor that brought information
into the indicated processor (CPU n). For transfers within the measured processor, this count is
the number of standard I/O read requests. For transfers with other processors, the count includes
the number of DBIO read requests.
Counter type: Incrementing.

WRITE-REQUESTS

Number of ServerNet transfers initiated in the measured processor that sent information out of
the indicated processor (CPU n). For transfers within the measured processor, this count is the
number of standard I/O write requests and the number of message system send requests initiated
from the measured processor. For transfers to other processors, the count includes the number
of DBIO write requests.
Counter type: Incrementing.

READ-BYTES

Number of bytes transferred by read requests for the indicated processor (CPU n).
Counter type: Accumulating.

WRITE-BYTES

Number of bytes transferred by write requests for the indicated processor (CPU n).
Counter type: Accumulating.

LINK-PREPUSH-MSGS

Number of messages transferred to another CPU using the prepush protocol.
Counter type: Incrementing.

LINK-READLINK-MSGS

Number of messages transferred to another CPU not using the prepush protocol but within the
readlinkcache message size.
Counter type: Incrementing.

LINK-LARGE-MSGS

Number of messages transferred to a CPU that exceeded the readlinkcache message size.
Counter type: Incrementing.

READLINKCACHE-ALL

Number of received messages for which both control and data bytes were cached in readlinkcache
buffers.
Counter type: Incrementing.

CPU 169

READLINKCACHE-CTRL

Number of received messages for which only control bytes were cached in readlinkcache buffers.
Counter type: Incrementing.

READLINKCACHE-NONE

Number of received messages for which neither control nor data bytes were cached in
readlinkcache buffers.
Counter type: Incrementing.

REPLYCTRLCACHE-MSGS

Number of message replies for which control was carried in the interrupt packet.
Counter type: Incrementing.

RESERVED

Reserved for future use.

Usage Notes for All CPU Entities
• Unlike counters for other entity types, CPU counters are allocated and initialized only when

the CPU is loaded. The counters are not reinitialized at the start of each measurement. Thus,
the CPU counter provides an overview of system performance over an extended period.
CPU counters can direct you to potential problems that you can examine in greater detail
using other entities. In particular, the PROCESS CPU-BUSY-TIME counter measures the
time spent executing specific processes. (The PROCESS CPU-NUM field lets you match
processes to CPUs.)

• For more information on system operation (how the system performs I/O, executes processes,
does paging, and so on), see the appropriate system description manual.

Usage Note for D-Series CPU Entities
In Measure D30 and later PVUs, these counters are no longer supported:

ENDING-SDS-LOCKSTARTING-SDS-LOCKENDING-UDS-LOCKSTARTING-UDS-LOCK

ENDING-SCL-LOCKSTARTING-SCL-LOCKENDING-UCL-LOCKSTARTING-UCL-LOCK

Usage Notes for G-Series CPU Entities
• The 64-bit byte-count fields (fields ending in -F) collect the same data as older 32-bit

byte-count fields. For example, the 64-bit field DISC-IOS-F collects the same data as the
32-bit field DISC-IOS. The 64-bit fields are less subject to overflow caused by high levels of
I/O activity.
The 32-bit fields are currently active and continue to return values. If there is no field
overflow, the 32-bit fields and the 64-bit fields return the same value. If a 32-bit field
overflows, the corresponding 64-bit field returns the correct value, and the 32-bit field returns
a value of -1. The ERROR field for the measured entity also returns -1 to indicate an overflow
condition.
Convert your applications to use the 64-bit fields; 32-bit fields might be deactivated in a
future release.

170 Entities and Counters

In MEASCOM commands and in command (OBEY) files, use the names of the 32-bit fields.
For example, issue the command LIST CPU BY DISC-IOS, not LIST CPU BY DISC-IOS-F.
MEASCOM uses the names of the 32-bit fields in output displays such as reports and plots.

• In Measure G05 and later PVUs, sponsored and unsponsored memory pages are available.
Pages are sponsored in memory by the process that causes them to be present (usually, but
not always, the process that defines the segment). If a process that is the sponsor of shared
pages terminates, the pages become temporarily unsponsored. The next sharing process to
reference an unsponsored page becomes the sponsor for that page. These CPU counters
provide information about unsponsored pages:

UNSP-PAGES-STARTUNSP-PAGES-QTIME

UNSP-PAGES-ENDUNSP-PAGES-QLEN-MAX

• For a discussion of the different types of message system transfer protocols and concepts,
(pre-push, post-pull, linker and listener, and so on), see theNonStop S-Series Server Description
Manual.

• In Measure G08 and later PVUs, Measure has several new counters for ServerNet Cluster
support.

• The number of free CIDs in a processor is determined by the maximum number of CIDs
allowed and the current usage by all active measurements. Twenty-four CIDs are used for
internal list headers. You can configure the number of CIDs through DEFINEs. This
configuration parameter is read when the START MEASSUBSYS command is issued.

Usage Notes for H-Series and J-Series CPU Entities
In H-series, J-series, and later RVUs, all byte count fields are 64-bit counters. The suffix -F no
longer appears in counter names in ZMS format; however, counters with names ending in -F
remain available to applications requesting data in legacy style.

DEVICE
The DEVICE entity type provides information about devices such as tape drives or printers. In
G-series and later RVUs, the DEVICE entity applies only to tape drives.

NOTE: Some devices are identified by specific entity types: DISC for disks, LINE and NETLINE
for communication lines, and TERMINAL for subdevices and asynchronous terminals.

PageTopic

171Entity specification syntax

173DDL record for DEVICE entities (Legacy Style)

174DDL record for DEVICE entities (ZMS Style)

179Usage notes for all DEVICE entities

179Usage note for G-series DEVICE entities

Entity Specification Syntax for DEVICE Entities
To describe DEVICE entities:
You can use a D-series measurement application to measure devices on NonStop S-series servers
if the application specifies all devices (ADD DEVICE *) or specifies only $device or $device
(cpu). If the application specifies controller, channel, or unit, you must modify the entity
identifiers to measure NonStop S-series devices.

DEVICE 171

DEVICE entity-spec

DEVICE
collects information about one or more devices on the local system.

entity-spec

is specified as:
{ * }
{ $device [(cpu [, chan [, ctrl [, unit]]])] }
{ $device [(cpu [, svnet [, group [, module [, slot
[, scsi-id]]]]])] }
{ $device [(cpu [, svnet [, sac [, lun]]])] }

*
indicates all devices in all CPUs.

$device
is the name of the device to measure. To indicate all devices, use an asterisk (*).

cpu

is the number of the CPU in which the device to be measured is configured. To indicate
all CPUs, use an asterisk (*). The default is all CPUs.

chan

(D-series) is the channel number of the device to measure. The default is all channels.
ctrl

(D-series) is the controller number of the device to be measured (0 through 31). The default
is all controllers.

unit

(D-series) is the unit number of the device to be measured. The default is all units.
svnet

(G-series and later RVUs) is X to indicate the X fabric, Y to indicate the Y fabric, or an
asterisk (*) to indicate both fabrics. The Measure product returns all device records
associated with the fabric you specify. The default is to return records associated with
both fabrics.
Devices connected by a ServerNet device adapter (ServerNet D/A) do not have an X or
Y fabric. To indicate these devices, use an asterisk (*). In this case, you can use an asterisk
(*) in the LISTACTIVE command if the rest of the entity specification describes one device.
Devices connected by an FCSA or CLIM are dual fabric adapters, that is, they are connected
to both the X and Y fabrics. For these devices, only "*" or "X" should be specified in the
LIST command, and only "X" should be specified in the LISTACTIVE command.

group

(G-series and later RVUs) is the group number of the device to measure. (The group
corresponds to the physical enclosure.) To indicate all groups, use an asterisk (*). The
default is all groups.

module

(G-series and later RVUs) is the module number of the device to be measured. To indicate
all modules, use an asterisk (*). The default is all modules.

slot

(G-series and later RVUs) is the slot number of the device to be measured. To indicate all
slots, use an asterisk (*). The default is all slots.

172 Entities and Counters

scsi-id

(G-series and later RVUs) is the SCSI port identifier of the device to be measured. To
indicate all SCSI ports, use an asterisk (*). The default is all SCSI ports. This is used for
ServerNet/DA and FCSA devices, but not for CLIM devices.

sac

is the name of the SAC the device is connected to. If the device is a CLIM device, sac is
the name of the CLIM.

lun

is the logical unit number within the CLIM. The HP NonStop operating system supports
a range of 0 to 65535 for lun. Measure supports a range of 0 to 65534, after reserving
65535 (-1) for the wildcard (*). lun can only be specified for CLIM devices.

DDL Record for DEVICE Entities (Legacy Style)
This is the Legacy Style DDL record for DEVICE entities. The fields included in BRIEF reports
are in boldface type (requests appears only in G-series brief reports). This record will not
change after the Measure G10 PVU.
The DDL record for G-series and later DEVICE entities is identical to the record for D-series
DEVICE entities except:
• The CHANNEL field is redefined to SERVERNET.
• Different entity identification fields are used. The CTRL and UNIT fields are no longer used.
• A SCSI-ID identifier is added to identify devices connected by a ServerNet/DA or FCSA.
• Counters are added to measure busy time in the queue-based ServerNet environment. The

READ-BUSY-TIME and WRITE-BUSY-TIME counters are no longer used.
• Counters are added to measure direct-bulk I/O operations.
• Existing I/O counters such as READS and WRITES also include direct-bulk I/O operations.
• Longer byte-count fields are provided to reduce the possibility of field overflow. In G-series

RVUs, each 32-bit byte-count field has a 64-bit counterpart. In H-series and J-series RVUs,
all byte-count fields have 64 bits. For information on using the 64-bit fields, see Usage Note
for G-Series DEVICE Entities (page 179).

• The ERROR field can signal a field overflow in a 32-bit byte-count field.
RECORD device. FILE is "device" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 pin type binary 16 unsigned.
 02 device-name type character 8.
 02 logical-device type binary 16 unsigned.
 02 ctrl type binary 16 unsigned.
 02 unit type binary 16 unsigned.
 02 device-type type binary 16 unsigned.
 02 device-subtype type binary 16 unsigned.

* counter value items:
 02 requests type binary 32 unsigned.
 02 read-busy-time type binary 64.
 02 write-busy-time type binary 64.
 02 reads type binary 32 unsigned.
 02 writes type binary 32 unsigned.
 02 input-bytes type binary 32 unsigned.

DEVICE 173

 02 output-bytes type binary 32 unsigned.

* new entity identification item for D10:
 02 channel type binary 16 unsigned.
 02 servernet type binary 16 unsigned
 redefines channel.

* F40 new entity identification items:
 02 config-name type character 64.
 02 adapter-name type character 64.
 02 SAC-name type character 64.
 02 GMS.
 03 group type binary 32 unsigned.
 03 module type binary 32 unsigned.
 03 slot type binary 32 unsigned.

* F40 new counter value items:
 02 read-qbusy-time type binary 64.
 02 read-qtime type binary 64.
 02 read-qlen-max type binary 16 unsigned.
 02 write-qbusy-time type binary 64.
 02 write-qtime type binary 64.
 02 write-qlen-max type binary 16 unsigned.
02 device-qbusy-time type binary 64.
 02 input-bytes-f type binary 64.
 02 output-bytes-f type binary 64.

* New identifier in G05:
 02 scsi-id type binary 64.
* New counters for G05:
 02 dbio-reads type binary 32 unsigned.
 02 dbio-writes type binary 32 unsigned.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for DEVICE Entities (ZMS Style)
The ZMS Style DDL record for DEVICE entities is supported on Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsdev-id.
 02 pin type binary 16 unsigned.
 02 device-type type binary 16 unsigned.
 02 device-subtype type binary 16 unsigned.
 02 servernet type binary 16 unsigned.
 02 device-name type character 8.
 02 logical-device type binary 32 unsigned.
 02 GMS.
 03 group type binary 32 unsigned.
 03 module type binary 32 unsigned.
 03 slot type binary 32 unsigned.
 02 SCSI-id type binary 64.
02 plpt redefines SCSI-id.

03 plpt-flags type binary 8 unsigned.
03 path type binary 8 unsigned.
03 lun type binary 16 unsigned.
03 reserved-2 type binary 16 unsigned.
03 target-id type binary 16 insigned.

 02 config-name type character 64.
 02 adapter-name type character 64.

174 Entities and Counters

 02 SAC-name type character 64.
end

Counter Fields DDL Definition
DEFINITION zmsdev-ctrs.
 02 requests type binary 64.
 02 reads type binary 64.
 02 writes type binary 64.
 02 input-bytes type binary 64.
 02 output-bytes type binary 64.
 02 read-qbusy-time type binary 64.
 02 read-qtime type binary 64.
 02 write-qbusy-time type binary 64.
 02 write-qtime type binary 64.
 02 device-qbusy-time type binary 64.
 02 DBIO-reads type binary 64.
 02 DBIO-writes type binary 64.
end

DDL Record Description Fields
RECORD zmsdev. FILE is "zmsdev" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 id type zmsdev-id.
 02 ctr type zmsdev-ctrs.
end

PIN

Process identification number of the I/O process.

DEVICE-NAME

Name of the measured device.

LOGICAL-DEVICE

Logical device number of the measured device.

CTRL

(Legacy Style only) For D-series, controller number of the measured device. For G-series RVUs,
no longer used; returns zero.

UNIT

(Legacy Style only) For D-series, unit number of the measured device. For G-series and later
RVUs, no longer used; returns zero.

DEVICE-TYPE

Type of device that was measured (tape, printer, and so on). For a complete list of device types,
see the Guardian Operations Reference Summary. For G-series and later RVUs, the DEVICE entity
measures only tape (DEVICE-TYPE 4) and open SCSI (DEVICE-TYPE 8).

DEVICE-SUBTYPE

An additional identifier for DEVICE-TYPE. For a list of device subtypes, see the Guardian
Operations Reference Summary.

REQUESTS

Number of requests received by the I/O process. To determine how long requests were queued
before being read by the I/O process, measure the I/O process and examine the PROCESS
RECV-QTIME counter.

DEVICE 175

Counter type: Incrementing.

READ-BUSY-TIME

(Legacy Style only) For D-series RVUs, the time spent reading from the device. For G-series and
later RVUs, no longer used; returns zero.
Counter type: Busy.

WRITE-BUSY-TIME

(Legacy Style only) For D-series RVUs, the time spent writing to the device. For G-series RVUs,
no longer used; returns zero.
Counter type: Busy.

READS

Number of read operations (from device to memory) performed by the I/O process. In addition
to programmatic read operations, internal operations (such as retries on I/O operations) also
modify this counter. A read operation to a key-sequenced file can result in multiple reads because
the index blocks must be read before the data blocks.
Counter type: Incrementing.

WRITES

Number of write operations (from memory to device) performed by the device process. In addition
to programmatic write operations, internal operations (such as writing volume labels) also modify
this counter. A write operation to a key-sequenced file can result in multiple writes because of
block splits or updates to the index blocks.
Counter type: Incrementing.

INPUT-BYTES

Number of bytes read from the device. Because the I/O process modifies this counter before the
I/O operation, if the write fails, this counter might not be accurate. In addition to programmatic
read operations, internal operations (such as retries on I/O operations) also modify this counter.
For D-series and G-series RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the INPUT-BYTES-F field is a 64-bit version of INPUT-BYTES.
Counter type: Accumulating.

OUTPUT-BYTES

Number of bytes written to the device. Because the I/O process modifies this counter before the
I/O operation, if the write fails, this counter might not be accurate. In addition to programmatic
write operations, internal operations (such as writing volume labels) also modify this counter.
For D-series and G-series RVUs, this is a 32-bit counter. For H- and J-series RVUs, this is a 64-bit
counter.
For G-series RVUs, the OUTPUT-BYTES-F field is a 64-bit version of OUTPUT-BYTES.
Counter type: Accumulating.

CHANNEL

(Legacy Style only) For D-series RVUs, channel number of the device. For G-series RVUs,
redefined. See SERVERNET.

176 Entities and Counters

SERVERNET

ServerNet fabric used by this specific path to the device. The value is 0 for X fabric or for paths
that go through dual fabric adapters.
Devices connected by a ServerNet/DA do not have an X or Y fabric. For these devices, the
ServerNet field (SvNet in reports) is displayed as an asterisk (*).
Devices connected by an FCSA or CLIM based adapter are dual fabric adapters, that is, they are
connected to both X and Y fabrics. For these devices, the ServerNet field is displayed as "X".

CONFIG-NAME

Logical name of the physical device accessed through this path. Logical names are maintained
by the system configuration database. The name is null-filled and null-terminated.

ADAPTER-NAME

Logical name associated with the adapter on which the SAC resides. Logical names are maintained
by the system configuration database. The name is null-filled and null-terminated.

SAC-NAME

Logical name of the ServerNet addressable controller (SAC) supporting this device for this path.
Logical names are maintained by the system configuration database. The name is null-filled and
null-terminated.

GMS

Physical location address (group, module, slot). The GMS field is divided into three subfields:

is the group number.GROUP

is the module number.MODULE

is the slot number.SLOT

You can use the keywords GROUP, MODULE, and SLOT in the IF and BY clauses of the LIST
and LISTALL commands.

READ-QBUSY-TIME

The time spent in a state in which read requests of any number were queued to this device in
this processor.
Counter type: Queue busy.

READ-QTIME

Total time spent by read requests queued to this device.
Counter type: Queue.

READ-QLEN-MAX

(Legacy Style only) Maximum number of read requests queued to this device at any time since
the counter record was allocated.
Counter type: Max queue.

WRITE-QBUSY-TIME

The time spent in a state in which write requests of any number were queued to this device in
this processor.
Counter type: Queue busy.

DEVICE 177

WRITE-QTIME

Total time spent by write requests queued to this device.
Counter type: Queue.

WRITE-QLEN-MAX

(Legacy Style only) Maximum number of write requests queued to this device at any time since
the counter record was allocated.
Counter type: Max queue.

DEVICE-QBUSY-TIME

The time spent in a state in which requests of any number or type were queued to this device in
this processor.
Because of concurrent activity in the write and read queues, WRITE-QBUSY-TIME plus
READ-QBUSY-TIME does not equal DEVICE-QBUSY-TIME.
Counter type: Queue busy.

INPUT-BYTES-F

(G-series Legacy Style only) Same as INPUT-BYTES but accommodates larger values (64 bits
rather than 32).

OUTPUT-BYTES-F

(G-series Legacy Style only) Same as OUTPUT-BYTES but accommodates larger values (64 bits
rather than 32).

SCSI-ID

SCSI port identifier for this device.

PLPT structure

Starting with the Measure H03 PVU, this structure replaces the SCSI-ID field. More attributes
were necessary to identify a CLIM device, so the SCSI-ID field (which had a range of 0 to 999)
was reduced to 16 bits and became the PLPT.TARGET-ID field. This structure is used in descriptor
and data records. The PLPT subfields are PLPT-FLAGS, LUN, PATH, and TARGET-ID.

PLPT-FLAGS

The PLPT-FLAGS are: MEAS_CLIM_REL, MEAS_PATH_SEL and MEAS_CLIM_DEVICE.

This identifies this field as a PLPT structure rather than a SCSI-ID field. Since the
scsi-id could have a -1F (wildcard) in it (if it is a descriptor), this flag only has
meaning if the PLPT-FLAGS field is not all 1s. To maintain downward compatibility,
this bit is not set for descriptors returned via MEASLISTCONFIG unless the device
configuration was specifically for a CLIM device.

MEAS_CLIM_REL

This indicates that selection is only by path and device name, and not other
attributes like lun or scsi-id. This flag only has meaning if the PLPT-FLAGS
field is not all 1s and is only used in descriptors. (Not used with the DEVICE entity.)

MEAS_PATH_SEL

This indicates that this descriptor or data record is for a CLIM device.MEAS_CLIM_DEVICE

LUN

Logical unit number. This is an unique number assigned to a disk drive within a storage CLIM.
This is unique only within a particular CLIM. For pre-CLIM devices, this is 0. For CLIM devices,
the valid range is 0 to 65534. This field is treated as an unsigned number. If lun is in a descriptor,
the wildcard is all 1s

178 Entities and Counters

PATH

(Not used with the DEVICE entity.) Connection between the NonStop operating system and the
disk drive. On the NonStop operating system, there can be two paths (backup and primary) to
a disk drive. For CLIM devices, due to the fault tolerance requirement, this requires two storage
CLIMs, with one path through each CLIM. A mirrored NonStop operating system volume actually
consists of two disk drives, so such a volume can have four paths associated with it. The valid
ranges are 0 to 3 for Primary, Backup, Mirror and Mirror-backup, respectively. If path is in a
descriptor, the wildcard is all 1s.

TARGET-ID

This is the SCSI device ID returned by the SCSI Interface Manager. Prior to the Measure H03
PVU, this was stored in the 64-bit SCSI-ID field. This value only requires 16 bits, so starting with
the Measure H03 PVU this value is stored in this smaller field in order to use the free upper 48
bits for lun and path. The valid values for target-id are 0 to 999. If target-id is in a
descriptor, the wildcard is all 1s.

DBIO-READS

The number of read operations to the measured device that were enabled for direct bulk I/O to
a requesting application processor. This counter is a subset of READS.
Counter type: Incrementing.

DBIO-WRITES

The number of write operations to the measured device that were enabled for direct bulk I/O
from a requesting application processor. This counter is a subset of WRITES.
Counter type: Incrementing.

Usage Notes for All DEVICE Entities
• The DEVICE counters track all device activity. Device activity includes both I/O from user

and system processes. It also includes internal activities such as writing to the Free Space
Table and writing file and volume labels. To compare and balance the workload of two or
more devices, use the DEVICE counters.

• SUBSYSTEM-VERSION for ZMSDEV records is provided by the device I/O process; for
example, the tape process (OTPPROCP).

Usage Notes for Measure H03 and J01 PVUs
For storage CLIM devices, the DEVICE entity specification syntax is updated to include lun and
path and not use scsi-id. As with FCSA devices, this entity specification can be used in the
ADDentity-type, DELETEentity-type, LISTentity-type, LISTACTIVEentity-type,
and LISTALL entity-type commands.

Usage Note for G-Series DEVICE Entities
The DEVICE entity in G-series Measure is used only for tapes. TIL and THL are obsolete, and
all printer support is through LAN-attached devices. Tape is supported as a SCSI device and
shares module driver code with disk operations.
The 64-bit byte-count fields (fields ending in -F) collect the same data as older 32-bit byte-count
fields. For example, the 64-bit field INPUT-BYTES-F collects the same data as the 32-bit field
INPUT-BYTES. The 64-bit fields are less subject to overflow caused by high levels of I/O activity.
The 32-bit fields are currently active and continue to return values. If there is no field overflow,
the 32-bit fields and the 64-bit fields return the same value. If a 32-bit field overflows, the
corresponding 64-bit field returns the correct value, and the 32-bit field returns a value of -1. The
ERROR field for the measured entity also returns -1 to indicate an overflow condition.

DEVICE 179

Convert your applications to use the 64-bit fields; 32-bit fields might be deactivated in a future
release.
In MEASCOM commands and command (OBEY) files, use the names of the 32-bit fields. For
example, issue the command LIST DEVICE BY INPUT-BYTES, not LIST DEVICE BY
INPUT-BYTES-F. MEASCOM uses the names of the 32-bit fields in output displays such as
reports and plots.

Usage Note for H-Series and J-Series Device Entities
In H-series and J-series RVUs, all byte-count fields accommodate 64 bits. Field names ending in
-F are no longer used in ZMS style records but remain available to applications that request data
in legacy style.
SUBSYSTEM-VERSION for Device records is provided by the device I/O process, for example,
the tape process OTPPROCP.

Examples

DescriptionCommand

Measure device named $TAPEADD DEVICE $TAPE

Measure all devicesADD DEVICE *

Measure all devices in CPU 2ADD DEVICE $* (2)

Measure all devices attached to a controller whose GMS is 110,3,1 and
whose scsi-id is 2 (ServerNet/DA or FCSA storage devices only)

ADD DEVICE $* (*, *, 110, 3, 1, 2)

Measure all devices attached to the SAC named CLIM3ADD DEVICE $* (*,*,CLIM3)

DISC
The DISC entity type provides information about one or more disks on the local system:

PageTopic

180Entity specification syntax

182DDL record for DISC entities (Legacy Style)

184DDL record for DISC entities (ZMS Style)

196Usage notes for all DISC entities

196Usage notes for G-series DISC entities

Entity Specification Syntax for DISC Entities
To describe DISC entities:
DISC entity-spec

NOTE: You can use a D-series measurement application to measure disks on NonStop S-series
servers if the application specifies all disks (ADD DISC *) or specifies only $disk or $disk
(cpu). If an application specifies controller, channel, or unit, you must modify the entity
identifiers to measure NonStop S-series disks.

DISC
collects information about one or more disks in the local system.

entity-spec

is specified as:

180 Entities and Counters

{ * }
{ $disk [(cpu [, channel [, ctrl [, unit]]])] }
{ $disk [(cpu [, svnet [, group [, module [, slot
 [, scsi-id]]]]])] }
{ $disk [(cpu [, svnet [, sac [, lun]]])] }
{ $disk[path] }

*
measures all disks in all CPUs. If any specifiers follow the asterisk (*), you must use $*.

$disk
is the name of the disk to be measured. To indicate all disks, use an asterisk (*).

cpu

is the number of the CPU in which the disk is configured. The default is all CPUs. To
indicate all CPUs, use an asterisk (*).

channel

(D-series) is the channel number of the disk to be measured. The default is all channels.
ctrl

(D-series) is the controller number of the disk to be measured. The default is all controllers.
unit

(D-series) is the unit number of the disk to be measured. The default is all units.
svnet

(G-series and later RVUs) ServerNet fabric used by this specific path to the device. The
Measure subsystem measures all disk records relative to the specified fabric. The value
is 0 for X fabric, 1 for Y fabric. The default is to measure records for both fabrics.
Disks connected by a ServerNet/DA do not have an X or Y fabric. To indicate these disks,
use an asterisk (*). In this case, you can use an asterisk (*) in the LISTACTIVE command
as long as the rest of the entity specification describes one disk.
Disks connected by an FCSA or CLIM are dual fabric adapters, that is, they are connected
to both the X and Y fabrics. For these disks, only "*" or "X" should be specified in the LIST
command, and only "X" should be specified in the LISTACTIVE command.

group

(G-series and later RVUs) is the group number of the disk to be measured. (The group
number corresponds to the physical enclosure.) To indicate all groups, use an asterisk
(*). The default is all groups.

module

(G-series and later RVUs) is the module number of the disk to be measured. Use an
asterisk (*) to indicate all modules. The default is all modules.

slot

(G-series and later RVUs) is the slot number of the disk to be measured. To indicate all
slots, use an asterisk (*). The default is all slots.

scsi-id

(G-series and later RVUs) is the SCSI port identifier of the disc to be measured. To indicate
all SCSI ports, use an asterisk (*). The default is all SCSI ports. This is used for
ServerNet/DA and FCSA discs, but not for CLIM discs.

sac

is the name of the SAC the disc is connected to.
lun

is the logical unit number within the CLIM. The NonStop operating system supports a
range of 0 to 65535 for lun. Measure supports a range of 0 to 65534, after reserving 65535
(-1) for the wildcard (*).

DISC 181

path

applies to FCSA storage disks as well as storage CLIM disks. Valid values for path can
be “-P”, “-B”, “-M” or “-MB” (specifying primary, backup, mirror-primary, mirror-backup,
respectively.

DDL Record for DISC Entities (Legacy Style)
This is the Legacy Style DDL record for DISC entities. The fields included in BRIEF reports are
in boldface type. This record will not change after the Measure G10 PVU.
The DDL record for G-series DISC entities is identical to the record for D-series DISC entities
except:
• The CHANNEL field is redefined to SERVERNET.
• Different entity identification fields are used. The CTRL and UNIT fields are no longer used.
• A SCSI-ID identifier is added to identify disks connected by a ServerNet/DA or FCSA.
• Counters are added to measure busy time in the queue-based ServerNet environment. The

READ-BUSY-TIME and WRITE-BUSY-TIME counters are no longer used.
• Counters are added to measure direct-bulk I/O operations.
• Existing I/O counters such as READS and WRITES include direct-bulk I/O operations.
• Longer byte-count fields are provided to reduce the possibility of field overflow. In G-series

RVUs, each 32-bit byte-count field has a 64-bit counterpart. Similarly, a 16-bit byte count
field has a 32-bit counterpart. In H-series and J-series RVUs, all byte-count fields accommodate
64 bits. For information on using the 64-bit or 32-bit fields, see Usage Notes for G-Series
DISC Entities (page 196).

• The ERROR field can signal a field overflow in a 32-bit byte-count field.
RECORD disc. FILE is "disc" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 pin type binary 16 unsigned.
 02 device-name type character 8.
 02 logical-device type binary 16 unsigned.
 02 ctrl type binary 16 unsigned.
 02 unit type binary 16 unsigned.
 02 device-type type binary 16 unsigned.
 02 device-subtype type binary 16 unsigned.
 02 disc-process-type type binary 16 unsigned.

* counter value items:
 02 request-qtime type binary 64.
 02 request-qlen-max type binary 16 unsigned.
 02 requests type binary 32 unsigned.
 02 read-busy-time type binary 64.
 02 write-busy-time type binary 64.
 02 seek-busy-time type binary 64.
 02 reads type binary 32 unsigned.
 02 writes type binary 32 unsigned.
 02 seeks type binary 32 unsigned.
 02 input-bytes type binary 32 unsigned.
 02 output-bytes type binary 32 unsigned.
 02 swaps type binary 32 unsigned.
 02 cblks-inuse-qtime type binary 64.
 02 cblks-inuse-max type binary 16 unsigned.

182 Entities and Counters

 02 ablks-inuse-qtime type binary 64.
 02 ablks-inuse-max type binary 16 unsigned.
 02 c occurs 4 times.
 03 hits type binary 32 unsigned.
 03 misses type binary 32 unsigned.
 03 faults type binary 32 unsigned.
 03 audit-buf-forces type binary 32 unsigned.
 03 blks type binary 16 unsigned.
 03 blks-dirty-qtime type binary 64.
 03 blks-dirty-max type binary 16 unsigned.
 02 control-points type binary 32 unsigned.
 02 control-point-writes type binary 32 unsigned.
 02 free-space-ios type binary 32 unsigned.
 02 requests-blocked type binary 32 unsigned.

* new entity identification item for D10:
 02 channel type binary 16 unsigned.
 02 servernet type binary 16 unsigned.
 02 capacity type binary 64.

* new counter value items for D10:
 02 starting-free-space type binary 64.
 02 ending-free-space type binary 64.
 02 starting-free-blocks type binary 32 unsigned.
 02 ending-free-blocks type binary 32 unsigned.
 02 cw occurs 4 times.
 03 write-dirtys type binary 32 unsigned.
 03 write-cleans type binary 32 unsigned.
 03 write-misses type binary 32 unsigned.
 03 block-splits type binary 32 unsigned.
 02 volsem-qtime type binary 64.
 02 volsem-qlen-max type binary 16 unsigned.

* SMS changes:
 02 storage-pool type character 8.

* new entity identification item for F40:
 02 config-name type character 64.
 02 adapter-name type character 64.
 02 SAC-name type character 64.
 02 GMS.
 03 group type binary 32 unsigned.
 03 module type binary 32 unsigned.
 03 slot type binary 32 unsigned.

* new counter value items for F40:
 02 read-qbusy-time type binary 64.
 02 read-qtime type binary 64.
 02 read-qlen-max type binary 16 unsigned.
 02 write-qbusy-time type binary 64.
 02 write-qtime type binary 64.
 02 write-qlen-max type binary 16 unsigned.
 02 device-qbusy-time type binary 64.
 02 input-bytes-f type binary 64.
 02 output-bytes-f type binary 64.

* New counters for G05
 02 scsi-id type binary 64.

* New counters in G05:
 02 DBIO-reads type binary 32 unsigned.
 02 DBIO-writes type binary 32 unsigned.

* New counters in G07:
 02 cn occurs 4 times.

DISC 183

 03 blks type binary 32 unsigned.
 03 blks-inuse-start type binary 32 unsigned.
 03 blks-inuse-end type binary 32 unsigned.

* New counters in G08:
 02 defreqs type binary 32 unsigned.
 02 defreq-qtime type binary 64.
 02 defreq-qlen-max type binary 16 unsigned.
 02 deferred-qtime type binary 64.
 02 deferred-qlen-max type binary 16 unsigned.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for DISC Entities (ZMS Style)
The ZMS Style DDL record for DISC entities is supported on Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsdisc-id.
 02 pin type binary 16 unsigned.
 02 device-type type binary 16 unsigned.
 02 device-subtype type binary 16 unsigned.
 02 servernet type binary 16 unsigned.
 02 device-name type character 8.
 02 logical-device type binary 32 unsigned.
 02 GMS.
 03 group type binary 32 unsigned.
 03 module type binary 32 unsigned.
 03 slot type binary 32 unsigned.
 02 SCSI-id type binary 64.
02 plpt redefines SCSI-id.

03 plpt-flags type binary 8 unsigned.
03 path type binary 8 unsigned.
03 lun type binary 16 unsigned.
03 reserved-2 type binary 16 unsigned.
03 target-id type binary 16 insigned.

 02 config-name type character 64.
 02 adapter-name type character 64.
 02 SAC-name type character 64.
 02 capacity type binary 64.
 02 storage-pool type character 8.
 02 disc-process-type type binary 16 unsigned.
 02 reserved-1 type character 6.
end

Counter Fields DDL Definition
DEFINITION zmsdisc-ctrs.
 02 request-qtime type binary 64.
 02 requests type binary 64.
 02 reads type binary 64.
 02 writes type binary 64.
 02 input-bytes type binary 64.
 02 output-bytes type binary 64.
 02 swaps type binary 64.
 02 control-points type binary 64.
 02 control-point-writes type binary 64.
 02 free-space-ios type binary 64.
 02 requests-blocked type binary 64.
 02 starting-free-space type binary 64.
 02 ending-free-space type binary 64.

184 Entities and Counters

 02 starting-free-blocks type binary 32 unsigned.
 02 ending-free-blocks type binary 32 unsigned.
 02 volsem-qtime type binary 64.
 02 read-qbusy-time type binary 64.
 02 read-qtime type binary 64.
 02 write-qbusy-time type binary 64.
 02 write-qtime type binary 64.
 02 device-qbusy-time type binary 64.
 02 DBIO-reads type binary 64.
 02 DBIO-writes type binary 64.
 02 defreqs type binary 64.
 02 defreq-qtime type binary 64.
 02 deferred-qtime type binary 64.
 02 c occurs 8 times.
 03 blks type binary 32 unsigned.
 03 block-size type binary 32 unsigned.
 03 blocks-inuse-start type binary 32 unsigned.
 03 blocks-inuse-end type binary 32 unsigned.
 03 block-splits type binary 64.
 03 hits type binary 64.
 03 misses type binary 64.
 03 faults type binary 64.
 03 audit-buf-forces type binary 64.
 03 blks-dirty-qtime type binary 64.
 03 write-cleans type binary 64.
 03 write-dirtys type binary 64.
 03 write-misses type binary 64.
end

DDL Record Description Fields
RECORD zmsdisc. FILE is "zmsdisc" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsdisc-ctrs.
 02 id type zmsdisc-id.
end

PIN

Process identification number of the disk process.

DEVICE-NAME

Name of the device.

LOGICAL-DEVICE

Logical device number of the device.

CTRL

(Legacy Style only) For D-series RVUs, controller number of the device. For G-series RVUs, no
longer used; returns zero.

UNIT

(Legacy Style only) For D-series RVUs, unit number of the device. For G-series RVUs, no longer
used; returns zero.

DEVICE-TYPE

A value of 3, which indicates a disk volume.

DISC 185

DEVICE-SUBTYPE

An additional identifier for DEVICE-TYPE. For a list of subtype values for disks, see the System
Generation Manual.

DISC-PROCESS-TYPE

The disk process type, DP2.

REQUEST-QTIME

The time that requests spent on the disk process internal queue (includes any currently active
requests). When reading a request, the disk process places it on the internal queue. After
processing the request, the disk process removes the request from the internal queue. To determine
the length of the disk process external queue (requests waiting to be read by the disk process),
measure the disk process and examine the RECV-QTIME counter of the PROCESS entity.
Counter type: Queue.

REQUEST-QLEN-MAX

(Legacy Style only) Maximum number of items on the queue described by the REQUEST-QTIME
counter.
Counter type: Max queue.

REQUESTS

Number of I/O requests (READ, WRITE, FILEINFO) received by the disk process. The FILE entity
records most of these requests on a file-by-file basis. To determine how long the requests were
queued before being read by the disk process, measure the process and examine the RECV-QTIME
counter of the PROCESS entity. After reading a request, the disk process places it on an internal
queue. REQUEST-QTIME measures the length of the internal queue.
Counter type: Incrementing.

READ-BUSY-TIME

(Legacy Style only) For D-series RVUs, the time spent reading from the disk. This counter includes
the time spent reading data and positioning the disk heads to read the data.
For G-series RVUs, no longer used; returns zero.
Counter type: Busy.

WRITE-BUSY-TIME

(Legacy Style only) For D-series RVUs, the time spent writing to the disk. This counter includes
the time spent writing data and positioning the disk heads to write the data.
For G-series RVUs, no longer used; returns zero.
Counter type: Busy.

SEEK-BUSY-TIME

(Legacy Style only) No longer used; returns zeros. All seek operations are implicit in read and
write operations.

READS

Number of physical read operations (from disk to memory) performed by the disk process. In
addition to programmatic read operations, many commands (for example, LISTHEADERS and
LISTDEFECTS) also read from the disk.
Counter type: Incrementing.

186 Entities and Counters

WRITES

Number of physical write operations (from memory to disk) performed by the disk process. In
addition to programmatic write operations, many commands (for example, FORMAT and
LOADMICROCODE) also write to the disk.
Counter type: Incrementing.

SEEKS

(Legacy Style only) No longer used; returns zeros. All seek operations are implicit in read and
write operations.

INPUT-BYTES

Number of bytes read from the disk. In addition to programmatic read operations, write operations
and various commands such as LISTHEADERS and LISTDEFECTS also cause bytes to be read
from the disk.
Because the I/O process modifies this counter before an I/O operation, if the read fails, the byte
count might not be accurate.
Write operations (see OUTPUT-BYTES) and various commands such as LISTHEADERS and
LISTDEFECTS also cause bytes to be read from the disk.
The disk process reads one or more blocks of data during a read operation, depending on the
structure of the file and amount of data being read:
• For unstructured files, the disk process reads at least one block of data. If a record crosses

block boundaries, the disk process must read two blocks of data. Also, if you are writing a
partially filled block to disk, the disk process must read the block, merge the new data into
the block, and then write the block to disk.

• For structured files, the disk process reads a block of data as specified by the file block size.
• For key-sequenced files, to read a data block, the disk process might have to read one or

more index blocks as well.
Because the disk process modifies this counter before an I/O operation, if the read fails, the byte
count might not be accurate.
For D-series and G-series RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the INPUT-BYTES-F field is a 64-bit version of INPUT-BYTES.
Counter type: Accumulating.

OUTPUT-BYTES

Number of bytes written to the disk. In addition to programmatic write operations, many
commands (for example, FORMAT and LOADMICROCODE) also write to the disk.
Because the I/O process modifies this counter before the I/O operation, if the write fails, the byte
count might not be accurate.
In addition to programmatic write operations, many commands (for example, FORMAT and
LOADMICROCODE) also write to the disk.
The disk process writes one or more blocks of data on a write operation, depending on the
structure of the file and amount of data being written:
• For unstructured files, the disk process writes at least one block of data. If a record crosses

block boundaries, the disk process must write two blocks of data. In addition, if you are

DISC 187

writing a partially filled block to disk, the disk process must read the block (counted by
INPUT-BYTES), merge the new data into the block, and then write the block to disk.

• For structured files, the disk process writes a block of data as specified by the file block size.
• For key-sequenced files, the disk process writes to the data block and might also have to

update the index block. Buffered writes can save I/Os because the disk process collects the
updates and writes them out only when necessary.

Buffered writes can save I/Os because the disk process collects the updates and writes them out
only when necessary.
Because the I/O process modifies this counter before the I/O operation, if the write fails, the byte
count might not be accurate.
For D-series and G-series RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the OUTPUT-BYTES-F field is a 64-bit version of OUTPUT-BYTES.
Counter type: Accumulating.

SWAPS

Number of swap operations (both into and out of memory) performed for the memory manager.
Unlike CPU swaps, which are not dependent on file block size, the disk process performs I/Os
based on the block size of the file and might need to perform more than one I/O to swap the
needed data. The DISC SWAPS counter is advanced for each I/O. Therefore, total disk swaps
might be greater than total CPU swaps. Only updated pages are swapped. Because code pages
are never updated, they are never swapped out of memory.
Counter type: Incrementing.

CBLKS-INUSE-QTIME

(Legacy Style only) No longer used.

CBLKS-INUSE-MAX

(Legacy Style only) No longer used.

ABLKS-INUSE-QTIME

(Legacy Style only) No longer used.

ABLKS-INUSE-MAX

(Legacy Style only) No longer used.

C

Disk cache metrics. This field is divided into these subfields:

Counter TypeDescriptionSubfield

IncrementingNumber of times a required block is found in cache on a
read or buffered write operation, which saves a disk I/O.
This counter includes cache hits on both read and write
operations.

HITS

IncrementingNumber of times a required block is not found in cache
on a read operation, which causes a disk I/O. Read
operations that do not go through cache are not included
in this counter.

MISSES

188 Entities and Counters

Counter TypeDescriptionSubfield

IncrementingNumber of times the cache tables indicate a required block
is in cache, but not because the memory manager is using
it for another purpose. Faults occur when a cache is too
large or physical memory is too small for a given
application. Fault rates greater than 5% of all I/O
operations generally indicate you need more memory.

FAULTS

IncrementingNumber of times the disk process had to write to the
audit-trail volume before it could write a dirty cache block
and thereby free that block for another use. This value
should be close to zero.

AUDIT-BUF-FORCES

N.A.Number of cache blocks allocated. When TOTALS ONLY
or TOTALS INCLUDE is used, this value is the maximum
number of cache blocks allocated. BLKS is not a counter
but a value obtained from an internal disk process data
structure.

BLKS

QueueThe time that cache blocks spent dirty. A cache block is
dirty when a buffered write operation writes data to it.
After the disk process writes the dirty cache block to disk,
the block is clean.

BLKS-DIRTY-QTIME

Max queue(Legacy Style only) Maximum number of items on the
queue described by the BLKS-DIRTY-QTIME counter.

BLKS-DIRTY-MAX

N.A.(ZMS Style only) Cache block size, in bytes.BLOCK-SIZE

Snapshot(ZMS Style only) The number of cache blocks that were
in use at the beginning of the measurement. This value is
part of the structured DISC record but does not appear
in Legacy Style DISC reports. When TOTALS ONLY or
TOTALS INCLUDE is used, this value is the total number
of cache blocks in use at the beginning of the
measurement.

BLOCKS-INUSE-START

SnapshotZMS Style only) The number of cache blocks that were in
use at the end of the measurement or at measurement
interval copy time. When TOTALS ONLY or TOTALS
INCLUDE is used, this value is the total number of cache
blocks in use at the end of the measurement or at
measurement interval copy time.

BLOCKS-INUSE-END

Incrementing(ZMS Style only) Number of block splits (per block size)
for the volume.

BLOCK-SPLITS

Accumulating(ZMS Style only) Number of times a required block is
found dirty in cache for a write operation.

WRITE-DIRTYS

Accumulating(ZMS Style only) Number of times a required block is in
cache for a write operation. This saves a found clean disk
read per write.

WRITE-CLEANS

Accumulating(ZMS Style only) Number of times a required block is not
found in cache for a write operation. This requires a disk
read before the write can be performed.

WRITE-MISSES

In Measure output, each subfield provides four values, one for each size of DP2 cache block:

Cache block sizeField label

512 bytesC0

1024 bytesC1

2048 bytesC2

DISC 189

Cache block sizeField label

4096 bytesC3

8192 bytesC4

16346 bytesC5

32768 bytesC6

65536 bytesC7

CONTROL-POINTS

Number of times the disk process wrote a TMF control point record to its audit-trail file. For a
discussion of TMF auditing, see the TMF Operations and Recovery Guide.
Counter type: Incrementing.

CONTROL-POINT-WRITES

Number of dirty cache blocks that the disk process wrote to disk at TMF control points. For a
discussion of TMF auditing, see the TMF Operations and Recovery Guide.
Counter type: Incrementing.

FREE-SPACE-IOS

Number of I/O operations to the disk free space table.
The disk free space table lists each available free block on the disk. The disk process modifies
the table when file extents are allocated or deallocated. Choosing the proper extent sizes and
avoiding unnecessary file creations and deletions can help reduce the number of free space I/Os.
Counter type: Incrementing.

REQUESTS-BLOCKED

Number of times an operation had to wait because the requested file or record was already
locked. Typically, a record is locked by a LOCKFILE request, a LOCKREC request, or a TMF
auditing operation.
Counter type: Incrementing.

CHANNEL

(Legacy Style only) For D-series RVUs, channel number of the device. For G-series and later
RVUs, redefined. See SERVERNET.

SERVERNET

Current access path to this disk object. The value is 0 for X fabric or for paths that go through
dual fabric adapters.
Disks connected by a ServerNet/DA do not have an X or Y fabric. For these disks, the ServerNet
field (SvNet in reports) is displayed as an asterisk (*).
Disks connected by an FCSA or CLIM based adapter are dual fabric adapters, that is, they are
connected to both X and Y fabrics. For these devices, the ServerNet field is displayed as "X".

CAPACITY

Disk volume capacity in bytes. It can be used in the IF and BY clauses.

190 Entities and Counters

STARTING-FREE-SPACE

Number of bytes free on the volume when the measurement starts. This counter is displayed by
MEASCOM when the REPORT STYLE is ZMS. It can be used in the IF and BY clauses as well as
with the PLOT commands.
This counter is updated only for the primary path record. The primary path can be obtained
from the MEASURE LIST DISC command (Measure PVU H03 or later) or the SCF INFO
DISCNAME, DETAIL command.
Counter type: Accumulating/Snapshot.

ENDING-FREE-SPACE

The number of bytes free on the volume at the time indicated by the TO time. This counter is
updated only for the primary path record. The RATE attribute has no effect on how this counter
is displayed. The primary path can be obtained from the MEASURE LIST DISC command
(Measure PVU H03 or later) or the SCF INFO DISCNAME, DETAIL command.
Counter type: Accumulating/Snapshot

STARTING-FREE-BLOCKS

Number of free entries in the free space table for the volume when the measurement starts. The
free space table is an internal data structure maintained by DP2. This counter is displayed by
MEASCOM when the REPORT STYLE is ZMS. It can be used in the IF and BY clauses as well as
with the PLOT commands.
This counter is updated only for the primary path record. The primary path can be obtained
from the MEASURE LIST DISC command (Measure PVU H03 or later) or the SCF INFO
DISCNAME, DETAIL command.
Counter type: Accumulating/Snapshot

ENDING-FREE-BLOCKS

The number of free blocks on the volume at the time indicated by the TO time. The counter is
updated only for the primary path record. The RATE attribute has no effect on how this counter
is displayed. The primary path can be obtained from the MEASURE LIST DISC command
(Measure PVU H03 or later) or the SCF INFO DISCNAME, DETAIL command.
Counter type: Accumulating/Snapshot

CW

(Legacy Style only) Cache write metrics. This field is divided into these subfields:

Counter TypeDescriptionSubfield

AccumulatingNumber of times a required block is found dirty in cache
for a write operation.

WRITE-DIRTYS

AccumulatingNumber of times a required block is found clean in cache
for a write operation. This saves a disk read per write.

WRITE-CLEANS

AccumulatingNumber of times a required block is not found in cache
for a write operation. This requires a disk read before
the write can be performed.

WRITE-MISSES

IncrementingNumber of block splits (per block size) for the volume.BLOCK-SPLITS

DISC 191

In Measure output, each subfield provides four values, one for each size of DP2 cache block:

Cache Block SizeField Name

512 bytesC0

1024 bytesC1

2048 bytesC2

4096 bytesC3

VOLSEM-QTIME

The time that the requests spent waiting for the volume semaphore (exclusive and shared modes).
With REPORT RATE OFF, this is the total queue time for volume semaphore. With REPORT
RATE ON, this is the average number of requests in the queue.
Under normal conditions, the value of this counter should be close to zero. Otherwise, it indicates
some operations are holding the volume semaphore in exclusive mode, causing all other request
operations that require the volume semaphore in share mode to wait.
Counter type: Queue.

VOLSEM-QLEN-MAX

(Legacy Style only) Maximum number of requests in the queue described by the VOLSEM-QTIME
counter.
Counter type: Max queue.

STORAGE-POOL

Name of the Storage Management Foundation (SMF) storage pool to which the measured disk
is assigned (process name of the storage pool process).

CONFIG-NAME

Logical name associated with this physical disk. Logical names are maintained by the system
configuration database. The name is null-filled and null-terminated.

ADAPTER-NAME

Logical name associated with the adapter in which the SAC resides. Logical names are maintained
by the system configuration database. The name is null-filled and null-terminated.

SAC-NAME

Logical name associated with the SAC used in this path to the physical volume. Logical names
are maintained by the system configuration database. The name is null-filled and null-terminated.

GMS

Physical location address (group, module, slot). The GMS field is divided into three subfields:

is the group number.GROUP

is the module number.MODULE

is the slot number.SLOT

You can use the keywords GROUP, MODULE, and SLOT in the IF and BY clauses of the LIST
and LISTALL commands.

192 Entities and Counters

READ-QBUSY-TIME

The time spent in a state in which read requests of any number were queued to this disk in this
processor.
Counter type: Queue busy.

READ-QTIME

Total time spent by read requests queued to this disk.
Counter type: Queue.

READ-QLEN-MAX

(Legacy Style only) Maximum number of read requests queued to this disk.
Counter type: Max queue.

WRITE-QBUSY-TIME

The time spent in a state in which write requests of any number were queued to this disk in this
processor
Counter type: Queue busy.

WRITE-QTIME

Total time spent by write requests queued to this disk.
Counter type: Queue.

WRITE-QLEN-MAX

(Legacy Style only) Maximum number of write requests queued to this disk at any time since
measurement was started.
Counter type: Max queue.

DEVICE-QBUSY-TIME

The time spent in a state in which requests of any number or type were queued to this disk in
this processor.
Because of concurrent activity in the write and read queues, WRITE-QBUSY-TIME plus
READ-QBUSY-TIME does not equal DEVICE-QBUSY-TIME. For more information, see Usage
Notes for G-Series DISC Entities (page 196).
Counter type: Queue busy.

INPUT-BYTES-F

(Legacy Style only) For G-series RVUs, same as INPUT-BYTES but accommodates larger values
(64 bits rather than 32 bits).

OUTPUT-BYTES-F

(Legacy Style only) For G-series RVUs, same as OUTPUT-BYTES but accommodates larger values
(64 bits rather than 32 bits).

SCSI-ID

SCSI port identifier for this disk.

PLPT structure

Starting with the Measure H03 PVU, this structure replaces the SCSI-ID field. More attributes
were necessary to identify a CLIM device, so the SCSI-ID field (which had a range of 0 to 999)

DISC 193

was reduced to 16 bits and became the PLPT.TARGET-ID field. This structure is used in descriptor
and data records. The PLPT subfields are PLPT-FLAGS, LUN, PATH, and TARGET-ID.

PLPT-FLAGS

The PLPT-FLAGS are: MEAS_CLIM_REL, MEAS_PATH_SEL and MEAS_CLIM_DEVICE.

This identifies this field as a PLPT structure rather than a SCSI-ID field. Since the
scsi-id could have a -1F (wildcard) in it (if it is a descriptor), this flag only has
meaning if the PLPT-FLAGS field is not all 1s. To maintain downward compatibility,
this bit is not set for descriptors returned via MEASLISTCONFIG unless the device
configuration was specifically for a CLIM device.

MEAS_CLIM_REL

This indicates that selection is only by path and device name, and not other
attributes like lun or scsi-id. This flag only has meaning if the PLPT-FLAGS
field is not all 1s and is only used in descriptors.

MEAS_PATH_SEL

This indicates that this descriptor or data record is for a CLIM device.MEAS_CLIM_DEVICE

LUN

Logical unit number. This is an unique number assigned to a disk drive within a storage CLIM.
This is unique only within a particular CLIM. For pre-CLIM devices, this is 0. For CLIM devices,
the valid range is 0 to 65534. This field is treated as an unsigned number. If lun is in a descriptor,
the wildcard is all 1s

PATH

Connection between the NonStop operating system and the disk drive. On the NonStop operating
system, there can be two paths (backup and primary) to a disk drive. For CLIM devices, due to
the fault tolerance requirement, this requires two storage CLIMs, with one path through each
CLIM. A mirrored NonStop operating system volume actually consists of two disk drives, so
such a volume can have four paths associated with it. The valid ranges are 0 to 3 for Primary,
Backup, Mirror and Mirror-backup, respectively. If path is in a descriptor, the wildcard is all
1s.

TARGET-ID

This is the SCSI device ID returned by the SCSI Interface Manager. Prior to the Measure H03
PVU, this was stored in the 64-bit SCSI-ID field. This value only requires 16 bits, so starting with
the Measure H03 PVU this value is stored in this smaller field in order to use the free upper 48
bits for lun and path. The valid values for target-id are 0 to 999. If target-id is in a
descriptor, the wildcard is all 1s.

DBIO-READS

The number of read operations to the measured device that were enabled for direct bulk I/O to
a requesting application processor. This counter is a subset of READS.
Counter type: Incrementing.

DBIO-WRITES

The number of write operations to the measured device that were enabled for direct bulk I/O
from a requesting application processor. This counter is a subset of WRITES.
Counter type: Incrementing.

194 Entities and Counters

CN

(Legacy Style only) Disk cache metrics. This field is divided into these subfields:

Counter TypeDescriptionSubfield

N.A.Number of cache blocks allocated. When
TOTALS ONLY or TOTALS INCLUDE is used,
this value is the maximum number of cache
blocks allocated. BLKS is not a counter but a
value obtained from an internal disk process
data structure.

BLKS

SnapshotThe number of cache blocks that were in use at
the beginning of the measurement. This value
is part of the structured DISC record but does
not appear in Legacy Style DISC reports. When
TOTALS ONLY or TOTALS INCLUDE is used,
this value is the total number of cache blocks in
use at the beginning of the measurement.

BLKS-INUSE-START

SnapshotThe number of cache blocks that were in use at
the end of the measurement or at measurement
interval copy time. When TOTALS ONLY or
TOTALS INCLUDE is used, this value is the
total number of cache blocks in use at the end
of the measurement or at measurement interval
copy time.

BLKS-INUSE-END

In Measure output, each subfield provides four values, one for each size of DP2 cache block:

Cache Block SizeField Label

512 bytesC0

1024 bytesC1

2048 bytesC2

4096 bytesC3

DEFREQS

The number of requests received by the disk process that are subject to deferral. This counter is
a subset of REQUESTS.
Counter type: Incrementing.

DEFREQ-QTIME

The time (in microseconds) that requests subject to deferral spent on the disk process internal
queue (including any current active or deferred requests). This counter is a subset of
REQUEST-QTIME.
Counter type: Queue.

DEFREQ-QLEN-MAX

(Legacy Style only) The maximum number of items on the queue described by the DEFREQ-TIME
counter.
In H-series and J-series RVUs, this counter has a value of 1.
Counter type: Max queue.

DISC 195

DEFERRED-QTIME

The time (in microseconds) that requests subject to deferral actually spent deferred. This counter
is a subset of DEFREQ-QTIME.
Counter type: Queue.

DEFERRED-QLEN-MAX

(Legacy Style only) The maximum number of items on the queue described by the
DEFERRED-QTIME counter.
In H-series and J-series RVUs, this counter has a value of 1.
Counter type: Max queue.

Usage Notes for All DISC Entities
• The DISC counters track all disk activity, including both file activity and internal activities

such as writing to the Free Space Table, writing to the undo area, and writing file and volume
labels. Use the DISC counters to compare and balance the workload of two or more disks.
For information on I/O and caching, see the appropriate system description manual. For
information on TMF auditing and audit trails written to disk, see the TMF Operations and
Recovery Guide.
The keyword DISK is interchangeable with DISC in any MEASCOM command except HELP.

• The Measure performance monitor does not measure SMF Virtual Disc Processes (VDPs)
as DISC entities. For example, if $V1 is a VDP, the command $ADD DISK $V1 does not
collect data for $V1 or for the physical disks configured under $V1. However, no error is
returned.

• SUBSYSTEM-VERSION for ZMSDISC records is provided by DP2.
• DISC reports include two fields that are calculated from DISC counters. These fields are not

defined in the DISC DDL record:
DISC-BUSY-TIME

(Legacy Style only) The sum of the DISC WRITE-BUSY-TIME and READ-BUSY-TIME
counters.

DISC-RATE
The combined rate of READ and WRITE operations to the physical drive. This value is
included in the BRIEF format report.
Counter type: Incrementing.

Usage Notes for G-Series DISC Entities
• To measure device-busy time, use the DEVICE-QBUSY-TIME counter. DEVICE-QBUSY-TIME

is a replacement for the D-series field DISC-BUSY-TIME.
In D-series RVUs, DISC-BUSY-TIME is calculated by adding the values of the DISC
WRITE-BUSY-TIME and READ-BUSY-TIME counters. However, in G-series RVUs,
DEVICE-QBUSY-TIME does not equal WRITE-QBUSY-TIME plus READ-QBUSY-TIME. In
the ServerNet environment, you can have active requests in the read queue and write queue
at the same time. Therefore, some overlap can exist between the READ-QBUSY-TIME and
WRITE-QBUSY-TIME counters, and adding their values does not produce an accurate
busy-time measurement.

• The 64-bit byte-count fields (fields ending in -F) collect the same data as older 32-bit
byte-count fields. For example, the 64-bit field INPUT-BYTES-F collects the same data as

196 Entities and Counters

the 32-bit field INPUT-BYTES. The 64-bit fields are less subject to overflow caused by high
levels of I/O activity.
The 32-bit fields are currently active and continue to return values. If no field overflow
occurs, the 32-bit fields and the 64-bit fields return the same value. If a 32-bit field overflows,
the corresponding 64-bit field returns the correct value, and the 32-bit field returns a value
of -1. The ERROR field for the measured entity also returns -1 to indicate an overflow
condition.
Convert your applications to use the 64-bit fields; 32-bit fields might be deactivated in a
future PVU.
In MEASCOM commands and in command (OBEY) files, use the names of the 32-bit fields.
For example, issue the command LIST DEVICE BY INPUT-BYTES, not LIST DEVICE BY
INPUT-BYTES-F. MEASCOM uses the names of the 32-bit fields in output displays such as
reports and plots.

• Direct bulk I/O requests are counted as read and write requests to the disk.
READ-BUSY-QTIME, READ-QTIME, INPUT-BYTES, and similar counters are updated for
both direct bulk I/O and standard I/O.
If a disk is used for both standard and direct bulk I/O, you cannot determine the byte counts
for direct bulk I/O from the DISC counters alone. A detailed analysis of the FILE records for
each application process requesting DBIO transfers could provide this information.

• The 32-bit CN[N].BLKS field collects the same data as the older 16-bit C[N].BLKS field. If
no field overflow occurs, the 16-bit and the 32-bit fields return the same value. If a 16-bit
overflows, the corresponding 32-bit field returns the correct value, and the 16-bit field returns
a value of -1. The ERROR field for the measure entity returns -2 to indicate an overflow
condition.
Convert your applications to use the 32-bit fields; 16-bit fields might be deactivated in a
future PVU. For MEASCOM commands and in command (OBEY) files, use the names of
the 32-bit fields.
In Measure G08 and later PVUs, new counters better evaluate the effectiveness of DP2’s
Mixed Workload Algorithm in application processing and in assignment of process priorities
to better utilize this feature. Measure G08 counters (DEFREQS, DEFREQ-QLEN-MAX,
DEFERRED-QTIME, DEFERRED-QLEN-MAX) track the request time and deferred time for
requests subject to deferral.
The Mixed Workload design gives you some control over the impact of running a low-priority
SQL query concurrently with high-priority workloads. The lower the priority of the SQL
query, the less impact to the high-priority response time. The speed of the query is also
reduced as the priority is reduced, especially for a parallel query that has multiple volumes
in the same CPU.
User control over this mixed workload is accomplished by query deferral when concurrent
higher priority workloads are active for the volumes. This deferral is small at priority 150
and increases as the priority of the query is reduced. To disable the deferral, run the query
at a priority greater than 150.
The Measure counters for deferrable q-time and deferred q-time provide some indication
of the amount of deferral. If the SQL query requires too much time to complete, you see a
high ratio between deferrable q-time and deferred q-time. If response time increases
significantly during low-priority SQL query activity, you see a low ration between deferrable
q-time and deferred q-time. Priority adjustments for the SQL query should correspond to
changes in the ratio.
Changes in platform or application might require some adjustments in the priority ad-hoc
SQL query activity. The design does not defer query activity until the query has processed
some minimal amount of data. However, some OLTP-type SQL query applications might
need to run above priority 150 to avoid deferral.

DISC 197

Future RVUs might adjust the mixed workload design to let applications take full advantage
of the increase in CPU and disk capacity. The adjustment in design might require priority
adjustments to the mixed workload environment. The most recent changes of the mixed
workload algorithm include adjustments to let you increase the speed of the query but cause
only moderate increases in response time.

NOTE: For guidelines to control mixed workload applications using priority settings, see
the white paper Mixed Workload Priority Guide, Version Id.: 1.0, Date: September 2001.

Usage Notes for H-Series and J-Series DISC Entities
In H-series and J-series RVUs, all byte-count fields have 64 bits. Field names ending in -F are no
longer used in ZMS style but remain available to applications that request data in legacy style.

Usage Notes for Measure H03 and J01 PVUs
For storage CLIM devices, the DISC entity specification syntax is updated to include lun and
path and not use scsi-id. As with FCSA devices, this entity specification can be used in the
ADDentity-type, DELETEentity-type, LISTentity-type, LISTACTIVEentity-type,
and LISTALL entity-type commands.

Examples

DescriptionCommand

Measure disk named $SYSTEM (all paths)ADD DISC $SYSTEM

Measure all disksADD DISC *

Measure all disks in CPU 2ADD DISC $* (2)

Measure all disks attached to a controller whose GMS is 110,3,1 and whose
scsi-id is 2 (ServerNet/DA or FCSA storage devices only)

ADD DISC $* (*, *, 110, 3, 1, 2)

Measure backup path of $SYSTEM.ADD DISC $SYSTEM-B

Measure all disks attached to the SAC named CLIM3ADD DISC $* (*,*,CLIM3)

DISCOPEN
The DISCOPEN entity measures the I/O operations performed by the disk process on a specified
file (physical file access) on behalf of an individual open of a file. The measured file must be local
to the system being measured, but the process accessing the measured file can be local or remote.
In Measure G09 and later PVUs, the DISCOPEN entity supports the use of OSS file pathnames.
It displays OSS file pathnames in DISCOPEN reports and provides direct mapping between
external structured records and OSSNAMES structured record output.
In Measure H01 and later PVUs, MEASCOM accepts ANSI SQL names in a DISCOPEN entity
specification.

PageTopic

199Entity specification syntax

200DDL record for DISCOPEN entities (Legacy Style)

201DDL record for DISCOPEN entities (ZMS Style)

205Usage notes for all DISCOPEN entities

206Usage notes for G-series DISCOPEN entities

198 Entities and Counters

Entity Specification Syntax for DISCOPEN Entities
To describe a DISCOPEN entity:
DISCOPEN entity-spec [,entity-spec] ...

DISCOPEN
collects information about physical access to one or more disk file opens. The measured file
must be local. However, the processes accessing that file can be local, remote, or both.

entity-spec

is defined as:
filename [(opener)]

where filename can be any of the following names:
{ * }
{ [[$device.]subvolume.]filename[:crvsn] }
{ [$device.]#tempfile }
{ “pathname” }
{ ‘{TABLE|INDEX} [[catalog.]schema.]object[PARTITION partition]’ }
{ ‘SCHEMA [catalog.]schema’ }
{ ‘CATALOG {catalog|*}’ }

where catalog, schema, object and partition are ANSI SQL identifiers. Omitted
catalog and schema fields are resolved by the MEASCOM catalog and schema
environment values.
Wildcard syntax is:
TABLE [[catalogC.]schemaS.]tableT – all partitions in tableT
INDEX [[catalogC.]schemaS.]indexI – all index partitions in indexI
SCHEMA [catalogC.]schemaS – all objects in schemaS
CATALOG catalogC – all objects in catalogC
CATALOG * - all objects visible on the node

*
measures all file opens.

$device
is the name of the volume (device) that contains the file to be measured. To indicate all
volumes, use an asterisk (*). The default is the current default volume.

subvolume

is the name of the subvolume that contains the file to be measured. To indicate all
subvolumes, use an asterisk (*). The default is the current default subvolume.

filename

is the name of the file to be measured. To indicate all files except temporary files, use an
asterisk (*). Temporary files are specified separately.

:CRVSN
in Measure G10 and later, is the timestamp, creation version serial number, or file name
extension necessary to form a unique file name. Use this option to guarantee file name
uniqueness. The CRVSN is available from the Measure report and the LISTGNAME
command.

\system-name
is the name of the system executing the opener process (the process that accesses
filename). The default is the local system.

cpu

is the number of the CPU on which the opener process is running. The default is all CPUs.
Use cpu and pin to specify the owner of the opener process.

DISCOPEN 199

pin

is the process identification number of the opener process. To indicate all processes, use
an asterisk (*). The default is all processes.

#tempfile
is the file identification number of a temporary file to be measured. To indicate all
temporary files, use an asterisk (*).

"pname"
can be either a fully qualified or partial OSS file pathname. An OSS file pathname that
does not begin with a slash (/) is considered to be a partial pathname and is expanded
by prefacing it with the current setting for OSSPATH.

NOTE: OSS file pathnames are case-sensitive and must be specified within double
quotation marks (" "). Valid OSS file pathnames can refer to specific files or to a set of
files within a specific directory. If a directory is specified, only files in that directory are
included. Files in directories subordinate to the specified directory are not included.

catalog, schema, object, partition

in Measure H01 and later PVUs, are ANSI SQL identifiers. When omitted, catalog and
schema fields are resolved by the MEASCOM catalog and schema environment values.
If the name space keywords TABLE or INDEX are omitted, TABLE is the assumed default.

DDL Record for DISCOPEN Entities (Legacy Style)
This is the Legacy Style DDL record for DISCOPEN entities. The fields included in BRIEF reports
are in boldface type.
The DDL record for G-series DISCOPEN entities is identical to the record for D-series DISCOPEN
entities, except for:
• The counters added to support direct bulk I/O (existing I/O counters such as

DRIVER-INPUT-CALLS also include direct-bulk I/O operations)
• The display of DP2 busy time on behalf of the SQL operation time
• New identifiers for OSS file pathname support

RECORD discopen. FILE is "discopen" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 opener-cpu type binary 16 unsigned.
 02 opener-pin type binary 16 unsigned.
 02 ocb-number type binary 16 unsigned.
 02 opener-system-name type character 8.
 02 file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 file-type type binary 16 unsigned.

* counter value items:
02 driver-input-calls type binary 32 unsigned.
02 driver-output-calls type binary 32 unsigned.
 02 cache-hits type binary 32 unsigned.
 02 cache-write-hits type binary 32 unsigned.
 02 block-splits type binary 32 unsigned.

200 Entities and Counters

 02 requests-blocked type binary 32 unsigned.

 * new entity identification items for D10:
 02 record-type type binary 16 unsigned.

* new counter value items for D10:
02 requests type binary 32 unsigned.
 02 lockwait-time type binary 64.
 02 max-lockwait-time type binary 64.
 02 lock-timeouts type binary 32 unsigned.
 02 lock-bounces type binary 32 unsigned.
 02 cache-write-cleans type binary 32 unsigned.

* SMS changes:
 02 device-name type character 8.
 02 storage-pool type character 8.

02 dbio-input-calls type binary 32 unsigned.
02 dbio-output-calls type binary 32 unsigned.

* New counters for G08:
02 SQL-operation-time type binary 64.

* New identifiers for OSS file pathname support:
02 file-name-mid.
 03 pathid type character 24.
 03 crvsn type character 6.
end

DDL Record for DISCOPEN Entities (ZMS Style)
The ZMS style DDL record for DISCOPEN entities is supported on Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsdopen-id.
 02 opener-cpu type binary 16 unsigned.
 02 opener-pin type binary 16 unsigned.
 02 ocb-number type binary 16 unsigned.
 02 file-type type binary 16 unsigned.
 02 opener-system-name type character 8.
 02 file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 device-name type character 8.
 02 storage-pool type character 8.
 02 file-name-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 record-type type binary 16 unsigned.
end

Counter Fields DDL Definition
 02 driver-input-calls type binary 64.
 02 driver-output-calls type binary 64.
 02 cache-hits type binary 64.
 02 cache-write-hits type binary 64.
 02 block-splits type binary 64.
 02 requests-blocked type binary 64.
 02 requests type binary 64.
 02 lockwait-time type binary 64.

DISCOPEN 201

 02 max-lockwait-time type binary 64.
 02 lock-timeouts type binary 64.
 02 lock-bounces type binary 64.
 02 cache-write-cleans type binary 64.
 02 DBIO-input-calls type binary 64.
 02 DBIO-output-calls type binary 64.
 02 SQL-operation-time type binary 64.
end

DDL Record Description Fields
RECORD zmsdopen. FILE is "zmsdopen" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsdopen-ctrs.
 02 id type zmsdopen-id.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

OPENER-CPU

CPU number of the process that opened the measured file.

OPENER-PIN

Process identification number of the process that opened the measured file.

OCB-NUMBER

Identification number of the open control block (OCB).

OPENER-SYSTEM-NAME

Name of the system that opened the measured file.

FILE-NAME

Name of the measured file. This field is divided into three subfields: VOLUME, SUBVOL, and
FILENAME. The name can apply to either a NonStop file or an SMF file.
For NonStop files, FILE-NAME represents the physical file name that was specified when the
disk file was opened. The VOLUME subfield gives the device name of the physical volume on
which the disk file is located.
For SMF files, FILE-NAME represents a location-independent logical file name that was used
when the disk file was opened. The device location of the physical file that corresponds to the
logical file name is stored in the DEVICE-NAME field.

FILE-TYPE

One of these values, which indicates the file type:

Unstructured0

Relative1

Entry-sequenced2

Key-sequenced3

DRIVER-INPUT-CALLS

Number of read operations. The CACHE-HITS counter counts cache hits on read operations.
Counter type: Incrementing.

202 Entities and Counters

DRIVER-OUTPUT-CALLS

Number of write operations. The CACHE-WRITE-HITS counter counts cache hits on write
operations.
Counter type: Incrementing.

CACHE-HITS

Number of times a read operation found the required block in cache, which saves a disk I/O.
If you write a partially filled block to disk, the disk process must read the block (possibly
incrementing this counter), merge the new data into the block, and then write the block to disk.
If you write to a new file, the disk process reads the new blocks from cache (incrementing this
counter) unless no spare blocks are in cache.
The DRIVER-INPUT-CALLS counter counts all read operations, both cache hits and misses.
Counter type: Incrementing.

CACHE-WRITE-HITS

Number of times a write operation found the required block in cache and saved a read I/O (to
bring the block into cache). A write I/O might also be saved if the file has the buffered option set
ON (that is, if multiple writes can occur to a dirty block before it is physically written).
The DRIVER-OUTPUT-CALLS counter counts write operations that caused a disk I/O.
Counter type: Incrementing.

BLOCK-SPLITS

Number of blocks split during writes to the file.
A block split occurs when you add or lengthen a record in a key-sequenced file and the data
block can no longer contain the entire record. Splitting a data block can cause the index block
above the data block to split as well.
You should keep block splits to a minimum because they require several I/O operations, but you
cannot entirely avoid them when inserting many new records in a key-sequenced file.
Counter type: Incrementing.

REQUESTS-BLOCKED

Number of times an I/O operation had to wait because the requested file or record was locked.
Typically, a record lock is caused by a LOCKFILE request, a LOCKREC request, or a TMF auditing
operation.
Counter type: Incrementing.

RECORD-TYPE

The type of internal counter record used to record the instrumentation for the DISCOPEN entity.
If the value is 0, the file opened was either a temporary file, a program (object file), or an edit
file. For these types of files, a short form internal record is used, and values are not recorded for
certain counters. For more information, see Usage Notes for All DISCOPEN Entities (page 205).

REQUESTS

Number of requests for this open.
Counter type: Incrementing.

LOCKWAIT-TIME

The time spent waiting for locks.

DISCOPEN 203

The REQUESTS-BLOCKED counter counts the number of blocked requests—that is, the number
of times requests are queued to locks. When the REPORT RATE value is on, this counter returns
the average wait time (LOCKWAIT-TIME divided by REQUESTS-BLOCKED).
Counter type: Busy.

MAX-LOCKWAIT-TIME

Maximum wait time per lock. This number can be used as a guide to set the timeout value in the
application. REPORT RATE ON has no effect on this counter value.
Counter type: Max value.

LOCK-TIMEOUTS

Number of timeouts on locks (error 40). When a timeout value for a request expires, the file
system (Enscribe and SQL/MP) sends a cancel request to the disk process. If the disk process
finds the request still waiting for the lock to be granted, the request is removed from the lockwait
queue, and this counter is advanced.
Counter type: Incrementing.

LOCK-BOUNCES

Number of bounced locks (FELOCKED or error 73) returned by the disk process to the file system.
For SQL tables, a bounced lock is a result of using the CONTROL TABLE command with the
RETURN-IF-LOCKED option. For Enscribe files, a bounced lock is a result of using SETMODE
function 4 with Param1.<15> = 1 (alternate lock mode).
Counter type: Incrementing.

CACHE-WRITE-CLEANS

Number of times a required block is found clean in cache for a write operation. This saves a disk
read to bring the block in.
Counter type: Incrementing.

DEVICE-NAME

Disk device on which the measured file is located. For SMF files, this field provides the physical
location that corresponds to the logical file name. For NonStop files, this field is the same as the
FILE-NAME VOLUME subfield.

STORAGE-POOL

Name of the SMF storage pool to which the measured disk is assigned (process name of the
storage pool process).

DBIO-INPUT-CALLS

Number of direct bulk I/O read operations to a requesting processor. This counter is a subset of
DRIVER-INPUT-CALLS.

DBIO-OUTPUT-CALLS

Number of direct bulk I/O write operations from a requesting processor. This counter is a subset
of DRIVER-OUTPUT-CALLS.

SQL-OPERATION-TIME

The DP2 process busy-time accumulated while DP2 was working on SQL subset requests on
behalf of this DISCOPEN.
Counter type: Busy.

204 Entities and Counters

FILE-NAME-MID

FILE-NAME-MID has two subfields: PATHID and CRVSN.
• PATHID is an internal format representation of an OSS file or SQL/MX file.
• CRVSN is a creation version serial number that identifies a unique instance of an OSS or

SQL/MX file.

Usage Notes for All DISCOPEN Entities
• The Measure subsystem tracks only local entities. Therefore, the DISCOPEN entity includes

I/O operations performed on local files only. Processes accessing the files can be local, remote,
or both, depending on the measurement configuration.

• The DISCOPEN counter record is attached to the open control block (OCB) entry for a disk
process. Because OCBs for backup disk processes are not measured, restart DISCOPEN
measurements if the primary disk process is disabled or moved.

• There are two forms of DDL record for the DISCOPEN entity: a short form and a long form.
The long record contains several additional counters that measure file locking. Not all file
opens require these measurements, so the MEASCTL process allocates the short or long
record at measurement time, based on the file type. The short record is allocated to temporary
files ($vol.#nnnnnnn), edit files (file code 101), and object files (file code 100). The long record
format is allocated to all other file types.
The long record format is used for structured output files. If the data in the record is collected
with the short format, these counter fields contain zeros in the structured file:

LOCK-BOUNCESMAX-LOCKWAIT-TIMEREQUESTS

CACHE-WRITE-CLEANSLOCK-TIMEOUTSLOCKWAIT-TIME

• Both DISCOPEN and DISKFILE measure physical access to a file. When deciding when to
use DISCOPEN and when to use DISKFILE, consider:
— DISCOPEN creates a separate counter record for each file open. Opener processes are

identified individually. If the same process opens a file more than once, multiple
DISCOPEN records are created.

— DISKFILE measures disk file access per file. DISKFILE creates one counter record for
each measured file and does not track individual opener processes.

— For indirect opens, such as an open of an alternate-key file, DISCOPEN creates a separate
record. DISKFILE does not create a separate record for indirect opens.

— Both DISCOPEN and DISKFILE create a new record if a file closes and reopens during
a measurement.

— DISCOPEN provides a detailed view of disk-file activity. DISCOPEN counters are
especially useful for detecting potential problems with the structure of key-sequenced
database files.

— If you do not need a high level of detail, DISKFILE reduces the amount of data you
must analyze while still letting you detect potential problems with file structure and
contention.

To measure logical access to a file, use the FILE entity type. For a description, see FILE
(page 216).

DISCOPEN 205

• DISCOPEN and DISKFILE entities count requests to the storage driver software. These
counts do not distinguish between requests that are satisfied out of cache (logical request
only) and requests that are satisfied through an I/O transfer (physical I/O).
In writes to mirrored disks, the request counts are incremented once even though two
physical writes occurred.

• The keyword DISKOPEN is interchangeable with DISCOPEN in any MEASCOM command
except HELP.

Usage Notes for G-Series DISCOPEN Entities
• The SQL-OPERATION-TIME counter, when summed across all DISCOPEN records for a

disk, is not inclusive of all DP2 processing time or of all SQL-related processing time. Many
DP2 processing activities cannot be associated with a particular DISCOPEN. Because
non-SQL-OPERATION-TIME operations are too small in duration to be measured, the intent
of the SQL-OPERATION-TIME counter is to identify SQL operations that are major consumers
of DP2 process-busy-time and to associate the requests with a particular opening process.

• In the Guardian file system, a file can be opened through normal Guardian file naming or
through the OSS file pathname: /G/volume/subvol/filename.

• For OSS file-system opens of the DISCOPEN record, the OSS file pathname that was used
to open the file is displayed. For Guardian file-system opens of the DISCOPEN record, the
PATHID information for the record is incomplete, and the request to translate the information
cannot occur. In this case, the OSS file pathname displayed is obtained from translation of
the Guardian file name and CRVSN value. If more than one path to the file name is defined,
all OSS file pathnames are displayed.

• A LIST DISCOPEN * report request or a report request from the Guardian file system displays
an OSS file pathname for the record, but any subsequent LIST requests does not return the
same OSS file pathname record. This behavior indicates that the file-system access was
through the Guardian file system or that the file being listed is a Guardian file name. For
more information on the distinctions between the Guardian and OSS file systems and
environments, see the Open System Services User’s Guide.

• In Measure G11 and later PVUs, ANSI SQL names appear in displays.

Example
The report output for the DISCOPEN entity includes the ANSI SQL name for files that have an
ANSI SQL name. Here is an example:
Disc File Open $DATA.ZSD12345.Z1234567
ANSI SQL Name ‘TABLE Catalog_12.Schema_45.Table_56 PARTITION Partition_78’
Device Name $DATA Pool
File Type Key Sequenced Local CPU 0
Opener Process: System \HURTS CPU 0 Pin 285
Format Version: H01 Data Version: H01 Subsystem Version: 1
Local System \HURTS From 12 Jan 2003, 19:35:28 For 46.9 Seconds
------------ Requests --
Lockwait-Time Requests 3 #
Max-Lockwait-Time Requests-Blocked
Lock-Timeouts Lock-Bounces
------------ Logical I/O ---
Cache-Hits 6 # Cache-Write-Hits
Block-Splits Cache-Write-Cleans
Driver-Input-Calls 6 # Driver-Output-Calls
DBIO-Input-Calls DBIO-Output-Calls
------------ SQL ---
SQL-Operation-Time

206 Entities and Counters

DISKFILE
This entity measures the I/O operations performed by all opener processes on a specified disk
file (physical file access). DISKFILE uses FCB to measure openers and creates one counter record
for each measured file. The DISKFILE entity type does not track individual opener processes
unless a file closes and reopens during a measurement.
In Measure G09 and later PVUs, the DISKFILE entity supports the use of OSS file pathnames in
place of Guardian file names. It displays OSS file pathnames in DISKFILE reports and provides
direct mapping between external structured records and the new OSSNAMES structured record
output. Although many OSS file pathnames refer to a specific disk file, only one DISKFILE record
exists for a file. Using any valid name retrieves the desired record. In reporting the record, all
valid names that refer to the record are listed.
In Measure H01 and later PVUs, MEASCOM accepts ANSI SQL names in a DISKFILE entity
specification.

D-SeriesTopic

207Entity specification syntax

208DDL record for DISKFILE entities (Legacy Style)

209DDL record for DISKFILE entities (ZMS Style)

214Usage notes for all DISKFILE entities

215Usage notes for G-series DISKFILE entities

Entity Specification Syntax for DISKFILE Entities
To describe a DISKFILE entity or set of DISKFILE entities:
DISKFILE entity-spec [,entity-spec] ...

DISKFILE
collects information about physical and logical access to a specified file.

entity-spec

is specified as:
{ * }
{ [[$device.]subvolume.]filename[:crvsn] }
{ [$device.]#tempfile }
{ “pathname” }
{ ‘{TABLE|INDEX} [[catalog.]schema.]object[PARTITION partition]’ }
{ ‘SCHEMA [catalog.]schema’ }
{ ‘CATALOG {catalog|*}’

where catalog, schema, object and partition are ANSI SQL identifiers. Omitted
catalog and schema fields are resolved by the MEASCOM catalog and schema
environment values.
Wildcard syntax is:
TABLE [[catalogC.]schemaS.]tableT – all partitions in tableT
INDEX [[catalogC.]schemaS.]indexI – all index partitions in indexI
SCHEMA [catalogC.]schemaS – all objects in schemaS
CATALOG catalogC – all objects in catalogC
CATALOG * - all objects visible on the node

*
measures local and remote access of all disk files.

$device
is the name of the volume (device) that contains the file to be measured. To indicate all
volumes, use an asterisk (*). The default is the current default volume.

DISKFILE 207

subvolume

is the name of the subvolume that contains the file to be measured. To indicate all
subvolumes, use an asterisk (*). The default is the current default subvolume.

filename

is the name of the file to be measured. To indicate all files except temporary files, use an
asterisk (*). Temporary files are specified separately.

:CRVSN
in Measure G10 and later PVUs, is the timestamp, creation version serial number, or
filename extension necessary to form a unique filename. Use this option to guarantee
filename uniqueness. The CRVSN is available from the Measure report and the
LISTGNAME command.

#tempfile
is the file identification number of a temporary file to be measured. To indicate all
temporary files, use an asterisk (*).

"pname"
can be either a fully qualified or partial OSS file pathname. An OSS file pathname that
does not begin with a slash (/) is considered to be a partial pathname and is expanded
by prefacing it with the current setting for OSSPATH.

NOTE: OSS file pathnames are case-sensitive and must be specified within double
quotation marks (" "). Valid OSS file pathnames can refer to specific files or to a set of
files within a specific directory. If a directory is specified, only files in that directory are
included. Files in directories subordinate to the specified directory are not included.

catalog, schema, object, partition

are ANSI SQL identifiers in Measure H01 and later PVUs. When omitted, catalog and
schema fields are resolved by the MEASCOMcatalog andschema environment values.
If the name space keywords TABLE or INDEX are omitted, TABLE is the assumed default.

DDL Record for DISKFILE Entities (Legacy Style)
This is the Legacy Style DDL record for DISKFILE entities. The fields included in BRIEF reports
are in boldface type.
The DDL record for G-series DISKFILE entities is identical to the record for D-series DISKFILE
entities except that counters are added to support direct bulk I/O and SQL actions. (Existing I/O
counters such as DRIVER-INPUT-CALLS also include direct-bulk I/O operations.) In addition,
new identifiers have been added for OSS file pathname support.
RECORD diskfile. FILE is "diskfile" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 FCB-number type binary 16 unsigned.
 02 file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 file-type type binary 16 unsigned.
 02 file-code type binary 16 unsigned.
* counter value items:
 02 starting-eof type binary 64.

208 Entities and Counters

 02 ending-eof type binary 64.
 02 transient-opens type binary 32 unsigned.
 02 open-qtime type binary 64.
 02 open-qlen-max type binary 16 unsigned.
 02 driver-input-calls type binary 32 unsigned.
 02 driver-output-calls type binary 32 unsigned.
 02 cache-read-hits type binary 32 unsigned.
 02 cache-write-hits type binary 32 unsigned.
 02 cache write-cleans type binary 32 unsigned.
 02 requests type binary 32 unsigned.
 02 requests-blocked type binary 32 unsigned.
 02 lockwait-time type binary 64.
 02 max-lockwait-time type binary 64.
 02 lock-timeouts type binary 32 unsigned.
 02 lock-bounces type binary 32 unsigned.
 02 block-splits type binary 32 unsigned.
 02 extent-allocations type binary 32 unsigned.

* SMS changes:
 02 device-name type character 8.
 02 storage-pool type character 8.
* New counters in G05:
 02 dbio-input-calls type binary 32 unsigned.
 02 dbio-output-calls type binary 32 unsigned.
* New counters in G08:
 02 SQL-inserts type binary 32 unsigned.
 02 SQL-updates type binary 32 unsigned.
 02 SQL-deletes type binary 32 unsigned.
 02 ending-rows type binary 32 unsigned.
 02 format type binary 16 unsigned.
* New identifiers for OSS file pathname support:
 02 file-name-mid.
 03 pathid type character 24.
 03 crvsn type character 6.
* New counters in G10:
 02 OSS-Block-Writes type binary 32 unsigned.
 02 OSS-Block-Write-Bytes type binary 64.
 02 OSS-Cache-Callbacks type binary 32 unsigned.
 02 OSS-Callback-Writes type binary 32 unsigned.
end

DDL Record for DISKFILE Entities (ZMS Style)
The ZMS style DDL record for DISKFILE entities is supported on Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsdfile-id.
 02 FCB-number type binary 16 unsigned.
 02 file-type type binary 16 unsigned.
 02 file-code type binary 16 unsigned.
 02 format type binary 16 unsigned.
 02 file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 device-name type character 8.
 02 storage-pool type character 8.
 02 file-name-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 reserved-1 type character 2.
end

DISKFILE 209

Counter Fields DDL Definition
DEFINITION zmsdfile-ctrs.
 02 starting-eof type binary 64.
 02 ending-eof type binary 64.
 02 transient-opens type binary 64.
 02 open-qtime type binary 64.
 02 driver-input-calls type binary 64.
 02 driver-output-calls type binary 64.
 02 cache-read-hits type binary 64.
 02 cache-write-hits type binary 64.
 02 cache write-cleans type binary 64.
 02 requests type binary 64.
 02 requests-blocked type binary 64.
 02 lockwait-time type binary 64.
 02 max-lockwait-time type binary 64.
 02 lock-timeouts type binary 64.
 02 lock-bounces type binary 64.
 02 block-splits type binary 64.
 02 extent-allocations type binary 64.
 02 DBIO-input-calls type binary 64.
 02 DBIO-output-calls type binary 64.
 02 SQL-inserts type binary 64.
 02 SQL-updates type binary 64.
 02 SQL-deletes type binary 64.
 02 starting-rows type binary 64.
 02 ending-rows type binary 64.
 02 OSS-Block-Writes type binary 64.
 02 OSS-Block-Write-Bytes type binary 64.
 02 OSS-Cache-Callbacks type binary 64.
 02 OSS-Callback-Writes type binary 64.
end

DDL Record Description Fields
RECORD zmsdfile. FILE is "zmsdfile" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsdfile-ctrs.
 02 id type zmsdfile-id.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

FCB-NUMBER

File control block number of the measured file. Internal to the disk process.

FILE-NAME

Name of the measured file. This field is divided into three subfields: VOLUME, SUBVOL, and
FILENAME. The name can apply to either a NonStop file or an SMF file.
For NonStop files, FILE-NAME represents the physical file name that was specified when the
disk file was opened. The VOLUME subfield gives the device name of the physical volume on
which the disk file is located.
For SMF files, FILE-NAME represents a location-independent logical file name that was used
when the disk file was opened. The device location of the physical file that corresponds to the
logical file name is stored in the DEVICE-NAME field.

210 Entities and Counters

FILE-TYPE

One of these values, which indicates the type of file to be measured:

Unstructured0

Relative1

Entry-sequenced2

Key-sequenced3

FILE-CODE

Three-digit system file code, such as 100 for object files or 101 for edit files. For a complete list
of file codes, see the File Utility Program (FUP) Reference Manual.

STARTING-EOF

EOF value of the file, in bytes, at measurement start time. This item is part of the structured
DISKFILE record, but MEASCOM does not display it. Instead, MEASCOM uses this counter
value as a base to compute the ratio of ENDING-EOF to STARTING-EOF.
Counter type: Snapshot.

ENDING-EOF

EOF value of the file, in bytes, at measurement stop time or measurement interval copy time.
The REPORT RATE value does not affect the display of this value in MEASCOM. This item is
displayed in its absolute value in bytes, followed by the ratio of ENDING-EOF over
STARTING-EOF.
Counter type: Snapshot.

TRANSIENT-OPENS

Number of opens that occur during the measurement period.
Counter type: Incrementing.

OPEN-QTIME

The time for all the opens of this file (including transient opens).
Counter type: Queue.

OPEN-QLEN-MAX

(Legacy Style only) Maximum number of opens on this file.
Counter type: Max queue.

DRIVER-INPUT-CALLS

Number of read operations, including cache hits. The CACHE-READ-HITS counter counts cache
hits on read operations.
Counter type: Incrementing.

DRIVER-OUTPUT-CALLS

Number of write operations, including cache hits. The CACHE-WRITE-HITS counter counts
cache hits on write operations.
Counter type: Incrementing.

DISKFILE 211

CACHE-READ-HITS

Number of times a read operation found the required block in cache, which saves a disk I/O. The
DRIVER-INPUT-CALLS counter counts all read operations, both cache hits and misses.
Counter type: Incrementing.

CACHE-WRITE-HITS

Number of times a write operation found the required block in cache and saved a read I/O (to
bring the block into cache). A write I/O can also be saved if the file has the buffered option set
to ON. (That is, if multiple writes can occur to a dirty block before it is physically written.)
Counter type: Incrementing.

CACHE-WRITE-CLEANS

Number of times a write operation found the required block clean in cache, which saves a read
operation to bring the block into cache.
Counter type: Incrementing.

REQUESTS

Number of requests for this file.
Counter type: Incrementing.

REQUESTS-BLOCKED

Number of times an I/O operation had to wait because the requested file or record was locked.
LOCKWAITS is another term for this counter.
Counter type: Incrementing.

LOCKWAIT-TIME

The time spent waiting for locks.
The REQUESTS-BLOCKED counter counts the number of blocked requests—that is, the number
of times requests are queued to locks. When the REPORT RATE value is on, this counter returns
the average wait time (LOCKWAIT-TIME divided by REQUESTS-BLOCKED).
Counter type: Busy.

MAX-LOCKWAIT-TIME

Maximum wait time for each lock. Use this number as a guide to set the timeout value in the
application.
Counter type: Max value.

LOCK-TIMEOUTS

Number of timeouts on locks (error 40). When a timeout value for a request expires, the file
system (Enscribe and SQL/MP) sends a cancel request to the disk process. If the disk process
finds the request still waiting for lock to be granted, the request is dequeued from the lockwait
queue, and this counter is advanced.
Counter type: Incrementing.

LOCK-BOUNCES

Number of bounced locks (FELOCKED = error 73) returned to the file system. For SQL tables, a
bounced lock is a result of the CONTROL TABLE command with the RETURN-IF-LOCKED
control option. For Enscribe files, a bounced lock is a result of the SETMODE 4 function with
Param.<15> = 1 (alternate lock mode).

212 Entities and Counters

Counter type: Incrementing.

BLOCK-SPLITS

Number of block splits during writes to the file.
Counter type: Incrementing.

EXTENT-ALLOCATIONS

Number of times a file extent is allocated.
Counter type: Incrementing.

DEVICE-NAME

Disk device on which the measured file is located. For SMF files, this field provides the physical
location that corresponds to the logical file name. For NonStop files, this field is the same as the
FILE-NAME VOLUME subfield.

STORAGE-POOL

Name of the SMF storage pool to which the measured disk is assigned (process name of the
storage pool process).

DBIO-INPUT-CALLS

Number of direct bulk I/O read operations to a requesting processor. This counter is a subset of
DRIVER-INPUT-CALLS.

DBIO-OUTPUT-CALLS

Number of direct bulk I/O write operations from a requesting processor. This counter is a subset
of DRIVER-OUTPUT-CALLS.

SQL-INSERTS

The number of row insert operations performed on the SQL table.
Counter type: Incrementing.

SQL-UPDATES

The number of row update operations performed on the SQL table.
Counter type: Incrementing.

SQL-DELETES

The number of row delete operations performed on the SQL table.
Counter type: Incrementing.

STARTING-ROWS

Reserved for future use.

SQL-ENDING-ROWS

The number of rows in the SQL table at the end of a measurement interval. This counter is valid
only if the table had zero rows at some time since the file open.
Counter type: Snapshot.

DISKFILE 213

FILE-NAME-MID

FILE-NAME-MID has two subfields: PATHID and CRVSN.
• PATHID is an internal format representation of an OSS file or SQL/MX file. For files other

than OSS or SQL/MX files, the field contains zeros.
• CRVSN is a creation version serial number that identifies a unique instance of an OSS or

SQL/MX file. For other files, the field contains zeros.

OSS-BLOCK-WRITES

The number of block write operations issued by DP2 for the OSS File System.
Counter type: Incrementing.

OSS-BLOCK-WRITE-BYTES

The number of bytes written by DP2 as a result of OSS-BLOCK-WRITES.
Counter type: Accumulating.

OSS-CACHE-CALLBACKS

The number of cache callback requests sent by DP2 to the OSS file manager.
Counter type: Incrementing.

OSS-CALLBACK-WRITES

The number of OSS-BLOCK-WRITES received by DP2 as a result of OSS-CACHE-CALLBACKS.
Counter type: Incrementing.

Usage Notes for All DISKFILE Entities
• Both DISCOPEN and DISKFILE measure physical access to a file. When you decide when

to use DISCOPEN and when to use DISKFILE, consider:
— DISCOPEN creates a separate counter record for each file open. Opener processes are

identified individually. If the same process opens a file more than once, multiple
DISCOPEN records are created.

— DISKFILE measures disk file access collectively for a file as a whole. DISKFILE creates
one counter record per measured file and does not track individual opener processes.

— For indirect opens, such as an open of an alternate-key file, DISCOPEN creates a separate
record. DISKFILE does not create a separate record for indirect opens.

— Both DISCOPEN and DISKFILE create a new record if a file closes and reopens during
a measurement.

— DISCOPEN provides a detailed view of disk file activity. DISCOPEN counters are
especially useful for detecting potential problems with the structure of key-sequenced
database files.

— If you do not need a high level of detail, DISKFILE reduces the amount of data you
must analyze while still letting you detect potential problems with file structure and
contention.

To measure logical access to a file, use the FILE entity type. For a description, see FILE
(page 216).

• DISCOPEN and DISKFILE entities count requests to the storage driver software. These
counts do not distinguish between requests that are satisfied out of cache (logical request
only) and requests that are satisfied through an I/O transfer (physical I/O).
In writes to mirrored disks, the request counts are incremented once even though two
physical writes occurred.

214 Entities and Counters

Usage Notes for G-Series DISKFILE Entities
• The counters SQL-INSERTS, SQL-UPDATES, and SQL-DELETES are available starting with

DP2 (T9053G08) and the G06.11 RVU. The counter SQL-ENDING-ROWS is available with
DP2 (T9053G09) and the G06.12 RVU.

• The SQL-ENDING ROWS counter is of interest for SQL tables used to represent a queue.
Following the initial open of a file, this value is not displayed and is reported in the external
records as a -1 until the number of rows in the table has been zero at some time. Once the
number of rows is equal to zero (for example, an empty queue), the counter tracks the number
of rows in the file at the end of each interval.

• In Measure G08 and later PVUs, the DISKFILE entity report identifies whether the disk file
is file format 1 or 2. A format 2 file is used when:
— The maximum size of an unpartitioned file (or of any partition of a partitioned file)

exceeds 2 GB - 1 MB.
— A non-key-sequenced partitioned file has a maximum size equal to or greater than 4

GB.
— A file’s extent size exceeds 65535 pages.
— A format 2 file is explicitly requested at creation.

• In Measure G09 and later PVUs (support of OSS file pathnames):
— The directory information in the OSS PATHID is ignored for DISKFILE usage of OSS

file pathnames.
— Only one DISKFILE record exists for a file despite the number of accesses made.
— Any valid pathname that leads to the file can be used.
— The use of directory names to indicate a set of DISKFILE records is not supported.
— If you must measure transient DISKFILE records for OSS files, specify them using the

Guardian file name wild-card conventions; for example:
◦ $*.*.*
◦ $device.*.*
◦ *.ZYQnnnnn.

— OSS PATHID and CRVSN information is not included in records returned by
MEASREADACTIVE. To obtain OSS file pathnames that correspond to a particular
DISKFILE record, use MEASLISTPNAME. This translation produces a warning that a
CRVSN was not specified. However, you can ignore this warning because the translation
is for a value from an active record.

• In Measure G11 and later PVUs, ANSI SQL names appear in displays.

Example
The report output for the DISKFILE entity includes the ANSI SQL name for files that have an
ANSI SQL name.
Diskfile $DATA.ZSD12345.Z1234567 File Format x
ANSI SQL Name ‘TABLE Catalog_12.Schema_45.Table_56 PARTITION Partition_78’
Device Name $DATA Pool
Local CPU 0 File Type Key Sequenced File Code 550
Format Version: H01 Data Version: H01 Subsystem Version: 1
Local System \HURTS From 12 Jan 2003, 19:35:28 For 46.9 Seconds
------------ File --
Open-Qtime 72.11 ms Transient-Opens
Starting-EOF Ending-EOF
Extent-Allocations File-Growth-Ratio
------------ Requests --
Lockwait-Time Requests 3 #
Max-Lockwait-Time Requests-Blocked
Lock-Timeouts Lock-Bounces
------------ Logical I/O ---

DISKFILE 215

Cache-Read-Hits 2 # Cache-Write-Hits
Block-Splits Cache-Write-Cleans
Driver-Input-Calls 2 # Driver-Output-Calls
DBIO-Input-Calls DBIO-Output-Calls
------------ SQL ---
SQL-Inserts
SQL-Updates SQL-Deletes
SQL-Starting-Rows SQL-Ending-Rows
------------ Open System Services --
OSS-Cache-Callbacks OSS-Callback-Writes
OSS-Block-Writes OSS-Block-Write-Bytes

FILE
This entity measures the I/O operations performed by a user process on an explicitly opened file
(logical file access).
In Measure G09 and later PVUs, the FILE entity type handles OSS file pathnames.
In Measure G11 and later PVUs, the FILE entity displays ANSI SQL names in FILE reports. In
Measure H01 and later PVUs, MEASCOM accepts ANSI SQL names in FILE entity specifications.

PageTopic

216Measure and OSS file opens

217OSS naming conventions

219ANSI SQL naming conventions

219Entity specification syntax

221DDL record for FILE entities (Legacy Style)

223DDL record for FILE entities (ZMS Style)

231Usage notes for all FILE entities

128Usage notes for G-series FILE entities

232Command examples: OSS file opens

Measure and OSS File Opens
The FILE entity includes a number of FILE relationships available to OSS. OSS FILE open types
include:

DescriptionOSS File Type

OSS disk files with names in the OSS hierarchical name spaceOSS regular files

IPC mechanism for communication between processesOSS pipes

Named pipes, with names available in the OSS name spaceOSS FIFO

IPC mechanism using OSS AF_INET or OSS AF_UNIX socketsOSS sockets

The FILE entity does not record OSS opens of OSS directories, TTY devices, and /dev/null. For
details on the aggregate counters used for these objects, see the PROCESS entity on page 272.
OSS file instrumentation is generally at the system call level rather than the library call level.
Existing Guardian TCP/IP sockets instrumentation is unchanged. Process file opens are recorded,
but no socket level information is available.

216 Entities and Counters

The two significant differences between the support of OSS file opens in the FILE entity and that
of Guardian file opens are:
• The timing of counter record creation
• Naming conventions used to identify OSS file open objects

Record Creation
OSS files are often opened within a parent process environment but accessed only in the context
of a child process that inherits the open. Similarly, a child process might not actually use all file
opens inherited from a parent process. To minimize the system impact of tracking OSS file opens
in Measure, counter records for OSS file opens are initiated on first significant use of the file, not
on the open of the file. These OSS APIs qualify as significant use:

send()open(O_TRUNC)accept()

sendmsg()read()fcntl(F_GETLK,F_SETLK,F_SETLKW)

sendto()recv()fsync()

write()recvfrom()ftruncate()

recvmsg()lseek()

For Guardian file opens, you commonly see file records that are not used by a process during a
measurement. For OSS file opens, such opens do not produce a data record.

OSS Naming Conventions
A Measure FILE record identifies a file open object by its Guardian format name
($vol.subvol.fname). OSS file open objects might also have an OSS file pathname defined,
such as /work/files/fname. An additional identifier for OSS AF_INET and AF_INET6 sockets,
IP-ADDR, is an IP address-port combination specified in a quoted string with the port
space-separated from the address (for example, "123.45.67.8 90" or "3FFE:1200:215:1 64").
Except for OSS regular files, OSS file open types do not have a valid Guardian file name available
for use. For Measure use only, the OSS file system creates a Guardian file name for these file
opens for configuration, identification, and selection. These names are only for Measure record
selection and display. They cannot be used as targets of a FILE_OPEN_ call or otherwise applied
in commands that use a file name as a parameter. To form the name, the OSS file system uses
the device name of the process providing the resource followed by unique identifiers (qual1,
qual2):
• The TCP/IP process name (user-defined) for AF_INET and AF_INET6 sockets
• The pipe server name ($ZPPnn) for pipes and ($ZPPNN) for FIFOs
• The local server ($ZPLS) for AF_UNIX sockets (pre-AF_UNIX R2)
• The local server ($ZLSnn) for unbound AF_UNIX sockets and ($ZLSNN) for bound AF_UNIX

sockets (AF_UNIX R2)
In all cases, a CRVSN/timestamp is appended to the file name to form a unique file name modifier,
represented as cccccc in the following list.
Depending on OSS file open type, the following file identifiers are present in the Measure file
record. If OSS journaling is enabled for a measurement, only OSS file pathnames for regular files,
FIFOs, and bound AF_UNIX sockets are journaled.
The pipe server and the local server (AF_UNIX R2) are really process groups, with one process
per CPU. The last two bytes of the process name (nn) is the CPU number where the individual
process resides. For example, the pipe server on a four-CPU system is a process group consisting
of processes, $ZPP00, $ZPP01, $ZPP02 and $ZPP03. To create the illusion of a single server
process for FIFOs and bound sockets, the File identifier that is displayed in the LIST FILE display

FILE 217

uses the process name, $ZPPNN, for the pipe server, and $ZLSNN for the local server for bound
sockets. The actual process name (the one with the nn) is still shown as the Device Name in the
LIST FILE display. Below is a sample LIST FILE display showing a bound socket:
> meascom;add ossfidfb;list file * (osssocket)
File Open $ZLSNN.Z00000.Z0001SQG:106899423347 Open Type OSSUNIXSTREAM
OSSPath: "/tmp/kenm/mysock"
Device Name $ZLS01 Device Type 0 (Process) Subdevice Type 0
Opener 1,576 ($Z01H) File Num 2 OSSPID: 64356356
Program $OSS2.ZYQ00000.Z000161Y:929432249
OSSPath: "/tmp/kenm/server.exe"
Opener Device Name $OSS2
Format Version: H04 Data Version: H04 Subsystem Version: 0
Local System \MEASYOS From 14 Nov 2008, 14:50:33 For 19.7 Seconds

File IdentifierOSS File Open Type

OSSPath$VOL.ZYQnnnnn.Ziiiiiii:ccccccRegular files

OSSPath$ZPPNN.Znnnnn.Ziiiiiii:ccccccFIFOs

No OSSPath or IP-Addr$ZPPnn.qual1.qual2:ccccccPipes

No OSSPath or IP-Addr$ZTCnn.qual1.qual2:ccccccAF_INET datagram sockets
(unbound, unconnected or connected)

IP-Addr$ZTCnn.qual1.qual2:ccccccAF_INET datagram sockets (bound)

No OSSPath or IP-Addr$ZPLS.qual1.qual2:ccccccAF_UNIX datagram sockets
(unbound, unconnected, or
connected) (pre-AF_UNIX R2)

OSSPath$ZPLS.Znnnnn.Ziiiiiii:ccccccAF_UNIX datagram sockets (bound)
(pre-AF_UNIX R2)

No OSSPath or IP-Addr$ZLSnn.qual1.qual2:ccccccAF_UNIX datagram sockets
(unbound, unconnected, or
connected) (AF_UNIX R2)

OSSPath$ZLSNN.Znnnnn.Ziiiiiii:ccccccAF_UNIX datagram sockets (bound)
(AF_UNIX R2)

No OSSPath or IP-Addr$ZTCnn.qual1.qual2:ccccccAF_INET streams sockets (unbound
or unconnected)

IP-Addr$ZTCnn.qual1.qual2:ccccccAF_INET streams sockets (bound or
connected)

No OSSPath or IP-Addr$ZPLS.qual1.qual2:ccccccAF_UNIX streams sockets (unbound
or unconnected) (pre-AF_UNIX R2)

OSSPath of named socket connection$ZPLS.Znnnnn.Ziiiiiii:ccccccAF_UNIX streams sockets (bound or
connected) (pre-AF_UNIX R2)

No OSSPath or IP-Addr$ZLSnn.qual1.qual2:ccccccAF_UNIX streams sockets (unbound
or unconnected) (AF_UNIX R2)

OSSPath of named socket connection$ZLSNN.Znnnnn.Ziiiiiii:ccccccAF_UNIX streams sockets (bound or
connected) (AF_UNIX R2)

IP-ADDR
Determining the significance of the IP-Addr value depends on the application. In general, a
bound or connected stream socket in the server has its own address in IP-Addr. A bound or
connected socket in the client process has the address of the server.
You cannot use IP-ADDR as a criterion for a measurement ADD FILE command, but you can
select reports for display using the address for selection, as in LIST FILE *, IF IP-ADDR = "address
port". Limited wild-card use is supported; for example:

218 Entities and Counters

{ “address port” }
{ “address *” }
{ “* port” }

For more information about IP field values, see IP (page 230). Examples of use are in Command
Examples: OSS File Opens (page 232).

ANSI SQL Naming Conventions
In Measure G11 and later PVUs, the FILE entity can provide ANSI SQL names in place of Guardian
file names in its output. For complete details on SQL naming, see the SQL/MX Reference Manual.

Entity Specification Syntax
In Measure G09 and later PVUs, the FILE entity supports the use of OSS file pathnames in place
of Guardian file names. It also displays OSS file pathnames in FILE reports and provides direct
mapping between external structured records and OSSNAMES structured record output. OSS
file pathnames might specify the name of the file being opened or specify the program file name
of the process opening the file.
The G09 FILE entity specification syntax supports using OSS file pathnames for file name or
opener-program-filename.
To describe a FILE entity:
FILE entity-spec [,entity-spec] ...

FILE
For D-series RVUs, collects information about operations on one or more logical files. The
file can be local or remote. However, only local processes that access the file are measured.
For G-series RVUs, measures the I/O operations performed by a process on an explicitly open
file (logical file access). The file can be local or remote. However, only local processes that
access the file are measured.

entity-spec

is specified as:
filename [(opener)] [(file^open^type^list)]

where filename is one of the following:
{ * }
{ [[$device.]subvolume.]filename }
{ [$device.]#tempfile }
{ [$device.]#subdevice }
{ “pathname” }
{ ‘{TABLE|INDEX} [[catalog.]schema.]object’ }
{ ‘SCHEMA [[catalog.]schema’ }
{ ‘CATALOG [{catalog|*}’ }

where catalog, schema and object are ANSI SQL identifiers. Omitted catalog and
schema fields are resolved by the MEASCOM catalog and schema environment values.
Wildcard syntax is:
SCHEMA [catalogC.]schemaS – all objects in schemaS
CATALOG catalogC – all objects in catalogC
CATALOG * - all objects visible on the node

*
measures all files, temporary files, and subdevices, both local and remote, accessed by
local processes.

file

is the name of the opened file to be measured, specified as:

FILE 219

{[[[\system.]$device.]subvolume.]filename[:CRVSN] }
{[[\system.]$device.]#tempfile }
{[[\system.]$device.]#subdevice }

\system
is the name of the system that contains the file to be measured. To indicate all systems,
use an asterisk (*). The default is the current default system.

$device
is a name of the volume (device) that contains the file to be measured. To indicate all
devices, use an asterisk (*). The default is the current default device.

subvolume

is the name of the subvolume that contains the file to be measured. To indicate all
subvolumes, use an asterisk (*). The default is the current default subvolume).

filename

is the name of the file to be measured. To indicate all files (except temporary files,
which are specified separately), use an asterisk (*).

:CRVSN
in Measure G10 and later PVUs, is the timestamp, creation version serial number, or
filename extension necessary to form a unique filename. Use this option to guarantee
filename uniqueness. The CRVSN is available from the Measure report and the
LISTGNAME command.

#tempfile
is the file identification number of a temporary file to be measured. To indicate all
temporary files, use an asterisk (*).

#subdevice
is the name of a subdevice to be measured. To indicate all subdevices, use an asterisk
(*).

opener

is the process whose I/O operations on the specified file are measured. Specify opener
as:
{ cpu, pin [, filenum] }
{ $pname [, filenum] }
{[[$device.]subvolume.]filename [, filenum]}
{ "pname" [, filenum] }

cpu

is the number of the CPU on which the process is running.
pin

is the process identification number of the process.
filenum

is the file number of the process.
"pname"

for D-series RVUs, is the process name or program file name of the process.
for G-series and later RVUs, is the OSS file pathname of the program file name of the
process.

"pname"
can be either a fully qualified or partial OSS file pathname. An OSS file pathname that
does not begin with a slash (/) is considered to be a partial pathname and is expanded
by prefacing it with the current setting for OSSPATH.

220 Entities and Counters

NOTE: OSS file pathnames are case-sensitive and must be specified within double
quotation marks (" "). Valid OSS file pathnames can refer to specific files or to a set of
files within a specific directory. If a directory is specified, only files in that directory are
included. Files in directories subordinate to the specified directory are not included.

file^open^type

in Measure G10 and later, selects one, all, or several file open types for measurement. By
default, only Guardian file opens are measured. Valid options include these literals:

Selects all file open types for measurement (default for the ADD FILE and
LIST commands); includes Guardian, OSS, and ANSI SQL files

ALLFILES

Selects all Enscribe, process, and SQL file opens (current default for the
ADD command)

GUARDIAN

Selects Enscribe opens of unstructured, relative, entry-sequenced, and
key-sequenced files

ENSCRIBE

Selects Enscribe opens of unstructured files or OSS regular filesUNSTRUCT

Selects Enscribe opens of relative filesRELFILE

Selects Enscribe opens of entry-sequenced filesKEYFILE

Selects SQL file opensSQLFILE

Selects Enscribe opens of process and other nondisk filesPROCFILE

Specifies all OSS opens are includedOSS

Selects OSS opens of regular filesOSSDISK

Selects OSS opens of named pipesOSSFIFO

Selects OSS opens of unnamed pipesOSSPIPE

Selects OSS opens of all socketsOSSSOCKET

Selects OSS opens of AF_INET socketsOSSINETSOCKET

Selects OSS opens of AF_INET datagram socketsOSSINETDGRAM

Selects OSS opens of AF_INET stream socketsOSSINETSTREAM

Selects OSS opens of AF_UNIX socketsOSSUNIXSOCKET

Selects OSS opens of AF_UNIX datagram socketsOSSUNIXDGRAM

Selects OSS opens of AF_UNIX stream socketsOSSUNIXSTREAM

catalog, schema, object

in Measure H01 and later, are ANSI SQL identifiers. When omitted,catalog andschema
fields are resolved by the MEASCOM catalog and schema environment values. If the
name space keywords TABLE or INDEX are omitted, TABLE is the assumed default.

DDL Record for FILE Entities (Legacy Style)
This is the Legacy Style DDL record for FILE entities. The fields included in BRIEF reports are
in boldface type. This record will not change after the G10 Measure PVU.

FILE 221

The DDL record for G-series FILE entities is identical to the record for D-series FILE entities
except:
• Counters are added to measure direct bulk I/O operations.
• Longer byte-count fields are provided to reduce the possibility of field overflow. Each 32-bit

byte-count field has a 64-bit counterpart. For information on using the 64-bit fields, see
SYSTEM (page 128).

• The ERROR field can signal a field overflow in a 32-bit byte-count field.
• Identifiers are added for OSS file pathnames support.

RECORD file. FILE is "file" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
 02 opener-cpu type binary 16 unsigned.

* entity identification items:
 02 opener-pin type binary 16 unsigned.
 02 file-number type binary 16 unsigned.
 02 file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 file-system-name type character 8.
 02 file-type type binary 16 unsigned.
 02 device-type type binary 16 unsigned.

* counter value items:
02 file-busy-time type binary 64.
02 reads type binary 32 unsigned.
02 writes type binary 32 unsigned.
 02 updates-or-replies type binary 32 unsigned.
 02 deletes-or-writereads type binary 32 unsigned.
 02 info-calls type binary 32 unsigned.
 02 records-used type binary 32 unsigned.
 02 records-accessed type binary 32 unsigned.
02 disc-reads type binary 32 unsigned.
 02 messages type binary 32 unsigned.
 02 message-bytes type binary 32 unsigned.
 02 lock-waits type binary 32 unsigned.
 02 timeouts-or-cancels type binary 32 unsigned.
 02 escalations type binary 32 unsigned.

* new entity identification items for D10:
 02 opener-processname type character 8.
 02 opener-program-filename.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.

* SMS changes:
 02 device-name type character 8.
 02 opener-device-name type character 8.
* New F40 counter value items:
 02 message-bytes-f type binary 64.

* New counters in G05:
 02 dbio-reads type binary 32 unsigned.
 02 dbio-writes type binary 32 unsigned.

222 Entities and Counters

 02 dbio-read-bytes type binary 64.
 02 dbio-write-bytes type binary 64.

* New identifiers for OSS file pathname support:
 02 file-name-mid.
 03 pathid type character 24.
 03 crvsn type character 6.
 02 opener-osspid type binary 32 unsigned.
 02 opener-program-fname-mid.
 03 pathid type character 24.
 03 crvsn type character 6.

* New identifier for G10:
 02 File-open-type type binary 16 unsigned.
 02 IP.
 03 family type binary 16 unsigned.
 03 port type binary 16 unsigned.
 03 IP-addr type character 16.

* New counters for G10:
 02 read-bytes type binary 64.
 02 write-bytes type binary 64.
 02 OSS-cache-reads type binary 64.
 02 OSS-cache-writes type binary 64.
 02 OSS-cache-read-bytes type binary 64.
 02 OSS-cache-write-bytes type binary 64.
 02 OSS-block-reads type binary 32 unsigned.
 02 OSS-block-read-bytes type binary 64.
 02 OSS-flow-controls type binary 32 unsigned.
 02 misc-calls type binary 32 unsigned.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for FILE Entities (ZMS Style)
The ZMS style DDL record for FILE entities is supported in Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsfile-id.
 02 opener-pin type binary 16 unsigned.
 02 file-number type binary 16 unsigned.
 02 file-type type binary 16 unsigned.
 02 device-type type binary 16 unsigned.
 02 file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 file-system-name type character 8.
 02 opener-processname type character 8.
 02 opener-program-filename.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 device-name type character 8.
 02 opener-device-name type character 8.
 02 file-name-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 reserved-1 type character 6.
 02 opener-osspid type binary 32 unsigned.

FILE 223

 02 opener-program-fname-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 file-open-type type binary 16 unsigned.
 02 IP.
 03 family type binary 16 unsigned.
 03 port type binary 16 unsigned.
 03 IP-addr type character 16.
 02 reserved-2 type character 4.
end

Counter Fields DDL Definition
DEFINITION zmsfile-ctrs.
 02 file-busy-time type binary 64.
 02 reads type binary 64.
 02 writes type binary 64.
 02 updates-or-replies type binary 64.
 02 deletes-or-writereads type binary 64.
 02 info-calls type binary 64.
 02 records-used type binary 64.
 02 records-accessed type binary 64.
 02 disc-reads type binary 64.
 02 messages type binary 64.
 02 message-bytes type binary 64.
 02 lock-waits type binary 64.
 02 timeouts-or-cancels type binary 64.
 02 escalations type binary 64.
 02 DBIO-reads type binary 64.
 02 DBIO-writes type binary 64.
 02 DBIO-read-bytes type binary 64.
 02 DBIO-write-bytes type binary 64.
 02 read-bytes type binary 64.
 02 write-bytes type binary 64.
 02 OSS-cache-reads type binary 64.
 02 OSS-cache-writes type binary 64.
 02 OSS-cache-read-bytes type binary 64.
 02 OSS-cache-write-bytes type binary 64.
 02 OSS-block-reads type binary 64.
 02 OSS-block-read-bytes type binary 64.
 02 OSS-flow-controls type binary 64.
 02 misc-calls type binary 64.
end

DDL Record Description Fields
RECORD zmsfile. FILE is "zmsfile" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsfile-ctrs.
 02 id type zmsfile-id.
end

OPENER-CPU

(Legacy Style only) Number of the CPU on which the process that opened the file is executing.

OPENER-PIN

Process identification number of the process that opened the file.

FILE-NUMBER

Number of the file.

224 Entities and Counters

FILE-NAME

Name of the measured file. This field is divided into three subfields: VOLUME, SUBVOL, and
FILENAME. The name can apply to either a NonStop file or an SMF file.
For NonStop files, FILE-NAME represents the physical file name that was specified when the
file was opened. The VOLUME subfield gives the device name of the physical volume on which
the primary disk file is located. If a primary disk file has associated partitions or alternate key
files, all activity is recorded under the primary file name.
For SMF files, FILE-NAME represents a location-independent logical file name that was used
when the file was opened. The device location of the physical file that corresponds to the logical
file name is stored in the DEVICE-NAME field.

FILE-SYSTEM-NAME

Name of the system from the complete file specification.

FILE-TYPE

File type, from the access control block:

Relative file1

Entry-sequenced file2

Key-sequenced file3

Any other type of file0

DEVICE-TYPE

One of these values, which indicates the type of device associated with the file:

Process0

Operator1

$RECEIVE2

Disk3

Tape drive4

Printer5

Terminal6

Communication line7

SCSI8

FILE-BUSY-TIME

For waited I/O, the FILE-BUSY-TIME counter is the elapsed time spent executing waited I/O
requests. OSS file opens count file busy time for waited requests after the first significant file
operation on the file. This counter is started by the file system when the message for the I/O
request (for example, READ or WRITE) is sent to the server. The counter is stopped after the
reply is received and the process runs again to process the reply. Thus, the counter includes
execution time of the requester, execution time of the server (for example, DP2 disk process),
any physical I/O time (for example, disk read), and possibly the execution time of higher priority
processes in both CPUs, and so forth. Requests sent during the file open and close and requests
sent to the OSS name server are not counted in the FILE-BUSY-TIME counter, but are counted
in the PROCESS entity.

FILE 225

For nowait I/O, the FILE-BUSY-TIME counter is the execution time to initiate nowait I/O requests
to the server and any elapsed time the process actually spends waiting for nowait requests to
complete in AWAITIO[X].
Counter type: Busy.

READS

For D-series RVUs, number of calls to file-system read operations such as READX and OSS file
system read APIs such as read() or recv(). For OSS, the total includes OSS-CACHE-READS. For
the Enscribe file system, the total includes non-DBIO and DBIO operations. This counter includes
both user and system calls to these procedures.
For G-series RVUs, number of calls to the READ, READLOCK, READUPDATE, and
READUPDATELOCK procedures. This counter includes both user and system calls to these
procedures. For G05 and later RVUs, this counter includes direct bulk I/O read operations.
Counter type: Incrementing.

WRITES

For D-series RVUs, number of calls to file-system write operations such as WRITEX, and OSS
File System write APIs such as write() or send(). For OSS, the total includes OSS-CACHE-WRITES.
For the Enscribe file system, the total includes non-DBIO and DBIO operations. This counter
includes both user and system calls to WRITE.
For G-series RVUs, number of calls to the WRITE procedure. This counter includes both user
and system calls to WRITE. For G05 and later RVUs, this counter includes direct bulk I/O write
operations.
Counter type: Incrementing.

UPDATES-OR-REPLIES

Number of calls to the WRITEUPDATE or WRITEUPDATEUNLOCK procedure with a buffer
length greater than zero (update operations) or the number of calls to the REPLY procedure
(reply operations). This counter includes both user and system calls to these procedures.
Interpretation of this counter depends on the type of file being measured. Update operations are
performed on disk and tape files. Reply operations are performed on terminals or processes.
Counter type: Incrementing.

DELETES-OR-WRITEREADS

Number of calls to the WRITEUPDATE or WRITEUPDATEUNLOCK procedure with a buffer
length of 0 (delete operations) or the number of calls to the WRITEREAD procedure (writeread
operations). This counter includes both user and system calls to these procedures.
Interpretation of this counter depends on the type of file being measured. Delete operations are
performed on disk and tape files. Writeread operations are performed on terminals or processes.
Counter type: Incrementing.

INFO-CALLS

Number of calls to these procedures that resulted in a message being dispatched to a process
(IOP or other) to obtain the information requested:

DEVICEINFOFILE_GETINFOBYNAME_FILEINFO

DEVICEINFO2FILE_GETINFOLISTBYNAME_FILERECINFO

FILEGETINFO_LISTFILE_GETINFO_

226 Entities and Counters

For OSS, the number of fstat(), fstatvfs(), fpathconf(), getsockname(), getpeername(), getsockopt(),
and sockatmark() API calls for this file.
This counter includes both user and system calls to these procedures.
Counter type: Incrementing.

RECORDS-USED

Number of records returned to the SQL executor on reads, inserts, writes, updates, and deletes.
The value of this counter is zero for Enscribe files.
Counter type: Incrementing.

RECORDS-ACCESSED

Number of records read by the disk process or file system to perform the operations. Number
of records accessed is greater than or equal to the number of records used. The ratio of
RECORDS-USED to RECORDS-ACCESSED indicates the selectivity of the statement. The value
of this counter is zero for Enscribe files.
Counter type: Incrementing.

DISC-READS

Number of physical disk reads performed.
Counter type: Incrementing.

MESSAGES

Number of messages sent for this open, including the OPEN messages. Because file labels might
exceed the 30-KB file-message limit, multiple OPEN messages might be sent.
For OSS file opens, MESSAGES is the total number of messages sent or received from server
processes and the OSS Name Server for this file. It does not include the OPEN message, which
is tracked in the PROCESS entity. For OSS sockets, MESSAGES and MESSAGE-BYTES reflect
OSS Name Server activity only.
Counter type: Incrementing.

MESSAGE-BYTES

Number of message bytes sent and received for this file open.
For OSS, counts the total number of message data bytes sent or received for MESSAGES from
server processes and the OSS Name Server for this file.
This counter does not include bytes transferred by direct bulk I/O. The DBIO-READ-BYTES and
DBIO-WRITE-BYTES counters measure direct bulk I/O transfers.
For D-series and G-series RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the MESSAGE-BYTES-F field is a 64-bit version of MESSAGE-BYTES.
Counter type: Accumulating.

LOCK-WAITS

Number of times a call waited for a lock request. For OSS, counts whether a fcntl (,F_SETLKW)
lock request waited for another lock.
Counter type: Incrementing.

TIMEOUTS-OR-CANCELS

Number of timeouts or cancels issued against this OPEN.
Counter type: Incrementing.

FILE 227

ESCALATIONS

Number of times a lock escalated to a file-level lock.
Counter type: Incrementing.

OPENER-PROCESSNAME

Name of the opener process.

OPENER-PROGRAM-FILENAME

Name of the opener program file. This field is divided into three subfields: VOLUME, SUBVOL,
and FILENAME. The name can apply to either a NonStop file or an SMF file.
For NonStop files, OPENER-PROGRAM-FILENAME represents the physical program file name
of the file opener. The VOLUME subfield gives the device name of the physical volume on which
the program file is located.
For SMF files, OPENER-PROGRAM-FILENAME represents a location-independent logical file
name of the file opener. The device location of the physical file that corresponds to the logical
file name is stored in the DEVICE-NAME field.

DEVICE-NAME

Disk device on which the measured file is located. For SMF files, this field provides the physical
location that corresponds to the logical file name. For NonStop files, this field is the same as the
FILE-NAME VOLUME subfield.

OPENER-DEVICE-NAME

Disk device on which the opener program file is located. For SMF files, this field provides the
physical location that corresponds to the logical file name. For NonStop files, this field is the
same as the OPENER-PROGRAM-FILENAME VOLUME subfield.

MESSAGE-BYTES-F

(G-series, Legacy Style only) Same as MESSAGE-BYTES but accommodates larger values (64 bits
rather than 32 bits).

DBIO-READS

Number of direct bulk I/O read operations to the measured file. This counter is a subset of READS.
Counter type: Incrementing.

DBIO-WRITES

Number of direct bulk I/O write operations to the measured file. This counter is a subset of
WRITES.
Counter type: Incrementing.

DBIO-READ-BYTES

Number of bytes transferred by direct bulk I/O read operations.
Counter type: Incrementing.

DBIO-WRITE-BYTES

Number of bytes transferred by direct bulk I/O write operations.
Counter type: Incrementing.

228 Entities and Counters

FILE-NAME-MID

FILE-NAME-MID has two subfields:
• PATHID is an internal format representation of an OSS file or SQL/MX file. For other files,

the field contains zeros.
• CRVSN is a creation version serial number that identifies a unique instance of an OSS or

SQL/MX file. For other files, the field contains zeros.

OPENER-OSSPID

If the opener process runs in the OSS environment, this field contains the OSS Process ID. If this
process is not an OSS process, this field contains zeros.

OPENER-PROGRAM-FNAME-MID

OPENER-PROGRAM-FNAME-MID has two subfields: PATHID and CRVSN. PATHID is an
internal format representation of an OSS file name. If these files are not OSS files, this field
contains zeros. CRVSN is the creation version serial number that identifies a unique instance of
an OSS file. For other files, this field contains zeros.

FILE-OPEN-TYPE

Identifier for the file open type added for measurement or selected for list display reporting.
Possible values are:

%B0000000111111111ALLFILES

%B1111111111111111GUARDIAN

%B1111111011111111ENSCRIBE

%B1111111011100001UNSTRUCT

%B1111111011100010RELFILE

%B1111111011100100ENTRYFILE

%B1111111011101000KEYFILE

%B1111111111100000SQLFILE

%B1111111011110000PROCFILE

%B0000000011100000OSS

%B0111111011100000OSSDISK

%B1101111011100000OSSFIFO

%B1011111011100000OSSPIPE

%B1110000011100000OSSSOCKET

%B1110011011100000OSSUNIXSOCKET

%B1110111011100000OSSUNIXDGRAM

%B1111011011100000OSSUNIXSTREAM

%B1111100011100000OSSINETSOCKET

%B1111101011100000OSSINETDGRAM

%B1111110011100000OSSINETSTREAM

FILE 229

IP

An IP address value consisting of three subfields: FAMILY, PORT, and IP address. Determining
the significance of the IP-Addr value depends on the application. In general, a bound or connected
stream socket in the server has its own address in IP-ADDR. A bound or connected socket in the
client process has the address of the server.
The FAMILY field specifies whether you are using IPv4 or IPv6 addressing. The possible values
of this field are 2 for IPv4 or 26 for IPv6.
The PORT field contains the port number.
The IP-ADDR field is interpreted differently for IPv4 and IPv6. If the FAMILY field specifies
IPv4 addressing--if the value of FAMILY is 2--then the first four bytes of the IP-addr field contain
hexadecimal values for numerals, representing the four parts of the dotted decimal form of the
IP address. If the FAMILY field specifies IPv6 addressing--if the value of FAMILY is 26--then all
16 bytes of the IP-addr field are used to accommodate the hexadecimal values corresponding to
numerals in the IP address.
In ADD FILE commands, you can specify an IP address in a quoted string with the port
space-separated from the address (for example, "123.45.67.8 90" or "3FFE:1200:215:1 64").

READ-BYTES

Number of bytes returned to a user application data buffer. Available for all file open types.
Counter type: Accumulating.

WRITE-BYTES

Number of bytes written from a user application buffer. Available for all file open types.
Counter type: Accumulating.

OSS-CACHE-READS

For OSS regular files only, the number of READS performed using OSS cache.
Counter type: Incrementing.

OSS-CACHE-WRITES

For OSS regular files only, the number of WRITES performed using OSS cache.
Counter type: Incrementing.

OSS-CACHE-READ-BYTES

For OSS regular files only, the number of bytes read by OSS-CACHE-READS.
Counter type: Accumulating.

OSS-CACHE-WRITE-BYTES

For OSS regular files only, the number of bytes written by OSS-CACHE-WRITES.
Counter type: Accumulating.

OSS-BLOCK-READS

For OSS regular files only, the number of block read requests to DP2 issued to fill OSS cache. A
block read call can return more than one block.
Counter type: Incrementing.

OSS-BLOCK-READ-BYTES

For OSS regular files only, the number of bytes read to cache as a result of OSS-BLOCK-READS.
Counter type: Accumulating.

230 Entities and Counters

OSS-FLOW-CONTROLS

For OSS sockets and pipes, this counter reports the number of times a WRITE operation was
blocked.
Counter type: Incrementing.

MISC-CALLS

For OSS, this counter totals operations that increase FILE-BUSY-TIME but are not READS,
WRITES, or INFO-CALLS. APIs that fall in this category are ioctl(), fsync(), ftruncate(), lseek(),
and fcntl(), and socket APIs connect(), setsockopt(), accept(), and shutdown().
Counter type: Incrementing.

Usage Notes for All FILE Entities
• FILE counters are useful for detecting potential problems in database access.
• The Measure subsystem tracks only local entities. Therefore, the FILE entity type includes

I/O operations performed by local user processes only. The files being accessed can be local,
remote, or both, depending on the measurement configuration.

• The FILE entity type measures all partitions of a partitioned file together, as a single entity.
To measure partitions individually, use the DISCOPEN entity type.

• The FILE entity type cannot measure files, such as alternate-key files, that are not explicitly
opened by your application.

• Remote Data Facility and TMF I/O operations are not reported under the FILE entity because
these operations are performed by direct interface with the disk process.

Usage Notes for G-Series FILE Entities
• In Measure G11 and later PVUs, FILE records all ANSI SQL file opens.
• In G-series RVUs, SUBSYSTEM-VERSION has a value of zero.
• The 64-bit byte-count fields (fields ending in -F) collect the same data as older 32-bit

byte-count fields. For example, the 64-bit field MESSAGE-BYTES-F collects the same data
as the 32-bit field MESSAGE-BYTES. The 64-bit fields are less subject to overflow caused by
high levels of I/O activity.
The 32-bit fields are currently active and continue to return values. If no field overflow exists,
the 32-bit fields and the 64-bit fields return the same value. If a 32-bit field overflows, the
corresponding 64-bit field returns the correct value, and the 32-bit field returns a value of
-1. The ERROR field for the measured entity also returns -1 to indicate an overflow condition.
Convert your applications to use the 64-bit fields. The 32-bit fields might be deactivated in
a future release.
In MEASCOM commands and in command (OBEY) files, use the names of the 32-bit fields.
For example, issue the command LIST DEVICE BY INPUT-BYTES, not LIST DEVICE BY
INPUT-BYTES-F. MEASCOM uses the names of the 32-bit fields in output displays such as
reports and plots.

• With the Measure G09 PVU support for OSS file pathnames, file records are available for
opens of OSS files only through the Guardian file system. With the Measure G10 PVU, the
FILE entity records opens by the OSS file system.

FILE 231

• A read or write operation on an OSS regular file can be cached or noncached:
— Noncached operations result in messages sent directly to DP2 and transfer only as much

information as the client specifies.
— Cached operations utilize the file-system cache in the client’s CPU and can result in a

block read/write between the cache and DP2.
Block reads or writes occur on cache block boundaries (except for the last block of the
file) where a cache block is 4 KB. Block read operations try to read ahead to anticipate
any need for the information in the immediate future.

• The FILE entity counters for READS and WRITES count all logical file I/O operations,
including reads and writes using OSS cache. They do not include block operations to replenish
cache. Therefore, on a cache miss, six counters are incremented:

OSS-BLOCK-READSOSS-CACHE-READSREADS

OSS-BLOCK-READ-BYTESOSS-CACHE-READ-BYTESREAD-BYTES

• The FILE entity does not contain a counter for OSS block writes or block write bytes because
a cache write is not necessarily triggered by the owning file. These counters are added to
the DISKFILE entity.

• The OSS file system uses an internal algorithm to evaluate the effectiveness of cache file
operations. Under some circumstances, caching is turned off by the system for a file open,
so cache counters are not incremented.

Usage Notes for H-Series and J-Series FILE Entities
• In H-series and J-series RVUs, all byte-count fields accommodate 64 bits. Field names ending

in -F are no longer used in ZMS style records but remain available to applications that request
data in legacy style.

• In H-series and J-series RVUs, SUBSYSTEM-VERSION for ZMSFILE records is provided by
the Guardian or OSS file system, depending on the type of open represented by the ZMSFILE
record.

Command Examples: OSS File Opens
These command usage examples illustrate the use of file identifiers in selecting Measure file
reports.

OSS Opens of Disk Files
File opens of the same disk file share the same Guardian format file name and OSS file pathname.
To select file opens of the same disk file, use either its Guardian format file name or OSS file
pathname:

232 Entities and Counters

LIST FILE $VOL.SUBVOL.FILE:CRVSN

LIST FILE "/a/b/c"

The Guardian format name can be masked to select disk file opens with the same device name
or with the same device name and subvolume name:
LIST FILE $VOL.*.*

LIST FILE $VOL.SUBVOL.*

The Measure file open type selects OSS file opens of OSS regular files and Guardian files opened
via /G:
LIST FILE * (OSSDISK)

LIST FILE $VOL.*.* (OSSDISK)

OSS Opens of FIFOs
OSS file opens of the same OSS FIFO are selected by the Guardian-format file name or OSS file
pathname. A LISTGNAME command on a FIFO file pathname returns the Guardian device name
in the form of $ZPPNN. Measure records display the file open name in the same format
($ZPPNN.Znnnnn.Ziiiiiii:CRVSN) for all FIFO opens. However, in the device name field
of the record, the NN is always replaced with the CPU number of the FIFO opener. If more than
one opener in different CPUs is active, the $ZPP device name differs. A LIST FILE by FIFO
pathname returns all instances:
LIST FILE $ZPPNN.*.*:ccccccccc (ccccccccc is the CRSVN)
LIST FILE "/a/b/fifoz"

The Measure file open type can be used to select OSS file opens of OSS FIFOs:
LIST FILE * (OSSFIFO)
LIST FILE $ZPPNN.*.* (OSSFIFO)

In an Expand network environment, if an OSS file open attaches to a FIFO located on a remote
system but the remote is not running G06.17 or later, no Measure file record is created. For
example:
>list file $ZPPNN.*.* (OSSFIFO)
File Open $ZPPNN.Z00001.Z0007HRX:106589078765 Open Type OSSFIFO
OSSPath: "/home/software/markr/x"
Device Name $ZPP04 Device Type 0 (Process) Subdevice Type 0
Opener 4,397 File Num 6 OSSPID: 269223152
Program $ROOT.ZYQ00000.Z0000HJM:874302705

OSS Opens of Pipes
OSS opens of the same pipe have the same Guardian format file name but have no OSS file
pathname. Both files used to form the pipe (read/write) share the same Guardian format file
name. Measure records are created by file open of the pipe, not its creation.
To select OSS file opens of the same pipe, use its Guardian format filename:
LIST FILE $ZPPnn.*.*:ccccccccc (nn =CPU number, ccccccccc = CRSVN))

The Guardian format name is masked to select OSS pipe and FIFO opens with the same device
name:
LIST FILE $ZPPnn.*.* (nn =CPU number)

The Measure file open type selects OSS file opens of OSS pipes:
LIST FILE * (OSSPIPE)

OSS Opens of AF_UNIX Sockets
Mask the Guardian format name or use the Measure file open type to select OSS socket opens
of OSS AF_UNIX sockets:

FILE 233

LIST FILE $ZPLS.*.* (pre-AF_UNIX R2)
LIST FILE $ZLSNN.*.* (AF_UNIX R2 - bound sockets)
LIST FILE $ZLSnn.*.* (AF_UNIX R2 - unbound sockets)
LIST FILE * (OSSUNIXSOCKET)
LIST FILE * (OSSUNIXSTREAM)
LIST FILE * (OSSUNIXDGRAM)

OSS Opens of AF_UNIX Sockets Using socketpair()
OSS opens of AF_UNIX sockets due to socketpair() share the same Guardian format file name
but have no OSS file pathname. Both socket opens created by socketpair() share the same Guardian
format file name, which can select the shared OSS socket opens:
LIST FILE $ZPLS.*.* (pre-AF_UNIX R2)
LIST FILE $ZLSnn.*.* (AF_UNIX R2 - unbound sockets, nn =CPU number)

OSS Opens of AF_UNIX Stream Sockets Using socket() or accept()
OSS opens of OSS AF_UNIX stream sockets participating in the socket connections represented
by the server socket address all share the same Guardian format file name and OSS file pathname
of the listening socket. This includes the sockets involved in the bind(), connect(), and accept()
calls. OSS opens of unbound and unconnected AF_UNIX stream sockets have unique Guardian
format file names and no OSS file pathname.
To select OSS socket opens of the same AF_UNIX socket stream connection, use the Guardian
format file name or OSS file pathname of the listening socket:
LIST FILE $ZPLS.xxxxxx.xxxxxxxx:CRVSN
LIST FILE $ZLSNN.*.* (AF_UNIX R2 - bound sockets)
LIST FILE "/a/b/socketf"

OSS Opens of AF_UNIX Datagram Sockets
Bound AF_UNIX datagram socket opens have unique Guardian format names and an OSS file
pathname. Unbound AF_UNIX datagram socket opens have unique Guardian format names
and no OSS file pathname.
To select OSS opens of bound datagram sockets use their bound OSS file pathname:
LIST FILE "/a/b/socketf"

OSS Opens of OSS AF_INET and AF_INET6 Sockets
To select opens of AF_INET and IF_INET6 sockets, mask the Guardian format name or use the
Measure file open type:
LIST FILE $ZTC0.*.*

LIST FILE * (OSSINETSOCKET)

LIST FILE * (OSSINETSTREAM)

LIST FILE * (OSSINETDGRAM)

OSS Opens of OSS AF_INET and AF_INET6 Stream Sockets
OSS opens of AF_INET and AF_INET6 stream sockets involved in the socket connection (using
the same bound socket address) all share the IP address of the listening socket. This includes the
sockets involved in the bind(), connect() and accept() calls. If the IP address of the listening socket
is 0.0.0.0 (bound to multiple IP addresses), the IP address of an accepted socket is its own socket
address.
OSS opens of AF_INET and AF_INET6 stream sockets involved in a socket connection have
unique Guardian format names, except accepted AF_INET or AF_INET6 stream sockets, which
share their Guardian format name with the listening AF_INET or AF_INET6 stream socket.

234 Entities and Counters

To select OSS socket opens of the same AF_INET or AF_INET6 socket stream connection, use
the IP address of the listening socket. If the IP address of the listening socket is 0.0.0.0 (bound to
multiple IP addresses), the IP address of an accepted socket is its own socket address.
LIST FILE $ZTC0.*.*, if IP-ADDR = "1.2.3.4 555"

LIST FILE *, if IP-ADDR = "1.2.3.4 *" IP address = 1.2.3.4, any port number

LIST FILE *, if IP-ADDR = "* 37" IP address = any IP address, port 37

LIST FILE *, if IP-ADDR = "1.2.3.4 37" IP address = 1.2.3.4, port 37

LIST FILE *, if IP-ADDR = "1070::800:2006:4178 37" IPv6 address, port 37

OSS Opens of OSS AF_INET and AF_INET6 Datagram Sockets
Bound AF_INET or AF_INET6 datagram socket opens have unique Guardian format names and
use the socket address as IP address. Unbound AF_INET or AF_INET6 datagram socket opens
have unique Guardian format names but no IP address.
OSS opens of an OSS AF_INET or AF_INET6 datagram socket can be selected using its bound
socket address:
LIST FILE *, if IP-ADDR = "1.2.3.4 *" IP address = 1.2.3.4, any port number

LIST FILE *, if IP-ADDR = "* 37" IP address = any IP address, port 37

LIST FILE *, if IP-ADDR = "1.2.3.4 37" IP address = 1.2.3.4, port 37

LIST FILE *, if IP-ADDR = "1070::800:2006:4178 37" IPv6 address, port 37

For more information about IPv6 addresses, see the TCP/IPv6 Configuration and Management
Manual.

Example
The report output for the FILE entity includes the ANSI SQL name for files that have an ANSI
SQL name. Here is an example:

File Open $DATA.ZSD12345.Z1234567 Open Type
ANSI SQL Name ‘TABLE Catalog_12.Schema_45.Table_56’
Device Name Device Type 3 (Disk)
Opener 0,285 File Num
Program
Opener Device Name $SYSTEM
Format Version: H01 Data Version: H01 Subsystem Version: 1
Local System \HURTS From 12 Jan 2003, 19:35:28 For 46.8 Seconds
------------ Requests --
File-Busy-Time Disc-Reads
Reads Writes
Deletes-or-Writereads Updates-or-Replies
Timeouts-Or-Cancels Info-Calls
Misc-Calls
------------ Logical I/O ---
Messages 15 # Message-Bytes 47,558 #
Read-Bytes Write-Bytes
DBIO-Reads DBIO-Writes
DBIO-Read-Bytes DBIO-Write-Bytes
Lock-Waits Escalations
------------ SQL ---
Records-Accessed Records-Used
------------ Open System Services --
OSS-Cache-Reads OSS-Cache-Writes
OSS-Cache-Read-Bytes OSS-Cache-Write-Bytes
OSS-Block-Reads OSS-Flow-Controls
OSS-Block-Read-Bytes

FILE 235

LINE
The LINE entity type provides information about one or more communication lines.

PageTopic

236Entity specification syntax

237DDL record for LINE entities (Legacy Style)

238DDL record for LINE entities (ZMS Style)

243Usage note for G-series LINE entities

Entity Specification Syntax for LINE Entities
To describe LINE entities:

NOTE: You can use a D-series measurement application to measure G-series LINE entities if
the application specifies all LINE entities (ADD LINE *) or specifies only $device or $device
(cpu). If an application specifies controller, channel, or unit, you must modify the entity
identifiers to measure G-series LINE entities.

LINE entity-spec

LINE
collects information about one or more communication lines.

entity-spec

is specified as:
{ * }
{ $device [(cpu [, channel [, ctrl [, unit]]])]}
{ $line }
{ cpu [(%Htrackid [, clip [, line]])] [(type [, subtype])] }

*
measures all communication lines in all CPUs.

$device
(D-series) is the device name of the line to be measured. To indicate all lines, use an
asterisk (*).

cpu

is the number of the CPU in which the line to be measured is configured. To indicate all
CPUs, use an asterisk (*). The default is all CPUs.

channel

(D-series) is the channel number of the line to be measured. The default is all channels.
ctrl

(D-series) is the controller number of the line to be measured. The default is all controllers.
unit

(D-series) is the unit number of the line to be measured. The default is all units.
$line

(G-series) is the device name of the line to be measured. Use an asterisk (*) to indicate all
lines.

236 Entities and Counters

%Htrackid

(G-series) is the identifier of a specific SWAN concentrator enclosure of three CLIPs. (Each
CLIP controls two lines.) To indicate all TRACKIDs, use an asterisk (*).
The TRACKID is recorded in the SEEPROM of the controller. The TRACKID is usually
printed on an external label on the enclosure as well.

clip

(G-series) is 1, 2, or 3 to indicate a specific CLIP within a SWAN concentrator enclosure,
or it is 1, 2, 3, 4, 5, or 6 to indicate a specific CLIP within a SWAN 2 concentrator enclosure.
To indicate all CLIPs, use an asterisk (*).

line

(G-series) is 0 or 1 to indicate a specific line managed by a CLIP in a SWAN concentrator.
To indicate all lines, use an asterisk (*).

type

(G-series) is a specific line type. (To list the valid values for type, use SCF LISTDEV.)
Specifying type selects only lines of a particular protocol, such as type 61 (X25AM). To
indicate all types, use an asterisk (*). The default is all types.

subtype

(G-series) provides further information about the line type. (Use SCF LISTDEV to see the
valid values for subtype.) subtype is subsystem specific in value. The default is all
subtypes that apply to type.

DDL Record for LINE Entities (Legacy Style)
This is the Legacy Style DDL record for LINE entities. This record will not change after the G10
Measure PVU.
The fields included in BRIEF reports are in boldface type.
The DDL record for G-series LINE entities is identical to the record for D-series LINE entities
except:
• Different entity identification fields are used. The CTRL, UNIT, and CHANNEL fields are

no longer used.
• Longer byte-count fields are provided to reduce the possibility of field overflow. In G-series

RVUs, each 32-bit byte-count field has a 64-bit counterpart. For information on using the
64-bit fields, see Usage Notes for G-Series LINE Entities (page 243). In H-series and J-series
RVUs, all byte-count fields accommodate 64 bits.

• The ERROR field can signal a field overflow in a 32-bit byte-count field.
RECORD line. FILE is "line" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 pin type binary 16 unsigned.
 02 device-name type character 8.
 02 logical-device type binary 16 unsigned.
 02 ctrl type binary 16 unsigned.
 02 unit type binary 16 unsigned.
 02 device-type type binary 16 unsigned.
 02 device-subtype type binary 16 unsigned.
* counter value items:
 02 read-busy-time type binary 64.

LINE 237

 02 write-busy-time type binary 64.
 02 requests type binary 32 unsigned.
 02 input-bytes type binary 32 unsigned.
 02 output-bytes type binary 32 unsigned.
 02 input-data-bytes type binary 32 unsigned.
 02 output-data-bytes type binary 32 unsigned.
02 reads type binary 32 unsigned.
02 writes type binary 32 unsigned.
 02 retries type binary 32 unsigned.
 02 transactions type binary 32 unsigned.
 02 response-time type binary 64.
* New entity identification item for D10:
 02 channel type binary 16 unsigned.
* F40 new entity identification items:
 02 trackid type character 6.
 02 clip type binary 16 unsigned.
 02 line type binary 16 unsigned.
* F40 new counter value items:
 02 input-bytes-f type binary 64.
 02 output-bytes-f type binary 64.
 02 input-data-bytes-f type binary 64.
 02 output-data-bytes-f type binary 64.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for LINE Entities (ZMS Style)
The ZMS style DDL record for LINE entities is supported in Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsline-id.
 02 device-name type character 8.
 02 logical-device type binary 32 unsigned.
 02 device-type type binary 16 unsigned.
 02 device-subtype type binary 16 unsigned.
 02 pin type binary 16 unsigned.
 02 trackid type character 6.
 02 clip type binary 16 unsigned.
 02 line type binary 16 unsigned.
 02 reserved-1 type character 4.
end

Counter Fields DDL Definition
DEFINITION zmsline-ctrs.
 02 read-busy-time type binary 64.
 02 write-busy-time type binary 64.
 02 requests type binary 64.
 02 input-bytes type binary 64.
 02 output-bytes type binary 64.
 02 input-data-bytes type binary 64.
 02 output-data-bytes type binary 64.
 02 reads type binary 64.
 02 writes type binary 64.
 02 retries type binary 64.
 02 transactions type binary 64.
 02 response-time type binary 64.
end

238 Entities and Counters

DDL Record Description Fields
RECORD zmsline. FILE is "zmsline" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsline-ctrs.
 02 id type zmsline-id.
end

PIN

Process identification number of the primary process.

DEVICE-NAME

Device name of the measured line.

LOGICAL-DEVICE

Logical device number of the measured line.

CTRL

(Legacy Style only) For D-series, controller number of the measured line. For G-series RVUs, not
used; returns zero.

UNIT

(Legacy Style only) For D-series, unit number of the measured line. For G-series RVUs, not used;
returns zero.

DEVICE-TYPE

Device type, such as 54 for an ATP6100 line. For a list of device type values for communications
lines, see the System Generation Manual.

DEVICE-SUBTYPE

Additional identifier for DEVICE-TYPE. For a list of subtype values for communications lines,
see the System Generation Manual.

READ-BUSY-TIME

The time spent reading from the communications line. This counter measures the time from the
instruction that starts the read to the interrupt that signals the end of the I/O operation. Any
process can run during this time.
For SNAX and AM6520 lines, this counter is always close to 100 percent busy because polling
protocols constantly have a read outstanding.
Counter type: Busy.

WRITE-BUSY-TIME

The time spent writing to the communications line. This counter measures the time from the
instruction that starts the write to the interrupt that signals the end of the I/O operation. Any
process can run during this time.
Counter type: Busy.

REQUESTS

Number of requests received by the I/O process for the communications line. To determine how
long the requests were queued before being read by the I/O process, measure the I/O process
and examine the RECV-QTIME counter of the PROCESS entity. After reading a request, the I/O
process places it on an internal queue.
Counter type: Incrementing.

LINE 239

INPUT-BYTES

Number of bytes read from the communication line.
For SNAXLINK lines, INPUT-BYTES is the total number of bytes received from a SNAXLINK
read unit. INPUT-BYTES includes overhead for the request/response header (RH),
request/response unit (RU), transmission header (TH), and HDLC frame (3 +
RU + 6 + approximately 5 bytes, assuming only one PIU has arrived in the frame).
For all other lines, INPUT-BYTES is the total number of bytes received from a read unit.
INPUT-BYTES includes the RH + RU + TH + SDLC frame overhead (3 + RU + 6 + 6 bytes).
Counter type: Accumulating.

OUTPUT-BYTES

Number of bytes written to the communication line.
For SNAXLINK lines, OUTPUT-BYTES is the total number of bytes sent on the SNAXLINK write
unit. OUTPUT-BYTES includes overhead for the request/response header (RH), request/response
unit (RU), transmission header (TH), and HDLC frame (3 + RU + 6 + approximately 6 bytes,
assuming only one PIU is being sent in the frame).
PIUs can be sent to the SNAXLINK unit in blocked format. Therefore, the overhead cannot be
calculated exactly.
For all other lines, OUTPUT-BYTES is the total number of bytes sent on the write unit.
OUTPUT-BYTES includes the RH + RU + TH + SDLC frame overhead (3 + RU + 6 + 6 bytes).
Counter type: Accumulating.

INPUT-DATA-BYTES

Number of data bytes read from the communication line. This counter includes only user data.
Data required by line protocol is ignored.
For SNAX lines, this counter includes only request/response header (RH) and RU data counts
(3 + RU bytes) of RUs destined for an OPEN logical unit or a logical unit in a pass-through session.
All INPUT-DATA-BYTES events are recorded on the write unit of the line.
The INPUT-DATA-BYTES count is always less than the INPUT-BYTES count.
Counter type: Accumulating.

OUTPUT-DATA-BYTES

Number of data bytes written to the communication line. This counter includes only user data.
Data required by line protocol is ignored.
For SNAX lines, this counter includes only the request/response header (RH) and RU data counts
(3 + RU bytes) of RUs being sent on the line.
The OUTPUT-DATA-BYTES count is always less than the OUTPUT-BYTES count.
Counter type: Accumulating.

READS

Number of read operations (from the communications line to memory) performed by the I/O
process. Because the I/O process modifies this counter before the I/O operation, this counter
includes both successful and unsuccessful operations. The RETRIES counter counts the number
of I/O operations retries due to failures.
Counter type: Incrementing.

WRITES

Number of write operations (from memory to the communications line) performed by the I/O
process. Because the I/O process modifies this counter before the I/O operation, this counter

240 Entities and Counters

includes both successful and unsuccessful operations. The RETRIES counter counts the number
of I/O operations retries due to failures.
Counter type: Incrementing.

RETRIES

Number of times the I/O process retried an I/O operation because of an error on the
communications line.
Counter type: Incrementing.

TRANSACTIONS

Number of terminal transactions performed by the I/O process for all measured subdevices on
the line. A transaction is a read from a terminal followed immediately by a write to the terminal.
Terminal response is the interval between the end of the read and the beginning of the write.
RESPONSE-TIME measures the time spent on the transactions.
For SNAX lines, this counter is always zero.
Counter type: Incrementing.

RESPONSE-TIME

The time that the I/O process spent on terminal response for all measured subdevices on the line.
A transaction is a read from a terminal followed immediately by a write to the terminal. Terminal
response is the interval between the end of the read and the beginning of the write.
TRANSACTIONS counts the number of transactions.
For SNAX lines, this counter is always zero.
Counter type: Response.

CHANNEL

(Legacy Style only) For D-series, channel number of the line. For G-series RVUs, not used; returns
zero.

TRACKID

The 6-byte identifier returned by the 3880 controller SEEPROM and visible externally on the
unit.

CLIP

The number of counter ID control blocks available for new counter records in this processor at
the end of the reported measurement interval.

LINE

The specific line within a CLIP on a 3880 SWAN concentrator: either 0 or 1.

INPUT-BYTES

Number of bytes read from the communication line.
For SNAXLINK lines, INPUT-BYTES is the total number of bytes received from a SNAXLINK
read unit. INPUT-BYTES includes overhead for the request/response header (RH),
request/response unit (RU), transmission header (TH), and HDLC frame
(3 + RU + 6 + approximately 5 bytes, assuming only one PIU has arrived in the frame).
For all other lines, INPUT-BYTES is the total number of bytes received from a read unit.
INPUT-BYTES includes the RH + RU + TH + SDLC frame overhead (3 + RU + 6 + 6 bytes).
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.

LINE 241

For G-series RVUs, the INPUT-BYTES-F field is a 64-bit version of INPUT-BYTES.
Counter type: Accumulating.

OUTPUT-BYTES

Number of bytes written to the communications line.
For SNAXLINK lines, OUTPUT-BYTES is the total number of bytes sent on the SNAXLINK write
unit. OUTPUT-BYTES includes overhead for the request/response header (RH), request/response
unit (RU), transmission header (TH), and HDLC frame (3 + RU + 6 + approximately 6 bytes,
assuming only one PIU is being sent in the frame).
PIUs can be sent to the SNAXLINK unit in blocked format. Therefore, the overhead cannot be
calculated exactly.
For all other lines, OUTPUT-BYTES is the total number of bytes sent on the write unit.
OUTPUT-BYTES includes the RH + RU + TH + SDLC frame overhead (3 + RU + 6 + 6 bytes).
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the OUTPUT-BYTES-F field is a 64-bit version of OUTPUT-BYTES.
Counter type: Accumulating.

INPUT-DATA-BYTES

Number of data bytes read from the communications line. This counter includes only user data.
Data required by line protocol is ignored.
All INPUT-DATA-BYTES events are recorded on the write unit of the line. The
INPUT-DATA-BYTES count is always less than the INPUT-BYTES count.
For SNAX lines, this counter includes only request/response header (RH) and RU data counts
(3 + RU bytes) of RUs destined for an OPEN logical unit or a logical unit in a pass-through session.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the INPUT-DATA-BYTES-F field is a 64-bit version of INPUT-DATA-BYTES.
Counter type: Accumulating.

OUTPUT-DATA-BYTES

Number of data bytes written to the communications line. This counter includes only user data.
Data required by line protocol is ignored.
The OUTPUT-DATA-BYTES count is always less than the OUTPUT-BYTES count.
For SNAX lines, this counter includes only the request/response header (RH) and RU data counts
(3 + RU bytes) of RUs being sent on the line.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the OUTPUT-DATA-BYTES-F field is a 64-bit version of
OUTPUT-DATA-BYTES.
Counter type: Accumulating.

INPUT-BYTES-F

(G-series, Legacy Style only) Same as INPUT-BYTES but accommodates larger values (64 bits
rather than 32).

242 Entities and Counters

OUTPUT-BYTES-F

(G-series, Legacy Style only) Same as OUTPUT-BYTES but accommodates larger values (64 bits
rather than 32).

INPUT-DATA-BYTES-F

(G-series, Legacy Style only) Same as INPUT-DATA-BYTES but accommodates larger values (64
bits rather than 32).

OUTPUT-DATA-BYTES-F

(G-series, Legacy Style only) Same as OUTPUT-DATA-BYTES but accommodates larger values
(64 bits rather than 32).

Usage Notes for G-Series LINE Entities
• The 64-bit byte-count fields (fields ending in -F) collect the same data as older 32-bit

byte-count fields. For example, the 64-bit field INPUT-BYTES-F collects the same data as
the 32-bit field INPUT-BYTES. The 64-bit fields are less subject to overflow caused by high
levels of I/O activity.
The 32-bit fields are currently active and continue to return values. If no field overflow exists,
the 32-bit fields and the 64-bit fields return the same value. If a 32-bit field overflows, the
corresponding 64-bit field returns the correct value, and the 32-bit field returns a value of
-1. The ERROR field for the measured entity also returns -1 to indicate an overflow condition.
Convert your applications to use the 64-bit fields. The 32-bit fields might be deactivated in
a future RVU.
In MEASCOM commands and in command (OBEY) files, use the names of the 32-bit fields.
For example, issue the command LIST LINE BY INPUT-BYTES, not LIST LINE BY
INPUT-BYTES-F. MEASCOM uses the names of the 32-bit fields in output displays such as
reports and plots.

• SUBSYSTEM-VERSION for ZMSLINE records is provided by the specific product subsystem
of the line represented by each ZMSLINE record; for example, SNAX/XF, X25AM, or ENVOY.
In G-series RVUs, the value of SUBSYSTEM-VERSION is zero.

• The G09 PVU of Measure supports up to six CLIPs in a SWAN concentrator.

Usage Notes for H-Series and J-Series LINE Entities
• In H-series and J-series RVUs, all byte-count fields accommodate 64 bits. Field names ending

in -F are no longer used in ZMS style records but remain available to applications that request
data in legacy style.

• The SUBSYSTEM-VERSION is set to 1 for the first H-series and J-series version of the
subsystem.

NETLINE
The NETLINE entity type provides information about network communications lines.

PageTopic

244Entity specification syntax for NETLINE entities

245DDL record for NETLINE entities (Legacy Style)

246DDL record for NETLINE entities (ZMS Style)

251Usage notes for all NETLINE entities

251Usage notes for G-series NETLINE entities

NETLINE 243

Entity Specification Syntax for NETLINE Entities
To describe NETLINE entities:
NETLINE entity-spec

NOTE: You can measure G-series network communication lines with a D-series measurement
application if it specifies all NETLINE entities (ADD NETLINE *) or only $device or $device
(cpu). If the application specifies controller, channel, or unit, you must modify the entity
identifiers to measure G-series NETLINE entities.

NETLINE
collects information about one or more network communications lines.

entity-spec

is specified as:
{ * }
{ $device [(cpu [, channel [, ctrl [, unit]]])]}
{ $line }
{ cpu [(%Htrackid [, clip [, line]])] [(type [, subtype])] }

*
measures all network communications lines in all CPUs.

$device
(D-series) is the device name of the line to be measured. Use an asterisk (*) to indicate all
network lines.

cpu

is the number of the CPU in which the measured line is configured. To indicate all CPUs,
use an asterisk (*). The default is all CPUs.

channel

(D-series) is the channel number of the line to be measured. The default is all channels.
ctrl

(D-series) is the controller number of the line to be measured. The default is all controllers.
unit

(D-series) is the unit number of the line to be measured. The default is all units.
$line

is the device name of the line to be measured. To indicate all lines, use an asterisk (*). The
default is all lines.

%Htrackid

is the identifier of a specific 3880 SWAN concentrator enclosure of three CLIPs. (Each
CLIP controls two lines.) To indicate all TRACKIDs, use an asterisk (*).
The TRACKID is recorded in the SEEPROM of the controller. It is usually printed on an
external label on the enclosure as well.

clip

is 1, 2, or 3 to indicate a specific CLIP within a SWAN concentrator enclosure, or it is 1,
2, 3, 4, 5, or 6 to indicate a specific CLIP within a SWAN 2 concentrator enclosure. To
indicate all CLIPS, use an asterisk (*).

line

is 0 or 1 to indicate a specific line managed by a CLIP in a 3880 SWAN concentrator. To
indicate all lines, use an asterisk (*).

244 Entities and Counters

type

is a type number to indicate a particular protocol, such as 63 (Expand line handler). To
list valid values for line types, use SCF LISTDEV. To indicate all line types, use an asterisk
(*).

subtype

is a subtype number, such as 3 (FOX line handler). To see valid subtype numbers, use
SCF LISTDEV. The default is all subtypes that apply to type.

DDL Record for NETLINE Entities (Legacy Style)
This is the Legacy Style DDL record for NETLINE entities. This record will not change after the
G10 Measure PVU.
The fields included in BRIEF reports are in boldface type.
The DDL record for G-series NETLINE entities is identical to the record for D-series NETLINE
entity, except:
• Different entity identification fields are used. The CHANNEL, CTRL, and UNIT fields are

no longer used.
• Longer byte-count fields are provided to prevent field overflow. Each 32-bit byte-count field

has a 64-bit counterpart. For information on using the 64-bit fields, see Usage Notes for
G-Series NETLINE Entities (page 251).

• The ERROR field can signal a field overflow in a 32-bit byte-count field.
RECORD netline. FILE is "netline" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 pin type binary 16 unsigned.
 02 device-name type character 8.
 02 logical-device type binary 16 unsigned.
 02 ctrl type binary 16 unsigned.
 02 unit type binary 16 unsigned.
 02 device-type type binary 16 unsigned.
 02 device-subtype type binary 16 unsigned.
* counter value items:
02 write-busy-time type binary 64.
02 read-busy-time type binary 64.
 02 requests type binary 32 unsigned.
02 reads type binary 32 unsigned.
 02 writes type binary 32 unsigned.
 02 l2in-bytes type binary 32 unsigned.
 02 l2out-bytes type binary 32 unsigned.
 02 din4-bytes type binary 32 unsigned.
 02 dout4-bytes type binary 32 unsigned.
 02 cin4-bytes type binary 32 unsigned.
 02 cout4-bytes type binary 32 unsigned.
 02 u64-bytes type binary 32 unsigned.
 02 u128-bytes type binary 32 unsigned.
 02 u256-bytes type binary 32 unsigned.
 02 u512-bytes type binary 32 unsigned.
 02 u1024-bytes type binary 32 unsigned.
 02 u2048-bytes type binary 32 unsigned.
 02 u4096-bytes type binary 32 unsigned.
 02 o4095-bytes type binary 32 unsigned.
* new entity identification item for D10:

NETLINE 245

 02 channel type binary 16 unsigned.
* F40 new entity identification items:
 02 TrackID type character 6.
 02 Clip type binary 16 unsigned.
 02 Line type binary 16 unsigned.
* F40 new counter value items:
 02 l2in-bytes-f type binary 64.
 02 l2out-bytes-f type binary 64.
 02 din4-bytes-f type binary 64.
 02 dout4-bytes-f type binary 64.
 02 cin4-bytes-f type binary 64.
 02 cout4-bytes-f type binary 64.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for NETLINE Entities (ZMS Style)
The ZMS style DDL record for NETLINE entities is supported in Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsnline-id.
 02 device-name type character 8.
 02 logical-device type binary 32 unsigned.
 02 device-type type binary 16 unsigned.
 02 device-subtype type binary 16 unsigned.
 02 pin type binary 16 unsigned.
 02 trackid type character 6.
 02 clip type binary 16 unsigned.
 02 line type binary 16 unsigned.
 02 reserved-1 type character 4.
end

Counter Fields DDL Definition
DEFINITION zmsnline-ctrs.
 02 write-busy-time type binary 64.
 02 read-busy-time type binary 64.
 02 requests type binary 64.
 02 reads type binary 64.
 02 writes type binary 64.
 02 l2in-bytes type binary 64.
 02 l2out-bytes type binary 64.
 02 din4-bytes type binary 64.
 02 dout4-bytes type binary 64.
 02 cin4-bytes type binary 64.
 02 cout4-bytes type binary 64.
 02 u64-bytes type binary 64.
 02 u128-bytes type binary 64.
 02 u256-bytes type binary 64.
 02 u512-bytes type binary 64.
 02 u1024-bytes type binary 64.
 02 u2048-bytes type binary 64.
 02 u4096-bytes type binary 64.
 02 o4095-bytes type binary 64.
end

DDL Record Description Fields
RECORD zmsnline. FILE is "zmsnline" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsnline-ctrs.

246 Entities and Counters

 02 id type zmsnline-id.
end

PIN

Process identification number of the primary process.

DEVICE-NAME

Device name of the measured line.

LOGICAL-DEVICE

Logical device number of the measured line.

CTRL

(Legacy Style only) For D-series, controller number of the measured line. For G-series RVUs, not
used; returns zero.

UNIT

(Legacy Style only) For D-series, unit number of the measured line. For G-series RVUs, not used;
returns zero.

DEVICE-TYPE

A value of 63, which indicates an Expand line.

DEVICE-SUBTYPE

Additional information about the device type:

Single-line handler attached to a controller0

Multiline path handler1

Multiline line attached to a controller2

FOX line handler3

Single-line handler attached to a 6100 subsystem5

Multiline line attached to a 6100 subsystem6

WRITE-BUSY-TIME

The time spent writing to the network communications line. This counter measures the time
from the instruction that starts the write to the interrupt that signals the end of the I/O operation.
Any process can run during this time.
Counter type: Busy.

READ-BUSY-TIME

The time spent reading data from the network communications line. This counter includes the
time spent waiting for input to the line. The counter measures the time from the instruction that
starts the read to the interrupt that signals the end of the I/O operation.
Because active, full-duplex lines usually have a read continue outstanding, expect a high value
for this counter. Any process can run during this time.
Counter type: Busy.

NETLINE 247

REQUESTS

The sum of all SYSTEM LINKS handled by this path plus the sum of all SYSTEM SENT
FORWARDs (PASSTHRU REQUESTS) handled by this path.
LINKS is a message-level number. SENT, RECEIVED, SENT FORWARD, and RECEIVE
FORWARD are packet counters. One message can be several packets.
REQUESTS counts both message-level events (LINKS) and packet-level events (SENT FORWARD)
in the same counter. Requests are the number of message quick cells (MQCs) this line handler
receives that are sent to the remote system.
Counter type: Incrementing.

READS

Number of read operations (from the network communications line to memory) performed by
the line-handler process.
Counter type: Incrementing.

WRITES

Number of write operations (from memory to the network communications line) performed by
the line-handler process.
Counter type: Incrementing.

L2IN-BYTES

Number of Level 2 bytes read by the network line handler. This counter includes both user data
and data associated with line protocol.
For non-CSS type controllers, this counter contains DIN4-BYTES and CIN4-BYTES. For CSS type
controllers, this counter also contains CLB (CAP to CLIP) protocol and CLIP TRACE blocks.
The total number of Level 2 bytes on the network line is this counter plus L2OUT-BYTES.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the L2IN-BYTES-F field is a 64-bit version of L2IN-BYTES.
Counter type: Accumulating.

L2OUT-BYTES

Number of Level 2 bytes written by the network line handler. This counter includes both user
data and data associated with line protocol.
For non-CSS type controllers, this counter contains DOUT4-BYTES and COUT4-BYTES. For CSS
type controllers, this counter also contains CLB protocol bytes.
The total number of Level 2 bytes on the network line is this counter plus L2IN-BYTES.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the L2OUT-BYTES-F field is a 64-bit version of L2OUT-BYTES.
Counter type: Accumulating.

DIN4-BYTES

Number of Level 4 data bytes read by the network line handler. This counter includes only user
data and, on D-series, message system protocol bytes. The data associated with line protocol is
ignored.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.

248 Entities and Counters

For G-series RVUs, the DIN4-BYTES-F field is a 64-bit version of DIN4-BYTES.
Counter type: Accumulating.

DOUT4-BYTES

Number of Level 4 data bytes written by the network line handler. This counter includes only
user data and, on D-series, message system protocol bytes. The data associated with line protocol
is ignored.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the DOUT4-BYTES-F field is a 64-bit version of DOUT4-BYTES.
Counter type: Accumulating.

CIN4-BYTES

Number of Level 4 protocol bytes and NCP requests bytes (ACK, NAK, ENQ, PCHG, NCPM,
CONN, and CAN) read by the network line handler for an Expand line.
X.25 does not update this counter.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the CIN4-BYTES-F field is a 64-bit version of CIN4-BYTES.
Counter type: Accumulating.

COUT4-BYTES

Number of Level 4 protocol bytes and NCP request bytes (ACK, NAK, ENQ, PCHG, NCPM,
CONN, and CAN) written by the network line handler for an Expand line.
X.25 does not update this counter.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
For G-series RVUs, the COUT4-BYTES-F field is a 64-bit version of COUT4-BYTES.
Counter type: Accumulating.

U64-BYTES

Number of messages shorter than 64 bytes after compression. The size includes protocol bytes.
Counter type: Incrementing.

U128-BYTES

Number of messages from 64 through 127 bytes long after compression. The size includes protocol
bytes.
Counter type: Incrementing.

U256-BYTES

Number of messages from 128 through 255 bytes long after compression. The size includes
protocol bytes.
Counter type: Incrementing.

U512-BYTES

Number of messages from 256 through 511 bytes long after compression. The size includes
protocol bytes.
Counter type: Incrementing.

NETLINE 249

U1024-BYTES

Number of messages from 512 through 1023 bytes long after compression. The size includes
protocol bytes.
Counter type: Incrementing.

U2048-BYTES

Number of messages from 1024 through 2047 bytes long after compression. The size includes
protocol bytes.
Counter type: Incrementing.

U4096-BYTES

Number of messages from 2048 through 4095 bytes long after compression. The size includes
protocol bytes.
Counter type: Incrementing.

O4095-BYTES

Number of messages longer than 4095 bytes long after compression. The size includes protocol
bytes.
Counter type: Incrementing.

CHANNEL

(Legacy Style only) For D-series, channel number of the measured line. For G-series RVUs, not
used; returns zero.

TRACKID

The 6-byte identifier returned by the 3880 controller SEEPROM and labeled externally on the
enclosure.

CLIP

The number of counter ID control blocks available for new counter records in this processor at
the end of the reported measurement interval.

LINE

The specific line within a CLIP on a SWAN controller: either 0 or 1.

L2IN-BYTES-F

(G-series, Legacy Style only) Same as L2IN-BYTES but accommodates larger values (64 bits rather
than 32).

L2OUT-BYTES-F

(G-series, Legacy Style only) Same as L2OUT-BYTES but accommodates larger values (64 bits
rather than 32).

DIN4-BYTES-F

(G-series, Legacy Style only) Same as DIN4-BYTES but accommodates larger values (64 bits
rather than 32).

DOUT4-BYTES-F

(G-series, Legacy Style only) Same as DOUT4-BYTES but accommodates larger values (64 bits
rather than 32).

250 Entities and Counters

CIN4-BYTES-F

(G-series, Legacy Style only) Same as CIN4-BYTES but accommodates larger values (64 bits
rather than 32).

COUT4-BYTES-F

(G-series, Legacy Style only) Same as COUT4-BYTES but accommodates larger values (64 bits
rather than 32).

Usage Notes for All NETLINE Entities
• In general, the data collected by the Measure L2 counters is very close to the actual line byte

counts. However, line problems or CLIP traces can alter the Measure byte counts.
For CSS-type controllers, the information gathered by Measure is from the controllers to the
line handler. Measure counters are not advanced when retransmission of data occurs because
of line problems. SCF line statistics count events that cause retransmissions (timeouts and
FCS errors). To get detailed information about line problems, use a datascope.
When you take CLIP traces, the trace data is included in the L2IN-BYTES counter. Similarly,
the CIN4-BYTES and COUT4-BYTES counters occasionally include NCP NETMAP packets.

• For descriptions of networks and network protocols, see the Expand Configuration and
Management Manual, the Expand Network Management and Troubleshooting Manual, and the
X25AM Configuration and Management Manual.

Usage Notes for G-Series NETLINE Entities
• SUBSYSTEM-VERSION for ZMSNLINE records is provided by Expand.
• The 64-bit byte-count fields (fields ending in -F) collect the same data as older 32-bit

byte-count fields. For example, the 64-bit field L2IN-BYTES-F collects the same data as the
32-bit field L2IN-BYTES. The 64-bit fields are less subject to overflow caused by high levels
of I/O activity.
The 32-bit fields are currently active and continue to return values. If no field overflow exists,
the 32-bit fields and the 64-bit fields return the same value. If a 32-bit field overflows, the
corresponding 64-bit field returns the correct value, and the 32-bit field returns a value of
-1. The ERROR field for the measured entity also returns -1 to indicate an overflow condition.
Convert your applications to use the 64-bit fields. The 32-bit fields might be deactivated in
a future RVU.
In MEASCOM commands and in command (OBEY) files, use the names of the 32-bit fields.
For example, issue the command LIST LINE BY INPUT-BYTES, not LIST LINE BY
INPUT-BYTES-F. MEASCOM uses the names of the 32-bit fields in output displays such as
reports and plots.
The Measure G09 and later PVUs support up to six CLIPs in a SWAN concentrator.

Usage Notes for H-Series and J-Series NETLINE Entities
In H-series and J-series RVUs, all byte-count fields accommodate 64 bits. Field names ending in
-F are no longer used in ZMS style records but remain available to applications that request data
in legacy style.

OPDISK
The OPDISK entity type provides information about one or more optical disk systems on the
local system.

OPDISK 251

The optical disk system is an enclosure (familiarly called a jukebox) that contains one or more
disk drives and multiple disk cartridges stored in cells. Each cartridge has two sides, and each
side is a volume.
G-series, H-series, and J-series RVUs do not support optical disks. However, the G02 and later
Measure PVUs include an OPDISK DDL record for future use. Specifying an OPDISK entity in
a RVU that does not support the entity does not cause an error message but also does not affect
the measurement configuration.
Optical disk records from D-series data can be formatted and displayed.

PageTopic

252Entity specification syntax

252DDL record for OPDISK entities (Legacy Style)

253DDL record for OPDISK entities (ZMS Style)

256Usage notes for all OPDISK entities

Entity Specification Syntax for OPDISK Entities
To describe OPDISK entities in D-series RVUs:
OPDISK entity-spec

OPDISK
collects information about one or more optical disks in the local system.

entity-spec

is specified as:
{ * }
{ $device [$vol] [(cpu [, chan [, ctrl [, unit]]])]}

*
measures all optical disks on the system.

$device
is the device name of the optical disk to be measured. Use an asterisk (*) to indicate all
devices.

$vol
is the name of the optical disk volume to be measured. Use an asterisk (*) to indicate all
volumes.

cpu

is the number of the CPU in which the optical disk is configured. The default is all CPUs.
chan

is the channel number of the optical disk to be measured. The default value is all channels.
ctrl

is the controller number of the optical disk to be measured (0-31). The default is all
controllers.

unit

is the unit number of the optical disk to be measured. The default is all units.

DDL Record for OPDISK Entities (Legacy Style)
This is the Legacy Style DDL record for OPDISK entities.
The fields included in BRIEF reports are in boldface type.

252 Entities and Counters

RECORD opdisk. FILE is "opdisk" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 pin type binary 16 unsigned.
 02 device-name type character 8.
 02 logical-device type binary 16 unsigned.
 02 ctrl type binary 16 unsigned.
 02 unit type binary 16 unsigned.
 02 device-type type binary 16 unsigned.
 02 device-subtype type binary 16 unsigned.
 02 volume-name type character 8.
 02 cell type binary 16 unsigned.
 02 side type binary 16 unsigned.
* counter value items:
 02 request-qtime type binary 64.
 02 request-qlen-max type binary 16 unsigned.
 02 requests type binary 32 unsigned.
 02 read-busy-time type binary 64.
 02 write-busy-time type binary 64.
 02 seek-busy-time type binary 64.
02 reads type binary 32 unsigned.
02 writes type binary 32 unsigned.
02 seeks type binary 32 unsigned.
02 input-bytes type binary 32 unsigned.
 02 output-bytes type binary 32 unsigned.
* new entity identification item for D10:
 02 channel type binary 16 unsigned.
 02 servernet type binary 16 unsigned
 redefines channel.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for OPDISK Entities (ZMS Style)
The ZMS style DDL record for OPDISK entities is supported in Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsodisk-id.
 02 pin type binary 16 unsigned.
 02 device-type type binary 16 unsigned.
 02 device-subtype type binary 16 unsigned.
 02 servernet type binary 16 unsigned.
 02 device-name type character 8.
 02 logical-device type binary 32 unsigned.
 02 GMS.
 03 group type binary 32 unsigned.
 03 module type binary 32 unsigned.
 03 slot type binary 32 unsigned.
 02 SCSI-id type binary 64.
 02 config-name type character 64.
 02 adapter-name type character 64.
 02 SAC-name type character 64.
 02 volume-name type character 8.
 02 cell type binary 16 unsigned.

OPDISK 253

 02 side type binary 16 unsigned.
 02 reserved-1 type character 4.
end

Counter Fields DDL Definition
DEFINITION zmsodisk-ctrs.
 02 request-qtime type binary 64.
 02 requests type binary 64.
 02 reads type binary 64.
 02 writes type binary 64.
 02 input-bytes type binary 64.
 02 output-bytes type binary 64.
 02 read-qbusy-time type binary 64.
 02 read-qtime type binary 64.
 02 write-qbusy-time type binary 64.
 02 write-qtime type binary 64.
 02 device-qbusy-time type binary 64.
end

DDL Record Description Fields
RECORD zmsodisk. FILE is "zmsodisk" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsodisk-ctrs.
 02 id type zmsodisk-id.
end

PIN

Process identification number of the optical disk process.

DEVICE-NAME

Name of the optical disk enclosure.

LOGICAL-DEVICE

Logical device number of the optical disk enclosure.

CTRL

(Legacy Style only) Controller number of the device.

UNIT

(Legacy Style only) Unit number of the device.

DEVICE-TYPE

A value of 30 (optical disk device).

DEVICE-SUBTYPE

An additional identifier for DEVICE-TYPE. For a complete list of possible subtype values for
optical disks, see the System Generation Manual.

VOLUME-NAME

Name of an optical disk volume. An optical disk volume is one side of an optical disk cartridge.

CELL

Number of a storage cell in an optical disk enclosure.

254 Entities and Counters

SIDE

Number that identifies a side of an optical disk cartridge.

REQUEST-QTIME

The time that requests spent on the optical disk process internal queue (includes any currently
active requests).
When reading a request, the optical disk process places it on the internal queue. After processing
the request, the optical disk process removes the request from the internal queue. To determine
the length of the optical disk process external queue (requests waiting to be read by the optical
disk process), measure the optical disk process and examine the RECV-QTIME counter of the
PROCESS entity.
Counter type: Queue.

REQUEST-QLEN-MAX

(Legacy Style only) Maximum number of items on the queue described by the REQUEST-QTIME
counter.
Counter type: Max queue.

REQUESTS

Number of requests received by the optical disk process.
To determine how long the requests were queued before being read by the optical disk process,
measure the optical disk process and examine the RECV-QTIME counter of the PROCESS entity.
Counter type: Incrementing.

READ-BUSY-TIME

(Legacy Style only) The time spent reading from the disk. This counter measures the time from
the instruction that starts the read operation to the interrupt that ends the operation. It includes
the time spent reading data and positioning the disk heads to read the data.
Counter type: Busy.

WRITE-BUSY-TIME

(Legacy Style only) The time spent writing to the disk. This counter measures the time from the
instruction that starts the write operation to the interrupt that ends the operation. This counter
includes the time spent writing data and positioning the disk heads to write the data.
Counter type: Busy.

SEEK-BUSY-TIME

(Legacy Style only) No longer used; returns zeros. All seek operations are implicit in read and
write operations.

READS

Number of read operations from device to memory performed by the optical disk process. In
addition to programmatic read operations, internal operations such as reading file labels also
modify this counter.
Counter type: Incrementing.

WRITES

Number of write operations from memory to device performed by the optical disk process. In
addition to programmatic write operations, internal operations such as writing volume labels
also modify this counter.

OPDISK 255

Counter type: Incrementing.

SEEKS

(Legacy Style only) No longer used; returns zeros. All seek operations are implicit in read and
write operations.

INPUT-BYTES

Number of bytes read from the optical disk. In addition to programmatic read operations, internal
operations such as reading file labels also modify this counter.
Because the optical disk process modifies this counter before the I/O operation, this counter
might not be accurate if the read fails.
Counter type: Accumulating.

OUTPUT-BYTES

Number of bytes written to the optical disk. In addition to programmatic write operations,
internal operations such as writing volume labels also modify this counter.
Because the optical disk process modifies this counter before the I/O operation, the counter might
not be accurate if the write fails.
Counter type: Accumulating.

CHANNEL

(Legacy Style only) Channel number of the device.

Usage Notes for All OPDISK Entities
• OPDISK does not measure optical disk volumes that have had no activity even if the REPORT

ZERO-REPORTS attribute is set to INCLUDE.
• SUBSYSTEM-VERSION for ZMSODISK records are reported as zero.

OSSCPU
The OSSCPU entity provides information about the Open System Services elements that operate
in each processor of a system, including:
• POSIX extended segment (PXS)
• OSS file system cache
• File manager
• Pipe pool
• Pipe server
OSSCPU entities can only be used on systems running the Measure G10 PVU or later.

G-SeriesTopic

256Entity specification syntax

257DDL record for OSSCPU entities (Legacy Style)

258DDL record for OSSCPU entities (ZMS Style)

265Usage notes for all OCCSPU entities

Entity Specification Syntax for OSSCPU Entities
To describe an OSSCPU entity:
ADD OSSCPU osscpu-spec

256 Entities and Counters

osscpu-spec

is specified as:
{ * }
{ cpu } [, cpu] ...

*
measures the OSS elements for all processes on the local system.

cpu

is the CPU on which the OSS elements be measured exist. Use a comma-separated list to
specify multiple CPU numbers. Use an asterisk (*) to indicate all CPUs. The default is all
CPUs.

DDL Record for OSSCPU Entities (Legacy Style)
This is the Legacy Style DDL record for OSSCPU entities. This record will not change after the
G10 Measure PVU.
Fields included in BRIEF reports are in boldface type.
RECORD osscpu. FILE is "osscpu" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
 *Entity Identification items:
 02 PXS-bytes-allowed type binary 64.
 02 Cache-block-size type binary 32 unsigned.
 02 Cache-blocks-allowed type binary 32 unsigned.
 02 PP-block-size type binary 32 unsigned.
 02 PP-blocks-allowed type binary 32 unsigned.

 * Counter value items:
 02 PXS-ending-bytes type binary 64.
 02 PXS-failures type binary 32 unsigned.
 02 FS-direct-reads type binary 64.
 02 FS-direct-read-bytes type binary 64.
 02 FS-direct-writes type binary 64.
 02 FS-direct-write-bytes type binary 64.
 02 FS-cache-reads type binary 64.
 02 FS-cache-read-bytes type binary 64.
 02 FS-cache-writes type binary 64.
 02 FS-cache-write-bytes type binary 64.
 02 FS-cache-valid-qtime type binary 64.
 02 FS-cache-valid-qmax type binary 16 unsigned.
 02 FS-cache-active-qtime type binary 64.
 02 FS-cache-active-qmax type binary 16 unsigned.
 02 FS-cache-dirty-qtime type binary 64.
 02 FS-cache-dirty-qmax type binary 16 unsigned.
 02 FS-cache-RD-read-reqs type binary 64.
 02 FS-cache-WT-read-reqs type binary 64.
 02 FS-cache-read-blocks type binary 64.
 02 FS-cache-write-reqs type binary 64.
 02 FS-cache-write-blocks type binary 64.
 02 FS-prefetch-blocks type binary 64.
 02 FS-prefetch-used type binary 64.
 02 FS-reread-stolen-blks type binary 64.
 02 FS-map-failures type binary 32 unsigned.
 02 FM-cache-infos type binary 32 unsigned.
 02 FM-callbacks type binary 32 unsigned.

OSSCPU 257

 02 FM-callback-WT-reqs type binary 32 unsigned.
 02 FM-callback-WT-blocks type binary 64.
 02 FM-stolen-blk-WT-reqs type binary 64.
 02 PP-block-inuse-qtime type binary 64.
 02 PP-block-inuse-qmax type binary 16 unsigned.
 02 PP-alloc-failures type binary 32 unsigned.
 02 PS-gettime-reqs type binary 32 unsigned.
 02 PS-settime-reqs type binary 32 unsigned.
 02 LCL occurs 16 times.
 03 PS-proxy-reads type binary 32 unsigned.
 03 PS-proxy-writes type binary 32 unsigned.
 03 PS-proxy-read-bytes type binary 64.
 03 PS-proxy-write-bytes type binary 64.
 03 PS-select-rcvd type binary 32 unsigned.
 03 PS-select-sent type binary 32 unsigned.
 03 PS-select-ready type binary 32 unsigned.
 02 REM occurs 1 times.
 03 PS-proxy-reads type binary 32 unsigned.
 03 PS-proxy-writes type binary 32 unsigned.
 03 PS-proxy-read-bytes type binary 64.
 03 PS-proxy-write-bytes type binary 64.
 03 PS-select-rcvd type binary 32 unsigned.
 03 PS-select-sent type binary 32 unsigned.
 03 PS-select-ready type binary 32 unsigned.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for OSSCPU Entities (ZMS Style)
The ZMS style DDL record for OSSCPU entities is supported in Measure G11 and later PVUs.
Fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsosscp-id.
 02 PXS-bytes-allowed type binary 64.
 02 Cache-block-size type binary 32 unsigned.
 02 Cache-blocks-allowed type binary 32 unsigned.
 02 PP-block-size type binary 32 unsigned.
 02 PP-blocks-allowed type binary 32 unsigned.
end

Counter Fields DDL Definition
DEFINITION zmsosscp-ctrs.
 02 PXS-ending-bytes type binary 64.
 02 PXS-failures type binary 64.
 02 FS-direct-reads type binary 64.
 02 FS-direct-read-bytes type binary 64.
 02 FS-direct-writes type binary 64.
 02 FS-direct-write-bytes type binary 64.
 02 FS-cache-reads type binary 64.
 02 FS-cache-read-bytes type binary 64.
 02 FS-cache-writes type binary 64.
 02 FS-cache-write-bytes type binary 64.
 02 FS-cache-valid-qtime type binary 64.
 02 FS-cache-active-qtime type binary 64.
 02 FS-cache-dirty-qtime type binary 64.
 02 FS-cache-RD-read-reqs type binary 64.
 02 FS-cache-WT-read-reqs type binary 64.
 02 FS-cache-read-blocks type binary 64.
 02 FS-cache-write-reqs type binary 64.
 02 FS-cache-write-blocks type binary 64.

258 Entities and Counters

 02 FS-prefetch-blocks type binary 64.
 02 FS-prefetch-used type binary 64.
 02 FS-reread-stolen-blks type binary 64.
 02 FS-map-failures type binary 64.
 02 FM-cache-infos type binary 64.
 02 FM-callbacks type binary 64.
 02 FM-callback-WT-reqs type binary 64.
 02 FM-callback-WT-blocks type binary 64.
 02 FM-stolen-blk-WT-reqs type binary 64.
 02 PP-block-inuse-qtime type binary 64.
 02 PP-alloc-failures type binary 64.
 02 PS-gettime-reqs type binary 64.
 02 PS-settime-reqs type binary 64.
 02 LCL occurs 16 times.
 03 PS-proxy-reads type binary 64.
 03 PS-proxy-writes type binary 64.
 03 PS-proxy-read-bytes type binary 64.
 03 PS-proxy-write-bytes type binary 64.
 03 PS-select-rcvd type binary 64.
 03 PS-select-sent type binary 64.
 03 PS-select-ready type binary 64.
 03 LS-sends type binary 64.
 03 LS-recvs type binary 64.
 03 LS-queues type binary 64.
 03 LS-send-bytes type binary 64.
 03 LS-recv-bytes type binary 64.
 03 LS-queue-bytes type binary 64.
 03 LS-awakes type binary 64.
 03 LS-selects type binary 64.
 02 REM occurs 1 times.
 03 PS-proxy-reads type binary 64.
 03 PS-proxy-writes type binary 64.
 03 PS-proxy-read-bytes type binary 64.
 03 PS-proxy-write-bytes type binary 64.
 03 PS-select-rcvd type binary 64.
 03 PS-select-sent type binary 64.
 03 PS-select-ready type binary 64.
end

DDL Record Description Fields
RECORD zmsosscp. FILE is "zmsosscp" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsosscp-ctrs.
 02 id type zmsosscp-id.
end

PXS-BYTES-ALLOWED

The maximum size in bytes allowed for the POSIX extended segment (PXS).

CACHE-BLOCK-SIZE

The size of an OSS file-system cache block in bytes.

CACHE-BLOCKS-ALLOWED

The max number of blocks configured for the OSS file-system cache.

PP-BLOCK-SIZE

The size of an OSS pipe pool block in bytes.

PP-BLOCKS-ALLOWED

The maximum number of blocks allowed for the OSS pipe pool.

OSSCPU 259

PXS-ENDING-BYTES

The current number of bytes allocated within the POSIX extended segment (PXS).
Counter type: Snapshot.

PXS-FAILURES

The number of allocation failures encountered for the POSIX extension segment (PXS). An
allocation failure can occur because of a lack of free space or a lack of contiguous free space. If
the problem persists, user applications might need to be migrated to another CPU.
Counter type: Incrementing.

FS-DIRECT-READS

The number of OSS file system noncached disk read requests to DP2.
Counter type: Incrementing.

FS-DIRECT-READ-BYTES

The total number of bytes read by FS-DIRECT-READS on the CPU.
Counter type: Accumulating.

FS-DIRECT-WRITES

The number of OSS file system noncached write requests to DP2.
Counter type: Incrementing.

FS-DIRECT-WRITE-BYTES

The number of bytes written by FS-DIRECT-WRITES without using OSS file-system cache.
Counter type: Accumulating.

FS-CACHE-READS

The number of application reads from the OSS file-system cache occurring on the CPU.
Counter type: Incrementing.

FS-CACHE-READ-BYTES

The number of bytes read from FS-CACHE-READS.
Counter type: Accumulating.

FS-CACHE-WRITES

The number of application writes processed using data written to the OSS file-system cache.
Counter type: Incrementing.

FS-CACHE-WRITE-BYTES

The number of bytes written in FS-CACHE-WRITES.
Counter type: Accumulating.

FS-CACHE-VALID-QTIME

The amount of time the OSS file-system cache blocks are valid. Valid cache for open files includes
active cache blocks and inactive (unowned) file cache blocks for recently closed files. Valid and
active cache counters do not reflect cache blocks stolen by the NonStop memory manager. See
FS-REREAD-STOLEN-BLKS (page 262).
Counter type: Queue.

260 Entities and Counters

FS-CACHE-VALID-QMAX

(Measure G10 PVU only) The maximum value for cache blocks valid.
Counter type: Max Queue.

FS-CACHE-ACTIVE-QTIME

The amount of time OSS file-system cache blocks were present for an open file.
Counter type: Queue.

FS-CACHE-ACTIVE-QMAX

(Measure G10 PVU only) The maximum number for active cache blocks in use.
Counter type: Max Queue.

FS-CACHE-DIRTY-QTIME

The amount of time OSS file-system cache blocks were dirty.
Counter type: Queue.

FS-CACHE-DIRTY-QMAX

(Measure G10 PVU only) The maximum value for dirty cache blocks.
Counter type: Max Queue.

FS-CACHE-RD-READ-REQS

The number of block read requests to DP2 from the OSS file-system cache to satisfy an application
read API call. A block read logical operation can return multiple blocks.
Counter type: Incrementing.

FS-CACHE-WT-READ-REQS

The number of block read requests to DP2 from the OSS file-system cache to satisfy an application
write API call. A block read logical operation can return multiple blocks.
Counter type: Incrementing.

FS-CACHE-READ-BLOCKS

The number of blocks read in block reads from DP2 to the OSS file-system cache.
Counter type: Accumulating.

FS-CACHE-WRITE-REQS

The number of block writes to DP2 from the OSS file-system cache.
Counter type: Incrementing.

FS-CACHE-WRITE-BLOCKS

The number of blocks written to DP2 due to FS-CACHE-WRITE-REQS from the OSS file-system
cache.
Counter type: Accumulating.

FS-PREFETCH-BLOCKS

The number of blocks prefetched by the OSS file-system cache.
Counter type: Incrementing.

OSSCPU 261

FS-PREFETCH-USED

The number of prefetched blocks actually used by the application.
Counter type: Incrementing.

FS-REREAD-STOLEN-BLKS

The number of data blocks that had to be reread into the OSS file system cache because the
NonStop memory manager took the memory pages on which those cache data blocks were
located.
Counter type: Incrementing.

FS-MAP-FAILURES

The number of times the OSS file-system cache failed to obtain a map buffer for prefetching cache
blocks. The map buffer is a cache I/O buffer that is used for I/O transfers with DP2. A map failure
can be a symptom of performance degradation. To remedy the failure, move applications.
Counter type: Incrementing.

FM-CACHE-INFOS

The number of OSS file manager cache info requests received from DP2. The OSS file manager
allocates PXS and disk cache segments and acts as an agent for DP2 and the NonStop memory
manager for cache management requests.
Counter type: Incrementing.

FM-CALLBACKS

The number of cache callback requests received by the OSS File Manager from DP2.
Counter type: Incrementing.

FM-CALLBACK-WT-REQS

The number of cache write requests issued by the OSS file manager because of DP2 cache callbacks.
Counter type: Incrementing.

FM-CALLBACK-WT-BLOCKS

The number of blocks written back by the OSS file manager as a result of
FM-CALLBACK-WT-REQS.
Counter type: Accumulating.

FM-STOLEN-BLK-WT-REQS

The number of times OSS cache block writes were performed to clean dirty memory pages so
those memory pages could be stolen by the NonStop memory manager.
Counter type: Incrementing.

PP-BLOCK-INUSE-QTIME

The amount of time the OSS pipe pool blocks were in use.
Counter type: Queue.

PP-BLOCK-INUSE-QMAX

(Measure G10 PVU only) The maximum number of blocks in use by the OSS pipe pool.
Counter type: Max Queue.

262 Entities and Counters

PP-ALLOC-FAILURES

The number of times an OSS pipe could not be resized or allocated.
Counter type: Incrementing.

PS-GETTIME-REQS

The number of gettime requests received by an OSS pipe server process from an OSS name server.
Counter type: Incrementing.

PS-SETTIME-REQS

The number of settime requests received by an OSS pipe server process from an OSS name server.
Counter type: Incrementing.

LCL, REM

OSS pipe server requests from CPU-remote and system-remote pipe server processes.
Measurement is divided into seven counters:
PS-PROXY-READS
PS-PROXY-WRITES
PS-PROXY-READ-BYTES
PS-PROXY-WRITE-BYTES
PS-SELECT-RCVD
PS-SELECT-SENT
PS-SELECT-READY
LS-SENDS
LS-SEND-BYTES
LS-RECVS
LS-RECV-BYTES
LS-QUEUES
LS-QUEUE-BYTES
LS-AWAKES
LS-SELECTS
These counters occur 17 times, once for each CPU in the system and once for remote systems.

PS-PROXY-READS

The number of proxy reads performed by an OSS pipe server process.
Counter type: Incrementing.

PS-PROXY-WRITES

The number of proxy writes performed by an OSS pipe server process.
Counter type: Incrementing.

PS-PROXY-READ-BYTES

The number of proxy read bytes read by an OSS pipe server process.
Counter type: Accumulating.

PS-PROXY-WRITE-BYTES

The number of proxy write bytes written by an OSS pipe server process.

OSSCPU 263

Counter type: Accumulating.

PS-SELECT-RCVD

The number of select requests received by an OSS pipe server process from other CPUs or systems.
Counter type: Incrementing.

PS-SELECT-SENT

The number of select ready requests sent to an OSS pipe server process from other CPUs or
systems.
Counter type: Incrementing.

PS-SELECT-READY

The number of select ready requests received by an OSS pipe server process from other CPUs
or systems.
Counter type: Incrementing.

LS-SENDS

The number of SEND messages performed by the LS2 process on behalf of satellite sockets in
CPU n where n is the LCL array index. Socket APIs,write(), send(), sendto() and
sendmsg(), update this counter when the client is using a satellite socket (the socket is mastered
in a different CPU).

NOTE: Processes can be spawned in other CPUs where the descendent inherits the file
descriptors (opened files) of the parent. A master (or original) socket is one created via a call to
socket(), socketpair() or accept(). A satellite socket is created when a process that has created a
socket spawns a process in another CPU.

Counter type: Incrementing.

LS-SEND-BYTES

The number of bytes received in SEND requests from satellite sockets in CPU n where n is the
LCL array index. Socket APIs,write(), send(), sendto() and sendmsg(), update this
counter when the client is using a satellite socket (the socket is mastered in a different CPU). (See
Note under LS-SENDS (page 264).)
Counter type: Accumulating.

LS-RECVS

The number of RECEIVE operations performed by the LS2 process on behalf of satellite sockets
in CPU n where n is the LCL array index. Socket APIs,read(), recv(), recvfrom() and
recvmsg(), update this counter when the client is using a satellite socket (the socket is mastered
in a different CPU). (See Note under LS-SENDS (page 264).)
Counter type: Incrementing.

LS-RECV-BYTES

The number of bytes returned in response to RECEIVE requests from CPU n where n is the LCL
array index. Socket APIs,read(), recv(), recvfrom() and recvmsg(), update this counter
when the client is using a satellite socket (the socket is mastered in a different CPU). (See Note
under LS-SENDS (page 264).)
Counter type: Accumulating.

264 Entities and Counters

LS-QUEUES

The number of QUEUE operations performed by the LS2 process. QUEUE requests may be
received from socket clients or they may be received from LS2 processes in CPU n where n is
the LCL array index. Socket APIs,write(), send(), sendto() and sendmsg(), update this
counter when the sending and receiving sockets are mastered in different CPUs. (See Note under
LS-SENDS (page 264).)
Counter type: Incrementing.

LS-QUEUE-BYTES

The number of bytes received in QUEUE requests from CPU n where n is the LCL array index.
Socket APIs,write(), send(), sendto() and sendmsg(), update this counter when the
sending and receiving sockets are mastered in different CPUs. (See Note under LS-SENDS
(page 264).)
Counter type: Accumulating.

LS-AWAKES

The number of AWAKE operations performed on behalf of processes in CPU n where n is the
LCL array index. Socket APIs,connect(), accept(), write(), send(), sendto(),
sendmsg(),read(),recv(),recvfrom(),recvmsg(),shutdown(), andclose()update
this counter.
Counter type: Incrementing.

LS-SELECTS

The number of SELECT operations performed by the LS2 process to CPU n where n is the LCL
array index. Socket APIs,select(), update this counter. In addition, the procedures,
FILE_COMPLETE_() and FILE_COMPLETE_SET_() update this counter.
Counter type: Incrementing.

Usage Notes for OSSCPU Entities
• A read or write operation on a regular file can be sent directly to DP2 or satisfied via the

OSS File System cache.
— Noncached operations (FS-DIRECT-READS, FS-DIRECT-WRITES) result in messages

to DP2 and transfer only as much information as specified by the client.
— Cached operations (FS-CACHE-READS, FS-CACHE-WRITES) utilize the File System

Cache in the client’s CPU and can result in a block read/write
(FS-CACHE-RD-READ-REQS, FS-CACHE-WT-READ-REQS, FS-CACHE-WRITE-REQS)
between the cache and DP2.
Block reads and writes occur on cache block boundaries (except for the last cache block
of the file) where a cache block is 4 KB. Block read operations try to read ahead
(FS-PREFETCH-BLOCKS) to anticipate any need for the information in the immediate
future. The OSS file system controls cache use and might, for internal reasons, select to
bypass its use on a particular file open.

OSSCPU 265

• When a pipe is remote from the sender or receiver, the pipe server in the CPU where the
pipe was created acts as an agent for the remote clients. Write and read requests result in
messages to the pipe server in the CPU where the pipe was created. The pipe server, in turn,
performs proxy pipe reads and writes to the pipe buffer on behalf of the remote client.

• Select() messages between client and pipe server and between pipe servers, occur only when
the client calling select() is running in a CPU other than where the pipe was created:
1. The client sends a select request to the pipe server that manages the pipe.
2. The pipe server replies immediately.
3. When the client’s read, write, or both can succeed, the pipe server sends a select ready

request to the pipe server in the client’s CPU.
4. That pipe server awakens the client, and the select() call completes.

• You can calculate the OSS cache miss rate as:
OSS cache miss rate = (FS-Cache-RD-Read-Reqs +
 FS-Cache-WT-Read-Reqs +
 FS-Cache-Write-Reqs)

(FS-Cache-Reads + FS-Cache-Writes)

OSSNS
The OSSNS entity provides information about the operation and performance of OSS Name
Server processes. There is one record for the primary and backup processes configured for each
OSS Name Server defined on a system. Any OSS operation involving an OSS file pathname uses
the Name Server.
OSSNS entities can only be used on systems running the Measure G10 PVU or later.

G-SeriesTopic

266Entity specification syntax

267DDL record for OSSNS entities (Legacy Style)

268DDL record for OSSNS entities (ZMS Style)

271Usage notes for all OSSNS entities

Entity Specification Syntax for OSSNS Entities
To describe an OSSNS entity:

266 Entities and Counters

ADD OSSNS ossns-spec [, ossns-spec] ...

ossns-spec

is specified as:
{ * }
{ pid }
{ $process-name [(pid)] }
{ [[$device.]subvolume.]filename[(pid)] }

*
measures the OSS elements for all processes on the local system.

pid

is the CPU on which the OSS elements to be measured exist. To indicate all CPUs, use an
asterisk (*). The default is all CPUs.

process-name

is the name of a specific process to measure.

DDL Record for OSSNS Entities (Legacy Style)
This is the Legacy Style DDL record for OSSNS entities. This record will not change after the
G10 Measure PVU.
Fields included in BRIEF reports are in boldface type.
RECORD ossns. FILE is "ossns" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
 * Entity identification items:
 02 pin type binary 16 unsigned.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 IC-entries type binary 32 unsigned.
 02 LC-entries type binary 32 unsigned.

 *Counter value items:
 02 RR-processed type binary 32 unsigned.
 02 RR-redir-sent type binary 32 unsigned.
 02 RR-redir-processed type binary 32 unsigned.
 02 IC-lookups type binary 32 unsigned.
 02 IC-hits type binary 32 unsigned.
 02 IC-dirty-qtime type binary 64.
 02 LC-lookups type binary 32 unsigned.
 02 LC-hits type binary 32 unsigned.
 02 LC-inuse-qtime type binary 64.
 02 Checkpoint-reqs type binary 32 unsigned.
 02 Checkpoint-blks type binary 32 unsigned.
 02 Sem-waits type binary 32 unsigned.
 02 Sem-wait-qtime type binary 64.
 02 Sem-wait-qlen-max type binary 16 unsigned.
 02 DP2-DD-reqs type binary 32 unsigned.
 02 DP2-messages type binary 32 unsigned.
 02 DP2-msg-qtime type binary 64.
 02 DP2-msg-qlen-max type binary 16 unsigned.
 02 PS-messages type binary 32 unsigned.

OSSNS 267

 02 PS-msg-qtime type binary 64.
 02 PS-msg-qlen-max type binary 16 unsigned.
 02 LS-messages type binary 32 unsigned.
 02 LS-msg-qtime type binary 64.
 02 LS-msg-qlen-max type binary 16 unsigned.
 02 gettime-reqs type binary 32 unsigned.
 02 settime-reqs type binary 32 unsigned.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for OSSNS Entities (ZMS Style)
The ZMS style DDL record for OSSNS entities is supported in Measure G11 and later PVUs.
Fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsossns-id.
 02 pin type binary 16 unsigned.
 02 reserved-1 type character 6.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 IC-entries type binary 32 unsigned.
 02 LC-entries type binary 32 unsigned.
end

Counter Fields DDL Definition
DEFINITION zmsossns-ctrs.
 02 RR-processed type binary 64.
 02 RR-redir-sent type binary 64.
 02 RR-redir-processed type binary 64.
 02 IC-lookups type binary 64.
 02 IC-hits type binary 64.
 02 IC-dirty-qtime type binary 64.
 02 LC-lookups type binary 64.
 02 LC-hits type binary 64.
 02 LC-inuse-qtime type binary 64.
 02 Checkpoint-reqs type binary 64.
 02 Checkpoint-blks type binary 64.
 02 sem-waits type binary 64.
 02 sem-wait-qtime type binary 64.
 02 DP2-DD-reqs type binary 64.
 02 DP2-messages type binary 64.
 02 DP2-msg-qtime type binary 64.
 02 PS-messages type binary 64.
 02 PS-msg-qtime type binary 64.
 02 LS-messages type binary 64.
 02 LS-msg-qtime type binary 64.
 02 gettime-reqs type binary 64.
 02 settime-reqs type binary 64.
end

DDL Record Description Fields
RECORD zmsossns. FILE is "zmsossns" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsossns-ctrs.
02 id type zmsossns-id.
end

268 Entities and Counters

IC-ENTRIES

The configured number of inode cache records available on an OSS name server.
Counter type: Snapshot.

LC-ENTRIES

The configured number of link cache records available on an OSS name server.
Counter type: Snapshot.

RR-PROCESSED

The number of name resolution requests processed by the OSS name server under measurement.
Counter type: Incrementing.

RR-REDIR-SENT

The number of name resolution requests redirected by an OSS name server.
Counter type: Incrementing.

RR-REDIR-PROCESSED

The number of redirected name resolution requests processed by an OSS name server.
Counter type: Incrementing.

IC-LOOKUPS

The number of inode cache lookups performed by an OSS name server.
Counter type: Incrementing.

IC-HITS

The number of inode cache hits encountered by an OSS name server. To derive inode cache
misses, subtract IC-HITS from IC-LOOKUPS.
Counter type: Incrementing.

IC-DIRTY-QTIME

The amount of time inode cache entries were dirty on an OSS name server.
Counter type: Queue.

LC-LOOKUPS

The number of link cache lookups performed by an OSS name server.
Counter type: Incrementing.

LC-HITS

The number of link cache hits encountered by an OSS name server. Link cache misses can be
derived by subtracting LC-HITS from LC-LOOKUPS.
Counter type: Incrementing.

LC-INUSE-QTIME

The amount of time link cache entries were in use on an OSS name server. Link cache expands
beyond the configured number of entries if needed. If expanded, the name server process
eventually scales link cache resources back to the configured size when demand lessens.
Counter type: Queue.

OSSNS 269

CHECKPOINT-REQS

The number of logical checkpoint requests sent by an OSS name server. Checkpoint requests are
assembled into blocks in the primary so that multiple requests are sent to the backup in each
message.
Counter type: Incrementing.

CHECKPOINT-BLKS

The number of checkpoint blocks sent by an OSS name server to its backup.
Counter type: Incrementing.

SEM-WAITS

The number of semaphore waits an OSS name server encounters in its processing threads.
Counter type: Incrementing.

SEM-WAIT-QTIME

The amount of time spent in a semaphore wait condition by OSS name server processing threads.
A name server is a multithreaded process. A semaphore wait is specific to a thread processing
a name resolution request.
Counter type: Queue.

SEM-WAIT-QLEN-MAX

(Measure G10 PVU only) The maximum number of resolution request semaphore waits on an
OSS name server since it began execution.
In H-series and J-series RVUs, this counter has a value of 1.
Counter type: Max Queue.

DP2-DD-REQS

The number of data definition requests sent to DP2 by an OSS name server. Data definition
operations are initiated by these procedures:

bind()utime()chmod()mkdir()link()creat()

rename()chown()rmdir()unlink()open()

Counter type: Incrementing.

DP2-MESSAGES

The number of messages an OSS name server sent to DP2. The total includes Data Definition
calls, which modify the file label, as well as other calls that do not alter the disk entry.
Counter type: Incrementing.

DP2-MSG-QTIME

The accumulated service time spent in a thread waiting while DP2 messages were outstanding
on an OSS name server.
Counter type: Queue.

DP2-MSG-QLEN-MAX

(Measure G10 PVU only) The maximum number of DP2 messages outstanding for an OSS name
server since it began execution.
In H-series and J-series RVUs, this counter has a value of 1.

270 Entities and Counters

Counter type: Max Queue.

PS-MESSAGES

The number of messages an OSS name server sent to pipe server processes. The pipe server runs
in each CPU ($ZPPnn, where nn = CPU number) and provides pipe services for applications
using OSS pipes and FIFOs.
Counter type: Incrementing.

PS-MSG-QTIME

The amount of time pipe server messages from an OSS name server were outstanding.
Counter type: Queue.

PS-MSG-QLEN-MAX

(Measure G10 PVU only) The maximum number of concurrent pipe server messages outstanding
on an OSS name server since it began execution.
In H-series and J-series RVUs, this counter has a value of 1.
Counter type: Max Queue.

LS-MESSAGES

The number of messages an OSS name server sent to the local server process. The OSS local
server ($ZPLS for pre-AF_UNIX R2; $ZLSnn, where nn is the CPU number, or $ZLSNN for
AF_UNIX R2) is the transport provider for AF_UNIX sockets.
Counter type: Incrementing.

LS-MSG-QTIME

The amount of time spent waiting on completion of local server messages by an OSS name server.
Counter type: Queue.

LS-MSG-QLEN-MAX

(Measure G10 PVU only) The maximum number of concurrent local server messages outstanding
on an OSS name server since it began execution.
In H-series and J-series RVUs, this counter has a value of 1.
Counter type: Max Queue.

GETTIME-REQS

The number of gettime requests sent by the OSS name server to a pipe server or local server.
Counter type: Incrementing.

SETTIME-REQS

The number of settime requests sent by the OSS name server to a pipe server or local server.
Counter type: Incrementing.

Usage Notes for OSSNS Entities
• Fields that report received or redirected resolution requests reflect the capacity of an OSS

name server to route requests to the appropriate resource. When a request is sent to a name
server, the name server might be able to completely process the request, or it might require
the services of another name server. In the latter case, the first name server replies to the
client with a redirection reply, which causes the file-system library running in the client to
compose and send a new redirected request to the second name server.

OSSNS 271

• Inode and link cache counters report on cache performance for OSS Fileset Catalog accesses.
The name server OSS Fileset Catalog consists of three Guardian disk files:

A key-sequenced file containing one record for each directory, regular file, FIFO, and AF_UNIX
socket.

PXINODE

A key-sequenced file containing one record for each file name in the fileset.PXLINK

An unstructured file used to ensure catalog integrity after a failure. PXLOG is used only when
the fileset is configured with BUFFERED NONE.

PXLOG

To reduce the frequency of access to the PXINODE and PXLINK files, name servers cache
records from these files in memory. Separate caches are used for each file. Cache size is
reported in IC-ENTRIES and LC-ENTRIES. The size of the caches can be changed individually.
Both the primary and backup name server processes have PXINODE caches. Only the
primary process has a PXLINK cache. The PXLINK cache not only keeps copies of PXLINK
records, it also remembers unsuccessful name lookups. If the name is looked up again, it is
not necessary to reread the PXLINK file to discover again that the name does not exist.

PROCESS
The PROCESS entity type provides information about one or more processes on a local system.
In Measure G09 and later PVUs, the PROCESS entity type handles OSS file pathnames.

PageTopic

272Entity specification syntax

274DDL record for PROCESS entities (Legacy Style)

DDL record for PROCESS entities (ZMS Style)

291Usage note for all PROCESS entities

291Usage notes for G-series PROCESS entities

Entity Specification Syntax for PROCESS Entities
To describe a PROCESS entity:
PROCESS entity-spec

PROCESS
collects information about one or more processes on the local system.

entity-spec

is specified as:
{ * }
{ cpu,pin }

272 Entities and Counters

{ SYSTEM-PROCESSES }
{ $process-name [(pid)] }
{ [[$device.]subvolume.]filename[:CRVSN][(pid)]}
{ "pname" [(pid)] }

*
measures all processes on the local system.

cpu

is the CPU on which the process to be measured is running. To indicate all CPUs, use an
asterisk (*). The default is all CPUs.

pin

is the process identification number of the process to be measured. To indicate all
processes, use an asterisk (*). The default is all processes.

SYSTEM-PROCESSES
measures all processes installed using the SYSGEN program.

$process-name
is the name of the process to be measured.

pid

is the process identifier of the process to be measured. Specify pid as one of:
{ cpu,pin }
{ SYSTEM-PROCESSES }

cpu

is the number of the CPU on which the process to be measured is running. Use an
asterisk (*) to specify all CPUs.

pin

is the process identification number of the process to be measured. Use an asterisk
(*) to specify all process identification numbers.

$device
is the volume (device) on which the object file of the process to be measured is located.
Use an asterisk (*) to indicate all volumes. The default is the current default volume.

subvolume

is the subvolume in which the object file of the process to be measured is located. Use an
asterisk (*) to indicate all subvolumes.

filename[:CRVSN]
is the name of the object file of an executing process to be measured. Use an asterisk (*)
to indicate all files (except temporary files).
In Measure G09 and later PVUs, CRVSN is the timestamp, creation version serial number,
or file name extension necessary to form a unique file name. To get the CRVSN for a file,
see the Measure report or use the LISTGNAME command.

"pname"
can be either a fully qualified or partial OSS file pathname. An OSS file pathname that
does not begin with a slash (/) is considered to be a partial pathname and is expanded
by prefacing it with the current setting for OSSPATH.

PROCESS 273

NOTE: OSS file pathnames are case-sensitive and must be specified within double
quotation marks (" "). Valid OSS file pathnames can refer to specific files or to a set of
files within a specific directory. If a directory is specified, only files in that directory are
included. Files in directories subordinate to the specified directory are not included.

DDL Record for PROCESS Entities (Legacy Style)
This is the Legacy Style DDL record for PROCESS entities. This record will not change after the
G10 Measure PVU.
The fields included in BRIEF reports are in boldface type.
The DDL record for G-series PROCESS entities is identical to the record for D-series PROCESS
entities except:
• Longer byte-count fields are provided to reduce the possibility of field overflow. Each 32-bit

byte-count field has a 64-bit counterpart. For information on using the 64-bit fields, see Usage
Notes for G-Series PROCESS Entities (page 291).

• The ERROR field can signal a field overflow in a 32-bit byte-count field.
• Counters are added to support operating system changes in memory handling. The memory

handling changes also affect the interpretation of the existing CPU-BUSY-TIME,
READY-TIME, and PRES-PAGES-QTIME counters.

• In Measure G09 and later PVUs, several identifiers are added for OSS file pathname support.
RECORD process. FILE is "process" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 pin type binary 16 unsigned.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 priority type binary 16 unsigned.
* counter value items:
02 cpu-busy-time type binary 64.
02 ready-time type binary 64.
 02 mem-qtime type binary 64.
 02 dispatches type binary 32 unsigned.
 02 page-faults type binary 32 unsigned.
 02 pres-pages-qtime type binary 64.
 02 pres-pages-max type binary 16 unsigned.
 02 ext-segs-qtime type binary 64.
 02 ext-segs-max type binary 16 unsigned.
 02 vsems type binary 32 unsigned.
02 recv-qtime type binary 64.
02 recv-qlen-max type binary 16 unsigned.
02 messages-sent type binary 32 unsigned.
 02 sent-bytes type binary 32 unsigned.
 02 returned-bytes type binary 32 unsigned.
02 messages-received type binary 32 unsigned.
 02 received-bytes type binary 32 unsigned.
 02 reply-bytes type binary 32 unsigned.
 02 lcb-allocations type binary 32 unsigned.
 02 mqc-allocations type binary 32 unsigned

274 Entities and Counters

 redefines lcb-allocations.
 02 lcb-alloc-failures type binary 32 unsigned.
 02 mqc-alloc-failures type binary 32 unsigned
 redefines lcb-alloc-failures.
 02 lcbs-inuse-qtime type binary 64.
 02 mqcs-inuse-qtime type binary 64
 redefines lcbs-inuse-qtime.
 02 max-lcbs-inuse type binary 16 unsigned.
 02 max-mqcs-inuse type binary 16 unsigned
 redefines max-lcbs-inuse.
 02 checkpoints type binary 32 unsigned.
 * new fields for entity identification:
 02 userid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 creatorid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
* fields for TNS/R specific counters:
 02 accel-busy-time type binary 64.
 02 tns-busy-time type binary 64.
 02 comp-traps type binary 32 unsigned.
 02 program-accelerated type binary 16 unsigned.
* new entity identification items for D10
 02 ancestor-cpu type binary 16 unsigned.
 02 ancestor-pin type binary 16 unsigned.
 02 ancestor-sysname type character 8.
 02 ancestor-process-name type character 8.
* Native Mode busy time:
 02 tnsr-busy-time type binary 64.
* Native Mode process:
 02 tnsr-process type binary 16 unsigned.
* new entity identification items and counters for D25
 02 hometerm-sysname type character 8.
 02 hometerm-name.
 03 device type character 8.
 03 subdevice type character 8.
 03 qualifier type character 8.

 02 page-size-bytes type binary 16 unsigned.
 02 alloc-seg-calls type binary 32 unsigned.

 02 UCL-qtime type binary 64.
 02 UCL-max type binary 16 unsigned.

 02 UCL-lock-qtime type binary 64.
 02 UCL-lock-max type binary 16 unsigned.

02 file-open-calls type binary 32 unsigned.
02 info-calls type binary 32 unsigned.
* D30 changes:
 02 begin-trans type binary 32 unsigned.
 02 abort-trans type binary 32 unsigned.

* SMS changes:
 02 device-name type character 8.

* F40 new counter value items:
 02 sent-bytes-f type binary 64.
 02 returned-bytes-f type binary 64.
 02 received-bytes-f type binary 64.
 02 reply-bytes-f type binary 64.
* New counters for G04
 02 pres-pages-start type binary 32 unsigned.
 02 pres-pages-end type binary 32 unsigned.

PROCESS 275

 02 abs-segs-qtime type binary 64.
 02 abs-segs-qlen-max type binary 16 unsigned.
 02 abs-segs-start type binary 32 unsigned.
 02 abs-segs-end type binary 32 unsigned.
* New counters for G08:
 02 msgs-sent-qtime type binary 64.
 02 msgs-sent-qlen-max type binary 16 unsigned.
 02 sent-cbytes type binary 64.
 02 returned-cbytes type binary 64.
 02 received-cbytes type binary 64.
 02 reply-cbytes type binary 64.
* New identifiers for OSS file pathname support:
 02 osspid type binary 32 unsigned.
 02 program-file-name-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
* New identifiers for NetBatch Job Control:
 02 GMOM.
 03 GMOM-node type binary 16 unsigned.
 03 GMOM-cpu type binary 16 unsigned.
 03 GMOM-pin type binary 16 unsigned.
 03 GMOM-jobid type binary 16 unsigned.
 02 GMOM-full-id type binary 64
 redefines GMOM.
 02 GMOM-sysname type character 8.
 02 GMOM-process-name type character 8.
* New counters for G10:

 02 OSS-tty-reads type binary 32 unsigned.
 02 OSS-tty-writes type binary 32 unsigned.
 02 OSS-tty-read-bytes type binary 64.
 02 OSS-tty-write-bytes type binary 64.
 02 OSS-tty-wait-time type binary 64.
 02 OSS-dev-null-ops type binary 64.
 02 OSSNS-DD-calls type binary 32 unsigned.
 02 OSSNS-requests type binary 32 unsigned.
 02 OSSNS-message-bytes type binary 64.
 02 OSSNS-wait-time type binary 64.
 02 OSSNS-redirects type binary 32 unsigned.
 02 launches type binary 32 unsigned.
 02 launch-wait-time type binary 64.
 02 open-close-wait-time type binary 64.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for PROCESS Entities (ZMS Style)
The ZMS style PROCESS DDL record is supported in Measure G11 and later PVUs.

ID Fields DDL Definition
DEFINITION zmsproc-id.
 02 pin type binary 16 unsigned.
 02 priority type binary 16 unsigned.
 02 userid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 creatorid.
 03 group type binary 8 unsigned.
 03 group type binary 8 unsigned.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.

276 Entities and Counters

 03 subvol type character 8.
 03 filename type character 8.
 02 osspid type binary 32 unsigned.
 02 ancestor-cpu type binary 16 unsigned.
 02 ancestor-pin type binary 16 unsigned.
 02 ancestor-sysname type character 8.
 02 ancestor-process-name type character 8.
 02 device-name type character 8.
 02 program-file-name-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 reserved-1 type character 2.
 02 GMOM.
 03 GMOM-node type binary 16 unsigned.
 03 GMOM-cpu type binary 16 unsigned.
 03 GMOM-pin type binary 16 unsigned.
 03 GMOM-jobid type binary 16 unsigned.
 02 GMOM-full-id type binary 64
 redefines GMOM.
 02 GMOM-sysname type character 8.
 02 GMOM-process-name type character 8.
 02 program-accelerated type binary 16 unsigned.
 02 native-process type binary 16 unsigned.
 02 system-process type binary 16 unsigned.
 02 ipus type binary 16 unsigned.
 02 reserved-2 type character 2.
 02 hometerm-sysname type character 8.
 02 hometerm-name.
 03 device type character 8.
 03 subdevice type character 8.
 03 qualifier type character 8.
end

Counter Fields DDL Definition
DEFINITION zmsproc-ctrs.
02 cpu-busy-time type binary 64.
02 ready-time type binary 64.
 02 mem-qtime type binary 64.
 02 dispatches type binary 64.
 02 page-faults type binary 64.
 02 pres-pages-qtime type binary 64.
 02 ext-segs-qtime type binary 64.
 02 vsems type binary 64.
02 recv-qtime type binary 64.
02 messages-sent type binary 64.
 02 sent-bytes type binary 64.
 02 returned-bytes type binary 64.
02 messages-received type binary 64.
 02 received-bytes type binary 64.
 02 reply-bytes type binary 64.
 02 mqc-allocations type binary 64
 02 mqc-alloc-failures type binary 64
 02 mqcs-inuse-qtime type binary 64
 02 checkpoints type binary 64.
 02 comp-traps type binary 64.
 02 native-busy-time type binary 64.
 02 accel-busy-time type binary 64.
 02 tns-busy-time type binary 64.
 02 alloc-seg-calls type binary 64.
 02 file-open-calls type binary 64.
 02 info-calls type binary 64.
 02 begin-trans type binary 64.
 02 abort-trans type binary 64.
 02 pres-pages-start type binary 32 unsigned.

PROCESS 277

 02 pres-pages-end type binary 32 unsigned.
 02 Abs-segs-qtime type binary 64.
 02 Abs-segs-start type binary 32 unsigned.
 02 Abs-segs-end type binary 32 unsigned.
 02 Msgs-sent-qtime type binary 64.
 02 Sent-cbytes type binary 64.
 02 Returned-cbytes type binary 64.
 02 Received-cbytes type binary 64.
 02 Reply-cbytes type binary 64.
 02 OSS-tty-reads type binary 64.
 02 OSS-tty-writes type binary 64.
 02 OSS-tty-read-bytes type binary 64.
 02 OSS-tty-write-bytes type binary 64.
 02 OSS-tty-wait-time type binary 64.
 02 OSS-dev-null-ops type binary 64.
 02 OSSNS-DD-calls type binary 64.
 02 OSSNS-requests type binary 64.
 02 OSSNS-message-bytes type binary 64.
 02 OSSNS-wait-time type binary 64.
 02 OSSNS-redirects type binary 64.
 02 launches type binary 64.
 02 launch-wait-time type binary 64.
 02 open-close-wait-time type binary 64.
 02 ipu-switches type binary 64.
 02 ipu-num type binary 32.
 02 ipu-num-prev type binary 32.
end

DDL Record Description Fields
RECORD zmsproc. FILE is "zmsproc" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsproc-ctrs.
 02 id type zmsproc-id.
end

PIN

Process identification number of the measured process.

PROCESS-NAME

Name of the process.

PROGRAM-FILE-NAME

Object file of the measured process. This field is divided into three subfields: VOLUME, SUBVOL,
and FILENAME. The name can apply to either a NonStop file or an SMF file.
For NonStop files, PROGRAM-FILE-NAME represents the physical file name that was specified
when the process was opened. The VOLUME subfield gives the device name of the physical
volume on which the disk file is located.
For SMF files, PROGRAM-FILE-NAME represents a location-independent logical file name that
was used when the process was opened. The device location of the physical file that corresponds
to the logical file name is stored in the DEVICE-NAME field.

PRIORITY

Creation priority of the measured process. Changing a process priority using the ALTPRI
command does not affect this value.

278 Entities and Counters

CPU-BUSY-TIME

The time that the CPU spent executing the measured process:
• For D-series RVUs, this counter is not advanced for the sending process when LDONE

queuing is in use.
• For measurements on systems running G05 or later RVUs, this counter includes any

page-defaulting activity performed on behalf of this process.
• For pre-G05.00 G-series RVUs, all page-faulting is charged to the memory manager process

$VIRTUAL.
For TNS/R servers, CPU-BUSY-TIME is the sum of ACCEL-BUSY-TIME, TNS-BUSY-TIME, and
TNSR-BUSY-TIME. For TNS/E servers, CPU-BUSY-TIME is the sum of ACCEL-BUSY-TIME,
TNS-BUSY-TIME, and NATIVE-BUSY-TIME

NOTE: The CPU-BUSY-TIME counter is enhanced for more precise measurement of processor
utilization. Measurements on systems running D-series and G-series RVUs might show slightly
higher utilization than comparable measurements on systems running C-series RVUs. The
difference appears mainly on systems that run at low utilization levels.

PageDescriptionRelated Counter

161Similar, but is the busy time for the entire processor.CPU CPU-BUSY-TIME

Identifies the CPU executing the processPROCESS CPU-NUM

Counter type: Busy.

READY-TIME

The time that the measured process spent on the ready list or executing.
To keep the measurement overhead to a minimum, this counter is not turned off during certain
system activities. This counter includes:
• Time required to dispatch the process.
• Time spent in software interrupts that are invoked asynchronously to the executing process.
• Time spent waiting for a page fault to be satisfied by the memory manager. (D-series)
• Time spent in message system routines. (D-series)
• Time spent in low-level message system routines when the process receives data or a message

and the data transfer is not complete. The process is then suspended without being taken
off the ready list timer. For example, a process might remain in the ready timer, not executing,
while waiting for completion of a transfer of ServerNet or FOX data. (G-series)

Due to changes in memory handling, the results of the READY-TIME counter for G05 and later
are not directly comparable to earlier measurements. Previously, the ready list timer for a process
remained active while waiting for a page fault even if the memory manager subsequently stalled
waiting on I/O for the needed page. As of G05, each process handles its own page fault requests.
If a request stalls while waiting for an I/O completion for the needed page, the ready timer is
turned off.
Counter type: Busy.

PROCESS 279

NOTE: Measure data can exhibit a combination of high PROCESS.READY-TIME and
CPU.CPU-QTIME while having low PROCESS.CPU-BUSY-TIME and low overall processor
utilization. Prior to G05, this was due to the suspension of PROCESS.CPU-BUSY-TIME while
waiting for completion of a page fault. However, in all RVUs, a process can also be suspended
while waiting for incomplete message system transfers to attempt completion. In either case, the
PROCESS.READY-TIME and CPU.CPU-QTIME counters continue to accumulate. Although this
message system behavior is rare, its occurrence might signal congested FOX or ServerNet/FX
networks, possibly the result of paths in the network being marked as down, underlying hardware
problems in the network, or data overload.

MEM-QTIME

The time that the measured process spent waiting on page faults. A page fault does not cause
the system to remove the process from the ready list.

PageDescriptionRelated Counter

280Counts the number of page faults generated by the measured
process

PROCESS PAGE-FAULTS

162Measures the time that all processes in a given processor spent
waiting on page faults

CPU MEM-QTIME

161Measures the time that all processes spent on the ready list,
including time spent waiting on page faults

CPU CPU-QTIME

Counter type: Queue.

DISPATCHES

Number of times the process was selected from the ready list and executed by the CPU identified
by the CPU-NUM field. You can expect one dispatch for each I/O operation, plus additional
dispatches caused by the process being preempted by higher priority processes.
Counter type: Incrementing.

PAGE-FAULTS

Number of page faults generated by the process.
Counter type: Incrementing.

PRES-PAGES-QTIME

For D-series RVUs, the time that pages owned by the process spent in main memory.
For G-series RVUs, the time that pages sponsored by the measured process spent in main memory.
For a description of sponsoring, see Usage Notes for G-Series PROCESS Entities (page 291).
Counter type: Queue.

PRES-PAGES-MAX

(Legacy Style only) Maximum number of items on the queue described by the
PRES-PAGES-QTIME counter.
Counter type: Max queue.

EXT-SEGS-QTIME

The time that extended segments were allocated to the process through the
SEGMENT_ALLOCATE_ procedure. This counter includes both user and system calls to this
procedure.

280 Entities and Counters

The system does not use SEGMENT_ALLOCATE_ when allocating segments for process code
and data stack segments.
Counter type: Queue.

EXT-SEGS-MAX

(Legacy Style only) Maximum number of items on the queue described by the EXT-SEGS-QTIME
counter.
Counter type: Max queue.

VSEMS

Number of times the process waited for a resource in use by another process, where the resource
is protected by the semaphore facility.
Counter type: Incrementing.

RECV-QTIME

The time that messages spent waiting on the process message input queue.
For user processes, the message input queue is $RECEIVE.
Counter type: Queue.

RECV-QLEN-MAX

(Legacy Style only) Maximum number of items on the queue described by the RECV-QTIME
counter.
Counter type: Max queue.

MESSAGES-SENT

Number of messages sent by the linker process. User I/O operations (except on $RECEIVE) and
calls to some system procedures increment this counter.
Counter type: Incrementing.

SENT-BYTES

Number of message bytes sent by the linker process. The message bytes are also included in the
RECEIVED-BYTES counter of the listener process that received the message.
This counter does not include bytes transferred by direct bulk I/O. For DBIO byte counts, see the
measurements attributed to the linker process in the DBIO-WRITE-BYTES counter of the FILE
entity type.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
The G-series SENT-BYTES-F field is a 64-bit version of SENT-BYTES.
Counter type: Accumulating.

RETURNED-BYTES

Number of message bytes received by the linker process. The message bytes are also included
in the REPLY-BYTES counter of the listener process that sent the message.
This counter does not include bytes transferred by direct bulk I/O. For DBIO byte counts, see the
measurements attributed to the linker process in the DBIO-READ-BYTES counter of the FILE
entity type.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
The G-series RETURNED-BYTES-F field is a 64-bit version of RETURNED-BYTES.

PROCESS 281

Counter type: Accumulating.

MESSAGES-RECEIVED

Number of messages the process has read from its message input queue.
For user processes, the message input queue is $RECEIVE.
These operations do not advance this counter:
• Messages received by a process due to SIGNALTIMEOUT and SIGNALPROCESSTIMEOUT
• The sending process when LDONE queuing is in use
• Timeout notifications (TLEs)
The counter is not advanced for the sending process when LDONE queuing is in use, nor do
timeout notifications (TLEs) cause the MESSAGES-RECEIVED counter to be advanced.
Counter type: Incrementing.

RECEIVED-BYTES

Number of message bytes received by the listener process. The message bytes are also included
in the SENT-BYTES counter of the linker process that sent the message.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
The G-series RECEIVED-BYTES-F field is a 64-bit version of RECEIVED-BYTES.
Counter type: Accumulating.

REPLY-BYTES

Number of message bytes sent by a listener process in reply to a message from a linker process.
The message bytes are also included in the RETURNED-BYTES counter of the linker process that
received the message.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, this is a
64-bit counter.
The G-series REPLY-BYTES-F field is a 64-bit version of REPLY-BYTES.
Counter type: Accumulating.

LBC-ALLOCATIONS

Redefined. See MQC-ALLOCATIONS.

MQC-ALLOCATIONS

Number of MQCs currently allocated to the process.
Counter type: Incrementing.

LCB-ALLOC-FAILURES

Redefined. See MQC-ALLOC-FAILURES.

MQC-ALLOC-FAILURES

Number of MQC requests that failed.
Counter type: Incrementing.

LCBS-INUSE-QTIME

Redefined. See MQCS-INUSE-QTIME.

282 Entities and Counters

MQCS-INUSE-QTIME

The time for which MQCs have been allocated to the process.
Counter type: Queue.

MAX-LCBS-INUSE

(Legacy Style only) Redefined. See MAX-MQCS-INUSE.

MAX-MQCS-INUSE

(Legacy Style only) Maximum number of MQCs on the queue.
Counter type: Max queue.

CHECKPOINTS

Number of calls to the CHECKPOINT procedure. This counter includes both user and system
calls to this procedure.
Many system processes do their own checking rather than calling the CHECKPOINT procedure.
These processes do not increment this counter.
Counter type: Incrementing.

USERID

Process accessor ID (PAID) of the process.

CREATORID

Creator access ID (CAID). This field identifies the creator of the process. It is divided into two
subfields: GROUP and USER.

ACCEL-BUSY-TIME

The time that the CPU was busy executing accelerated code in this process. This counter applies
only to measurements taken on a TNS/R or TNS/E system.
For H-series, J-series, and later RVUs, this counter value is calculated, returned, and displayed
only if a PROCESSH measurement is active on the CPU. Otherwise, the counter is not displayed,
and its value in the returned record is zero. The counter is calculated based on the number of
PROCESSH samples observed in the applicable code region, and so for more accurate numbers,
you can increase the frequency of PROCESSH samples. The PROCESSH-SAMPLES counter of
the CPU record reports the current sampling frequency.
Effective with Measure H04, J02, and later PVUs, if the PROCESSH sample count is unchanged
from the start to the end of a measurement interval, the ACCEL-BUSY-TIME,
NATIVE-BUSY-TIME, and TNS-BUSY-TIME fields will not be displayed by MEASCOM even if
a PROCESSH measurement is active. For the LISTALL command, this means some intervals
might display those fields and others might not.
Counter type: Busy.

NATIVE-BUSY-TIME

(ZMS style only) The time that the CPU was busy executing native code in this process.
For H-series, J-series, and later RVUs, this counter value is calculated, returned, and displayed
only if a PROCESSH measurement is active on the CPU. Otherwise, the counter is not displayed,
and its value in the returned record is zero. The counter is calculated based on the number of
PROCESSH samples observed in the applicable code region, and so for more accurate numbers,
you can increase the frequency of PROCESSH samples. The PROCESSH-SAMPLES counter of
the CPU record reports the current sampling frequency.

PROCESS 283

Effective with Measure H04, J02, and later PVUs, if the PROCESSH sample count is unchanged
from the start to the end of a measurement interval, the ACCEL-BUSY-TIME,
NATIVE-BUSY-TIME, and TNS-BUSY-TIME fields will not be displayed by MEASCOM even if
a PROCESSH measurement is active. For the LISTALL command, this means some intervals
might display those fields and others might not.
Counter type: Busy

TNS-BUSY-TIME

The time that the CPU was busy executing TNS code in this process. This counter applies only
to measurements taken on a TNS/R or TNS/E system.
For H-series, J-series, and later RVUs, this counter value is calculated, returned, and displayed
only if a PROCESSH measurement is active on the CPU. Otherwise, the counter is not displayed,
and its value in the returned record is zero. The counter is calculated based on the number of
PROCESSH samples observed in the applicable code region, and so for more accurate numbers,
you can increase the frequency of PROCESSH samples. The PROCESSH-SAMPLES counter of
the CPU record reports the current sampling frequency.
Effective with Measure H04, J02, and later PVUs, if the PROCESSH sample count is unchanged
from the start to the end of a measurement interval, the ACCEL-BUSY-TIME,
NATIVE-BUSY-TIME, and TNS-BUSY-TIME fields will not be displayed by MEASCOM even if
a PROCESSH measurement is active. For the LISTALL command, this means some intervals
might display those fields and others might not.
Counter type: Busy.

COMP-TRAPS

Number of times a compatibility trap occurred during execution of this process. A compatibility
trap is a data misalignment event, an unexpected transition to or from accelerated or unaccelerated
code, or a relative segment 2 or 3 problem. See the EPTRACE Manual for further details.
Counter type: Incrementing.

PROGRAM-ACCELERATED

A flag that is set to nonzero if the UC (user code) or UL (user library) portions of the program
have been accelerated.

ANCESTOR-CPU

Number of the CPU on which the ancestor process resides.

ANCESTOR-PIN

Process identification number of the ancestor process.

ANCESTOR-SYSNAME

Name of the system on which the ancestor process resides.

ANCESTOR-PROCESS-NAME

Name of the ancestor process. The report header displays the ancestor information. If this
information cannot be obtained, the string “unknown” appears.

TNSR-BUSY-TIME

(Legacy Style only) The amount of time that the processor was busy executing native code for
this process. This counter applies only to measurements taken on a TNS/R system. This counter
is derived from other counters:
TNSR-BUSY-TIME = CPU-BUSY-TIME - (ACCEL-BUSY-TIME + TNS-BUSY-TIME)

284 Entities and Counters

Counter type: Busy.

TNSR-PROCESS

A flag set for processes executing only in native mode.

HOMETERM-SYSNAME

The home terminal system name associated with the process. This identifier appears only in the
data record, not in the PROCESS report.

HOMETERM-NAME

Home terminal associated with the process, identified by subcomponent (device name, subdevice
name, and qualifier name). This identifier appears only in the data record, not in the PROCESS
report.

PAGE-SIZE-BYTES

Number of bytes in the memory page frame of the CPU being measured. This value is typically
4096 for TNS/R architectures and 2048 for other architectures.

ALLOC-SEG-CALLS

Number of successful calls made to the SEGMENT_ALLOCATE_ or ALLOCATESEGMENT
procedures.
Counter type: Incrementing.

LOCK-PAGES-QTIME

No longer used.

LOCK-PAGES-MAX

No longer used.

UCL-QTIME

For G10 and later Measure PVUs, zero. For the nearest equivalent, see PRES-PAGES-QTIME
(page 280), which includes user code and data frames, as well as system code and data frames
that this process has caused to be present in memory.
For G09 and earlier Measure PVUs, the time that user code and library pages were mapped. This
counter is a subset of (not an addition to) the PRES-PAGES-QTIME counter.
With REPORT RATE OFF, this counter is the total queue time for the memory category. With
REPORT RATE ON, this counter is the average number of UCL pages.
You can get process data page information by subtracting UCL-QTIME (total code and library
pages) from PRES-PAGES-QTIME (the total of all pages mapped for the process.
Counter type: Queue.

UCL-MAX

(Legacy Style only)
For G10 and later Measure PVUs, zero.
For G09 and earlier Measure PVUs, Maximum number of items on the queue described by the
UCL-QTIME counter.
Counter type: Max queue.

UCL-LOCK-QTIME

No longer used.

PROCESS 285

UCL-LOCK-MAX

No longer used.

FILE-OPEN-CALLS

Number of calls to the FILE_OPEN_ or OPEN procedures. Counts all opens including opens of
regular files, pipes, FIFOs, AF_INET sockets, AF_UNIX sockets, directories, /dev/null, and TTYs.
Includes implicit opens due to the fork(),exec*() family of process creation APIs.
Counter type: Incrementing.

INFO-CALLS

Number of calls to these procedures that resulted in a message being sent to a process (IOP or
other) to obtain the information requested:

getsockopt()DEVICEINFO2FILEINFO

pathconf()access()FILERECINFO

select()fpathconf()FILE_GETINFO_

sockatmark()fstat()FILE_GETINFOBYNAME_

stat()fstatvfs()FILE_GETINFOLISTBYNAME_

statvfs()getpeername()FILEGETINFO_LIST

getsockname()DEVICEINFO

Counter type: Incrementing.

BEGIN-TRANS

Number of times the process began a TMF transaction.
Counter type: Incrementing.

ABORT-TRANS

Number of times the process invokes the TMF ABORTTRANSACTION procedure, thus causing
a TMF transaction to be rolled back.
Counter type: Incrementing.

DEVICE-NAME

Disk device on which the program file is located. For SMF files, this field provides the physical
location that corresponds to the logical program file name. For NonStop files, this field is the
same as the PROGRAM-FILE-NAME VOLUME subfield.

SENT-BYTES-F

For G-series RVUs, same as SENT-BYTES but accommodates larger values (64 bits rather than
32).

RETURNED-BYTES-F

For G-series RVUs, same as RETURNED-BYTES but accommodates larger values (64 bits rather
than 32).

RECEIVED-BYTES-F

For G-series RVUs, same as RECEIVED-BYTES but accommodates larger values (64 bits rather
than 32).

286 Entities and Counters

REPLY-BYTES-F

For G-series RVUs, same as REPLY-BYTES but accommodates larger values (64 bits rather than
32).

PRES-PAGES-START

Number of pages in main memory sponsored by the measured process at the start of the
measurement interval.
Counter type: 32-bit snapshot.

PRES-PAGES-END

Number of pages in main memory sponsored by the measured process at the end of the
measurement interval.
Counter type: 32-bit snapshot.

ABS-SEGS-QTIME

The time that segment table entries were in use for absolute addressable segments on behalf of
the measured process.
Counter type: Queue.

ABS-SEGS-QLEN-MAX

(Legacy) Maximum number of items on the queue described by ABS-SEGS-QTIME. In H-series
and J-series RVUs, the value is always 1.
Counter type: Max Queue.

ABS-SEGS-START

Number of items on the queue described by ABS-SEGS-QTIME at the start of the measurement
interval.
Counter type: snapshot.

ABS-SEGS-END

Number of items on the queue described by ABS-SEGS-QTIME at the end of the measurement
interval.
Counter type: snapshot.

MSGS-SENT-QTIME

The time (in microseconds) that messages sent by the process were outstanding.
Counter type: Queue.

MSGS-SENT-QLEN-MAX

(Legacy) Maximum number of items on the queue described by the MSGS-SENT-QTIME counter.
In H-series and J-series RVUs, the value is always 1.
Counter type: Max queue.

SENT-CBYTES

Number of protocol control bytes sent by the message system on behalf of this process. This
counter is updated when the process is acting as a linker process. The protocol control bytes are
not included in the counter SENT-BYTES.
Counter type: Accumulating.

PROCESS 287

RETURNED-CBYTES

Number of protocol control bytes returned by the message system on behalf of this process. This
counter is updated when the process is acting as a linker process. The protocol control bytes are
not included in the counter RETURNED-BYTES.
Counter type: Accumulating.

RECEIVED-CBYTES

Number of protocol control bytes received by the message system on behalf of this process. This
counter is updated when the process is acting as a listener process. The protocol control bytes
are not included in the counter RECEIVED-BYTES.
Counter type: Accumulating.

REPLY-CBYTES

Number of protocol control bytes sent by the message system on behalf of this process in reply
to a message from a linker process. This counter is updated when the process is acting as a listener
process. The protocol control bytes are not included in the counter REPLY-BYTES.
Counter type: Accumulating.

OSSPID

If the process runs in the OSS environment, this field is the OSS Process ID. For a non-OSS process,
the OSSPID contains zeros.

PROGRAM-FILE-NAME_MID

This field consists of two subfields: PATHID and CRVSN. For the OSS file set, PATHID is an
internal representation of an OSS file name for the specified PROGRAM-FILE-NAME. For
non-OSS files, this field contains zeros. CRVSN is the creation version serial number that identifies
a unique instance of an OSS file. For other files, this field contains zeros.

OSS-TTY-WRITES

The number of WRITE operations performed by the process to all OSS file opens of /dev/tty.
Counter type: Incrementing.

OSS-TTY-READS

The number of READ operations performed by the process to all OSS file opens of /dev/tty.
Counter type: Incrementing.

OSS-TTY-WRITE-BYTES

The number of bytes written by the process to all files opened as /dev/tty.
Counter type: Accumulating.

OSS-TTY-READ-BYTES

The number of bytes read by the process from all files opened as /dev/tty.
Counter type: Accumulating.

OSS-TTY-WAIT-TIME

Amount of time the process waits on requests to all files opened as /dev/tty.
Counter type: Busy.

OSS-DEV-NULL-OPS

The number of reads and writes to all files opened as /dev/null.

288 Entities and Counters

Counter type: Incrementing.

OSSNS-DD-CALLS

The number of data definition requests sent to OSS Name Servers. These APIs increment this
counter:

utime()mkfifo()open(, O_CREAT)bind()

rename()link()chmod()

rmdir()mkdir()chown()

unlink()mknod()creat()

Counter type: Incrementing.

OSSNS-REQUESTS

The number of requests sent to OSS Name Servers. Requests can be fileinfo calls, data definition
requests, directory operations, or resolution requests.
Counter type: Incrementing.

OSSNS-MESSAGE-BYTES

The number of message data bytes sent and received for requests to OSS name servers.
Counter type: Accumulating.

OSSNS-REDIRECTS

The number of redirected requests sent to OSS name servers.
Counter type: Incrementing.

OSSNS-WAIT-TIME

Amount of time the process waits on requests to all OSS name servers.
Counter type: Busy.

LAUNCHES

The number of calls made by the process to process creation procedures. For Guardian process
creation, the counter includes unsuccessful creation attempts.
Counter type: Incrementing.

LAUNCH-WAIT-TIME

Amount of time the process waits on requests to PROCESS_CREATE_ or the fork()/exec*() family
of process creation APIs.
Counter type: Busy.

OPEN-CLOSE-WAIT-TIME

Amount of time the process waits on the open and close requests. For OSS processes, wait time
accumulates for file open and close operations, excluding name server operations. Name server
operations are counted in OSSNS-BUSY-TIME.
Counter type: Busy.

GMOM-NODE

The Expand node number of the GMOM process if this process is part of a NetBatch job and the
GMOM process is remote; otherwise zero.

PROCESS 289

GMOM-CPU

The processor number of the GMOM process if this process is part of a NetBatch job; otherwise
zero.

GMOM-PIN

The PIN of the GMOM process if this process is part of a NetBatch job; otherwise zero.

GMOM-JOBID

The job ID of the NetBatch job that initiated this process, assigned by the indicated GMOM;
otherwise zero.

GMOM-FULL-ID

A 64-bit redefinition of the individual GMOM fields as a single value. Zero indicates that the
process is not part of a NetBatch job stream.

GMOM-SYSNAME

The Expand system name of the GMOM node if the GMOM process is remote; otherwise spaces.

GMOM-PROCESS-NAME

The name of the GMOM process that initiated the NetBatch job that initiated this process;
otherwise spaces.

SYSTEM-PROCESS

Reserved for future use.

IPUS

In J01 and later Measure PVUs, indicates the number of IPUs in the CPU. The field is not displayed
by MEASCOM, but determines whether the IPU-SWITCHES field is displayed.
In H03 and later H-series Measure PVUs, this field is 1, and is not displayed by MEASCOM.

IPU-SWITCHES

An accumulating counter that indicates the total number of times that a process switched IPUs
while executing. On a non-NSMA system, this is always 0 (zero).
Counter type: Accumulating.

IPU-NUM

In J03 and later J-series Measure PVUs, the number of the IPU on which the process was executing
when the sample was taken..
In H05 and later H-series Measure PVUs, this field is 0 (zero), and is not displayed by MEASCOM.
Counter type: Snapshot.

IPU-NUM-PREV

In J03 and later J-series Measure PVUs, if an IPU switch took place during the measurement
interval, IPU-NUM-PREV displays number of the IPU on which the process was executing before
the most recent switch. If no IPU switch occurred during the measurement interval, this field is
not displayed.
In H05 and later H-series Measure PVUs, this field is 0 (zero), and is not displayed by MEASCOM.
Counter type: Snapshot.

290 Entities and Counters

Usage Note for All PROCESS Entities
For information on how processes are dispatched, when they are executed, and so on, see the
appropriate system description manual.

Usage Notes for G-Series PROCESS Entities
• The 64-bit byte-count fields ending in -F collect the same data as existing 32-bit byte-count

fields. For example, the 64-bit field RETURNED-BYTES-F collects the same data as the 32-bit
field RETURNED-BYTES. The 64-bit fields are less subject to overflow caused by high levels
of I/O activity.
The 32-bit fields are currently active and continue to return values. (A field overflow is
indicated by a value of -1 in both the field that has overflowed and in the ERROR field for
the measured entity.) However, you should convert your applications to use the 64-bit fields.
The 32-bit fields might be deactivated in a future RVU.
In MEASCOM commands and in command (OBEY) files, use the names of the 32-bit fields.
For example, issue the command LIST PROCESS BY RETURNED-BYTES, not LIST PROCESS
BY RETURNED-BYTES-F. MEASCOM uses the names of the 32-bit fields in output displays
such as reports and plots.

• As of the G05 RVU, changes in memory handling have introduced the concept of sponsored
and unsponsored memory pages. Pages are sponsored in memory by the process that causes
them to be present (usually, but not always, the process that defines the segment). If a process
that is the sponsor of shared pages terminates, the pages become temporarily unsponsored.
The next sharing process to reference an unsponsored page becomes the sponsor for that
page.
The PRES-PAGES-QTIME counter provides information about pages sponsored by the
measured process.

• For a discussion on the different types of message system transfer protocols and concepts,
(pre-push, post-pull, linker and listener), see the NonStop S-Series Server Description Manual.

Usage Notes for H-Series and J-Series PROCESS Entities
• In H-series and J-series RVUs, all byte-count fields accommodate 64 bits. Field names ending

in -F are no longer used in ZMS style records but remain available to applications that request
data in legacy style.

• Counters that report maximum numbers (counters that have MAX in their names) are valid
only in Legacy style. In H-series and J-series RVUs, the value of any such counter is 1.

• For Measure PVUs H02, H03, H04, J01, and J02, the ZMS style PROCESS displays report a
subsystem version of 2.

• For H05 and later H-series Measure PVUs and J03 and later J-series Measure PVUs, the ZMS
style PRCOESS displays report a subsystem version of 3.

PROCESSH
The PROCESSH entity type provides information about the relative execution time of one or
more code ranges within a program.
You can measure code ranges by specifying procedure names and address ranges or by specifying
a code-space category (user code, user library, system code, or system library).
If you use a wildcard in a file name that applies to multiple disk files (such as $SYSTEM.WORK.*),
you must specify a code-space category rather than a procedure name and address range.
You do not need to explicitly add the PROCESS entity for the PROCESSH entity. When you add
the PROCESSH entity to a measurement, the corresponding PROCESS entity is automatically
added for the measured process. You can use the PROCESS entity to get more information about

PROCESSH 291

the measured process with two exceptions: the ALLTIME and ALLINTR measurements. Although
Measure creates a PROCESS record for each of these measurements, these PROCESS records are
just placeholders because these two measurements do not involve measuring any specific
processes.

NOTE: In H-series and J-series RVUs, the ALLINTR option for PROCESSH sampling is disabled.
On systems running H-series and J-series RVUs, all interrupt handlers are individual and separate
Interrupt/ Auxiliary Processes and so can be sampled and measured individually.

In Measure G09 and later PVUs, the PROCESSH entity supports the use of OSS file pathnames
in place of Guardian file names. The G09 PROCESSH displays OSS file pathnames in PROCESSH
reports and provides direct mapping between external structured records and the new
OSSNAMES structured record output.
Entity specification syntax for G09 PVU PROCESSH entities differs from the syntax for D-series
and pre-G09 PVU entities. The DDL records also differ.

PageTopic

292Entity specification syntax

295DDL record for PROCESSH entities (Legacy Style)

296DDL record for PROCESSH entities (ZMS Style)

300Usage notes for all PROCESSH entities

301Examples of PROCESSH measurements

Entity Specification Syntax for PROCESSH Entities
To describe a PROCESSH entity:
PROCESSH entity-spec

PROCESSH
collects information about code ranges within one or more processes.

entity-spec

is one of:
{ process-spec (code-file-spec) [, (code-file-spec)] … }
{ process-spec [, process-spec] … }
{ ALLTIME | ALLINTR cpu (code-file-spec)
 [, (code-space code-file)] … }

process-spec

is a process specification:
{ * }
{ cpu,pin }
{ $process-name [(pid)] }
{ [[$device.]subvolume.]filename[:CRVSN][(pid)]}
{ "pname" [(pid)] }

where
*

measures all processes on the system.
cpu

is the number of the CPU on which the process to be measured is running. To indicate
all CPUs, use an asterisk (*). The default is all CPUs.

292 Entities and Counters

pin

is the process identification number of the process to be measured. To indicate all
processes, use an asterisk (*). The default is all processes.

$process-name
is the name of the process to be measured.

pid

is the process identifier of the process to be measured. Specify pid as one of: { cpu,pin
}
cpu

is the number of the CPU on which the process to be measured is running. To
specify all CPUs, use an asterisk (*). The default is all CPUs.

pin

is the process identification number of the process to be measured. To specify all
process identification numbers, use an asterisk (*). The default is all processes.

$device
is the device (volume) on which the object file of the process to be measured is located.
To indicate all volumes, use an asterisk (*). The default is the current default volume.

subvolume

is the subvolume in which the object file of the process to be measured is located. To
indicate all subvolumes, use an asterisk (*).

filename

is the name of the object file of the process to be measured. To indicate all files (except
temporary files), use an asterisk (*).
If filename is specified, code-space and code-file parameters are required for TNS
code. Otherwise these parameters are accepted but ignored, so as not to break any
existing scripts.

:CRVSN
in Measure G10 and later PVUs, is the timestamp or creation version serial number
or file-name extension, necessary to form a unique file name. Use this option to
guarantee file-name uniqueness. The CRVSN is available from the Measure report
and the LISTGNAME command.

pname

can be either a fully qualified or partial OSS file pathname. An OSS file pathname
that does not begin with a slash (/) is considered to be a partial pathname and are
expanded by prefacing it with the current setting for OSSPATH.

NOTE: OSS file pathnames are case-sensitive and must be specified within double
quotation marks (" "). Valid OSS file pathnames can refer to specific files or to a set
of files within a specific directory. If a directory is specified, only files in that directory
are included. Files in directories subordinate to the specified directory are not included.

code-file-spec

{ [code-space] code-file] }

PROCESSH 293

code-space

is a code-space specification. In G12 and later PVUs, code-space is required only
for TNS and accelerated TNS code; otherwise this parameter is accepted but ignored.
For accelerated and TNS code, the code-space specification is:

TNSAcceleratedSpecificationSpace

0-150-31UC[.n], where n is in the range:User code

0-150-31UL[.n], where n is in the range:User library

00-31SC[.n], where n is in the range:System code

0-310-31SL[.n], where n is in the range:System library

If n is not specified, its value defaults to all code spaces of the specified type.
For TNS systems, the number of code spaces for types UC and UL is cumulative and
cannot total more than 32. Therefore, the maximum number of UL-type code spaces
allowed is 16 (0 through 15) only if the number of UC-type code spaces specified is
in the range 0 through 15 range. If the number of UC-type code spaces exceeds 16
(falls in the range 16 through 31 range), the maximum number of UL-type codes
spaces is 31 minus UC.n. For example, if UC.n equals 25, the maximum UL.n you can
specify is 6; that is, 31 - 25 = 6.
For native code, the code-space specification is:

SpecificationSpace

UCRUser code

ULRUser library

SCRSystem code

SLRSystem library

code-file

is the either the Guardian file name of a TNS object file, an EDIT file, or an Executable
and Linking Format (ELF) object file (TNS/R file code 700 or TNS/E file code 800), or
for a G09 or later Measure PVU, the OSS file pathname, a "pname", that designates
one of the same set of file types that can be specified via a Guardian file name.
If code-file is an object file, MEASFH examines the procedure names and addresses
and adds each procedure to the configuration. If code-file is an EDIT file, it must
contain a set of name-address tuples, listed in ascending order of address, formatted
as:
code-range-name code-range-address

where
code-range-name

is a code range (procedure) name of 1 through 1024 alphanumeric characters,
circumflexes (^), hyphens (-), or underscores (_). The first character can be a letter,
a circumflex, or an underscore. Except for TNS and accelerated code, the first
character can also be a dollar sign ($).

294 Entities and Counters

code-range-address

In an EDIT (code 101) file describing TNS code, code-range-address is an
octal address in the range 0 through 177777 or an address offset.
For EDIT (code 101) files describing TNS/R or TNS/E code, code-range-address
is a valid virtual address for the systems, in hexadecimal, or an address offset. To
indicate an offset from the previous code-range-address, precede the octal or
hexadecimal number with a plus sign (+). The last code-range-address without a
plus sign is added to the offset to yield the effective address.
The first line of the EDIT file must contain an object file name specifier consisting
of the keyword OBJECT followed by a Guardian file name or OSS pathname. A
Guardian file name example is OBJECT $A.B.MYAPP and an OSS pathname
example is OBJECT "/a/b/myapp".

ALLTIME
specifies measurement of the execution time for all processes, including interrupts.
In PVUs earlier than G12, if you specify ALLTIME, you must specify code-space as
SC.n or SL.n for TNS code-file measurements. In G12 and later PVUs, specifycode-space
only for TNS and accelerated code. (If you specify a code-spacewhen it is not required,
the parameter is accepted but ignored.)

ALLINTR
specifies measurement of the execution time for all system interrupts.
In PVUs earlier than G12, if you specify ALLINTR, you must specify code-space as
SC.n or SL.n for TNS code-file measurements. In G12 and later PVUs, specifycode-space
only for TNS and accelerated code. (If you specify a code-spacewhen it is not required,
the parameter is accepted but ignored.)
This option is disabled in H-series and J-series RVUs. See Usage Notes for H-Series and
J-Series PROCESS Entities (page 291).

cpu

is the number of the CPU on which the process to be measured is running. To indicate
all CPUs, use an asterisk (*). There is no default value.

DDL Record for PROCESSH Entities (Legacy Style)
This is the Legacy Style DDL record for PROCESSH entities. This record will not change after
the G10 Measure PVU.
RECORD processh. FILE is "processh" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 pin type binary 16 unsigned.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 priority type binary 16 unsigned.
* code range identifiers and value:
 02 process-busy-samples type binary 32 unsigned.
 02 code-space type binary 16 unsigned.
 02 code-space-busy-samples type binary 32 unsigned.

PROCESSH 295

 02 code-range type character 32.
 02 code-range-busy-samples type binary 32 unsigned.
* new entity identification field:
 02 userid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 creatorid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
* fields for Liberty specific counters as of C30:
 02 accel-busy-samples type binary 32 unsigned.
 02 tns-busy-samples type binary 32 unsigned.
* new entity identification items for D10:
 02 ancestor-cpu type binary 16 unsigned.
 02 ancestor-pin type binary 16 unsigned.
 02 ancestor-sysname type character 8.
 02 ancestor-process-name type character 8.
* Native Mode busy samples:
 02 tnsr-busy-samples type binary 32 unsigned.
* SMS changes:
 02 device-name type character 8.
* new identifiers for OSS file pathname support:
 02 osspid type binary 32 unsigned.
 02 program-file-name-mid.
 03 pathid type character 24.
 03 crvsn type character 6.
 02 object-device-name type character 8.
 02 object-file-name-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 reserved-1 type character 6.
 02 code-range-flags type binary 16 unsigned.
 02 code-range-length type binary 16 unsigned.
 02 code-range type character 1024.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for PROCESSH Entities (ZMS Style)
The ZMS style PROCESSH DDL record is supported in Measure G11 and later PVUs.

ID Fields DDL Definition
DEFINITION zmsproch-id.
 02 pin type binary 16 unsigned.
 02 priority type binary 16 unsigned.
 02 userid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 creatorid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 osspid type binary 32 unsigned.
 02 ancestor-cpu type binary 16 unsigned.
 02 ancestor-pin type binary 16 unsigned.
 02 ancestor-sysname type character 8.
 02 ancestor-process-name type character 8.
 02 device-name type character 8.

296 Entities and Counters

 02 program-file-name-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 code-space type binary 16 unsigned.
 02 object-device-name type character 8.
 02 object-file-name-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 code-range-flags type binary 16 unsigned.
 02 code-range-length type binary 16 unsigned.
 02 reserved-1 type character 6.
 02 code-range type character 1024.
 end

Counter Fields DDL Definition
DEFINITION zmsproch-ctrs.
 02 process-busy-samples type binary 32 unsigned.
 02 code-space-busy-samples type binary 32 unsigned.
 02 code-range-busy-samples type binary 32 unsigned.
 02 accel-busy-samples type binary 32 unsigned.
 02 tns-busy-samples type binary 32 unsigned.
 02 native-busy-samples type binary 32 unsigned.
end

DDL Record Description Fields
RECORD zmsproch. FILE is "zmsproch" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsproch-ctrs.
 02 id type zmsproch-id.
end

PIN

Process identification number of the process.

PROCESS-NAME

Name of the process.

PROGRAM-FILE-NAME

Name of the object file the process is executing. This field is divided into three subfields: VOLUME,
SUBVOL, and FILENAME. The name can apply to either a NonStop file or an SMF file.
For NonStop files, PROGRAM-FILE-NAME represents the physical file name that was specified
when the process was executed. The VOLUME subfield gives the device name of the physical
volume on which the program file is located.
For SMF files, PROGRAM-FILE-NAME represents a location-independent logical file name that
was used when the process was executed. The device location of the physical file that corresponds
to the logical file name is stored in the DEVICE-NAME field.

PRIORITY

Priority of the process.

PROCESS-BUSY-SAMPLES

Number of times the sampling operation found the process executing.

PROCESSH 297

CODE-SPACE

One of these code space identifiers:

(user code—TNS or accelerated)UC.n0

(user code—TNS/R native)UCR1

(user library—TNS or accelerated)UL.n2

(user library—TNS/R native)ULR3

(system code—TNS or accelerated)SC.04

(system code—TNS/R native)SCR5

(system library—TNS or accelerated)SL.n6

(system library—TNS/R native)SLR7

CODE-SPACE-BUSY-SAMPLES

Number of times the sampling operation found the measured code space executing.
Counter type: Sampling.

CODE-RANGE

Name of the measured code range.

CODE-RANGE-BUSY-SAMPLES

Number of times the sampling operation found the measured code range executing.
For TNS/R and TNS/E systems running TNS and accelerated code,
CODE-RANGE-BUSY-SAMPLES=ACCEL-BUSY-SAMPLES + TNS-BUSY-SAMPLES.
For TNS/R and TNS/E systems running TNS/R native code, CODE-RANGE-BUSY-SAMPLES =
TNSR-BUSY-SAMPLES.
For TNS/E systems running TNS/E native code, CODE-RANGE-BUSY-SAMPLES =
NATIVE-BUSY-SAMPLES.
Counter type: Sampling.

USERID

Process accessor ID (PAID) of the process.

CREATORID

Creator access ID (CAID). This field identifies the creator of the process and is divided into two
subfields: GROUP and USER.

ACCEL-BUSY-SAMPLES

Number of times the sampling operation found the measured code executing accelerated code.
This counter applies only to measurements taken on a TNS/R or TNS/E system.
ACCEL-BUSY-SAMPLES + TNS-BUSY-SAMPLES = CODE-RANGE-BUSY-SAMPLES.
Counter type: Sampling.

TNS-BUSY-SAMPLES

Number of times the sampling operation found the measured code executing TNS code. This
counter applies only to measurements taken on a TNS/R or TNS/E system.
ACCEL-BUSY-SAMPLES + TNS-BUSY-SAMPLES = CODE-RANGE-BUSY-SAMPLES.
Counter type: Sampling.

298 Entities and Counters

NATIVE-BUSY-SAMPLES

Number of times the sampling operation found the measured code executing native code.
Counter type: Sampling.

ANCESTOR-CPU

Number of the CPU on which the ancestor process resides.

ANCESTOR-PIN

Process identification number of the ancestor process.

ANCESTOR-SYSNAME

Name of the system on which the ancestor process resides.

ANCESTOR-PROCESS-NAME

Name of the ancestor process. The report header displays the ancestor information. If this
information cannot be obtained, the string “unknown” appears.

TNSR-BUSY-SAMPLES

Number of times the sampling operation found the measured code executing TNS/R native code.
This counter applies only to measurements taken on a TNS/R system. TNSR-BUSY-SAMPLES =
CODE-RANGE-BUSY-SAMPLES.
Counter type: Sampling.

DEVICE-NAME

Disk device on which the program file is located. For SMF files, this field provides the physical
location that corresponds to the logical file name. For NonStop files, this field is the same as the
FILE-NAME VOLUME subfield.

OSSPID

On Measure G09 and later PVUs, if the process runs in the OSS environment, this field is the
OSS Process ID. For other processes, this field contains zeros.

PROGRAM-FILE-NAME-MID

In Measure G09 and later PVUs, this field has two subfields:
PATHID

is an internal format representation of an OSS file name for the specified
PROGRAM-FILE-NAME. For other files, this field contains zeros.

CRVSN
is the creation version serial number that identifies a unique instance of an OSS file. For other
files, this field contains zeros.

CODE-RANGE-FLAGS

Reserved for future use.

CODE-RANGE-LENGTH

Reserved for future use.

OBJECT-DEVICE-NAME

Reserved for future use.

PROCESSH 299

OBJECT-FILE-NAME-MID

Reserved for future use.

Usage Notes for G-Series PROCESSH Entities
• TNS/R processors include short code sequences called gateways that handle the transition

from non-native to native calls. If a sampled process is executing in a gateway, PROCESSH
increments the sample count but does not assign the sample to a particular code space.
Therefore, the total sample count might be larger than the sum of the various code-space
counts.

• If the sum of the individual code-space sample counts is significantly less than the total
samples count for the process, check (with the Native Object File Tool or NOFT utility) to
see if any shared run-time libraries (SRLs) should have been added to the PROCESSH
configuration. If so, add them in MEASCOM as URLs to the PROCESSH configuration. For
an example, see Examples of PROCESSH Measurements.

NOTE: Because sampling does not occur in processor millicode or in gateways, the potential
exists for a small number of missing samples.

Usage Notes for H-Series and J-Series PROCESSH Entities
• In H-series and J-series RVUs, the ALLINTR option for PROCESSH sampling is disabled.

On systems running H-series and J-series RVUs, all interrupt handlers are individual and
separate Interrupt/ Auxiliary Processes and so can be sampled and measured individually.
No error is returned if an ALLINTR PROCESSH measurement is configured. But it will
return no records. Interrupt/Auxiliary processes can be identified through the value of their
priority in their PROCESS records. Only these processes have a PRI value of 255. So a
MEASCOM command of LIST PROCESS 0,*, IF PRI = 255 returns a list of all
Interrupt/Auxiliary processes that are executing on processor 0, provided that the
measurement was done on all processes. The information (program filename, pin, and so
on) from these records can be used to configure a PROCESSH measurement on these items
if needed.

• In H-series and J-series RVUs, the PROCESSH sampling rate is increased to approximately
500 samples per second. The sampling rate is per IPU for J-series RVUs. This sampling rate
is not fixed. If more samples are needed within a shorter duration, the rate can be increased.
However, because this might negatively affect the performance of the other processes, use
this facility only when necessary. To increase the PROCESSH sampling rate, before issuing
the START MEASSUBSYS command, add this DEFINE statement to the TACL session
context. The filename specified determines the scaling factor of the sampling rate:

Scaling FactorDEFINE Statement

twice default rateADD DEFINE =_SET_PROCESSH_RATE, file SCALE2X

4 timesADD DEFINE =_SET_PROCESSH_RATE, file SCALE4X

8 timesADD DEFINE =_SET_PROCESSH_RATE, file SCALE8X

16 timeADD DEFINE =_SET_PROCESSH_RATE, file SCALE16X

32 timesADD DEFINE =_SET_PROCESSH_RATE, file SCALE32X

To determine the approximate sampling rate, issue successive PEEK INT requests in a
processor to view the accumulated sample interrupts, or examine the counter
PROCESSH-SAMPLES in the ZMSCPU report or through MEASCOM LIST CPU command.
For example:

300 Entities and Counters

TACL 12> ADD DEFINE =_SET_PROCESSH_RATE, file SCALE4X
TACL 13> MEASCOM START MEASSUBSYS

• If the process-spec is either a process-name or a cpu,pin combination, a
code-file-spec needs to be specified to configure a PROCESSH measurement. If an
object filename is specified as process-spec, the code-file-spec is optional. For LIST
commands, it is not necessary to specify a code-file-spec.

Examples of PROCESSH Measurements
• This example tracks the use of system procedures by all processes in CPU 7. It shows the

use of the system code and system library activity for the TNS/R system. This produces
sampling reports for all of the system procedures run on a TNS/R system. The use of
ALLTIME measures all system code and system library activity for all processes in the CPU.
+ADD PROCESSH ALLTIME 7 (SC $SYSTEM.SYSnn.TSC)
+ADD PROCESSH ALLTIME 7 (SL $SYSTEM.SYSnn.TSL)

NOTE: A TNS/R system has more than one system code (SC) file.

• This example measures SCR and SLR code spaces.
To support the TNS/R operating environment, the SYSGEN program creates a new object
file (file code 700), named TSYSCLR, which is placed in $SYSTEM.SYSnn subvolume. This
object file can be used to sample TNS/R system code (SCR) and the TNS/R system library
(SLR). Because TNS/R code spaces contain no code maps, the samples are displayed only
for SCR and SLR. The TSYSCLR file is superseded in H-series and J-series RVUs, as described
later in this list of examples.
To sample TNS/R code spaces for SCR and SLR:
+ADD PROCESSH proc spec (SCR $SYSTEM.SYSnn.TSYSCLR)
+ADD PROCESSH proc spec (SLR $SYSTEM.SYSnn.TSYSCLR)

• This example describes how to check for shared run-time libraries (SRLs) in a program and
how to include them in your program’s PROCESSH measurement:
1. Identify all the SRLs associated with a particular program using the Native Object File

Tool (NOFT) utility.
2. Add the SRLs as user library files (URLs) in MEASCOM.

The accounting and mapping of the PROCESSH total samples count for the program
and the sum of the individual code-space sample counts now match as closely as
currently possible.

If a program uses SRLs:
1. Use the NOFT LISTSRLINFO command to identify the SRLs:

noft> FILE $VOL.SUBVOL.FILENAME

 Object File : \node.$system.sysnn.ztcpsrl
 File Format : ELF
 Scope : (none)
 Case : Sensitive
 noft> LISTSRLINFO

 SRL Name : #
 ZLANCSRL: 0
 ZLANDSRL: 1

PROCESSH 301

2. In MEASCOM, add these SRLs as ULRs to the PROCESSH configuration of the program:
2+ ADD PROCESSH $VOL.SUBVOL.FILENAME (UCR FILE-NAME)
3+ ADD PROCESSH $VOL.SUBVOL.FILENAME (ULR ZLANCSRL)
4+ ADD PROCESSH $VOL.SUBVOL.FILENAME (ULR ZLANDSRL)

• No TSYSCLR file exists in H-series and J-series RVUs. That file is replaced by the two system
DLLs INITDLL and MCPDLL. This example reflects the H-series and J-series library structure.
The code-space identifier SL designates nonnative system library code:
+ADD PROCESSH $SYSTEM.SYS01.TSYSDP2 (2, *) ($SYSTEM.SYS01.TSYSDP2)
+ADD PROCESSH $SYSTEM.SYS01.TSYSDP2 (2, *) ($SYSTEM.SYS01.INITDLL)
+ADD PROCESSH $SYSTEM.SYS01.TSYSDP2 (2, *) ($SYSTEM.SYS01.MCPDLL

+ADD PROCESSH ALLTIME 1 ($SYSTEM.SYS01INITDLL)
+ADD PROCESSH ALLTIME 1 ($SYSTEM.SYS01.MCPDLL)
+ADD PROCESSH ALLTIME 1 (SL $SYSTEM.SYS01.TSL)

SERVERNET
The SERVERNET entity type measures physical I/O operations involving ServerNet addressable
controllers (SACs) on systems running G-series RVUs. The ServerNet entity tracks all
interprocessor communication (IPC). The SERVERNET entity is somewhat similar to the
CONTROLLER entity, which measured controller operations on systems running D-series RVUs.
Prior to Measure G08, the ServerNet entity measured all intrasystem traffic (for example, all
interprocessor traffic within a system or node). With the introduction of the ServerNet Cluster,
the SERVERNET entity now measures both intrasystem traffic and intersystem traffic (for example,
all interprocessor traffic for remote nodes). Measure refers to the latter as Remote Interprocessor
Communication or RIPC.

NOTE: You can measure ServerNet addressable controllers with a D-series RVU measurement
application if it specifies all controllers (ADD CONTROLLER *) or only a CPU number (ADD
CONTROLLER 2). To measure specific SACs, you must modify the entity identifiers.

PageTopic

302Entity specification syntax

303DDL record for SERVERNET entities (Legacy Style)

304DDL record for SERVERNET entities (ZMS Style)

310Usage notes for all SERVERNET entities

311Usage notes for ServerNet IPC and RIPC

312Examples of configuring measurements for ServerNet clusters

Entity Specification Syntax for SERVERNET Entities
To describe a SERVERNET entity:
SERVERNET entity-spec [, entity-spec] ...

SERVERNET
collects measurements for physical I/O operations involving SACs.

entity spec

is specified as:
{ * }
{ cpu }
{ cpu [(node-class [, group [, module [, slot

302 Entities and Counters

 [, subdevice | port [, fiber]]]]])] [(type)] }

*
measures all devices in all CPUs.

cpu

is a CPU number, which must be an integer in the range 0 through 15. The default is all
CPUs.

node-class

is the class of SACs to be measured: SCSI, NIOC, ENET, SWAN, IPC , RIPC, COLO, or
MONT.
Remote Interprocessor Communication (RIPC) describes communication with a CPU on
a remote ServerNet node.
Use an asterisk (*) to indicate all node classes. If node-class is not specified, all node
classes are measured.

group

is the group number of the SAC to be measured. (The group corresponds to the physical
enclosure). Use an asterisk (*) to indicate all groups. The default is all groups.

module

is the module number of the SAC to be measured. For RIPC, the module number is equal
to the ServerNet node number. Use an asterisk (*) to indicate all modules. The default is
all modules.

slot

is the slot number of the SAC to be measured. Use an asterisk (*) to indicate all slots. The
default is all slots.

subdevice

is a specific subdevice identifier in cases where the group, module, and slot identifiers
or the configuration name indicate more than one SAC. For Remote Interprocessor
Communication (RIPC), subdevice is equal to the CPU number of a processor in a remote
node, system, or ServerNet cluster. To indicate all remote processors on the specified
remote node, system, or ServerNet cluster, use an asterisk (*). If not specified, the default
is all remote processors on the specified remote node, system, or ServerNet cluster.

port

identifies a specific ServerNet connector within the ServerNet PIC (or within the ServerNet
Blade Switch on a NonStop BladeSystem) which a CLIM is connected to. On NonStop
BladeSystems only, the valid port values are 3 to 8, or “*”. On all other systems, valid
values for port are 1 to 4, or “*”.

fiber

identifies a specific connector within the ServerNet cable the CLIM is connected to. Valid
values for fiber are 1 to 4. Fiber is only relevant on a NonStop BladeSystem.

type

is the part number of a class of ServerNet addressable controllers.

NOTE: The type specification is not used for CLIM node classes.

DDL Record for SERVERNET Entities (Legacy Style)
This is the Legacy Style SERVERNET DDL record. This record will not change after the G10
Measure PVU.
The fields included in BRIEF reports are in boldface type.

SERVERNET 303

RECORD servernet. FILE is "svnet" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 channel type binary 16 unsigned.
 02 ctrl type binary 16 unsigned.
 02 ctrl-type type binary 16 unsigned.
* counter value items:
 02 requests type binary 32 unsigned.
 02 total-io-bytes type binary 64.
 02 io-qtime type binary 64.
 02 io-qlen-max type binary 16 unsigned.
* F40 new entity identification items:
 02 adapter-name type character 64.
 02 SAC-name type character 64.
 02 node-class type binary 32 unsigned.
 02 node-class-s type character 4
 redefines node-class.
 02 GMS.
 03 group type binary 32 unsigned.
 03 module type binary 32 unsigned.
 03 remote-cluster type binary 32 unsigned
 redefines module.
 03 slot type binary 32 unsigned.
 02 subdevice type binary 32 unsigned.
 02 remote-CPU type binary 32 unsigned
 redefines subdevice.
* F40 new counter value items:
 02 io-qbusy-time type binary 64.
* G01 counter value items:
 02 read-requests type binary 32 unsigned.
 02 read-bytes type binary 64.
 02 read-qtime type binary 64.
 02 read-qlen-max type binary 16 unsigned.
 02 read-qbusy-time type binary 64.
 02 write-requests type binary 32 unsigned.
 02 write-bytes type binary 64.
 02 write-qtime type binary 64.
 02 write-qlen-max type binary 16 unsigned.
 02 write-qbusy-time type binary 64.

 * G08 new counters:
 02 read-cbytes type binary 64.
 02 write-cbytes type binary 64.
 02 server-qtime type binary 64.
 02 server-qlen-max type binary 16 unsigned.
 02 retries type binary 32.
 02 acks type binary 32.
 02 x-defrd-busy-time type binary 64.
 02 y-defrd-busy-time type binary 64.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for SERVERNET Entities (ZMS Style)
The ZMS style SERVERNET DDL record is supported in Measure G11 and later PVUs.

304 Entities and Counters

The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmssvnet-id.
 02 node-class type binary 32 unsigned.
 02 node-class-s type character 4
 redefines node-class.
 02 ctrl-type type binary 16 unsigned.
 02 reserved-1 type character 2.
 02 GMS.
 03 group type binary 32 unsigned.
 03 module type binary 32 unsigned.
 03 remote-cluster type binary 32 unsigned
 redefines module.
 03 slot type binary 32 unsigned.
 02 subdevice type binary 32 unsigned.
 02 remote-cpu type binary 32 unsigned
 redefines subdevice.
02 PF redefines subdevice.

03 port type binary 16 unsigned.
03 fiber type binary 16 unsigned.

 02 adapter-name type character 64.
 02 SAC-name type character 64.
end

Counter Fields DDL Definition
DEFINITION zmssvnet-ctrs.
 02 requests type binary 64.
 02 total-io-bytes type binary 64.
 02 io-qtime type binary 64.
 02 io-qbusy-time type binary 64.
 02 read-requests type binary 64.
 02 write-requests type binary 64.
 02 read-bytes type binary 64.
 02 read-cbytes type binary 64.
 02 read-qtime type binary 64.
 02 read-qbusy-time type binary 64.
 02 write-bytes type binary 64.
 02 write-cbytes type binary 64.
 02 write-qtime type binary 64.
 02 write-qbusy-time type binary 64.
 02 server-qtime type binary 64.
 02 retries type binary 64.
 02 acks type binary 64.
 02 x-defrd-busy-time type binary 64.
 02 y-defrd-busy-time type binary 64.
 02 read-crequests type binary 64.
 02 write-crequests type binary 64.
 end

DDL Record Description Fields
RECORD zmssvnet. FILE is "zmssvnet" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmssvnet-ctrs.
 02 id type zmssvnet-id.
end

CHANNEL

(Legacy Style only) Not used; returns zero.

SERVERNET 305

CTRL

(Legacy Style only) Not used; returns zero.

CTRL-TYPE

The product number, such as 3128.
For IPC records, CTRL-TYPE is 0 for the linker, 1 for the listener. For more information on IPC
records, see Usage Notes for SERVERNET Entities (page 310).

REQUESTS

Total number of requests to the SAC by all IOPs connected to this controller path.
Counter type: Accumulating.

TOTAL-IO-BYTES

Total number of bytes transferred to and from the SAC by all IOPs connected to this controller
path.
Counter type: Accumulating.

IO-QTIME

The time the SAC is busy performing I/Os.
With REPORT RATE ON, this is the average number of outstanding I/Os queued to this controller.
If the average number of I/Os is less than 1, the number can be interpreted as the controller busy
percentage.
Counter type: Queue.

IO-QLEN-MAX

(Legacy Style only) Maximum number of outstanding I/Os on the queue described by the
IO-QTIME counter.
Counter type: Max queue.

ADAPTER-NAME

The logical name associated with the adapter in which the SAC resides. Logical names are
maintained by the system configuration database. The name is null-filled and null-terminated.

SAC-NAME

The logical name of the SAC used in this path to the physical disk. Logical names are maintained
by the system configuration database. The name is null-filled and null-terminated.
For IPC records, the Measure product generates this identifier instead of a SAC name:
IPC-CPUxx-TO-CPUyy

where xx is the linker CPU number and yy is the listener CPU number.

NODE-CLASS

Identifies the SAC type as defined in the system configuration database.

NODE-CLASS-S

Redefines NODE-CLASS as a four-character alphanumeric field. The possible values (blank filled
to four characters) are:
• “CLIM”
• “CLMI”
• “CLMS”

306 Entities and Counters

• “CLMO”
• "SCSI"
• "NIOC"
• "ENET"
• "SWAN"
• "IPC "
• "RIPC"
• "COLO"
• "MONT"
• "* "

NOTE: CLIM is a wildcard for all CLIM node classes.

GMS

The physical location address (group, module, or ServerNet node, and slot numbers). The GMS
field is divided into these subfields:
GROUP
MODULE or SVNET-NODE-NUMBER (redefines module)
SLOT
For IPC records, GROUP, MODULE, and SLOT all have values of 0.
SVNET-NODE-NUMBER is the ServerNet node number of the system with which the entity is
communicating.
You can use the keywords GROUP, MODULE, SVNET-NODE-NUMBER, and SLOT in the IF
and BY clauses of the LIST and LISTALL commands.

SUBDEVICE

Subdevice identifier for a particular SCSI device on a multifunction I/O board (MFIOB):

Device typeIdentifier

ServerNet bus interface (SBI)0

Internal SCSI Controller #11

Internal SCSI Controller #22

COMM and SP3

SP to SP communications4

External SCSI port controller5

For IPC records, SUBDEVICE applies to the destination (listener) processor. For more information,
see Usage Notes for SERVERNET Entities (page 310).

REMOTE-CPU

The number of the CPU on a remote ServerNet cluster with which the entity is communicating.
This redefines subdevice in the DDL record.

PF

The structure that holds the port and fiber fields.

SERVERNET 307

PORT

The port identifies a specific ServerNet connector within the ServerNet PIC (or within the
ServerNet Blade Switch on a NonStop BladeSystem) which the CLIM is connected to.

FIBER

(NonStop BladeSystems only.) The fiber identifies a specific connector within the ServerNet cable
the CLIM is connected to.

IO-QBUSY-TIME

The time spent in a state in which requests of any number or type were queued for this entity.
Counter type: Queue Busy.

READ-REQUESTS

The number of requests that transferred data from this entity into the CPU.
Counter type: Incrementing.

READ-BYTES

The total number of bytes transferred as a result of read requests or pull operations and the bytes
received in pre-push operations from the linker CPU.
Counter type: Accumulating.

READ-QTIME

The total time spent by read requests queued for this entity. With REPORT RATE ON, the average
number of read requests queued for this entity.
Counter type: Queue.

READ-QLEN-MAX

(Legacy Style only) The maximum number of requests on the read request queue since the counter
record was allocated.
Counter type: Max queue.

READ-QBUSY-TIME

The time spent in a state in which requests for data transfer from this entity to memory were
queued.
Counter type: Queue Busy.

WRITE-REQUESTS

The number of requests that transferred data from the CPU to this entity.
Counter type: Incrementing.

WRITE-BYTES

The total number of bytes transferred as a result of write requests.
Counter type: Accumulating.

WRITE-QTIME

The total time spent by write requests queued for this entity. With REPORT RATE ON, the
average number of write requests queued for this entity. For IPC and RIPC node class entities,
this counter has changed (as of G08 Measure) to include the entire time the linker waits for a
request to complete.

308 Entities and Counters

Counter type: Queue.

WRITE-QLEN-MAX

(Legacy Style only) The maximum number of requests on the write request queue since the
counter was allocated.
Counter type: Max queue.

WRITE-QBUSY-TIME

The time spent in a state in which requests for data transfer from memory to this entity were
queued.
Counter type: Queue Busy.

READ-CBYTES

For IPC and RIPC node classes, the total number of message system protocol control bytes
transferred to this processor as a result of requests. For a CLIM node class, the total number of
bytes in the incoming control requests from the CLIM into the CPU. In all cases, these control
bytes are not included in the counter READ-BYTES.
Counter type: Accumulating.

WRITE-CBYTES

For IPC and RIPC node classes, the total number of message system protocol control bytes
transferred to this processor as a result of requests. For a CLIM node class, the total number of
bytes in the outgoing control requests from the CPU into the CLIM. In all cases, these control
bytes are not included in the counter WRITE-BYTES.
Counter type: Accumulating.

SERVER-QTIME

The time (in microseconds) between the receipt of messages in this processor and the issuing of
replies. This value does not include READ-QTIME for ServerNet read operations to pull the
message system data to the CPU. The counter helps to isolate ServerNet latency time from the
time required for the receiving process to respond to a request. This applies only to IPC and
RIPC records.
Counter type: Accumulating.

SERVER-QLEN-MAX

(Legacy Style only) The maximum number of items on the queue described by the SERVER-QTIME
counter. This counter applies only to IPC and RIPC records.
In H-series and J-series RVUs, this counter has a value of 1.
Counter type: Max queue.

RETRIES

The number of times the message system tries to send a message before succeeding. This counter
applies only to IPC and RIPC records.
Counter type: Incrementing.

ACKS

The number of explicit acknowledgment messages sent. This counter applies only to IPC and
RIPC records.
Counter type: Incrementing.

SERVERNET 309

X-DEFRD-BUSY-TIME

The time (in microseconds) during which the message system was unable to switch from using
the Y fabric to using the X fabric. A large value for this counter can be the result of an outstanding
message on the Y fabric or a problem with the X fabric. This counter applies only to IPC and
RIPC records.
Counter type: Busy.

Y DEFRD-BUSY-TIME

The time (in microseconds) during which the message system was unable to switch from using
the X fabric to using the Y fabric. A large value for this counter can be the result of an outstanding
message on the X fabric or a problem with the Y fabric. This counter applies only to IPC and
RIPC records.
Counter type: Busy.

READ-CREQUESTS

For a CLIM, the number of incoming control requests from this entity into the CPU. This counter
appears in the NORMAL but not the BRIEF display. Counter type: Incrementing.

WRITE-CREQUESTS

For a CLIM, the number of outgoing control requests from the CPU into this entity. This counter
appears in the NORMAL but not the BRIEF display. Counter type: Incrementing.

Usage Notes for SERVERNET Entities
• The SERVERNET entity type provides a view of all ServerNet operations across a system.

When several devices share a SAC, the SERVERNET entity type measures combined activity.
• SUBSYSTEM-VERSION for ZMSSVNET records is provided by the specific subsystem

represented by the node^class of the record:
— For IPC and RIPC, the message system
— For SCSI and COLO, the SCSI module driver
— For NIOC, the SLSA module driver

• Some overlap exists between the SERVERNET entity type and the device entity types
(DEVICE, DISK, and so on) in cases where a single device is connected to a single controller.

• For storage SACs such as MFIOB devices, the IO-QBUSY-TIME counter is the most accurate
indicator of busy time and service time for each request. The READ-QBUSY-TIME and
WRITE-QBUSY-TIME counters provide similar data, but these two counters are somewhat
less accurate in the ServerNet environment due to request queuing.

• Interprocessor communications (IPC) activity is measured partially in the initiating processor
(called the linker) and partially in the receiving or replying processor (called the listener).
In each processor, one SERVERNET record tracks the linker activity with another processor,
and a second SERVERNET record tracks listener activity. The Measure performance monitor
generates this identifier in the SAC Name field for IPC SERVERNET records:
IPC-CPUxx-TO-CPUyy

where xx is the linker CPU number and yy is the listener CPU number.

• To support ServerNet cluster connections, the data in the linker and listener records have
changed to let the linker record (initiating processor) fully account for message traffic. This
support is accomplished by ensuring that both the linker and listener records count the same
number of message exchanges and corresponding bytes counts. The result of this change
allows for better accounting from the linker record because the listener record of a ServerNet
cluster connection will be in another node and not readily available in a Measure data file
from only one node.

310 Entities and Counters

Usage Notes for ServerNet IPC and RIPC
• Listener READ-BYTES can exceed the corresponding linker record WRITE-BYTES. This

occurs in cases of frequent message system MQC allocation failure, which causes a retransfer
of the message data.

• For pre-push (non-ServerNet cluster) messages, the count of READ-REQUESTS is not
incremented in the listener record. The count of READ-REQUESTS in the listener record
reflects the number of message system pull operations performed and is a subset of the
WRITE-REQUESTS counter. The comparison of READS and READ-BUSY-QTIME provides
an accurate measure of ServerNet latency for pull operations.

• With ServerNet cluster (which does not pre-push messages), when the remote processor or
listener is trying to satisfy a WRITE-REQUEST and the messages are large, the number of
READ-REQUESTS can potentially be double the number of REQUESTS. For messages larger
than readlinkcache size (for example, larger than 2048 bytes), the listener process performs
two pulls: one for control and one for data.

• The SERVER-QTIME counter in message system listener records measures the time between
the receipt of a message by the listener processor and the subsequent reply. When used in
conjunction with the WRITE-QTIME counter in the associated linker processor record, this
counter gives a measurement of the ServerNet latency for message system transfers. Average
message latency can be calculated by subtracting listener record SERVER-QTIME from linker
record WRITE-QTIME, then dividing by the linker record WRITE-REQUESTS.
Calculating average message latency:
WRITE-QTIME(linker) - SERVER-QTIME(listener)/WRITE-REQEUSTS(linker)

• Measure does not coordinate measurement intervals between systems. To calculate the
average message latency between processors in separate ServerNet clusters, calculate the
average SERVER-QTIME and WRITE-QTIME values in a similar interval and then subtract
the resulting values.

• High values of the RETRIES counter are expected for connections to NonStop S70000 servers
(NSR-G processors). Defects in the ServerNet interface (MITE) for these processors are
handled through software recovery. These problems are fixed in the NonStop S72000 servers
(NSR-T processors), but the S72000 servers might still report high numbers of RETRIES
when communicating with NonStop S70000 servers (NSR-G processors).

• In some cases, when the remote processor or listener is trying to satisfy a WRITE-REQUEST
and the messages are very large, the number of READ-REQUESTS can potentially be double
the number of REQUESTS. For messages larger than readlinkcache size (for example, larger
than 2048 bytes), the listener process performs two pulls: one for control and one for data.

Usage Notes for CLIMs
• Starting with the Measure H03 and J01 PVUs, Measure supports the CLIM node-class

specifications CLMI for IP CLIMs and CLMS for storage CLIMs. For these node classes, the
optional fourth specification after node-class is port. For non-CLIM node classes, it is
subdevice.
Starting with the Measure H04 and J02 PVUs, Measure supports the CLIM node-class
specification CLMO for Telco CLIMs.
CLIM is a wildcard for all CLIM node classes.
Except for NonStop BladeSystems, each CLIM is uniquely identified by
group-module-slot-port, which identifies the CLIM in terms of the physical location of the
P-Switch it is connected to and the port on which it is connected. The group (system enclosure)
and module (subset of a group) identifies the P-Switch. The slot (physical, labeled space in
a module) identifies a particular ServerNet PIC within that P-Switch and the port. The port

SERVERNET 311

identifies a specific ServerNet connector within the ServerNet PIC the CLIM is connected
to. NonStop BladeSystems require the additional fiber number to identify a CLIM.

• The activity for each storage CLIM is reported in two SERVERNET records. One reports
activity from the Storage subsystem; the other reports activity from the CIP subsystem.
The Storage subsystem record will report IO activity (READ-BYTES, WRITE-BYTES,
READ-REQUESTS, WRITE-REQUESTS and various Queue counters) for all the devices
supported by the CLIM. It will not report any Control IO activity (READ-CBYTES,
WRITE-CBYTES, READ-CREQUESTS and WRITE-CREQUESTS counters).
The CIP subsystem will report Control IO activity performed with the CLIM and will not
report any IO activity. Normally, the Control IO activity is just the low frequency pings
between the CIP subsystem and the CLIM.
Here are examples of two report records for a storage CLIM; the first is from the CIP
subsystem, the second is from the Storage subsystem.
This is the example from the CIP subsystem:
SAC C1002531
Adpt C1002531
CPU 6 Node Class CLMS GMS 100,2,5 Port 3 Fiber 1
Format Version: H04 Data Version: H04 Subsystem Version: 1
Local System \BLNSK2 From 26 Mar 2009, 17:13:10 For 33.6 Seconds
--
Requests 12 # Total-IO-Bytes 672 #
IO-Qtime IO-Qbusy-Time
--------- Data into this CPU -------- --------- Data out from this CPU ----
Read-Requests Write-Requests
Read-Bytes Write-Bytes
Read-Cbytes 336 # Write-Cbytes 336 #
Read-Qtime Write-Qtime
Read-Qbusy-Time Write-Qbusy-Time
Read-Crequests 6 # Write-Crequests 6 #
--
Server-Qtime
Retries Acks
X-Defrd-Busy-Time Y-Defrd-Busy-Time

This is the example from the Storage subsystem:
SAC C1002531
Adpt C1002531
CPU 6 Node Class CLMS GMS 100,2,5 Port 3 Fiber 1
Format Version: H04 Data Version: H04 Subsystem Version: 1
Local System \BLNSK2 From 26 Mar 2009, 17:13:10 For 33.6 Seconds
--
Requests 2,520 # Total-IO-Bytes 82,281,472 #
IO-Qtime 1.18 sec IO-Qbusy-Time 1.17 sec
--------- Data into this CPU -------- --------- Data out from this CPU ----
Read-Requests 2,514 # Write-Requests 6 #
Read-Bytes 82,231,808 # Write-Bytes 49,664 #
Read-Cbytes Write-Cbytes
Read-Qtime 1.14 sec Write-Qtime 36.71 ms
Read-Qbusy-Time 1.14 sec Write-Qbusy-Time 36.71 ms
Read-Crequests Write-Crequests
--
Server-Qtime
Retries Acks
X-Defrd-Busy-Time Y-Defrd-Busy-Time

Examples of Configuring Measurements for ServerNet Cluster
The ADD, DELETE, LIST, LISTACTIVE and LISTALL, commands can refer to one or more
SERVERNET entities. Although this example uses the ADD command, the DELETE, LIST,

312 Entities and Counters

LISTACTIVE and LISTALL commands all share the same command syntax for configuring or
displaying measurements on remote ServerNet cluster activity.

Measures All Remote IPC Activity Between...Command

All CPUs on the local system and all CPUs on all remote ServerNet
clusters

ADD SERVERNET *(RIPC)

All CPUs on the local system and all CPUs on remote ServerNet node
number 4

ADD SERVERNET *(RIPC,*,4)

All CPUs on the local system and CPU 5 on remote ServerNet node
number 4

ADD SERVERNET *(RIPC,*,4,*,5)

CPU 1 on the local system and all CPUs on the remote ServerNet node
number 4

ADD SERVERNET *(RIPC,*,4)

CPU 1 on the local system and CPU 0 on the remote ServerNet node
number 4

ADD SERVERNET 1(RIPC,*,4,*,0)

Examples of Configuring Measurements for CLIMs
The ADD, DELETE, LIST, LISTACTIVE and LISTALL, commands can refer to one or more
SERVERNET entities. Although this example uses the ADD command, the DELETE, LIST,
LISTACTIVE and LISTALL commands all share the same command syntax for configuring or
displaying measurements on remote ServerNet cluster activity.

Measures...Command

All CLIMs on all CPUsADD SERVERNET *(CLIM)

All CLIMs in CPU 1ADD SERVERNET 1 (CLIM)

All ports on all storage CLIMs with GMS equal to 1,2,3 in all CPUsADD SERVERNET * (CLMS,1,2,3)

Port 1 on all IP CLIMs with GMS equal to 1,2,3 in all CPUsADD SERVERNET * (CLMI,1,2,3,1)

Port 8, fiber 1 on all IP CLIMs with GMS equal to 1,2,3 in all CPUsADD SERVERNET * (CLMI,1,2,3,8,1)

All Telco CLIMs on all CPUsADD SERVERNET * (CLMO)

SQLPROC
The SQLPROC entity type provides information about one or more SQL processes. There is one
SQLPROC counter record for each SQL process.
In Measure G09 and later PVUs, the SQLPROC entity allows the use of OSS file pathnames.

PageTopic

313Entity specification syntax

315DDL record for SQLPROC entities (Legacy Style)

316DDL record for SQLPROC entities (ZMS Style)

319Usage note for new format SQLPROC entities

Entity Specification Syntax for SQLPROC Entities
To describe the SQLPROC entity:
SQLPROC entity-spec

SQLPROC 313

SQLPROC
collects information about one or more SQL processes on the local system.
entity-spec

is specified as:
{ * }
{ $process-name [(pid)] }
{ disk-filename [(pid)] }
{ "pname" [(pid)] }
{ pid }

*
measures all SQL processes on the local system.

$process-name
is the name of the SQL process to be measured.

pid

is a process identifier. The process identifier identifies the owner of the SQL process to
be measured. Specify pid by using these two variables:
{ cpu,pin }

cpu

is the number of the CPU on which the SQL process is running .
pin

is the process identification number of the SQL process. To indicate all PINs, use an
asterisk (*).

disk-filename

is the name of the object file that contains the SQL/MP code to be measured. This file
must be the object file of a running process. Specify the disk-file name as:
{ [\system.]$device.subvol.filename[:CRVSN] }
{ subvol-name.filename[:CRVSN] }
{ filename[:CRVSN] }

$device
is the volume (device) name. To indicate all volumes, use an asterisk (*). The default
is the current default volume.

subvol

is the subvolume name. To indicate all subvolumes, use an asterisk (*). The default
is the current default subvolume.

filename

is the file name. To indicate all files (except temporary files), use an asterisk (*).
:CRVSN

in Measure G10 and later, is the timestamp, creation version serial number, or file
name extension, necessary to form a unique file name. Use this option to guarantee
file name uniqueness. The CRVSN is available from the Measure report and the
LISTGNAME command.

"pname"
can be either a fully qualified or partial OSS file pathname. An OSS file pathname that
does not begin with a slash (/) is considered to be a partial pathname and is expanded
by prefacing it with the current setting for OSSPATH.

314 Entities and Counters

NOTE: OSS file pathnames are case-sensitive and must be specified within double
quotation marks (" "). Valid OSS file pathnames can refer to specific files or to a set of
files within a specific directory. If a directory is specified, only files in that directory are
included. Files in directories subordinate to the specified directory are not included.

DDL Record for SQLPROC Entities (Legacy Style)
This is the Legacy Style DDL record for SQLPROC entities. This record will not change after the
G10 Measure PVU.
The fields included in BRIEF reports are in boldface type.
RECORD sqlproc. FILE is "sqlproc" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 pin type binary 16 unsigned.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 priority type binary 16 unsigned.
 02 userid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
* counter value items:
02 sql-obj-recompiles type binary 16 unsigned.
 02 sql-obj-recompile-time type binary 64.
02 sql-stmt-recompiles type binary 16 unsigned.
 02 sql-stmt-recompile-time type binary 64.
02 sql-newprocesses type binary 16 unsigned.
 02 sql-newprocess-time type binary 64.
02 opens type binary 16 unsigned.
 02 open-time type binary 64.
 02 creatorid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
* new entity identification items for D10:
 02 ancestor-cpu type binary 16 unsigned.
 02 ancestor-pin type binary 16 unsigned.
 02 ancestor-sysname type character 8.
 02 ancestor-process-name type character 8.
* SMS changes:
 02 device-name type character 8.
* new identifiers for OSS file pathname support:
 02 osspid type binary 32 unsigned.
 02 program-file-name-mid.
 03 pathid type character 24.
 03 crvsn type character 6.
* New identifiers for NetBatch Job Control:
 02 GMOM.
 03 GMOM-node type binary 16 unsigned.
 03 GMOM-cpu type binary 16 unsigned.
 03 GMOM-pin type binary 16 unsigned.
 03 GMOM-jobid type binary 16 unsigned.
 02 GMOM-full-id type binary 64

SQLPROC 315

 redefines GMOM.
 02 GMOM-sysname type character 8.
 02 GMOM-process-name type character 8.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for SQLPROC Entities (ZMS Style)
The ZMS style DDL record for SQLPROC entities is supported in Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmssqlp-id.
 02 pin type binary 16 unsigned.
 02 priority type binary 16 unsigned.
 02 userid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 creatorid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 osspid type binary 32 unsigned.
 02 ancestor-cpu type binary 16 unsigned.
 02 ancestor-pin type binary 16 unsigned.
 02 ancestor-sysname type character 8.
 02 ancestor-process-name type character 8.
 02 device-name type character 8.
 02 program-file-name-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 reserved-1 type character 2.
 02 GMOM.
 03 GMOM-node type binary 16 unsigned.
 03 GMOM-cpu type binary 16 unsigned.
 03 GMOM-pin type binary 16 unsigned.
 03 GMOM-jobid type binary 16 unsigned.
 02 GMOM-full-id type binary 64
 redefines GMOM.
 02 GMOM-sysname type character 8.
 02 GMOM-process-name type character 8.
end

Counter Fields DDL Definition
DEFINITION zmssqlp-ctrs.
 02 sql-obj-recompiles type binary 64.
 02 sql-obj-recompile-time type binary 64.
 02 sql-stmt-recompiles type binary 64.
 02 sql-stmt-recompile-time type binary 64.
 02 sql-newprocesses type binary 64.
 02 sql-newprocess-time type binary 64.
 02 opens type binary 64.
 02 open-time type binary 64.
end

316 Entities and Counters

DDL Record Description Fields
RECORD zmssqlp. FILE is "zmssqlp" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmssqlp-ctrs.
 02 id type zmssqlp-id.
end

PIN

Process identification number of the measured SQL process.

PROCESS-NAME

Name of the SQL process.

PROGRAM-FILE-NAME

Name of the object file the process is executing. This field is divided into three subfields: VOLUME,
SUBVOL, and FILENAME. The name can apply to either a NonStop file or an SMF file.
For NonStop files, PROGRAM-FILE-NAME represents the physical file name that was specified
when the process was executed. The VOLUME subfield gives the device name of the physical
volume on which the disk file is located.
For SMF files, PROGRAM-FILE-NAME represents a location-independent logical file name that
was used when the process was executed. The device location of the physical file that corresponds
to the logical file name is stored in the DEVICE-NAME field.

PRIORITY

Creation priority of the process. Changing process priority using the ALTPRI command does
not affect this value.

USERID

Process accessor ID (PAID) of the process.

SQL-OBJ-RECOMPILES

The number of objects recompiled for this process. SQL/MX does not support this counter.
Counter type: Incrementing.

SQL-OBJ-RECOMPILE-TIME

The time this process spent recompiling objects. SQL/MX does not support this counter.
Counter type: Elapsed.

SQL-STMT-RECOMPILES

Number of statements recompiled for this process. The SQL-STMT-RECOMPILES counter is
incremented when a similarity check fails and automatic recompilation happens. Similarity
checks and automatic recompilation are explained in the SQL/MX ProgrammingManual for C and
COBOL.
Counter type: Incrementing.

SQL-STMT-RECOMPILE-TIME

The time this process spent recompiling statements.
Counter type: Elapsed.

SQL-NEWPROCESSES

Number of NEWPROCESS calls generated by the SQL executor on behalf of this process.

SQLPROC 317

Counter type: Incrementing.

SQL-NEWPROCESS-TIME

The time this process spent doing SQL-NEWPROCESS.
Counter type: Elapsed.

OPENS

Number of OPEN calls performed by the SQL executor on behalf of this process.
Counter type: Incrementing.

OPEN-TIME

The time this process spent doing OPENs.
Counter type: Elapsed.

CREATORID

Creator access ID (CAID). This field identifies the creator of the process and is divided into two
subfields: GROUP and USER.

ANCESTOR-CPU

Number of the CPU on which the ancestor process resides.

ANCESTOR-PIN

Process identification number of the ancestor process.

ANCESTOR-SYSNAME

Name of the system on which the ancestor process resides.

ANCESTOR-PROCESS-NAME

Name of the ancestor process. The report header displays the ancestor information. If this
information cannot be obtained, the string “unknown” appears.

DEVICE-NAME

Disk device on which the program file is located. For SMF files, this field provides the physical
location that corresponds to the logical file name. For NonStop files, this field is the same as the
PROGRAM-FILE-NAME VOLUME subfield.

OSSPID

If the process runs in the OSS environment, this field contains the OSS process ID. For non-OSS
processes, this field contains zeros.

PROGRAM-FILE-NAME-MID

FILE-NAME-MID has two subfields: PATHID and CRVSN. PATHID is an internal format
representation of an OSS file pathname. For non-OSS files, this field contains zeros. CRVSN is a
creation version serial number that identifies a unique instance of an OSS file. For non-OSS files,
this field contains zeros.

GMOM-NODE

The Expand node number of the GMOM process if this process is part of a NETBATCH job and
if the GMOM process is remote; otherwise zero.

318 Entities and Counters

GMOM-CPU

The processor number of the GMOM process, if this process is part of a NETBATCH job; otherwise
zero.

GMOM-PIN

The PIN of the GMOM process if this process is part of a NETBATCH job; otherwise zero.

GMOM-JOBID

The job ID of the NETBATCH job that initiated this process, assigned by the indicated GMOM;
otherwise zero.

GMOM-FULL-ID

A 64-bit redefinition of the individual GMOM fields as a single value. Zero indicates the process
is not part of a NETBATCH job stream.

GMOM-SYSNAME

The Expand system name of the GMOM node if the GMOM process is remote; otherwise spaces.

GMOM-PROCESS-NAME

The name of the GMOM process that initiated the NETBATCH job that in turn initiated this
process; otherwise spaces.

Usage Note for New Format SQLPROC Entities
SUBSYSTEM-VERSION for ZMSSQLP records is provided by the SQL/MP or SQL/MX subsystem.

SQLSTMT
The SQLSTMT entity type provides information about all SQL statements within the SQL process.
There is one SQLSTMT counter record for each SQL statement in each procedure or module of
a program that contains SQL function.

NOTE: Overhead cost for measuring SQL statements is higher than the cost of measuring other
entities. A practical use is to measure SQLSTMT periodically for application-program performance
tuning only. Be sure to configure SQLSTMT to measure only the programs to be examined.

In Measure G09 and later PVUs, SQLSTMT entity operation supports SQL/MX and OSS file
pathnames. SQL/MX program objects and run units are defined only in the OSS file system space.
In the SQL/MP environment, SQL procedures and run units are part of the program object file
that executes them. In SQL/MX, however, SQL procedures and modules are compiled and stored
separately from the program object file that executes them.
In Measure G11 and later PVUs, the SQLSTMT entity displays ANSI SQL names in SQLSTMT
reports. In Measure H01 and later PVUs, MEASCOM LIST commands accept ANSI SQL/MX
release 2 module object names (run unit names) in SQLSTMT entity specifications.
SQL/MX module names (previously called run unit names), can be:

Length (In Characters)Measure PVUs

Up to 128G10 and earlier

Up to 784G11 and later

SQLSTMT 319

If specific module names are not specified in SQL/MX, a system-generated name based on the
Julian timestamp at the time of preprocessing will be assigned. For information regarding the
naming and indexing of statements in SQL/MX modules, see the preprocessor output file.

PageTopic

320Entity specification syntax

322DDL record for SQLSTMT entities (Legacy Style)

323DDL record for SQLSTMT entities (ZMS Style)

329Usage notes for all SQLSTMT entities

Entity Specification Syntax for SQLSTMT Entities
To describe the SQLSTMT entity:
SQLSTMT entity-spec

SQLSTMT
collects information about SQL statements within the SQL process.

entity-spec

For the ADD and DELETE commands, specify entity-spec as:
{ * }
{ $process-name [(pid)] }
{ disk-filename [(pid)] }
{ pid }

For the LIST command, specify entity-spec as:
{* ["run unit"[,#index]] }
{* ["run unit"[[Index]#index]] }
{ $process-name [(pid)] ["run unit"[,#index]] }
{ $process-name [(pid)] ["run unit"[Index]#index]] }
{ disk-filename [(pid)] ["run unit"[,#index]] }
{ disk-filename [(pid)] ["run unit"[[Index] #index]]}
{ "pname" [(pid)] ["run unit"[,#index]] }
{ "pname" [(pid)] ["run unit"[[Index] #index]] }
{ pid ["run unit"[,#index]]}
{ pid ["run unit"[[Index] #index]] }

For the LISTACTIVE command, specify entity-spec as:
{ $process-name (pid) "run unit", #index }
{ $process-name (pid) "run unit" [Index] #index }
{ disk-filename (pid) "run unit", #index }
{ disk-filename (pid) "run unit", [Index] #index }
{ "pname" (pid) "run unit", #index }
{ "pname" (pid) "run unit" [Index] #index }
{ pid "run unit", #index }
{ pid "run unit" [Index] #index }

*
measures all SQL statements in all processes on the local system.

$process-name
is the name of the process that contains the SQL statements to be measured.

pid

is a process identifier. The process identifier identifies the owner of the process to be
measured. Specify pid by using these two variables:
{ cpu,pin }

cpu

is the number of the CPU on which the process is running.

320 Entities and Counters

pin

is the process identification number of the process. To indicate all PINs, use an asterisk
(*).

run-unit

in pre-G09 Measure PVUs, is the name of a procedure to be measured. For example:
LIST SQLSTMT * “max32bytelongrununitname”

in Measure G09 and later PVUs:
• is the SQL/MP procedure name of up to 32 characters, enclosed in double quotes.

For example:
LIST SQLSTMT * “max32bytelongrununitname”
LISTACTIVE SQLSTMT 3,99 “max32bytelongrununitname”, #1

• is the SQL/MX Release 1 module name of up to 128 characters, enclosed in double
quotes. For example:
LIST SQLSTMT * “max128bytelongrununitname”
LISTACTIVE SQLSTMT 3,99 “max128bytelongrununitname”, #1

in Measure H01 and later PVUs:
• is the SQL/MX Release 2 module name with only undelimited identifiers of up to

128 bytes, enclosed in double quotes. For example:
LIST SQLSTMT * “catA.schemaB.moduleM”

• is the SQL/MX Release 2 module name with a maximum length as supported by
SQL/MX (currently up to 783 characters), enclosed in single quotes. For example:
LIST SQLSTMT * ‘catA.”schema%B”.moduleM’
LIST SQLSTMT * ‘moduleM’
LISTACTIVE SQLSTMT 3,99 ‘catA.”schema%B”.moduleM’, #1

Index

is optional. For Measure G09 and later PVUs, if used, Index enables use of the run unit
and index values (displayed in SQLSTMT reports) for cut-and-paste applications.

index

is the index number of the statement to be measured. If omitted, all current indexed
statements are measured.

disk-filename

is the name of an object file that contains SQL code to be measured. This file must be the
object file of a running process. Specify the disk-file name as:
{ [\system.]$device.subvol.filename[:CRVSN]}
{ subvol.filename[:CRVSN] }
{ filename[:CRVSN] }

\system
is the system name. To indicate all devices, use an asterisk (*). The default is the
current default system.

$device
is the volume (device) name. To indicate all volumes, use an asterisk (*). The default
is the current default volume.

subvol

is the subvolume name. To indicate all subvolumes, use an asterisk (*). The default
is the current default subvolume.

filename

is the object file name. To indicate all files (except temporary files), use an asterisk
(*).

SQLSTMT 321

:CRVSN
in Measure G10 and later PVUs, is the timestamp, creation version serial number, or
file name extension necessary to form a unique file name. Use this option to guarantee
file name uniqueness. The CRVSN is available from the Measure report and the
LISTGNAME command.

"pname"
in Measure G09 and later PVUs, can be either a fully qualified or partial OSS file pathname.
To get a fully qualified and valid OSS file pathname, combine pname with the current
OSSPATH setting. If the OSS file pathname does not begin with a backslash (/), expand
it by putting the current setting for OSSPATH in front of the backslash.

NOTE: OSS file pathnames are case-sensitive and must be specified within double
quotation marks (" "). Valid OSS file pathnames can refer to specific files or to a set of
files within a specific directory. If a directory is specified, only files in that directory are
included. Files in directories subordinate to the specified directory are not included.

DDL Record for SQLSTMT Entities (Legacy Style)
This is the Legacy Style DDL record for SQLSTMT entities. This record will not change after the
G10 Measure PVU.
The fields included in BRIEF reports are in boldface type.
RECORD sqlstmt. FILE is "sqlstmt" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 pin type binary 16 unsigned.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 priority type binary 16 unsigned.
 02 userid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
* counter record identifiers and counter values:
 02 run-unit type character 32.
 02 statement-index type binary 16 unsigned.
02 calls type binary 32.
02 elapsed-busy-time type binary 64.

 02 records-used type binary 32 unsigned.
 02 records-accessed type binary 32 unsigned.
02 disc-reads type binary 32 unsigned.

 02 messages type binary 32 unsigned.
 02 message-bytes type binary 32 unsigned.
02 sorts type binary 16 unsigned.

 02 elapsed-sort-time type binary 64.
02 recompiles type binary 16 unsigned.

 02 elapsed-recompile-time type binary 64.
 02 lock-waits type binary 16 unsigned.
 02 timeouts type binary 16 unsigned.
 02 escalations type binary 16 unsigned.
 02 creatorid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
* new entity identification items for D10:
 02 ancestor-cpu type binary 16 unsigned.
 02 ancestor-pin type binary 16 unsigned.

322 Entities and Counters

 02 ancestor-sysname type character 8.
 02 ancestor-process-name type character 8.

* SMS changes:
 02 device-name type character 8.

* F40 new counter value items:
 02 message-bytes-f type binary 64.
* G02 new counter value items:
 02 calls-f type binary 64.
 02 records-used-f type binary 64.
 02 records-accessed-f type binary 64.
 02 disc-reads-f type binary 64.
 02 messages-f type binary 64.*

New identifiers for OSS file pathname suport:
 02 osspid type binary 32 unsigned.
 02 program-file-name-mid.
 03 pathid type character 24.
 03 crvsn type character 6.

* New identifiers for SQL/128Support
 02 run-unit-128 type character 128.

* New identifiers for NetBatch Job Control:
 02 GMOM.
 03 GMOM-node type binary 16 unsigned.
 03 GMOM-cpu type binary 16 unsigned.
 03 GMOM-pin type binary 16 unsigned.
 03 GMOM-jobid type binary 16 unsigned.
 02 GMOM-full-id type binary 64
 redefines GMOM.
 02 GMOM-sysname type character 8.
 02 GMOM-process-name type character 8.

* New Version Field
 02 VERSION type binary 16 unsigned.
 02 CREATOR-TYPE type binary 16 unsigned.

* New identifiers for full ANSI SQL name
 02 FULL-NAME-OFFSET type binary 16 unsigned.
 02 FULL-NAME-LEN type binary 16 unsigned.

* Variable data goes here, pointed to by VARSTRING (offset/length)

* VAR-DATA needs to be defined for the maximum expected variable length data.

 02 FULL-NAME type character 784.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for SQLSTMT Entities (ZMS Style)
The ZMS style DDL record for SQLSTMT entities is supported in Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmssqls-id.
 02 pin type binary 16 unsigned.
 02 priority type binary 16 unsigned.
 02 userid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 creatorid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 process-name type character 8.

SQLSTMT 323

 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 osspid type binary 32 unsigned.
 02 ancestor-cpu type binary 16 unsigned.
 02 ancestor-pin type binary 16 unsigned.
 02 ancestor-sysname type character 8.
 02 ancestor-process-name type character 8.
 02 device-name type character 8.
 02 program-file-name-MID.
 03 PATHID type character 24.
 03 CRVSN type character 6.
 02 statement-index type binary 16 unsigned.
 02 GMOM.
 03 GMOM-node type binary 16 unsigned.
 03 GMOM-cpu type binary 16 unsigned.
 03 GMOM-pin type binary 16 unsigned.
 03 GMOM-jobid type binary 16 unsigned.
 02 GMOM-full-id type binary 64
 redefines GMOM.
 02 GMOM-sysname type character 8.
 02 GMOM-process-name type character 8.
 02 version type binary 16 unsigned.
 02 creator-type type binary 16 unsigned.
 02 run-unit-len type binary 16 unsigned.
 02 reserved-1 type character 2.
 02 run-unit type character 784.
end

Counter Fields DDL Definition
DEFINITION zmssqls-ctrs.
 02 calls type binary 64.
 02 elapsed-busy-time type binary 64.
 02 records-used type binary 64.
 02 records-accessed type binary 64.
 02 disc-reads type binary 64.
 02 messages type binary 64.
 02 message-bytes type binary 64.
 02 sorts type binary 64.
 02 elapsed-sort-time type binary 64.
 02 recompiles type binary 64.
 02 elapsed-recompile-time type binary 64.
 02 lock-waits type binary 64.
 02 timeouts type binary 64.
 02 escalations type binary 64.
end

DDL Record Description Fields
RECORD zmssqls. FILE is "zmssqls" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmssqls-ctrs.
 02 id type zmssqls-id.
end

PIN

Process identification number of the measured process.

PROCESS-NAME

Name of the measured process.

324 Entities and Counters

PROGRAM-FILE-NAME

Name of the object file for the measured process. This field is divided into three subfields:
VOLUME, SUBVOL, and FILENAME. The name can apply to either a NonStop file or an SMF
file.
For NonStop files, PROGRAM-FILE-NAME represents the physical file name that was specified
when the process was executed. The VOLUME subfield gives the device name of the physical
volume on which the disk file is located.
For SMF files, PROGRAM-FILE-NAME represents a location-independent logical file name that
was used when the process was executed. The device location of the physical file that corresponds
to the logical file name is stored in the DEVICE-NAME field.

PRIORITY

Creation priority of the measured process. Changing a process priority using the ALTPRI
command does not affect this value.

USERID

Process accessor ID of the measured process.

RUN-UNIT

Name of the procedure that contains the measured SQL statement. For SQL/MX, if the actual
name of the procedure exceeds the 32 characters allowed, a field overflow is reported in the
ERROR field and only the least-significant 31 bytes (preceded by a tilde (~)) are included. You
can obtain the full name from the run-unit-128 field. See DDL Record for SQLSTMT Entities
(Legacy Style) (page 322).

STATEMENT-INDEX

Statement index number (0-255) within the specified run unit. These numbers correspond to the
section location table (SLT) index numbers on compiler listings. Use the SLT index to correlate
the STATEMENT-INDEX number with the corresponding EXEC SQL statement in the source
code.
To determine the SLT index number for each SQL statement, use the SQLMAP option of the SQL
compiler directive. The SQLMAP option causes the SQL map to appear at the end of the listing.
The SQL map is a table that shows the SLT index number for each SQL statement, along with
the source file name and the line number.
For more information, see the SQL/MP programming manual for the language you are using.

CALLS

Number of times the measured SQL statement was executed.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, it is a 64-bit
counter.
For G-series RVUs, the CALLS-F field is a 64-bit version of CALLS.
Counter type: Incrementing.

ELAPSED-BUSY-TIME

The time the process spent executing the measured SQL statement.
If REPORT RATE is on, the output value is the percent of time busy during the interval.
You can calculate the average elapsed time for each call by dividing the ELAPSED-BUSY-TIME
counter value by the CALLS counter value.
Counter type: Elapsed.

SQLSTMT 325

RECORDS-USED

Number of records inserted, updated, deleted, or read by the SQL executor through this statement.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, it is a 64-bit
counter.
For G-series RVUs, the RECORDS-USED-F field is a 64-bit version of RECORDS-USED.
Counter type: Accumulating.

RECORDS-ACCESSED

Number of records accessed by the disk process or file system to evaluate this statement.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, it is a 64-bit
counter.
For G-series RVUs, the RECORDS-ACCESSED-F field is a 64-bit version of RECORDS-ACCESSED.
Counter type: Accumulating.

DISC-READS

Number of physical disk reads performed for this statement. If the REPORT RATE value is on,
the rate is disk reads for each second.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, it is a 64-bit
counter.
For G-series RVUs, the DISC-READS-F field is a 64-bit version of DISC-READS.
Counter type: Incrementing.

MESSAGES

Number of messages sent by the system on behalf of this statement, including messages sent by
the file system to the disk process and messages sent by the SQL executor to the SQL compiler
for recompiles.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, it is a 64-bit
counter.
For G-series RVUs, the MESSAGES-F field is a 64-bit version of MESSAGES.
Counter type: Incrementing.

MESSAGE-BYTES

Number of message bytes sent for this statement by the system. This counter accumulates the
number of bytes sent for the messages reported by the MESSAGES counter.
For G-series and earlier RVUs, this is a 32-bit counter. For H-series and J-series RVUs, it is a 64-bit
counter.
For G-series RVUs, the MESSAGE-BYTES-F field is a 64-bit version of MESSAGE-BYTES.
Counter type: Accumulating.

SORTS

Number of times an external sort process was invoked for this statement.
Counter type: Incrementing.

ELAPSED-SORT-TIME

The time spent by the process on sorts for this statement.
Counter type: Elapsed.

326 Entities and Counters

RECOMPILES

Number of times the statement was recompiled.
Counter type: Incrementing.

ELAPSED-RECOMPILE-TIME

The time the process spent recompiling this statement.
Counter type: Elapsed.

LOCK-WAITS

Number of times this statement waited for a lock request.
Counter type: Incrementing.

TIMEOUTS

Number of times a request timed out. A timeout is caused by either a lock-wait or a congested
disk process or network.
Counter type: Incrementing.

ESCALATIONS

Number of times a record lock was escalated to a file lock.
Counter type: Incrementing.

CREATORID

Creator access ID (CAID). This field identifies the creator of the process and is divided into two
subfields: GROUP and USER.

ANCESTOR-CPU

Number of the CPU on which the ancestor process resides.

ANCESTOR-PIN

Process identification number of the ancestor process.

ANCESTOR-SYSNAME

Name of the system on which the ancestor process resides.

ANCESTOR-PROCESS-NAME

Name of the ancestor process.

DEVICE-NAME

Disk device on which the program file is located. For SMF files, this field provides the physical
location that corresponds to the logical file name. For NonStop files, this field is the same as the
FILE-NAME VOLUME subfield.

MESSAGE-BYTES-F

(G-series, Legacy Style only) Same as MESSAGE-BYTES but accommodates larger values (64 bits
rather than 32).

CALLS-F

(G-series, Legacy Style only) Same as CALLS but accommodates larger values (64 bits rather
than 32).

SQLSTMT 327

RECORDS-USED-F

(G-series, Legacy Style only) Same as RECORDS-USED but accommodates larger values (64 bits
rather than 32).

RECORDS-ACCESSED-F

(G-series, Legacy Style only) Same as RECORDS-ACCESSED but accommodates larger values
(64 bits rather than 32).

DISC-READS-F

(G-series, Legacy Style only) Same as DISC-READS but accommodates larger values (64 bits
rather than 32).

MESSAGES-F

(G-series, Legacy Style only) Same as MESSAGES but accommodates larger values (64 bits rather
than 32).

OSSPID

If the process runs in the OSS environment, this field contains the OSS process ID. If OSSPID is
a non-OSS process, this field contains zeros.

PROGRAM-FILE-NAME-MID

FILE-NAME-MID has two subfields: PATHID and CRVSN. PATHID is an internal format
representation of an OSS file pathname. For non-OSS files, this field contains zeros. CRVSN is a
creation version serial number that identifies a unique instance of an OSS file. For non-OSS files,
this field contains zeros.

RUN-UNIT-128

(Legacy Style only) Name of the SQL/MP procedure or SQL/MX module that contains the
measured SQL statement.

GMOM-NODE

The Expand node number of the GMOM process if this process is part of a NETBATCH job and
if the GMOM process is remote; otherwise zero.

GMOM-CPU

The processor number of the GMOM process if this process is part of a NETBATCH job; otherwise
zero.

GMOM-PIN

The PIN of the GMOM process if this process is part of a NETBATCH job; otherwise zero.

GMOM-JOBID

The job ID of the NETBATCH job that initiated this process, assigned by the indicated GMOM;
otherwise zero.

GMOM-FULL-ID

A 64-bit redefinition of the individual GMOM fields as a single value. Zero indicates the process
is not part of a NETBATCH job stream.

GMOM-SYSNAME

The Expand system name of the GMOM node if the GMOM process is remote; otherwise spaces.

328 Entities and Counters

GMOM-PROCESS-NAME

The name of the GMOM process that initiated the NETBATCH job that in turn initiated this
process; otherwise spaces.

VERSION

The record version: 0, 1, 2 = not used. 3 = G11 PVU.

CREATOR-TYPE

The creator type: 0 = not used. 1 = SQL/MP. 2 = SQL/MX 1.x. 3 = SQL/MX 2.x.

RUN-UNIT-LEN

The length, in bytes, of the external-format ANSI SQL name stored in the RUN-UNIT field. The
maximum value is 783.

RUN-UNIT

The left-justified external-format ANSI SQL name. The field is defined as 784 characters (rounded
up for alignment reasons), but the length of the actual name is reported in RUN-UNIT-LEN.
Remaining characters are initialized with zeros.

FULL-NAME-OFFSET

The offset, in bytes, from the beginning of the SQLSTMT record of the FULL-NAME field.

FULL-NAME-LEN

The length, in bytes, of the external-format ANSI SQL name stored in the FULL-NAME field.
The maximum value is 783.

FULL-NAME

The left-justified external-format ANSI SQL name. This field is defined as 784 characters, but the
length of the actual name is reported in FULL-NAME-LEN. Remaining characters are undefined.

Usage Notes for All SQLSTMT Entities
• You do not need to explicitly add the SQLPROC entity for the SQLSTMT entity. When you

add the SQLSTMT entity to a measurement, the corresponding SQLPROC entity is
automatically added for the measured process. You can use the SQLPROC entity to get more
information about the measured SQL process. However, Measure does not automatically
add the PROCESS entity when the SQLSTMT entity is added. If PROCESS entity information
is also required, you must specifically add the PROCESS entity.

• SUBSYSTEM-VERSION for ZMSSQLS records is provided by the SQL/MP or SQL/MX
subsystem.
In G-series, the 64-bit byte-count fields (fields ending in -F) collect the same data as older
32-bit byte-count fields. For example, the 64-bit field MESSAGE-BYTES-F collects the same
data as the 32-bit field MESSAGE-BYTES. The 64-bit fields are less subject to overflow caused
by high levels of I/O activity.
The 32-bit fields are currently active and continue to return values. (A field overflow is
indicated by a value of -1 in both the field that has overflowed and in the ERROR field for
the measured entity.) However, you should convert your applications to use the 64-bit fields.
32-bit fields might be deactivated in a future RVU.
In MEASCOM commands and in command (OBEY) files, use the names of the 32-bit fields.
For example, issue the command LIST DEVICE BY INPUT-BYTES, not LIST DEVICE BY
INPUT-BYTES-F. MEASCOM uses the names of the 32-bit fields in output displays such as
reports and plots.

SQLSTMT 329

• In H-series and J-series, all byte-count fields accommodate 64 bits. Fields ending in -F are
no longer used in ZMS style records but remain available to applications that request data
in legacy style.

• When specifying filenames, you can use an asterisk as a wildcard, provided that the asterisk
replaces the entire element (volume, subvolume, or filename):
* or $*.*.* means all files.
$vol.*.* means all files in the specified volume.
$vol.subvol.* means all files in the specified subvolume, in the specified volume.
$*.subvol.* means all files in the specified subvolume, in any volume.
$vol.*.file means the specified file, in any subvolume in the specified volume.
$*.*.file means the specified file in any subvolume in any volume.

Example
The report output for the SQLSTMT entity includes the SQL run unit name in double-quotes or
the ANSI SQL module name in single quotes depending on the name type. For example:
SQL Statement
Procedure 'CATALOG_12.SCHEMA_34.MODULE_56' Index #
Process Pri OSSPID:
Program
OSSPath:
Userid Creatorid Ancestor
Format Version: H01 Data Version: H01 Subsystem Version: 1
Local System
--
Elapsed-Busy-Time 4.17 ms Calls 0.17 /s
Elapsed-Sort-Time Sorts
Elapsed-Recompile-Time Recompiles
Messages 0.22 /s Message-Bytes 931.00 /s
Lock-Waits Escalations
Timeouts Disc-Reads
Records-Accessed 0.17 /s Records-Used 0.17 /s

SYSTEM
The SYSTEM entity type provides information about network traffic through Expand line handlers.
A network link involves at least two processes: the linker that initiated the link and the listener
that accepted the link. Because the Measure subsystem can measure only the local system, the
measurement data reflects only one side of each link: the linker or the listener, but not both.
Which network links are measured depends on the entity specification in the measurement
configuration:
• If you specify all systems, the Measure subsystem counts the local end of all messages passed

between the local system and any remote system.
• If you specify a local CPU, the Measure subsystem counts the local end of all messages

passed between the local system and any remote system through the line-handler processes
(primary or backup) in the specified CPU.

• If you specify a remote system, the Measure subsystem counts the local end of all messages
passed between the local system and the remote system.

330 Entities and Counters

Entity specification syntax and DDL record Legacy Styles are the same for G-series PVU SYSTEM
entities as for D-series PVU SYSTEM entities.

PageTopic

331Entity specification syntax for SYSTEM entities

331DDL record for SYSTEM entities (Legacy Style)

332DDL record for SYSTEM entities (ZMS Style)

333Usage notes for all SYSTEM entities

Entity Specification Syntax for SYSTEM Entities
To describe a SYSTEM entity:
SYSTEM entity-spec

SYSTEM
collects information about network traffic.

entity-spec

is specified as:
{ * }
{ \system [(cpu)] }

*
measures traffic between the local system and all remote systems.

\system
is the system name or system number of a remote system for which to measure network
traffic.

cpu

is the number of a CPU on the remote system for which to measure network traffic. Use
an asterisk (*) to indicate all CPUs. The default is all CPUs.

DDL Record for All SYSTEM Entities (Legacy Style)
This is the Legacy Style SYSTEM DDL record. This record will not change after the G10 Measure
PVU.
RECORD system. File is "system" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 remote-system type binary 16 unsigned.
 02 remote-system-name type character 8.
* counter value items:
 02 links type binary 32 unsigned.
 02 link-time type binary 64.
 02 sent type binary 32 unsigned.
 02 received type binary 32 unsigned.
 02 sent-forward type binary 32 unsigned.
 02 received-forward type binary 32 unsigned.

end

SYSTEM 331

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for All SYSTEM Entities (ZMS Style)
The ZMS style SYSTEM DDL record is supported in Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface.

ID Fields DDL Definition
DEFINITION zmssys-id.
 02 remote-system-name type character 8.
 02 remote-system type binary 16 unsigned.
 02 reserved-1 type character 6.
end

Counter Fields DDL Definition
DEFINITION zmssys-ctrs.
 02 links type binary 64.
 02 link-time type binary 64.
 02 sent type binary 64.
 02 received type binary 64.
 02 sent-forward type binary 64.
 02 received-forward type binary 64.
end

DDL Record Description Fields
RECORD zmssys. FILE is "zmssys" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmssys-ctrs.
 02 id type zmssys-id.
end

REMOTE-SYSTEM

System number of the remote system for which network traffic was measured.

REMOTE-SYSTEM-NAME

System name of the remote system for which network traffic was measured.

LINKS

Number of messages (each consisting of one or more packets) sent from the local system to the
remote system. This counter does not include level 4, file-system interface, acknowledgment
messages.
Counter type: Incrementing.

LINK-TIME

The time spent waiting on acknowledgment from the remote system of messages sent to it by
the local system.
Counter type: Syslink.

SENT

Number of packets created and sent by the local system to the remote system. The
SENT-FORWARD counter counts packets sent by the local system on behalf of another system
in the network.
Counter type: Incrementing.

332 Entities and Counters

RECEIVED

Number of packets sent from the remote system to the local system with the local system as their
final destination. The RECEIVED-FORWARD counter counts packets whose destination is a
third system.
Counter type: Incrementing.

SENT-FORWARD

Number of packets sent by the local system to the remote system on behalf of another system in
the network.
Counter type: Incrementing.

RECEIVED-FORWARD

Number of packets sent from the remote system to the local system to be forwarded to another
system in the network. The RECEIVED counter counts packets whose final destination is the
local system.
Counter type: Incrementing.

Usage Notes for All SYSTEM Entities
• The SYSTEM counters are modified by network line-handler processes during network

operations between systems linked by Expand line handlers. Such operations are logging
on to a remote system or moving a file to a remote system. The protocol determines the
Expand line-handler process used.

• SUBSYSTEM-VERSION for ZMSSYS records is provided by Expand.
• These entity types are related:

— CLUSTER measures FOX traffics.
— NETLINE measures network communication lines.

• For information on networks and network protocols, see the Expand Configuration and
Management Manual, the Expand Network Management and Troubleshooting Manual, and the
X25AM Configuration and Management Manual.

TERMINAL
The TERMINAL entity type provides information about terminal I/O.

PageTopic

333Entity specification syntax

335DDL record for TERMINAL entities (Legacy Style)

335DDL record for TERMINAL entities (ZMS Style)

337Usage notes for all TERMINAL entities

337Usage note for G-series TERMINAL entities

Entity Specification Syntax for TERMINAL Entities
To describe TERMINAL entities:
TERMINAL entity-spec

TERMINAL 333

NOTE: You can measure G-series PVU TERMINAL entities with a D-series RVU measurement
application if it specifies all TERMINAL entities (ADD TERMINAL *) or only $device or
$device (cpu), with or without a subdevice name. If the application specifies controller,
channel, or unit, you must modify the entity identifiers to measure G-series PVU TERMINAL
entities.

TERMINAL
collects information about one or more terminals on the local system.

entity-spec

is specified as:
{* }
{$line[.#subdev] [(cpu [, chan [, ctrl [, unit]]])]}
{ cpu [(%Htrackid [, clip [, line]])] [(type [, subtype])] }

*
measures all lines (terminal connections) in all processors.

$line
is the device (line) name of the line to be measured. To indicate all lines, use an asterisk
(*).

#subdev
is the subdevice name of the measured line. To indicate all subdevices, use an asterisk
(*).

cpu

is the number of the CPU in which the measured line is configured. The default is all
CPUs.

chan

(D-series) is the channel number of the measured terminal. The default is all channels.
ctrl

(D-series) is the controller number of the measured terminal. The default is all controllers.
unit

(D-series) is the unit number of the measured terminal. The default is all units.
%Htrackid

(G-series) is the identifier of a specific 3880 SWAN concentrator enclosure of three CLIPs.
(Each CLIP controls two lines.) To indicate all TRACKIDs, use an asterisk (*).
The TRACKID is recorded in the SEEPROM of the controller. It is generally printed on
an external label on the enclosure as well.

clip

(G-series) is 1, 2, or 3 to indicate a specific CLIP within a SWAN concentrator enclosure
or 1, 2, 3, 4, 5, or 6 to indicate a specific CLIP within a SWAN 2 concentrator enclosure.
To indicate all CLIPs, use an asterisk (*).

line

(G-series) is 0 or 1 to indicate a specific line managed by a CLIP in a 3880 SWAN
concentrator. To indicate all lines, use an asterisk (*).

type

(G-series) is a type number to indicate a particular protocol, such as 61 (X.25). Use SCF
LISTDEV to see valid values for line types. To indicate all line types, use an asterisk (*).

334 Entities and Counters

subtype

(G-series) is a subtype number, such as 62 (X25AM). To see valid subtype numbers, use
SCF LISTDEV. The default is all subtypes that apply to type.

DDL Record for TERMINAL Entities (Legacy Style)
This is the Legacy Style DDL record for TERMINAL entities. This record will not change after
the G10 Measure PVU.
The Legacy Style DDL record for G-series TERMINAL entities through the G10 Measure PVU
is identical to the record for D-series TERMINAL entities except:
• Longer byte-count fields are provided to reduce the possibility of field overflow. In G-series

RVUs, each 32-bit byte-count field has a 64-bit counterpart. For information on using the
64-bit fields, see Usage Notes for G-Series TERMINAL Entities (page 337).

• The ERROR field can signal a field overflow in a 32-bit byte-count field.
RECORD terminal. FILE is "terminal" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 terminal-name.
 03 line-name type character 8.
 03 subdev-name type character 8.
 02 logical-device type binary 16 unsigned.
* counter value items:
 02 requests type binary 32 unsigned.
 02 reads type binary 32 unsigned.
 02 writes type binary 32 unsigned.
 02 input-bytes type binary 32 unsigned.
 02 output-bytes type binary 32 unsigned.
 02 transactions type binary 32 unsigned.
 02 response-time type binary 64.
* F40 new counter value items:
 02 input-bytes-f type binary 64.
 02 output-bytes-f type binary 64.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for TERMINAL Entities (ZMS Style)
The ZMS style DDL record for TERMINAL entities is supported in Measure G11 and later PVUs.
The fields included in BRIEF reports are in boldface type.

ID Fields DDL Definition
DEFINITION zmsterm-id.
 02 terminal-name.
 03 line-name type character 8.
 03 subdev-name type character 8.
 02 logical-device type binary 32 unsigned.
 02 reserved-1 type character 4.
end

TERMINAL 335

Counter Fields DDL Definition
DEFINITION zmsterm-ctrs.
 02 requests type binary 64.
 02 reads type binary 64.
 02 writes type binary 64.
 02 input-bytes type binary 64.
 02 output-bytes type binary 64.
 02 transactions type binary 64.
 02 response-time type binary 64.
end

DDL Record Description Fields
RECORD zmsterm. FILE is "zmsterm" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmsterm-ctrs.
 02 id type zmsterm-id.
end

TERMINAL-NAME

Device name of the measured terminal. This field is divided into two subfields: LINE-NAME (a
device name) and SUBDEV-NAME (a subdevice name).

LOGICAL-DEVICE

Logical device number of the measured terminal.

REQUESTS

Number of requests received by the terminal process.
To determine how long the requests were queued before being read by the terminal process,
measure the process and examine the PROCESS RECV-QTIME counter.
Counter type: Incrementing.

READS

Number of read operations (from the terminal to memory) performed by the terminal process.
Counter type: Incrementing.

WRITES

Number of write operations (from memory to the terminal) performed by the terminal process.
Counter type: Incrementing.

INPUT-BYTES

Number of bytes read from the terminal. The total number of bytes transferred to and from the
terminal is this counter plus OUTPUT-BYTES. For SNAX lines, this counter includes the 6-byte
transmission header (TH) and the 3-byte request/response (RH) SNA headers.
For D-series and G-series RVUs, this is a 32-bit counter. For H-series and J-series RVUs, it is a
64-bit counter.
For G-series RVUs, the INPUT-BYTES-F field is a 64-bit version of INPUT-BYTES.
Counter type: Accumulating.

OUTPUT-BYTES

Number of bytes written to the terminal.
The total number of bytes transferred to and from the terminal is INPUT-BYTES plus this counter.

336 Entities and Counters

Because the terminal process modifies this counter before the I/O operation, this counter might
not be accurate if the write instruction fails.
For SNAX lines, this counter includes the 6-byte transmission header (TH) and the 3-byte
request/response (RH) SNA headers.
For D-series and G-series RVUs, this is a 32-bit counter. For H-series and J-series RVUs, it is a
64-bit counter.
For G-series RVUs, the OUTPUT-BYTES-F field is a 64-bit version of OUTPUT-BYTES.
Counter type: Accumulating.

TRANSACTIONS

Number of terminal transactions (a read followed immediately by a write) performed by the
terminal process.
RESPONSE-TIME measures the time spent on the transactions.
For SNAX lines, this counter is always zero.
Counter type: Incrementing.

RESPONSE-TIME

The time the terminal process spent on terminal response.
A transaction is a read from a terminal followed by a write to the terminal. Terminal response
is the interval between the end of the read and the beginning of the write.
Block mode operations read a function key and then read data. This counter does not include
the time between the two reads.
For SNAX lines, this counter is always zero.
Counter type: Response.

INPUT-BYTES-F

(G-series, Legacy Style only) Same as INPUT-BYTES but accommodates larger values (64 bits
rather than 32 bits).

OUTPUT-BYTES-F

(G-series, Legacy Style only) Same as OUTPUT-BYTES but accommodates larger values (64 bits
rather than 32 bits).

Usage Notes for All TERMINAL Entities
When you use the TERMINAL entity to measure subdevices on an X25AM communications line,
the subdevices can also be measured as FILE entities.

Usage Notes for G-Series TERMINAL Entities
• SUBSYSTEM-VERSION for ZMSTERM records is provided by the specific product subsystem

of the line represented by each ZMSLINE record; for example, SNAX/XF, X25AM, or AM3270.
• The 64-bit byte-count fields (fields ending in -F) collect the same data as older 32-bit

byte-count fields. For example, the 64-bit field INPUT-BYTES-F collects the same data as
the 32-bit field INPUT-BYTES. The 64-bit fields are less subject to overflow caused by high
levels of I/O activity.
The 32-bit fields are currently active and continue to return values. If no field overflow exists,
the 32-bit fields and the 64-bit fields return the same value. If a 32-bit field overflows, the
corresponding 64-bit field returns the correct value, and the 32-bit field returns a value of
-1. The ERROR field for the measured entity also returns -1 to indicate an overflow condition.

TERMINAL 337

Convert your applications to use the 64-bit fields; 32-bit fields might be deactivated in a
future RVU.
In MEASCOM commands and in command (OBEY) files, use the names of the 32-bit fields.
For example, issue the command LIST TERMINAL BY INPUT-BYTES, not LIST TERMINAL
BY INPUT-BYTES-F. MEASCOM uses the names of the 32-bit fields in output displays such
as reports and plots.
Measure G09 and later PVUs support up to six CLIPs in a SWAN concentrator.

Usage Notes for H-Series and J-Series TERMINAL Entities
In H-series and J-series RVUs, all byte-count fields accommodate 64 bits. Field names ending in
-F are no longer used in ZMS style records but remain available to applications that request data
in legacy style.

TMF
The TMF entity type provides information about TMF transactions.

PageTopic

338Entity specification syntax for TMF entities

338DDL record for TMF entities (Legacy Style)

339DDL record for TMF entities (ZMS Style)

342Usage note for all TMF entities

Entity Specification Syntax for TMF Entities
To describe a TMF entity:
TMF entity-spec

TMF
collects information about TMF transactions in one or more CPUs on the local system.

entity-spec

is specified as:
{ * }
{ cpu } [, cpu]...

*
measures TMF activity on all CPUs.

cpu

is the number of the CPU on which TMF transactions are measured. Use a
comma-separated list to specify multiple CPUs.

DDL Record for TMF Entities (Legacy Style)
This is the Legacy Style TMF DDL record. This record will not change after the G10 Measure
PVU.
The fields included in BRIEF reports are in boldface.
RECORD tmf. FILE is "tmf" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .

338 Entities and Counters

 .
 .
* entity identification items:
 (none)

* counter value items:
02 home-trans type binary 32 unsigned.
 02 home-trans-qtime type binary 64.
 02 home-trans-qmax type binary 16 unsigned.
02 remote-trans type binary 32 unsigned.
 02 remote-trans-qtime type binary 64.
 02 remote-trans-qmax type binary 16 unsigned.
02 home-net-trans type binary 32 unsigned.
 02 home-net-trans-qtime type binary 64.
 02 home-net-trans-qmax type binary 16 unsigned.
02 aborting-trans type binary 32 unsigned.
 02 trans-backout-qtime type binary 64.
 02 trans-backout-qmax type binary 16 unsigned.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for TMF Entities (ZMS Style)
The ZMS style TMF DDL record is supported in Measure G11 and later PVUs. The fields included
in BRIEF reports are in boldface.

ID Fields DDL Definition
DEFINITION zmstmf-id.
 02 reserved-1 type character 8.
end

Counter Fields DDL Definition
DEFINITION zmstmf-ctrs.
 02 home-trans type binary 64.
 02 home-trans-qtime type binary 64.
 02 home-net-trans type binary 64.
 02 home-net-trans-qtime type binary 64.
 02 remote-trans type binary 64.
 02 remote-trans-qtime type binary 64.
 02 aborting-trans type binary 64.
 02 trans-backout-qtime type binary 64.
end

DDL Record Description Fields
RECORD zmstmf. FILE is "zmstmf" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 ctr type zmstmf-ctrs.
 02 id type zmstmf-id.
end

HOME-TRANS

Number of transactions that began in the measured CPU.
This counter includes transactions regardless of whether they remain on the local system or are
distributed to a remote system. The total number of transactions this system has participated in
is the sum of the HOME-TRANS and the REMOTE-TRANS counters for all CPUs in the system.
Counter type: Incrementing.

TMF 339

HOME-TRANS-QTIME

Sum of lifetimes of transactions originated in the measured CPU. This counter includes
transactions regardless of whether they remain in the local system or are distributed to a remote
system.
Counter type: Queue.

HOME-TRANS-QMAX

• Legacy Style: Maximum number of items on the queue described by the
HOME-TRANS-QTIME counter.

• New format: Obsolete.
Counter type: Max queue.

REMOTE-TRANS

Number of transactions that began in a remote system and were distributed to the measured
system.
This counter is advanced only in the TMF record of the CPU containing the primary $TMP
process. If the primary $TMP switches CPUs in response to a PRIMARY command, the
REMOTE-TRANS counter in the TMF record of the CPU containing the new primary is advanced.
The counter in the TMF record of the CPU containing the old primary does not change.
The total number of transactions this system has participated in is the sum of the HOME-TRANS
and REMOTE-TRANS counters for all CPUs in the system.
Counter type: Incrementing.

REMOTE-TRANS-QTIME

The time that transactions that began in a remote system and were distributed to the local system
spent on the local system.
This counter is advanced only in the TMF record of the CPU containing the primary $TMP
process. If the primary $TMP switches CPUs in response to a PRIMARY command, the new
$TMP increments the REMOTE-TRANS-QTIME counter in the TMF record of its CPU until it
accurately reflects the number of remote network transactions on the system. The
REMOTE-TRANS-QTIME counter in the TMF record of the CPU that contained the old primary
becomes zero.
Counter type: Queue.

REMOTE-TRANS-QMAX

• Legacy Style: Maximum number of items on the queue described by the
REMOTE-TRANS-QTIME counter.

• New format: Obsolete.
Counter type: Max queue.

HOME-NET-TRANS

Number of transactions that began in this system and were subsequently distributed to another
system.
This counter is advanced only in the TMF record of the CPU containing the primary $TMP
process. If the primary $TMP switches CPUs due to a PRIMARY command, the
HOME-NET-TRANS counter in the TMF record of the CPU containing the new primary is
advanced. The counter in the TMF record of the CPU containing the old primary remains intact.
The total number of network transactions the local system has participated in is the sum of the
HOME-NET-TRANS and REMOTE-NET-TRANS counters in all of the CPUs. Number of

340 Entities and Counters

transactions that began on the local system and were never distributed to another system is
HOME-TRANS minus HOME-NET-TRANS.
Counter type: Incrementing.

HOME-NET-TRANS-QTIME

The time that transactions that began on the local system and were subsequently distributed to
a remote system spent on the remote system.
This counter is advanced only in the TMF record of the CPU containing the primary $TMP
process. If the primary $TMP switches CPUs in response to a PRIMARY command, the new
$TMP increments the HOME-NET-TRANS-QTIME counter in the TMF record of its CPU until
it accurately reflects the number of HOME NETWORK transactions on the system. The
HOME-NET-TRANS-QTIME counter in the TMF record of the CPU that contained the old primary
becomes zero.
Counter type: Queue.

HOME-NET-TRANS-QMAX

• Legacy Style: Maximum number of items on the queue described by the
HOME-NET-TRANS-QTIME counter.

• New format: Obsolete.
Counter type: Max queue.

ABORTING-TRANS

Number of aborted transactions. An aborted transaction is counted regardless of whether it
began in the local system and remained there, began in the local system and was distributed to
a remote system, or began in a remote system and was distributed to the local system.
This counter is advanced only in the TMF record of the CPU containing the primary $TMP
process. If the primary $TMP switches CPUs in response to a PRIMARY command, the
ABORTING-TRANS counter in the TMF record of the CPU containing the new primary is
advanced. The counter in the TMF record of the CPU containing the old primary remains intact.
A PRIMARY switch of $TMP causes a small number of aborting transactions to be counted twice,
once in the old primary and once in the new primary. Multiple PRIMARYs can cause an aborting
transaction to be counted more than twice.
Counter type: Incrementing.

TRANS-BACKOUT-QTIME

The time that transactions spent waiting for and being serviced by BACKOUT. After a transaction
is designated as aborting and its audit is on disk, that transaction is scheduled for backout services,
and this counter is advanced. When backout completes undoing the transaction, this counter is
decremented.
This counter is advanced only in the TMF record of the CPU containing the primary $TMP
process. If the primary $TMP switches CPUs in response to a PRIMARY command, the new
$TMP increments the TRANS-BACKOUT-QTIME counter in the TMF record of its CPU until it
accurately reflects the number of transactions in the local system waiting for BACKOUT. The
TRANS-BACKOUT-QTIME counter in the TMF record of the CPU that contained the old primary
becomes zero.
Counter type: Queue.

TRANS-BACKOUT-QMAX

• Legacy Style: Maximum number of items on the queue described by the
TRANS-BACKOUT-QTIME counter.

• New format: Obsolete.

TMF 341

Counter type: Max queue.

Usage Note for All TMF Entities
SUBSYSTEM-VERSION for ZMSTMF records is provided by the TMF subsystem.
For information on TMF, see the TMF set of manuals.

USERDEF
The USERDEF entity type provides information about user-defined counters.
In Measure G09 and later PVUs, the USERDEF entity type handles OSS file pathnames.
In the ZMS style interface (Measure G11 or later), the record template, report, and structured
data file name for USERDEF records is ZMSUDEF.

PageTopic

342Entity specification syntax

343DDL record for USERDEF entities (Legacy Style)

344DDL record for USERDEF entities (ZMS Style)

347Usage notes for all USERDEF entities

348Usage notes for G-series USERDEF entities

Entity Specification Syntax for USERDEF Entities
To describe a USERDEF entity:
USERDEF entity-spec

USERDEF
collects information about one or more user-defined counters modified by the USERDEF
process.

entity-spec

is specified as:
{ * }
{ cpu,pin }
{ $process-name [(pid)] }
{ [[$device.]subvolume.]filename[:CRVSN][(pid)] }
{ "pname" [(pid)] }

*
measures all user-defined processes on the local system.

cpu

is the number of the CPU on which the process to be measured is running. To indicate
all CPUs, use an asterisk (*). The default is all CPUs.

pin

is the process identification number of the process to be measured. To indicate all
processes, use an asterisk (*). The default is all processes.

$process-name
is the name of the process to be measured.

pid

is the process identifier of the process to be measured. The process identifier identifies
the owner of the process. Specify pid using these two variables:
{ cpu,pin }

342 Entities and Counters

cpu

is the CPU on which the process is running.
pin

is the process identification number of the process.
$device

is the name of the volume (device) that contains the process to be measured. To indicate
all devices, use an asterisk (*). The default is the current default device.

subvolume

is the name of the subvolume that contains the process to be measured. To indicate all
subvolumes, use an asterisk (*). The default is the current default subvolume.

filename

is the name of the object file for the process. filename must be the object file of an
executing process. To indicate all files (except temporary files), use an asterisk (*).

:CRVSN
in Measure G10 and later PVUs, is the timestamp, creation version serial number, or
file-name extension necessary to form a unique filename. Use this option to guarantee
file-name uniqueness. The CRVSN is available from the Measure report and the
LISTGNAME command.

"pname"
can be either a fully qualified or partial OSS file pathname. An OSS file pathname that
does not begin with a slash (/) is considered to be a partial pathname and is expanded
by prefacing it with the current setting for OSSPATH.

NOTE: OSS file pathnames are case-sensitive and must be specified within double
quotation marks (" "). Valid OSS file pathnames can refer to specific files or to a set of
files within a specific directory. If a directory is specified, only files in that directory are
included. Files in directories subordinate to the specified directory are not included.

DDL Record for USERDEF Entities (Legacy Style)
This is the Legacy Style DDL record for USERDEF entities. This record will not change after the
G10 Measure PVU.
RECORD userdef. FILE is "userdef" ENTRY-SEQUENCED.
 .
 .
 .
(error, time items, and measurement identification items;
see Common Entity Header Fields (page 141))
 .
 .
 .
* entity identification items:
 02 pin type binary 16 unsigned.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 priority type binary 16 unsigned.
* counter identifiers and value:
 02 name type character 16.
 02 type type binary 16 unsigned.
 02 index type binary 16 unsigned.
 02 max-value type binary 16 unsigned.
 02 time-value type binary 64.

USERDEF 343

 02 counts redefines time-value.
 03 FILLER type binary 32 unsigned.
 03 count-value type binary 32 unsigned.
* field for entity identification:
 02 userid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 creatorid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
* entity identification items for D10:
 02 ancestor-cpu type binary 16 unsigned.
 02 ancestor-pin type binary 16 unsigned.
 02 ancestor-sysname type character 8.
 02 ancestor-process-name type character 8.
* SMS changes:
 02 device-name type character 8.
* Identifiers for OSS file pathname support:
 02 osspid type binary 32 unsigned.
 02 program-file-name-mid.
 03 pathid type binary 64.
 03 crvsn type binary 64.
* New identifiers for NetBatch Job Control:
 02 GMOM.
 03 GMOM-node type binary 16 unsigned.
 03 GMOM-cpu type binary 16 unsigned.
 03 GMOM-pin type binary 16 unsigned.
 03 GMOM-jobid type binary 16 unsigned.
 02 GMOM-full-id type binary 64
 redefines GMOM.
 02 GMOM-sysname type character 8.
 02 GMOM-process-name type character 8.
end

For descriptions of the header fields used by all entities, see Common Entity Header Fields
(page 141).

DDL Record for USERDEF Entities (ZMS Style)
The ZMS style DDL record for USERDEF entities is supported in Measure G11 and later PVUs.

ID Fields DDL Definition
DEFINITION zmsudef-id.
 02 pin type binary 16 unsigned.
 02 priority type binary 16 unsigned.
 02 userid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 creatorid.
 03 group type binary 8 unsigned.
 03 user type binary 8 unsigned.
 02 process-name type character 8.
 02 program-file-name.
 03 volume type character 8.
 03 subvol type character 8.
 03 filename type character 8.
 02 osspid type binary 32 unsigned.
 02 ancestor-cpu type binary 16 unsigned.
 02 ancestor-pin type binary 16 unsigned.
 02 ancestor-sysname type character 8.
 02 ancestor-process-name type character 8.
 02 device-name type character 8.
 02 program-file-name-MID.
 03 PATHID type character 24.

344 Entities and Counters

 03 CRVSN type character 6.
 02 reserved-1 type character 2.
 02 GMOM.
 03 GMOM-node type binary 16 unsigned.
 03 GMOM-cpu type binary 16 unsigned.
 03 GMOM-pin type binary 16 unsigned.
 03 GMOM-jobid type binary 16 unsigned.
 02 GMOM-full-id type binary 64
 redefines GMOM.
 02 GMOM-sysname type character 8.
 02 GMOM-process-name type character 8.
 02 type type binary 16 unsigned.
 02 index type binary 16 unsigned.
 02 reserved-2 type character 4.
 02 name type character 16.
end

Counter Fields DDL Definition
DEFINITION zmsudef-ctrs.
 02 value type binary 64.
end

DDL Record Description Fields
RECORD zmsudef. FILE is "zmsudef" ENTRY-SEQUENCED.
 02 hdr type zmsheader.
 02 id type zmsudef-id.
 02 ctr type zmsudef-ctrs.
end

PIN

Process identification number of the measured process.

PROCESS-NAME

Name of the measured process.

PROGRAM-FILE-NAME

Name of the object file the process is executing. This field is divided into three subfields: VOLUME,
SUBVOL, and FILENAME. The name can apply to either a NonStop file or an SMF file.
For NonStop files, FILE-NAME represents the physical file name that was specified when the
process was executed. The VOLUME subfield gives the device name of the physical volume on
which the disk file is located.
For SMF files, FILE-NAME represents a location-independent logical file name that was used
when the process was executed. The device location of the physical file that corresponds to the
logical file name is stored in the DEVICE-NAME field.

PRIORITY

Priority of the measured process.

NAME

Name of the user-defined counter.

USERDEF 345

TYPE

Type of the user-defined counter:

Accumulating counter, 32 bits (ACCUM)1

Busy counter (BUSY)2

Queue counter (QUEUE)3

Accumulating counter, 64 bits (FACCUM)4

Queue busy counter (QBUSY)5

Busy counter, implemented with timer cells (TCELLBUSY)6

Queue counter, implemented with timer cells (TCELLQUEUE)7

Queue busy counter, implemented with timer cells (TCELLQBUSY)8

INDEX

Index value of the counter. A single counter value has an index value of 0. Index values for an
array can range from 0 through 127.

MAX-VALUE

• Legacy Style: Maximum number of items on the queue described by the TIME-VALUE
counter.

• New format: Obsolete.

TIME-VALUE

• Legacy Style: Redefined. See COUNTS.
• New format: Obsolete; use VALUE.

COUNTS

• Legacy Style: Value of a user-defined accumulating counter.
• New format: Obsolete; use VALUE.

USERID

Process accessor ID (PAID). This field helps to identify the owner of the process.

CREATORID

Creator access ID (CAID). This field identifies the creator of the process and is divided into two
subfields: GROUP and USER.

ANCESTOR-CPU

Number of the CPU on which the ancestor process resides.

ANCESTOR-PIN

Process identification number of the ancestor process.

ANCESTOR-SYSNAME

Name of the system on which the ancestor process resides.

ANCESTOR-PROCESS-NAME

Name of the ancestor process.

346 Entities and Counters

DEVICE-NAME

Disk device on which the program file is located. For SMF files, this field provides the physical
location that corresponds to the logical file name. For NonStop files, this field is the same as the
FILE-NAME VOLUME subfield.

OSSPID

If the process runs in the OSS environment, this field contains the OSS Process ID. If it is another
process, this field contains zeros.

PROGRAM-FILE-NAME-MID

FILE-NAME-MID has two subfields: PATHID and CRVSN. PATHID is an internal format
representation of an OSS file pathname. For other files, this field contains zeros. CRVSN is a
creation version serial number that identifies a unique instance of an OSS file. For other files,
this field contains zeros.

GMOM-NODE

(ZMS style only) The expand node number of the GMOM process if this process is part of a
NETBATCH job and if the GMOM process is remote, otherwise zero.

GMOM-CPU

(ZMS style only) The processor number of the GMOM process if this process is part of a
NETBATCH job; otherwise zero.

GMOM-PIN

(ZMS style only) The PIN of the GMOM process if this process is part of a NETBATCH job;
otherwise zero.

GMOM-JOBID

(ZMS style only) The jobid of the NETBATCH job that initiated this process, assigned by the
indicated GMOM; otherwise zero.

GMOM-FULL-ID

(ZMS style only) A 64-bit redefinition of the individual GMOM fields as a single value. Zero
indicates the process is not part of a NETBATCH job stream.

GMOM-SYSNAME

(ZMS style only) The Expand system name of the GMOM node if the GMOM process is remote;
otherwise spaces.

GMOM-PROCESS-NAME

(ZMS style only) The name of the GMOM process that initiated the NETBATCH job that in turn
initiated this process; otherwise spaces.

Usage Notes for All USERDEF Entities
• To define a counter in an application, modify the source code to call the

MEASCOUNTERBUMPINIT and MEASCOUNTERBUMP procedures at appropriate times.
For descriptions, see MEASCOUNTERBUMP (page 396) and MEASCOUNTERBUMPINIT
(page 397). For full information on instrumenting user-defined applications, see theMeasure
User’s Guide.

• To collect information from a user-defined counter, use the ADD USERDEF command to
specify the process that contains the user-defined counter and the ADD COUNTER command

USERDEF 347

to specify the name of the counter. For descriptions, see ADD USERDEF and ADD COUNTER
under ADD entity-type (page 43).

Usage Notes for G-Series USERDEF Entities
• For G07 and later Measure PVUs, the USERDEF entity has a 64-bit accumulator counter

type. To add this new counter type, use the MEASCOM ADD COUNTER command with
the keyword FACCUM.

• For G11 and later Measure PVUs:
— Customer applications can provide SUBSYSTEM-VERSION for ZMSUSER records if

the applications use the SUBSYSTEM-VERSION extension to the
MEASCOUNTERBUMPINIT() procedure.

— The USERDEF report distinguishes between Accum counters (32-Bit) and Faccum
counters (64-bit). In the ZMSUSER report, all counters are formatted from 64-bit fields
and reported as type Accum.

Usage Notes for H-Series and J-Series USERDEF Entities
• Several new counter types are defined for H-series and J-series RVUs.

— Queue Busy. This counter type measures the amount of time during which the queue
for a resource is busy: that is the amount of time during which items were waiting on
the queue.

— Busy, implemented with timer cells. This counter has the same semantics as a
conventional busy counter but uses the timer-cell mechanism to provide finer granularity
timers.

— Queue, implemented with timer cells. This counter has the same semantics as a
conventional queue counter but uses the timer-cell mechanism to provide finer
granularity timers.

— Queue busy, implemented with timer cells. This counter has the same semantics as a
conventional queue busy counter but uses the timer-cell mechanism to provide finer
granularity timers.

• If you define counters of the new types, Measure implicitly uses timer cells to maintain the
counters. For more information about using the timer cell mechanism, see Chapter 4: Measure
Callable Procedures (page 349).

348 Entities and Counters

4 Measure Callable Procedures
This chapter describes the Measure callable procedures, which let an application process control
the Measure performance monitor and access measurement data.
For general information on Measure procedures, see Measure Procedures Overview (page 351).

Summary of Measure Procedures
Table 4-1 lists the Measure procedures by function. For examples of programs that use the
Measure procedures, see the Measure User’s Guide.

Table 4-1 Measure Callable Procedures

PageDescriptionProcedureFunction

421Accesses a measurement data
file

MEASOPENCollecting data

358Defines a measurement
configuration

MEASCONFIGURE

395Starts and stops a
measurement

MEASCONTROL

358Deletes access to a
measurement data file

MEASCLOSE

398Returns either the Measure
product version or the
external entity record lengths
for a data file or both

MEASGETVERSIONExamining data

403Returns configuration
information from
measurement data file that is
not open

MEASINFO

446Returns information about an
active measurement

MEASSTATUS

424Reads data from a
measurement data file; returns
result to caller

MEASREAD

426Reads data from a
measurement data file; returns
result to caller

MEASREAD_DIFF_

448Reads data from a
measurement data file; puts
result in a file

MEASWRITE_DIFF_

430Reads data from active
counter records

MEASREADACTIVE

433Reads data from active
counter records

MEAS_READACTIVE_

434Reads data from multiple
active counter records in the
same call

MEAS_READACTIVE_MANY_

437Reads configuration
information from a
measurement data file

MEASREADCONF

Summary of Measure Procedures 349

Table 4-1 Measure Callable Procedures (continued)

PageDescriptionProcedureFunction

397Returns the offset of a
user-defined counter

MEASCOUNTERBUMPINITBumping
user-defined
counters

396Bumps a user-defined counterMEASCOUNTERBUMP

418Starts and stops the subsystemMEASMONCONTROLControlling the
Measure subsystem

419Returns the name and number
of currently active
measurement

MEASMONSTATUS

407Returns system configuration
information supplied by the
MEASCTL process

MEASLISTCONFIGGetting system
configuration
information

408Translates Guardian file
names or MIDs to
corresponding external format
ANSI SQL names or OSS
pathnames

MEASLISTENAMETranslating file
names

411Writes Measure list structured
OSS and ANSI SQL name
information to the
EXTNAMES file

MEASLISTEXTNAMES

412Translates OSS file pathnames
to Guardian file names,
returns the MID (PATHID and
CRVSN) content for entity
descriptor construction, and
returns the contents of an OSS
directory

MEASLISTGNAME

400Translates an ANSI SQL name
to its corresponding entity
descriptor components

MEAS_GETDESCINFO_

416Returns structured OSS file
pathname translation
information to the file
OSSNAMES

MEASLISTOSSNAMES

358Translates the internal
(mangled) representation of a
procedure name back into the
original name specified by the
programmer.

MEAS_CODERANGENAME_DEMANGLE_

417Translates Guardian file name
or OSS pathid to its OSS file
pathname equivalent

MEASLISTPNAME

441Initiates the SQL/MX mapping
session.

MEAS_SQL_MAP_INIT_Using ANSI SQL
names

442Stops the SQL/MX mapping
session.

MEAS_SQL_MAP_STOP_

442Compares two fully qualified
ANSI SQL names in external
format.

MEAS_SQLNAME_COMPARE_

350 Measure Callable Procedures

Table 4-1 Measure Callable Procedures (continued)

PageDescriptionProcedureFunction

443Combines ANSI SQL name
parts to create a fully qualified
name in normalized external
format.

MEAS_SQLNAME_RESOLVE_

445Parses a fully qualified,
possibly wildcarded, ANSI
SQL name in external format.

MEAS_SQLNAME_SCAN_

356Adjusts ZMS style structure
records to the MEASDDLS
format with which an
application was compiled

MEAS_ADJUSTZMSRECORD_Adjusting record
formats

356Allocates timer cells for
maintaining TCELLBUSY,
TCELLQUEUE, and
TCELLQBUSY timers

MEAS_ALLOCATE_TIMERCELLS_Maintaining fine
granularity timers

398Deallocates timer cellsMEAS_DEALLOCATE_TIMERCELLS_

357Sets, resets, increments, or
decrements a TCELLBUSY,
TCELLQUEUE, or
TCELLQBUSY timer

MEAS_BUMP_TIMERCELL_

440Retrieves timer values for one
or more TCELLBUSY,
TCELLQUEUE, and
TCELLQBUSY timers

MEAS_RETRIEVE_TIMERCELLS_

Measure Procedures Overview

Reading in Measure Records (DDL)
Measure DDL records change from PVU to PVU. New counters are always added to the end of
the existing Measure DDL records. This ensures that applications using existing counters are not
affected by the addition of new counters.
Some simple coding practices can help you avoid compatibility problems with future PVUs.
User applications that request records through the programmatic interface should use a buffer
large enough to accommodate the new longer records (even if the new fields are of no interest).
Because Measure does not return partial records, applications written to use buffers of several
thousand bytes avoid compatibility problems in reading the DDL records.

Legacy and ZMS Style Records
In H01 and later PVUs, the internal representation of Measure data is in ZMS style records, and
any further enhancements will occur only in ZMS style. Yet the default style of records returned
by Measure APIs is still legacy.
To take advantage of future enhancements and improve application performance, it is advisable
to port existing applications to use ZMS style. To achieve this effect, use the templateversion
parameter (present in various procedure calls).
If your application continues to request legacy style records, Measure converts the data from its
internal representation to legacy style. This conversion affects legacy counter fields in several
ways:
• If the legacy record has two versions of the same counter--one 32-bit version and one 64-bit

version (typically ending in -F)--the 64-bit field will invariably contain a value. The 32-bit
field will contain a value only if the value in the internal ZMS style record fits into 32 bits.

Measure Procedures Overview 351

If the internal value does not fit into 32 bits, the 32-bit counter returned to the application
has a value of -1.

• MAX-QLEN counters are no longer maintained. Those fields are returned in legacy style
records with a value of 1.

• Fields that have been added to ZMS style records since the Measure G12 PVU are not
available to applications requesting legacy style records.

Reading in the Declaration Files
Use the TAL compiler ?SOURCE command to read these declaration files into the source code
global declarations:
• $SYSTEM.SYSTEM.EXTDECS0 contains the external declarations for the Measure procedures.

Each Measure procedure used in your program must be specified in the ?SOURCE command.
• $SYSTEM.SYSnn.MEASDECS contains the template structures for the Measure control block,

configuration table, and entity descriptors. It also declares literal identifiers for the error
message codes returned by the procedures and for constants used in the configuration table
and entity descriptors.

Allocating Space for the Measure Control Block
Unless you use only the MEASCLOSE, MEASOPEN, MEASREAD, and MEASREADCONF
procedures in a program, you must allocate space in the program’s global data area for the
Measure control block. You need only one Measure control block per process, regardless of the
number of measurements the process makes.
MEASCB^DEF in the MEASDECS file is the template structure for the control block. This referral
structure allocates space for the control block:
STRUCT .MEASCB(MEASCB^DEF)

The Measure subsystem uses the control block to store data for procedure calls. Do not modify
the contents of the block after you pass it to a procedure.
Before you call the first procedure that uses the control block, you must initialize each element
in the block to -1:
$FILL16(MEASCB, $LEN(MEASCB)/2, -1);

Specifying Entity Descriptors
Like the entity specifications used in the command interface, entity descriptors describe an entity
or set of entities. Use entity descriptors to define the entities to measure and to specify the counter
records to maintain for each entity. Entity descriptors are part of the configuration table that you
pass to the MEASCONFIGURE procedure before starting a measurement.
The MEASDECS file declares template structures for the entity descriptors. For example, the
CPU^DESC template contains the fields you use to define a CPU entity. Each entity descriptor
contains:
• Type. A numeric identifier or a literal that identifies the type of entity being defined. The

MEASDECS file declares the literal for each entity type. See Table 4-2: Entity Descriptors
and Type Values (page 360)

• Len. The length, in bytes, of the descriptor.
• Cpu^number. The number of the CPU where the entity resides. (A few descriptors use a

different name for this field.)
The remaining fields in a descriptor identify the entity or entities to be measured.
For detailed descriptions of entity descriptors, see MEASCONFIGURE (page 358).

352 Measure Callable Procedures

Measuring a Set of Entities
In many descriptor fields, you can use wild-card values to indicate all entities of a particular
type. For example:
• In a CPU entity descriptor, the literal -1 in the cpu^number field specifies all CPUs on the

system.
• In a field representing a PIN, channel, ctl, unit, or system number, the literal -1 specifies all.
• In name fields, an asterisk (*) specifies all. Such fields must be left justified and blank filled.

Include, as the left-most character, any appropriate leading character, such as a backslash
(\) for a node, a dollar sign ($) for a volume, or a pound sign (#) for a subdevice.

• To designate all system processes, set the PIN to -2.
Wildcards are not always valid. For example, when Measure reads from active counters, the
entity descriptor you pass to MEASREADACTIVE must specify a single entity.

Excluding Entities from a Set
After specifying a set of entities to measure, you can exclude individual entities from the
measurement. To exclude an entity, add a descriptor for that entity to the configuration table,
and set the type field to a negative value. You can specify a negative value for the type string
literal or the numeric identifier. For example, to measure all CPUs except CPU 6:
1. Add a CPU descriptor in which type is set to CPU^T and cpu^number is set to ALL.
2. Add a second CPU descriptor in which type is set to -CPU^T (the negative literal that

corresponds to CPU^T) and cpu^number is set to 6.
To use numeric type identifiers instead of string literals:
1. Add a descriptor in which type is set to 1 (the numeric identifier for CPU) and cpu^number

is ALL (or the equivalent numeric literal, -1).
2. Add a second descriptor in which bit 0 of the type field is set to 1. This sets the exclude flag

and is equivalent to setting a negative value.
3. Set bits 1 through 15 of the type field to 1, the numeric type identifier for CPU.
4. Set the cpu^number field to 6.

Specifying File and Device Names
All disk file, system, device, and process names must be in local internal name format. For
descriptions of internal file name formats, see the Guardian Procedure Calls Reference Manual. If
you use an asterisk in a name field or subfield, you must include the appropriate leading character
(\, $, or #) and pad the field with blanks.

Specifying ANSI SQL Names
With Measure G11 and H01 PVU support for ANSI SQL names, additional fields have been
added to some of the entity descriptors.
When an ANSI SQL name is passed as an argument to a procedure, it should not be enclosed in
single quotes.
For more information, see Handling of ANSI SQL Names (page 146).

Creating the Configuration Table
The configuration table (contab) defines which entities are in a measurement. You pass the
configuration table to MEASCONFIGURE before you start a measurement. Once a measurement

Measure Procedures Overview 353

is configured, you can read its configuration table by calling MEASREADCONF or MEASINFO.
The configuration table consists of:
• A header record
• The entity descriptor sections
• A trailer record
Both the header and trailer records have fixed lengths. The entity descriptor sections can vary
in length, so the table as a whole is variable length.

Header Record
Use the template structure CONTAB^HDR to define the header record, which contains:

DescriptionVariable

The numeric value 50 or the literal CONTAB^T (declared in the MEASDECS file).
This field identifies this record as the header record.

Type

The length of the entire configuration table, in bytes.Len

An array of offsets in bytes that point to each entity type’s descriptor section within
the table. The first word of the array is always zero. The following offsets are ordered
by entity type number and indexed to the beginning of the configuration table. (For
a description of entity type numbers, see MEASCONFIGURE (page 358).) If an entity
type is not being measured, its offset is zero.

Sections

The header format. Maxents is the first element in the sections array (that is,
SECTIONS[0]).

Maxents

NOTE: If you have older custom programs that do not use this header format, recompile those
programs.

Entity Descriptor Sections
The body of the configuration table is an array of entity descriptors. The entity descriptors are
grouped into sections according to entity type, with the sections ordered by their numeric
identifiers. All CPU descriptors (type number 1) appear first, followed by all PROCESS descriptors
(type number 2), then all PROCESSH descriptors (type number 3), and so on.
If an entity type is not being measured, do not include a section for that type.
DELETE descriptors take precedence over ADD descriptors. If a match is found in the contab
on an ADD descriptor, the return value is tentatively set to true. However, if a match is then
found on a DELETE descriptor, a return value of false is immediately returned.

Trailer Record
Use the template structure CONTAB^TRAILER to define the trailer record. It contains:

DescriptionVariable

The numeric value 51 or the string literal CONTAB^TRAILER^T (declared in the
MEASDECS file). This field identifies this record as the trailer record.

Type

The length of the trailer record, in bytes.Len

Use the template structure CONTAB^TRAILER to define the trailer record and to assign the
literal CONTAB^TRAILER^T to the type field.

354 Measure Callable Procedures

Interpreting Error Codes in Measure Procedures
The Measure procedures are integer function procedures that return an error word. If no error
occurs, the procedures return 0 (zero) in the error word. If an error occurs, the procedures return
an error code.
Errors unique to the Measure procedures have error codes between 3200 and 3499 and are
described in Appendix B: Error Codes (page 471). The MEASDECS file declares literal identifiers
for the error codes.
The Measure procedures use space on your program data stack to execute. (The maximum space
used by a Measure procedure is approximately three pages.) If you receive an invalid address
reference trap (trap 0) or a stack overflow trap (trap 3) while a Measure procedure is executing,
try allocating more data pages with the TAL compiler ?DATAPAGES command or the RUN
command MEM parameter.

Maintaining Compatibility With New Structures in MEASDDLS and MEASCHMA
In some instances, a recompile is required for C and C++ applications. For example, G08 Measure
redefines the MODULE and SUBDEVICE fields of the SERVERNET entity descriptor as the
ServerNet Cluster NODE number and CPU number of the remote system's processor. For C or
C++ applications that use the Measure callable procedures to configure ServerNet measurements,
to use the new structures provided by MEASDDLS and MEASCHMA, a recompile is required.
These redefined fields must be accessed as members of a union.

Using Timer Cells
H-series Measure introduces a timer-cell facility, which improves the accuracy of timer calculations
for events that complete within the context of a dispatch or a simple message exchange between
two processes in the same processor. This mechanism lets you keep fine-granularity timers
without incurring the cost of loose processor synchronization on all timer updates. Timer cell
values are synchronized only when copied at intervals or reported to the requesting application.
Counter types associated with the timer cell mechanism are:
• TCELLBUSY. This counter type is equivalent to a conventional BUSY counter but is

implemented with timer cells.
• TCELLQUEUE. This counter type is equivalent to a conventional QUEUE counter but is

implemented with timer cells.
• TCELLQBUSY. This counter type is equivalent to a conventional QBUSY counter but is

implemented with timer cells.
For USERDEF counters, you can take advantage of the timer-cell mechanism by defining counters
of the new types. For example, if an application ran on an G-series RVU and you now plan to
run it on an H-series and J-series RVU, consider redefining Busy, Queue, and Queue Busy timers
if the events they measure occur at fine intervals. Events that involve interprocessor
communication or I/O need not be redefined, because in such cases, loose processor
synchronization has little or no impact.
Redefining a USERDEF counter to use timer cells does not necessitate application changes.
Although new callable procedures support the timer-cell mechanism, Measure calls those
procedures implicitly to maintain timer-cell counters that you define for USERDEF entities. The
only change required is in the configuration of the USERDEF entity, where you specify that a
counter is of one of the new types.
Use the timer-cell calls explicitly only if your application maintains counters outside of Measure.
For more information, refer to the descriptions of MEAS_ALLOCATE_TIMERCELLS_,
MEAS_DEALLOCATE_TIMERCELLS_ , MEAS_BUMP_TIMERCELL_, and
MEAS_RETRIEVE_TIMERCELLS_.

Measure Procedures Overview 355

MEAS_ADJUSTZMSRECORD_
Takes ZMS style structure records in any published format and adjusts them to the MEASDDLS
format with which an application was compiled.
error := MEAS_ADJUSTZMSRECORD_ (in^record ! i
 , out^record ! o
 , templateversion); ! i

in^record

INT:EXT:ref:n
is a buffer containing a ZMS style external record to be padded or truncated to a new desired
format. The length of in^record is derived from the information encoded in the template
version of the header record pointed to by in^record.

out^record

INT:EXT:ref:n
is a buffer in which to return a ZMS style external record padded or truncated to a format
specified by the templateversion parameter. The length of out^record is derived from
the information encoded in the templateversion parameter.

templateversion

FIXED:value
is the record template version for the format of record being requested. It is obtained from
the MEASDDLS with which the requesting application was compiled.
If passed as -1F, the templateversion for the current release will be used, starting with
the H06.15/J06.04 RVUs. Note that returned external records, in that case, may not match the
counter record definitions with which the application was compiled.

Usage Notes
If the adjustment is to a smaller or earlier record format, the fields added or increased between
the two record versions are stripped or truncated.
If the adjustment is to a larger or newer record format, the location of the new or larger fields in
the more recent format are padded.
All padding is with the value zero, except for long variable-length identifiers at the end of the
identifiers section. If these increase in size, they are padded with spaces.
To have an application read a structured data file (file code 170) containing records of a template
version other than that with which the application was compiled:
1. Open the file structured data file.
2. Use FILE_GETINFO_ to obtain the record length of the data in the file.
3. Read each record of the file to a buffer long enough to hold the complete record.
4. Declare a buffer area for a reformatted record based on the MEASDDLS template.
5. Invoke MEAS_ADJUSTZMSRECORD_ passing the record from the file, the declared buffer

area for the reformatted record, and the correct zms entity-template-version literal from
MEASDDLS.

MEAS_ALLOCATE_TIMERCELLS_
Allocates the specified number of timer cells and returns an array of indexes to those timers. Use
this procedure if your application requires fine granularity timers to maintain counters outside
of Measure. Measure calls this procedure implicitly when you define a timer-cell counter for the
USERDEF entity.
error := MEAS_ALLOCATE_TIMERCELLS_ (count ! i
 , types ! i
 , indexes); ! i,o

356 Measure Callable Procedures

count

INT:VALUE
is the number of timer cells to allocate. Allocate one timer cell for each counter to be
maintained. The maximum number of timer cells per process is 10,000.

types

INT:EXT:REF:count
is an array of counter types. The array size is given by count. The permissible counter types
are TCELLBUSY (6), TCELLQUEUE (7), and TCELLQBUSY (8). This array maps, item by
item, to the array of indexes.

indexes

INT:EXT:REF:count
is an array of indexes to the timer cells. The array size is given by count. On input, the array
is empty. On output, it contains the indexes to use in subsequent calls. This array maps, item
by item, to the array of types.

MEAS_BUMP_TIMERCELL_
Modifies the value of a counter by increasing, decreasing, setting, or resetting the timer cell value.
Use this procedure if your application requires fine granularity timers to maintain counters
outside of Measure. Measure calls this procedure implicitly when you define a timer-cell counter
for the USERDEF entity.
error := MEAS_BUMP_TIMERCELL_ (index ! i
 , op ! i
 ,[count]); ! i

index

INT:VALUE
is the index of the timer cell.

op

INT:VALUE
indicates the operation to be performed on the timer cell. The possible values are:
• SETBUSY (3) to set a TCELLBUSY counter. Use this value when the resource measured

by the counter begins to be used.
• RESETBUSY (4) to reset a TCELLBUSY counter. Use this value when the resource

measured by the counter stops being used.
• INCQUEUE (5) to increase a TCELLQUEUE counter. Use this value when an item is

placed in the queue.
• DECQUEUE (6) to decrease a TCELLQUEUE counter. Use this value when an item is

removed from the queue.
• INCQBUSY (7) to increase a TCELLQBUSY counter. Use this value when the first item

is placed in a queue after the queue has been empty.
• DECQBUSY (8) to decrease a TCELLQBUSY counter. Use this value when the last item

is removed from the queue, rendering the queue empty.
count

INT:VALUE
is an optional parameter, used to increase or decrease the same counter multiple times in the
same call. For SETBUSY and RESETBUSY, the only valid value is 1.

MEAS_BUMP_TIMERCELL_ 357

MEASCLOSE
Closes the measurement data file and stops the file-handling process (MEASFH) that the Measure
subsystem created to access the data file. To open a measurement data file, use the MEASOPEN
procedure.
error := MEASCLOSE (dfnum); ! i

dfnum

input
INT:value
is the data file access number. Use the dfnum value returned by the MEASOPEN procedure.

MEAS_CODERANGENAME_DEMANGLE_
Returns the original procedure name that was provided by the programmer.
error := MEAS_CODERANGENAME_DEMANGLE_ (InputName, ! i
 ,InputNameLen, ! i
 ,OutputName ! o
 ,OutputNameMaxLen ! i
 ,OutputNameLen ! o
 ,NameType); ! o

InputName

STRING.EXT:ref:*
is a buffer of up to 1024 bytes containing a name string to be converted. No terminating null
is expected.

InputNameLen

INT:value
is the count of bytes in the input name string.

OutputName

STRING.EXT:ref:*
is a buffer of up to 1024 bytes containing the converted name. If the input name is not a
mangled C++ name, the input string is copied to the output buffer without change.

OutputNameMaxLen

INT:value
is the size of the input buffer.

OutputNameLen

INT.EXT:ref:*
is the count of bytes in the output buffer.

NameType

INT.EXT:ref:*
is 1 for a non-C++ name; 2 for a C++ name.

MEASCONFIGURE
Configures a measurement.
Your measurement application must call the MEASOPEN procedure (to initialize a Measure
data file) before calling MEASCONFIGURE.
In Measure H01 and later PVUs, MEASCONFIGURE accepts a contab which contains
DISCOPEN, DISKFILE, FILE, or SQLSTMT entity descriptors for ANSI SQL objects or partitions.
error := MEASCONFIGURE (meascb ! i,o
 ,dfnum ! i

358 Measure Callable Procedures

 ,measnum ! o
 ,contab ! i
 ,[errDetail]) ; ! o

meascb

input, output
INT:ref:$LEN (MEASCB^DEF) / 2
is a control block where the Measure subsystem stores data for subsequent procedure calls.
Before calling the first Measure procedure that uses meascb, you must allocate space in your
global data area for the control block and initialize each element of the control block to -1.
Once you pass meascb to a Measure procedure, do not modify its contents.
The MEASDECS file contains the structure definition for the control block descriptor
(MEASCB^DEF).

dfnum

input
INT:value
is the data file access number. Use the dfnum value returned by the MEASOPEN procedure.

measnum

output
INT:ref:1
is the measurement number. Use this number in subsequent procedure calls to identify the
measurement.

contab

input
INT.EXT:ref:*
is an array that defines the measurement configuration. The contab array contains a header
section, a trailer section, and a section for each entity type.
Structure definitions for use in the contab array are defined in the MEASDECS file.
MEASDECS declares both a literal and a numeric identifier for each entity type and for the
header and trailer records.
For ANSI SQL objects or partitions, the entity descriptors can be DISCOPEN, DISKFILE,
FILE, or SQLSTMT entity descriptors.
Table 4-2 lists each section of the configuration table, the name of the associated structure in
the MEASDECS file, the literal, and the numeric identifier. The sections must appear in the
order shown.

errDetail

output
FIXED.EXT:ref:1
The errDetail parameter may only be used with Measure H03-AFV and above, and
J01-AFW and above. This parameter is only valid if the error ERR^BADDESC is returned. It
contains information about the first encountered error in the contab buffer.

The ordinal number of the bad descriptor within an entity type,
starting with 1.

> 0 =errDetail.32:47

This argument is not supported by the used version of MEASFH -1 =errDetail.48:63

There is something wrong with the contab, but not necessarily with
any of the descriptors.

 0 =

The entity type.> 0 =

MEASCONFIGURE 359

Table 4-2 Entity Descriptors and Type Values

Numeric
IdentifierType Literal

Descriptor Template Structure
(Systems Running G-Series and
later RVUs)

Descriptor Template Structure
(Systems Running D-Series
RVUs)Section

50CONTAB^TCONTAB^HDRCONTAB^HDRCONTAB
header

1CPU^TCPU^DESCCPU^DESCCPU

2PROCESS^TPROCESS^DESC
PROCESS^OSS^DESC

PROCESS^DESCPROCESS

3PROCESSH^TPROCESSH^DESC
CODE^SPACE^DESC
PROCESSH^OSS^DESC
CODE^SPACE^OSS^DESC

PROCESSH^DESCPROCESSH

4USERDEF^TUSERDEF^DESC
COUNTER^DESC
USERDEF^OSS^DESC

USERDEF^DESC
COUNTER^DESC

USERDEF

5FILOP^TFILE^OPEN^DESC
FILE^OPEN^DESC^D10
FILE^OPEN^OSS^DESC
FILE^OPEN^OSS^DESC^D10
FILE^OPEN^ANSI^DESC

FILE^OPEN^DESCFILE

6DFILOP^TFILE^OPEN^DESC
FILE^OPEN^OSS^DESC
FILE^OPEN^ANSI^DESC

FILE^OPEN^DESCDISCOPEN

7DISC^TDEVICE^CLIM^DESC
DEVICE^SVNET^DESC
DEVICE^SVNET^DESC^G05

DEVICE^DESCDISC

8IODEV^TDEVICE^CLIM^DESC
DEVICE^SVNET^DESC
DEVICE^SVNET^DESC^G05

DEVICE^DESCDEVICE

9LINE^TWAN^DESCDEVICE^DESCLINE

10NETLINE^TWAN^DESCDEVICE^DESCNETLINE

11REMSYS^TSYSTEM^DESCSYSTEM^DESCSYSTEM

12CLUSTER^TNot applicableSYSTEM^DESCCLUSTER

13TERM^TWAN^DESCDEVICE^DESCTERMINAL

14TMF^TCPU^DESCCPU^DESCTMF

15SQLPROC^TSQLPROC^DESC
SQLPROC^OSS^DESC

SQLPROC^DESCSQLPROC

16SQLSTMT^TSQLSTMT^DESC
SQLSTMT^OSS^DESC
SQLSTMT^ANSI^DESC

SQLSTMT^DESCSQLSTMT

17OPDISK^TNot applicableOPDISK^DESCOPDISK

18CTRL^TNot applicableCTRL^DESCCONTROLLER

18SVNET^TSVNET^DESCNot applicableSERVERNET

19DISKFILE^TDISKFILE^DESC
DISKFILE^OSS^DESC
DISKFILE^ANSI^DESC

DISKFILE^DESCDISKFILE

360 Measure Callable Procedures

Table 4-2 Entity Descriptors and Type Values (continued)

Numeric
IdentifierType Literal

Descriptor Template Structure
(Systems Running G-Series and
later RVUs)

Descriptor Template Structure
(Systems Running D-Series
RVUs)Section

20OSSCPU^TCPU^DESCNot applicableOSSCPU

21OSSNS^TOSSNS^DESCNot applicableOSSNS

24MAX^TMaximum
value

51CONTAB^TRAILER^TCONTAB^TRAILERCONTAB^TRAILERCONTAB
trailer

NOTE: You can use measurement applications containing D-series descriptors to measure
G-series entities if the descriptors specify all entities. For example, if an application uses the
DEVICE^DESC descriptor and contains -1 or an asterisk in all identifier fields, you can use that
application to measure G-series DEVICE entities. You need not modify the application to use
the DEVICE^SVNET^DESC or DEVICE^SVNET^DESC^G05 descriptors.

CONTAB^HDR
describes the contents of the contab array. The CONTAB^HDR descriptor consists of these
fields, in order:
type

INT:value:1
identifies the header section of the contab array. Specify type as the literal CONTAB^T
or the numeric identifier 50.

len

INT:value:1
is the length in bytes of the entire contab array. The maximum length is 32,000 bytes,
including the header and the trailer.

sections

INT:value:MAX^T+1
is an array of byte offsets to each section of the contab array. The array elements are in
entity-type order, as shown in Table 4-2: Entity Descriptors and Type Values (page 360).
Specify the first byte offset (array element 0) as 0. If you omit a section of the contab
array, specify the byte offset for that section as 0.

maxents

INT:value:1
identifies the header format. This field is equated to SECTIONS[0], so it does not add to
the length of CONTAB^HDR.

CTRL^DESC
is the descriptor for CONTROLLER entities on systems running D-series RVUs.
The CTRL^DESC descriptor has the format:
type

INT:value:1
is the literal value CTRL^T or the numeric identifier 18.
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

MEASCONFIGURE 361

len

INT:value:1
is the length in bytes of this descriptor.

cpu^number

INT:value:1
is the number of the CPU on which the controller is configured. To indicate all CPUs, use
the literal -1.

channel

INT:value:1
is the channel number of the controller to be measured.

ctrl

INT:value:1
is the controller number (0 through 31). To indicate all controllers, use the literal -1.

ctrl-type

INT:value:1
is the controller type (HP product number, such as 3129).

CPU^DESC
is the descriptor for CPU or TMF entities on systems running D-series or G-series RVUs. The
CPU^DESC descriptor consists of these fields, in order:
type

INT:value:1

Numeric IdentifierLiteralEntity Type

1CPU^TCPU

14TMF^TTMF

20OSSCPU^TOSSCPU

is one of:
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor.

cpu^number

INT:value:1
is the number of the CPU to be measured. Use the literal -1 to indicate all CPUs.

DEVICE^DESC
is the descriptor for DEVICE, DISC, LINE, NETLINE, or TERMINAL entities on systems
running D-series RVUs.
The DEVICE^DESC descriptor consists of these fields, in order:

362 Measure Callable Procedures

type

INT:value:1
is one of:

Numeric IdentifierLiteralEntity Type

7DISC^TDISC

8IODEV^TDEVICE

9LINE^TLINE

10NETLINE^TNETLINE

13TERM^TTERMINAL

A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is 36 (the length in bytes of this descriptor).

cpu^number

INT:value:1
is the number of the CPU on which the device to be measured is running. Use the literal
-1 to indicate all CPUs.

ctl

INT:value:1
is the controller number of the device to be measured (0 through 31). Use the literal -1 to
indicate all controllers.

unit

INT:value:1
is the unit number of the device to be measured. Use the literal -1 to indicate all units.

device^name

INT:value:12
is the name of the device to be measured. The name must be left-justified and blank-filled
and must start with a dollar sign ($). Use a dollar sign and an asterisk ($*) to indicate all
devices.

channel-num

INT:value:1
is the channel number of the device to be measured.

DEVICE^CLIM^DESC
is the descriptor for DEVICE or DISC entities connected to a system running a H- or J-series
RVU by a CLIM. DEVICE^CLIM^DESC includes a PLPT field, which contains the lun, path
and target-id fields that uniquely identify devices connected by a CLIM. You can use
DEVICE^SVNET^DESC or DEVICE^SVNET^DESC^G05 to describe other NonStop S-series
devices.

MEASCONFIGURE 363

type

INT:value:1
is one of:

Numeric IdentifierLiteralEntity Type

7DISC^TDISC

8IODEV^TDEVICE

A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor. len is 52 if the descriptor does not include the
configuration name or 116 if the descriptor includes the configuration name.

cpu^number

INT:value:1
is the number of the CPU on which the device is configured. Use the literal -1 to indicate
all CPUs.

servernet

INT:value:1
is the ServerNet fabric. This field identifies a specific path or set of paths to a supported
physical device. For G-series and later RVUs, use 0 to indicate the X fabric, 1 to indicate
the Y fabric, or the literal -1 to indicate both fabrics.
For devices connected by a ServerNet/DA, use the literal -1.
For devices connected by an FCSA or CLIM, use 0 to indicate the X fabric. By convention,
dual fabric controllers are specified by X.

device^name

INT:value:12
is the name of the device to be measured. The name must be left-justified and blank-filled
and must start with a dollar sign ($). Use a dollar sign and an asterisk ($*) to indicate all
devices.

plpt

starting with the Measure H03 and J01 PVUs, this structure contains lun, path and
target-id information about the device to be measured.
plpt^flags

UNSIGNED(8):value:1
is an array of bit flags that describe how this structure should be interpreted.
Bit 0 (%H80) MEAS_CLIM_REL: This is always 1 in Measure H03 and later data files.
Bit 1 (%H40) MEAS_PATH_SEL: This is only used in the entity descriptor when
selecting a device for measurement, or in a MEASREADACTIVE,
MEAS_READACTIVE_ or MEAS_READACTIVE_MANY_ procedure call. When it
is 1, it specifies device selection by device^name and path only, and not by GMS,
lun, target^id or config^name.
Bit 2 (%H20) MEAS_CLIM_DEVICE: Indicates that this descriptor is for a CLIM
device.

364 Measure Callable Procedures

path

UNSIGNED(8):value:1
is the path of the device to be measured. Use the literal -1 to indicate all paths. The
following are literals that can be used here: MEAS_PATH_PRIMARY,
MEAS_PATH_BACKUP, MEAS_PATH_MIRROR, and
MEAS_PATH_MIRROR_BACKUP.

lun

INT:value:1
is the logical unit number of the CLIM device to be measured. Not used for non-CLIM
devices. Use the literal -1 to indicate all luns.

reserved

INT:value:1
reserved for future use.

target^id

INT:value:1
is the SCSI port identifier of the non-CLIM device to be measured. Not used by CLIM
devices. Use the literal -1 to indicate all SCSI ports.

config^name

INT:value:32
is the configuration name of the device, as defined by the system configuration database.
config^name can also be the configuration name of either a single ServerNet addressable
controller (SAC) or an adapter that contains several ServerNet addressable controllers.
In this case, the specification includes all devices of the requested type that are supported
by that SAC or adapter.
config^name must be null-terminated and null-filled. An asterisk in the first byte
indicates all configuration names (this can be set with config^name^s := "*").
To save space in the configuration table, omit CONFIG^NAME from the
DEVICE^CLIM^DESC structure. You must set the descriptor length (LEN) to reflect
whether you are using CONFIG^NAME because Measure uses the descriptor length to
determine the start of the next descriptor in the configuration table. To not use
CONFIG^NAME, set LEN to 52 and move only the first 52 bytes of the descriptor to the
configuration table. To include CONFIG^NAME, set LEN to 116 and move the entire
descriptor to the configuration table.

DEVICE^SVNET^DESC
is the descriptor for DEVICE or DISC entities on systems running G-series RVUs.
To measure devices connected by a ServerNet/DA or FCSA, use the
DEVICE^SVNET^DESC^G05 descriptor. This descriptor includes a field to identify the SCSI
port of the device being measured. You can also use the DEVICE^SVNET^DESC descriptor
to measure such devices if the descriptor specifies all devices or specifies only a device name
and CPU number.

MEASCONFIGURE 365

NOTE: LINE, NETLINE, and TERMINAL entities, which use the DEVICE^DESC descriptor
in D-series RVUs, use the WAN^DESC descriptor in G-series RVUs.

type

INT:value:1
is one of:

Numeric IdentifierLiteralEntity Type

7DISC^TDISC

8IODEV^TDEVICE

A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor. len is 44 if the descriptor does not include the
configuration name or 108 if the descriptor includes the configuration name.

cpu^number

INT:value:1
is the number of the CPU on which the device is configured. Use the literal -1 to indicate
all CPUs.

servernet

INT:value:1
is the ServerNet fabric. This field identifies a specific path or set of paths to a supported
physical device. For G-series and later RVUs, use 0 to indicate the X fabric, 1 to indicate
the Y fabric, or the literal -1 to indicate both fabrics.

GMS
is the physical location address (group, module, slot). The GMS structure consists of these
fields:
group

INT(32):value:1
is the group number of the device to be measured. (The group corresponds to the
physical enclosure.) Use the literal -1 to indicate all groups.

module

INT(32):value:1
is the module number of the device to be measured. Use the literal -1 to indicate all
modules.

slot

INT(32):value:1
is the slot number of the device to be measured. Use the literal -1 to indicate all slots.

device^name

INT:value:12
is the name of the device to be measured. The name must be left-justified and blank-filled
and must start with a dollar sign ($). Use a dollar sign and an asterisk ($*) to indicate all
devices.

366 Measure Callable Procedures

config^name

INT:value:32
is the configuration name of the disk or device, as defined by the system configuration
database.
config^name can also be the configuration name of either a single ServerNet addressable
controller (SAC) or an adapter that contains several ServerNet addressable controllers.
In this case, the specification includes all devices of the requested type supported by that
SAC or adapter.
config^name must be null-terminated and null-filled. An asterisk in the first byte
indicates all configuration names.
To save space in the configuration table, you can omit CONFIG^NAME from the
DEVICE^SVNET^DESC structure. You must set the descriptor length (LEN) to reflect
whether you are using CONFIG^NAME because Measure uses the descriptor length to
determine the start of the next descriptor in the configuration table. To not use
CONFIG^NAME, set LEN to 44 and move only the first 44 bytes of the descriptor to the
configuration table. To include CONFIG^NAME, set LEN to 108 and move the entire
descriptor to the configuration table.

DEVICE^SVNET^DESC^G05
is the descriptor for DEVICE or DISC entities connected to a system running a G-series RVU
by a Servernet/DA or FCSA . DEVICE^SVNET^DESC^G05 includes a field for a SCSI port
identifier, which is necessary to uniquely identify devices connected by ServerNet/DA. You
can use DEVICE^SVNET^DESC or DEVICE^SVNET^DESC^G05 to describe other NonStop
S-series devices.
type

INT:value:1
is one of:

Numeric IdentifierLiteralEntity Type

7DISC^TDISC

8IODEV^TDEVICE

A positive type value includes the specified entities in the measurement configuration. A
negative type value excludes the specified entities from measurement. For an example, see
Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor. len is 52 if the descriptor does not include the
configuration name or 116 if the descriptor includes the configuration name.

cpu^number

INT:value:1
is the number of the CPU on which the device is configured. Use the literal -1 to indicate all
CPUs.

servernet

INT:value:1
is the ServerNet fabric. This field identifies a specific path or set of paths to a supported
physical device. For G-series and later RVUs, use 0 to indicate the X fabric, 1 to indicate the
Y fabric, or the literal -1 to indicate both fabrics.
For devices connected by a ServerNet/DA, use the literal -1.

MEASCONFIGURE 367

GMS
is the physical location address (group, module, slot). The GMS structure consists of these
fields:
group

INT(32):value:1
is the group number of the device to be measured. (The group corresponds to the physical
enclosure.) Use the literal -1 to indicate all groups.

module

INT(32):value:1
is the module number of the device to be measured. Use the literal -1 to indicate all
modules.

slot

INT(32):value:1
is the slot number of the device to be measured. Use the literal -1 to indicate all slots.

device^name

INT:value:12
is the name of the device to be measured. The name must be left-justified and blank-filled
and must start with a dollar sign ($). Use a dollar sign and an asterisk ($*) to indicate all
devices.

scsi^id

INT(64):value:1
is the SCSI port identifier of the device to be measured. Use the literal -1 to indicate all SCSI
ports.

config^name

INT:value:32
is the configuration name of the device, as defined by the system configuration database.
config^name can also be the configuration name of either a single ServerNet addressable
controller (SAC) or an adapter that contains several ServerNet addressable controllers. In
this case, the specification includes all devices of the requested type that are supported by
that SAC or adapter.
config^namemust be null-terminated and null-filled. An asterisk in the first byte indicates
all configuration names.
To save space in the configuration table, omit CONFIG^NAME from the
DEVICE^SVNET^DESC^G05 structure. You must set the descriptor length (LEN) to reflect
whether you are using CONFIG^NAME because Measure uses the descriptor length to
determine the start of the next descriptor in the configuration table. To not use
CONFIG^NAME, set LEN to 52 and move only the first 52 bytes of the descriptor to the
configuration table. To include CONFIG^NAME, set LEN to 116 and move the entire descriptor
to the configuration table.

DISKFILE^DESC
is the descriptor for DISKFILE entities. For OSS file pathnames, use the template
DISKFILE^OSS^DESC.
This is the DISKFILE^DESC structure and a listing of the associated fields:
Struct Diskfile^desc (*); -- Diskfile descriptor declaration
 Begin
 Int Type; -- Diskfile entity type
 Int Len; -- byte length of the descriptor
 Int Filecode; -- file code
 Int Filetype; -- file type

368 Measure Callable Procedures

 Int File^name[0:11]; -- as it says
 End;

type

INT:value:1
is the literal value DISKFILE^T or the numeric identifier 19.
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor. LEN is 32.

file^name

INT:value:12
is the name of the file to be measured. The name must be left-justified, blank-filled, and
in local internal format. You can use asterisks (*) for the volume, subvolume, and file-name
fields within file^name.

filetype

INT:value:1
is the type of the file to be measured. The four file types are:

ValueFile Type

0Unstructured

1Relative

2Entry-sequenced

3Key-sequenced

filecode

INT:value:1
is the three-digit file code (for example, 100 for object files and 101 for edit files). For a
complete list of file codes, see the File Utility Program (FUP) Reference Manual.

DISKFILE^OSS^DESC
is the descriptor for DISKFILE entities and supports the use of OSS file pathnames.
This is the DISKFILE^OSS^DESC structure and a listing of the associated fields that differ
from DISKFILE^DESC :
Struct Diskfile^OSS^desc (*); -- Diskfile descriptor declaration
 Begin
 Diskfile^desc^fields;
 Int Type; -- Diskfile entity type
 Struct File^name^MID; -- Internal identifier for OSS pathname
 Begin
 Int Pathid[0:11]; -- Internal format OSS file pathname
 Int Crvsn[0:2]; -- Creation Volume Sequence Number
 End;
 End;

file^name^mid.pathid

INT.value:12
is the internal format representation of the OSS file pathname for the specified disk file
that belongs to an OSS file set. Initialize PATHID[0] to -1 to indicate all PATHIDs.

MEASCONFIGURE 369

file^name^mid.crvsn

INT.value:3
is the creation version serial number that identifies a unique instance of an OSS disk file.
Initialize CRVSN[0] to -1 to indicate all CRVSN values.

DISKFILE^ANSI^DESC
is the descriptor for DISKFILE entities and supports the use of ANSI SQL objects.
This is the DISKFILE^ANSI^DESC structure and a listing of the associated fields that differ
from DISKFILE^DESC :
Struct Diskfile^ANSI^desc (*) -- Diskfile descriptor declaration
?IF PTAL
FIELDALIGN (SHARED2)
?ENDIF PTAL
;

Begin
 Int Type; -- Diskfile entity type
 Int Len; -- byte length of the descriptor
 Int Filecode; -- file code
 Int Filetype; -- file type
 Int File^name[0:11]; -- as it says
 Struct File^name^MID(MID^def); -- Internal identifier
 -- for OSS pathname

Struct SQLMX^Obj^Desc (ANSI^SQL^object^def); -- ANSI SQL name
 -- selection info
End;

SQLMX^Obj^Desc

INT.value:12
is the internal format representation of the ANSI SQL object definition. This field is filled
in using the MEAS_GETDESC_INFO_ procedure, the input for which is the actual ANSI
SQL Name, while the output is the contents of this structure.

FILE^OPEN^DESC
The DISCOPEN entity uses the FILE^OPEN^DESC template for entity descriptors. For OSS
file pathnames in the DISCOPEN entity, use the template FILE^OPEN^OSS^DESC.
The FILE entity uses entity descriptors:
• The FILE^OPEN^DESC template describes EDIT files, object files, and temporary files.
• For OSS file pathnames in the FILE entity, use the template FILE^OPEN^OSS^DESC.
• For ANSI SQL names in the FILE entity, use the template FILE^OPEN^ANSI^DESC.
Another entity descriptor, FILE^OPEN^DESC^D10 is used for FILE entity records and
provides fields for describing the process owning the open and the opener process (its process
name and program file).
Although you can specify FILE^NAME^MID without including
OPENER^PROGRAM^FNAME^MID, you cannot use OPENER^PROGRAM^FNAME^MID
by itself.
The FILE entity has separate entity descriptor formats, which are distinguished by their
length.

Number of BytesEntity Descriptor

46FILE^OPEN^DESC

76FILE^OPEN^OSS^DESC

80FILE^OPEN^DESC^D10

370 Measure Callable Procedures

Number of BytesEntity Descriptor

110 or 140FILE^OPEN^OSS^DESC^D10

164FILE^OPEN^ANSI^DESC

This is the FILE^OPEN^DESC structure and a listing of the associated fields:
Struct File^open^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; !Byte length of this record
 Int Opener^CPU; !Opener's CPU
 Int Opener^PIN; !Opener's PIN
 Int File^number; !File ACB number
 Int OCB^number = File^number; ! Discopen OCB
 Int File^name[0:11]; !File name being opened
 Int DP^CPU; ! Disc process' cpu number (primary or backup)
 Int File^open^type = DP^CPU; !Type of file open
 Int System^number; !Of remote file or remote opener.
 Int System^name[0:3] !Of remote file or remote opener; Set
 !to all blanks for local system files
 !or openers
 End;

type

INT:value:1

Numeric IdentifierLiteralEntity Type

5FILEOP^TFILE

6DFILEOP^TDISCOPEN

is one of:
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor. LEN is 46.

opener^cpu

INT:value:1
is the number of the CPU on which the opener process is running. Use the literal -1 to
indicate all CPUs.

opener^pin

INT:value:1
is the process identification number of the opener process. To indicate all PINs, use the
literal -1.
Use opener^cpu and opener^pin to identify the process that is accessing the file to
be measured.

file^number

INT:value:1
is the file identification number of the file to be measured. To indicate all files, use the
literal -1.

MEASCONFIGURE 371

ocb^number

INT:value:1
is no longer used.

file^name

INT:value:12
is the name of the file to be measured. The file name must be left-justified, blank-filled,
and in local internal format. You can use asterisks (*) for the volume, subvolume, and
file-name fields within file^name.

dp^cpu | File^open^type

INT:value:1
is the number of the CPU that contains the disk process (primary or backup) for a
DISCOPEN specification. Starting with the G10 Measure PVU,dp^cpu is obsolete, replaced
by file^open^type.
For a DISCOPEN entity, file^open^type should contain either a CPU number or the
value -1 to mean all CPUs.
For a FILE entity, file^open^type can have any of the values:
ALLFILES = %B0000000111111111,
GUARDIAN = %B1111111111111111,
ENSCRIBE = %B1111111011111111,
UNSTRUCT = %B1111111011100001,
RELFILE = %B1111111011100010,
ENTRYFILE = %B1111111011100100,
KEYFILE = %B1111111011101000,
SQLFILE = %B1111111111100000,
PROCFILE = %B1111111011110000,
OSS = %B0000000011100000,
OSSDISK = %B0111111011100000,
OSSFIFO = %B1101111011100000,
OSSPIPE = %B1011111011100000,
OSSSOCKET = %B1110000011100000,
OSSUNIXSOCKET = %B1110011011100000,
OSSUNIXDGRAM = %B1110111011100000,
OSSUNIXSTREAM = %B1111011011100000,
OSSINETSOCKET = %B1111100011100000,
OSSINETDGRAM = %B1111101011100000,
OSSINETSTREAM = %B1111110011100000;

system^number

INT:value:1
is the number of the system on which the opener process is running. Use the literal -1 to
indicate all systems.

system^name

INT:value:4
is the name of the system on which the opener process is running. The system name must
be left-justified and blank-filled. It must start with a backslash (\) followed by a system
name in internal format. Use a backslash and an asterisk (*) to indicate all systems.

FILE^OPEN^DESC^D10
is the descriptor for the FILE entity and provides fields for describing the process that owns
the open and the opener process. It provides the process name and program name file. For
OSS file pathnames, use the template FILE^OPEN^OSS^DESC^D10.
This is the FILE^OPEN^DESC^D10 structure and a listing of the associated fields:
Struct File^open^desc^d10 (*);
 Begin

372 Measure Callable Procedures

 File^open^desc^fields;
 Int Measflags; !to be used later, initialize to 0 for
 !now
 Int Opener^pname[0:3]; !opener's process name
 Int Opener^program^fname[0:11]; ! opener's program file name
 End;

measflags

INT:value:1
is a field for future use. Initialize it to 0.

opener^pname

INT:value:4
is the name of the opener process. The process name must be left-justified and blank-filled.
It must start with a dollar sign ($) followed by a process name in internal format. Use a
dollar sign followed by an asterisk ($*) to indicate all processes.

opener^program^fname

INT:value:12
is the object file that the opener process is executing. The process name must be
left-justified, blank-filled, and in local internal file name format. You can use asterisks (*)
for the volume, subvolume, and file-name fields.

FILE^OPEN^OSS^DESC
is the descriptor for FILE or DISCOPEN entities on systems running G06.12 and later RVUs.
You can use the FILE^OPEN^OSS^DESC descriptor if OSS file pathnames are required in
entity specification.
This is the FILE^OPEN^OSS^DESC structure and a listing of the associated fields that differ
from FILE^OPEN^DESC:
Struct File^open^oss^desc (*);
 Begin
 File^open^desc^fields;
 Struct File^name^MID; !Internal identifier for OSS pathname
 Begin
 Int Pathid[0:11]; !Internal format OSS file pathname
 Int Crvsn[0:2]; !Creation Volume Sequence Number
 End;
 End;

file^name^mid.pathid

INT.value:12
is the internal format representation of the OSS file pathname. If the internal format
representation was used to access the disk file, initialize Pathid[0] to -1 to indicate all
PATHID values.

file^name^mid.crvsn

INT.value:3
is the creation version serial number that identifies a unique instance of an OSS disk file.
Initialize CRVSN[0] to -1 to indicate all CRVSN values.

FILE^OPEN^OSS^DESC^D10
is the descriptor for the FILE entity and supports OSS file pathnames. The
FILE^OPEN^OSS^DESC^D10 descriptor provides fields for describing the process that owns
the open and the opener process. Including the OPENER^PROGRAM^FNAME^MID
descriptor is optional.
This is the FILE^OPEN^OSS^DESC^D10 structure and a listing of the associated fields that
differ from FILE^OPEN^DESC^D10:

MEASCONFIGURE 373

Struct File^open^oss^desc^d10 (*);
 Begin
 File^open^desc^fields;
 Struct File^name^MID; !Internal identifier for OSS pathname
 Begin
 Int Pathid[0:11];
 Int Crvsn[0:2];
 End;
 Int Measflags; !to be used later, initialize to 0 for
 !now
 Int Opener^pname[0:3]; !opener's process name
 Int Opener^program^fname[0:11]; ! opener's program file name
 Struct Opener^program^fname^MID; !Internal identifier for OSS
 !pathname
 Begin
 Int Pathid[0:11]; !Internal format OSS file pathname
 Int Crvsn[0:2]; !Creation Volume Sequence Number
 End;
 End;

file^name^mid.pathid

INT.value:12
is the internal format representation of the OSS file pathname. If the internal format
representation was used to access the disk file, initialize Pathid[0] to -1 to indicate all
PATHID values.

file^name^mid.crvsn

INT.value:3
is the creation version serial number that identifies a unique instance of an OSS disk file.
Initialize CRVSN[0] to -1 to indicate all CRVSN values.

measflags

INT:value:1
is a field for future use; initialize to 0.

opener^pname

INT:value:4
is the name of the opener process. The process name must be left-justified and blank-filled.
It must start with a dollar sign ($) followed by a process name in internal format. Use a
dollar sign followed by an asterisk ($*) to indicate all processes.

opener^program^fname

INT:value:12
is the object file that the opener process is executing. The process name must be
left-justified, blank-filled, and in local internal file-name format. You can use asterisks
(*) for the volume, subvolume, and file-name fields.

opener^program^fname^mid.pathid

INT.value:12
is the internal format representation of the OSS file pathname for the
OPENER^PROGRAM^FILENAME if the file belongs to an OSS file set. Initialize Pathid[0]
to -1 to indicate all PATHID values.

opener^program^fname^mid.crvsn

INT.value:3
is the creation version serial number that identifies a unique instance of an OSS disk file.
Initialize CRVSN[0] to -1 to indicate all CRVSN values.

374 Measure Callable Procedures

FILE^OPEN^ANSI^DESC
is the descriptor for the FILE and DISCOPEN entities and specifies an ANSI SQL object. The
FILE^OPEN^ANSI^DESC descriptor field is filled in using the MEAS_GETDESC_INFO_
procedure, the input for which is the actual ANSI SQL Name, while the output is the contents
of this structure.
This is the FILE^OPEN^ANSI^DESC structure and a listing of the associated fields that differ
from FILE^OPEN^DESC^D10:
Struct File^open^ANSI^desc (*) -- Diskfile descriptor declaration
?IF PTAL
FIELDALIGN (SHARED2)
?ENDIF PTAL
;

Begin
 Int Type; -- Entity type
 Int Len; -- Byte length of this record
 Int Opener^CPU; -- Opener's CPU
 Int Opener^PIN; -- Opener's PIN
 Int File^number; -- File ACB number
 Int OCB^number = File^number; -- Discopen OCB
 Int File^name[0:11]; -- File name being opened
 Int DP^CPU; -- Disc process' cpu number
 Int File^open^type = DP^CPU; -- Type of file open
 Int System^number; -- Of remote file or remote opener.
 Int System^name[0:3] -- Of remote file or remote opener;Set
 -- to all blanks for local system files
 -- or openers
 Struct File^name^MID(MID^def); -- Internal id for OSS
 -- pathname
 Int Measflags; -- To be used later,
 -- initialize to 0 for
 -- now
 Int Opener^pname[0:3]; -- opener's process name
 Int Opener^program^fname[0:11]; -- opener's program file
 -- name
 Struct Opener^program^fname^MID(MID^def); -- Internal id for OSS
 -- pathname
Struct SQLMX^Obj^Desc (ANSI^SQL^object^def); -- ANSI SQL Name

 -- selection info

End;

SQLMX^Obj^Desc

INT.value:12
is the internal format representation of the ANSI SQL object definition. This field is filled
in using the MEAS_GETDESC_INFO_ procedure, the input for which is the actual ANSI
SQL Name, while the output is the contents of this structure.

OPDISK^DESC
is the descriptor for OPDISK entities on systems running D-series RVUs. The OPDISK entity
type is currently not used on systems running G-series RVUs.
type

INT:value:1
is the literal OPDISK^T or the numeric identifier 17.
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

MEASCONFIGURE 375

len

INT:value:1
is the length in bytes of this descriptor.

cpu^number

INT:value:1
is the number of the CPU on which the optical disk is configured. Use the literal -1 to
indicate all CPUs.

ctl

INT:value:1
is the controller number of the optical disk to be measured (0 through 31). Use the literal
-1 to indicate all controllers.

unit

INT:value:1
is the unit number of the optical disk to be measured. Use the literal -1 to indicate all
units.

device^name

INT:value:12
is the device name of the optical disk to be measured. The name must be left-justified
and blank-filled. It must start with a dollar sign ($) followed by a device name in internal
format. Use a dollar sign followed by an asterisk ($*) to indicate all devices.

volume^name

INT:value:12
is the name of the optical disk volume to be measured.

channel-num

INT:value:1
is the channel number of the optical disk to be measured.

OSSNS^DESC
is the descriptor for the OSSNS entity on systems running G-series RVUs. For OSS file
pathnames, use the template PROCESS^OSS^DESC.
This is the OSSNS^DESC structure and a listing of the associated fields:
Struct OSSNS^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record. In case of
 ! the name server it includes
 ! length of all the code-space
 ! descriptors and for userdef
 ! it includes length of all the counter
 ! descriptors.
 Int CPU^number;
 Int PIN;
 Int Process^name[0:3];
 Int Program^file^name[0:11];
 End;

type

INT:value:1
is the literal OSSNS^T or the numeric identifier 21.
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

376 Measure Callable Procedures

len

INT:value:1
is the length in bytes of this descriptor. LEN is 40.

cpu^number

INT:value:1
is the number of the CPU on which the name server is running. Use the literal -1 to indicate
all CPUs.

pin

INT:value:1
is the process identification number of the name server. You can use these literal values:
• -1 to indicate all PINs
• -2 to indicate all system processes
• SYSPROCS to indicate all processes installed by SYSGEN

process^name

INT:value:4
is the OSS name server name. The name must be left-justified and blank-filled. It must
start with a dollar sign ($) followed by a process name in internal format. process^name
can be a system process name. Use a dollar sign followed by an asterisk ($*) to indicate
all name servers.

program^file^name

INT:value:12
is the object file that the OSS name server is executing. The name must be left-justified
and blank-filled and must be in local internal file name format. You can use asterisks (*)
in the volume, subvolume, and file-name fields within file^name. However, the
volume name must begin with a dollar sign ($). For example, to specify all program file
names, use the value "$* * *".

PROCESS^DESC
is the descriptor for PROCESS entity on systems running D-series, G-series, or later RVUs.
For OSS file pathnames, use the template PROCESS^OSS^DESC.
This is the PROCESS^DESC structure and a listing of the associated fields:
Struct Process^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record. In case of
 ! process it includes
 ! length of all the code-space
 ! descriptors and for userdef
 ! it includes length of all the counter
 ! descriptors.
 Int CPU^number;
 Int PIN;
 Int Process^name[0:3];
 Int Program^file^name[0:11]
 End;

type

INT:value:1
is the literal PROCESS^T or the numeric identifier 2.
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

MEASCONFIGURE 377

len

INT:value:1
is the length in bytes of this descriptor. LEN is 40.

cpu^number

INT:value:1
is the number of the CPU on which the process is running. Use the literal -1 to indicate
all CPUs.

pin

INT:value:1
is the process identification number of the process. You can use these literal values:
• -1 to indicate all PINs
• -2 to indicate all system processes
• SYSPROCS to indicate all processes installed by SYSGEN

process^name

INT:value:4
is the process name. The name must be left-justified and blank-filled. It must start with
a dollar sign ($) followed by a process name in internal format. process^name can be
a system process name. Use a dollar sign followed by an asterisk ($*) to indicate all
processes.

program^file^name

INT:value:12
is the object file that the process is executing. The name must be left-justified and
blank-filled and must be in local internal file-name format. You can use asterisks (*) in
the volume, subvolume, and file-name fields within file^name. However, the volume
name must begin with a dollar sign ($). For example, to specify all program file names,
use the value "$* * *".

PROCESS^OSS^DESC
is the descriptor for PROCESS entity and supports OSS file pathnames.
This is the PROCESS^OSS^DESC structure and a listing of the associated fields that differ
from PROCESS^DESC:
Struct Process^OSS^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record. In case of
 ! process it includes
 ! length of all the code-space descriptors
 ! and for userdef it includes length of
 !all the counter descriptors.
 Int CPU^number;
 Int PIN;
 Int Process^name[0:3];
 Int Program^file^name[0:11];
 Struct Program^file^name^MID; !Internal identifier for
 !OSS pathname
 Begin
 Int Pathid[0:11]; !Internal format OSS file
 !pathname
 Int Crvsn[0:2]; !Creation Volume Sequence Number
 End;
 End;

378 Measure Callable Procedures

type

INT:value:1
is the literal PROCESS^T or the numeric identifier 2.
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor. LEN is 70.

cpu^number

INT:value:1
is the number of the CPU on which the process is running. Use the literal -1 to indicate
all CPUs.

pin

INT:value:1
is the process identification number of the process. You can use these literal values:
• -1 to indicate all PINs
• -2 to indicate all system processes
• SYSPROCS to indicate all processes installed by SYSGEN

process^name

INT:value:4
is the process name. The name must be left-justified and blank-filled. It must start with
a dollar sign ($) followed by a process name in internal format. process^name can be
a system process name. Use a dollar sign followed by an asterisk ($*) to indicate all
processes.

program^file^name

INT:value:12
is the object file that the process is executing. The name must be left-justified and
blank-filled and must be in local internal file-name format. You can use asterisks (*) in
the volume, subvolume, and file-name fields within file^name. However, the volume
name must begin with a dollar sign ($). For example, to specify all program file names,
use the value "$* * *".

program^file^name^mid.pathid

INT.value:12
is the internal format representation of the OSS file pathname for the program file. If the
file belongs to the OSS file system, initialize Pathid[0] to -1 to indicate all PATHID values.

program^file^name^mid.crvsn

INT.value:3
is the creation version serial number that identifies a unique instance of an OSS disk file.
Initialize CRVSN[0] to -1 to indicate all CRVSN values.

PROCESSH^DESC
is the descriptor for PROCESSH entities on systems running D-series or G-series RVUs.
PROCESSH entity descriptors are variable in length and can contain CODE^SPACE^DESC
templates following the initial PROCESSH^DESC structure. For OSS file pathnames, use the
PROCESSH^OSS^DESC and CODE^SPACE^OSS^DESC templates.
This is the PROCESSH^DESC structure and a listing of the associated fields:

MEASCONFIGURE 379

Struct Processh^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record. In case of processh it includes
 ! length of all the code-space descriptors and for userdef
 ! it includes length of all the counter descriptors.
 Int CPU^number;
 Int PIN;
 Int Process^name[0:3];
 Int Program^file^name[0:11]
 Fixed Conftime; !Set to 0F, for use by MEASFH only
 Int Code^spaces; !Number of code spaces to be measured
 End; ! A subsequent code^space^desc is not needed for an Entitydesc of
 ! a previously installed entity. But for Contab use, as many
 ! code^space^desc as desired must imediately follow this struct.

type

INT:value:1
is the literal value PROCESSH^T or the numeric identifier 3.
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor and any CODE^SPACE^DESC descriptors
associated with it. LEN is 50 if the descriptor does not contain any CODE^SPACE^DESC
extensions.

cpu^number

INT:value:1
is the number of the CPU on which the process to be measured is running. Use the literal
-1 to indicate all CPUs.

pin

INT:value:1
is the process identification number of the process to be measured. You can use these
literal values:
• -1 to indicate all processes
• SYSPROCS to indicate all processes installed by SYSGEN
• ALLTIMES to measure execution time for all processes
• ALLINTR to measure only interrupt time for all processes
If you specifypin as the literal value ALLTIMES or ALLINTR, you must usecode-space
to specify a code space of SC.0, SL.n, SCR, or SLR.

process^name

INT:value:4
is the name of the process to be measured. The name must be left-justified and blank-filled.
It must consist of a dollar sign ($) followed by a process name in internal format.
process^name can be a system process name. Use the literal -1 to indicate all process
names.

program^file^name

INT:value:12
is the name of the object file that the process to be measured is executing. The name must
be left-justified, blank-filled, and in local internal file-name format. You can use asterisks
(*) in the volume, subvolume, and file-name fields within file^name. However, the

380 Measure Callable Procedures

volume name must begin with a dollar sign ($). For example, to specify all program file
names, use the value "$* * *".

conftime

FIXED:value:1
Specify conftime as 0F. For use by the Measure subsystem only.

code^spaces

INT:value:1
is the number of CODE^SPACE^DESC descriptors that follow, describing the code spaces
to be measured.

NOTE: When passing a PROCESSH^DESC descriptor to the MEASREAD procedure,
do not include the CODE^SPACE^DESC descriptors.

CODE^SPACE^DESC
is the descriptor for a code space specification.
This is the CODE^SPACE^DESC structure and a listing of the associated fields:
Struct Code^space^desc (*);
 Begin
 Int Code^space; !<0>=0 user, =1 system
 !<1>=0 non lib, =1 lib
 !<2>=0 non native, =1 native
 !<7>=0 no OSS, =1 OSS MID included.
 !<8:15> space number
 Int Code^ranges^file^name[0:11];
 String Code^ranges^file^name^s = Code^ranges^file^name;
 End;

code^space

INT:value:1
is the code space number, formatted as:
.0:2 identifies the space. On H-series and J-series RVUs, this value is significant only
for nonnative code.
0 = user code — TNS or accelerated (UC)
1 = user code — TNS/R native (UCR)
2 = user library — TNS or accelerated (UL)
3 = user library — TNS/R native (ULR)
4 = system code — TNS or accelerated (SC)
5 = system code — TNS/R native (SCR)
6 = system library — TNS or accelerated (SL)
7 = system library — TNS/R native (SLR)
.3:7 is reserved for future use.
.7 indicates code space template is CODE^SPACE^OSS^DESC format.
.8:15 is relevant only to TNS and accelerated code spaces, and indicates the space
number:

0 through 15UC

0 through 15UL

0SC

0 through 31SL

MEASCONFIGURE 381

code^ranges^file^name

INT:value:12
is the name of the file containing the code to be measured.code^ranges^file^name
must be a TNS object file, EDIT file, or Executable and Linking Format (ELF) file. The
name must be left-justified, blank-filled, and in local internal format.
If code^ranges^file^name is an object file, MEASFH examines the procedure
names and addresses and adds each procedure to the configuration. If
code^ranges^file^name is an EDIT file, you must specify code ranges in ascending
address order:
code-range-name code-range-address

code-range-name

is the procedure name of the code range to be measured. Leading dollar signs ($) are
allowed for TNS/R and TNS/E code ranges.

code-range-address

is the address of the code range to be measured.
For TNS EDIT files, code-range-address is an address in octal or an offset from
a preceding octal address.
For TNS/R and TNS/E EDIT files, code-range-address is a virtual address in
hexadecimal or an offset from a preceding hexadecimal address.
To indicate an offset from the previous code-range-address, precede the octal
or hexadecimal address with a plus sign (+). The lastcode-range-address specified
without a plus sign is added to the offset to yield an effective address.

PROCESSH^OSS^DESC
is the descriptor for PROCESSH entities in G06.12 and later RVUs and supports OSS file
pathnames. PROCESSH entity descriptors are variable in length and can contain some number
of CODE^SPACE^DESC or CODE^SPACE^OSS^DESC templates following the initial
PROCESSH^OSS^DESC descriptor. These templates can be used in any order. A bit in the
CODE^SPACE field (bit 7) indicates the format of the descriptor and the offset to the next
descriptor.

NOTE: The initializing of PROCESSH^DESC.CONFTIME to 0F on input determines whether
PROCESSH^DESC or PROCESSH^OSS^DESC is used.

This is the PROCESSH^OSS^DESC structure and a listing of the associated fields that differ
from PROCESSH^DESC:
Struct Processh^OSS^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record. In case of processh it
 ! includes length of all the code-space descriptors
 ! and for userdef it includes length of all the
 ! counter descriptors.
 Int CPU^number;
 Int PIN;
 Int Process^name[0:3];
 Int Program^file^name[0:11]
 Struct Program^file^name^MID; !Internal identifier for OSS pathname
 Begin
 Int Pathid[0:11]; !Internal format OSS file pathname
 Int Crvsn[0:2]; !Creation Volume Sequence Number
 End;
 Fixed Conftime; !Set to 0F, for use by MEASFH only
 Int Code^spaces; !Number of code spaces to be measured
 End; ! A subsequent code^space^desc is not needed for an Entitydesc

382 Measure Callable Procedures

 ! of a previously installed entity. But for Contab use, as
 ! many code^space^desc as desired must imediately follow this
 ! struct.

len

INT:value:1
is the length in bytes of this descriptor and any CODE^SPACE^OSS^DESC descriptors
associated with it. LEN is 80 if the PROGRAM^FILE^NAME^MID structure is included
but does not include the CODE^SPACE^DESC or CODE^SPACE^OSS^DESC extensions.

program^file^name^mid.pathid

INT.value:12
is the internal format representation of the OSS file pathname for a program file that
belongs to the OSS file system. Initialize Pathid[0] to -1 to indicate all PATHIDs.

program^file^name^mid.crvsn

INT.value:3
is the creation version serial number that identifies a unique instance of an OSS disk file.
Initialize CRVSN[0] to -1 to indicate all CRVSN values.

conftime

FIXED:value:1
Specify conftime as 0F. For use by the Measure subsystem only.

code^spaces

INT:value:1
is the number of CODE^SPACE^OSS^DESC or CODE^SPACE^DESC descriptors that
follow, describing the code spaces to be measured.

NOTE: When passing a PROCESSH^DESC descriptor to the MEASREAD procedure,
do not include the CODE^SPACE^DESC or CODE^SPACE^OSS^DESC descriptors.

CODE^SPACE^OSS^DESC
is the descriptor for code space specification and supports OSS file pathnames.
This is the CODE^SPACE^OSS^DESC structure and a listing of the associated fields that
differ from CODE^SPACE^DESC:
Struct Code^space^oss^desc (*);
 !To be used in place of code^space^desc
 !structure when OSS file pathname has
 ! been used in the code^range^file^name
 ! specification.
 Begin
 Int Code^space; !<0>=0 user, =1 system
 !<1>=0 non lib, =1 lib
 !<2>=0 non native, =1 native
 !<7>=0 no OSS, =1 OSS MID included.
 !<8:15> space number
 Int Code^ranges^file^name[0:11];
 String Code^ranges^file^name^s = Code^ranges^file^name;
 Struct Code^ranges^file^name^MID; !Internal identifier for OSS
 !pathname
 Begin
 Int Pathid[0:11]; !Internal format OSS file pathname
 Int Crvsn[0:2]; !Creation Volume Sequence Number
 End;
 End;

MEASCONFIGURE 383

code^space

INT:value:1
is the code space number, formatted as:
.0:2 identifies the space. On H-series and J-series RVUs, this value is significant only
for nonnative code.
0 = user code — TNS or accelerated (UC)
1 = user code — TNS/R native (UCR)
2 = user library — TNS or accelerated (UL)
3 = user library — TNS/R native (ULR)
4 = system code — TNS or accelerated (SC)
5 = system code — TNS/R native (SCR)
6 = system library — TNS or accelerated (SL)
7 = system library — TNS/R native (SLR)
.3:7 is reserved for future use.
.7 indicates code space template is CODE^SPACE^OSS^DESC format.
.8:15 is relevant only to TNS and accelerated code spaces, and indicates the space
number:

0 through 15UC

0 through 15UL

0SC

0 through 31SL

code^ranges^file^name^mid.pathid

INT:value:12
is the internal representation of the OSS file pathname for code file. To indicate all
PATHIDs, initialize PATHID[0] to -1.

code^ranges^file^name^mid.crvsn

INT:value:3
is the creation version serial number that identifies a unique instance of an OSS disk
file. To indicate all CRVSN values, initialize CRVSN[0] to -1.

SQLPROC^DESC
is the descriptor for the SQLPROC entity. For OSS file pathnames, use the template
SQLPROC^OSS^DESC.
This is the SQLPROC^DESC structure and a listing of the associated fields:
Struct Sqlproc^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record.
 Int CPU^number;
 Int PIN;
 Int Process^name[0:3];
 Int Program^file^name[0:11]

 End;

type

INT:value:1
is the literal SQLPROC^T or the numeric identifier 15.

384 Measure Callable Procedures

A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor. LEN is 40.

cpu^number

INT:value:1
is the number of the CPU on which the process to be measured is running. To indicate
all CPUs, use the literal -1.

pin

INT:value:1
is the process identification number of the process to be measured. To indicate all PINs,
use the literal -1.

process^name

INT:value:4
is the name of the process to be measured. The name must be left-justified and blank-filled.
It must consist of a dollar sign ($) followed by a process name in internal format. To
indicate all processes, use a dollar sign followed by an asterisk ($*).

program^file^name

INT:value:12
is the name of the object file that the process to be measured is executing. The name must
be left-justified, blank-filled, and in local internal format. You can use asterisks (*) to
specify the volume, subvolume, and file-name fields within program^file^name.

SQLPROC^OSS^DESC
is the descriptor for the SQLPROC entity and supports OSS file pathnames.
This is the SQLPROC^OSS^DESC structure and a listing of the associated fields that differ
from SQLPROC^DESC:
Struct Sqlproc^OSS^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record.
 Int CPU^number;
 Int PIN;
 Int Process^name[0:3];
 Int Program^file^name[0:11];
 Struct Program^file^name^MID; !Internal identifier for OSS pathname
 Begin
 Int Pathid[0:11]; !Internal format OSS file pathname
 Int Crvsn[0:2]; !Creation Volume Sequence Number

 End;
 End;

len

INT:value:1
is the length in bytes of this descriptor. LEN is 40 if the descriptor does not contain the
PROGRAM^FILENAME^MID structure. If the descriptor does contain the
PROGRAM^FILENAME^MID structure, LEN is 70.

MEASCONFIGURE 385

program^file^name^mid.pathid

INT:value:12
is the internal format representation of an OSS file pathname for the specified program
file name if the file is part of an OSS file set. To indicate all PATHIDs, initialize PATHID[0]
to -1.

program^file^name^mid.crvsn

INT:value:3
is the creation version serial number that identifies a unique instance of an OSS disk file.
To indicate all CRVSN values, initialize CRVSN[0] to -1.

SQLSTMT^DESC
is the descriptor for the SQLSTMT entity. For OSS file pathnames, use SQLSTMT^OSS^DESC.
For ANSI SQL file names, use SQLSTMT^ANSI^DESC.

NOTE: When the measurement is being configured, only the process part of the descriptor
is used; when doing a the listing, all the fields can be used.

This is the SQLSTMT^DESC structure and a listing of the associated fields:
Struct Sqlstmt^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record.
 Int CPU^number;
 Int PIN;
 Int Process^name[0:3];
 Int Program^file^name[0:11]
 Int Run^unit[0:15]; !procedure or run-unit name
 Int Stmt^index; !statement index number within the run-unit
 String Run^Unit^s = Run^unit;
 End;

type

INT:value:1
is the literal SQLSTMT^T or the numeric identifier 16.
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor. LEN is 74.

cpu^number

INT:value:1
is the number of the CPU on which the process to be measured is running.

pin

INT:value:1
is the process identification number of the process to be measured. You can use these
literal values:
• -1 to indicate all processes
• SYSPROCS to indicate all processes installed by SYSGEN

386 Measure Callable Procedures

process^name

INT:value:4
is the name of the process to be measured. The name must be left-justified and blank-filled.
It must consist of a dollar sign ($) followed by a process name in internal format. To
indicate all processes, use a dollar sign and an asterisk ($*).

program^file^name

INT:value:12
is the name of the object file that the process to be measured is executing. The name must
be left-justified, blank-filled, and in local internal format. You can use asterisks (*) in the
volume, subvolume, and file-name fields within file^name. However, the volume
name must begin with a dollar sign ($). For example, to specify all program file names,
use the value "$* * *".

run-unit

INT:value:32
is the name of the procedure that contains the SQL statement to measure. To include all
run-units, the name of the procedure should be blank-filled. Do not use the asterisk (*)
wild-card character.
Not used for ANSI SQL.

statement^index

INT:value:1
is the statement index number within the specified run unit (procedure).
Not used for ANSI SQL.

SQLSTMT^OSS^DESC
is the descriptor for the SQLSTMT entity and includes support for OSS file pathnames,
SQL/MP procedures, or SQL/MX modules.

NOTE: When the measurement is being configured, only the process part of the descriptor
is used; when doing a the listing, all the fields can be used.

This is the SQLSTMT^OSS^DESC structure and a listing of the associated fields that differ
from SQLSTMT^DESC:
Struct Sqlstmt^OSS^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record.
 Int CPU^number;
 Int PIN;
 Int Process^name[0:3];
 Int Program^file^name[0:11];
 Struct Program^file^name^MID; !Internal identifier for OSS pathname
 Begin
 Int Pathid[0:11]; !Internal format OSS file pathname
 Int Crvsn[0:2]; !Creation Volume Sequence Number
 End;
 Int Run^unit[0:63]; !procedure or run-unit name
 Int Stmt^index; !statement index number within the run-unit
 String Run^Unit^s = Run^unit;
 End;

program^file^name^mid.pathid

INT:value:12
is the internal format representation of an OSS file pathname for the specified program
file name. To indicate all PATHIDs, initialize PATHID[0] to -1.

MEASCONFIGURE 387

program^file^name^mid.crvsn

INT:value:3
is the creation version serial number that identifies a unique instance of an OSS disk file.
To indicate all CRVSN values, initialize CRVSN[0] to -1.

SQLSTMT^ANSI^DESC
is the descriptor for the SQLSTMT entity and includes support for ANSI SQL file names.

NOTE: When an ANSI SQL name is copied into the descriptor’s run^unit field, it should
not be enclosed in single quotes.

NOTE: When the measurement is being configured, only the process part of the descriptor
is used; when doing a the listing, all the fields can be used.

This is the SQLSTMT^ANSI^DESC structure and a listing of the associated fields:
Struct Sqlstmt^ANSI^desc (*)
?IF PTAL
FIELDALIGN (SHARED2)
?ENDIF PTAL
;
 Begin ! used for SQL/MX ANSI SQL name run-unit
 ! comparisons only.
 process^oss^desc^fields;

 Int Version; ! Version of Sqlstmt desc; added in G11
 ! Use the literal sqlstmt^ANSI^desc^version
 Int Stmt^index; ! statement index number within the run-unit
 Int Run^unit^name^len;
 Int Minimum^ANSI^Run^unit[0:63]; ! desc is at least this long...
 Int Run^unit = Minimum^ANSI^Run^unit; ! up to
 ! max^wlen^ANSI^RUN^UNIT^NAME
 String Run^Unit^s = Run^unit;
 End;

version

INT:value:1
is the sqlstmt^ANSI^desc^version to indicate this type of descriptor.

Stmt^index

INT:value:1
is the statement index number within the ANSI SQL module.

Run^unit^name^len

INT:value:1
is the actual length of the ANSI SQL module name in the run^unit field.

NOTE: The ANSI SQL module name can be both shorter than and longer than 128 bytes.
If it is longer than 128 bytes, you must make sure there is memory allocated for the "extra"
space.

Minimum^ANSI^Run^unit[0:(min^wlen^ANSI^SQLNAME - 1)];
INT:value:64
where min^wlen^ANSI^SQLNAME is 64 words, which is the minimum length of this
field.

Run^unit = Minimum^ANSI^Run^unit
is the word representation of the run unit name.

Run^Unit^s = Run^unit

is the string representation of the run unit name.

388 Measure Callable Procedures

NOTE: The run unit name can be any valid ANSI SQL module name, without enclosing
single quotes.

SVNET^DESC
is the descriptor for the SERVERNET entity on systems running G-series RVUs.
The SVNET^DESC descriptor consists of these fields, in order:
type

INT:value:1
is the literal value SVNET^T or the numeric identifier 18.
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor. len is 28 for an SVNET^DESC descriptor that
does not include the configuration name or 92 for an SVNET^DESC descriptor that
includes the configuration name.

cpu^number

INT:value:1
is the number of the CPU on which the SAC to be measured is configured. To indicate
all CPUs, use the literal -1.

ctrl^type

INT:value:1
is the HP product number for this SAC type. Use the literal -1 to indicate all SAC types.
For information about the product number, see the documentation specific to each
controller.

GMS
is the physical location address (group, module, slot) of the SAC to be measured. The
GMS structure consists of these fields:
group

INT(32):value:1
is the group number. (The group corresponds to the physical enclosure.) To indicate
all groups, use the literal -1.

SvNet^node^number

INT(32):value:1 redefines group
is the ServerNet node number of the system with which the entity is communicating.
To indicate all ServerNet cluster systems, use the literal -1.

module

INT(32):value:1
is the module number. To indicate all modules, use the literal -1.

slot

INT(32):value:1
is the slot number. To indicate all slots, use the literal -1.

MEASCONFIGURE 389

subdevice

INT(32):value:1
is the subdevice number of the SAC to be measured. Use the literal -1 to indicate all SACs.
For information about subdevice numbers, see the documentation specific to each SAC.

remote^CPU

INT(32):value:1 redefines subdevice
is the number of the CPU on a remote ServerNet cluster with which the entity is
communicating. To indicate all remote CPUs, use the literal -1.

PF
is the port-fiber structure for CLIM. The PF structure consists of these fields:
port

INT:value:1
is the port number of the CLIM to be measured. To indicate all CLIMs, use the literal
-1.

fiber

INT:value:1
is the fiber number of the of the CLIM to be measured. To indicate all CLIMs, use the
literal -1.

node^class

INT(32):value:1
is the general class of SAC to be measured. The node-class name must be enclosed in
quotation marks and blank-filled to four bytes:
node^class^clim = "CLIM",

node^class^clim^ip = "CLMI",

node^class^clim^storage = "CLMS",

node^class^clim^open = "CLMO",

node^class^scsi = "SCSI",

node^class^nioc = "NIOC",

node^class^lan = "ENET",

node^class^wan = "SWAN",

node^class^ipc = "IPC",

node^class^ripc = "RIPC",

node^class^colo = "COLO",

node^class^mont = "MONT",

node^class^all = "* ";

config^name

INT:value:32
is the configuration name of the SAC to be measured, as defined by the system configuration
database.
config^name can also be the configuration name of an adapter that contains several
ServerNet addressable controllers. In this case, the specification includes all devices of the
requested type that are supported by that adapter.
config^namemust be null-terminated and null-filled. An asterisk in the first byte indicates
all configuration names.

390 Measure Callable Procedures

To save space in the configuration table, you can omit CONFIG^NAME from the
SVNET^DESC structure. You must set the descriptor length (LEN) to reflect whether or not
you are using CONFIG^NAME because Measure uses the descriptor length to determine the
start of the next descriptor in the configuration table. To not use CONFIG^NAME, set LEN
to 28 and move only the first 28 bytes of the descriptor to the configuration table. To include
CONFIG^NAME, set LEN to 92 and move the entire descriptor to the configuration table.

SYSTEM^DESC
is the descriptor for the SYSTEM or CLUSTER entities on systems running D-series or G-series
RVUs.
The SYSTEM^DESC descriptor consists of these fields, in order:
type

INT:value:1

Numeric IdentifierLiteralEntity Type

11REMSYS^TSYSTEM

12CLUSTER^TCLUSTER

is one of:
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor.

lh^cpu

INT:value:1
is the number of the CPU that contains the line handler (primary or backup). To indicate
all CPUs, use the literal -1.

system^number

INT:value:1
is the system number of the remote system from which network traffic is to be measured.
To indicate all systems, use the literal -1.

system^name

INT:value:4
is the system name of the remote system from which network traffic is to be measured.
The name must be left-justified and blank-filled. It must consist of a backslash (\) followed
by a system name in internal format. To indicate all systems, use a backslash followed
by an asterisk (*).

USERDEF^DESC
is the descriptor for the USERDEF entity on both D-series and G-series RVUs. The USERDEF
entity also uses the descriptor COUNTER^DESC. For OSS file pathnames, use the
USERDEF^OSS^DESC template.
This is the USERDEF^DESC structure and a listing of the associated fields:
Struct Userdef^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record.
 Int CPU^number;
 Int PIN;

MEASCONFIGURE 391

 Int Process^name[0:3];
 Int Program^file^name[0:11];
 Int Numcounters; !Number of counters to be installed
 End; ! A subsequent counter^desc is not needed for an Entitydesc of
 ! a previously installed entity. But for Contab use, as many
 ! Counter^desc as desired must imediately follow this struct.

type

INT:value:1
is the literal USERDEF^T or the numeric identifier 4.
A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor and any COUNTER^DESC descriptors associated
with it. See COUNTER^DESC.

cpu^number

INT:value:1
is the number of the CPU on which the process to be measured is running.

pin

INT:value:1
is the process identification number of the process to be measured. To indicate all PINs,
use the literal -1.

process^name

INT:value:4
is the name of the process to measure. The name must be left-justified and blank-filled.
It must start with a dollar sign ($) and be in internal format. To indicate all processes, use
a dollar sign followed by an asterisk ($*).

program^file^name

INT:value:12
is the name of the object file that the process to be measured is executing. The name must
be left-justified, blank-filled, and in local internal format. To specify the volume,
subvolume, and file-name fields within program^file^name, use asterisks (*).

numcounters

INT:value:1
is the number of COUNTER^DESC descriptors that follow. Each COUNTER^DESC
descriptor describes a user-defined counter to measure.

NOTE: When passing a USERDEF^DESC descriptor to the MEASREAD or
MEASREADACTIVE procedure, do not include the COUNTER^DESC descriptors.

COUNTER^DESC
describes a user-defined counter specification. OSS file pathnames use the
COUNTER^DESC template.
This is the COUNTER^DESC structure and a listing of the associated fields:
Struct Counter^desc (*);
 ! Numcounters of these structs go here
 Begin ! when used as a Contab descriptor
 Int Name[0:7]; !User assigned counter name
 Int Type; !1=accum, 2=busy, 3=queue

392 Measure Callable Procedures

 Int Index; !0:index counters will be allocated
 End;

name

INT:value:8
is a left-justified, blank-filled counter name.

type

INT:value:1
is one of these literal values:

Accumulating counter, 32 bitsACCUM

Accumulating counter, 64 bitsFACCUM

Busy counterBUSY

Queue counterQUEUE

Queue busy counterQBUSY

Busy counter, maintained with timer cellsTCELLBUSY

Queue counter, maintained with timer cellsTCELLQUEUE

Queue busy counter, maintained with timer cellsTCELLQBUSY

index

INT:value:1
is the highest index value needed to address the array of counters associated with
this counter name. If the counter is a single value, set index to 0.

USERDEF^OSS^DESC
is the descriptor for the USERDEF entity in G06.12 and later RVUs. Both the
USERDEF^OSS^DESC and the COUNTER^DESC templates are used for the USERDEF entity.
This is the USERDEF^OSS^DESC structure and a listing of the associated fields that differ
from USERDEF^DESC:
Struct Userdef^OSS^desc (*);
 Begin
 Int Type; !Entity type
 Int Len; ! Byte length of record.
 Int CPU^number;
 Int PIN;
 Int Process^name[0:3];
 Int Program^file^name[0:11];
 Struct Program^file^name^MID; !Internal identifier for OSS pathname
 Begin
 Int Pathid[0:11]; !Internal format OSS file pathname
 Int Crvsn[0:2]; !Creation Volume Sequence Number

 End;
 Int Numcounters; !Number of counters to be installed
 End; ! A subsequent counter^desc is not needed for an Entitydesc of
 ! a previously installed entity. But for Contab use, as many
 ! Counter^desc as desired must imediately follow this struct.

program^file^name^mid.pathid

INT:value:12
is the internal format representation of an OSS file pathname for the specified program
file name. To indicate all PATHID values, initialize PATHID[0] to -1.

MEASCONFIGURE 393

program^file^name^mid.crvsn

INT:value:3
is the creation version serial number that identifies a unique instance of an OSS disk file.
To indicate all CRVSN values, initialize CRVSN[0] to -1.

WAN^DESC
is the descriptor for LINE, NETLINE, or TERMINAL entities on systems running G-series
RVUs.
The WAN^DESC descriptor consists of these fields, in order:
type

INT:value:1
is one of:

Numeric IdentifierLiteralEntity Type

9LINE^TLINE

10NETLINE^TNETLINE

13TERM^TTERMINAL

A positive type value includes the specified entities in the measurement configuration.
A negative type value excludes the specified entities from measurement. For an example,
see Specifying Entity Descriptors (page 352).

len

INT:value:1
is the length in bytes of this descriptor.

cpu^number

INT:value:1
is the number of the CPU on which the measured line is configured. To indicate all CPUs,
use the literal -1.

trackid

INT:value:3
is the 6-byte ASCII identifier reported for the 3880 controller by the SCF subsystem (and
usually printed on an external label as well). To indicate all TRACKIDs, use an asterisk
(*) in the first byte and blank-fill the rest of the field.

clip

INT:value:1
is the number of the communications line interface processor (CLIP) being measured
within the SWAN controller (1 through 3 for SWAN I, 1 through 6 for SWAN II). To
indicate all CLIPs, use the literal -1.

line

INT:value:1
is the specific line controlled by a CLIP within a SWAN controller (0 or 1). To indicate
both lines, use the literal -1.

device^name

INT:value:12
is the device name of the line being measured. The name must be left-justified and
blank-filled. It must start with a dollar sign ($) and be in internal format. To indicate all
devices, use a dollar sign followed by an asterisk ($*).

394 Measure Callable Procedures

device^type

INT:value:1
is the device type of a specific subsystem, such as 61 (X.25), as reported in the SCF
LISTDEV listing. To indicate all devices, use the literal -1.

device^subtype

INT:value:1
is the device subtype of a specific subsystem, such as 62 (X25AM), as reported in the SCF
LISTDEV listing. To indicate all devices, use -1.

CONTAB^TRAILER
marks the end of the contab array. The CONTAB^TRAILER consists of these fields, in order:
type

INT:ref:1
identifies the trailer section of the contab array. Specify type as the literal
CONTAB^TRAILER^T or the numeric identifier 51.

len

INT:value:1
is the length in bytes of the CONTAB^TRAILER descriptor (typically four).

Related Procedures
To start a measurement, use the MEASCONTROL procedure.

MEASCONTROL
Starts and stops a measurement, including a measurement interval as an option.
Before calling MEASCONTROL, your program must call MEASCONFIGURE and configure the
measurement.
error := MEASCONTROL (meascb ! i,o
 ,measnum ! i
 ,[starttime] ! i
 ,[stoptime] ! i
 ,[interval]); ! i

meascb

input, output
INT:ref:$LEN(MEASCB^DEF) / 2
is a control block where the Measure subsystem stores data for subsequent procedure calls.
Before calling the first Measure procedure that uses meascb, you must allocate space in your
global data area for the control block and initialize each element of the control block to -1.
After you pass meascb to a Measure procedure, do not modify its contents.
The file $SYSTEM.SYSnn.MEASDECS contains the structure definition for the control block
descriptor (MEASCB^DEF).

measnum

input
INT:value
is the measurement number. Use the measnum value returned by the MEASCONFIGURE
procedure.

starttime

input
FIXED:value

MEASCONTROL 395

is the start time of the measurement. If you omit it or specify it as -1, the measurement is
configured but not started. If you specify starttime and stoptime, starttime must be
less than stoptime. Specify starttime as a Julian date based on local civil time (LCT) in
four-word-by-one-microsecond format as provided by the system procedure
JULIANTIMESTAMP. See the Guardian Procedure Calls Reference Manual.

stoptime

input
FIXED:value
is the stop time of the measurement. If you omit it or specify it as -1, the measurement runs
until a stop time is supplied by a subsequent call. If you specify starttime and stoptime,
starttime must be less than stoptime. Specify stoptime as a Julian date based on LCT
in four-word-by-one-microsecond format as provided by the system procedure
JULIANTIMESTAMP. See the Guardian Procedure Calls Reference Manual.

interval

input
FIXED:value
is the collection interval. Counter values are written to the data file at the specified time
intervals, when a transient entity starts or when a transient entity stops. If you omitinterval,
counter values are written to the data file twice: once at the beginning of the measurement
and once at the end. Specify interval in microseconds. You cannot change the collection
interval after starting the measurement.

MEASCOUNTERBUMP
Modifies the counter identified by offset provided that:
• The counter is part of a currently active measurement. If the counter is not currently being

measured, MEASCOUNTERBUMP returns ERR^UDCNOTPRESENT.
• The counter type is compatible with bumptype. You specify the counter type when you

add the counter to the measurement configuration.
For more information about user-defined counters, see MEASCOUNTERBUMPINIT (page 397).
error := MEASCOUNTERBUMP (offset ! i
 ,bumptype ! i
 ,[addvalue] ! i
 ,[index] ! i
 ,[doubleadd]) ! i
 ,[quadadd]); ! i

offset

input
INT:value
is the offset of the counter value within the internal counter record. Use the offset value
returned by the MEASCOUNTERBUMPINIT procedure.

bumptype

input
INT:value

396 Measure Callable Procedures

is a literal value, which indicates the counter bump action. bumptype must be compatible
with counter type.

Counter typeActionValue

AccumulatingIncrement counterINC

AccumulatingAdd addvalue to counterADD

Busy or TCELLBUSYSet counter to busySETBUSY

Busy or TCELLBUSYSet counter to not busyRESETBUSY

Queue or TCELLQUEUEIncrease (queue) counterINCQUEUE

Queue or TCELLQUEUEDecrease (queue) counterDECQUEUE

Queue busy (QBUSY or TCELLQBUSY)Increase (queue busy) counterINCQBUSY

Queue busy (QBUSY or TCELLQBUSY)Decrease (queue busy) counterDECQBUSY

addvalue

input
INT:value
is the value (positive or negative) to add to the counter. Applicable only if you specified
bumptype as ADD and the counter type is ACCUM or FACCUM. It cannot be specified if
the doubleadd parameter is also specified.

index

input
INT:value
is an index into an array of counters. The maximum index value is 127. By default, a counter
name is associated with a single counter value (index value 0). You can also associate a counter
name with an array of counter values.

doubleadd

input
INT(32):value
is the value (positive or negative) to add to the counter. Applicable only if you specified
bumptype as ADD and the counter type as FACCUM. Doubleadd cannot be specified if
addvalue is also specified.

quadadd

input
FIXED:value
is the value (positive or negative) to add to a 64-bit counter. Applicable only if you specified
bumptype as ADD and the counter type as FACCUM. Doubleadd cannot be specified if
addvalue is also specified.

MEASCOUNTERBUMPINIT
Determines whether the user-defined counter, name, is part of a currently active measurement.
If it is, MEASCOUNTERBUMPINIT returns the location of the counter value to be bumped in
offset. If it is not, MEASCOUNTERBUMPINIT returns -1 in offset and
ERR^UDCNOTPRESENT in error.
To define a counter in an application, modify the source code to call the
MEASCOUNTERBUMPINIT and MEASCOUNTERBUMP (bumps the counter) procedures at
appropriate times. To collect information from a user-defined counter:

MEASCOUNTERBUMPINIT 397

1. Use the MEASCOM command ADD USERDEF or the MEASCONFIGURE procedure to
add the process that modifies the counter to the configuration.

2. Use the MEASCOM command ADD COUNTER or the MEASCONFIGURE procedure to
add the counter to the configuration.
error := MEASCOUNTERBUMPINIT (name ! i
 ,offset); ! o
 ,[version]); ! I

name

input
INT:ref:8
is an array that contains a user-defined counter name. The name must be 1 through 16
alphanumeric characters, hyphens, or underscores, the first of which must be a letter. Counter
names are not case-sensitive. They are displayed in uppercase characters.

offset

output
INT:ref:1
is the offset of the counter value within the internal counter record. If the specified counter
is not part of an active measurement, MEASCOUNTERBUMPINIT returns offset as -1.

version

input
INT:value
(Measure G11 and later) is an incremental version to be reported as SUBSYSTEM-VERSION
in the Measure data. HP recommends that version start as 1 and increase any time the
USERDEF instrumentation logic in the application is altered. If not specified,
SUBSYSTEM-VERSION is reported as 0.

MEAS_DEALLOCATE_TIMERCELLS_
Deallocates timer cells previously allocated by the application. Use this procedure if your
application requires fine granularity timers to maintain counters outside of Measure. Measure
calls this procedure implicitly for timer-cell counters defined for the USERDEF entity. Measure
also calls this procedure implicitly if your program ends without invoking the procedure.
error := MEAS_DEALLOCATE_TIMERCELLS_ (count ! i
 , indexes); ! i,o

count

INT:VALUE
is the number of timer cells to deallocate.

indexes

INT:EXT:REF:count
is an array of indexes for timer cells to be deallocated. On output, the array contains the value
-1 if the cell was deallocated.

MEASGETVERSION
Returns the Measure version of the specified data file. If the call provides a buffer, the procedure
also returns an array of external entity record lengths for the version, indexed by entity type.
You can use MEASGETVERSION for two purposes:
• You can use the Measure version of the data file to decide which MEASFH version to use.
• You can use the record length returned to decide the address of the records returned by

other procedures (such as MEASREAD).

398 Measure Callable Procedures

error := MEASGETVERSION ({ dfile } ! i
 ,{ dfnum } ! i
 ,version ! o
 ,[buffer] ! o
 ,[buflen] ! i
 ,[sysname] ! o
 ,[release] ! o
 ,[processor^type] ! o
 ,[sysidbuf] ! o
 ,[sysidbuflen] ! i
 ,[sysidlen]); ! o

NOTE: Support for sysidbuf, sysidbuflen, and sysidlen begins with Measure
product release H05/J03.

dfile

input
INT.EXT:ref:12
is an array containing the data file name. You must specify either dfile or dfnum. If you
do not, error 3201 (ERR^MISSINGPARAM) is returned. Optionally, you can specify both.

dfnum

input
INT:value
is the data file access number. Use the dfnum value returned by the MEASOPEN procedure.
You must specify either dfile or dfnum. If you do not, error 3201 (ERR^MISSINGPARAM)
is returned. Optionally, you can specify both.

version

output
INT:ref:1
is the Measure product version when the data file was created. The value returned consists
of two parts. Bits 0:7 contain an alphabetic character (for example, D), and bits 8:15 contain
a numeric value (for example, 30). Together they express the product version (for example,
D30).

buffer

output
INT.EXT:ref:*
is an array of 16-bit integers to be accessed using the entity type index. buffer is typically
declared as INT.BUFFER[0:MAX^T]. Each array element indicates the legacy style external
record length for that entity type. If you pass the buffer parameter, you must specify
buflen, or error 3201 (ERR^MISSINGPARAM) is returned.

buflen

input
INT:value
is an integer indicating the legacy style byte length of the buffer array. This value should
typically be equal to (MAX^T+1) ¥ 2.

sysname

output
INT.EXT:ref:4
is an 8-byte string that returns the name of the system on which the data file was created.

MEASGETVERSION 399

release

output
INT.EXT:ref:2
is a two-word array containing the Measure version identification:
RELEASE[0] = F40
RELEASE[1] = 1

processor^type

output
INT.EXT:ref:1
is an integer indicating the CPU type of the system on which Measure is running:

TNS II1

TXP2

VLX3

CLX (except CLX 2000)4

CYCLONE5

NSR-L6

NSR-N, NSR-P, and NSR-K7

NSR-W8

NSR-G, NSR-T, NSR-V9

NSE-n, where n represents a list of Itanium processors (refer to the HP
NonStop System Glossary for a list of these processors)

10

Parameters are assumed to be in the calling-process data stack.
sysidbuf

output
STRING.EXT:ref:*
is the buffer where the system serial number is returned.

sysidbuflen

input
INT:value
is an integer indicating the byte length of the sysidbuf array.

sysidlen

output
INT:ref:1
is an integer indicating the byte length of the system serial number returned in the sysidbuf
array.

MEAS_GETDESCINFO_
In Measure H01 and later PVUs, MEAS_GETDESCINFO_ translates a fully qualified, possibly
wildcarded, ANSI SQL name to its corresponding entity descriptor components.
MEAS_GETDESCINFO_ provides the MID (PATHID and CRVSN) and UID content for entity
descriptor construction.
error := MEAS_GETDESCINFO_ ([dfnum] ! i
 , [name] ! i

400 Measure Callable Procedures

 , [nam_len] ! i
 , pathid ! o
 , crvsn ! o
 , uid ! o
 , [index] ! i,o
 , [connectionInfo]);! i

error

INT:ref:11
is the error code indicating the outcome of the operation. Possible error codes include:

DescriptionError Code

Successful completion.0

The specified ANSI SQL name contained syntax errors or was not fully
qualified.

err^badformatsqlname

The specified ANSI SQL name could not be translated.err^unknownsqlname

The specified ANSI SQL name could not be parsed.err^sql^api^internal

A SQL/MX journal segment was required and not available.err^missing^sqljournal

Either connectionInfo was not passed, or connectionInfo had
incorrect contents, probably because it had not been filled in by a call
to MEAS_SQL_MAP_INIT.

err^sqlmx^map^process

dfnum

input
INT:value
is the data file access number, or -1, which is also the default value. To access the journal
segment of an open measurement data file containing a journal segment, use the dfnum value
returned by the MEASOPEN procedure. If -1 is specified, or if no journal segment is available
for the specified data file but the file is from the current system, resolution is from the SQL/MX
subsystem. If the descriptor is used for an active measurement, -1 should be passed.

name

input
STRING:EXT:ref:*
is a buffer containing the possibly wildcarded, fully qualified ANSI SQL object name or ANSI
SQL partition name in external format to be translated. If no name is passed, the output fields
will be filled with wildcard indicators.

name_len

input
INT:value
is the size, in bytes, of the input name. Must be present if name is input.

pathid

output
INT:EXT:ref:12
is the pathid component of the MID, if a partition name was passed. Otherwise, a wildcard
pathid value is returned. This corresponds to the File^name^MID.Pathid field in an entity
descriptor.

crvsn

output
INT:EXT:ref:3

MEAS_GETDESCINFO_ 401

is the CRVSN component of the MID, if a partition name was passed. Otherwise, a wildcard
CRVSN value is returned. This corresponds to the File^name^MID.Crvsn field in an entity
descriptor.

uid

output
INT:EXT:ref:12
are the UID components (catalog, schema, object) of the object name. Otherwise, wildcard
values are returned for a partition name. This corresponds to the SQLMX^Obj^Desc field in
an entity descriptor.

index

input, output
FIXED:EXT:ref:1
is a context value for iterative calls. On the initial call of MEAS_GETDESCINFO_, index
must be set to -1f. When no more instances of the object can be found, index is returned as
-1f. If not passed, -1F is assumed.

connectionInfo

input
INT(32) EXT:ref:25
allocated by caller to be at least 100 bytes, this field is filled in by a call to
MEAS_SQL_MAP_INIT_. This is only needed when the SQL journal is not being used.

Usage Notes
• When used in conjunction with the SQL journal, each ANSI SQL name can correspond to

several instances of the same object.
• If this API is called with a name_len of 0, the pathid, crvsn and uid fields are filled with

wildcard values.

Examples
This a simplified example in pTAL pseudo code of how to use MEAS_SQLNAME_RESOLVE_
and MEAS_GETDESCINFO_:
STRING .EXT defcat[0:MAXCATLEN] :=["cat_12"];
STRING .EXT inbuf[0:MAXANSINAME] :=["table sch.t"];
STRING .EXT namebuf[0:MAXANSINAME];
INT namelen;
INT inlen;
FIXED index;
INT .EXT dfile^desc(diskfile^ANSI^desc);

! resolve defaults and syntax check
! calculate inlen and catlen
if (error := MEAS_SQLNAME_RESOLVE_ (namebuf,
 MAXANSINAME + 1,
 namelen,
 inbuf,
 inlen,
 defcat,
 catlen))
 ! handle error

! we have a syntactically correct fully qualified name
! initialize non SQL fields of the descriptor
index := -1f;
do
begin

402 Measure Callable Procedures

 if (error := MEAS_GETDESCINFO_ (dfnum,
 namebuf,
 namelen,
 dfile^desc.File^name^MID.pathid,
 dfile^desc.File^name^MID.crvsn,
 dfile^desc.SQLMX^Obj^Desc,
 index)) then
 ! handle error
 else
 ! use the descriptor, e.g. call measread_diff_
 end;
end
until (index < 0f);

MEASINFO
Returns the measurement configuration from a data file.
Unlike the MEASREADCONF procedure, this procedure does not require that the calling process
has already opened the file (using MEASOPEN). Because MEASINFO uses less disk space than
MEASREADCONF, HP recommends it for tasks that do not require retrieval of actual data
records. Use it to help you decide whether a data file contains the needed information before
creating MEASFH.
In Measure G09 and later PVUs, MEASINFO has a parameter for retrieving settings that reports
the configuration of the journal segment functions.
error := MEASINFO (dfile ! i
 ,[contab] ! o
 ,[bufsize] ! i
 ,[bytesret] ! o
 ,[starttime] ! o
 ,[stoptime] ! o
 ,[interval] ! o
 ,[entities] ! o
 ,[ctrspace] ! o
 ,[buflen] ! i
 ,[settings]); ! o

dfile

input
INT.EXT:ref:12
is an array containing the data file name in internal (12-word) format.

contab

output
INT.EXT:ref:*
is a buffer that holds the measurement configuration table. For the format of the contab
array, see the contab parameter of MEASCONFIGURE (page 358).

bufsize

input
INT:value
is the size in bytes of the contab. buffer. bufsize cannot exceed 32,000 bytes, or error 3203
(ERR^BADPARAMS) is returned.

bytesret

output
INT:ref:1

MEASINFO 403

is the byte size of the contab array (and the number of bytes returned to the destination
buffer, contab.) If bytesret is larger than bufsize, error 3204 (ERR^BUFTOOSMALL)
is returned.

starttime

output
FIXED:ref:1
is the start time of the measurement.

stoptime

output
FIXED:ref:1
is the stop time of the measurement. A value of -1 indicates that no stop time was specified.

interval

output
FIXED:ref:1
is the collection interval of the measurement. A value of -1 indicates that no collection interval
was specified.

entities

output
INT(32) .EXT:ref:MAX^T+1
is an array that contains the maximum number of entities of each entity type under concurrent
measurement. The array elements are in entity-type order, as this table shows. 0 indicates
the entity type is not included in the configuration. MEASSTATUS, not MEASINFO, returns
the entities and ctrspace arrays for active measurements. Declare this array with a zero
base. For example:
INT(32).ENTITIES[0:MAX^T];
or
INT(32).EXT ENTITIES[0:MAX^T];

Numeric IdentifierLiteral ValueEntity Type

1CPU^TCPU

2PROCESS^TPROCESS

3PROCESSH^TPROCESSH

4USERDEF^TUSERDEF

5FILOP^TFILE

6DFILOP^TDISCOPEN

7DISC^TDISC

8IODEV^TDEVICE

9LINE^TLINE

10NETLINE^TNETLINE

11REMSYS^TSYSTEM

12CLUSTER^TCLUSTER

13TERM^TTERMINAL

14TMF^TTMF

15SQLPROC^TSQLPROC

404 Measure Callable Procedures

Numeric IdentifierLiteral ValueEntity Type

16SQLSTMT^TSQLSTMT

17OPDISK^TOPDISK

18CTRL^TCONTROLLER

18SVNET^TSERVERNET

19DISKFILE^TDISKFILE

20OSSCPU^TOSSCPU

21OSSNS^TOSSNS

24MAX^T(Max value)

ctrspace

output
INT(32) .EXT:ref:MAX^T+1
is an array that contains the maximum counter space in words used by each entity type. The
array elements are in order by numeric identifier. A value of 0 indicates the entity type was
not included in the configuration. MEASINFO does not return the entities and ctrspace
arrays for currently active measurements; MEASSTATUS does. Declare this array with a zero
base. For example:
INT(32).CTRSPACE[0:MAX^T];
or
INT(32).EXT CTRSPACE[0:MAX^T];

buflen

input
INT:value
is the length in bytes of entities, ctrspace, or both. buflen should normally be 4 ¥
(MAX^T+1) to specify an entities and/or ctrspace array of [0:MAX^T] dimension. If
specified as a smaller amount, it limits (truncates) the amount of information returned by
entities, ctrspace, or both arrays.

settings

output
INT:ref:1
is an array of flags that identifies configuration attributes of the measurement represented
by the data file.

Reserved for future use.settings.0:8

1 = Counter data records are suppressed in this file.settings.9

Reserved for future use.settings.10

1 = SQL/MX journal segment is under construction for this file.settings.11

1 = SQL/MX journal segment is present in this file.settings.12

Reserved for future use.settings.13

1 = OSS journal segment is under construction for this file.settings.14

1 = OSS journal segment is present in this file.settings.15

If the SQL journal file is under construction, bits 12 and 13 are both reported as ON.

MEASINFO 405

Usage Notes
• MEASINFO calls ALLOCATESEGMENT to obtain a private extended data segment (segment

ID 10) for read traversal of the data file. The extended segment size is set to accommodate
two 30 KB (30,000-byte) read buffers and a 32 KB (32,000-byte) temporary buffer for
reconstructing records that span the read buffers.
MEASINFO opens the data file (unstructured, read only, nowait), issues a SETMODE 141
for long transfers, and performs (30KB) READX I/O through the data file to find the
information requested.

• The length parameters bufsize and buflen must be greater than zero bytes and less than
32,001 bytes, or error 3203 (ERR^BADPARAMS) is returned.

• MEASINFO parameters are optional. However:
dfile

can be in the process stack segment or in an extended data segment. If omitted, error
3201 (ERR^MISSINGPARAM) is returned.

contab, bufsize, bytesret

are a group (that is, one cannot be passed without the other two, or error 3201
(ERR^MISSINGPARAM) is returned). contab can be in the process stack segment or
in an extended data segment. bufsize and bytesret must be in the process stack
segment.

starttime, stoptime, interval

if passed, must be in the process stack segment.
entities, ctrspace

can be in the process stack segment or in an extended data segment. If either or both of
these parameters are passed, the parameter buflen must also be passed, or error 3201
(ERR^MISSINGPARAM) is returned.

buflen

must be in the process stack segment. If this parameter is passed,entities orctrspace
must also be passed, or error 3201 (ERR^MISSINGPARAM) is returned.
If this parameter is used to limit the array size, the zero base of the array must be taken
into account. For example, a buflen of 4 (the zero base) does not allow for the return
of either entities or ctrspace information. A buflen of 8 allows for the return of
entities and ctrspace information for the CPU entity only. A buflen of 12 allows
for the return of CPU and process information, and so on.

• If any parameters are declared in an extended data segment, they must be in the same
segment, and the segment must be in use prior to calling MEASINFO.

• Parameters typed as extended references (such as dfile and contab) are expected to be
either in the process stack segment or in the same extended data segment. If any passed
parameters are part of an extended data segment, they must be in the same segment, and
the segment must be in use prior to calling MEASINFO.

• pTAL automatically handles segment management if you declare extended arrays (that is,
for dfile, contab, entities, and ctrspace). However, if you are allocating and
managing multiple extended data segments, you must ensure that the correct extended data
segment is in use prior to a call to MEASINFO. (Also, any returns by MEASINFO can occur
to only one extended data segment.)

• If an OSS journal file is under construction, both bits 14 and 15 of the settings field are
reported.

406 Measure Callable Procedures

MEASLISTCONFIG
Gets system configuration information from the MEASCTL process in a specified CPU. Each
MEASLISTCONFIG call gets configuration information for one type of device associated with
one CPU.
error := MEASLISTCONFIG (cpunum !i
 ,entity !i
 ,buf !o
 ,bufsize !i
 ,bytesret !o
 ,firstcall); !i,o

cpunum

input
INT:value
is the number of a CPU from which you want configuration information.

entity

input
INT:value:1
is the entity type for which you want configuration information. entity must be one of:

SERVERNET^TNETLINE^TLINE^TIODEV^TDISK^T

buf

output
INT.EXT:ref:*
is the buffer in which entity descriptors are returned. MEASLISTCONFIG returns as many
descriptors as it can fit in the buffer. Use bufsize to set the buffer size.

bufsize

input
INT:value
is the buffer size.bufsize should be large enough for the buffer to hold at least one descriptor
of the type requested.
If the buffer cannot hold at least one descriptor, error 3204 (ERR^BUFTOOSMALL) is returned.

bytesret

output
INT.EXT:ref:1
is the number of bytes returned in the buffer.
If ERR^BUFTOOSMALL has been returned, bytesret returns the minimum buffer length
needed for the specified descriptor type.

firstcall

input, output
FIXED.EXT:ref:1
is a context value. The first time you passentity to MEASLISTCONFIG, specifyfirstcall
as 0. MEASLISTCONFIG modifies and returns firstcall. A firstcall value other than
-1 indicates that more descriptors are available. Call MEASLISTCONFIG again with the same
entity value and the returned firstcall value.

MEASLISTCONFIG 407

When no more descriptors are available, MEASLISTCONFIG sets firstcall to -1 and
returns error 3022 (WARN^NO^MORE^DATA). To retrieve information for a different entity,
reinitialize firstcall to 0 and specify a new entity value.

Usage Note
If MEASLISTCONFIG is called at the same time a ServerNet device is dynamically added or
deleted (e.g., with an SCF ADD or SCF DELETE command), the returned configuration data
could contain duplicate entries or have missing entries.

MEASLISTENAME
Translates a Guardian file name, a MID or an ANS UID to its corresponding external format
ANSI SQL name or OSS pathname.
The specific ANSI SQL name or OSS pathname must be valid (translatable) at the time of the
call.
If the CRVSN is specified, only a translation that matches the specified CRVSN returns a name.
error := MEASLISTENAME (dfnum ! i
 , fname–pathid–uid ! i
 ,[sysname] ! i
 ,[crvsn] ! i
 ,[pathid] ! o
 ,[extname] ! o
 ,[extname_max] ! i
 ,[extname_len] ! o
 ,[index] ! i,o
 ,[extname_type] ! o
 ,[context_crvsn] ! o
 ,[extname_format] ! i
 ,[input_type] ! i
 ,[connectionInfo] ! i

error

INT
is the error code indicating the outcome of the operation. Possible error codes include:

DescriptionError Code

Successful completion.0

The specified ANSI SQL name could not be translated.err^unknownsqlname

A CRVSN was required but not specified.err^crvsnnotspecified

An SQL journal segment was required but not available.err^missing^sqljournal

Either connectionInfo was not passed, or connectionInfo had
incorrect contents, probably because it had not been filled in by a
call to MEAS_SQL_MAP_INIT.

err^sqlmx^map^process

dfnum

input
INT:value
is the data file access number, or -1. To access the journal segment of an open Measure data
file that contains a journal segment, use the dfnum value returned by the MEASOPEN
procedure. If the data file access number is omitted, -1 is specified. If no journal segment is
available for the specified data file and the file is from the current system, dfnum is retrieved
from the SQL/MX or OSS subsystem.

408 Measure Callable Procedures

fname_pathid_uid

input
INT:EXT:ref:12
is an array of 12 words that can contain the local internal format Guardian name of the
SQL/MX partition or OSS file, or is an internal format pathid of the SQL/MX partition or
OSS file, or is an ANS UID as it can be found in the SQLMX^Obj^Desc structure of
Diskfile^ANSI^desc and file^open^ANSI^desc. For the last case, the input_type must be
set to MEAS_ANSUID, as shown under input_type, below.

sysname

input
INT:EXT:ref:4
is an array of four words that can contain the Expand system name of the file specified in
filename, if the file is remote.

crvsn

input
INT:EXT:ref:3
is an array of three words that can contain a CRVSN value for qualifying the specified pathid
or filename.

pathid

output
INT:EXT:ref:12
is the internal format pathid associated with the file.

extname

output
STRING.EXT:ref:*
is a buffer to which the external name is to be returned, null-terminated.

extname_max

input
INT:value
is the maximum length, in bytes, that the extname buffer can accommodate. extname_max
is required when extname is specified.

extname_len

output
INT:ref:1
is the length, in bytes, of the name returned in extname, including the null terminator.
extname_len is required when extname is specified.

index

input, output
FIXED:ref:1
is a context value for iterative calls. On the initial call of MEASLISTENAME, index must be
set to -1f. If the translation resolves to a single name, index is returned as -1f.
If the translation resolves to multiple names, index contains an internal value that must be
passed to subsequent MEASLISTENAME calls. If index is returned as -1f, no more data is
available. To explicitly stop the iteration of the MEASLISTENAME call sequence before
encountering a -1f termination value, make a final call using a negated index (index := -index).

MEASLISTENAME 409

extname_type

output
INT:ref:1
indicates whether the name returned in extname is to be treated as an OSS pathname or as
an ANSI SQL name:

OSS pathname1

ANSI SQL name2

context_crvsn

output
INT:ref:1
is an array of three words containing the CRVSN value of the instance of the Guardian file
name corresponding to the external name returned in the extname buffer. This value is used
to distinguish between multiple instances of the same Guardian file name during the
measurement period.

extname_format

input
INT:ref:1
specifies the format of the external name returned in extname:

For OSS pathnames:

OSS pathname format0

OSS pathname format1

For ANSI SQL names:

SQL/MX partition name format0

ANSI SQL object name format1

input_type

input
INT:ref:1
specifies the type of the data in the fname_pathid_uid field. input_type is a required
parameter if the data is an ANS UID, else it is optional.

For ANSI SQL names:

File name data type0

Path ID data type1

ANS UID data type2

connectionInfo

input
EXT:ref:25

410 Measure Callable Procedures

is allocated by the caller to be at least 100 bytes. connectionInfo must have been filled in
by a call to MEAS_SQL_MAP_INIT_.connectionInfo is only needed when the SQL journal
is not being used.

Usage Notes
• If a pathid is passed in fname_pathid_uid, crvsn must also be provided.
• If an ANS UID is passed in fname_pathid_uid, the input_type parameter must be

specified to be MEAS_ANSUID.
• If you want extname and extname_len as output, specify extname_max.
• If the caller of MEASLISTENAME does not include the extname_format parameter, zero

is assumed for the parameter.
• Never change a returned index to another positive value. It can result in a never ending

loop of calls to MEASLISTENAME.

Example
This a simplified example in pTAL pseudo code of how to call MEASLISTENAME with an ANS
UID:
! get the ANSI SQL name for a specified UID
uid := desc.AnsiUIDs;

if (error := measlistename(dfnum,
 uid,
 !sysname!,
 !crvsn!,
 !pathid!,
 ansi_name,
 ansi_name_max,
 ansi_name_len,
 !index!,
 !extname_type!,
 !context_crvsn!,
 !extname_format!,
 MEAS_ANSUID)) then
 return error
else
 ! use the ansi_name

MEASLISTEXTNAMES
Makes the Measure subsystem list structured OSS and ANSI SQL name information to the
EXTNAMES file in the specified subvolume.
error := MEASLISTEXTNAMES (dfnum ! i
 , volume^subvol ! i

error

INT
is the error code indicating the outcome of the operation. Possible error codes include:

DescriptionError Code

Successful completion.0

An OSS journal segment was required but not available.3236 err^missingossjournal

dfnum

input
INT:value

MEASLISTEXTNAMES 411

is the data file access number returned by the MEASOPEN procedure.
volume^subvol

input
INT:EXT:ref:8
is the destination volume and subvolume for the EXTNAMES file.
For a local system, the format of volume^subvol (when redefined as string[0:15]) is:

’$’volume^subvol[0]

volume name (padded with spaces)volume^subvol[1:7]

subvolume name (padded with spaces)volume^subvol[8:15]

For a remote system, the format is:

’\’volume^subvol[0]

system numbervolume^subvol[1]

volume name (padded with spaces)volume^subvol[2:7]

subvolume name (padded with spaces)volume^subvol[8:15]

Usage Notes
• Before you issue this call, you must have a measurement data file containing the SQL journal

segment open with the SQL journal segment attached, and/or an OSS journal segment open
with the OSS journal segment attached. If the measurement data file is for an active
measurement, or if MEASFH is still constructing the SQL or OSS journal segment,
err^buildingsqljournal or err^buildingossjournal is returned from MEASOPEN(). You must
use the MEASOPEN() option parameter to open and "attach" a journal segment. For more
information, refer to the MEASOPEN (page 421) Usage Notes.

• If the EXTNAMES file already exists in the specified volume^subvol, new entries are
written to the existing file, and all instances of error 10 (duplicate record) are ignored. A
single EXTNAMES file can contain information for many measurements from many systems.

MEASLISTGNAME
Translates an OSS file pathname or ANSI SQL object name to its Guardian file-name equivalent.
MEASLISTGNAME provides the MID (PATHID and CRVSN) content for entity descriptor
construction. The specified OSS file pathname or ANSI SQL name must be valid at the time of
the call. To get OSS directory entries or partitions of an ANSI SQL object, call MEASLISTGNAME
iteratively.
If the specified OSS file pathname refers to an OSS directory, the file name is returned blank
(space-filled), but the PATHID and CRVSN are valid and properly identify the directory in
internal format for use in MID structures.
error := MEASLISTGNAME (dfnum ! i
 ,name ! i
 ,name_len ! i
 ,[filename] ! o
 ,[sysname] ! o
 ,[pathid] ! o
 ,[crvsn] ! o
 ,[extname] ! o
 ,[extname_max] ! i
 ,[extname_len] ! o
 ,[index] ! i,o

412 Measure Callable Procedures

 ,[name_type] ! i
 ,[connectionInfo]);! i

error

INT
is the error code indicating the outcome of the operation. Possible error codes include:

DescriptionError Code

Successful completion.0

The specified pathname could not be resolved.3233 err^invalidosspath

An OSS journal segment was required but not available.3236 err^missingossjournal

The specified ANSI SQL name contained syntax errors or was
not fully qualified

3239 err^badformatsqlname

The specified ANSI SQL name could not be translated.3238 err^unkownsqlname

A SQL/MX journal segment was required but not available3241 err^missing^sqljournal

The ANSI SQL name specified could not be parsed.3295 err^sql^api^internal

EitherconnectionInfowas not passed, orconnectionInfo
had incorrect contents, probably because it had not been filled
in by a call to MEAS_SQL_MAP_INIT.

3296 err^sqlmx^map^process

dfnum

input
INT:value
is the data file access number, or -1. To access the journal segment of an open Measure data
file that contains a journal segment, use the dfnum value returned by the MEASOPEN
procedure. If the data file access number is omitted, -1 is specified. If no journal segment is
available for the specified data file and the file is from the current system, dfnum is retrieved
from the SQL/MX or OSS subsystem.

name

input
STRING.EXT:ref:*
is a buffer containing the OSS file pathname or ANSI SQL object name to be translated. If
passed, an ANSI SQL object name must be fully qualified and not contain wildcards.

name_len

input
INT.value
is the length, in bytes, including a terminating null byte if it is an OSS path name.

filename

output
INT:EXT:ref:12
is an array of 12 words. filename returns the internal format local form Guardian name of
the referenced file. If the specified OSS file pathname resolves to an OSS directory, the
filename returned is space-filled. If the OSS file pathname resolves to a remote file name,
a local form name is returned in filename, and the remote system name is returned in
sysname.

MEASLISTGNAME 413

sysname

output
INT:EXT:ref:4
is an array of four words. If the file is remote, sysname returns the Expand system name of
the file contained in filename. If the file is local, sysname returns spaces.

pathid

output
INT:EXT:ref:12
is an array of 12 words. pathid returns the OSS internal pathid describing the specified
OSS file pathname. The pathid value returned can be used in MID structures of entity
descriptor templates.
pathid is not used for ANSI SQL names.

crvsn

output
INT:EXT:ref:3
is an array of three words. crvsn is the creation version serial number associated with the
returned pathid.

extname

output
STRING.EXT:ref:*
for iterative calls, a buffer in which OSS file pathnames for a particular directory’s contents
are returned or in which the ANSI SQL partition names for a particular ANSI SQL object are
returned.

extname_max

input
INT:value
the maximum length, in bytes, that the extname buffer can hold. Required when extname
is specified.

extname_len

input
INT:EXT:ref:12
for iterative calls, the length, in bytes, of the OSS file pathname or ANSI SQL partition name
returned in extname. The length includes the null terminator.

index

input, output
FIXED:ref:1
is a context value for iterative calls. On the initial call of MEASLISTGNAME, index must
be set to -1f. If the translation resolves to an OSS file or an ANSI SQL partition name, index
is returned as -1f.
If the translation resolves to an OSS directory or an ANSI SQL object name, index contains
an internal value that must be passed to subsequent MEASLISTGNAME calls. If index is
returned as -1f, no more data is available about the OSS directory or ANSI SQL object. To
explicitly stop the iteration of the MEASLISTGNAME call sequence for OSS names before
encountering a -1f termination value, make a final call using a negated index (index := -index).

414 Measure Callable Procedures

name_type

input
INT:value
indicates whether the name passed in name is to be treated as an OSS pathname or as an
ANSI SQL name. If omitted, name is treated as an OSS pathname.

OSS pathname1

ANSI SQL name2

connectionInfo

input
INT(32) EXT:ref:25
is allocated by the caller to be at least 100 bytes. connectionInfo must have been filled in
by a call to MEAS_SQL_MAP_INIT_.connectionInfo is only needed when the SQL journal
is not being used.

Usage Notes
• If iterative calls are initiated, the program should continue calling MEASLISTGNAME until

index is returned as -1f. Otherwise iterative processing should be terminated by a final call
with index negated (index := -index). If the iterative processing is interrupted, the calling
program retains an open of the OSS file-system directory. Repeated behavior of this type
eventually results in the program reaching the limit of concurrent opens for a process.

• Never change a returned index to another positive value. It can result in a never ending
loop of calls to MEASLISTGNAME.

Example
These are simplified examples in pTAL pseudo code of how LISTGNAME could handle ANSI
SQL names:
Example of iterative calls:
index := -1f;
do
begin
 if (error := measlistgname(dfnum,
 ansi_name,
 ansi_name_len,
 guardianname,
 sys,
 !pathid!,
 !crvsn!,
 !partname!,
 !partname_max!,
 !partname_len!,
 index,
 MEAS_ANSI_SQL_NAME)) then
 ! handle error
 else if guardianname <> " " then
 begin
 ! display guardian filename
 if partname_len then
 ! display the partition name
 end
 else
 ! display the TABLE or INDEX name
end
until (index < 0f);

MEASLISTGNAME 415

Example of non-iterative calls:
! get the Guardian file name and crvsn for an ANSI SQL name
! with partition
if (error := measlistgname(-1,
 ansi_names,
 ansi_name_len,
 guardianname,
 !sysname!,
 !pathid!,
 crvsn,
 !extname!,
 !extname_max!,
 !extname_len!,
 !index!,
 MEAS_ANSI_SQL_NAME,
 connectionInfo)) then
 return error;

MEASLISTOSSNAMES
Causes the Measure subsystem to list structured OSS file pathname translation information to
the file OSSNAMES in the default subvolume.
In Measure G11 and later PVUs, MEASLISTOSSNAMES is still available but is superseded by
MEASLISTEXTNAMES (page 411), which supports both OSS file pathnames and ANSI SQL
names.
error := MEASLISTOSSNAMES (dfnum ! i
 ,volume^subvol); ! i

error

INT
is the error code that indicates the outcome of the operation. Zero means a successful
completion. Error codes include:
3235 err^buildingossjournal - the OSS journal segment for
this file is still under construction.

3236 err^missingossjournal - an OSS journal segment was
required and not available.

dfnum

input
INT:value
is the data file access number returned by the MEASOPEN procedure.

volume^subvol

input
INT .ext:ref:8
is the destination volume and subvolume for the OSSNAMES file.
volume^subvol[0] = '\'
volume^subvol[1] = system number
volume^subvol[2:7] = volume name (padded with spaces)
volume^subvol[8:15] = subvolume name (padded with spaces)

Usage Notes
• You must have a measurement data file that contains an OSS journal segment open with

the OSS journal segment attached prior to issuing this call. If the measurement data file is

416 Measure Callable Procedures

for an active measurement or if MEASFH is still in the process of constructing the OSS
journal segment, an error 3235 is returned.

• If an OSSNAMES file already exists in the specified volume^subvol field, the new
OSSNAMES entries are written to the existing file, and all completions of error 10 (duplicate
record) are ignored. A single OSSNAMES file can contain OSSNAMES information for many
measurements from many systems.

MEASLISTPNAME
Translates a Guardian file name or an OSS pathid to its OSS file pathname equivalent. The desired
OSS file pathname must be valid at the time of the call. If CRVSN is specified, only a translation
that matches the specified CRVSN returns a pathname.
In Measure G11 and later PVUs, MEASLISTPNAME is still available but is superseded by
MEASLISTENAME (page 408), which supports both OSS file pathnames and ANSI SQL names.
error := MEASLISTPNAME (dfnum ! i
 ,fnameorpathid ! i
 ,[sysname] ! i
 ,[crvsn] ! i
 ,[pathid] ! o
 ,[pathname] ! o
 ,[pathname_max] ! i
 ,[pathname_len] ! o
 ,[index]); ! i,o

error

INT
is the error code indicating the outcome of the operation. Zero means a successful completion.
Other possible error codes include:
3204 err^buftoosmall - the pathname returned was larger than
the pathname^max bytes.

3233 err^invalidosspath - the fnameorpathid specified could
not be resolved.

3234 err^crvsnnotspecified - the gname specified was
translated, but may not be correct.

3236 err^missingossjournal - an OSS journal segment was
required and not available.

dfnum

input
INT:value
is the data file access number or -1. To access the journal segment of an open Measure data
file that contains a journal segment, use the dfnum value returned by the MEASOPEN
procedure. If the data file access number is omitted, -1 is specified. If no journal segment is
available for the specified data file, but the file is from the current system, dfnum is retrieved
from the OSS file system.

fnameorpathid

input
INT.EXT:ref:12
is an array of 12 words that can contain the internal format of a local form Guardian name
of an OSS file or an internal format of an OSS pathid.

MEASLISTPNAME 417

sysname

input
INT .EXT:ref:4
is an array of four words. If the file is remote, the array should contain the EXPAND system
name of the file specified in filename.

crvsn

input
INT .EXT:ref:3
is an array of three words that can contain a CRVSN value for qualifying the pathid or file
name specified.

pathid

output
INT.EXT:ref:12
is the internal format pathid associated with the returned OSS file pathname.

pathname

output
STRING.EXT:ref:*
is a buffer where the OSS file pathname is returned.

pathname_max

input
INT:value
is the maximum length in bytes that the pathname buffer will hold.

pathname_len

output
INT:ref:1
is the length in bytes of the OSS file pathname returned in pathname.

index

input, output
FIXED:ref:1
is a context value for iterative calls. On the first call, the index is initialized to -1f. If no other
OSS file pathnames exist for the requested translation, index is returned as a -1f. Otherwise,
index contains an internal value that can be passed to subsequent MEASLISTPNAME() calls
for iterative processing.

Usage Notes
• If a PATHID is passed in fnameorpathid, the CRVSN must also be provided.
• If a PATHID and pathname_len are desired as output, pathname_maxmust be specified.

MEASMONCONTROL
Starts or stops the Measure subsystem. Alternatively, adds a CPU to the Measure subsystem by
starting a measurement control process (MEASCTL) in the specified CPU.

418 Measure Callable Procedures

NOTE: The calling process must have a super-group user (255,*) process accessor ID to invoke
this procedure.

error := MEASMONCONTROL (meascb ! i,o
 ,start ! i
 ,[cpunum]); ! i

meascb

input, output
INT:ref:$LEN(MEASCB^DEF) / 2
is a control block where the Measure subsystem stores data for subsequent procedure calls.
Before calling the first Measure procedure that uses meascb, you must allocate space in your
global data area for the control block and initialize each element of the control block to -1.
Once you pass meascb to a Measure procedure, do not modify its contents.
The file $SYSTEM.SYSnn.MEASDECS contains the structure definition for the control block
descriptor (MEASCB^DEF).

start

input
INT:value
If specified as true, MEASMONCONTROL starts the Measure subsystem. If specified as false,
MEASMONCONTROL stops the Measure subsystem. When the Measure subsystem stops,
all measurements stop.

cpunum

input
INT:value
creates a measurement control process (MEASCTL) in the specified CPU. Any currently
active measurements automatically begin receiving information from the newly added CPU.
This parameter is applicable only ifstart equals true. Under normal operating circumstances,
this parameter should not have to be used. The Measure subsystem restarts a MEASCTL
automatically in a reloaded CPU.

MEASMONSTATUS
Returns the number of currently active (or configured) measurements and their measurement
numbers and data file names. The optional parametersettings returns a bit mask that identifies
the current settings of several Measure subsystems.
In Measure G11 and later PVUs, the MEASMONSTATUS settings parameter has a new bit
(settings.<8>) to indicate the SQL/MX journal status.
error := MEASMONSTATUS (meascb ! i,o
 ,measurements ! o
 ,measnames ! o
 ,[settings]); ! o

meascb

input, output
INT:ref:$LEN(MEASCB^DEF) / 2
is a control block where the Measure subsystem stores data for subsequent procedure calls.
Before calling the first Measure procedure that uses meascb, you must allocate space in your
global data area for the control block and initialize each element of the control block to -1.
After you pass meascb to a Measure procedure, do not modify its contents.
The file $SYSTEM.SYSnn.MEASDECS contains the structure definition for the control block
descriptor (MEASCB^DEF).

MEASMONSTATUS 419

measurements

output
INT:ref:1
is the number of currently active measurements.

measnames

output
INT.EXT:ref:*
is an array of measurement data file names in 12-word format. The array index of a
measurement data file name is its measurement number. The array size is 64 files (64 ¥ 12
words).

settings

output
INT:ref:1
is an array of flags that indicates the current setting of Measure subsystem parameters
controlled through defines:

Reserved for future use.settings.0:7

SQL/MX journal segment default ON/OFF.settings.8

OSS journal segment default ON/OFF.settings.9

Reserved for internal use.settings.10

Skew interval copy time is ON/OFF.settings.11

Lock CID table ON/OFF.settings.12

Maximum CIDs setting:settings.13:15

0 = 32,000
1 = 64,000
2 = 96,000
3 = 128,000
4 = 192,000
5 = 256,000
6 = 512,000
7 = reserved for future use

Usage Notes
CID stands for counter identifier. For each counter record in a processor, Measure allocates and
tracks the counter record through a CID. In G-series and earlier RVUs, the CID limit can be
specified at START MEASSUBSYS time to be 32,000, 64,000, 96,000, or 128,000 for each processor.
In H-series and J-series RVUs, CID sizes of 196,000 and 256,000 are also supported. In Measure
H04 and J02 PVUs, a maximum of 512,000 is supported. The CIDs value corresponds to the CID
table size. The current number of CIDs in use is reported in the CPU entity report of each
processor.
The number of CIDs supported in a processor is limited. In Measure product versions earlier
than G05, the CID table has an upper limit of 32,000 CIDs per processor. In product versions
D45, G05, and later, you can increase the CID table limit in increments of 32,000 CIDs. In H-series
and J-series RVUs, the default size of the CID table is 64,000 CIDs per processor.

420 Measure Callable Procedures

MEASOPEN
Obtains read, write, or read and write access to a measurement data file; opens the file: and
creates a Measure file-handling (MEASFH) process to access the file. Use the write and read
parameters to specify access type. To close a data file, use the MEASCLOSE procedure.
The best way to access a remote data file is to use the measfh parameter. You specify an object
file (on the remote system) that contains a Measure file-handling (MEASFH) program. Measure
then starts a process on the remote system that executes the MEASFH program to read the data
file. MEASOPEN has a parameter for specifying options. Two bits of this field override the default
treatment of the OSS journal segment function.
error := MEASOPEN (dfile ! i
 ,dfnum ! o
 ,write ! i
 ,read ! i
 ,[measfh] ! i
 ,[swapvol] ! i
 ,[cpunum] ! i
 ,[options]) ! i
 ,[filesize]) ; ! i

error

INT
is the error code indicating the outcome of the operation. Possible error codes include:

DescriptionError Code

Successful completion.0

The SQL journal segment for this file is still under construction.err^buildingsqljournal

dfile

input
INT:ref:12
is an array containing the data file name.

dfnum

output
INT:ref:1
is the data file access number. Use this number in subsequent procedure calls to identify the
data file. The Measure subsystem uses the file number of the Measure file-handling (MEASFH)
process open as this unique file-access number.

write

input
INT:value
is used with read to specify access type:

ResultReadWrite

Obtains write access to the data file and automatically initializes
it. During initialization, any data in the file is deleted. It must
be an unstructured local disk file with a file code of 175 or a local
tape file. If the file does not exist, it is created.

True or FalseTrue

Obtains read access to the data file. The data file must be a local
or remote disk file.

TrueFalse

MEASOPEN 421

read

input
INT:value
is used with write to specify access type. For possible values and results, see write.

measfh

input
INT:ref:12
is an array containing the name of an object file for a Measure file-handling (MEASFH)
program. By default, MEASFH object files are named $SYSTEM.SYSnn.MEASFH.

swapvol

input
INT:ref:4
is an array containing the volume name for MEASFH swap files.
If swapvol is not specified, swap files are created on the swap volume of the calling process.

cpunum

input
INT:value
is the number of the CPU where MEASFH is created.

options

input
INT:value
is an array of flags qualifying the MEASOPEN request:

Reserved for future use.options.0:8

Override the default mode for writing counter data records to the measurement data file.options.9

Counter data records will be included (default).0

Counter data records will be suppressed.1

Reserved for future use.options.10:11

Override the default mode for SQL/MX journal segment handling.options.12:13

SQL/MX not specified; use the Measure subsystem default setting to determine journal
segment handling.

0

SQL/MX ON; include the SQL/MX journal segment function.1

SQL/MX OFF; do not include the SQL/MX journal segment function.2

Invalid value; err^badparams is returned.3

Override the default mode for OSS journal segment handling.options.14:15

OSS not specified; use the Measure subsystem default setting to determine journal segment
handling.

0

OSS ON; include the OSS journal segment function.1

OSS OFF; do not include the OSS journal segment function.2

Invalid value; err^badparams is returned.3

422 Measure Callable Procedures

filesize

input
FIXED:value
is the desired file size (capacity) in bytes. The minimum value for filesize is 133169152
(127 MB) and the maximum is 1099507433472 (1048572 MB) or the maximum disk size (if
less than 1048572 MB). The default value is 1073741824 (1024 MB). A value of -1 indicates
that no file size was specified. If filesize is less than the minimum allowed value or greater
than the maximum allowed value, error 3203 (ERR^BADPARAMS) is returned. If the file
already exists, the filesize parameter is ignored, and the capacity of the existing file is
used.

Usage Notes
• A call to MEASOPEN with read access is equivalent to executing an ADD MEASUREMENT

command. The MEASOPEN procedure creates a MEASFH process, opens it, and sends the
name of the data file to add to the MEASFH process. The MEASFH process scans the data
file and builds a set of in-memory table indexes for future access requests (the same as is
done in an ADD MEASUREMENT operation). You should know the disk and memory
resource costs associated with this procedure.

• A call to MEASOPEN with write access results in a purge of the data file contents. The purge
of the data is performed by the MEASFH process.

• These LITERALs are defined in MEASDECS and MEASCHMA:
LITERAL OSSNOTSPECIFIED = 0;
LITERAL OSSFORCEDON = 1;
LITERAL OSSFORCEOFF = 2;

LITERAL SQLNOTSPECIFIED = 0;
LITERAL SQLFORCEDON = 1;
LITERAL SQLFORCEDOFF = 2;

• If write access is specified, the options parameter determines whether the OSS or SQL/MX
journal segment is constructed with the measurement. If read access is specified, theoptions
parameter determines whether an OSS or SQL/MX journal segment in a Measure data file
is attached to the calling process and whether error or warning messages about the OSS or
SQL/MX journal segment function are passed to the calling process.

• If the caller of MEASOPEN does not include the options parameter, OSSFORCEDOFF or
SQLFORCEDOFF is assumed. If write access is specified, no journal segment construction
occurs. If read access is specified, no attempt is made to attach an OSS or SQL/MX journal
segment from the data file. This handling of the options parameter prevents inadvertent
performance degradation on the system by applications that cannot utilize the OSS or the
SQL/MX journal segment function.

• Programs that start measurements programmatically (for example, programs that usually
involve system monitoring, system management, and OSS pathname translation services)
are encouraged to use the OSS name server facilities on the system rather than the journal
segment function.

• These literals are defined in MEASDECS and MEASCHMA:

SQLNOTSPECIFIED = 0LITERAL

SQLFORCEDON = 1LITERAL

SQLFORCEDOFF = 2LITERAL

• If write access is specified, options determines whether to construct the SQL journal
segment with the measurement.

MEASOPEN 423

• If read access is specified, options determines whether the SQL journal segment in a
measurement data file is attached to the calling process and whether error or warning
messages regarding the SQL journal segment function are passed to the calling process.

• If the caller of MEASOPEN does not include options, SQLFORCEDOFF is the default. If
write access is specified, no journal segment construction occurs. If read access is specified,
no attempt is made to attach the SQL journal segment from the data file. This prevents
inadvertent system performance impact by applications that cannot utilize the SQL journal
segment function.

• In Measure G11 and later PVUs, the MEASOPEN options parameter has two new bits
(options.<12:13>) used to override the default treatment of the SQL/MX Journal Segment
function, and MEASOPEN returns a new error code if the SQL/MX Journal Segment is under
construction.

• In Measure H02 and later PVUs, the MEASOPEN callable procedure allows the caller to
select the measurement data file size, suppress counter data records in the measurement
data file, or both.

MEASREAD
Reads one or more counter records from a measurement data file. The maximum number of
records returned in a single call depends on the size of the destination buffer, loc. (Only complete
records are returned.) The data file can be associated with a currently active measurement, or it
can contain data from an inactive measurement. Before reading from a measurement data file,
you must obtain read access to the file using the MEASOPEN procedure.
In Measure H01 and later PVUs, MEASREAD accepts DISCOPEN, DISKFILE, FILE and SQLSTMT
entity descriptors for ANSI SQL objects or partitions.
error := MEASREAD (dfnum ! i
 ,entitydesc ! i
 ,loc ! o
 ,bufsize ! i
 ,bytesret ! o
 ,firstcall ! i,o
 ,[nomtime] ! i
 ,[timetol] ! i
 ,[version] ! i
 ,[templateversion]); ! i

dfnum

input
INT:value
is the data file access number. Use the dfnum value returned by the MEASOPEN procedure.

entitydesc

input
INT:ref:*
is the entity type and entity specification of the desired counter records. Specify entitydesc
as one of the descriptors listed in thecontabdescription of the MEASCONFIGURE procedure.
If you specify entitydesc as a template for multiple specifications, MEASREAD returns
all counter records that fit the template.
For ANSI SQL objects or partitions, entitydesc can be a DISCOPEN, DISKFILE, FILE, or
SQLSTMT entity descriptor.

loc

output
INT.EXT:ref:*

424 Measure Callable Procedures

is the destination buffer for the counter records. Counter records are written to the buffer in
DDL record format. For the DDL record definitions for each entity type, see Chapter 3: Entities
and Counters (page 133).

bufsize

input
INT:value
is the size in bytes of the destination buffer, loc.

bytesret

output
INT:ref:1
is the number of bytes returned to the destination buffer, loc.

firstcall

input, output
FIXED:ref:1
is a context value. The first time you pass entitydesc to MEASREAD, specify firstcall
as 0. MEASREAD modifies and returns firstcall. As long as MEASREAD returns a
nonzero value in firstcall, more counter records are available. Call MEASREAD again
with the same entitydesc value and the firstcall value that was returned to you.

nomtime

input
FIXED:value
is a nominal time. If you omit nomtime (or specify it as -1), MEASREAD returns all the
counter records written to the file. If you specify nomtime and omit timetol (or specify it
as -1), MEASREAD returns the counter records written from the start of the measurement
to the earliest record later than nomtime. If you specify both nomtime and timetol,
MEASREAD returns the counter records written from the start of the measurement to
nomtime plus timetol time. The nomtime default is -1.

timetol

input
FIXED:value
is a tolerance value. For more information, see nomtime. The timetol default is -1.

version

input
INT:value
is the Measure product version when the data file was created. The value consists of two
parts: bits 0:7 contain an alphabetic character (for example, D), and bits 8:15 contain a numeric
value (for example, 30). Together they express the product version (for example, D30).

templateversion

input
FIXED:value
(Measure G11 and later) is the appropriate template version literal from MEASDDLS for the
entity type requested in entitydesc, if you want ZMS style external records. If omitted or
passed as 0F, legacy style records are returned.
If passed as -1F, the templateversion for the current release will be used, starting with
the H06.15/J06.04 RVUs. Note that returned external records, in that case, may not match the
counter record definitions with which the application was compiled.

MEASREAD 425

MEASREAD_DIFF_
This procedure is an enhanced version of MEASREAD that reads a window of one or more
counter records from a measurement data file.
Before reading from a measurement data file, you must obtain read access to the file using the
MEASOPEN procedure. The data file can be associated with a currently active measurement, or
it can contain data from an inactive measurement.
Unlike MEASREAD, the caller specifies both start time and stop time. The records returned
provide the statistics collected within the specified window.
To get all records for the specified time window might require repeated calls. Only complete
records are returned in a given call. The number returned in a given call depends on the size of
loc (the destination buffer).
In Measure G09 and later PVUs, the parameter if^item has a field template if^item^g09^def that
is available for the longer (128 byte) SQL/MX run unit names. The new template coexists with
the pre-G09 if^item^def template, thereby preserving compatibility with existing applications
and older data files.
error := MEASREAD_DIFF_ (dfnum ! i
 ,entitydesc ! i
 ,loc ! o
 ,bufsize ! i
 ,bytesret ! o
 ,firstcall ! i,o
 ,from^time ! i
 ,to^time ! i
 ,[timetol] ! i
 ,[version] ! i
 ,[all^recs] ! i
 ,[zero^reports] ! i
 ,[totals] ! i
 ,[loadid] ! i
 ,[if^item] ! i
 ,[totals^num] ! o
 ,[templateversion]); ! i

NOTE: The maximum number of USERDEF records in the MEASREAD_DIFF_ reply buffer is
222. If this maximum is exceeded, the error 3204 (ERR^BUFTOOSMALL) is displayed.

dfnum

input
INT:value
is the data file access number. Use the dfnum value returned by the MEASOPEN procedure.

entitydesc

input
INT.EXT:ref:*
is the entity type and entity specification of the desired counter records. Specify entitydesc
as one of the descriptors listed in thecontabdescription of the MEASCONFIGURE procedure.
If you specify entitydesc as a template for multiple specifications, MEASREAD_DIFF_
returns all counter records that fit the template.
For ANSI SQL objects or partitions, entitydesc can be a DISCOPEN, DISKFILE, FILE, or
SQLSTMT entity descriptor. The SQLSTMT ANSI entity descriptor is used when an ANSI
SQL name is to be specified for the retrieval of SQLSTMT counter records.

426 Measure Callable Procedures

loc

output
INT.EXT:ref:*
is the destination buffer for the counter records. Counter records are written to the buffer in
DDL record format. For the DDL record definitions for each entity type, see Chapter 3: Entities
and Counters (page 133).

bufsize

input
INT:value
is the size in bytes of the destination buffer, loc. If bufsize is greater than 32,000, error
3203 (ERR^BADPARAMS) is returned.

bytesret

output
INT.EXT:ref:1
is the number of bytes returned to the destination buffer, loc.

firstcall

input, output
FIXED.EXT:ref:1
is a context value. The first time you pass entitydesc to MEASREAD_DIFF_, specify
firstcall as 0. MEASREAD_DIFF_ modifies and returns firstcall. As long as
MEASREAD_DIFF_ returns a nonzero value in firstcall, more counter records are
available. Call MEASREAD_DIFF_ again with the sameentitydesc value and the returned
firstcall value.

from^time

input
FIXED:value
is the start time of the measurement window. Specify from^time as a Julian date based on
local civil time in four-word-by-one-microsecond format as provided by the system procedure
JULIANTIMESTAMP. (For a description of the JULIANTIMESTAMP, see the Guardian
Procedure Calls Reference Manual.) A value of -1 signifies the beginning of the measurement.

to^time

input
FIXED:value
is the stop time of the measurement window. Specify to^time as a Julian date based on
local civil time in four-word-by-one-microsecond format as provided by the system procedure
JULIANTIMESTAMP. (For a description of the JULIANTIMESTAMP, see the Guardian
Procedure Calls Reference Manual.) A value of -1 signifies the end of the measurement.

timetol

input
FIXED:value
is a tolerance value to be applied to the time window bounded by from^time and to^time,
effectively decreasingfrom^time bytimetol and increasingto^time by the same amount.
A value of -1 widens the time window to include the latest record earlier than from^time
and the earliest record later than to^time.

version

input
INT:value

MEASREAD_DIFF_ 427

is the Measure product version when the data file was created. The value returned consists
of two parts: bits 0:7 contain an alphabetic character (for example, D), and bits 8:15 contain
a numeric value (for example, 30). Together they express the product version (for example,
D30).

all^recs

input
INT:value
requests all interval records within the specified window if the value 1 is passed. If omitted
or 0, only summary records are returned.

zero^reports

input
INT:value
requests the exclusion of zero records if the value 0 is passed. If omitted or 1, zero records
are returned.

totals

input
INT:value
is a value of 0, 1, or 2, which indicates:

Omit the total record; include individual counter records (default).0

Include individual records and the total record.1

Omit individual counter records; include the total record.2

loadid

input
INT.EXT:ref:4
is an 8-byte string to be included in all records returned.

if^item

input
INT.EXT:ref:$LEN(IF^ITEM^DEF) / 2
is a structure (IF^ITEM^DEF, defined in the MEASDECS file):
STRUCT IF^ITEM^DEF (*);
Begin
Int Item^Name[0:15]; !Item name in entity record
Int Relation^Operator;!Relation Operator
 ! 1 -> Equal =
 ! 2 -> Not Equal <>
 ! 3 -> Less Than <
 ! 4 -> Greater Than >
Int(32) Value; !Value used in comparison
Int Rate; !Use rated or nonrated value
 !for condition checking:
 ! 0 -> No-Rate, 1 -> Rated
Int SQLName[0:15]; !SQL run-unit in Ascii
Int SQLIndex; !SQL Index number
End;

or

428 Measure Callable Procedures

if^item

input
INT .EXT:ref:$LEN(IF^ITEM^G09^DEF) / 2
is a structure (IF^ITEM^G09^DEF, defined in the MEASDECS file):
STRUCT IF^ITEM^G09^DEF (*);
Begin
Int Item^Name[0:15]; !Item name in entity record
Int Relation^Operator;!Relation Operator
 !See Usage Notes (page 430)
 !Bit 0 must be 1
 !
 !Bits 13:15
 ! 1 -> Equal =
 ! 2 -> Not Equal <>
 ! 3 -> Less Than <
 ! 4 -> Greater Than >
Fixed Value; !Value used in comparison
Int Rate; !Use rated or nonrated value
 !for condition checking:
 ! 0 -> No-Rate, 1 -> Rated
Int SQLName[0:63]; !for SQLSTMTs only
Int SQLIndex; !SQL Index number
String IP^addr[0:15] = SQLName;
Int port = SQLIndex;
Int IP^wildcard^flags = value;
End;

DEFINE IP^addr^wildcard^flag = IP^wildcard^flags.<0>#,
 port^wildcard^flag = IP^wildcard^flags.<1>#;

item^name

input
is one of the counter names defined in the entity record (for example, CPU-BUSY-TIME
for a CPU record).

relation^operator

input
is a value in the range 1 through 4 that designates the comparison type:

Compare for equal1

Compare for unequal2

Compare for less-than3

Compare for greater-than4

value

input
is a 32-bit integer to be used for comparison with the value in the given counter. value
= n*1000. For example, 17.09 should be stored as 17090.

rate

input
determines whether a nonrated or rated value is used in the comparison:
• 0 indicates a nonrated value (equivalent to REPORT RATE OFF).
• 1 indicates a rated value (equivalent to REPORT RATE ON).

MEASREAD_DIFF_ 429

sqlname

input
is a 16-word array specifying the SQL run unit. sqlindex specifies the index number.
These two fields are used in conjunction with the SQLSTMT entity. If passed,
MEASREAD_DIFF_ returns the records with the specified run-unit and index numbers.

sqlindex

input
is the SQL index. See sqlname. A value of -1 specifies all SQL indexes.

NOTE: If the if^item^def structure is passed, it must first be initialized. To pass the
structure without a value, IF^ITEM^DEF.Item^Name must be initialized to 0. Similarly,
a value of 0 in IF^ITEM^DEF.SQLName means that no SQL (run-unit,index) is
specified.

totals^num

output
INT(32).EXT:ref:1
is a count of the records used to accumulate the summary record.

templateversion

input
FIXED:value
(Measure G11 and later) is the appropriate template version literal from MEASDDLS for the
entity type requested in entitydesc, if you want ZMS style external records. If omitted or
passed as 0F, legacy style records are returned.
If passed as -1F, the templateversion for the current release will be used, starting with
the H06.15/J06.04 RVUs. Note that returned external records, in that case, may not match the
counter record definitions with which the application was compiled.
See TEMPLATE-VERSION (page 143) for further information on obtaining external records
corresponding to a format that you can handle.

Usage Notes
• If the longer IF^ITEM^G09^DEF template is used, the define G09^format must be set. If the

G09^format is not set, part of the sqlname field is interpreted as sqlindex, and any records
returned are likely to be incorrect.
DEFINE G09^format = relation^operator.0#;
DEFINE G09^rel^operator = relation^operator.13:15#;

You can use either template format when accessing G09 data files. You can also use the G09
template when accessing G08 and earlier data files if the number passed in the field value
does not exceed the amount that can be passed in the INT(32) value field of the earlier
structure, and if the sqlname value does not exceed 32 characters.

• In Measure H01 and later PVUs, MEASREAD_DIFF_ accepts DISCOPEN, DISKFILE, FILE,
and SQLSTMT entity descriptors for ANSI SQL objects or partitions.

MEASREADACTIVE
Reads data from a currently active counter. Before reading a counter, you must obtain a valid
measurement number (generally, by using MEASMONSTATUS (page 419)).
In D-series and pre-G08 Measure PVUs, MEASREADACTIVE cannot read DISCOPEN, DISKFILE,
or PROCESSH counters. In Measure G08 and later PVUs, the MEASREADACTIVE procedure
cannot read DISCOPEN or PROCESSH counters. To access these counter values, use the

430 Measure Callable Procedures

MEASREAD_DIFF_ procedure to read from the currently active measurement data file. The
collection interval specified for the measurement determines how recently the counter values
were written to the data file.
error := MEASREADACTIVE (meascb ! i,o
 ,measnum ! i
 ,entitydesc ! i
 ,loc ! o
 ,bufsize ! i
 ,bytesret ! o
 ,[entity^index] ! i,o
 ,[templateversion]); ! i

meascb

input, output
INT:ref:$LEN(MEASCB^DEF) / 2
is a control block where the Measure subsystem stores data for subsequent procedure calls.
Before calling the first Measure procedure that uses meascb, you must allocate space in your
global data area for the control block and initialize each element of the control block to -1.
After you pass meascb to a Measure procedure, do not modify its contents.
The file $SYSTEM.SYSnn.MEASDECS contains the structure definition for the control block
descriptor (MEASCB^DEF).

measnum

input
INT:value
is the measurement number. Use the measnum value returned by the MEASCONFIGURE
procedure or find the measnum value using MEASMONSTATUS.

entitydesc

input
INT:ref:*
is the entity type and entity specification of the desired active counter record. Specify
entitydesc as one of the descriptors listed in the contab description of the
MEASCONFIGURE procedure. Because MEASREADACTIVE uses entitydesc to directly
access the entity control block (which in turn is used to access the counter record in system
data space), entitydesc must identify exactly one entity. If necessary, use the appropriate
operating system information procedures to obtain the names and numbers that let you
uniquely identify the entity.
You need not specify all the fields in an entity descriptor if a subset of the fields is sufficient
to identify the data to retrieve. For example, if you identify a process by its CPU and PIN,
you need not also specify the process name or program file name. Conversely, a call to retrieve
data might need to specify more fields than were used to configure the measurement. For
example, an entitydesc in your measurement configuration might specify a wildcard. If
you wanted to retrieve data for only a subset of the objects measured, the entitydesc in
your MEASREADACTIVE call would probably specify more fields.
entitydesc can be a DISKFILE, FILE, or SQLSTMT entity descriptor for ANSI SQL objects
or partitions.

NOTE: Wildcards are not permitted in entity descriptors passed to the MEASREACTIVE
callable procedure. If you want to use wildcards, call the MEAS_READACTIVE_MANY_
procedure rather than this one.

For ANSI SQL objects or partitions, entitydesc can be a DISKFILE, FILE, or SQLSTMT
entity descriptor. Specify the Guardian name of the file, not the ANSI SQL name.

MEASREADACTIVE 431

loc

output
INT.EXT:ref:*
is the destination buffer for the counter records. Counter records are written to the buffer in
DDL record format. For the DDL record definitions for each entity type, see Chapter 3: Entities
and Counters (page 133).

bufsize

input
INT:value
is the size in bytes of the destination buffer, loc.

bytesret

output
INT:ref:1
is the number of bytes returned to the destination buffer, loc. If bytesret is larger than
bufsize, error 3204 (ERR^BUFTOOSMALL) is returned.

entity^index

input, output
FIXED:ref:1
is applicable to G08 and later MEASREADACTIVE requests for DISKFILE records.
On input, entity^index is either -1 or a value returned by a previous call to
MEASREADACTIVE for the record described by entity^desc.
On output, entity^index contains an internal value that enables Measure to directly fetch
the record described by entity^desc on subsequent calls to MEASREADACTIVE. If -1 is
specified, Measure searches all DISKFILE records in a processor until a match is found. If
entity^index is not -1, Measure assumes it to be the index of the DISKFILE record that is
described byentity^desc. The value ofentity^index and the contents ofentity^desc
are then examined. If these do not match, error 3402 (errm^cannotaccess) or error 3404
(errm^notmeasuring) is returned.

templateversion

input
FIXED:value
(Measure G11 and later) is the appropriate template version literal from MEASDDLS for the
entity type requested in entitydesc, if you want ZMS style external records. If omitted or
passed as 0F, legacy style records are returned.
If passed as -1F, the templateversion for the current release will be used, starting with
the H06.15/J06.04 RVUs. Note that returned external records, in that case, may not match the
counter record definitions with which the application was compiled.

Usage Note
• MEASREADACTIVE supports buffer sizes up to 32 KB only for active measurement of

entities. For buffers larger than 32 KB, use MEAS_READACTIVE_ (page 433).
• In Measure H01 and later PVUs, MEASREADACTIVE and MEAS_READACTIVE_ accept

DISKFILE, FILE, or SQLSTMT entity descriptors for ANSI SQL objects or partitions.

432 Measure Callable Procedures

MEAS_READACTIVE_
Reads data from a currently active counter in Measure G09 and later PVUs. Before reading a
counter, you must obtain a valid measurement number (generally, by using the
MEASMONSTATUS procedure).
The MEAS_READACTIVE_ procedure cannot read DISCOPEN or PROCESSH counters. To
access these counter values, use the MEASREAD_DIFF_ procedure to read from the currently
active measurement data file. The collection interval specified for the measurement determines
how recently the counter values were written to the data file.
error := MEAS_READACTIVE_(meascb ! i,o
 , measnum ! i
 , entitydesc ! i
 , loc ! o
 , bufsize ! i
 , bytesret ! o
 ,[entity^index] ! i,o
 ,[templateversion]); ! i

meascb

input, output
INT:ref:$LEN(MEASCB^DEF) / 2
is a control block where the Measure subsystem stores data for subsequent procedure calls.
Before calling the first Measure procedure that uses meascb, you must allocate space in your
global data area for the control block and initialize each element of the control block to -1.
After you pass meascb to a Measure procedure, do not modify its contents.
The file $SYSTEM.SYSnn.MEASDECS contains the structure definition for the control block
descriptor (MEASCB^DEF).

measnum

input
INT:value
is the measurement number. Use the measnum value returned by the MEASCONFIGURE
procedure or find the measnum value using MEASMONSTATUS.

entitydesc

input
INT:ref:*
is the entity type and entity specification of the desired active counter record. Specify
entitydesc as one of the descriptors listed in the contab description of the
MEASCONFIGURE procedure. Because MEAS_READACTIVE_ usesentitydesc to directly
access the entity control block (which in turn is used to access the counter record in system
data space), entitydesc must identify exactly one entity. If necessary, use the appropriate
operating system information procedures to obtain the names and numbers that let you
uniquely identify the entity.
entitydesc can be a DISKFILE, FILE, or SQLSTMT entity descriptor for ANSI SQL objects
or partitions.

NOTE: Wildcards are not permitted in entity descriptors passed to the MEAS_REACTIVE_
callable procedure. If you want to use wildcards, call the MEAS_READACTIVE_MANY_
procedure rather than this one.

loc

output
INT.EXT:ref:*

MEAS_READACTIVE_ 433

is the destination buffer for the counter records. Counter records are written to the buffer in
DDL record format. For the DDL record definitions for each entity type, see Chapter 3: Entities
and Counters (page 133).

bufsize

input
INT(32):value
is the size in bytes of the destination buffer, loc.

bytesret

output
INT(32):ref:1
is the number of bytes returned to the destination buffer, loc. If bytesret is larger than
bufsize, error 3204 (ERR^BUFTOOSMALL) is returned.

entity^index

input, output
FIXED:ref:1
is applicable to active measurement requests for DISKFILE records.
On input, entity^index is either -1 or a value returned by a previous call to
MEAS_READACTIVE_ for the record described by entity^desc.
On output, entity^index contains an internal value which enables Measure to directly
fetch the record described by entity^desc on subsequent calls to MEAS_READACTIVE_.
If -1 is specified, Measure searches all DISKFILE records in a processor until a match is found.
Ifentity^index is not -1, Measure assumes it to be the index of the DISKFILE record which
is described by entity^desc. The value of entity^index and the contents of
entity^desc are then examined. If they do not match, error 3402 (errm^cannotaccess) or
error 3404 (errm^notmeasuring) is returned.

templateversion

input
FIXED:value
(Measure G11 and later) is the appropriate template version literal from MEASDDLS for the
entity type requested in entitydesc, if you want ZMS style external records. If omitted or
passed as 0F, legacy style records are returned.
If passed as -1F, the templateversion for the current release will be used, starting with
the H06.15/J06.04 RVUs. Note that returned external records, in that case, may not match the
counter record definitions with which the application was compiled.

Usage Notes
In Measure H01 and later PVUs, MEASREADACTIVE and MEAS_READACTIVE_ accept
DISKFILE, FILE, or SQLSTMT entity descriptors for ANSI SQL objects or partitions.

MEAS_READACTIVE_MANY_
Retrieves multiple active counter records configured in a processor, without incurring overhead
for messages. This procedure is available in H-series and J-series RVUs.
The MEAS_READACTIVE_MANY_ procedure cannot read PROCESSH, SQLSTMT, or USERDEF
counters. To access PROCESSH counter values, use the MEASREAD_DIFF_ procedure to read
from the currently active measurement data file. To access SQLSTMT or USERDEF counters, use
the MEAS_READACTIVE_ procedure.
error := MEAS_READACTIVE_MANY_ (measnum ! i
 , mode ! i

434 Measure Callable Procedures

 , entitydesc ! i
 , buffer ! o
 , bufsize ! i
 , recs ! o
 , context ! i,o
 ,[templateversion]) ! i

measnum

input
INT:value
is the measurement number. Use the measnum value returned by the MEASCONFIGURE
procedure or find the measnum value using MEASMONSTATUS.

mode

input
INT:value
is one of the values READACTIVE_MANY_LIST (0), READACTIVE_MANY_EXACT (1), or
READACTIVE_MANY_CHANGED (2). The semantics of these values depends on the value
of the context parameter.

entitydesc

input
INT:EXT:ref:*
is the entity type and entity specification of the desired counter records. Specify entitydesc
as one of the descriptors listed in thecontabdescription of the MEASCONFIGURE procedure.
If you specify entitydesc as a template for multiple specifications,
MEAS_READACTIVE_MANY_ returns all counter records that fit the template.
entitydesc can contain wildcards. Using a wildcard descriptor along with LIST mode is
the best way to get the records of all the instances of an entity configured on a processor.
This procedure does not use string-based fields, such as OSS Pathname or program filename,
for descriptor matching. Such strings are ignored, if provided; if you need to use them, call
the MEASREADACTIVE procedure rather than this one.

NOTE: entitydesc can be a DISKFILE, DISCOPEN, or FILE entity descriptor for ANSI
SQL objects or partitions. However, there is currently no support for ANSI SQL names or
ANS UIDs in this API, so those descriptor fields will be ignored.

buffer

output
INT.EXT:ref:*
is the destination buffer for the counter records. Counter records are written to the buffer in
DDL record format. For the DDL record definitions for each entity type, see Chapter 3: Entities
and Counters (page 133).

bufsize

input
INT(32):value
is the size in bytes of the destination buffer, buffer.

recs

output
INT:EXT:ref:1
is the number of records returned.

MEAS_READACTIVE_MANY_ 435

context

input, output
FIXED:EXT:ref:1
interacts with the value of the mode parameter to determine which records are returned.
On input, if context is -1F or 0F:
• The counter type for the entity type specified in entitydesc is searched until a counter

matches the information in entitydesc.
• If mode is READACTIVE_MANY_EXACT, one item is returned.
• If mode is READACTIVE_MANY_LIST, all items that match entitydesc are returned

until bufsize is exhausted.
• If mode is READACTIVE_MANY_CHANGED, all items that match the entitydesc

are returned, but the ERROR field in the Header part of the record is updated to show
whether that record has changed since last requested. Specifically, if the record has not
changed and the style is ZMS, the 0th and 5th bits of entity.HDR.ERROR are set to 1.
Otherwise, the 5th bit is 0. If the style is Legacy, a value of -4 is returned in the
entity.ERROR field to indicate unchanged records. This Error field is part of the counter
record returned (and is specific to it). It is not related to the error values returned by
this procedure.

• On successful return, the context contains information about the next entity to be
processed. It should be passed as is for the future calls in that iteration.

On output
• If mode is READACTIVE_MANY_EXACT, context contains information about the

matched entity. Passing this value back the next time you want data for the same entity
will increase the performance of the request.

• Ifmode is READACTIVE_MANY_CHANGED or READACTIVE_MANY_LIST, a context
of 0F indicates that no more entities matching entitydesc are available for retrieval.
-1F indicates an error return.

On input, if context has a value other than -1F or 0F:
• If mode is EXACT, the counter referenced by context is returned, provided that it

applies to the same object.
• If mode is LIST and the context value applies to the same object, and the entity type

is consistent withentitydesc, then counter records of the same type, from this counter
onward, are returned until bufsize is exhausted. LIST terminates at the end of one
pass through the linked counter list. If at any time context fails the check to ensure that
it applies to the same counter, an error is returned. A LIST/changed-record operation
must restart from the beginning.

• If mode is CHANGED-RECORDS, the behavior is similar to LIST, but the ERROR field
in the Header part of the record is updated to show whether that record has changed
since last requested. If the record has not changed and the style is ZMS, the 0th and 5th
bits of entity.HDR.ERROR are set to 1. Otherwise, the 5th bit is 0. If the Style is Legacy,
a value of -4 is returned in entity.ERROR field to indicate unchanged records.

• On successful return,context contains information about the next entity to be processed.
It should be passed as is for the future calls in that iteration. A return context of 1F
indicates an error.

templateversion

input
FIXED:value
is the appropriate template version literal from MEASDDLS for the entity type requested in
entitydesc if you want ZMS style external records. If omitted or passed as 0F, legacy style
records are returned.

436 Measure Callable Procedures

If passed as -1F, the templateversion for the current release will be used, starting with
the H06.15/J06.04 RVUs. Note that returned external records, in that case, may not match the
counter record definitions with which the application was compiled.

Usage Notes
• The application that calls MEAS_READACTIVE_MANY must be running on the same

processor as the records to be retrieved. This procedure has high performance precisely
because it does not exchange interprocess messages. To retrieve records from multiple
processors, run a copy of the application on each processor.

• MEAS_READACTIVE_MANY does not return all the typical header and ID information
for an entity. Instead, the procedure returns a subset of descriptive information, such as the
PIN, LDEV, OCB or ACB number, and filename.

• In the case of ZMS style records, the procedure returns format and subsystem versions.
• If you specify the TEMPLATE^VERSION parameter to request ZMS style records, counter

values are returned according to the external ZMS type.CTRS^DEF template. If you omit
the TEMPLATE^VERSION parameter, legacy style external records are returned.

• For best performance, use the ZMS entity-template-version literal from the
MEASDDLS file for the current RVU. Using an earlier template version or requesting legacy
style records increases performance cost.

• To use this interface, you must first start a measurement containing the entities to be accessed.
Measure needs that measurement and the corresponding measnum to identify counter
records that have changed.

• In Measure H01 and later PVUs, MEAS_READACTIVE_MANY_ accepts DISKFILE,
DISCOPEN, or FILE entity descriptors for ANSI SQL objects or partitions.

MEASREADCONF
Returns the measurement configuration from a data file. Before reading from a measurement
data file, you must obtain read access to the file using the MEASOPEN procedure.
In Measure G09 and later PVUs, MEASREADCONF has a parameter for retrieving settings that
reports the configuration of the journal segment functions.
error := MEASREADCONF (dfnum ! i
 ,[contab] ! o
 ,[bufsize] ! i
 ,[bytesret] ! o
 ,[starttime] ! o
 ,[stoptime] ! o
 ,[interval] ! o
 ,[entities] ! o
 ,[ctrspace] ! o
 ,[version] ! i
 ,[max^ent] ! i
 ,[settings]); ! o

dfnum

input
INT:value
is the data file access number. Use the dfnum value returned by the MEASOPEN procedure.

contab

output
INT.EXT:ref:*
is an array that defines the measurement configuration. For the format of the contab array,
see MEASCONFIGURE (page 358).

MEASREADCONF 437

bufsize

input
INT:value
is the size in bytes of the destination buffer, contab. If bufsize is greater than 32,000 bytes,
error 3203 (ERR^BADPARAMS) is returned. To get the contab size returned in bytesret,
bufsize must be at least 4 bytes.

bytesret

output
INT:ref:1
is the size in bytes of the contab array (and the number of bytes returned to the destination
buffercontab.) Ifbytesret is larger thanbufsize, error 3204 (err^buftoosmall) is returned,
and no contab value is returned.

starttime

output
FIXED:ref:1
is the start time of the measurement.

stoptime

output
FIXED:ref:1
is the stop time of the measurement. A value of -1 indicates that no stop time was specified.

interval

output
FIXED:ref:1
is the collection interval of the measurement. A value of -1 indicates that no collection interval
was specified.

entities

output
INT(32):ref:MAX^T+1
is an array that contains the maximum number of entities of each entity type measured
concurrently. The array elements are in entity-type order, as shown in this table. A value of
0 indicates the entity type was not included in the configuration. MEASREADCONF does
not return the entities and ctrspace arrays for currently active measurements,
MEASSTATUS does. This array should be declared with a zero base. For example:
INT(32).ENTITIES[0:MAX^T];
This table lists the entity types and their literal values and numeric identifiers.

Numeric IdentifierLiteral ValueEntity Type

1CPU^TCPU

2PROCESS^TPROCESS

3PROCESSH^TPROCESSH

4USERDEF^TUSERDEF

5FILOP^TFILE

6DFILOP^TDISCOPEN

7DISC^TDISC

438 Measure Callable Procedures

Numeric IdentifierLiteral ValueEntity Type

8IODEV^TDEVICE

9LINE^TLINE

10NETLINE^TNETLINE

11REMSYS^TSYSTEM

12CLUSTER^TCLUSTER

13TERM^TTERMINAL

14TMF^TTMF

15SQLPROC^TSQLPROC

16SQLSTMT^TSQLSTMT

17OPDISK^TOPDISK

18CTRL^TCONTROLLER

18SVNET^TSERVERNET

19DISKFILE^TDISKFILE

20OSSCPU^TOSSCPU

21OSSNS^TOSSNS

24MAX^T(Max value)

ctrspace

output
INT(32):ref:MAX^T+1
is an array that contains the maximum counter space in words used by each entity type. The
array elements are in entity-type order, as shown for entities. A value of 0 indicates the
entity type was not included in the configuration. MEASREADCONF does not return the
entities and ctrspace arrays for currently active measurements, but MEASSTATUS
does. Declare this array with a zero base. For example:
INT(32).CTRSPACE[0:MAX^T];

version

input
INT:value
is the Measure product version when the data file was created. The value consists of two
parts: bits 0:7 contain an alphabetic character (for example, D), and bits 8:15 contain a numeric
value (for example, 30). Together they express the product version (for example, D30). If the
parameter is not passed or is passed as zero, the version defaults to the currently installed
Measure PVU.

max^ent

input
INT:value
is the maximum number of entities the caller allocated for the entities and ctrspace
arrays. This value should normally be specified as MAX^T. (MAX^T is a literal definition
from the MEASDECS file that specifies the maximum entity type code.). If specified as less
than MAX^T, it limits (truncates) the amount of entities or ctrspace array information
returned. (For example, amax^ent of 1 limits the return to CPU information only.) Ifmax^ent

MEASREADCONF 439

is passed as zero or a negative number, error 3203 (ERR^BADPARAMS) is returned. If
max^ent is omitted, it defaults to MAX^T.

settings

output
INT:ref:1
is an array of flags that identifies configuration attributes of the measurement represented
by the data file:

Reserved for future use.settings.0:8

1 = Counter data records are suppressed in this file.settings.9

1 = An SQL/MX journal segment is currently attached to the calling process
for this file.

settings.10

1 = An SQL/MX journal segment is under construction for this file.settings.11

1 = An SQL/MX journal segment is in this file.settings.12

1 = An OSS journal segment is currently attached to the calling process for
this file.

settings.13

1 = An OSS journal segment is under construction for this file.settings.14

1 = An OSS journal segment is in this file.settings.15

Usage Notes
• A call to MEASREADCONF is equivalent to performing an INFO * command by using

MEASCOM. To obtain return information, you must have previously issued a call to
MEASOPEN to establish an open to an executing MEASFH process. MEASREADCONF
obtains measurement configuration information through interprocess communication with
the MEASFH process.

• The MEASINFO procedure provides an alternative means of obtaining configuration
information from a data file.

• MEASREADCONF parameters are optional. However:
dfnum

If dfnum is omitted, error 3201 (ERR^MISSINGPARAM) is returned.
contab, bufsize, bytesret

These parameters are a group. That is, one cannot be passed without the other two, or
error 3201 (ERR^MISSINGPARAM) is returned.

• If OSS or SQL/MX journal segment construction is requested for a measurement, the status
is always reported as under construction while the measurement is active. When the
measurement is stopped, the setting continues to be reported as under construction until
updating of the file is complete.

MEAS_RETRIEVE_TIMERCELLS_
Retrieves the values of the specified timer cells. Use this procedure if your application requires
fine granularity timers to maintain counters outside of Measure. Measure calls this procedure
implicitly when you request values of a timer-cell counter defined for the USERDEF entity.
Retrieving a timer-cell value does not reset the value.
error := MEAS_RETRIEVE_TIMERCELLS_ (count ! i
 , indexes ! i
 , timers); ! i,o

440 Measure Callable Procedures

count

INT:VALUE
is the number of timer cells to retrieve. Measure can retrieve multiple timer cell values during
a single rendezvous, so it makes sense to retrieve several timer cell values in a single call
rather than request each timer cell separately.

indexes

INT:EXT:ref:count
is an array containing the indexes of timer cells to retrieve.

timers

FIXED:EXT:ref:count
is an array of timer-cell values. On input, the array is empty. On output, it contains the values
of the timer cells, in the same order in which their indexes were specified in the previous
parameter. Timer-cell values are in microsecond units.

MEAS_SQL_MAP_INIT_
In Measure H02 and later PVUs, MEAS_SQL_MAP_INIT_ initiates the SQL/MX mapping session.
This must be done if one of the following APIs is going to be used:
meas_getdescinfo_
measlistename
measlistgname

and there is no SQL journal in the indicated Measure data file, so resolution comes from the
SQL/MX subsystem.
error := MEAS_SQL_MAP_INIT_ (connectionInfo); !i,o

error

INT
is an error code indicating the outcome of the operation. Zero means a successful completion.
Possible error codes include:

The SQL/MX mapping session is already established for this
application.

err^sqlmx^map^dupconnection

The SQL/MX mapping session cannot be started.err^sqlmx^map^init

connectionInfo

INT(32) EXT:ref:25
is allocated by the caller to be at least 100 bytes.

Usage Notes
For best efficiency, this API should be called only once per application process.

Example
This a simplified example in pTAL pseudo code to show how to use MEAS_SQL_MAP_INIT_()
and MEAS_SQL_MAP_STOP_().
int(32) .connectionInfo[0:24]; ! at least 100 bytes
! at the start of the application
! if (error := MEAS_SQL_MAP_INIT_(connectionInfo)) then
! handle error

! do work including calls to one or more of the APIs that require the
! connectionInfo argument as input unless we are analyzing a data file
! before exiting the application

MEAS_SQL_MAP_INIT_ 441

! if connectionInfo[0] <> 0d then
! MEAS_SQL_MAP_STOP_(connectionInfo);

MEAS_SQL_MAP_STOP_
In Measure H02 and later PVUs, MEAS_SQL_MAP_STOP_ stops the SQL/MX mapping session.
This should be done before an application process that has called MEAS_SQL_MAP_INIT_ exits.
error := MEAS_SQL_MAP_STOP_ (connectionInfo); !i

The only error that can be returned is ERR^BOUNDS.
connectionInfo

input
INT(32) EXT:ref:25
is allocated by the caller to be at least 100 bytes.

MEAS_SQLNAME_COMPARE_
In Measure H02 and later PVUs, MEAS_SQLNAME_COMPARE_ compares two fully qualified
ANSI SQL names in external format. The names cannot contain wildcards and they must be of
the same object type.
status := MEAS_SQLNAME_COMPARE_ (name1 ! i
 , name1_length ! i
 , name2 ! i
 , name2_length); ! i

status

INT:ref:1
is a status code indicating the outcome of the operation:

name1 < name2 (a.b.c < a.bz.c)-1

name1 = name20

name1 > name2 (a.bz.c > a.b.c)1

One or more of the specified ANSI SQL names contained syntax errors or were
not fully qualified.

err^badformatsqlname

One or more of the specified ANSI SQL names could not be parsed.err^sql^api^internal

name1

input
STRING:EXT:ref:*
is a buffer that contains input name 1 in external format. A name space keyword is required.

name1_length

input
INT:value
is the size, in bytes, of input name 1.

name2

input
STRING:EXT:ref:*
is a buffer that contains input name 2 in external format. A name space keyword is required.

442 Measure Callable Procedures

name2_length

input
INT:value
is the size, in bytes, of input name 2.

Usage Notes
• ANSI SQL objects have independent name spaces and, if identical names exist in different

name spaces, each instance of the name refers to a different object.
• The name spaces used by Measure are TABLE, INDEX and MODULE. TABLE is implied

by using the keywords CATALOG, SCHEMA and TABLE. INDEX is implied by using the
keyword INDEX. MODULE is implied for SQLSTMT (in MEASCOM there is no MODULE
keyword).

• When calling the MEASSQLNAME_* APIs, the input ANSI SQL names must be preceded
by a name space keyword.

MEAS_SQLNAME_RESOLVE_
In Measure H02 and later PVUs, MEAS_SQLNAME_RESOLVE_ combines ANSI SQL name
parts to create a fully qualified name in normalized external format. This routine resolves default
CATALOG and SCHEMA settings and returns the fully qualified ANSI SQL name in a normalized
external format.
error := MEAS_SQLNAME_RESOLVE_ (result_name ! o
 , result_name_max ! i
 , result_name_length ! o
 , name); ! i
 , name_length ! i
 , [def_catalog] ! i
 , [def_catalog_length] ! i
 , [def_schema] ! i
 , [def_schema_length] ;! i

error

INT
is an error code indicating the outcome of the operation. Zero means a successful completion.
Possible error codes include:

One or more of the specified ANSI SQL names contained syntax errors.err^badformatsqlname

result_name_max is too small to hold the fully qualified name in normalized
external format. If indicated, the required size will be returned in
result_name_length.

err^buftoosmall

The ANSI SQL name specified could not be parsed.err^sql^api^internal

result_name

output
STRING:EXT:ref:*
is a buffer that contains the returned fully qualified name in normalized external format.

result_name_max

input
INT:value
is the size, in bytes, of the result_name buffer.

MEAS_SQLNAME_RESOLVE_ 443

result_name_length

output
INT:ref:1
if not err^buftoosmall, this is the size, in bytes, of the fully qualified name returned in the
result_name buffer. If err^buftoosmall, this displays the required size.

name

input
STRING:EXT:ref:*
is a buffer that contains the input name in external format to be expanded to a fully qualified
name. If name does not contain the catalog and/or schema name, the default catalog
(def_catalog) and/or default schema (def_schema) name is used. In that case, if the
necessarydef_catalog and/ordef_schemaname is missing, an error is returned. Wildcards
are permitted. A name space keyword is required.

name_length

input
INT:value
is the size in bytes of the input name.

def_catalog

input
STRING:EXT:ref:*
is a buffer that contains the default catalog name that is used if the input name omits the
catalog field, in which case it must be specified.

def_catalog_length

input
INT:value
is the size, in bytes, of the default catalog name passed by the def_catalog parameter.

def_schema

input
STRING:EXT:ref:*
is a buffer that contains the default schema name that is used if the input name omits the
schema field, in which case it must be specified.

def_schema_length

input
INT:value
is the size, in bytes, of the default schema name passed by the def_schema parameter.

Usage Notes
• ANSI SQL objects have independent name spaces and, if identical names exist in different

name spaces, each instance of the name refers to a different object.
• The name spaces used by Measure are TABLE, INDEX and MODULE. TABLE is implied

by using the keywords CATALOG, SCHEMA and TABLE. INDEX is implied by using the
keyword INDEX. MODULE is implied for SQLSTMT (in MEASCOM there is no MODULE
keyword).

• When calling the MEASSQLNAME_* APIs, the input ANSI SQL names must be preceded
by a name space keyword.

444 Measure Callable Procedures

MEAS_SQLNAME_SCAN_
In Measure H02 and later PVUs, MEAS_SQLNAME_SCAN_ parses a fully qualified, possibly
wildcarded, ANSI SQL name in external format. This routine verifies the syntax of an ANSI SQL
name.
error := MEAS_SQLNAME_SCAN_ (name ! i
 , name_length ! i

error

INT
is an error code indicating the outcome of the operation. Zero means a successful completion.
Possible error codes include:

The specified ANSI SQL name contained syntax errors.err^badformatsqlname

The specified ANSI SQL name could not be parsed.err^sql^api^internal

name

input
STRING:EXT:ref:*
is a buffer that contains the input name to be scanned in external format. A name space
keyword is required.

name_length

input
INT:value
is the size, in bytes, of the input name.

Usage Notes
• ANSI SQL objects have independent name spaces and, if identical names exist in different

name spaces, each instance of the name refers to a different object.
• The name spaces used by Measure are TABLE, INDEX and MODULE. TABLE is implied

by using the keywords CATALOG, SCHEMA and TABLE. INDEX is implied by using the
keyword INDEX. MODULE is implied for SQLSTMT (in MEASCOM there is no MODULE
keyword).

• When calling the MEASSQLNAME_* APIs, the input ANSI SQL names must be preceded
by a name space keyword.

Example
These are a couple of simplified examples in pTAL pseudo code that call
MEAS_SQLNAME_SCAN_:
STRING .EXT inbuf[0:1023] :=["table cat.sch.t"];

if (error := MEAS_SQLNAME_SCAN_ (inbuf,
 15))
 ! handle error
else
 ! ANSI SQL TABLE name is OK

STRING .EXT inbuf[0:1023] :=["module cat.sch.m"];

if (error := MEAS_SQLNAME_SCAN_ (inbuf,
 16))
 ! handle error

MEAS_SQLNAME_SCAN_ 445

else
 ! ANSI SQL MODULE name is OK

MEASSTATUS
Returns information about a currently active measurement.
In Measure G09 and later PVUs, MEASSTATUS has a parameter for retrieving settings that
reports the configuration of the journal segment functions.
error := MEASSTATUS (meascb ! i,o
 ,measnum ! i
 ,cpus ! o
 ,starttime ! o
 ,stoptime ! o
 ,interval ! o
 ,entities ! o
 ,ctrspace ! o
 ,[max^ent] ! i
 ,[settings]); ! o

meascb

input, output
INT:ref:$LEN(MEASCB^DEF) / 2
is a control block where the Measure subsystem stores data for subsequent procedure calls.
Before calling the first Measure procedure that uses meascb, you must allocate space in your
global data area for the control block and initialize each element of the control block to -1.
After you pass meascb to a Measure procedure, do not modify its contents.
The file $SYSTEM.SYSnn.MEASDECS contains the structure definition for the control block
descriptor (MEASCB^DEF).

measnum

input
INT:value
is the measurement number. Use the measnum value returned by the MEASCONFIGURE
procedure.

cpus

output
INT:ref:1
indicates the CPUs being measured. Each bit represents a CPU number. If a bit is set to 1,
that CPU is being measured. Otherwise, that CPU is not.

starttime

output
FIXED:ref:1
is the start time of the measurement.

stoptime

output
FIXED:ref:1
is the stop time of the measurement.

interval

output
FIXED:ref:1
is the collection interval of the measurement.

446 Measure Callable Procedures

entities

output
INT(32):ref:MAX^T+1
is an array that contains the number of entities of each entity type currently being measured.
The array elements are in entity-type order, as this table shows. A value of 0 indicates the
entity type was not included in the configuration.

Numeric IdentifierLiteral ValueEntity Type

1CPU^TCPU

2PROCESS^TPROCESS

3PROCESSH^TPROCESSH

4USERDEF^TUSERDEF

5FILOP^TFILE

6DFILOP^TDISCOPEN

7DISC^TDISC

8IODEV^TDEVICE

9LINE^TLINE

10NETLINE^TNETLINE

11REMSYS^TSYSTEM

12CLUSTER^TCLUSTER

13TERM^TTERMINAL

14TMF^TTMF

15SQLPROC^TSQLPROC

16SQLSTMT^TSQLSTMT

17OPDISK^TOPDISK

18CTRL^TCONTROLLER

18SVNET^TSERVERNET

19DISKFILE^TDISKFILE

20OSSCPU^TOSSCPU

21OSSNS^TOSSNS

24MAX^T(Max value)

ctrspace

output
INT(32):ref:MAX^T+1
is an array that contains the counter space in words currently in use by each entity type. The
array elements are in entity-type order, as shown for entities. A value of 0 indicates the
entity type was not included in the configuration.

max^ent

input
INT:value
is the maximum number of entities the caller allocated for theentity andctrspace arrays.

MEASSTATUS 447

settings

output
INT:ref:1
is an array of flags that identifies configuration attributes of the measurement represented
by the data file:

Reserved for future use.settings.0:8

1 = Counter data records are suppressed in this file.settings.9

Reserved for future use.settings.10:11

1 = An SQL/MX journal segment is under construction for this file.settings.12

1 = An SQL/MX journal segment is present in this file.settings.13

1 = An OSS journal segment is under construction for this file.settings.14

1 = An OSS journal segment is present in this file.settings.15

Usage Notes
If OSS or SQL/MX journal segment construction is requested for a measurement, the status is
always reported as under construction while the measurement is active. When the measurement
is stopped, the setting continues to be reported as under construction until updating of the file
is complete.

MEASWRITE_DIFF_
Reads a window of one or more counter records from a measurement data file and places the
results in a structured file.
Before reading from a measurement data file, you must obtain read access to the file using the
MEASOPEN procedure. The data file can be associated with a currently active measurement, or
it can contain data from an inactive measurement.
The convention used for naming the structured file is identical to that of MEASCOM. The
procedure uses the specified entity name as a file name in the volume and subvolume specified
in the procedure call. If the file already exists, the retrieved information is appended to it. For
example, if the call requests CPU information be put in $USER.MEAS, the information is put in
$USER.MEAS.CPU.
The procedure call specifies both the start time and the stop time. The records returned provide
the statistics collected within the interval. You can request interval records, summary records,
or both.
The procedure call can specify options (all^recs, zero^reports, totals, loadid, and
if^item) to obtain additional processing
In Measure G09 and later PVUs, the parameter if^item has a field template if^item^g09^def that
is available for the longer (128 byte) SQL/MX run unit names. This template coexists with the
pre-G09 if^item^def template, thereby preserving compatibility with existing applications and
older data files.
error := MEASWRITE_DIFF_(dfnum ! i
 ,entitydesc ! i
 ,volume^subvol ! i
 ,[from^time] ! i
 ,[to^time] ! i
 ,[timetol] ! i
 ,[version] ! i
 ,[all^recs] ! i
 ,[zero^reports] ! i

448 Measure Callable Procedures

 ,[totals] ! i
 ,[loadid] ! i
 ,[if^item] ! i
 ,[templateversion]); ! i

dfnum

input
INT:value
is the data file access number. Use the dfnum value returned by the MEASOPEN procedure.

entitydesc

input
INT.EXT:ref:*
is the entity type and entity specification of the desired counter records. Specify entitydesc
as one of the descriptors listed in thecontabdescription of the MEASCONFIGURE procedure.
If you specify entitydesc as a template for multiple specifications, MEASWRITE_DIFF_
returns all counter records that fit the template.
For ANSI SQL objects or partitions, entitydesc can be a DISCOPEN, DISKFILE, FILE, or
SQLSTMT entity descriptor. The SQLSTMT ANSI entity descriptor is used when an ANSI
SQL name is to be specified for the retrieval of SQLSTMT counter records.

volume^subvol

input
INT.EXT:ref:8
is the destination volume and subvolume for the counter records. Counter records are written
to the file in DDL record format. For the DDL record definitions for each entity type, see
Chapter 3: Entities and Counters (page 133).
For a local system, the format of volume^subvol (when redefined as a string [0:15]) is:
Volume^SubVol[0] = '$'
Volume^SubVol[1:7] = volume name (padded with spaces)
Volume^SubVol[8:15]= subvolume name (padded with spaces)

For a remote system, the format is:
Volume^SubVol[0] = '\'
Volume^SubVol[1] = system number
Volume^SubVol[2:7] = volume name (padded with spaces)
Volume^SubVol[8:15]= subvolume name (padded with spaces)

from^time

input
FIXED:value
is the start time of the measurement window. Specify from^time as a Julian date based on
local civil time in four-word-by-one-microsecond format as provided by the system procedure
JULIANTIMESTAMP (see theGuardian Procedure Calls ReferenceManual). A value of -1 signifies
the beginning of the measurement. If no from^time is specified, the default is -1.

to^time

input
FIXED:value
is the stop time of the measurement window. Specify to^time as a Julian date based on
local civil time in four-word-by-one-microsecond format as provided by the system procedure
JULIANTIMESTAMP. (See the Guardian Procedure Calls Reference Manual.) A value of -1
signifies the end of the measurement. If no to^time is specified, the default is -1.

MEASWRITE_DIFF_ 449

timetol

input
FIXED:value
is a tolerance value to be applied to the time window bounded by from^time and to^time,
effectively decreasingfrom^time bytimetol and increasingto^time by the same amount.
A value of -1 widens the time window to include the latest record earlier than from^time
and the earliest record later than to^time. If no timetol is specified, the default is -1.

version

input
INT:value
is the Measure product version when the data file was created. The value consists of two
parts. Bits 0:7 contain an alphabetic character (for example, D), and bits 8:15 contain a numeric
value (for example, 30). Together they express the product version (for example, D30).

all^recs

input
INT:value
requests all interval records within the specified window if the value 1 is passed. If omitted
or 0, only summary records are returned.

zero^reports

input
INT:value
requests the exclusion of zero records if the value 0 is passed. If omitted or 1, zero records
are returned.

totals

input
INT:value
is a value of 0, 1, or 2, which indicates:

(Default) Omit total record; include individual counter records.0

Include individual records and total record.1

Omit individual counter records; include total record.2

loadid

input
INT.EXT:ref:4
is an 8-byte string to be included in all records returned. If no loadid is specified, the default
is blank (spaces).

if^item

input
INT .EXT:ref:$LEN(IF^ITEM^DEF) / 2
is a structure (IF^ITEM^DEF, defined in the MEASDECS file):
STRUCT IF^ITEM^DEF (*);
Begin
Int Item^Name[0:15]; !Item name in entity record
Int Relation^Operator;!Relation Operator
 ! 1 -> Equal =
 ! 2 -> Not Equal <>

450 Measure Callable Procedures

 ! 3 -> Less Than <
 ! 4 -> Greater Than >
Int(32) Value; !Value used in comparison
Int Rate; !Use rated or nonrated value
 !for condition checking:
 ! 0 -> No-Rate, 1 -> Rated
Int SQLName[0:15]; !SQL run-unit in Ascii
Int SQLIndex; !SQL Index number
End;

or
if^item

input
INT .EXT:ref:$LEN(IF^ITEM^G09^DEF) / 2
is a structure (IF^ITEM^G09^DEF, defined in the MEASDECS file):
STRUCT IF^ITEM^G09^DEF (*);
Begin
Int Item^Name[0:15]; !Item name in entity record
Int Relation^Operator;!Relation Operator
 !See Usage Notes (page 452)
 !Bit 0 must be 1
 !
 !Bits 13:15
 ! 1 -> Equal =
 ! 2 -> Not Equal <>
 ! 3 -> Less Than <
 ! 4 -> Greater Than >
Fixed Value; !Value used in comparison
Int Rate; !Use rated or nonrated value
 !for condition checking:
 ! 0 -> No-Rate, 1 -> Rated
Int SQLName[0:63]; !For SQLSTMTs only
Int SQLIndex; !SQL Index number
String IP^addr[0:15] = SQLName;
Int port = SQLIndex;
Int IP^wildcard^flags = value;
End;

DEFINE IP^addr^wildcard^flag = IP^wildcard^flags.<0>#,
 port^wildcard^flag = IP^wildcard^flags.<1>#;

item^name

input
is one of the counter names defined in the entity record (for example, CPU-BUSY-TIME
for a CPU record).

relation^operator

input
is a value in the range 1 through 4, which designates comparison type:

Compare for equal.1

Compare for unequal.2

Compare for less-than.3

Compare for greater-than.4

MEASWRITE_DIFF_ 451

value

input
is a 32-bit integer to be used for comparison with the value in the given counter. value
= n * 1000. For example, 17.09 should be stored as 17090.

rate

input
determines whether a nonrated or rated value is used in the comparison:
• 0 indicates a nonrated value (similar to REPORT RATE OFF).
• 1 indicates a rated value (similar to REPORT RATE ON).

sqlname

input
is a 16-word array specifying the SQL run unit. sqlindex specifies the index number.
These two fields are used in conjunction with the SQLSTMT entity. If passed,
MEASWRITE_DIFF_ returns the records with the specified run unit and index numbers.

sqlindex

input
is the SQL index. A value of -1 specifies all SQL indexes.

NOTE: If the if^item^def structure is passed, it must first be initialized. To pass the
structure without a value, IF^ITEM^DEF.Item^Name must be initialized to 0. Similarly
a value of 0 in IF^ITEM^DEF.SQLName means that no SQL (run-unit,index) is
specified.

IP^addr
input
is a bound or connected stream socket in the server.

templateversion

input
FIXED:value
(Measure G11 and later) is the appropriate template version literal from MEASDDLS for the
entity type requested in entitydesc, if you want ZMS style external records. If omitted or
passed as 0F, legacy style records are returned.
If passed as -1F, the templateversion for the current release will be used, starting with
the H06.15/J06.04 RVUs. Note that returned external records, in that case, may not match the
counter record definitions with which the application was compiled.
See TEMPLATE-VERSION (page 143) for further information on obtaining external records
corresponding to a format that you can handle.

Usage Notes
• If the longer IF^ITEM^G09^DEF template is used, the G09^format must be set (see the

DEFINE example). If the G09^format is not set, part of the sqlname field is interpreted as
sqlindex, and any records returned are likely to be incorrect.
DEFINE G09^format = relation^operator.0#;
DEFINE G09^rel^operator = relation^operator.13:15#;

• You can use either template format when accessing G09 data files. You can also use the
longer template when accessing G08 and earlier data files if the actual sqlname value does
not exceed 32 characters.

452 Measure Callable Procedures

• In Measure H01 and later PVUs, MEASWRITE_DIFF_ accepts DISCOPEN, DISKFILE, FILE,
and SQLSTMT entity descriptors for ANSI SQL objects or partitions.

• Measure H04, J02, and later PVUs will create a format 1 or format 2 structured file, depending
upon the measurement data file size.

MEASWRITE_DIFF_ 453

454

A Error Messages
The Measure subsystem produces error messages and error codes. The error messages generated
by MEASCOM, the Measure command language interface, are described in this appendix. For
descriptions of the error codes generated by Measure callable procedures, see Appendix B: Error
Codes (page 471).
Each message in this appendix is preceded by MEAS and the message number. If you encounter
an error while using MEASCOM, enter:
HELP error-number

MEAS 2000
Comment. For more information type HELP number.

Cause MEASCOM lets you get more information on a particular MEASURE message by
entering HELP number.
Effect This message has no effect on the current processing.
Recovery None necessary; to suppress this comment, enter COMMENTS SUPPRESS 2000.

MEAS 3000
WARNING. System system-name does not exist; check system name.

Cause The indicated system was not known to the network.
Effect The command is executed, but the corresponding system number or name could not
be added to the descriptor.
Recovery Check that you correctly indicated the desired system.

MEAS 3001
WARNING. Device dev-name does not exist; check spelling.

Cause The indicated device was not found or is not a valid device type for the command.
Effect The command is executed, but the device is not measured given the current state of
the system.
Recovery Check that you correctly indicated the desired device or that the device is the
correct type.

MEAS 3002
WARNING. Measurement was not started due to reason listed above.

Cause The START MEASUREMENT command failed at some point during its processing.
Effect Effect. The reason for failure is listed as an error returned from the callable procedures.
Recovery Enter HELP error code number to determine the appropriate corrections, and
retry the operation. (For information on ALLOCATESEGMENT, see the Guardian Procedure
Calls Reference Manual.)

MEAS 3003
WARNING. Measurement was not stopped due to reason listed above.

Cause The STOP MEASUREMENT command failed at some point during its processing.
Effect The reason for failure is listed as an error returned from the callable procedures.
Recovery Enter HELP error code number to determine the appropriate corrections, and
retry the operation. (For information on ALLOCATESEGMENT, see the Guardian Procedure
Calls Reference Manual.)

MEAS 3004
WARNING. Logging was not on so command had no effect.

455

Cause LOG STOP was issued, but logging was not in effect.
Effect The request is ignored.
Recovery Informative message only; no corrective action needed.

MEAS 3005
WARNING. Changing current plot file to current data file.

Cause ADD PLOT was issued, but the old data file associated with the plot was not the same
as the one just listed from the current data file.
Effect The contents of the previous plot are lost.
Recovery Informative message only; no corrective action needed.

MEAS 3006
WARNING. Volume not network-accessible with current system default.

Cause A 7-character volume default was in effect with a remote system default.
Effect All file names expanded with the current defaults are invalid.
Recovery Change the system or volume default.

MEAS 3007
WARNING. No entities present to ADD; LIST records before trying ADD.

Cause An ADD PLOT was performed without any records available to be added.
Effect The request is ignored.
Recovery Perform a LIST entity command to obtain a list of the desired records before
trying to add to the plot.

MEAS 3008
WARNING. Plot became full during ADD; some entities were not added.

Cause An attempt was made to add more than 26 items to a plot.
Effect Some of the requested items were not added.
Recovery Delete any unneeded items so there are 26 or fewer before adding the desired
counters.

MEAS 3009
WARNING. Item not found -- item-name.

Cause The indicated plot item was not found or, if the plot character was also used in the
command (for example, DELETE PLOT cpu-busy-time (A)), counter A was not an appropriate
item name.
Effect The requested operation is ignored.
Recovery Check that you spelled the item correctly and entered the correct plot character.

MEAS 3010
WARNING. Measurement not found -- filename.

Cause The indicated data file was not found.
Effect The requested operation is ignored.
Recovery Check that you spelled the file name correctly and that the indicated file was added.

MEAS 3011
WARNING. Counter not found -- counter-name.

Cause The indicated counter was not found.
Effect The requested operation is ignored.

456 Error Messages

Recovery Check that you spelled the counter name correctly and that the indicated counter
was added.

MEAS 3012
WARNING. Counter not found -- counter-name.

Cause The indicated counter was not found.
Effect The requested operation is ignored.
Recovery Check that you spelled the counter name correctly and that the indicated counter
was added.

MEAS 3013
WARNING. Measurement in the current data file is from
current-datafile-version, which is a later release than this version
(current-meascom-version) of MEASCOM.

Cause Measurement in the current data file is from a later RVU than the version of the
running MEASCOM. The later RVU might have changes in the external record format.
Effect The data file is added.
Recovery If you are certain there are no differences in the external record format between
the two RVUs, you can disregard this warning message. Otherwise, use a MEASCOM from
the same or later RVU of that in the data file.

MEAS 3014
WARNING. The specified Loadid has more than 5 characters, sequencing
will be suppressed.

Cause A 3-digit sequence-ID is added to LOADID to designate each interval of the
measurement when LISTALL was used. It is suppressed if three characters are not available
for use.
Effect Sequencing is suppressed.
Recovery Use five or fewer characters for LOADID.

MEAS 3015
WARNING. MEASCOM is attempting to allocate or resize its extended segment
to be number bytes.

Cause MEASCOM is requesting an extended segment larger than 16 MB.
Effect The command continues unless a system error is encountered, in which case the error
is displayed.
Recovery If the segment is considered to be too large, stop MEASCOM, and perform the
LIST in a way that decreases the number of records returned to MEASCOM. (For example,
use the IF clause.)

MEAS 3016
WARNING. The item item-name is obsolete for the current datafile version;
results of the operation may be unexpected.

Cause The item name entered is no longer maintained in the data file being processed.
Effect The command continues, but the operation might produce unexpected results.
Recovery Use an item name that is valid for the PVU of the data file being processed.

MEAS 3017
WARNING. The specified file name was resolved using the current default
system (current-system-name), which is different from the system where
the data file was collected (system-name). Therefore, this command may
not LIST any records.

457

Cause The file name resolved in the LIST FILE command used the current default system,
which is different from the system where the data file was collected.
Effect The command continues, but probably no data will be returned.
Recovery Enter the system name with the file name in the LIST command. For example, use
LIST FILE \A.$B.C.D, or perform a SYSTEM \A and repeat the LIST command.

MEAS 3018
WARNING. TO and FOR are both set -- FOR will be ignored; if FOR is
desired then RESET TO.

Cause If displayed during a SHOW or SET command, the default attributes contain a value
for both the TO and FOR values. If displayed during a LIST command, the default attributes
plus the command line attributes caused the TO and FOR to both be set.
Effect The command continues, but the FOR option is ignored.
Recovery To use the TO option, no recovery is necessary. Otherwise, use the RESET command
to clear the TO value so the FOR value is used.

MEAS 3019
WARNING. MEASCTL's current SWAP volume is volume; do NOT bring volume
down while MEASURE is still running.

Cause MEASCTL was started with a SWAP volume other than $SYSTEM. If MEASCTL's
SWAP volume is unavailable at any time (for example, if a PUP DOWN operation is performed),
the entire system halts.
Effect The command is executed.
Recovery No recovery is mandatory. But if disk space permits, stop the MEASURE subsystem
and restart it using $SYSTEM (or a mirrored volume) as the SWAP volume. Use this command:
MEASCOM /SWAP $SYSTEM/ START MEASSUBSYS

MEAS 3020
WARNING. No current data file; select a current data file using ADD.

Cause The command executed required a current measurement data file to perform its
function.
Effect The requested operation is ignored.
Recovery Perform an ADD MEASUREMENT on the data file desired.

MEAS 3021
WARNING. Measurement not active; unable to perform request.

Cause This command is valid only when the measurement is currently active.
Effect The requested operation is ignored.
Recovery Informative message only; no corrective action is needed.

MEAS 3022
WARNING. No more configuration data is available.

Cause No more entities are configured for the type requested.
Effect The requested operation is ignored.
Recovery Restart the search or change to another entity type.

MEAS 3023
WARNING. Crvsn was not specified, OSS file pathname translation may not
be correct.

458 Error Messages

Cause A Guardian file name was specified in a LISTPNAME command without specifying
the CRVSN qualifier.
Effect Translation of the Guardian file name to an OSS file pathname is attempted, but the
reported name might be incorrect if the file name specified is a transient entity.
Recovery Include the CRVSN value as reported in Measure entity reports.

MEAS 3024
WARNING. OSS Journal Segment is under construction, not attached.

Cause An ADD MEASUREMENT command was entered for a data file that was still in the
process of OSS journal segment construction at measurement shutdown.
Effect The file is opened successfully, but the OSS journal segment is not attached.
Recovery Generally, no action is necessary. Translation can be processed from the OSS
file-system name space on the current system. If you need access to the OSS journal segment
at a later time, use the DELETE MEASUREMENT and ADD MEASUREMENT commands to
add the Measure data file again after OSS journal segment construction is complete.

MEAS 3025
WARNING. Default Catalog not set.

Cause The SQLSCHEMA command has been issued without specifying a default SQL catalog
and the default SQL catalog has not yet been set.
Effect Although the default SQL schema is set, if no SQLCATALOG command is issued, the
ANSI names used in the subsequent commands might fail with an error.
Recovery Issue the SQLCATALOG command to set the default SQL catalog.

MEAS 3026
WARNING. Counter data records have been suppressed; active counter data
records are not available for PROCESSH.

Cause A START MEASUREMENT command was entered for a measurement that contains
PROCESSH entities, and counter data record suppression was selected.
Effect The command continues, but PROCESSH records are not available for the measurement.
Recovery If PROCESSH records are desired, stop the measurement and restart it without
counter data record suppression. If PROCESSH records are not desired, no corrective action
is needed.

MEAS 3027
WARNING. Counter data records have been suppressed; OSS and/or SQL
journal segments will not be produced.

Cause A START MEASUREMENT command was entered for a measurement for which OSS
and/or SQL journal segments were selected, and counter data record suppression was selected.
Effect The command continues, but OSS and/or SQL journal segments are not produced for
the measurement.
Recovery If OSS and/or SQL journal segments are required, stop the measurement and restart
it without counter data record suppression. If OSS and/or SQL journal segments are not
required, no corrective action is needed.

MEAS 3050
Exceeded depth of 4 OBEY files; rework OBEY nesting.

Cause An attempt was made to include more than four OBEY files.
Effect The command is aborted, and all OBEY files are closed.
Recovery Rework the nesting of your OBEY files so no more than four files are used.

459

MEAS 3051
Expecting a name of nn characters or less; shorten name.

Cause The string entered must contain, at most, the number of characters indicated by the
error message.
Effect The requested operation is ignored.
Recovery Shorten the string appropriately and retry the command.

MEAS 3052
File is not network-accessible; shorten volume name.

Cause A file name with a volume name containing more than seven characters was indicated
for remote access.
Effect The requested operation is ignored.
Recovery For remote access, a volume name can contain no more than seven characters.
Shorten the volume name accordingly.

MEAS 3053
Value out of range; value must be range.

Cause The number entered was out of the acceptable range for the current item.
Effect The requested operation is ignored.
Recovery Enter a value within the range indicated by the two values in the error message.

MEAS 3054
System does not exist; check system name.

Cause The system indicated in the request does not exist.
Effect The requested operation is ignored because the file name cannot be expanded.
Recovery Check that you spelled the system name correctly.

MEAS 3055
Illegal syntax; see HELP or the Measure Reference Manual.

Cause The parser encountered a syntax error.
Effect The requested operation is ignored.
Recovery Correct the syntax according to HELP or the syntax in this manual.
For command syntax descriptions, see Chapter 2: MEASCOM Commands (page 37). For
descriptions of syntax for identifying entities to be measured, see Chapter 3: Entities and
Counters (page 133).

MEAS 3056
Subsystem error; please report to Tandem Computers Incorporated. Trap
%n, CS = %n, P = %nnnnn, E = %nnnnn, L = %nnnnn, S = %nnnnn.

Cause A trap was encountered by MEASCOM.
Effect The requested operation is ignored.
Recovery Retain a copy of the information provided in the error message and contact your
HP representative.

MEAS 3057
Ambiguous DELETE command; specify which occurrence to delete.

Cause A DELETE PLOT was requested where the counter name entered occurs more than
once in the plot definition.
Effect The requested operation is ignored.

460 Error Messages

Recovery Repeat the command and add either the plot character to indicate a particular
occurrence or an asterisk (*) to indicate all occurrences.

MEAS 3058
Expecting a valid process or file name.

Cause MEASCOM was expecting either a valid process name (for example, $XMM) or a
valid file name (for example, $disk.subvol.file, or $disk.subvol.*).
Effect The requested operation is ignored.
Recovery Reissue the request with a valid process or file name.

MEAS 3059
Only an individual file can be specified; replace *'s.

Cause A single file name was not entered for the command.
Effect The requested operation is ignored.
Recovery Replace the wild-card character (*) with a specific file name.

MEAS 3060
Expecting a disk file name; ensure filename is a valid disk file name

Cause A permanent disk file was not specified in the command.
Effect The requested operation is ignored.
Recovery Ensure the name entered is of the form $a.b.c.

MEAS 3061
The USERDEF for this counter was not found; ADD the USERDEF.

Cause The process specification entered in the current ADD COUNTER command was not
previously added by an ADD USERDEF command.
Effect The requested operation is ignored.
Recovery Check that the process specification is correct, or add the USERDEF and retry the
operation.

MEAS 3062
Counter already exists; DELETE and then ADD to change counter.

Cause An attempt was made to add a counter that already exists.
Effect The requested operation is ignored.
Recovery To change the counter type or array index, delete the counter and then add it.

MEAS 3063
No more data files can be added; DELETE unnecessary files.

Cause An attempt was made to add more than 64 data files.
Effect The requested operation is ignored.
Recovery Delete any unnecessary data files and then add the ones desired.

MEAS 3064
Expecting a disk file name; ensure file is a valid disk filename.

Cause A valid or unique disk file was not specified in the command.
Effect The requested operation is ignored.
Recovery Ensure that the name entered is of the form $a.b.c or $a.#x.

461

MEAS 3065
File must be local; see Measure Reference Manual.

Cause The file name given or expanded was remote, and the command required a local file
name.
Effect The requested operation is ignored.
Recovery For a discussion of file names that are used with the command, see the description
of the specific command in Chapter 2: MEASCOM Commands (page 37). Then specify a local
file and retry the operation.

MEAS 3066
The name specified in the IF condition (item-name) was not found; check
the spelling of the name.

Cause The item name used in the IF condition was not an item name associated with the
entity type being listed.
Effect The requested operation is ignored.
Recovery Check the spelling of the item and verify the item name exists, then retry the
operation.

MEAS 3067
The name specified in the BY clause (item-name) was not found; check
the spelling of the name.

Cause The item name used in the BY condition was not an item name associated with the
entity type being listed.
Effect The requested operation is ignored.
Recovery Check the spelling of the item and verify the item name exists, then retry the
operation.

MEAS 3068
No current data file; select a current data file using ADD.

Cause The command executed required a current measurement data file to perform its
function.
Effect The requested operation is ignored.
Recovery Perform an ADD MEASUREMENT on the data file desired.

MEAS 3069
Command option has been repeated; delete one and reissue command.

Cause An option was specified more than once in the same command.
Effect The requested operation is ignored.
Recovery Delete all but one occurrence of the option and repeat the command.

MEAS 3070
Both FOR and TO have been specified; delete one and reissue command.

Cause Both the FOR and TO option were specified in the same command. These options are
mutually exclusive.
Effect The requested operation is ignored.
Recovery Delete one of the options and repeat the command.

MEAS 3071
item-name not found; check the spelling and/or the appropriate entity
report.

462 Error Messages

Cause The plot counter name entered was not found.
Effect The requested operation is ignored.
Recovery Check the spelling and verify, using the appropriate report, that the name entered
is a valid item name. Legacy style report items that are no longer present in the equivalent
ZMS style report can only be plotted in the legacy style interface. And ZMS style report items
that are no longer present in the equivalent legacy style report can only be plotted in the ZMS
style interface.

MEAS 3072
Measurement not active; unable to perform request.

Cause An attempt was made to issue a command that is valid only when the measurement
is currently active.
Effect The requested operation is ignored.
Recovery Informative message only; no corrective action is needed.

MEAS 3073
A remote filename is not allowed when dealing with DISCOPENs or
DISKFILEs.

Cause The file name entered or expanded (using the current SYSTEM) for a DISCOPEN or
DISKFILE command was for a remote file.
Effect The requested operation is ignored.
Recovery DISCOPENs and DISKFILEs are always local. For DISCOPENs, a remote opener
can be specified after the file name (for example, $a.b.c (\sys)). For DISKFILE, no opener
information is associated with the entity, so using a remote opener is not allowed.

MEAS 3074
Plot list is full; must DELETE an item before ADD.

Cause An attempt was made to add to an already full plot.
Effect The requested operation is ignored.
Recovery Delete some counters and then retry the ADD.

MEAS 3075
Expecting a single alpha character; see HELP.

Cause The plot character was not a single alphabetic character.
Effect The requested operation is ignored.
Recovery Enter only a single alphabetic character. For more information, enter HELP.

MEAS 3079
Measurement space overflow; DELETE unneeded descriptors.

Cause The measurement space became full during an ADD.
Effect The requested operation is ignored.
Recovery Delete unneeded descriptors from the measurement space and retry the operation.

MEAS 3080
Allocate segment error number on work segment.

Cause An error was encountered and returned from the allocate segment on the MEASCOM
primary work segment.
Effect The requested operation is ignored.

463

Recovery MEASCOM can run without the segment, but it can perform in only a limited
capacity. Correct the problem encountered with the allocate segment if possible and rerun
MEASCOM.

MEAS 3081
The IF clause on an identifier field (i.e. name) is not supported for
the current datafile version.

Cause Use of the IF clause on a noncounter item is not supported for data files prior to D10.
Effect The requested operation is aborted.
Recovery Use an item name that corresponds to a counter item, or delete the IF clause.

MEAS 3083
Internal buffer full; try making command less complex.

Cause When Measure expanded the command, a buffer became full.
Effect The requested command is ignored.
Recovery Break the command into several commands and execute the commands separately,
or qualify any file names present so MEASCOM performs a minimum of expansion.

MEAS 3084
The DISCOPEN and DISKFILE entities require the filename to be either a
permanent or temporary disk filename (e.g. $a.b.* or $system.#*).

Cause The current file name is not a disk file name
Effect The requested command is not executed.
Recovery Change the file name entered to a valid permanent or temporary disk file name.

MEAS 3085
"char" not allowed in current string; delete symbol and retry.

Cause The symbol displayed by the error message is not a valid word separator for the string
entered.
Effect The requested operation is ignored.
Recovery Either remove the character or replace it with a valid word separator, and then
retry the command.

MEAS 3086
START attempted on an ADDed datafile; DELETE and then START.

Cause START was attempted on a data file that was added for listing. Because the START
command causes the data to be purged, the command is aborted. The commands START,
STOP, or ADD cause the data file to be added in the MEASCOM environment. This message
is an attempt to prevent accidental purging of data.
Effect The requested operation is aborted.
Recovery If you still need the START operation, DELETE the data file and retry the START.

MEAS 3087
Expecting Help key length of 30 characters or less; shorten string.

Cause The key string entered for the Help command exceeds 30 characters.
Effect The requested operation is not executed.
Recovery Shorten the string.

MEAS 3089
Expecting a number with 3 or less decimal digits.

464 Error Messages

Cause The number entered has more than three decimal digits.
Effect The requested operation is not executed.
Recovery Reduce the number of decimal digits, then reenter the command.

MEAS 3090
Incompatible PROCESSH records in the filename data file. Please use a
proper version of MEASCOM.

Cause The PROCESSH record format in the data file is incompatible with the MEASCOM
currently running.
Effect The requested operation is not executed.
Recovery Obtain a proper version of MEASCOM.

MEAS 3091
The existing DDL format structured file for the entity specified in the
LIST command has a different record size.

Cause The record size is different from the size in the data file.
Effect The requested operation is not executed.
Recovery Remove the existing structured file and let MEASCOM create it, or use a different
subvolume. Be sure to regenerate the corresponding DDL dictionary.

MEAS 3092
SYSTEM-PROCESSES is not allowed in this command.

Cause SYSTEM-PROCESSES is not allowed in SQLPROC and SQLSTMT commands.
Effect The requested operation is not performed.
Recovery Change the command to a suitable format and retry.

MEAS 3094
Incompatible datafile version. The LISTALL command is not supported for
this version of the datafile.

Cause LISTALL command was issued on a C10 or previous data file.
Effect Command aborts; specified MEASFH cannot satisfy the request.
Recovery Try another command. To retrieve records, use the LIST command.

MEAS 3095
Command option "report-option" not allowed with LISTALL command when
STRUCTURED format is specified.

Cause Illegal report-option was specified with LISTALL.
Effect Command aborts; specified option is not satisfied.
Recovery Retry the command, and do not include the report-option causing the error.

MEAS 3096
Command option "TOLERANCE OFF" not allowed with LIST command.

Cause The TOLERANCE OFF option was specified on a C10 or previous data file.
Effect Command aborts; MEASFH cannot satisfy request.
Recovery Retry the command, and do not include the TOLERANCE option.

MEAS 3097
Error number was reported earlier on this data file. Operation cannot
be carried out.

465

Cause When data file was added, MEASFH reported an error or warning. Problems might
exist with the data file.
Effect Command aborts; command could not be carried out correctly.
Recovery Try a different command on this data file.

MEAS 3098
FC and ! are not allowed on input longer than 132 characters; reenter
the desired command in full.

Cause Although an effective record can contain up to 2100 characters, only effective records
of 132 characters or fewer are candidates for modification using the FC command or for
reexecution using the ! command.
Effect No command is executed.
Recovery The desired command must be entered in full (use the editor and the OBEY
command to execute long commands).

MEAS 3099
Line specified is not in the HISTORY buffer; check buffer and retry.

Cause The line that Measure is attempting to be reexecute is not in the HISTORY buffer.
Effect No command is executed.
Recovery Perform a HISTORY command to make sure the command is still in the HISTORY
buffer. Otherwise you must reenter the command in full.

MEAS 3100
The command is too long, the maximum number of characters an effective
record can contain is 2100 (nnnn were entered); try to enter multiple
commands or remove embedded spaces as possible to shorten the command(s)
entered.

Cause Even with the use of the ampersand (&), there is a limit to the number of characters
that can be entered in one record (for example, before MEASCOM scans the record and executes
the commands). The current input stream exceeded the limit of 2100 characters.
Effect The command is not executed.
Recovery If more than one command was entered, try entering each command separately.
If only one command was entered, try breaking the command into several commands and
execute the commands separately. If the command cannot be decomposed, try removing some
embedded spaces to make the command shorter.

MEAS 3101
filename was not started due to Process_Create_ error number; correct
error and retry command.

Cause The program file indicated was not started due to the Process_Create_ error indicated.
Effect The command is not executed.
Recovery Correct the cause of the Process_Create_ error and retry the command.

MEAS 3102
filename could not be opened due to File System error number.

Cause The program file indicated could not be opened due to the file-system error indicated.
Effect The command is not executed.
Recovery Correct the cause of the file-system error and retry the command.

466 Error Messages

MEAS 3103
filename did not read the startup message due to File System error
number.

Cause The program file indicated did not read the startup message sent due to the file-system
error indicated.
Effect The command is not executed.
Recovery Correct the cause of the file-system error and retry the command.

MEAS 3104
SCALE-FROM must be less than SCALE-TO; make sure the values are correct
before retrying the LIST PLOT command.

Cause The effective value for the SCALE-FROM attribute was greater than or equal to the
SCALE-TO attribute of the PLOT object.
Effect The command is not executed.
Recovery Perform a SHOW PLOT to determine the default values for each attribute. Any
attribute entered on the LIST PLOT command line overrides the default value. Ensure the
effective values are consistent when you retry the command.

MEAS 3105
Expecting one of the following keywords keyword-list.

Cause The word encountered is not a valid keyword.
Effect The command is not executed.
Recovery Enter a valid keyword (some are displayed in the error text, but not all if the list
is too long).

MEAS 3106
item-name is a valid item name, but it can only be used in the BY clause;
use a different item name, or a counter name that appears within the
entity report.

Cause An item name was used in the IF clause that can only be used in the BY clause.
Effect The command is not executed.
Recovery Use a different item name, or use a counter name that appears within the entity
report.

MEAS 3107
item-name is a valid item name, but it can only be used in the By and
IF clauses; use a counter name that appears within the entity report.

Cause An item name was used in a PLOT command that can only be used in the BY and IF
clauses.
Effect The command is not executed.
Recovery Use a counter name that appears within the entity report.

MEAS 3108
item-name is not a unique item-name; do a HELP entity-type COUNTERS
(e.g. HELP CPU COUNTERS) to determine the number of characters required
to make the abbreviation unique.

Cause The item name entered matched more than one item name.
Effect The command is not executed.
Recovery Add more characters to the name entered.

467

MEAS 3109
item-name is a new item name that is not valid for the current datafile
version; use a different item name.

Cause An item name was entered that is not contained in the (down-rev) data file being
processed.
Effect The command is not executed.
Recovery Use a different item name.

MEAS 3110
The current string of digits contains a digit which is greater than the
current base of number; delete the digit and retry the command.

Cause The digit entered is too large for the current base (for example, ADD CPU %8 is
incorrect because an octal digit must be 7 or under).
Effect The command is not executed.
Recovery Change the number entered to be consistent with the base you are using.

MEAS 3111
Native Mode code maps do not have space numbers; if you wish to sample
native mode maps specify either UCr, ULr, SCr, or SLr.

Cause The code map specified is incorrect for native mode code maps.
Effect The command is not executed.
Recovery To measure native mode code, specify UCr, ULr, SCr, or SLr.

MEAS 3112
The datafile version is version and cannot be analyzed with F40 Meascom.

Cause When you are using a G-series RVU, the version of the data file precedes F40.00.
Effect The command is not executed.
Recovery To analyze a pre-F40.00 data file, use a pre-F40.00 version of MEASCOM that
matches the version of the data file as well as the appropriate MEASFH.

MEAS 3113
Unable to open data file.

Cause MEASFH was unable to open the data file because there was too much data for the
system to handle (file-system error 21).
Effect The command is not executed.
Recovery Retry the command.

MEAS 3114
A journal segment is required but not available for request.

Cause A command was entered for a data file that was not collected on the current node,
and for which no journal segment is currently available.
Effect The command is not executed.
Recovery If the translation desired is NOT from the added data file, then DELETE the
measurement and reissue the command so that the translation is done from the current system.
If translation is desired for data collected on another node, specify the OSS and/or SQL option
when starting the measurement.

MEAS 3115
PAGESIZE must be specified in the range of 6 and 128.

Cause An invalid PAGESIZE setting was specified.

468 Error Messages

Effect The requested operation is aborted.
Recovery Specify a value from 6 through 128.

MEAS 3116
Unable to translate the specified OSS file pathname in the current
context.

Cause The requested translation was not found in the OSS name space or in the current OSS
journal segment.
Effect The requested operation is aborted.
Recovery If the request is part of an ADD data file that contains an OSS journal segment,
you can DELETE the data file and attempt translation from the current system if it is part of
the same ADD data file.

MEAS 3117
Unable to translate an ANSI SQL name.

Cause The requested translation was not found in the ANSI SQL name space or in the current
ANSI SQL journal segment.
Effect The command is not executed.
Recovery If within the context of an ADD data file that contains an ANSI SQL journal segment,
delete the data file and attempt translation from the current system if it is the same as that of
the data file. For the command LISTACTIVE DISKFILE, make sure that a partition is specified.
Else there is no recovery possible.

MEAS 3118
Syntax errors in specified ANSI SQL name.

Cause The ANSI SQL name contained syntax errors.
Effect The requested operation is aborted.
Recovery Reenter command with correctly formed ANSI SQL name.

MEAS 3121
Default Catalog or Schema missing.

Cause There is not enough information available to create a fully qualified SQL ANSI name.
Either the default SQL catalog or the default SQL schema or both are missing.
Effect The command is not executed.
Recovery Issue the ENV command to see what the settings are for default SQL catalog and
SQL schema. Issue the appropriate SQLCATALOG and/or SQLSCHEMA command(s) to add
the missing default setting(s).

MEAS 3122
The data file format does not support CLIM devices.

Cause A LIST command was given for the DISC or DEVICE entity that specified a CLIM
device or a path selection on a pre-H03 data file.
Effect The command is not executed.
Recovery Change the LIST command to not specify a CLIM device, path selection or lun.

MEAS 3175
System is not TANDEM NonStop; see your system manager.

Cause An attempt was made to run MEASCOM on a system other than a NonStop server.
Effect MEASCOM stops abruptly.
Recovery See your system manager.

469

MEAS 3176
System option number is not T2035; see your system manager.

Cause An attempt was made to run MEASCOM with an option number other than T2035.
Effect MEASCOM stops abruptly.
Recovery See your system manager.

MEAS 3177
Guardian version is not B30 or greater; see your system manager.

Cause The NonStop operating system PVU must be B30 or later.
Effect MEASCOM stops abruptly.
Recovery See your system manager.

MEAS 3178
Internal consistency check nnn failed; report error.

Cause The internal check nnn failed.
Effect MEASCOM stops abruptly.
Recovery If the command involves a great deal of file-name expansion, rerun MEASCOM
and try to perform the same command in several steps. If this attempt fails or does not address
the original problem, contact your HP representative.

470 Error Messages

B Error Codes
The Measure subsystem produces error messages and error codes. The error codes generated by
Measure callable procedures are described in this appendix. For descriptions of the error messages
generated by MEASCOM, the Measure command interface, see Appendix A: Error Messages
(page 455).

3200
(ERR^BADMEASCB)

Cause The MEASCB was not set to -1s on the initial procedure call, or its contents were
modified after being set by Measure.
Effect The requested operation aborts.
Recovery Initialize MEASCB to all -1s prior to your first Measure call and do not write to it
afterwards.

3201
(ERR^MISSINGPARAM)

Cause A required parameter was missing.
Effect The requested operation aborts.
Recovery Add the missing parameter to your procedure call statement.

3202
(ERR^BOUNDS)

Cause An invalid parameter address was supplied.
Effect The requested operation aborts.
Recovery Check and correct the address initialization of your parameters.

3203
(ERR^BADPARAMS)

Cause A bad parameter value was supplied to a callable procedure.
Effect The requested operation aborts.
Recovery Check and correct the values of your parameters.

3204
(ERR^BUFTOOSMALL)

Cause The buffer size was too small.
Effect The requested operation aborts.
Recovery Correct the buffer size. The buffer size needed is contained in the bytesret (byte
size of record returned) parameter. If MEASREADACTIVE encountered this error and requires
a buffer larger than 32 KB, use the MEAS_READACTIVE_ Procedure.

3205
(ERR^NOTENOUGHSTACK)

Cause Not enough data-stack space was available to send or receive the buffer.
Effect The requested operation aborts.
Recovery Move some of the stack data into an extended segment to increase the size of the
available working stack.

471

3206
(ERR^BADREPLY)

Cause An unexpected reply was received from a Measure process.
Effect The requested operation aborts.
Recovery Retain a copy of the files and commands needed to duplicate this error and contact
your HP representative.

3207
(ERR^NEWDESCFIELD)

Cause A down-rev MEASFH being used cannot support the new field used in the descriptor.
Effect The requested operation aborts.
Recovery Reissue the request without using the new field. In MEASCOM, avoid the new
fields. For example, change LIST FILE * ($PNAME) to LIST FILE * (1,52), assuming 1,52 was
$PNAME. If you are using the programmatic interface directly, use the old version of the
descriptor, or place only the appropriate default values (for example, $*) in the new fields.

3208
(ERR^WRONGSYSTEM)

Cause The MEASFH process, which indexes and builds structured records from the data
file, and the data file are located on different systems.
Effect The requested operation aborts.
Recovery Move either the MEASFH program file or the data file so they are both on the same
node. Only read access is allowed for remote data files.

3209
(ERR^REMOTEDFILE)

Cause The data file was not on the same system as the calling process.
Effect The requested operation aborts.
Recovery Because write access is not allowed for remote data files, use a data file on the same
system as the calling process.

3210
(ERR^BADDFNUM)

Cause The data file access number (DFNUM) parameter value did not match a valid DFNUM
returned by a successful MEASOPEN call.
Effect The requested operation aborts.
Recovery Check that the value used is the same as the value returned by a MEASOPEN
procedure.

3211
(ERR^BADMEASNUM)

Cause The measurement number (MEASNUM) parameter value did not match a valid
MEASNUM returned by a successful MEASCONFIGURE call.
Effect The requested operation aborts.
Recovery Check that the value used is the same as the value returned by a MEASCONFIGURE
procedure.

3212
(ERR^MEASNOTACTIVE)

Cause Measurement was not configured and active.

472 Error Codes

Effect The requested operation aborts.
Recovery Check that the measurement is configured and started, and that it did not stop
during the operation.

3213
(ERR^NOMEASCTL)

Cause A CPU was up, but there was no MEASCTL to allocate and maintain counters in the
CPU.
Effect The requested operation aborts.
Recovery Use the MEASMONCONTROL procedure, indicating the CPU number of the
missing MEASCTL.

3214
(ERR^MEMLOCKFAILURE)

Cause Insufficient physical memory is available.
Effect The requested operation aborts.
Recovery Redistribute your processes to other processors or install more memory.

3215
(ERR^LINK)

Cause A call to LINK failed.
Effect The requested operation aborts.
Recovery Retry the operation.

3216
(ERR^NOTAVAIL)

Cause PROCESSH, DISCOPEN, and DISKFILE records are not available from
MEASREADACTIVE.
Effect The requested operation aborts.
Recovery Call MEASREAD to obtain these records.

3217
(ERR^NOTSUPER)

Cause The attempted call requires a super-group user ID (255,n).
Effect The requested operation aborts.
Recovery Have a super-group user execute the process that calls this procedure.

3218
(ERR^MONALREADYALIVE)

Cause The Measure subsystem was already started and cannot be started again.
Effect The requested operation aborts.
Recovery Verify that the Measure subsystem is not running prior to calling
MEASMONCONTROL with a start subsystem request.

3219
(ERR^NOMEASMON)

Cause The Measure subsystem was stopped.
Effect The requested operation aborts.
Recovery Verify that the Measure subsystem is running prior to calling this procedure.

473

3220
(ERR^UDCNOTPRESENT)

Cause A user-defined counter was not installed and cannot be bumped.
Effect The requested operation aborts.
Recovery Prior to this call, configure a measurement that includes the user-defined counters
to be bumped.

3221
(ERR^UDCBADBUMP)

Cause An invalid BUMPTYPE was used for a user-defined counter.
Effect The requested operation aborts.
Recovery Check and correct the value of the BUMPTYPE parameter.

3222
(ERR^UDCBADINDEX)

Cause An invalid INDEX was used for a user-defined counter.
Effect The requested operation aborts.
Recovery Check and correct the value of the INDEX parameter.

3223
(ERR^INVALIDENTITY)

Cause A new or invalid entity type was supplied.
Effect The requested operation aborts.
Recovery Check that the entity type is valid and that it is supported in the RVU of the data
file being processed.

3224
(ERR^INCONSISTENCY)

Cause MEASCTL internal consistency check failed.
Effect SQL activities are not measured.
Recovery Contact your HP representative.

3225
(ERR^INCOMPLETEMSG)

Cause The callable procedure was unable to complete a message to the MEASCTL process.
Effect The requested operation was ignored.
Recovery Try the operation again. If the operation continues to fail, contact your HP
representative.

3226
(ERR^LOCALSYSNAME)

Cause The callable procedure cannot retrieve the caller’s local system name from
Nodenumber_to_Nodename_.
Effect The requested operation was ignored.
Recovery Try the operation again. If the operation continues to fail, contact your HP
representative.

3227
(ERR^MEASFH^INVALID^NAME)

474 Error Codes

Cause Measure encountered an internal error while working on the MEASFH file name.
Effect The requested operation aborted.
Recovery Check that the MEASFH object file exists and is properly secured.

3228
(ERR^MEASFH^CREATION)

Cause An error was returned from Process_Create_.
Effect The requested operation aborted.
Recovery Check that the MEASFH object file exists and is properly secured.

3229
(ERR^MEASFH^OPEN)

Cause An error was returned from File_Open_.
Effect Unable to open the MEASFH process. The requested operation aborted.
Recovery Check that the MEASFH object file exists and is properly secured.

3230
(ERR^MEASFH^SWAPFILE)

Cause The SWAPVOL value specified was in error.
Effect The MEASFH process or swap file is not created; the requested operation aborts.
Recovery Use a different SWAPVOL value, or clear the SWAPVOL and use the default value.

3231
(ERR^CONFIG^NOT^AVAIL)

Cause You specified an unsupported entity type to the MEASLISTCONFIG procedure. The
procedure supports only the DEVICE, LINE, NETLINE, OPDISK, and SERVERNET entities.
Effect The requested operation aborts.
Recovery Issue the request again, specifying a supported entity type.

3232
(ERR^NOTENOUGH^PFSBUFFER) (ERR^NOTENOUGH^FPMEMORY)

Cause The API was unable to allocate enough global buffer space from the flexible memory
pool of the process.
Effect The operation is not performed.
Recovery Ensure that the application does not exhaust its flexible pool memory.

3234
(ERR^CRVSNNOTSPECIFIED)

Cause You called MEASLISTPNAME without specifying the CRVSN qualifier.
Effect Translation of the Guardian fielname to an OSS file pathname is attempted, but the
reported name might be incorrect if the file name specified is a transient entity.
Recovery Include the CRVSN value in MEASLISTPNAME calls.

3235
(ERR^BUILDINGOSSJOURNAL)

Cause MEASOPEN was called for a data file that was still in the process of OSS journal
segment construction at measurement shutdown.
Effect The file is opened successfully, but the OSS journal segment is not attached.

475

Recovery Generally, no action is necessary. Translation can be processed from the OSS file
system name space on the current system. If you need access to the OSS journal segment at a
later time, the program must close and reopen the Measure data file after OSS journal segment
construction is complete. You might notice that data access is slower for files opened during
journal segment construction even after the journal segment construction step is completed.
Closing and reopening the file improves the data-access speed.

3236
(ERR^MISSINGOSSJOURNAL)

Cause A request was made that required an OSS journal segment for translation, but no OSS
journal segment is attached in the current Measure data file context.
Effect The requested operation is aborted.
Recovery If you need translation from the OSS file-system name server, omit the dfnum
parameter or pass -1 as its value. If you need translation from a journal segment, ensure that
one was collected with the data file and that err^buildingossjournal was not returned
on the MEASOPEN request.

3237
(ERR^OSSDIRNOTALLOWED)

Cause A DISKFILE command contained an OSS directory name.
Effect The requested operation is aborted.
Recovery Only fully qualified OSS file pathnames are allowed in DISKFILE entity specification.
If you need transient file activity or specific sets of files, use Guardian file naming. For example:
$DATA.*.*, or $*.ZYQ00000.*.

3238
(ERR^UNKNOWNSQLNAME)

Cause The specified ANSI SQL name could not be translated, or the specified Guardian
name could not be translated to an ANSI SQL name.
Effect The requested operation is aborted.
Recovery The name is no longer current in the ANSI SQL name space or is not present in
the SQL journal.

3239
(ERR^BADFORMATSQLNAME)

Cause The specified ANSI SQL name could not be parsed due to syntax errors or was not
fully qualified.
Effect The requested operation aborts.
Recovery In the entity specification syntax, check that the ANSI SQL name is syntactically
correct and, if necessary, fully qualified.

3240
(ERR^BUILDINGSQLJOURNAL)

Cause MEASOPEN was called for a data file that was still in the process of SQL journal
segment construction when the measurement shut down.
Effect The data file opens successfully, but the SQL journal segment is not attached.
Recovery Generally, no action is necessary. Translations are processed through the SQL/MX
services. If you later need access to the SQL journal segment, close and reopen the data file
after SQL journal segment construction completes.

3241
(ERR^MISSING^SQLJOURNAL)

476 Error Codes

Cause A request was made that required the SQL journal segment for translation, but no
SQL journal segment is attached in the current Measure data file context.
Effect The requested operation aborts.
Recovery If you require translation from the ANSI SQL name server, omit the dfnum
parameter or pass -1 as its value. If you require translation from a journal segment, ensure that
you requested such a segment and that the MEASOPEN request did not return the error
err^buildingsqljournal.

3242
(ERR^NOT^IMPLEMENTED)

Cause A request was made for Measure functionality that does not exist in this version of
Measure.
Effect The requested Measure function is not performed.
Recovery Upgrade your version of Measure to the required level for the specified function.

3243
Err^nospaceossjournal

Cause Disc space was not sufficient or segment allocation failed for building OSS or ANSI
SQL journal segment.
Effect File is opened successfully, but journal segment is not attached.
Recovery OSS name translation requests will be processed from the OSS file system name
server on the current system. ANSI SQL names translation will be processed via SQL/MX on
the current system. If access to the OSS or SQL journal segment is desired then start a
measurement on a disk having enough space.

3244
(ERR^NO^TIMERCELL^CONTEXT)

Cause The application called a timercell function, but no timercell context is currently
allocated. For example, the application called another timercell function without first invoking
MEAS_ALLOCATE_TIMERCELLS_. Alternatively, all timercells have been deallocated, or
the context was corrupt (as indicated by error code 3245).
Effect The requested operation is not performed.
Recovery Call MEAS_ALLOCATE_TIMERCELLS_ before invoking other timercell functions.

3245
(ERR^BAD^TIMERCELL^CONTEXT)

Cause The application called a timercell function, but the timercell context is corrupted.
Effect The context is cleared, and all allocated timer cells for this process are lost.
Recovery Call MEAS_ALLOCATE_TIMERCELLS_ to create a new timercell context before
invoking other timercell functions.

3246
(ERR^NOT^ALLOCATED)

Cause The resource specified as the target of a callable function is not allocated.
Effect The operation is not performed.
Recovery Call whatever procedure allocates the resource before you call any procedure that
requires the resource.

3247
(WARN^TIMERCELL^ACCURACY)

477

Cause The application attempted to retrieve more than 128 timer cells, and because of
insufficient system resources, Measure could not adjust the reported values of some counters
to reflect the advance of time for repeated rendezvous operations.
Effect Data is returned for all timers, but timers in the penultimate group (modulo 128) will
have returned values slightly less than their true values.
Recovery Retrieve fewer than 128 timer cells at a time.

3248
(ERR^NO^MORE^TIMERCELLS)

Cause The application attempted to allocate timer cells, but timercell pool for the processor
was insufficient to satisfy the request.
Effect The operation does not occur.
Recovery Use the timer cells that have already been allocated. Alternatively, deallocate some
existing timer cells, and allocate new ones.

3251
(ERR^BADDESC)

Cause The CONTAB format, which contains the entity descriptors to be measured, was
incorrect.
Effect The requested operation aborts.
Recovery Correct any bad or missing CONTAB header, entity descriptor, or trailer record.
Examine the CONTAB prior to the call.

3252
(ERR^FILECODE)

Cause The data file did not have a file code of 175.
Effect The requested operation aborts.
Recovery Purge the file and create a new file with a file code of 175.

3253
(ERR^NOTDISCFILE)

Cause The data file was not a disk file.
Effect The requested operation aborts.
Recovery Copy the measurement data file from tape to disk prior to read access.

3254
(ERR^WRONGVERSION)

Cause The MEASFH version did not match the data file version.
Effect The requested operation aborts.
Recovery Specify the MEASFH program file name from the RVU used to generate the data
file.

3255
(ERR^FILEINUSE)

Cause An attempt was made to start a measurement on a measurement data file that was
already open.
Effect The requested operation aborts.
Recovery Close the file and retry the operation.

478 Error Codes

3256
(ERR^ISEGOVERFLOW)

Cause The MEASFH process received an error while attempting to sort a data file index
segment.
Effect The requested operation aborts.
Recovery Close the file and retry the operation.

3257
(ERR^RSEGOVERFLOW)

Cause The datafile record address array segment overflowed.
Effect The requested operation aborts.
Recovery Try reducing the number of items to be LISTed by requesting specific items rather
than using the asterisk (*) to list all items. For the PROCESSH entity, try specifying if
code-range > 0 in the LIST command.

3258
(ERR^CSEGOVERFLOW)

Cause MEASFH's external counter record segment overflowed.
Effect The requested operation aborts.
Recovery Try reducing the number of items to be LISTed by requesting specific items rather
than using the asterisk (*) to list all items. For the PROCESSH entity, try specifying if
code-range > 0 in the LIST command.

3259
(ERR^MEASNOTDONE)

Cause The measurement was not complete.
Effect The requested operation aborts.
Recovery Stop the measurement and retry the operation.

3260
(ERR^NOOPEN)

Cause The data file was not open.
Effect The requested operation aborts.
Recovery Call MEASOPEN for the data file and retry the operation that failed.

3261
(ERR^INTTOOSMALL)

Cause The time interval was too small.
Effect The requested operation aborts.
Recovery Retry the operation with a time interval equal to or greater than one second.

3262
(ERR^NOCTRREC)

Cause A counter record for the requested entity could not be found.
Effect The requested operation aborts.
Recovery Inspect the measurement CONTAB parameter containing the entity descriptors
to be measured. Check for an entity descriptor that includes the current descriptor and verify
that this entity was alive during the measurement.

479

3263
(ERR^CRFILETYPE)

Cause The PROCESSH code-range file was not a disk file.
Effect The requested operation aborts.
Recovery Move the code-range file to disk.

3264
(ERR^CRFILECODE)

Cause The PROCESSH code-range file was not an object or edit file.
Effect The requested operation aborts.
Recovery Move the code ranges to a file in edit format, or use an object-format file to specify
the code ranges.

3265
(ERR^CRFILE)

Cause A PROCESSH code-range file open or read error occurred.
Effect The requested operation aborts.
Recovery Check the file name and verify that the file can be read (FUP COPY). Make any
needed changes and retry the operation.

3266
(ERR^CRFMT)

Cause There was an error in the format of the PROCESSH code-range file.
Effect The requested operation aborts.
Recovery Correct the format and retry the operation.

3267
(ERR^NOCRS)

Cause The PROCESSH code-range file did not specify any code ranges, or the existing code
ranges do not occur in the specified code space.
Effect The requested operation aborts.
Recovery Add at least one code range to the file or correct the code space specification and
retry the operation.

3268
(ERR^TOOMANYCRS)

Cause The PROCESSH code-range file specified more than 500 code ranges.
Effect The requested operation aborts.
Recovery Delete enough code ranges from the file so that there are 500 or fewer and then
retry the operation.

3269
(ERR^CRTABLES)

Cause The PROCESSH code-range table overflowed. Either the data file has been corrupted,
or there is a problem with MEASFH.
Effect The requested operation aborts.
Recovery If the data file was modified since the measurement was done, repeat the
measurement and then retry the operation. Otherwise, retain the data file and contact your
HP representative.

480 Error Codes

3270
(ERR^EMPTYDATAFILE)

Cause Read access was requested for a data file that contains no data.
Effect The requested operation aborts.
Recovery Either use another data file with measurement data in it or start a measurement
using this file.

3271
(ERR^CONTABFULL)

Cause Too many PROCESSH code ranges are configured for measurement, and the CONTAB
is full.
Effect The requested operation aborts.
Recovery Reconfigure the PROCESSH measurement by reducing the number of code ranges
(or taking out some code spaces).

3272
(ERR^INVALID^TAPE^OP)

Cause An invalid request was made on a tape data file.
Effect The requested operation aborts.
Recovery The request can only be made on a disk file. Use FUP COPY to copy the
measurement data from the tape to a disk file of code 175 and then retry the operation.

3273
(ERR^TRAP^OCCURRED)

Cause The MEASFH process has trapped out.
Effect The MEASFH process stops abruptly, and a saveabend file is created.
Recovery If the trap number is 12 (%14), check the disk where the MEASFH work files were
created. If the disk is full or very fragmented, use the MEASCOM SWAPVOL command or
the SWAP parameter in the TACL RUN command to request that the MEASFH work files be
created on another disk. If the trap is not caused by the inability to create an extent, the CPU
is short of memory. In that case, try running the MEASFH process in a CPU with more memory.
For traps other than trap 12, copy the displayed information and report the problem to your
service provider.

3274
(ERR^UNKNOWNMSG)

Cause The MEASFH version is incompatible. The MEASFH process received a request it
could not understand. Either the request is not implemented in the current MEASFH PVU, or
the request is of an invalid type.
Effect The MEASFH process ignored the request.
Recovery If the request is valid, use a MEASFH file that supports the new request. Otherwise,
supply a valid request.

3275
(ERR^WRONGRELEASE)

Cause An incompatible MEASFH version was specified.
Effect The requested operation aborts.
Recovery Specify the correct MEASFH version and retry the command.

481

3276
(ERR^MEAS^NEVER^STARTED)

Cause Measurement was not started correctly on this data file (error 3410 returned by
MEASMON), or START time was not written to the data file.
Effect The data file does not contain valid data. Further operations on the data file could
result in error.
Recovery Try to start another measurement. Check the EMS log for error 3410 (measurement
not started correctly). Use a data file big enough that the START time can be written to the
data file.

3277
(ERR^DATAFILE^CORRUPT)

Cause MEASFH encountered an invalid data record when adding the data file.
Effect The data file is analyzed only up to the invalid record.
Recovery None possible. MEASFH cannot analyze the data file past the corrupted record.

3278
(ERR^CONTAB^NOT^COMPLETED)

Cause The callable MEASREADCONF is an earlier PVU than MEASFH.
Effect MEASREADCONF could not handle an incomplete CONTAB from MEASFH. It cannot
read large measurement configurations.
Recovery Use a C20 or later PVU of the callable MEASREADCONF.

3279
(ERR^CONVERTING^TO^RISC)

Cause MEASFH was unable to convert a TNS address to a TNS/R address while processing
the EDIT file for SC or SL.
Effect The measurement is not configured.
Recovery Verify that each TNS address in the EDIT file is valid for the code space being
configured. To do so, check the CONFLIST in SYSTEM.SYSnn. Although Measure accepts any
number from 0 through %177777 for a TNS address, if the code space was accelerated, only
addresses mapped by the NonStop operating system into a TNS/R address are accepted in the
EDIT file.

3280
(ERR^FH^OLD^STRUCT^FILE)

Cause The record size is different from the size in the data file.
Effect No records were written to the structured file.
Recovery Remove the existing structured file and let MEASFH create it, or use a different
subvolume. If using MEASCOM, use the VOLUME command. Be sure to regenerate the proper
DDL dictionary.

3281
(ERR^FH^CTR^NAME^NOT^FOUND)

Cause The counter name passed in the IF^ITEM structure was not found. Perhaps the name
is misspelled or does not exist in the PVU being processed.
Effect The operation was not performed.
Recovery Pass a valid counter name.

482 Error Codes

3282
(ERR^FH^BY^CTR^ONLY)

Cause The counter name in the IF^ITEM structure is valid but cannot be used for the IF item.
Effect The operation was not performed.
Recovery Pass a different counter name.

3283
(ERR^RESIZESEGMENT)

Cause The MEASFH process was not able to obtain the extended segment size needed to
perform the requested operation.
Effect The requested operation aborts.
Recovery Designate a CPU with more available memory and retry the command.

3284
(ERR^ALLOCATE^SEG)

Cause The MEASFH process was not able to obtain the extended segment size needed to
perform the requested operation.
Effect The requested operation aborts.
Recovery Designate a CPU with more available memory and retry the command.

3285
(ERR^NOT^TNDM)

Cause The MEASFH process was not able to read the COFF file further.
Effect The operation was not performed.
Recovery Designate a proper COFF file and retry the MEASCOM ADD PROCESSH command.

3286
(ERR^EDIT^NOT^ASCEND)

Cause The MEASFH process was not able to perform the requested operation because the
native address in the edit file was not in ascending order.
Effect The requested operation aborts.
Recovery Make changes in the edit file and retry the command.

3287
(ERR^NO^POOLSPACE)

Cause MEASFH was not able to perform the requested operation. The MEASMON process
cannot obtain the memory space required to start this measurement.
Effect The operation was not performed.
Recovery Split the measurement into multiple measurements and retry the command.

3288
(ERR^NO^GINFO)

Cause The MEASFH process was not able to read the COFF file further.
Effect The operation was not performed.
Recovery The COFF file is partially linked. Link the COFF file completely by passing it
through the Native Mode Linker, NLD without the -r option, and then retry the operation
with the output of the Linker process.

483

3289
(ERR^DATAFILE^INCOMPLETE)

Cause One or more CPUs ran out of CIDs, counter space, or both. Consequently, the data
file is incomplete.
Effect The data file does not contain complete information for the measurement.
Recovery Retry the measurement with fewer entities specified. For more information, see
the EMS log.

3290
(ERR^VERSION^NOT^SUPPORTED)

Cause The Measure PVU is not supported.
Effect The data file is not read.
Recovery Supply a valid Measure PVU and retry the operation.

3291
(ERR^NO^EGINFO)

Cause MEASFH was not able to read the ELF file further.
Effect The operation was not performed.
Recovery The ELF file is partially linked. Pass the ELF file through the Native Mode Linker,
NLD without the -r option and then retry the operation with the output of the linker process.

3292
(ERR^CANNOTMAKEJOURNAL)

Cause An ADD MEASUREMENT command (or implicit ADD MEASUREMENT command)
was entered for a data file that was still in the process of journal segment construction at
measurement shutdown, or a START MEASUREMENT command was entered with insufficient
temporary file space for the MEASFH process to establish a journal segment.
Effect The data file is opened or the measurement is started, but without the OSS or ANSI
SQL Journal Segment or name translation.
Recovery When adding a data file, use the DELETE MEASUREMENT and ADD
MEASUREMENT commands to re-add the data file and attach the journal segment after
construction is complete. When starting a measurement, verify adequate security for temp file
creation, suitable space for the file (up to 64MB).

3293
(ERR^NOT^REPORTFORMATNOTSTRUCTURED)

Cause LIST OSSNAMES or LIST EXTNAMES was issued without having set REPORT
FORMAT STRUCTURED.
Effect No records are written to the OSSNAMES or EXTNAMES file.
Recovery Prior to issuing a LIST OSSNAME or LIST EXTNAMES command, specify REPORT
FORMAT STRUCTURED.

3294
(ERR^CONFIGFILECONFLICT)

Cause Two files were specified for configuring the same code space range of the same object
in a measurement configuration. MEASFH could not complete the measurement configuration
because of the invalid specification.
Effect The operation was not performed.
Recovery Remove one of the two files from the specification.

484 Error Codes

3295
(ERR^SQL^API^INTERNAL)

Cause The MEASURE API internal check failed due to insufficient buffer space.
Effect The ANSI SQL name operation could not be performed.
Recovery Contact your HP representative.

3296
(ERR^SQLMX^MAP^PROCESS)

Cause A call to the SQL/MX mapping API failed because no mapping process has been
started.
Effect The ANSI SQL name operation could not be performed.
Recovery Verify that SQL/MX and TMF are installed and active. If that is the case, contact
your HP representative.

3297
(ERR^SQLMX^MAP^DUPCONNECTION)

Cause There is already an existing SQL/MX mapping session for this application process.
Effect No new mapping session is started.
Recovery If MEAS_SQL_MAP_STOP was just called, wait and try again, else it can probably
be ignored and an already existing connectionInfo can be used to call the appropriate APIs.

3298
(ERR^SQLMX^MAP^INIT)

Cause A SQL/MX mapping session could not be started.
Effect No new mapping session is started.
Recovery Check if SQL/MX and TMF are installed and active. If that is the case, contact your
HP representative.

3300
(ERRM^INVALIDMSG)

Cause The type or length of the request was invalid.
Effect The requested operation aborts.
Recovery Correct the type or length and retry the request.

3301
(ERRM^BADMEASNUM)

Cause The measurement number supplied in the request was invalid for the requested
service.
Effect The requested operation aborts.
Recovery Supply the correct measurement request number and retry the operation.

3302
(ERRM^SECURITYVIOLATION)

Cause The requester did not have proper security rights to perform the requested operation.
Effect The requested operation aborts.
Recovery Verify your request and retry the operation.

3303
(ERRM^OPENOVERFLOW)

485

Cause There were already 100 processes open.
Effect The requested operation aborts.
Recovery There can be no more than 100 open processes. Wait and retry the operation.

3304
(ERRM^INTERNAL)

Cause An internal error occurred.
Effect The requested operation aborts.
Recovery Contact your HP representative.

3305
(ERRM^DATAFILEINUSE)

Cause An attempt was made to use a data file that was already being used by another
measurement.
Effect The requested operation aborts.
Recovery Specify another data file.

3306
(ERRM^MEASTABLEFULL)

Cause An attempt was made to configure more than 64 measurements.
Effect The requested operation aborts.
Recovery Wait until some measurements have stopped and retry the operation.

3307
(ERRM^NOCONTABSPAC)

Cause The MEASMON CONTAB pool, containing entity descriptors, was full.
Effect The requested operation aborts.
Recovery Wait until some measurements have stopped and retry the measurement.

3308
(ERRM^INVALIDINTERVALTIME)

Cause The interval time is invalid. It cannot be less than one second or greater than one year.
Effect The requested operation aborts.
Recovery Correct the interval time value and retry the request.

3309
(ERRM^INVALIDSTARTSTOPTIME)

Cause In a control-measurement request, the stop time was less than the start time, an attempt
was made to change the start time of an active measurement, or there was some other invalid
start or stop time request.
Effect The requested operation aborts.
Recovery Correct the start and stop time values and retry the request.

3310
(ERRM^INVALIDDATAFILE)

Cause An incorrect data file type was specified.
Effect The requested operation aborts.
Recovery Specify a tape file or an unstructured disk file with a file code of 175.

486 Error Codes

3311
(ERRM^INVALIDCONTAB)

Cause The CONTAB format was not correct.
Effect The requested operation aborts.
Recovery Correct your CONTAB format and retry the operation.

3312
(ERRM^DATAFILEOPENFAILED)

Cause An attempt by MEASMON to open the data file failed.
Effect The requested operation aborts.
Recovery Check the current state of the data file and take appropriate action.

3313
(ERRM^ADOPTFAILED)

Cause An attempt by MEASMON to adopt an existing MEASCTL or MEASIP process failed.
Effect The requested operation aborts.
Recovery Notify your system operator.

3314
(ERRM^ALREADYOPEN)

Cause The caller process has already opened MEASMON.
Effect The requested operation aborts.
Recovery The MEASMON process can be opened only once by the caller. It is already open.
Check the MEASCB structure passed to the callable procedure. The caller should not have
modified it.

3315
(ERRM^START^MEASSUBSYS)

Cause The backup for MEASMON did not start, one or more executing CPUs does not
contain an active MEASCTL or MEASIP process, or both.
Effect The MEASURE subsystem is not fully operational.
Recovery Correct the problems indicated by the console messages. Then stop the MEASURE
subsystem and restart it.

3316
(ERRM^MEMLOCKFAILURE)

Cause The call to the LOCKMEMORY procedure failed. MEASMON was not able to perform
the security check needed to access the data file.
Effect The measurement was not started.
Recovery Retry the request. If the problem persists, notify your system operator.

3317
(ERRM^INVALIDBINADDR)

Cause An invalid code range was given in the PROCESSH entity.
Effect The measurement does not run.
Recovery Supply a valid code range address and retry.

3318
(ERRM^INVALIDBINPART)

487

Cause The PROCESSH configuration was not sent to MEASMON. MEASMON was unable
to configure the measurement.
Effect The measurement was not started.
Recovery Retry the request. If the problem persists, notify your HP representative.

3319
(ERRM^NOBINADDRSPACE)

Cause The pool space for code-range addresses is full in the MEASCTL process.
Effect The measurement does not run.
Recovery Stop some measurements and then try to start your measurement again.

3320
(ERRM^BACKUP^DATAFILEOPENFAILED)

Cause An attempt by backup MEASMON to open the data file failed.
Effect The requested operation aborts.
Recovery Check the file system error number and take appropriate action.

3400
(ERRM^READLINKFAILED)

Cause The complete request could not be read because the processor did not have sufficient
physical memory.
Effect The reply file does not contain any data.
Recovery Install more memory.

3401
(ERRM^BUFFERTOOSMALL)

Cause The requestor’s buffer was too small to complete the request.
Effect The reply file does not contain any data.
Recovery Allocate more space for the reply and retry the operation.

3402
(ERRM^CANNOTACCESS)

Cause The entity could not be accessed because of the current state. The CPU, group, module,
slot number, SCSI ID, SAC name, lun, or path entered for the device may not be the correct
value. Find out the correct value from SCF and retry the command.
Effect The reply does not contain any data.
Recovery If the device is inaccessible, contact your system operator.

3403
(ERRM^ILLEGALDESC)

Cause The entity descriptor in the request was invalid.
Effect The reply does not contain any data.
Recovery Correct the entity descriptor and retry the request.

3404
(ERRM^NOTMEASURING)

Cause The measurement number (MEASNUM) parameter did not measure the entity, or
the entity does not exist.
Effect The reply does not contain any data.

488 Error Codes

Recovery Check that the entity exists in the measurement CONTAB parameter.

3405
(ERRM^REPLYTOOBIG)

Cause The reply did not fit in the MEASCTL reply buffer. This can result when there are
too many user-defined counters to be returned in a reply to a READACTIVE request.
Effect The reply does not contain any data.
Recovery Eliminate some of the user-defined counters.

3406
(ERRM^ILLEGALREQ)

Cause The request was invalid.
Effect The reply does not contain any data.
Recovery Check and correct the entity-descriptor type, check the actual request and then
retry the operation.

3407
(ERRM^ILLEGALMEASNUM)

Cause The measurement number (MEASNUM) in the request was not a valid measurement
number, or there was no active measurement with this measurement number.
Effect The reply does not contain any data.
Recovery Supply the correct measurement number.

3408
(ERRM^MEASNUMINUSE)

Cause An attempt was made to start an already active measurement.
Effect The operation is aborted.
Recovery Contact your HP representative.

3409
(ERRM^NOCONTABSPACE)

Cause The MEASCTL CONTAB pool was full.
Effect The operation is aborted.
Recovery Wait until some other measurements have stopped and then retry the operation.

3410
(ERRM^INSTALL)

Cause A resource problem occurred with MEASCTL.
Effect The operation is aborted.
Recovery Wait until some other measurements have stopped or reduce the number of
measurement entities, and then retry the operation.

3411
(ERRM^DFOPENFAILED)

Cause The data file could not be opened.
Effect The operation is aborted.
Recovery Check the current open state of the data file and its file security. Retry the operation
with the right data file.

489

3420
(ERRM^NOCIDENTRY)

Cause The MEASCTL process in the specified CPU ran out of internal counter space while
starting a measurement.
Effect Some entities are not measured.
Recovery For all measurements in the system, reduce the amount of transient entities to be
measured by configuring only needed entities. For example, avoid using wild-card (*)
specifications in the configurations. Use the DELETE command to exclude entities that are not
needed.

3421
(ERRM^NOCOUNTERSPACE)

Cause The MEASCTL process in the specified CPU ran out of internal counter space while
starting a measurement.
Effect Some entities are not measured.
Recovery For all measurements in the system, reduce the amount of transient entities to be
measured by configuring only needed entities. For example, avoid using wild-card (*)
specifications in the configurations. Use the DELETE command to exclude entities that are not
needed.

3430
(ERRM^ILLEGALINDEX)

Cause An illegal SQL statement index number was supplied in the LISTACTIVE SQLSTMT
command.
Effect The operation is aborted.
Recovery Check that the number supplied is a legal statement index number for the desired
SQL process.

490 Error Codes

C Subsystem Files
This list describes the files that make up the Measure performance monitor:

MEASCOM is the Measure subsystem command interpreter. For descriptions of the
commands, see Chapter 2: MEASCOM Commands (page 37). Typically started from
TACL, a MEASCOM process lets the user who started it carry on an interactive
session with the Measure subsystem. A super-group user (member of user group
255) can use MEASCOM to start the Measure subsystem. Thereafter, any user can
use MEASCOM to configure, run, and examine measurements. Concurrent sessions
as well as concurrent measurements within a session are allowed. MEASCOM is
stored in $SYSTEM.SYSnn.

MEASCOM process

Created by the callable procedures whenever you run a measurement or later examine
the resulting data file, one MEASFH process presides over one user-designated data
file: formatting it, adding data to it, and retrieving data as needed. MEASFH is
release-dependent in that a data file generated in one version can be examined only
by using a MEASFH process of the same version. MEASFH is stored in
$SYSTEM.SYSnn. In the H01 PVU, the default record style changed from Legacy to
ZMS. Accordingly, in G-series and earlier RVUs, fields that appear only in ZMS style
records and reports cannot be used in “IF” clauses, even in the ZMS style report
mode. In H-series and J-series RVUs, fields that appear only in legacy style records
and reports cannot be used in “IF” clauses, even in the legacy style report mode.

MEASFH process

Serving as the subsystem monitoring and coordinating process, a single MEASMON
process (running as a process pair) is created when the Measure subsystem is started.
MEASMON creates a MEASCTL process in each CPU and coordinates the activity
of these processes, sending them measurement configuration requests and gathering
information from them. MEASMON is stored in $SYSTEM.SYSnn.

MEASMON process

MEASMON creates one MEASCTL process in each CPU when the Measure subsystem
is started. The job of a MEASCTL process is to handle a description of counter space
and to engage the relevant subsystems responsible for maintaining the counters.
Among the tasks performed by MEASCTL are those that initialize counters when a
measurement starts and those that copy counters to the data file. MEASCTL also
retrieves for display the counters a user requests for online examination. MEASCTL
is stored in $SYSTEM.SYSnn.

MEASCTL process

MEASIP is the Measure Interrupt Process. It does the sampling for a PROCESSH
measurement. The MEASMON process creates one or more MEASIP processes that
run in each CPU of the local system when the Measure subsystem starts. This process
is not present in RVUs prior to H-series and J-series. MEASIP is stored in
$SYSTEM.SYSnn.

MEASIP process

The MEASDDLS file contains the record definitions (DDLs) of the optional structured
files produced by the commands and procedures that display measurement results.
You can use these record definitions to produce language-specific record declaration
files for programmatic use of data or as the basis for user-developed reports using
the Enform product. MEASDDLS is stored in $SYSTEM.SYSnn.

MEASDDLS file

The MEASDDLF file contains FORTRAN DDL definitions. MEASDDLF is stored in
$SYSTEM.SYSnn.

MEASDDLF

The MEASDDLB file contains COBOL85 DDL definitions. MEASDDLB is stored in
$SYSTEM.SYSnn.

MEASDDLB

491

The MEASDDLZ file lets applications access ZMS style data records with minimal
impact. The ZMS style record structure adds a level of naming to each component
of the record. The legacy format does not have this additional naming level. For
example, the field cpu.dispatches in a legacy style record is equivalent to the
zmscpu.ctr.dispatches in the ZMS style record structure. Converting existing
applications and ENFORM reports from the legacy naming format to the ZMS style
naming format is a significant edit of record references. It also involves removal of
fields that might be referenced by programs, and the possible combination of
equivalent fields that appeared in two sizes (for example, process.sent-bytes and
process.sent-bytes-f). To simplify this process, use the MEASDDLZ file as described
in the Measure User’s Guide.MEASDDLZ presents the ZMS style counter widths and
locations in the record using the legacy style record naming convention. Record
template names use legacy style names (for example, PROCESS rather than
ZMSPROC). Fields that have been combined are referenced by redefines.

MEASDDLZ file

The MEASDECS file contains the structure declarations and literal value definitions
used in the Measure callable procedures. MEASDECS is stored in $SYSTEM.SYSnn.
See C and C++ Language Usage Notes.

MEASDECS file

The MEASCHMA file contains the structure declarations for C and TAL. Its output
is similar to the output of the MEASDECS file. See C and C++ Language Usage Notes.

MEASCHMA file

The MEASIMMU file contains the Measure error messages and the online help text
accessible through the MEASCOM HELP command. MEASIMMU is stored in
$SYSTEM.SYSnn.

MEASIMMU file

NOTE: MEASCTL, MEASFH, MEASIP, and MEASMON must be on the active system subvolume
(SYSnn). The remaining Measure files need not be located on the active subvolume.

C and C++ Language Usage Notes
To see whether a field is within a union, refer to the C declarations in files MEASCHMA and
MEASDECS. If the field is within a union, include the union name when writing code that uses
the field.
Existing C or C++ programs that use Measure data might not compile using the C structure
declarations in new PVUs of Measure’s MEASCHMA or MEASDECS. References to fields that
now are within a union must be changed to include the union name in the reference.

Process Identification Numbers
Process identification numbers (PINs) on systems running D-series, G-series, and later RVUs are
divided into these two ranges:
• A low PIN range from 0 through 254
• A high PIN range from 256 through the maximum number supported for the CPU
The PIN 255 is used only for a synthetic process ID. For more information on PIN 255, see the
Guardian Application Conversion Guide.
Processes on C-series systems run at low PINs. A process running at a high PIN cannot
communicate with a process or a file that resides on a system running a C-series RVU. To let a
D-series, G-series, or later process access a C-series process, you must run the D-series, G-series,
or later process at a low PIN.

Table C-1 PIN Information for the Measure Product

Defaults to high PINCan run at high PINProcess

N.A.NoMEASCOM

YesYesMEASMON

YesYesMEASCTL

Yes, in Measure H02 and later PVUsYes, in Measure H02 and later PVUsMEASFH

492 Subsystem Files

When you run the Measure product on a system running a D-series, G-series, or later RVU, you
need not be concerned about PIN ranges. However, to access a measurement data file on a system
running a C-series RVU, you must run the Measure product at a low PIN.
To run a Measure process at a low PIN, use the /HIGHPIN OFF/ option in the TACL RUN
command, or set the TACL HIGHPIN built-in variable to OFF.

NOTE: To examine data files from D-series or previous RVUs on systems running G-series or
later RVUs, you must use a Dnn PVU of MEASCOM as well as the appropriate MEASFH. For
maximum compatibility with a variety of data files, always use the most recent Dnn PVU of
MEASCOM.

Process Identification Numbers 493

494

D Measure Data File Tool (MEASFT)
The Measure Data File Tool (MEASFT) lets you split a measurement data file into multiple data
files for consumption and display by MEASCOM or through Measure APIs. MEASFT is especially
useful in the case of the very large data files that can result from measuring large numbers of
entities or measuring at very small intervals.
MEASFT is part of H06.07 and later RVUs, but you can use it to split measurement data files
created by G10 or later G-series PVUs. To split a G-series data file, you must first move the file
to a system running an H-series and J-series RVU. After running MEASFT, either move the
output data files back to the original system for processing and display, or process them on the
system running an H-series and J-series RVU, using the MEASFH option of the ADD command
to specify the appropriate MEASFH object file version.

NOTE: In Measure G12 or later G-series PVUs, it is no longer necessary to move a G-series data
file to a system running an H-series and J-series RVU in order to split the file.

MEASFT has two major functions, each invoked by a command:
• SPLIT. This command splits one measurement data file into multiple measurement data

files. You specify whether to split the file by entity type(s) or by processor number.
Measurement configuration, START/STOP measurement records, and any applicable OSS
and SQL journal data are replicated in each output data file.

• INFO. This command reads a measurement data file and displays a report indicating how
much file space is used for data associated with each entity type and processor number. This
information can help you decide how best to split the data file.

MEASFT also has a HELP command, which displays syntax requirements for MEASFT commands.

INFO Command
This command produces a report that indicates how much space in a data file is associated with
each entity type and processor type. You can use this information to help you determine the best
split criteria for the file.
Configuration, START/STOP records, and journal data are listed separately and not included in
the entity and processor usage statistics.

Syntax
INFO filename

filename
identifies the Measure data file to be examined. Use a full or partially qualified Guardian
filename.

Example
$PERF CAPAPP 28> measft info mdata5
MEASURE File Tool - T9086H01 - (01AUG06) - \YOSPRD
Copyright 2006 Hewlett-Packard Company
INFO MDATA5
$PERF.CAPAPP.MDATA5 (H01) File Size 133980160 bytes

Data file usage (in bytes) by Entity

Entity Space %
------ ---------- ------
CPU 133056 0.10
DISC 2031486 1.52
DISCOPEN 25678814 19.17
DISKFILE 17085880 12.75
FILE 35348390 26.38

INFO Command 495

NETLINE 173644 0.13
OSSCPU 155626 0.12
OSSNS 23394 0.02
PROCESS 41238946 30.78
SERVERNET 10585470 7.90
SQLPROC 9956 0.01
SQLSTMT 82328 0.06
TMF 29766 0.02
------ ---------- ------
Total 132576756 98.95

Data file usage (in bytes) by Processor Number

CPU Space %
--- ---------- ------
 0 28409802 21.20
 1 19602142 14.63
 2 41878388 31.26
 3 42686424 31.86

Start time: March 10, 2006 08:19:05
Stop time: March 10, 2006 08:38:53

SPLIT Command
This command splits the specified data file into multiple data files. It can also be used to produce
a single file comprising selected records from the original data file.
After splitting the data file, MEASFT displays a summary of the resulting split, showing the
output data file names, size and criteria.

Syntax
SPLIT filename [, out-file-set [, split-criteria]]

filename
specifies the data file to be split. It can be a partially or fully qualified Guardian filename.
(That is, you can specify or omit the node, volume and subvolume.)

out-file-set
specifies the names of the files to be created from the split. Specify the set in one of these
ways:
*
name-prefix*
(name1[,name2]...)
name

If you omit both theout-file-set and thesplit-criteria,MEASFT divides the input
data file into two files, named ZMSRF000 and ZMSRF001, using split criteria that make the
split as even as possible.
If you specify an asterisk (*), MEASFT creates the output data files with names of the form
ZMSRFnnn, beginning with ZMSRF000. The number of output data files created depends
uponsplit-criteria. Ifsplit-criteria is not specified, MEASFT behaves as described
in Usage Note (page 498).
If you specify a string of characters ending in an asterisk, MEASFT regards the value as a
filename prefix and appends a number, starting with "00" for the first file. The number of
output data files created depends upon thesplit-criteria. If split-criteria is not
specified, MEASFT behaves as described in Usage Note (page 498).
If you specify a comma-separated list of filenames, enclosed in parentheses, MEASFT uses
those names for the files it creates. You must specify at least one name. If the number of
specified names is different from the number of output data files dictated by the split-criteria,
MEASFT terminates with an error message.

496 Measure Data File Tool (MEASFT)

If you specify only one name, you must specify split-criteria to indicate what should
go into the single output data file.
name-prefix, namen and name can be partially or fully qualified names. For example, all
of the following specifications are valid:
\node.$vol.subvol.*

subvol.pref*

(split1, \node.$vol.subvol.rsplit2, othersv.split3)

If a file with the specified name already exists and it is not the data file to be split--the file
identified by filename--MEASFT displays a warning message and purges the data before
writing to the file. If the existing file is the data file to be split, MEASFT displays an error
message and terminates.

split-criteria
specifies how the data file will be split. Its syntax is one of:
BY ENTITY *
BY ENTITY (entity-list1[, entity-list2]...)
BY CPU *
BY CPU (cpu-list1[, cpu-list2]...)
BY ENTITY followed by an asterisk (*) causes MEASFT to create one output data file per
entity type present in the data file.
BY ENTITY followed by one or more entity lists causes MEASFT to create one output data
file for each list of entities. The syntax for entity-listn is:
entity-name [entity-name]...

that is, a space-separated list of entity-name. The permissible values for entity-name
are:
CLUSTER
CPU
DEVICE
DISC or DISK
DISCOPEN or DISKOPEN
DISKFILE
FILE
LINE
NETLINE
OPDISK
OSSCPU
OSSNS
PROCESS
PROCESSH
SERVERNET
SQLPROC
SQLSTMT
SYSTEM
TERMINAL
TMF
USERDEF
The last entity-listn can also be an asterisk (*), which instructs MEASFT to put data for all
the remaining entities into the last output data file. If only entity-list1 is specified, a
single output data file is created.
BY CPU followed by an asterisk (*) causes MEASFT to create one output data file per processor
number present in the data file.
BY CPU followed by one or more lists of processor numbers causes MEASFT to create one
output data file for each list of processor numbers. The syntax for cpu-listn is:
cpu-num [cpu-num]...

SPLIT Command 497

that is, a space-separated list of cpu-num.
The last cpu-listn can also be an asterisk (*) which means to put all of the rest of the
processor data into the last output data file. If only cpu-list1 is specified, a single output
data file is created, to contain data for the processor numbers in the list.

Usage Note
If you specify an asterisk (*) as the out-file-set and omit the split-criteria parameter,
MEASFT chooses the number of output data files by dividing the Measure data file size by 1024
MB (1,073,741,824 bytes) and rounding down. It uses this number or 2, whichever is larger, as
the number of output data files. It then groups the entities to enable as even a split as possible.
For example:
$PERF KMZMFT 113> measft split tests.bigdata,*
MEASURE File Tool - T9086H01 - (01AUG06) - \YOSPRD
Copyright 2006 Hewlett-Packard Company
SPLIT TESTS.BIGDATA,*
File $PERF.TESTS.BIGDATA was split into the following files:
File Size % Entity(s)
----------------------------------- ---------- ------ ---------------------
$PERF.KMZMFT.ZMSRF000 27391786 2.69 CPU,DISC,NETLINE,
 SYSTEM,TMF,SQLPROC,
 SQLSTMT,OSSCPU,OSSNS
$PERF.KMZMFT.ZMSRF001 51509214 5.06 DISKFILE
$PERF.KMZMFT.ZMSRF002 86759610 8.52 SERVERNET
$PERF.KMZMFT.ZMSRF003 145165294 14.26 DISCOPEN
$PERF.KMZMFT.ZMSRF004 165726444 16.28 FILE
$PERF.KMZMFT.ZMSRF005 190483848 18.71 PROCESS
$PERF.KMZMFT.ZMSRF006 337090908 33.11 PROCESSH

Examples
• Split Measure data file MDATA5 without specifying any output data filenames or split

criterion. MEASFT attempts to create a two-way split that is as even as possible. In this case
it puts PROCESS and FILE records in one file and all other records in another file.
$PERF CAPAPP 7> measft split mdata5
MEASURE File Tool - T9086H01 - (01AUG06) - \YOSPRD
Copyright 2006 Hewlett-Packard Company
SPLIT MDATA5
File $PERF.CAPAPP.MDATA5 was split into the following files:
File Size % Entity(s)
----------------------------------- ---------- ------ ---------------------

$PERF.CAPAPP.ZMSRF000 55990206 41.79 CPU,DISCOPEN,DISC,
 NETLINE,TMF,SQLPROC,
 SQLSTMT,SERVERNET,
 DISKFILE,OSSCPU,OSSNS
$PERF.CAPAPP.ZMSRF001 76588122 57.16 PROCESS,FILE

• Split Measure data file MDATA5 by entity, with each entity going into a separate output
data file. Let MEASFT name the output data files.
$PERF CAPAPP 8> measft split mdata5,*,by entity *
MEASURE File Tool - T9086H01 - (01AUG06) - \YOSPRD
Copyright 2006 Hewlett-Packard Company
SPLIT MDATA5,*,BY ENTITY *
File $PERF.CAPAPP.MDATA5 was split into the following files:
File Size % Entity(s)

----------------------------------- ---------- ------ ---------------------
$PERF.CAPAPP.ZMSRF000 133842 0.10 CPU
$PERF.CAPAPP.ZMSRF001 41239732 30.78 PROCESS
$PERF.CAPAPP.ZMSRF004 35349176 26.38 FILE
$PERF.CAPAPP.ZMSRF005 25679600 19.17 DISCOPEN
$PERF.CAPAPP.ZMSRF006 2032272 1.52 DISC
$PERF.CAPAPP.ZMSRF009 174430 0.13 NETLINE
$PERF.CAPAPP.ZMSRF013 30552 0.02 TMF

498 Measure Data File Tool (MEASFT)

$PERF.CAPAPP.ZMSRF014 10742 0.01 SQLPROC
$PERF.CAPAPP.ZMSRF015 83114 0.06 SQLSTMT
$PERF.CAPAPP.ZMSRF017 10586256 7.90 SERVERNET
$PERF.CAPAPP.ZMSRF018 17086666 12.75 DISKFILE
$PERF.CAPAPP.ZMSRF019 156412 0.12 OSSCPU
$PERF.CAPAPP.ZMSRF020 24180 0.02 OSSNS

• Split Measure data file MDATA5 by entity, with FILE data going into a file named SFFILE
and the rest going into SFREST.
$PERF CAPAPP 10> measft split mdata5,(sffile,sfrest),by entity (file,*)
MEASURE File Tool - T9086H01 - (01AUG06) - \YOSPRD
Copyright 2006 Hewlett-Packard Company
SPLIT MDATA5,(SFFILE,SFREST),BY ENTITY (FILE,*)
File $PERF.CAPAPP.MDATA5 was split into the following files:

File Size % Entity(s)
----------------------------------- ---------- ------ ---------------------
$PERF.CAPAPP.SFFILE 35349176 26.38 FILE
$PERF.CAPAPP.SFREST 97229152 72.57 CPU,PROCESS,DISCOPEN,
 DISC,NETLINE,TMF,
 SQLPROC,SQLSTMT,
 SERVERNET,DISKFILE,
 OSSCPU,OSSNS

• Split Measure data file MDATA5 by entity, with CPU and PROCESS data going into a file
named SFFILE1 and SERVERNET data going into SFFILE2.
$PERF CAPAPP 14> measft split mdata5,(sffile1,sffile2),
 by entity (cpu process,servernet)
MEASURE File Tool - T9086H01 - (01AUG06) - \YOSPRD

Copyright 2006 Hewlett-Packard Company

SPLIT MDATA5,(SFFILE1,SFFILE2),BY ENTITY (CPU PROCESS,SERVERNET)
File $PERF.CAPAPP.MDATA5 was split into the following files:
File Size % Entity(s)
----------------------------------- ---------- ------ ---------------------
$PERF.CAPAPP.SFFILE1 41372788 30.88 CPU,PROCESS
$PERF.CAPAPP.SFFILE2 10586256 7.90 SERVERNET

• Split Measure data file MDATA5 by processor number, with each processor's data going
into a separate output data file. The name of the output data files start with "MCPU".
$PERF CAPAPP 16> measft split mdata5,mcpu*,by cpu *
MEASURE File Tool - T9086H01 - (01AUG06) - \YOSPRD
Copyright 2006 Hewlett-Packard Company
SPLIT MDATA5,MCPU*,BY CPU *
File $PERF.CAPAPP.MDATA5 was split into the following files:
File Size % CPU(s)
----------------------------------- ---------- ------ ---------------------
$PERF.CAPAPP.MCPU00 28410588 21.21 0
$PERF.CAPAPP.MCPU01 19602928 14.63 1
$PERF.CAPAPP.MCPU02 41879174 31.26 2
$PERF.CAPAPP.MCPU03 42687210 31.86 3

HELP Command
This command displays help information for the published commands.

Syntax
HELP | empty

Enter "MEASFT HELP" or just "MEASFT" to display help text for the MEASFT command.

HELP Command 499

MEASFT Error and Warning Messages
Any of the following messages can appear on the console when you run MEASFT. This example
illustrates the format of a typical error and warning:

MEASURE File Tool - T9086H01 - (01AUG06) - \YOSPRD
Copyright 2006 Hewlett-Packard Company

SPLIT KMEAS3, ,by cpu *
 ^
*** Error 3232: SPLIT <name> Resolution failed, File System Error = #13

$PERF KMZMFT 45> measft split kmeas2,*,by entity (cpu terminal,*)

MEASURE File Tool - T9086H01 - (01AUG06) - \YOSPRD
Copyright 2006 Hewlett-Packard Company

SPLIT KMEAS2,*,BY ENTITY (CPU TERMINAL,*)

*** Warning 2007: No data for this specified entity, TERMINAL

File $PERF.KMZMFT.KMEAS2 was split into the following files:

File Size % Entity(s)
------------------------------- ---------- ------ ----------------------
$PERF.KMZMFT.ZMSRF000 118098 0.60 CPU
$PERF.KMZMFT.ZMSRF001 18679336 95.33 PROCESS,PROCESSH,
 SERVERNET

If a message indicates a syntax error, a circumflex (^) shows where the syntax error was detected.

MEASFT 2000 (WARN_SPLIT_FILE_NOT_CREATED)
Specified file, out-file, not created because of lack of data records.

Cause The specified output data file was not created because MEASFT found no data records
to put into it.
Effect The SPLIT command continues, but the specified output file is not created.
Recovery Remove the specified output file and its corresponding split criteria from the
command line.

MEASFT 2001 (WARN_SPLIT_FILE_PURGED)
Specified output filename, out-file, already existed, previous data was
overwritten.

Cause User specified an output filename (either directly or indirectly through a wildcard)
that already exists and is not the same as the input data file, the file that is to be split.
Effect The SPLIT command continues, and previous data is overwritten.
Recovery It is too late to recover the data in the overwritten file. In the future, specify an
output filename that doesn't conflict with existing files.

MEASFT 2002 (WARN_NO_XRTIMES_AT_EOF)
No Stop Measurement record, file possibly truncated/corrupted.

Cause There is no Stop Measurement record in the input data file. The file is either a truncated
copy or the file was corrupted.
Effect The INFO or SPLIT command continues.
Recovery Determine the cause of the missing record and decide whether this is a significant
issue.

500 Measure Data File Tool (MEASFT)

MEASFT 2003 (WARN_BAD_SVNET_ENT_LEN)
Bad length in SVNET entity, entity-name, length #length, record #number

Cause A record for the SERVERNET entity, entity-name, had an unexpected length,
length. The record number is number.
Effect The INFO or SPLIT command continues.
Recovery Please contact HP about this warning and save the data file that caused it.

MEASFT 2004 (WARN_BAD_ENT_LEN)
Bad length in entity, entity-name, length #length, record #number

Cause A record for the entity, entity-name, had an unexpected length, length. The record
number is number.
Effect The INFO or SPLIT command continues.
Recovery Please contact HP about this warning and save the data file that caused it

MEASFT 2005 (WARN_TOO_MANY_SPLIT_FILES)
More output files specified than entities present; # files lowered from
mm to nn

Cause The Measure data file contains data records for fewer entities than split files specified,
so MEASFT cannot do the split as specified. This warning occurs only when the user specifies
a definite number of output files but no split criteria, forcing MEASFT to determine the split
criteria.
Effect The SPLIT command continues. MEASFT ignores the extra output filenames.
Recovery Decrease the number of output data files specified.

MEASFT 2006 (WARN_NO_SPLIT_FILES_CREATED)
No output files were created, no records satisfied split criteria.

Cause None of the records in the Measure data file satisfied any of the split criteria so no
output files were created.
Effect The SPLIT command continues.
Recovery Determine the cause of the missing records and decide whether this is a significant
issue.

MEASFT 2007 (WARN_ENTITY_HAS_NO_DATA)
No data for this specified entity, entity

Cause No data records were encountered for an entity that was specified in the split criteria.
Effect The SPLIT command continues. If the data file contained no data for any entity to be
represented in a given output data file--for example, if an output file is to contain data for
PROCESS and DISK entities, but the data file being split contains no records for either of those
entities--MEASFT also displays message 2000, indicating that that output file was not created.
If the data file contained no data for any of the entities to be included in any output data file,
MEASFT also displays message 2006, indicating that no output data files were created.
Recovery Determine the reason for the missing data and decide whether this is a significant
issue.

MEASFT 2008 (WARN_REMAINING_ENTITY_HAS_NO_DATA)
Output file for the remaining entities (*) was not created due to lack
of data.

Cause No data records were encountered for the last output file, whose entity-list was
specified as a wildcard (*) in the SPLIT command.
Effect The SPLIT command continues. The specified output file is not created.

MEASFT Error and Warning Messages 501

Recovery Determine the reason for the missing data and decide whether this is a significant
issue.

MEASFT 2009 (WARN_CPU_HAS_NO_DATA)
No data for this specified CPU, nn

Cause No data records were encountered for CPU nn , which was specified in the SPLIT
command split criteria.
Effect The SPLIT command continues. If the data file contained no data records for any CPU
to be represented in an output file, message 2000 is also displayed.
Recovery Determine the reason for the missing data and decide whether this is a significant
issue.

MEASFT 2010 (WARN_REMAINING_CPU_HAS_NO_DATA)
Output file for the remaining CPUs (*) was not created due to lack of
data.

Cause No data records were encountered for the last output file, whose cpu-list was
specified as a wildcard (*) in the SPLIT command.
Effect The SPLIT command continues. The specified output file is not created.
Recovery Determine the reason for the missing data and decide whether this is a significant
issue.

MEASFT 2011 (WARN_SPLIT_FILE_NOT_CREATED_2)
An output file was not created due to lack of data.

Cause An output filename was not created because MEASFT found no data records that
satisfied the split criteria for that file. This warning is always preceded by message 2007 and
occurs only when an asterisk or a prefix followed by an asterisk was specified in the output
file set.
Effect The SPLIT command is continues; the output file is not created.
Recovery Remove the split criteria for the output file associated with this message. See the
preceding occurrence of message 2007 to know which split criterion caused the problem.

MEASFT 2032 (WARN_MISSING_JOURNAL)
journal-type Journal missing.

Cause Expected Journal was not encountered; journal-type can be either OSS or SQL.
Effect The command continues.
Recovery Check the filesize of the Measure data file to see whether the file was truncated;
truncation can sometimes arise when you transfer a very large file. If the file was not truncated,
it might be corrupted. If neither of these cases seems to apply, report this message to HP.

MEASFT 3000 (ERR_FNAME_RESOLVE)
Measfile Name Resolution failed, File System Error = #nn

Cause User specified a Measure data filename that could not be resolved by
FILENAME_RESOLVE_.
Effect The SPLIT or INFO command is not executed. MEASFT terminates in error.
Recovery Use the displayed File System error number, nn, to determine why the specified
Measure data filename could not be resolved. Bad filename syntax is the most likely cause.

MEASFT 3001 (ERR_FNAME_UNRESOLVE)
Measfile Name UnResolution failed, File System Error = #nn

Cause User specified a Measure data filename that could not be unresolved by
FILENAME_UNRESOLVE_.

502 Measure Data File Tool (MEASFT)

Effect The SPLIT or INFO command is not executed. MEASFT terminates in error.
Recovery Use the displayed File System error number, nn, to determine why the specified
Measure data filename could not be unresolved. This is an unlikely error since the filename
had already been resolved by FILENAME_RESOLVE_.

MEASFT 3002 (ERR_OPEN_MEASFILE)
Measfile Open failed, File System Error = #nn

Cause User specified a Measure data filename that could not be opened.
Effect The SPLIT or INFO command is not executed. MEASFT terminates in error.
Recovery Use the displayed File System error number, nn, to determine why the specified
Measure data file could not be opened. Likely reasons are the data file is missing, in use by
another user, or not secured for read access for the user.

MEASFT 3005 (ERR_CREATE_SPLIT_FILE)
Creation of output file, datafile, failed, File System Error = #nn

Cause The output file, datafile, could not be created.
Effect The SPLIT command does not complete, MEASFT terminates in error. Some output
files may have been created.
Recovery Use the displayed File System error number, nn, to determine why the specified
output file could not be created. Likely reasons are that the volume name was misspelled, the
subvolume is not secured for write access for the user, or the volume is full.

MEASFT 3006 (ERR_OPEN_SPLIT_FILE)
Open of output file, datafile, failed, File System Error = #nn

Cause The output file, datafile, could not be opened.
Effect The SPLIT command does not complete, MEASFT terminates in error. Some output
files may have been created.
Recovery Use the displayed File System error number, nn, to determine why the specified
output file could not be opened. This is an unlikely error since the output file had just been
created successfully.

MEASFT 3007 (ERR_FILE_SETPOSITION)
FILE_SETPOSITION_ failed, File System Error = #nn

Cause The Measure data file could not be repositioned at the beginning of the file or near
the end of the file if the data file has a journal section.
Effect The SPLIT command does not complete, MEASFT terminates in error. Some output
files may have been created.
Recovery Use the displayed File System error number, nn, to determine why the Measure
data file could not be repositioned.

MEASFT 3008 (ERR_WRITEX_SPLIT_FILE)
Write of output file, datafile, failed, File System Error = #nn

Cause MEASFT encountered an error writing to the output file, datafile.
Effect The SPLIT command does not complete, MEASFT terminates in error. The created
output files will be incomplete.
Recovery Use the displayed File System error number, nn, to determine what caused the
error.

MEASFT 3009 (ERR_CLOSE_SPLIT_FILE)
Close of output file, datafile, failed, File System Error = #nn

Cause MEASFT encountered an error in closing the output file, datafile.

MEASFT Error and Warning Messages 503

Effect The SPLIT command does not complete, MEASFT terminates in error. The created
output files will probably be incomplete.
Recovery Use the displayed File System error number, nn, to determine what caused the
error.

MEASFT 3010 (ERR_FILE_SETPOS_SPLIT_FILE)
FILE_SETPOSITION_ of output file, datafile, failed, File System Error
= #nn

Cause MEASFT encountered an error in repositioning the output file, datafile, to the
beginning of the file in order to update the journal pointer(s) in the first record.
Effect The SPLIT command does not complete, MEASFT terminates in error. The created
output files will not have correct journal pointers.
Recovery Use the displayed File System error number, nn, to determine what caused the
error.

MEASFT 3011 (ERR_READX_SPLIT_FILE)
Read of output file, datafile, failed, File System Error = #nn

Cause MEASFT encountered an error in reading the first record of the output file, datafile,
so that it could update the journal pointer(s) in it.
Effect The SPLIT command does not complete, MEASFT terminates in error. The created
output files will not have correct journal pointers.
Recovery Use the displayed File System error number, nn, to determine what caused the
error.

MEASFT 3012 (ERR_WRUPDX_SPLIT_FILE)
Writeupdate of output file, datafile, failed, File System Error = #nn

Cause MEASFT encountered an error in writing back the first record of the output file,
datafile, so that it could update the journal pointer(s) in it.
Effect The SPLIT command does not complete, MEASFT terminates in error. The created
output files will probably not have correct journal pointers.
Recovery Use the displayed File System error number, nn, to determine what caused the
error.

MEASFT 3013 (ERR_READX_MEASFILE)
Measfile READX failed, File System Error = #nn

Cause MEASFT encountered an error in reading the journal records of the Measure data
file.
Effect The SPLIT command does not complete, MEASFT terminates in error. The created
output files will not be complete.
Recovery Use the displayed File System error number, nn, to determine what caused the
error.

MEASFT 3014 (ERR_FILE_NOT_FOUND)
Measure data file not found.

Cause MEASFT could not find the Measure data file.
Effect The SPLIT or INFO command is not executed. MEASFT terminates in error.
Recovery Enter the correct location of the Measure data file.

MEASFT 3016 (ERR_FILE_GETINFO)
FILE_GETINFOLISTBYNAME_ of datafile failed, File System Error = #nn.

Cause MEASFT could not get info on the specified data file.

504 Measure Data File Tool (MEASFT)

Effect The SPLIT or INFO command is not executed. MEASFT terminates in error.
Recovery Use the displayed File System error number, nn, to determine what caused the
error.

MEASFT 3017 (ERR_FILE_BAD_TYPE)
Measure file not unstructured, file type encountered #n

Cause The specified Measure data file is not unstructured.
Effect The SPLIT or INFO command is not executed. MEASFT terminates in error.
Recovery Measure data files are unstructured files, whereas the one specified has file type
n. Enter the correct file name.

MEASFT 3018 (ERR_FILE_BAD_FILECODE)
Measure file code not 175, file code encountered #n

Cause The specified Measure data file does not have a 175 file code.
Effect The SPLIT or INFO command is not executed. MEASFT terminates in error.
Recovery Measure data files have a file code of 175, whereas the one specified has file code
n. Enter the correct file name.

MEASFT 3019 (ERR_SPLIT_FILE_NAME_ERR)
Specified output filename, outfile, is the same as the file to be split.

Cause User specified an output filename (either directly or indirectly through a wildcard)
that is the same as the input data file, the file that is to be split.
Effect The SPLIT command is not executed. MEASFT terminates in error.
Recovery Re-specify an output filename that doesn't conflict with the input data file name.

MEASFT 3020 (ERR_CREATE_SPLIT_FILE_DUP)
Specified output filename, outfile, already exists and is not a measure
data file.

Cause User specified an output filename (either directly or indirectly through a wildcard)
that already exists and it isn't a Measure data file. MEASFT will not overwrite a file that it is
not an existing Measure data file.
Effect The SPLIT command is not executed. MEASFT terminates in error. Some output files
may have been created.
Recovery Re-specify a output filename that doesn't conflict with existing file names.

MEASFT 3021 (ERR_PURGE_SPLIT_FILE)
Purging output filename, datafile, failed, File System Error = #nn

Cause The output file,datafile, could not be purged. MEASFT overwrites existing Measure
data files if an output file with the same name is specified.
Effect The SPLIT command does not complete, MEASFT terminates in error. Some output
files may have been created.
Recovery Use the displayed File System error number, nn, to determine why the specified
output file could not be purged.

MEASFT 3022 (ERR_SEG_ALLOCATE_)
SEGMENT_ALLOCATE_ error #nn.

Cause MEASFT could not allocate enough memory to run.
Effect The command is not executed. MEASFT terminates in error.
Recovery Use the SEGMENT_ALLOCATE_ error code, nn, to determine why memory could
not be allocated. MEASFT requires about 3MB of memory to run.

MEASFT Error and Warning Messages 505

MEASFT 3023 (ERR_USESEGMENT)
USESEGMENT error.

Cause MEASFT could not access enough memory to run.
Effect The command is not executed. MEASFT terminates in error.
Recovery Please report this message to HP.

MEASFT 3024 (ERR_CRL_BAD_REC_TYPE)
Bad record type #mm in this context #nn

Cause MEASFT encountered an unexpected record type.
Effect The command does not complete, MEASFT terminates in error. Some output files
might have been created.
Recovery Either the Measure data file has been corrupted or MEASFT has a defect. Please
report this message to HP, citing the record type, mm, and context, nn, displayed in this message.

MEASFT 3025 (ERR_CONTAB_TRLR_WRONG_CTXT)
Unexpected CONTAB^TRAILER record in MF_NORMAL context.

Cause MEASFT encountered a record type it did not expect.
Effect The command does not complete, MEASFT terminates in error. Some output files may
have been created.
Recovery Either the Measure data file has been corrupted or MEASFT has a defect. Please
report this message to HP.

MEASFT 3027 (ERR_BAD_RECORD_STATE)
Bad record state in record #number

Cause MEASFT encountered a record state it did not expect in record number.
Effect The command does not complete, MEASFT terminates in error. Some output files may
have been created.
Recovery Either the Measure data file has been corrupted or MEASFT has a defect. Please
report this message to HP.

MEASFT 3028 (ERR_BAD_DFFIRST_REC)
Measure data file corrupt, 1st record wrong length, file version Xnn

Cause MEASFT did not recognize the first record in the Measure data file, whose version
was Xnn.
Effect The command is not executed. MEASFT terminates in error.
Recovery Either the Measure data file has been corrupted or MEASFT has a defect. Please
report this message to HP.

MEASFT 3029 (ERR_UNEXPECTED_NONCTR_REC)
Unexpected non-counter record #number

Cause MEASFT encountered a record type it did not expect in record number.
Effect The command does not complete, MEASFT terminates in error. Some output files
might have been created.
Recovery Either the Measure data file has been corrupted or MEASFT has a defect. Please
report this message to HP.

MEASFT 3030 (ERR_UNSUPPORTED_VERSION)
Unsupported Measure data file version, Xnn

Cause MEASFT encountered a Measure data file version created by the Xnn version of
Measure.

506 Measure Data File Tool (MEASFT)

Effect The command does not complete, MEASFT terminates in error
Recovery MEASFT does not support data files created by Measure versions earlier than G10.

MEASFT 3031 (ERR_NO_DFFIRST_REC)
Measure data file corrupt, 1st record not present.

Cause MEASFT did not recognize the first record in the Measure data file.
Effect The command is not executed. MEASFT terminates in error.
Recovery Either the Measure data file has been corrupted or MEASFT has a defect. Please
report this message to HP.

MEASFT 3033 (ERR_REC_LENGTH_COMP_ERR)
Record length could not be computed, record #nnnnn

Cause MEASFT could not compute the length of record number nnnnn. This is either a
MEASFT defect or a corrupt Measure data file.
Effect The command does not complete, MEASFT terminates in error. Some output files may
have been created.
Recovery If the Measure data file seems correct, contact HP.

MEASFT 3034 (ERR_REC_LENGTH_TOO_BIG)
Record length too big, record #nnnnn

Cause The length of record number nnnnn is too big. This is either a MEASFT defect or a
corrupt Measure data file.
Effect The command does not complete, MEASFT terminates in error. Some output files may
have been created.
Recovery If the Measure data file seems correct, contact HP.

MEASFT 3035 (ERR_BAD_RECORD_TYPE)
Invalid record type, record #nnnnn

Cause MEASFT encountered an invalid record type in record number nnnnn. The cause
may be a corrupt Measure data file or the specified input data file is not a Measure data file.
Effect The command does not complete, MEASFT terminates in error. Some output files
might have been created.
Recovery Verify that the specified Measure data file is correct.

MEASFT 3036 (ERR_READ_NO_DATA_ERR)
File error, read no data, File System Error = #nn, record #nnnnn

Cause MEASFT read no data and got File System error nn, at record number nnnnn. The
cause may be a corrupt Measure data file or the specified input data file is not a Measure data
file.
Effect The command does not complete, MEASFT terminates in error. Some output files
might have been created.
Recovery Verify that the specified Measure data file is correct.

MEASFT 3200 (ERR_PARSE_NOT_KEYWORD)
XXX is not a recognized keyword.

Cause The string, XXX, in the command line is not a valid keyword.
Effect The command is not executed. MEASFT terminates in error.
Recovery Enter the correct keyword or command syntax.

MEASFT Error and Warning Messages 507

MEASFT 3201 (ERR_PARSE_NO_FILENAME)
<filename> parameter is missing.

Cause The Measure data file was not specified in the command line.
Effect The command is not executed. MEASFT terminates in error.
Recovery Enter the Measure data file name.

MEASFT 3202 (ERR_PARSE_FILENAME_TOO_LONG)
<filename> parameter too long.

Cause The Measure data file name entered in the command line is too long.
Effect The command is not executed. MEASFT terminates in error.
Recovery Enter the correct Measure data file name

MEASFT 3230 (ERR_PARSE_SPLIT_NAME_TOO_LONG)
SPLIT <name> parameter too long.

Cause The indicated output file name is too long. This occurs when an unqualified output
file name greater than 8 bytes is entered.
Effect The SPLIT command is not executed. MEASFT terminates in error.
Recovery Enter the correct output file name.

MEASFT 3231 (ERR_PARSE_SPLIT_PREFIX_TOO_LONG)
SPLIT <name-prefix> parameter too long.

Cause The indicated output file name prefix is too long. Maximum prefix length is 6 bytes.
Effect The SPLIT command is not executed. MEASFT terminates in error.
Recovery Enter a shorter output file prefix.

MEASFT 3232 (ERR_PARSE_SPLIT_FNAME_RESOLVE)
SPLIT <name> Resolution failed, File System Error = #nn

Cause User specified an output filename that could not be resolved by
FILENAME_RESOLVE_.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Use the displayed File System error number, nn, to determine what caused the
error.

MEASFT 3233 (ERR_PARSE_SPLIT_FNAME_UNRESOLVE)
SPLIT <name> UnResolution failed, File System Error = #nn

Cause User specified an output filename that could not be unresolved by
FILENAME_UNRESOLVE_.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Use the displayed File System error number, nn, to determine what caused the
error. This is an unlikely error since the output filename had already been resolved by
FILENAME_RESOLVE_.

MEASFT 3234 (ERR_PARSE_SPLIT_RPAREN_MISSING)
SPLIT file specs right parenthesis missing.

Cause The SPLIT file specs entry starts with a left parenthesis and is missing a right
parenthesis.
Effect The SPLIT command does not complete. MEASFT terminates in error
Recovery Correct the SPLIT file specs syntax.

508 Measure Data File Tool (MEASFT)

MEASFT 3235 (ERR_PARSE_SPLIT_BY_EXPECTED)
SPLIT 'BY' keyword missing.

Cause The SPLIT split criteria entry must start with "BY".
Effect The SPLIT command does not complete. MEASFT terminates in error
Recovery Correct the SPLIT split criteria syntax.

MEASFT 3236 (ERR_PARSE_SPLIT_BY_KW_EXPECTED)
SPLIT 'BY CPU' or 'BY ENTITY' expected.

Cause The SPLIT split criteria entry must start with "BY CPU" or "BY ENTITY".
Effect The SPLIT command does not complete. MEASFT terminates in error
Recovery Correct the SPLIT split criteria syntax.

MEASFT 3237 (ERR_PARSE_SPLIT_SC_RPAREN_MISSING)
SPLIT split criteria right parenthesis missing.

Cause The SPLIT split criteria entry starts with a left parenthesis and is missing a right
parenthesis.
Effect The SPLIT command does not complete. MEASFT terminates in error
Recovery Correct the SPLIT split criteria syntax.

MEASFT 3238 (ERR_PARSE_SPLIT_SC_MISMATCH)
SPLIT file specs and split criteria mismatch.

Cause The SPLIT file specs and split criteria entries conflict in the number of output files
specified.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Correct the SPLIT files specs and/or split criteria syntax so that they specify the
same number of output files.

MEASFT 3239 (ERR_PARSE_SPLIT_BAD_CPU_NUM2)
SPLIT criteria CPU number out of range.

Cause The CPU specified in the SPLIT command split criteria is either out of range (0 to 15)
or is not numeric.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Correct the invalid CPU number.

MEASFT 3240 (ERR_PARSE_SPLIT_SC_CPU_WC_ERR1)
SPLIT criteria CPU '*' must be in last <cpu-list>.

Cause The wildcard (*) specified in the SPLIT command split criteria was not in the last
cpu-list.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Correct the SPLIT BY CPU entry so that the wildcard cpu-list is the last one.

MEASFT 3241 (ERR_PARSE_SPLIT_SC_CPU_WC_ERR2)
SPLIT criteria CPU '*' must be only item in last <cpu-list>.

Cause The wildcard (*) specified in the SPLIT command split criteria was not the only item
in the last cpu-list.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Correct the SPLIT BY CPU entry so that the wildcard cpu-list is the last one
and that the wildcard is the only entry in that list.

MEASFT Error and Warning Messages 509

MEASFT 3242 (ERR_PARSE_SPLIT_WC_ERR1)
SPLIT criteria '*' can not be prepended to anything.

Cause The wildcard (*) specified in the SPLIT command split criteria cannot be prepended
to anything; it must be the last entry in the command line when no lists are specified.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Correct the SPLIT split criteria so that the wildcard is the last element on the
command line.

MEASFT 3243 (ERR_PARSE_SPLIT_WC_ERR2)
SPLIT criteria '*' requires that <out-file-set> be a '*'.

Cause If wildcard (*) is specified in the SPLIT command split criteria, then the file set must
also be a wildcard.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Correct the SPLIT split criteria so that either both file specs and split criteria have
a wildcard or neither has one.

MEASFT 3244 (ERR_PARSE_SPLIT_SC_EMPTY)
SPLIT criteria empty.

Cause Nothing was specified between the parentheses in the SPLIT command split criteria.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Enter the desired SPLIT split criteria .

MEASFT 3245 (ERR_PARSE_SPLIT_SC_ENT_WC_ERR1)
SPLIT criteria Entity '*' must be in last <entity-list>.

Cause The wildcard (*) specified in the SPLIT command split criteria was not in the last
entity-list.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Correct the SPLIT BY ENTITY entry so that the wildcard entity-list is the last
one.

MEASFT 3246 (ERR_PARSE_SPLIT_SC_ENT_WC_ERR2)
SPLIT criteria Entity '*' must be only item in last <entity-list>.

Cause The wildcard (*) specified in the SPLIT command split criteria was not the only item
in the last entity-list.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Correct the SPLIT BY ENTITY entry so that the wildcard entity-list is the last
one and that the wildcard is the only entry in that list.

MEASFT 3247 (ERR_PARSE_NOT_ENT_KEYWORD)
XXX is not a recognized Entity.

Cause The string, XXX, in the command line is not a valid entity name.
Effect The SPLIT command is not executed. MEASFT terminates in error.
Recovery Enter a correct entity name.

MEASFT 3248 (ERR_PARSE_SPLIT_ONE_FILE)
SPLIT criteria required (no wildcard) for a single output file.

Cause Only one output filename was specified but no split criterion was specified.
Effect The SPLIT command is not executed. MEASFT terminates in error.
Recovery Add split criteria to the specified SPLIT command.

510 Measure Data File Tool (MEASFT)

MEASFT 3249 (ERR_PARSE_FS_SYNTAX)
SPLIT <out-file-set> syntax error.

Cause Multiple output file names were specified in the file specs with no parentheses.
Effect The SPLIT command is not executed. MEASFT terminates in error.
Recovery Correct the SPLIT file specs syntax.

MEASFT 3250 (ERR_PARSE_SPLIT_FS_WC_ERR)
SPLIT <out-file-set> filename in list cannot have an '*'.

Cause Entries in the SPLIT command file specs cannot use a wildcard if names are enclosed
in parentheses. In fact, the wildcard is only permitted by itself or as a output file name prefix.
Effect The SPLIT command is not executed. MEASFT terminates in error.
Recovery Correct the SPLIT file specs syntax.

MEASFT 3251 (ERR_PARSE_SPLIT_BAD_CPU_NUM1)
SPLIT criteria CPU not numeric or out of range.

Cause The CPU specified in the SPLIT command split criteria is not numeric or is out of
range.
Effect The SPLIT command does not complete. MEASFT terminates in error.
Recovery Correct the CPU number in error.

MEASFT 3252 (ERR_PARSE_SPLIT_SC_BAD)
Syntax error after 'BY CPU/ENTITY', expected '*' or '('.

Cause Something other than a wildcard or left parenthesis followed the "BY CPU" or "BY
ENTITY" phrase.
Effect The SPLIT command is not executed. MEASFT terminates in error.
Recovery Correct the SPLIT split criteria syntax.

MEASFT 3253 (ERR_PARSE_SPLIT_MISSING_DEL)
SPLIT file specs missing a delimiter (',' or ')').

Cause A delimiter (either a comma or a right parenthesis) is missing in the SPLIT file specs.
Effect The SPLIT command is not executed. MEASFT terminates in error.
Recovery Correct the SPLIT file specs syntax

MEASFT 3300 (ERR_CANNOT_SPLIT)
The specified measure file cannot be split by entity, try splitting by
CPU.

Cause The Measure data file contains data records for only one entity, so it cannot be split
by entity. This error occurs only when no split criterion is specified; by default, MEASFT
attempts to split the data file by entity.
Cause The SPLIT command is not executed. MEASFT terminates in error.
Recovery Try splitting by CPU.

MEASFT 4000 (ERR_PROCHAND_GETMINE)
PROCESSHANDLE_GETMINE_ Error = #nn

Cause MEASFT encountered error nn in PROCESSHANDLE_GETMINE_
Effect The SPLIT command is not executed. MEASFT abends.
Recovery Contact HP.

MEASFT Error and Warning Messages 511

MEASFT 4001 (ERR_PROCHAND_DECOMP)
PROCESSHANDLE_DECOMPOSE_ File System Error = #nn

Cause MEASFT encountered File System error nn in PROCESSHANDLE_DECOMPOSE_
Effect The SPLIT command is not executed. MEASFT abends.
Recovery Contact HP.

MEASFT 4002 (ERR_NOMEMORY_RECBUF)
Not enough memory, bytes remaining = nnnn

Cause MEASFT ran out of memory and reported nnnn bytes left. This is a MEASFT defect.
Effect The SPLIT command is not executed. MEASFT abends.
Recovery Contact HP.

MEASFT 4003 (ERR_NOMEMORY_SPLITBUF)
Not enough memory for output buffer, bytes remaining = nnnn

Cause MEASFT ran out of memory and reported nnnn bytes left. This is a MEASFT defect.
Effect The SPLIT command is not executed. MEASFT abends.
Recovery Contact HP.

MEASFT 4004 (ERR_NUM_SPFILES_ERR1)
Internal error with variable, Num_spfiles = nn

Cause MEASFT encountered an internal error with the internal Num_spfiles variable whose
value is reported as nn. This is a MEASFT internal error; the text is the same as that for error
4005, but the underlying error differs.
Effect The SPLIT command is not executed. MEASFT abends.
Recovery Contact HP

MEASFT 4005 (ERR_NUM_SPFILES_ERR2)
Internal error with variable, Num_spfiles = nn

Cause MEASFT encountered an internal error with the internal Num_spfiles variable whose
value is reported as nn. This is a MEASFT internal error; the text is the same as that for error
4004, but the underlying error differs.
Effect The SPLIT command is not executed. MEASFT abends.
Recovery Contact HP

MEASFT 4007 (ERR_BAD_SPF_EOF)
Output file EOF bad, expected = nnnnnn

Cause MEASFT miscalculated the output file EOF. It expected nnnnnn, which is a number
consisting of five to ten decimal digits. This is a MEASFT internal error.
Effect The command is not executed. MEASFT abends.
Recovery Contact HP.

MEASFT 4010 (ERR_BAD_MF_CONTEXT)
Bad Measfile_context #nn

Cause MEASFT internal logic error.
Effect The command is not executed. MEASFT abends.
Recovery Contact HP.

MEASFT 4012 (ERR_PARSE_KW)
Internal error, bad keyword index = #nn

512 Measure Data File Tool (MEASFT)

Cause MEASFT internal logic error in parsing the command line. This is a MEASFT defect.
Effect The command is not executed. MEASFT abends.
Recovery Contact HP.

MEASFT 4013 (ERR_DIDNT_GET_INFO_DATA)
Internal error, didn't get the INFO data.

Cause MEASFT internal logic error in the INFO or SPLIT command. This is a MEASFT
defect.
Effect The command is not executed. MEASFT abends.
Recovery Contact HP.

MEASFT 4014 (ERR_RB_STATE_ERROR)
Bad record buffer state, record #nnnnn

Cause MEASFT internal logic error in the INFO or SPLIT command occurred at record
number nnnnn. This is a MEASFT defect.
Effect The command is not executed. MEASFT abends.
Recovery Contact HP.

MEASFT 4015 (ERR_BAD_JOURNAL_SELECTION)
Internal error, bad Journal selection = #n

Cause MEASFT internal logic error in the INFO or SPLIT command. This is a MEASFT
defect.
Effect The command is not executed. MEASFT abends.
Recovery Contact HP.

MEASFT Error and Warning Messages 513

514

Index

Symbols
) , 39

A
Abbreviations in commands, 40

See also HELP command , 33
ABLKS-INUSE-MAX counter (DISC entity), 188
ABLKS-INUSE-QTIME counter (DISC entity), 188
ABORT-TRANS counter (PROCESS entity), 286
ABORTING-TRANS counter (TMF entity), 341
ABS-SEGS-END counter (PROCESS entity), 287
ABS-SEGS-QLEN-MAX counter (PROCESS entity), 287
ABS-SEGS-QTIME counter (PROCESS entity), 287
ABS-SEGS-START counter (PROCESS entity), 287
ACCEL-BUSY-SAMPLES counter (PROCESSH entity),

298
ACCEL-BUSY-SAMPLES option (ADD PLOT command),

49
ACCEL-BUSY-TIME counter

CPU entity, 164
PROCESS entity, 283

Accelerated code samples
measuring, 294
plotting, 49, 51, 84

Accessing a measurement data file
command interface, 46
programmatic interface, 421

Accumulating counter, defined, 135
ACKS counter (SERVERNET entity), 309
Active counters

See Counter records , 33
Active measurements

See Measurements , 33
ADD COUNTER command, 44
ADD entity-type command, 43
ADD MEASUREMENT command, 46
ADD PLOT command, 48
ALLINTR parameter (PROCESSH entity), 295
ALLOC-SEG-CALLS counter (PROCESS entity), 285
ALLTIME parameter (PROCESSH entity), 295
AMP (ampersand) , 39
Ampersand (&, 39
ANCESTOR-CPU identifier

PROCESS entity, 284
PROCESSH entity, 299
SQLPROC entity, 318
SQLSTMT entity, 327
USERDEF entity, 346

ANCESTOR-PIN identifier
PROCESS entity, 284
PROCESSH entity, 299
SQLPROC entity, 318
SQLSTMT entity, 327
USERDEF entity, 346

ANCESTOR-PROCESS-NAME identifier

PROCESS entity, 284
PROCESSH entity, 299
SQLPROC entity, 319
SQLSTMT entity, 327
USERDEF entity, 346

ANCESTOR-SYSNAME identifier
PROCESS entity, 284
PROCESSH entity, 299
SQLPROC entity, 318
SQLSTMT entity, 327
USERDEF entity, 346

ANS UID, 147
ANSI name space, 147, 443, 444, 445
ANSI SQL names

length of, 146
syntax, 146

ASSUME command, 51
AST (asterisk), 84
Asterisk (*), 84
AT clause (STOP MEASUREMENT), 127
Attribute values

See PLOT attributes and REPORT attributes , 33
AUDIT-BUF-FORCES counter (DISC entity), 189
Average Queue Time counter, defined, 135
Average Service Time counter, defined, 135

B
Bar graphs, 82, 102, 106

See also Plots , 33
BEGIN-TRANS counter (PROCESS entity), 286
BLKS counter (DISC entity), 189
BLKS-DIRTY-MAX counter (DISC entity), 189
BLKS-DIRTY-QTIME counter (DISC entity), 189
BLKS-INUSE-END counter (DISC entity), 195
BLKS-INUSE-START counter (DISC entity), 195
BLOCK-SIZE counter (DISC entity), 189
BLOCK-SPLITS counter

DISC entity, 191
DISCOPEN entity, 203
DISKFILE entity, 213

BLOCKS-INUSE-END counter (DISC entity), 189
BLOCKS-INUSE-START counter (DISC entity), 189
BLOCKS-SPLITS counter (DISC entity), 189
BRIEF report attribute, 109
Busy counter, defined, 136
BY clause

LIST entity-type command, 69
LISTALL entity-type command, 91

C
C field (DISC entity), 188
C or C++ Language, usage notes, TAL redefines, 492
CACHE-HITS counter

CPU entity, 163
DISCOPEN entity, 203

CACHE-HITS-F counter

515

CPU entity, 168
CACHE-READ-HITS counter (DISKFILE entity), 212
CACHE-WRITE-CLEANS counter

DISCOPEN entity, 204
DISKFILE entity, 212

CACHE-WRITE-HITS counter
DISCOPEN entity, 203
DISKFILE entity, 212

CAID (creator access ID)
PROCESSH entity, 298
SQLPROC entity, 318
SQLSTMT entity, 327
USERDEF entity, 346

Callable procedures
See also individual procedures by name , 33
allocating space for, 352, 355
data declarations for, 352
error codes returned by, 355, 471
overview, 349
table of, 351

CALLS counter (SQLSTMT entity), 325
CALLS-F identifier

SQLSTMT entity, 327
CBLKS-INUSE-MAX counter (DISC entity), 188
CBLKS-INUSE-QTIME counter (DISC entity), 188
CHANNEL counter (DEVICE entities), 176
Character to use in plot, specifying, 68
CHECKPOINTS counter (PROCESS entity), 283
CID table, 118
CIN4-BYTES-F counter (NETLINE entity), 249, 251
CLUSTER entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 391
DDL record for, 151
DDL record, for legacy format, D-series, 150
DDL record, for legacy format, G-series, 151
DDL record, for ZMS style format, 151
displaying names of configured, 62
syntax for names of, 150
usage notes, 153

Code range within a process, measuring
See PROCESSH entities , 33

Code space specifications, 49, 294, 383
CODE-RANGE counter (PROCESSH entity), 298
CODE-RANGE option (ADD PLOT command), 49
CODE-RANGE-BUSY-SAMPLES counter (PROCESSH

entity), 298
CODE-SPACE counter (PROCESSH entity), 298
CODE-SPACE-BUSY-SAMPLES counter (PROCESSH

entity), 298
CODE^SPACE^DESC, 383
CODE^SPACE^OSS^DESC descriptor, 383
COFF files, 294
Collecting data

See Measurements , 33
Collection interval

command interface, 121
effect, on report data, 74
programmatic interface, 395

Command (OBEY) files
creating, 101
executing, 100

Command object, default
changing, 51
displaying current, 57

Commands, MEASCOM
See also individual commands by name , 33
conventions for entering, 39
displaying previously entered, 61
editing, on the command line, 59, 61
getting online help about, 59
reexecuting, from the history buffer, 130

Comments
See also COMMENTS command , 33
displaying or suppressing, 52
entered by user, 39
getting online help about, 60
issued by MEASCOM, 455

COMMENTS command, 52, 57
Common object format files (COFF files), 294
Communication lines, measuring

See CLUSTER entities, LINE entities, NETLINE entities,
and SYSTEM entities , 33

COMP-TRAPS counter
CPU entity, 165
PROCESS entity, 284

Configuration table, 353, 361
Configuration, through the command interface

adding entities, 43
deleting entities , 52
listing all configured entities, 64
listing configured entities of a specified entity type, 62

Configuration, through the programmatic interface
creating a configuration table, 353
defining the configuration, 358
listing configured entities, 433, 437

Contab
See Configuration table , 33

CONTAB^HDR descriptor, 361
CONTAB^TRAILER descriptor, 395
Control block, Measure, 352
CONTROL-POINT-WRITES counter (DISC entity), 190
CONTROL-POINTS counter (DISC entity), 190
CONTROLLER entities

configuring, for command interface, 43
configuring, for programmatic interface, 361
DDL record for, 155
default disabled, 154
displaying names of configured, 62
syntax for names of, 154

Controllers, measuring
See CONTROLLER entities , 33

Counter ID (CID) table, 118
Counter records

See also Counters , 33
disk space required for, 125
generating a report from, 68, 90
reading active, for command interface, 85

516 Index

reading active, for programmatic interface, 430
specifying interpreted or uninterpreted values for, 72,

103, 110
COUNTER^DESC descriptor, 392
Counters

See also Counter records , 33
adding, to plot definition, 48
bumping, 396, 397
deleting, from plot definition, 55
getting online help about, 60
lengths of, 45
types of, 134

COUNTS counter (USERDEF entity), 346
COUT4-BYTES-F counter (NETLINE entity), 249, 251
CPU entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 362
DDL record for, 156
displaying names of configured, 61
syntax for names of, 156
usage notes, 170

CPU-BUSY-TIME counter
CPU entity, 161
PROCESS entity, 279

CPU-QLEN-MAX counter (CPU entity), 162
CPU-QTIME counter (CPU entity), 161
CPU-SUBTYPE counter (CPU entity), 160
CPU^DESC descriptor, 362
Cpu^number field , 352
CPUs, measuring (see CPU entities)
Creation Version Serial Number

See CRVSN, 133
CREATOR-TYPE identifier,SQLSTMT entity, 329
CREATORID field

PROCESSH, 298
SQLPROC entity, 318
SQLSTMT entity, 327
USERDEF entity, 346

CRVSN
assignment of , 145
description, 273

CTRL^DESC descriptor, 361
Custom measurements

See User-defined counters , 33
CW field (DISC entity), 191

D
Data files, measurement

See also Measurements , 33
disk space requirements for, 47
from a different Measure PVU, 47
on a remote system, 47
through the command interface, 46
through the command interface, closing, 127
through the command interface, creating, 119
through the command interface, deleting access to, 55
through the command interface, generating a plot from,

48

through the command interface, generating a report
from, 68, 90

through the command interface, getting a list of active,
123

through the command interface, getting information
about, 64

through the command interface, opening, 46
through the programmatic interface, closing, 356, 358
through the programmatic interface, getting a list of

active, 419
through the programmatic interface, opening, 421
through the programmatic interface, reading data from,

424
through the programmatic interface, writing data from,

to structured file, 448
Date, displaying, 129
DBIO-INPUT-CALLS counter

DISCOPEN entity, 204
DISKFILE entity, 213

DBIO-OUTPUT-CALLS counter
DISCOPEN entity, 204
DISKFILE entity, 213

DBIO-READ-BYTES counter
FILE entity, 228

DBIO-READS counter
DEVICE entity, 179
DISC entity, 194
FILE entity, 228

DBIO-WRITE-BYTES counter
FILE entity, 228

DBIO-WRITES counter
DEVICE entity, 179
DISC entity, 194
FILE entity, 228

DBL HYPHEN (double hyphen), 39
DBL PLUS (double plus sign), 39
Declaration files, 352
Default command object

changing, 51
displaying current, 57

DEFERRED-QLEN-MAX counter (DISC entity), 196
DEFERRED-QTIME counter (DISC entity), 196
DEFREQ-QLEN-MAX counter (DISC entity), 195
DEFREQ-QTIME counter (DISC entity), 195
DEFREQS counter (DISC entity), 195
DELETE COUNTER command, 54
DELETE entity-type command, 52
DELETE MEASUREMENT command, 55
DELETE PLOT command, 55
DELETES-OR-WRITEREADS counter (FILE entity), 226
Deleting access to data files, 55
Deleting entity specifications from a configuration, 52
DEVICE entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 362
DDL record, for legacy format, D-series, 173
DDL record, for legacy format, G-series, 173
DDL record, for ZMS style format, 174
displaying names of configured, 62

517

syntax for names of D-series, 171
usage notes, 179

Device name for file-name expansions, 129
DEVICE-NAME counter (DISKFILE entity), 213
DEVICE-NAME identifier

DISCOPEN entity, 204
FILE entity, 228
SQLSTMT entity, 327
USERDEF entity, 347

DEVICE-QBUSY-TIME counter
DEVICE entity, 178
DISC entity, 193

DEVICE^CLIM^DESC descriptor, 363
DEVICE^DESC descriptor, 362
DEVICE^SVNET^DESC descriptor, 365
DEVICE^SVNET^DESC^G05 descriptor, 367
DIN4-BYTES counter (NETLINE entity), 248
DIN4-BYTES-F counter (NETLINE entity), 250
DISC entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 362
DDL record, for legacy format D-series, 182
DDL record, for legacy format G-series, 182
DDL record, for ZMS style format, 184
displaying names of configured, 62, 63
syntax for names of D-series, 180
usage notes, 196

DISC-IOS counter (CPU entity), 163
DISC-IOS-F counter (CPU entity), 168
DISC-READS counter

FILE entity, 227
SQLSTMT entity, 326

DISC-READS-F identifier
SQLSTMT entity, 328

DISCOPEN entities
configuring, for command interface, 43
configuring, for programmatic interface, 361, 373
DDL record, for D-series, 200
DDL record, for G-series, 204
DDL record, for ZMS style format, 201
displaying names of configured, 62, 63
restriction regarding active counters, 89, 430
syntax for names of, 198
usage notes, 205

Disk file names, 40
Disk space required for measurement data file, 47
DISKFILE entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 373
DDL record, for D-series, 213
DDL record, for D-series (legacy format), 208
DDL record, for G-series, 213
DDL record, for ZMS style format, 209
displaying names of configured, 62
format 1 and 2 files, 215
restriction regarding active counters, 89, 430
syntax for names of, 207
usage notes, 214

DISKFILE^ANSI^DESC descriptor, 370

DISKFILE^DESC descriptor, 370
DISKFILE^OSS^DESC descriptor, 369
Disks, measuring

See DISC entities , 33
DISPATCHES counter

CPU entity, 162
PROCESS entity, 280

Display messages
See Messages, MEASCOM , 33

DISPLAY option
COMMENTS command, 52
WARNINGS command, 130

Displaying MEASCOM messages
comments, 52
warnings, 130

Displaying measurement data (seeCounter records, Plots,
and Reports)

DOLLAR SIGN SYSTEM.SYSTEM.EXTDECS0 file, 352
DOTS clause

LIST command, 70
LISTACTIVE command, 86
LISTALL command, 92
SET REPORT command, 103, 109

DOUT4-BYTES-F counter (NETLINE entity), 249, 250
DRIVER-INPUT-CALLS counter

DISCOPEN entity, 202
DISKFILE entity, 211

DRIVER-OUTPUT-CALLS counter
DISCOPEN entity, 203
DISKFILE entity, 211

E
Editing commands on the command line, 59, 61
Elapsed counter, defined, 136
ELAPSED-RECOMPILE-TIME counter (SQLSTMT entity),

327
ELAPSED-SORT-TIME counter (SQLSTMT entity), 326
ELASPED-BUSY-TIME counter (SQLSTMT entity), 325
ENDING-EOF counter (DISKFILE entity), 211
ENDING-FREE-BLOCKS counter (DISC entity), 191
ENDING-FREE-MEM counter (CPU entity), 166
ENDING-FREE-SPACE counter (DISC entity), 191
ENDING-SCL counter (CPU entity), 168
ENDING-SCL-LOCK counter, CPU entity (not used), 168
ENDING-SDS counter (CPU entity), 167
ENDING-SDS-LOCK counter, CPU entity (not used) ,

167
ENDING-UCL counter (CPU entity), 167
ENDING-UCL-LOCK counter, CPU entity (not used)),

167
ENDING-UCME counter (CPU entity), 166
ENDING-UDS counter (CPU entity), 166
ENDING-UDS-LOCK counter, CPU entity (not used),

166
Enform files, report output for, 71, 86, 109
Entity descriptors, 352
Entity specifications

See also individual entity types by name , 33
adding, to measurement configuration, 43

518 Index

excluding, from measurement configuration, 52
in procedure calls, 352, 361

Entity types
See also individual entity types by name , 33
summary of, 133

Entry points, counters for
See PROCESSH entities , 33

ENV command, 56
Environmental parameters

COMMENTS setting, 52
default command object, 51
device or subvolume names, 129
displaying, 56
log file, 99
MEASCOM prompt, 114
output file, 101
swap volume, 128
system name, 128
WARNINGS setting, 130

Error codes returned by the programmatic interface, 355,
471

Error messages
See Messages, MEASCOM , 33

Error reporting, 140
ESCALATIONS counter

FILE entity, 228
SQLSTMT entity, 327

Excluding entity specifications from a configuration, 52
Executing a command (OBEY) file, 100
Executing another process without exiting from

MEASCOM, 104
EXIT command, 58
Expand line handler (see SYSTEM entities)
EXT-SEGS-MAX counter (PROCESS entity), 281
EXT-SEGS-QTIME counter (PROCESS entity), 280
EXTDECS0 file, 352
EXTENT-ALLOCATIONS counter (DISKFILE entity),

213
External declaration of procedures, 352

F
FAULTS counter (DISC entity), 189
FC command, 59
FILE entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 373
DDL record, for legacy format, D-series, 221
DDL record, for legacy format, G-series, 222
DDL record, for ZMS style format, 223
displaying names of configured, 63
syntax for names of, 216, 219
usage notes, 231

File names, 40
FILE-BUSY-TIME counter (FILE entity), 225
File-name reuse

Guardian, 145
Guardian and CRVSN values, 145

FILE-NAME-MID counter (DISCOPEN entity), 205
FILE-NAME-MID identifer

FILE entity, 229
FILE-NAME-MID identifier (DISKFILE entity), 214
FILE-OPEN-CALLS counter (PROCESS entity), 286
FILE-OPEN-TYPE identifier, 229
FILE^OPEN^DESC descriptor, 373
FILE^OPEN^DESC^D10 descriptor, 375
FILE^OPEN^OSS^DESC, 373
FILE^OPEN^OSS^DESC^D10 descriptor, 373, 375
Files

measuring activity in, See DISCOPEN entities,
DISKFILE entities, and FILE entities , 33

of Measure subsystem, 491
output, See Data files, measurement , 33

FILESIZE clause
START MEASUREMENT command, 122

Fixing (editing) commands on the command line, 59, 61
FOR clause

LIST entity-type command, 70
LIST PLOT command, 81
LISTACTIVE command entity-type, 86
LISTALL entity-type command, 92
RESET REPORT command, 103
SET PLOT command, 105
SET REPORT command, 109
SHOW PLOT command, 116
START MEASUREMENT command, 121

FORMAT clause
LIST command, 71
LISTACTIVE command, 86
LISTALL entity-type command, 93
RESET REPORT command, 103, 109
SET REPORT command, 109

FOX link, measuring
See CLUSTER entities , 33

FREE-SPACE-IOS counter (DISC entity), 190
FROM clause

LIST entity-type command, 71
LIST PLOT command, 81
LISTALL entity-type command, 93
RESET REPORT command, 103
SET PLOT command, 105
SET REPORT command, 109
SHOW PLOT command, 116
START MEASUREMENT command, 120

FULL-NAME identifier
SQLSTMT entity, 329

FULL-NAME-LEN identifier
SQLSTMT entity, 329

FULL-NAME-OFFSET identifier
SQLSTMT entity, 329

G
GMOM-CPU identifier

SQLSTMT entity, 328
USERDEF entity, 347

GMOM-FULL-ID identifier
SQLSTMT entity, 328
USERDEF entity, 347

GMOM-JOBID identifier

519

SQLSTMT entity, 328
USERDEF entity, 347

GMOM-NODE identifier
SQLSTMT entity, 328
USERDEF entity, 347

GMOM-PIN identifier
SQLSTMT entity, 328
USERDEF entity, 347

GMOM-PROCESS-NAME identifier
SQLSTMT entity, 329
USERDEF entity, 347

GMOM-SYSNAME identifier
SQLSTMT entity, 328
USERDEF entity, 347

gname, 97, 98
Graphs, 82, 102, 106

See also Plots , 33

H
Header record, configuration table, 361
HELP command, 59
HELP command (MEASFT), 499
High PINs, 492
HISTORY command, 61
HITS counter (DISC entity), 188
HOME-NET-TRANS counter (TMF entity), 340
HOME-NET-TRANS-QMAX counter (TMF entity), 341
HOME-NET-TRANS-QTIME counter (TMF entity), 341
HOME-TRANS counter (TMF entity), 339
HOME-TRANS-QMAX counter (TMF entity), 340
HOME-TRANS-QTIME counter (TMF entity), 340
HOMETERM-NAME identifier (PROCESS entity), 285
HOMETERM-SYSNAME identifier (PROCESS entity),

285
Hyphen, double (- -), 39

I
IF clause

LIST entity-type command, 72
LISTALL entity-type command, 93

Incrementing counter, defined, 136
INDEX counter (USERDEF entity), 346
INFO command

MEASFT, 495
INFO command (MEASFT), 495
INFO COUNTER command, 63
INFO entity-type command, 62
INFO MEASUREMENT command, 64
INFO PLOT command, 67
INFO-CALLS counter (FILE entity), 226
INFO-CALLS counter (PROCESS entity), 286
INODE, 145
INPUT-BYTES counter

DEVICE entity, 176
DISC entity, 187
LINE entity, 240, 241
OPDISK entity, 256
TERMINAL entity, 336

INPUT-BYTES-F counter

DEVICE entity, 178
DISC entity, 193
LINE entity, 242
TERMINAL entity, 337

INPUT-DATA-BYTES counter (LINE entity), 240, 242
INPUT-DATA-BYTES-F counter (LINE entity), 243
Interpreted counter values, 72, 103, 110
INTERVAL clause

LIST PLOT command, 82
START MEASUREMENT command, 121

Interval, collection
effect of, on report data, 74
specifying command interface, 121, 122
specifying programmatic interface, 395

INTR-BUSY-TIME counter (CPU entity), 163
IO-QBUSY-TIME counter (SERVERNET entity), 308
IO-QLEN-MAX counter

CONTROLLER entity, 155
SERVERNET entity, 306

IO-QTIME counter (CONTROLLER entity), 155
IO-QTIME counter (SERVERNET entity), 306
IPU-DISPATCHES counter

CPU entity, 161
IPU-NUM counter, 290
IPU-NUM-PREV counter, 290
IPU-QTIME counter

CPU entity, 161
IPU-SWITCHES counter, 290
IPU-USY-TIME counter

CPU entity, 161
IPv6 addresses, 234, 235

J
journaling, 119

L
L2IN-BYTES counter (NETLINE entity), 248
L2IN-BYTES-F counter (NETLINE entity), 250
L2OUT-BYTES counter (NETLINE entity), 248
L2OUT-BYTES-F counter (NETLINE entity), 250
LBC-ALLOCATIONS counter (PROCESS entity), 282
LCB-ALLOC-FAILURES counter (PROCESS entity), 282
LCBS-INUSE-QTIME counter (PROCESS entity), 282
Len field

in configuration table header record, 354
in entity descriptors, 352

LINE entities
configuring, for command interface, 43
configuring, for programmatic interface, 361, 362
DDL record, for legacy format, D-series, 237
DDL record, for legacy format, G-series, 237
DDL record, for ZMS style format, 238
displaying names of configured, 63
syntax for names of D-series, 236
syntax for names of G-series, 237

Lines, communication, measuring
See LINE entities and NETLINE entities , 33

LINK-LARGE-MSGS counter (CPU entity), 169
LINK-PREPUSH-MSGS counter (CPU entity), 169

520 Index

LINK-READLINK-MSGS counter (CPU entity), 169
LINK-TIME counter (SYSTEM entity), 332
LINKS counter (SYSTEM entity), 332
LIST entity-type command, 68
LIST EXTNAMES command, 78
LIST OSSNAMES command, 80
LIST PLOT command, 80
LISTACTIVE entity, 85
LISTACTIVE entity-type command, description, 85
LISTALL entity-type, 90
LISTENAME command, 96
LISTGNAME command, 97
LISTPNAME command, 98
LOADID clause

LIST entity-type command, 72
LISTACTIVE entity-type command, 87
LISTALL entity-type command, 94
RESET REPORT command, 103
SET REPORT command, 110

LOCK-BOUNCES counter
DISCOPEN entity, 204
DISKFILE entity, 212

LOCK-TIMEOUTS counter
DISCOPEN entity, 204
DISKFILE entity, 212

LOCK-WAITS counter
FILE entity, 227
SQLSTMT entity, 327

LOCKWAIT-TIME counter
DISCOPEN entity, 203
DISKFILE entity, 212

LOG command, 99
Logging a MEASCOM session, 99

See also Environmental parameters , 33
displaying the log file name, 57

Low PINs, 492

M
Max queue counter, defined, 137
Max value counter, defined, 137
MAX-LCBS-INUSE counter (PROCESS entity), 283
MAX-LOCKWAIT-TIME counter

DISCOPEN entity, 204
DISKFILE entity, 212

MAX-MQCS-INUSE counter, PROCESS entity, 283
MAX-VALUE counter (USERDEF entity), 346
MEAS_ADJUSTZMSRECORD_ procedure, 356
MEAS_BUMP_TIMERCELL_ procedure, 357
MEAS_DEALLOCATE_TIMERCELLS_ procedure, 398
MEAS_GETDESCINFO procedure, 400
MEAS_READACTIVE_ procedure, 433
MEAS_READACTIVE_MANY procedure, 434
MEAS_RETRIEVE_TIMERCELLS_ procedure, 440
MEAS_SQL_MAP_INIT_ procedure, 441
MEAS_SQL_MAP_STOP_ procedure, 442
MEAS_SQLNAME_COMPARE_ procedure, 442
MEAS_SQLNAME_SCAN_ procedure, 445
Meascb, 352
MEASCHMA file, description of , 492

MEASCLOSE procedure, 358
MEASCOM command, 42
MEASCOM process

command interface, changing the command prompt,
114

command interface, rules for command entry, 41
command interface, stopping, 58
description of, 491
starting, 41
stopping, 41

MEASCONFIGURE procedure, 358
MEASCONTROL procedure, 395
MEASCOUNTERBUMP procedure, 396
MEASCOUNTERBUMPINIT procedure, 397
MEASCSTM file, 42
MEASCTL process

creating, in a specified CPU, 419
description of, 491
during CPU restart, 118
getting status of, 123
reading active counters, 89

MEASDDLB file, 491
MEASDDLF file, 491
MEASDDLS file, 491
MEASDECS file, 352, 492
MEASFH process

creating, 46, 421
description of, 491
disk space requirements, 47
reading measurement data, 89
stopping, 55, 356, 358
using a different version of, 47
using a remote, 47

MEASFT
introduced, 495

MEASFT utility, 48
MEASGETVERSION procedure, 398
MEASIMMU file, description of, 492
MEASINFO procedure, 403
MEASLISTENAME procedure, 408
MEASLISTEXTNAMES procedure, 411
MEASLISTGNAME procedure, 412
MEASLISTOSSNAMES procedure, 416
MEASLISTPNAME procedure, 417
MEASMON process

description of, 491
during CPU restart, 118
reporting measurement status, 126, 419
starting, 418

MEASMONCONTROL procedure, 418
MEASMONSTATUS procedure, 419
MEASOPEN procedure, 421
MEASREAD procedure, 424, 437
MEASREAD_DIFF_ procedure, 426
MEASREADACTIVE procedure, 430
MEASREADCONF procedure, 437
MEASSQLNAME_DECOMPOSE_ procedure, 443
MEASSTATUS procedure, 446
MEASSUBSYS

521

See Subsystem, Measure , 33
Measure control block , 352
Measure ID (MID), 145
Measure, overview of, 33 (see also MEASCOM process,

MEASFH process, and Subsystem, Measure)
Measurements

See also Collection interval, Counters, and Data Files,
Measurement, 33

getting a list of active, 123
getting status information about command interface,

125
getting status information about programmatic

interface, 90, 442
reading active counters, command interface, 85
reading active counters, programmatic interface, 430
sample session, 34
starting command interface, 119
starting programmatic interface, 395
stopping command interface, 127
stopping programmatic interface, 395

MEASWRITE_DIFF_ procedure, 448
MEM-FRAMES identifier (CPU entity), 161
MEM-INITIAL-LOCK identifier (CPU entity), 161
MEM-QLEN-MAX counter (CPU entity), 162
MEM-QTIME counter

CPU entity, 162
PROCESS entity, 280

MEMORY-PAGES32 identifier (CPU entity), 164
Message System Transfer Protocols documentation, 291
MESSAGE-BYTES counter

FILE entity, 227
SQLSTMT entity, 326

MESSAGE-BYTES-F counter, FILE entity, 228
MESSAGE-BYTES-F identifier

SQLSTMT entity, 327
MESSAGES counter

FILE entity, 227
SQLSTMT entity, 326

Messages, MEASCOM, 455
displaying or suppressing comments, 52
displaying or suppressing warnings, 130
getting online help about, 60

Messages, MEASFT, 500
MESSAGES-F identifier

SQLSTMT entity, 328
MESSAGES-RECEIVED counter

CLUSTER entity, 152
PROCESS entity, 282

MESSAGES-SENT counter
CLUSTER entity, 152
PROCESS entity, 281

MISC-CALLS counter, 231
MISSES counter (DISC entity), 188
Mixed Workload, measure counters, 197
MQC-ALLOC-FAILURES counter (PROCESS entity), 282
MQC-ALLOCATIONS counter (PROCESS entity), 282
MQCS-INUSE-QTIME counter (PROCESS entity), 283
MSGS-SENT-QLEN-MAX counter (PROCESS entity), 287
MSGS-SENT-QTIME counter (PROCESS entity), 287

N
NAME counter (USERDEF entity), 345
NATIVE-BUSY-SAMPLES counter, 299
NATIVE-BUSY-SAMPLES option (ADD PLOT

command), 49
NATIVE-BUSY-TIME counter

CPU entity, 164
PROCESS entity, 283

NATIVE-BUSY-TIME option (ADD PLOT command), 49
NETLINE entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 362
DDL record, for legacy format D-series, 245
DDL record, for legacy format G-series, 245
DDL record, for ZMS style format, 246
displaying names of, 62
displaying names of configured, 63
syntax for names of D-series, 243
syntax for names of G-series, 245

Network lines, measuring (see CLUSTER entities,
NETLINE entities, and SYSTEM entities)

NOCOUNTERS clause
START MEASUREMENT command, 122

NOECHO option (OBEY command), 100
NonStop mode

See TNS code samples , 33
NonStop Transaction Management Facility (TMF),

measuring (see TMF entities)
NonStop/RISC native mode (see TNS/R native code

samples)
NOOSS clause

START MEASUREMENT command, 122
NORMAL report attribute, 109
NOSQL clause

START MEASUREMENT command, 122

O
O4095-BYTES counter (NETLINE entity), 250
OBEY command, 33, 100 (see also OUT command)
OPDISK entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 375
DDL record for legacy format D-series, 252
DDL record for ZMS style format, 253
displaying names of configured, 63
syntax for names (D-series), 251

OPDISK^DESC descriptor, 375
Open System Services

See OSS, 133
OPEN-QLEN-MAX counter (DISKFILE entity), 211
OPEN-QTIME counter (DISKFILE entity), 211
OPEN-TIME counter (SQLPROC entity), 318
OPENER-DEVICE-NAME identifier, 228
OPENER-OSSPID identifier, 229
OPENER-PROCESSNAME identifier, 228
OPENER-PROGRAM-FILENAME identifier, 228
OPENER-PROGRAM-FNAME-MID identifier, 229
Opening a measurement data file

command interface, 48

522 Index

programmatic interface, 421
OPENS counter (SQLPROC entity), 318
Optical disks

See OPDISK entities , 33
OSS clause

START MEASUREMENT command, 122
OSS documentation, 144
OSS file pathnames

in measurement specifications, 144
length of, 144
nonprintable characters, 144
null-termination and string length, 144
syntax, 144

OSS journal segment
default, 145
definition, 145
required use of, 145

OSS process ID (OSSPID), 144
OSS-BLOCK-READ-BYTES counter, 230
OSS-BLOCK-READS counter, 230
OSS-BLOCK-WRITE-BYTES counter, 214
OSS-BLOCK-WRITES counter, 214
OSS-CACHE-CALLBACKS counter, 214
OSS-CACHE-READ-BYTES counter, 230
OSS-CACHE-READS counter, 230
OSS-CACHE-WRITE-BYTES counter, 230
OSS-CACHE-WRITES counter, 230
OSS-CALLBACK-WRITES counter, 214
OSS-FLOW-CONTROLS counter, 231
OSSCPU entities

configuring, for command interface, 43
DDL record for legacy format, 257
DDL record for ZMS style format, 258
syntax for names of, 256
usage notes, 265

OSSNAMES entity, 133
OSSNS entities

configuring, for command interface, 43
DDL record for legacy format, 267
DDL record for ZMS style format, 271
syntax for names of, 266
usage notes, 271

OSSPID identifier
SQLSTMT entity, 328
USERDEF entity, 347

OSSSN entities
DDL record for legacy format, 267
DDL record for ZMS style format, 268

OUT clause
ENV command, 57
HELP command, 60
INFO COUNTER command, 64
INFO entity-type command, 62
INFO MEASUREMENT command, 65
INFO PLOT command, 68
LIST entity-type command, 69
LIST PLOT command, 81
LISTACTIVE entity-type command, 85
MEASCOM, 42

SHOW PLOT command, 116
SHOW REPORT command, 117
STATUS MEASSUBSYS command, 124
STATUS MEASUREMENT command, 125

OUT command, 57, 101
See also OUT clause , 33

Output files (see Data files, measurement)
OUTPUT-BYTES counter

DEVICE entity, 176
DISC entity, 187
LINE entity, 240, 242
OPDISK entity, 256
TERMINAL entity, 336

OUTPUT-BYTES-F counter
DEVICE entity, 178
DISC entity, 193
LINE entity, 243
TERMINAL entity, 337

OUTPUT-DATA-BYTES counter (LINE entity), 240, 242
OUTPUT-DATA-BYTES-F counter (LINE entity), 243

P
PAGE-FAULTS counter (PROCESS entity), 280
PAGE-REQUESTS counter (CPU entity), 166
PAGE-SCANS counter (CPU entity), 166
PAGE-SIZE-BYTES identifier

CPU entity, 161
PROCESS entity, 285

PAID (process accessor ID) (USERDEF entity), 346
PATHID, 145
PIN ranges, 492
PLOT attributes

displaying, 116
resetting, 102
setting, 104

Plots
See also PLOT attributes , 33
defining, 48
defining a time window for, 81
deleting counters from, 55
displaying information about, 67
generating, 80
specifying character to use in, 68

PLUS (plus sign)
in plots, 84
MEASCOM prompt, 39

Plus sign (+)
in plots , 84
MEASCOM prompt , 39

pname, 144
Pound symbol (#), 84
PRES-PAGES-END counter (PROCESS entity), 287
PRES-PAGES-MAX counter (PROCESS entity), 280
PRES-PAGES-QTIME counter (PROCESS entity), 280
PRES-PAGES-START counter (PROCESS entity), 287
Procedures, callable

See also individual procedures by name , 33
data declarations for, 352
error codes returned by, 355, 471

523

overview, 349
table of, 351

PROCESS entities, 290
configuring, for command interface, 43
configuring, for programmatic interface, 361, 376, 378
DDL record for D-series, 274
DDL record for G-series, 299
DDL record for G-series legacy format, 274
DDL record for G-series ZMS style format, 276
displaying names of configured, 63
syntax for names of, 272
usage note, 291

Process identification number (PIN) ranges, 492
PROCESS-BUSY-SAMPLES counter (PROCESSH entity),

297
PROCESS-OVHD counter (CPU entity), 163
PROCESS^DESC descriptor, 376, 378
Processes, measuring (see PROCESS entities and

PROCESSH entities)
PROCESSH entities

configuring, for command interface, 43
configuring, for programmatic interface, 379
DDL record for legacy format, 295
DDL record for ZMS style format, 296
displaying names of configured, 63
plotting, 84
restriction regarding active counters, 89, 430
syntax for names of, 291

PROCESSH^DESC descriptor, 382
PROCESSH^OSS^DESC descriptor, 382
PROGRAM-ACCELERATED flag (PROCESS entity), 284
PROGRAM-FILE-NAME-MID identifier

SQLSTMT entity, 328
USERDEF entity, 347

Prompt, MEASCOM
changing, 114
displaying SETPROMPT setting, 57
overview, 39

Protocols, line, 236

Q
Queue counter, defined, 137
Queue-busy counter, defined, 138

R
RATE clause

effect on counter values, 134
LIST command, 72
RESET REPORT command, 103
SET REPORT command, 110

READ-BUSY-TIME counter
DEVICE entity, 176
DISC entity, 186
LINE entity, 239
NETLINE entity, 247
OPDISK entity, 255

READ-BYTES (CPU entity), 169
READ-BYTES counter, 230

SERVERNET entity, 308

READ-CBYTES counter (SERVERNET entity), 309
READ-QBUSY-TIME counter

DEVICE entity, 177
DISC entity, 193
SERVERNET entity, 308

READ-QLEN-MAX counter
DEVICE entity, 177
DISC entity, 193
SERVERNET entity, 308

READ-QTIME counter
DEVICE entity, 177
DISC entity, 193
SERVERNET entity, 308

READ-REQUESTS counter
CPU entity, 169
SERVERNET entity, 308

Reading measurement data
from a data file command interface, 68, 90
from a data file programmatic interface, 424, 448
from active counters command interface, 85
from active counters programmatic interface, 430

READLINKCACHE-ALL counter (CPU entity), 169
READLINKCACHE-CTRL counter (CPU entity), 170
READLINKCACHE-NONE counter (CPU entity), 170
READS counter

DEVICE entity, 176
DISC entity, 186
FILE entity, 226
LINE entity, 240
NETLINE entity, 248
OPDISK entity, 255
TERMINAL entity, 336

READY-TIME counter (PROCESS entity), 279
RECEIVED counter (SYSTEM entity), 333
RECEIVED-BYTES counter

CLUSTER entity, 152
PROCESS entity, 282

RECEIVED-BYTES-F counter (CLUSTER entity), 153
RECEIVED-BYTES-F counter (PROCESS entity), 286
RECEIVED-CBYTES counter (PROCESS entity), 288
RECEIVED-FORWARD counter (SYSTEM entity), 333
RECOMPILES counter (SQLSTMT entity), 327
RECORD-TYPE counter (DISCOPEN entity), 203
RECORDS-ACCESSED counter

FILE entity, 227
SQLSTMT entity, 326

RECORDS-ACCESSED-F identifier, SQLSTMT entity,
328

RECORDS-USED counter
FILE entity, 227
SQLSTMT entity, 326

RECORDS-USED-F identifier, (SQLSTMT entity), 328
RECV-QLEN-MAX counter (PROCESS entity), 281
RECV-QTIME counter (PROCESS entity), 281
Remote data file, 47
REMOTE-TRANS counter (TMF entity), 340
REMOTE-TRANS-QMAX counter (TMF entity), 340
REMOTE-TRANS-QTIME counter (TMF entity), 340
REPLACE EXCLAMATORY SYMBOL command, 130

524 Index

REPLACE POUND SYMBOL (pound symbol), 84
REPLY-BYTES counter

CLUSTER entity, 152
PROCESS entity, 282

REPLY-BYTES-F counter
CLUSTER entity, 153
PROCESS entity, 287

REPLY-CBYTES counter (PROCESS entity), 288
REPLYCTRLCACHE-MSGS counter (CPU entity), 170
REPORT attributes

displaying, 116
resetting, 103
setting, 108

Reports
See also Plots and REPORT attributes , 33
defining a report window, 74
generating a report using LIST, 68
generating a report using LISTACTIVE, 85
generating a report using LISTALL, 90

REQUEST-QLEN-MAX counter
DISC entity, 186
OPDISK entity, 255

REQUEST-QTIME counter
DISC entity, 186
OPDISK entity, 255

REQUESTS counter
CONTROLLER entity, 155
DEVICE entity, 175
DISC entity, 186
DISCOPEN entity, 203
DISKFILE entity, 212
LINE entity, 239
NETLINE entity, 248
OPDISK entity, 255
SERVERNET entity, 306
TERMINAL entity, 336

REQUESTS-BLOCKED counter
DISC entity, 190
DISCOPEN entity, 203
DISKFILE entity, 212

RESET PLOT command, 102
RESET REPORT command, 103
Resetting attributes

PLOT, 102
REPORT, 103

Response time counter, defined, 138
RESPONSE-TIME counter

CPU entity, 164
LINE entity, 241
TERMINAL entity, 337

RETRIES counter (LINE entity), 241
RETRIES counter (SERVERNET entity), 309
RETURNED-BYTES counter

CLUSTER entity, 152
PROCESS entity, 281

RETURNED-BYTES-F counter
CLUSTER entity, 153
PROCESS entity, 286

RETURNED-CBYTES counter (PROCESS entity), 288

RUN command, 104
RUN-UNIT identifier (SQLSTMT entity), 325
RUN-UNIT-128 identifier, SQLSTMT entity, 328
Running a command (OBEY) file, 100
Running another process without exiting from

MEASCOM, 104

S
Sampling counter, defined, 138
Scale, 82, 102, 105
SCALE-FROM clause

LIST PLOT, 82
RESET PLOT, 102
SET PLOT command, 105
SHOW PLOT command, 116

SCALE-TO clause
LIST PLOT, 82
RESET PLOT, 102
SET PLOT command, 105
SHOW PLOT command, 116

SCSI-ID counter, 178
Sections array in header record, 354
SEEK-BUSY-TIME counter

DISC entity, 186
OPDISK entity, 255

SEEKS counter (DISC entity), 187
SEND-BUSY-TIME counter, CPU entity, 163
SENT counter (SYSTEM entity), 332
SENT-BYTES counter

CLUSTER entity, 152
PROCESS entity, 281

SENT-BYTES-F counter
CLUSTER entity, 153
PROCESS entity, 286

SENT-CBYTES counter (PROCESS entity), 287
SENT-FORWARD counter (SYSTEM entity), 333
SERVER-QLEN-MAX counter (SERVERNET entity), 309
SERVER-QTIME counter (SERVERNET entity), 309
SERVERNET entities

configuring measurements for CLIMs, 313
configuring measurements for ServerNet cluster, 312
DDL record for legacy format, 303
DDL record for ZMS style format, 304
explanation of IPC (linker/listener)traffic, 310
remote interprocessor communication (RIPC), 302
syntax for names of, 302

SET PLOT command, 104
SET REPORT command, 108
SETPROMPT command, 114
Setting attribute values

PLOT, 104
REPORT, 108

SHOW PLOT command, 116
SHOW REPORT command, 116
Snapshot counter, defined, 139
SORTS counter (SQLSTMT entity), 326
Space, disk, required for measurement data file, 47
SPLIT command (MEASFT), 496
Splitting a data file by entity or CPU, 48

525

SQL clause
START MEASUREMENT command, 122

SQL processes, measuring (see SQLPROC entities)
SQL statements, measuring (see SQLSTMT entities)
SQL-DELETES counter (DISKFILE entity), 213
SQL-ENDING-ROWS counter (DISKFILE entity), 213
SQL-INSERTS counter (DISKFILE entity), 213
SQL-NEWPROCESS-TIME counter (SQLPROC entity),

318
SQL-NEWPROCESSES counter (SQLPROC entity), 317
SQL-OBJ-RECOMPILE-TIME counter (SQLPROC entity),

317
SQL-OBJ-RECOMPILES counter (SQLPROC entity), 317
SQL-OPERATION-TIME counter (DISCOPEN entity),

204
SQL-STMT-RECOMPILE-TIME counter (SQLPROC

entity), 317
SQL-STMT-RECOMPILES counter (SQLPROC entity),

317
SQL-UPDATES counter (DISKFILE entity), 213
SQLCATALOG command, 114
SQLMID, 147
SQLPROC entities

configuring, for command interface, 43
configuring, for programmatic interface, 385
DDL record for legacy format, 315
DDL record for ZMS style format, 316
displaying names of configured, 63
syntax for names of, 313

SQLPROC^DESC descriptor, 385
SQLPROC^OSS^DESC descriptor, 385
SQLSCHEMA command, 114
SQLSTMT entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 387
DDL record for legacy format, 322
DDL record for ZMS style format, 323
displaying names of configured, 63
syntax for names of, 319
usage notes, 329

SQLSTMT^DESC descriptor, 387
START MEASSUBSYS command, 117
START MEASUREMENT command, 119
Starting a measurement, 119, 395
Starting MEASCOM, 41
Starting the Measure subsystem, 41, 117, 418
STARTING-EOF counter (DISKFILE entity), 211
STARTING-FREE-BLOCKS counter (DISC entity), 191
STARTING-FREE-CIDS counter, CPU entity (not used),

167
STARTING-FREE-MEM counter (CPU entity), 166
STARTING-FREE-SPACE counter (DISC entity), 191
STARTING-SCL counter (CPU entity), 167
STARTING-SCL-LOCK counter, CPU entity (not used),

168
STARTING-SDS counter (CPU entity), 166
STARTING-SDS-LOCK counter, CPU entity (not used),

167
STARTING-UCL counter (CPU entity), 167

STARTING-UCL-LOCK counter, CPU entity (not used),
167

STARTING-UCME counter (CPU entity), 166
STARTING-UDS counter (CPU entity), 166
STARTING-UDS-LOCK counter, CPU entity (not used),

166
Startup file

creating a, 42
STATEMENT-INDEX identifier (SQLSTMT entity), 325
STATUS MEASSUBSYS command, 123
STATUS MEASUREMENT command, 125
STOP MEASSUBSYS command, 126
STOP MEASUREMENT command, 127
Stopping a measurement, 127, 395
Stopping MEASCOM, 41, 58
Stopping the Measure subsystem, 126, 418
STORAGE-POOL identifier

DISCOPEN entity, 204
Structured files, writing measurement data to command

interface
LIST command, 71
LISTACTIVE command, 86
LISTALL command, 93
SET REPORT command, 109

Structured files, writing measurement data to
programmatic interface, 448

STRUCTURED report attribute
SET REPORT command, 109

STRUCTURED report option
RESET REPORT, 71, 86

STYLE clause
LIST command, 72
LISTACTIVE command, 87
LISTALL command, 94
SET REPORT command, 103, 110

Subdevices, specifications for (see TERMINAL entities)
Subsystem, Measure

getting status of, 123
starting, 41, 117, 418
stopping, 126, 418

Subvolume name for file-name expansions, 129
SUPPRESS option

COMMENTS command, 52
WARNINGS command, 130

Suppressing display of messages
comments, 52
warnings, 130

SVNET (CPU entity), 168
SVNET^DESC descriptor, 389
Swap volume

displaying SWAPVOL name, 57
specifying, 128, 422

SWAPS counter
CPU entity, 162
DISC entity, 188

SWAPVOL command, 128
Symbol to use in plot, specifying, 68
Syslink counter, defined, 139
System code space, 294, 381, 384

526 Index

SYSTEM command, 128
System data space, 125
SYSTEM entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 391
DDL record for legacy format, 331
DDL record for ZMS style format, 332
displaying names of configured, 63
syntax for names of, 330
usage notes, 333

System library space, 294, 381, 384
System name for file-name expansions

displaying SYSTEM setting, 57
SYSTEM command, 128

SYSTEM-PROCESSES parameter (PROCESS entity), 273
SYSTEM^DESC descriptor, 391

T
Tape drive, measuring

See DEVICE entities , 33
TCP/IPv6, 234, 235
TERMINAL entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 362
DDL record for legacy format D-series, 335
DDL record for legacy format G-series, 335
DDL record for ZMS style format, 335
displaying names of configured, 63
syntax for names of D-series, 333
syntax for names of G-series, 335

TIME command, 129
Time, displaying, 129
TIME-BASE clause

LIST PLOT, 82
RESET PLOT, 102
SET PLOT command, 106
SHOW PLOT command, 116

TIMEOUTS counter (SQLSTMT entity), 327
TIMEOUTS-OR-CANCELS counter (FILE entity), 227
Timer cell counter, defined, 139
TMF entities

configuring, for command interface, 43
configuring, for programmatic interface, 361, 362
DDL record for legacy format, 338
DDL record for ZMS style format, 339
displaying names of configured, 63
syntax for names of, 338
usage notes, 342

TNS code samples
measuring, 294
plotting, 49, 51, 84

TNS-BUSY-SAMPLES counter (PROCESSH entity), 298
TNS-BUSY-SAMPLES option (ADD PLOT command),

49
TNS-BUSY-TIME counter

CPU entity, 165
PROCESS entity, 284

TNS/R native code samples
measuring, 294

plotting, 49, 51, 84
TNSR-BUSY-SAMPLES counter (PROCESSH entity), 299
TNSR-BUSY-SAMPLES option (ADD PLOT command),

49
TNSR-BUSY-TIME counter

CPU entity, 165
PROCESS entity, 284

TNSR-PROCESS flag (PROCESS entity), 285
TO clause

LIST entity-type command, 73
LIST PLOT command, 82
LISTALL entity-type command, 94
RESET REPORT command, 103
SET PLOT command, 106
SET REPORT command, 110
SHOW PLOT command, 116
START MEASUREMENT command, 121
STOP MEASUREMENT, 127

TOLERANCE clause
LIST entity-type command, 73
LISTALL entity-type command, 95

TOTAL-IO-BYTES counter (CONTROLLER entity), 155
TOTAL-IO-BYTES counter (SERVERNET entity), 306
TOTALS clause

LIST command, 73, 95, 103, 111
Trailer record, configuration table, 395
TRANS-BACKOUT-QMAX counter (TMF entity), 341
TRANS-BACKOUT-QTIME counter (TMF entity), 341
TRANSACTIONS counter

CPU entity, 164
LINE entity, 241
TERMINAL entity, 337

TRANSIENT-OPENS counter (DISKFILE entity), 211
TYPE counter (USERDEF entity), 346
Type field

in configuration table header record, 354
in configuration table trailer record, 354
in entity descriptors, 352

U
U1024-BYTES counter (NETLINE entity), 250
U128-BYTES counter (NETLINE entity), 249
U2048-BYTES counter (NETLINE entity), 250
U256-BYTES counter (NETLINE entity), 249
U4096-BYTES counter (NETLINE entity), 250
U512-BYTES counter (NETLINE entity), 249
U64-BYTES counter (NETLINE entity), 249
UCL-LOCK-MAX counter (PROCESS entity), 286
UCL-LOCK-QTIME counter (PROCESS entity), 285
UCL-MAX counter (PROCESS entity), 285
UCL-QTIME counter (PROCESS entity), 285
Uninterpreted counter values, 72, 103, 110
UNSP-PAGES-END counter (CPU entity), 168
UNSP-PAGES-MAX counter (CPU entity), 168
UNSP-PAGES-QTIME counter (CPU entity), 168
UNSP-PAGES-START counter (CPU entity), 168
UPDATES-OR-REPLIES counter (FILE entity), 226
User code space, 294, 381, 384
User library space, 294, 381, 384

527

User-defined counters
See also USERDEF entities , 33
adding to measurement configuration, 43, 44
bumping, 396, 397
deleting from measurement configuration, 54
displaying information about, 63

USERDEF entities
See also User-defined counters , 33
configuring, for command interface, 43, 44
configuring, for programmatic interface, 393
DDL record for legacy format, 343
DDL record for ZMS style format, 344
displaying names of configured, 63
syntax for names of, 342
use of BY and IF clauses with, 96

USERDEF^DESC descriptor, 393
USERDEF^OSS^DESC descriptor, 393
USERID field

(PROCESSH entity), 298
(USERDEF entity), 346

V
VERSION identifier, SQLSTMT entity, 329
VERT-BASE clause

LIST PLOT, 82
RESET PLOT, 102
SET PLOT command, 106
SHOW PLOT command, 116

VOLSEM-QLEN-MAX counter (DISC entity), 192
VOLSEM-QTIME counter (DISC entity), 192
VOLUME command, 129
Volume name for file-name expansions, 57, 129

See also Environmental parameters , 33
VSEMS counter (PROCESS entity), 281

W
WAN^DESC descriptor, 394
WARNINGS command, 130

See also Environmental parameters , 33, 130
displaying current settings for, 57

Warnings, MEASCOM
See also WARNINGS command , 33, 130
descriptions, 455
displaying or suppressing, 130
getting online help about, 60

WIDE-ITEM clause
LIST PLOT, 82
RESET PLOT, 102
SET PLOT command, 106
SHOW PLOT command, 116

Window, defining
for a plot, 81
for a report, 74

WRITE-BUSY-TIME counter
DEVICE entity, 176
DISC entity, 186
LINE entity, 239
NETLINE entity, 247
OPDISK entity, 255

WRITE-BYTES counter, 230
CPU entity, 169
SERVERNET entity, 308

WRITE-CBYTES counter (SERVERNET entity), 309
WRITE-CLEANS counter (DISC entity), 189, 191
WRITE-DIRTYS counter (DISC entity), 189, 191
WRITE-MISSES counter (DISC entity), 189, 191
WRITE-QBUSY-TIME counter

DEVICE entity, 177
DISC entity, 193
SERVERNET entity, 309

WRITE-QLEN-MAX counter
DEVICE entity, 178
DISC entity, 193
SERVERNET entity, 309

WRITE-QTIME counter
DEVICE entity, 178
DISC entity, 193
SERVERNET entity, 308

WRITE-REQUESTS (CPU entity), 169
WRITE-REQUESTS counter (SERVERNET entity), 308
WRITES counter

DEVICE entity, 176
DISC entity, 187
FILE entity, 226
LINE entity, 240
NETLINE entity, 248
OPDISK entity, 255
TERMINAL entity, 336

Writing measurement data to a structured file
command interface LISTALL command, 93
command interface RESET REPORT command, 71, 86
command interface SET REPORT command, 109
programmatic interface, 448

X
X-DEFRD-BUSY-TIME counter (SERVERNET entity), 310

Y
Y DEFRD-BUSY-TIME counter (SERVERNET entity), 310

Z
ZERO-REPORTS clause

LIST command, 74
LISTACTIVE command, 87
LISTALL command, 95
RESET REPORT command, 103
SET REPORT command, 111

ZERO-VALUES clause
LIST command, 74, 87
LISTALL command, 95
RESET REPORT command, 103
SET REPORT command, 111

528 Index

529

	Measure Reference Manual
	Table of Contents
	About This Document
	Supported Release Version Updates (RVUs)
	Intended Audience
	New and Changed Information
	New and Changed Information for 523324–013 Revision
	New and Changed Information for H06.20/J06.09 RVUs (523324-012)
	New and Changed Information for H06.18/J06.07 RVUs (523324-011)
	New and Changed Information for H06.17/J06.06 RVUs (523324-010)
	Measure Structured File Limits
	Added AF_UNIX Support
	Miscellaneous Changes

	New and Changed Information for H06.16/J06.05 RVUs (523324-009)
	New and Changed Information for H06.15/J06.04 RVUs (523324-008)
	Added Telco CLIM (CLMO)
	Miscellaneous Changes

	New and Changed Information for H06.14/J06.03 RVUs (523324-007) and J06.02 (523324-06)
	Changes for the NSMA (NonStop Multicore Architecture) Product in Measure J01 and Later PVUs
	Changes for the CLIM (Cluster I/O module) Product in Measure H03, J01, and Later PVUs
	Miscellaneous Changes

	New and Changed Information for H06.12 RVU (523324-05)
	Changes for ANSI SQL Names
	Changes for Measure Limits Removal
	Miscellaneous Corrections

	Document Organization
	Notation Conventions
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces

	Related Information
	Publishing History
	HP Encourages Your Comments

	1 Introduction to Measure
	Operational Overview
	The Measure Subsystem
	The User Interfaces

	Entities and Counters
	The Three Steps of Measurement
	Step 1. Configure the Measurement
	Step 2. Take the Measurement
	Step 3. Examine the Measurement

	2 MEASCOM Commands
	Summary of MEASCOM Commands
	General Information About Using MEASCOM
	Syntax Conventions for MEASCOM Commands
	Multiple Commands on a Line
	Multiline Commands
	Comments Within a Command
	Command Prompts and Display
	Disk File Names
	Abbreviations in Commands

	Running a MEASCOM Session
	Starting the Measure Subsystem
	Starting and Stopping MEASCOM

	Creating a Custom Startup File

	MEASCOM
	Syntax
	Usage Note
	Example

	ADD entity-type
	Syntax
	Related Commands
	Usage Note
	Examples

	ADD COUNTER
	Syntax
	Related Commands
	Usage Notes
	Example

	ADD MEASUREMENT
	Syntax
	Usage Notes (All RVUs)
	Usage Notes (G-Series and Later RVUs)
	Usage Notes (H-Series and J-Series RVUs)
	Related Commands
	Examples

	ADD PLOT
	Syntax
	Related Commands
	Usage Note
	Examples

	ASSUME
	Syntax
	Example

	COMMENTS
	Syntax
	Usage Notes
	Example

	DELETE entity-type
	Syntax
	Usage Notes
	Related Commands
	Examples

	DELETE COUNTER
	Syntax
	Related Commands
	Example

	DELETE MEASUREMENT
	Syntax
	Related Command
	Usage Note
	Example

	DELETE PLOT
	Syntax
	Related Commands
	Example

	ENV
	Syntax
	Usage Note
	Examples

	EXIT
	Syntax
	Usage Notes
	Example

	FC
	Syntax
	Related Command
	Examples

	HELP
	Syntax
	Usage Notes
	Examples

	HISTORY
	Syntax
	Related Commands
	Example

	INFO entity-type
	Syntax
	Related Commands
	Usage Notes
	Examples

	INFO COUNTER
	Syntax
	Related Commands
	Usage Notes
	Example

	INFO MEASUREMENT
	Syntax
	Related Command
	Usage Notes
	Examples

	INFO PLOT
	Syntax
	Usage Note
	Related Commands
	Example

	LIST entity-type
	Syntax
	Related Commands
	Usage Notes
	Examples

	LIST EXTNAMES
	Syntax
	DDL Record for EXTNAMES file
	DDL Record Description Fields
	FILE-NAME-MID
	FILE-SYSTEM-NAME
	FILE-NAME
	NAME-TYPE
	FULL-NAME-LEN
	FULL-NAME

	Example

	LIST OSSNAMES
	Syntax
	Usage Notes
	DDL Record for OSSNAMES file
	Example

	LIST PLOT
	Syntax
	Related Commands
	Examples

	LISTACTIVE entity-type
	Syntax
	LISTACTIVE Entity Specification Special Cases
	DEVICE and DISC
	Examples

	FILE
	LINE and NETLINE
	PROCESS, SQLPROC, and USERDEF
	TERMINAL

	Usage Notes
	Related Commands
	Examples

	LISTALL entity-type
	Syntax
	Usage Notes
	Example

	LISTENAME
	Syntax
	Example

	LISTGNAME
	Syntax
	Usage Notes
	Examples

	LISTPNAME
	Syntax
	Usage Notes
	Examples

	LOG
	Syntax
	Usage Note
	Example

	OBEY
	Syntax
	Usage Notes
	Example

	OSSPATH
	Syntax
	Example

	OUT
	Syntax
	Usage Note
	Example

	PAGESIZE
	Syntax
	Usage Notes
	Example

	RESET PLOT
	Syntax

	RESET REPORT
	Syntax

	RUN
	Syntax
	Usage Notes
	Example

	SET PLOT
	Syntax
	Related Commands
	Example

	SET REPORT
	Syntax
	Related Commands
	Examples

	SQLCATALOG
	Syntax
	Example

	SQLSCHEMA
	Syntax
	Example

	SETPROMPT
	Syntax
	Usage Notes
	Examples

	SHOW PLOT
	Syntax
	Usage Notes
	Example

	SHOW REPORT
	Syntax
	Usage Notes
	Examples

	START MEASSUBSYS
	Syntax
	Related Command
	Usage Notes

	START MEASUREMENT
	Syntax
	Related Command
	Usage Notes
	Examples

	STATUS MEASSUBSYS
	Syntax
	Usage Note
	Examples

	STATUS MEASUREMENT
	Syntax
	Usage Note
	Examples

	STOP MEASSUBSYS
	Syntax
	Usage Notes
	Related Commands
	Example

	STOP MEASUREMENT
	Syntax
	Examples

	SWAPVOL
	Syntax
	Usage Note

	SYSTEM
	Syntax
	Example

	TIME
	Syntax
	Examples

	VOLUME
	Syntax
	Examples

	WARNINGS
	Syntax
	Usage Note
	Example

	!
	Syntax
	Related Commands
	Examples

	3 Entities and Counters
	Counters Overview
	Interpreting Counter Values
	Accumulating Counters
	Average Queue Time Counters (ZMS style Only)
	Average Service Time Counters (ZMS style Only)
	Busy Counters
	Elapsed Counters
	Incrementing Counters
	Max Queue Counters (Legacy Style Only)
	Max Value Counters
	Queue Counters
	Queue-Busy Counters
	Response Time Counters
	Sampling Counters
	Snapshot Counters
	Syslink Counters
	Timer Cell Counters

	Identifying Data File Errors

	Common Entity Header Fields
	DDL Header Fields (Legacy Style)
	DDL Header Fields (ZMS Style)
	ERROR
	OBJECT-UID
	FROM-TIMESTAMP
	TO-TIMESTAMP
	DELTA-TIME
	SYSTEM-NAME
	OS-VERSION
	LOADID
	LOAD-ID
	CPU-NUM
	TEMPLATE-VERSION
	FORMAT-VERSION
	DATA-VERSION
	SUBSYSTEM-VERSION

	Measure Support for Open System Services (OSS)
	Handling of OSS File Pathnames
	Guardian File-Name Reuse
	Handling of the Creation Version Serial Number (CRVSN)
	Measure Identification (MID)
	OSS Journal Segment
	Entity Report Formats

	Measure Support for ANSI SQL Names
	Handling of ANSI SQL Names
	SQL Journal Segment
	Entity Report Formats

	Measure Support for DLLs
	Measure G12 and later PVUs support measurement of DLLs.
	Code Space Specification

	Aggregate Data Measurement
	Additional Information About DLLs in This Manual
	Command Interfaces
	Information Displays
	Entity Specifications
	External Record Definitions
	Callable Procedures

	Accessing ZMS style Records (MEASDDLZ)
	CLUSTER
	Entity Specification Syntax for CLUSTER Entities
	DDL Record for CLUSTER Entities (Legacy Style)
	DDL Record for CLUSTER Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definitions
	DDL Record Description Fields
	REMOTE‑SYSTEM
	REMOTE‑SYSTEM‑NAME
	MESSAGES‑SENT
	SENT‑BYTES
	RETURNED‑BYTES
	MESSAGES‑RECEIVED
	RECEIVED‑BYTES
	REPLY‑BYTES
	SENT‑BYTES‑F
	RETURNED‑BYTES‑F
	RECEIVED‑BYTES‑F
	REPLY‑BYTES‑F

	Usage Notes for All CLUSTER Entities
	Usage Note for G-Series CLUSTER Entities
	Usage Note for H-Series and J-Series

	CONTROLLER
	Entity Specification Syntax for CONTROLLER Entities
	DDL Record for CONTROLLER Entities
	CHANNEL
	CTRL
	CTRL‑TYPE
	REQUESTS
	TOTAL‑IO‑BYTES
	IO‑QTIME
	IO‑QLEN‑MAX

	Usage Note for CONTROLLER Entities

	CPU
	Entity Specification Syntax for CPU Entities
	DDL Record for CPU Entities (Legacy Style)
	DDL Record for CPU Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	CPU‑TYPE
	CPU‑SUBTYPE
	MEMORY‑PAGES
	MEM‑MB
	PCBS
	LCBS
	PAGE‑SIZE‑BYTES
	MEM‑FRAMES
	MEM‑INITIAL‑LOCK
	IPUS
	CPU‑BUSY‑TIME
	CPU‑QTIME
	CPU‑QLEN‑MAX
	MEM‑QTIME
	MEM‑QLEN‑MAX
	MM-PAGE-SCANS
	DISPATCHES
	SWAPS
	INTR‑BUSY‑TIME
	PROCESS‑OVHD
	SEND‑BUSY‑TIME
	DISC‑IOS
	CACHE‑HITS
	TRANSACTIONS
	RESPONSE‑TIME
	MEMORY‑PAGES32
	ACCEL‑BUSY‑TIME
	NATIVE-BUSY-TIME
	TNS‑BUSY‑TIME
	PROCESSH-SAMPLES
	COMP‑TRAPS
	TNSR‑BUSY‑TIME
	PAGE‑REQUESTS
	PAGE‑SCANS
	STARTING‑FREE‑MEM
	ENDING‑FREE‑MEM
	STARTING‑UCME
	ENDING‑UCME
	STARTING‑UDS
	ENDING‑UDS
	STARTING-UDS-LOCK
	ENDING-UDS-LOCK
	STARTING‑SDS
	ENDING‑SDS
	STARTING-FREE-CIDS
	ENDING-FREE-CIDS
	STARTING-SDS-LOCK
	ENDING-SDS-LOCK
	STARTING‑UCL
	ENDING‑UCL
	STARTING-UCL-LOCK
	ENDING-UCL-LOCK
	STARTING‑SCL
	ENDING‑SCL
	STARTING-SCL-LOCK
	ENDING-SCL-LOCK
	UNSP-PAGES-QTIME
	UNSP-PAGES-QLEN-MAX
	UNSP-PAGES-START
	UNSP-PAGES-END
	PROCESSOR-STATUS
	DISC-IOS-F
	CACHE-HITS-F
	SVNET
	LINK-PREPUSH-MSGS
	LINK-READLINK-MSGS
	LINK-LARGE-MSGS
	READLINKCACHE-ALL
	READLINKCACHE-CTRL
	READLINKCACHE-NONE
	REPLYCTRLCACHE-MSGS
	RESERVED

	Usage Notes for All CPU Entities
	Usage Note for D-Series CPU Entities
	Usage Notes for G-Series CPU Entities
	Usage Notes for H-Series and J-Series CPU Entities

	DEVICE
	Entity Specification Syntax for DEVICE Entities
	DDL Record for DEVICE Entities (Legacy Style)
	DDL Record for DEVICE Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PIN
	DEVICE‑NAME
	LOGICAL‑DEVICE
	CTRL
	UNIT
	DEVICE‑TYPE
	DEVICE‑SUBTYPE
	REQUESTS
	READ‑BUSY‑TIME
	WRITE‑BUSY‑TIME
	READS
	WRITES
	INPUT‑BYTES
	OUTPUT‑BYTES
	CHANNEL
	SERVERNET
	CONFIG‑NAME
	ADAPTER‑NAME
	SAC‑NAME
	GMS
	READ‑QBUSY‑TIME
	READ‑QTIME
	READ‑QLEN‑MAX
	WRITE‑QBUSY‑TIME
	WRITE‑QTIME
	WRITE‑QLEN‑MAX
	DEVICE‑QBUSY‑TIME
	INPUT‑BYTES‑F
	OUTPUT‑BYTES‑F
	SCSI-ID
	PLPT structure
	PLPT-FLAGS
	LUN
	PATH
	TARGET-ID
	DBIO-READS
	DBIO-WRITES

	Usage Notes for All DEVICE Entities
	Usage Notes for Measure H03 and J01 PVUs
	Usage Note for G-Series DEVICE Entities
	Usage Note for H-Series and J-Series Device Entities
	Examples

	DISC
	Entity Specification Syntax for DISC Entities
	DDL Record for DISC Entities (Legacy Style)
	DDL Record for DISC Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PIN
	DEVICE-NAME
	LOGICAL-DEVICE
	CTRL
	UNIT
	DEVICE-TYPE
	DEVICE-SUBTYPE
	DISC-PROCESS-TYPE
	REQUEST-QTIME
	REQUEST-QLEN-MAX
	REQUESTS
	READ-BUSY-TIME
	WRITE-BUSY-TIME
	SEEK-BUSY-TIME
	READS
	WRITES
	SEEKS
	INPUT-BYTES
	OUTPUT-BYTES
	SWAPS
	CBLKS-INUSE-QTIME
	CBLKS-INUSE-MAX
	ABLKS-INUSE-QTIME
	ABLKS-INUSE-MAX
	C
	CONTROL-POINTS
	CONTROL-POINT-WRITES
	FREE-SPACE-IOS
	REQUESTS-BLOCKED
	CHANNEL
	SERVERNET
	CAPACITY
	STARTING-FREE-SPACE
	ENDING-FREE-SPACE
	STARTING-FREE-BLOCKS
	ENDING-FREE-BLOCKS
	CW
	VOLSEM-QTIME
	VOLSEM-QLEN-MAX
	STORAGE-POOL
	CONFIG-NAME
	ADAPTER-NAME
	SAC-NAME
	GMS
	READ-QBUSY-TIME
	READ-QTIME
	READ-QLEN-MAX
	WRITE-QBUSY-TIME
	WRITE-QTIME
	WRITE-QLEN-MAX
	DEVICE-QBUSY-TIME
	INPUT-BYTES-F
	OUTPUT-BYTES-F
	SCSI-ID
	PLPT structure
	PLPT-FLAGS
	LUN
	PATH
	TARGET-ID
	DBIO-READS
	DBIO-WRITES
	CN
	DEFREQS
	DEFREQ-QTIME
	DEFREQ-QLEN-MAX
	DEFERRED-QTIME
	DEFERRED-QLEN-MAX

	Usage Notes for All DISC Entities
	Usage Notes for G-Series DISC Entities
	Usage Notes for H-Series and J-Series DISC Entities
	Usage Notes for Measure H03 and J01 PVUs
	Examples

	DISCOPEN
	Entity Specification Syntax for DISCOPEN Entities
	DDL Record for DISCOPEN Entities (Legacy Style)
	DDL Record for DISCOPEN Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	OPENER-CPU
	OPENER-PIN
	OCB-NUMBER
	OPENER-SYSTEM-NAME
	FILE-NAME
	FILE-TYPE
	DRIVER-INPUT-CALLS
	DRIVER-OUTPUT-CALLS
	CACHE-HITS
	CACHE-WRITE-HITS
	BLOCK-SPLITS
	REQUESTS-BLOCKED
	RECORD-TYPE
	REQUESTS
	LOCKWAIT-TIME
	MAX-LOCKWAIT-TIME
	LOCK-TIMEOUTS
	LOCK-BOUNCES
	CACHE-WRITE-CLEANS
	DEVICE-NAME
	STORAGE-POOL
	DBIO-INPUT-CALLS
	DBIO-OUTPUT-CALLS
	SQL-OPERATION-TIME
	FILE-NAME-MID

	Usage Notes for All DISCOPEN Entities
	Usage Notes for G-Series DISCOPEN Entities
	Example

	DISKFILE
	Entity Specification Syntax for DISKFILE Entities
	DDL Record for DISKFILE Entities (Legacy Style)
	DDL Record for DISKFILE Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	FCB-NUMBER
	FILE-NAME
	FILE-TYPE
	FILE-CODE
	STARTING-EOF
	ENDING-EOF
	TRANSIENT-OPENS
	OPEN-QTIME
	OPEN-QLEN-MAX
	DRIVER-INPUT-CALLS
	DRIVER-OUTPUT-CALLS
	CACHE-READ-HITS
	CACHE-WRITE-HITS
	CACHE-WRITE-CLEANS
	REQUESTS
	REQUESTS-BLOCKED
	LOCKWAIT-TIME
	MAX-LOCKWAIT-TIME
	LOCK-TIMEOUTS
	LOCK-BOUNCES
	BLOCK-SPLITS
	EXTENT-ALLOCATIONS
	DEVICE-NAME
	STORAGE-POOL
	DBIO-INPUT-CALLS
	DBIO-OUTPUT-CALLS
	SQL-INSERTS
	SQL-UPDATES
	SQL-DELETES
	STARTING-ROWS
	SQL-ENDING-ROWS
	FILE-NAME-MID
	OSS-BLOCK-WRITES
	OSS-BLOCK-WRITE-BYTES
	OSS-CACHE-CALLBACKS
	OSS-CALLBACK-WRITES

	Usage Notes for All DISKFILE Entities
	Usage Notes for G-Series DISKFILE Entities
	Example

	FILE
	Measure and OSS File Opens
	Record Creation

	OSS Naming Conventions
	IP-ADDR

	ANSI SQL Naming Conventions
	Entity Specification Syntax
	DDL Record for FILE Entities (Legacy Style)
	DDL Record for FILE Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	OPENER-CPU
	OPENER-PIN
	FILE-NUMBER
	FILE-NAME
	FILE-SYSTEM-NAME
	FILE-TYPE
	DEVICE-TYPE
	FILE-BUSY-TIME
	READS
	WRITES
	UPDATES-OR-REPLIES
	DELETES-OR-WRITEREADS
	INFO-CALLS
	RECORDS-USED
	RECORDS-ACCESSED
	DISC-READS
	MESSAGES
	MESSAGE-BYTES
	LOCK-WAITS
	TIMEOUTS-OR-CANCELS
	ESCALATIONS
	OPENER-PROCESSNAME
	OPENER-PROGRAM-FILENAME
	DEVICE-NAME
	OPENER-DEVICE-NAME
	MESSAGE-BYTES-F
	DBIO-READS
	DBIO-WRITES
	DBIO-READ-BYTES
	DBIO-WRITE-BYTES
	FILE-NAME-MID
	OPENER-OSSPID
	OPENER-PROGRAM-FNAME-MID
	FILE-OPEN-TYPE
	IP
	READ-BYTES
	WRITE-BYTES
	OSS-CACHE-READS
	OSS-CACHE-WRITES
	OSS-CACHE-READ-BYTES
	OSS-CACHE-WRITE-BYTES
	OSS-BLOCK-READS
	OSS-BLOCK-READ-BYTES
	OSS-FLOW-CONTROLS
	MISC-CALLS

	Usage Notes for All FILE Entities
	Usage Notes for G-Series FILE Entities
	Usage Notes for H-Series and J-Series FILE Entities
	Command Examples: OSS File Opens
	OSS Opens of Disk Files
	OSS Opens of FIFOs
	OSS Opens of Pipes
	OSS Opens of AF_UNIX Sockets
	OSS Opens of AF_UNIX Sockets Using socketpair()
	OSS Opens of AF_UNIX Stream Sockets Using socket() or accept()
	OSS Opens of AF_UNIX Datagram Sockets
	OSS Opens of OSS AF_INET and AF_INET6 Sockets
	OSS Opens of OSS AF_INET and AF_INET6 Stream Sockets
	OSS Opens of OSS AF_INET and AF_INET6 Datagram Sockets
	Example

	LINE
	Entity Specification Syntax for LINE Entities
	DDL Record for LINE Entities (Legacy Style)
	DDL Record for LINE Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PIN
	DEVICE-NAME
	LOGICAL-DEVICE
	CTRL
	UNIT
	DEVICE-TYPE
	DEVICE-SUBTYPE
	READ-BUSY-TIME
	WRITE-BUSY-TIME
	REQUESTS
	INPUT-BYTES
	OUTPUT-BYTES
	INPUT-DATA-BYTES
	OUTPUT-DATA-BYTES
	READS
	WRITES
	RETRIES
	TRANSACTIONS
	RESPONSE-TIME
	CHANNEL
	TRACKID
	CLIP
	LINE
	INPUT-BYTES
	OUTPUT-BYTES
	INPUT-DATA-BYTES
	OUTPUT-DATA-BYTES
	INPUT-BYTES-F
	OUTPUT-BYTES-F
	INPUT-DATA-BYTES-F
	OUTPUT-DATA-BYTES-F

	Usage Notes for G-Series LINE Entities
	Usage Notes for H-Series and J-Series LINE Entities

	NETLINE
	Entity Specification Syntax for NETLINE Entities
	DDL Record for NETLINE Entities (Legacy Style)
	DDL Record for NETLINE Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PIN
	DEVICE-NAME
	LOGICAL-DEVICE
	CTRL
	UNIT
	DEVICE-TYPE
	DEVICE-SUBTYPE
	WRITE-BUSY-TIME
	READ-BUSY-TIME
	REQUESTS
	READS
	WRITES
	L2IN-BYTES
	L2OUT-BYTES
	DIN4-BYTES
	DOUT4-BYTES
	CIN4-BYTES
	COUT4-BYTES
	U64-BYTES
	U128-BYTES
	U256-BYTES
	U512-BYTES
	U1024-BYTES
	U2048-BYTES
	U4096-BYTES
	O4095-BYTES
	CHANNEL
	TRACKID
	CLIP
	LINE
	L2IN-BYTES-F
	L2OUT-BYTES-F
	DIN4-BYTES-F
	DOUT4-BYTES-F
	CIN4-BYTES-F
	COUT4-BYTES-F

	Usage Notes for All NETLINE Entities
	Usage Notes for G-Series NETLINE Entities
	Usage Notes for H-Series and J-Series NETLINE Entities

	OPDISK
	Entity Specification Syntax for OPDISK Entities
	DDL Record for OPDISK Entities (Legacy Style)
	DDL Record for OPDISK Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PIN
	DEVICE-NAME
	LOGICAL-DEVICE
	CTRL
	UNIT
	DEVICE-TYPE
	DEVICE-SUBTYPE
	VOLUME-NAME
	CELL
	SIDE
	REQUEST-QTIME
	REQUEST-QLEN-MAX
	REQUESTS
	READ-BUSY-TIME
	WRITE-BUSY-TIME
	SEEK-BUSY-TIME
	READS
	WRITES
	SEEKS
	INPUT-BYTES
	OUTPUT-BYTES
	CHANNEL

	Usage Notes for All OPDISK Entities

	OSSCPU
	Entity Specification Syntax for OSSCPU Entities
	DDL Record for OSSCPU Entities (Legacy Style)
	DDL Record for OSSCPU Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PXS-BYTES-ALLOWED
	CACHE-BLOCK-SIZE
	CACHE-BLOCKS-ALLOWED
	PP-BLOCK-SIZE
	PP-BLOCKS-ALLOWED
	PXS-ENDING-BYTES
	PXS-FAILURES
	FS-DIRECT-READS
	FS-DIRECT-READ-BYTES
	FS-DIRECT-WRITES
	FS-DIRECT-WRITE-BYTES
	FS-CACHE-READS
	FS-CACHE-READ-BYTES
	FS-CACHE-WRITES
	FS-CACHE-WRITE-BYTES
	FS-CACHE-VALID-QTIME
	FS-CACHE-VALID-QMAX
	FS-CACHE-ACTIVE-QTIME
	FS-CACHE-ACTIVE-QMAX
	FS-CACHE-DIRTY-QTIME
	FS-CACHE-DIRTY-QMAX
	FS-CACHE-RD-READ-REQS
	FS-CACHE-WT-READ-REQS
	FS-CACHE-READ-BLOCKS
	FS-CACHE-WRITE-REQS
	FS-CACHE-WRITE-BLOCKS
	FS-PREFETCH-BLOCKS
	FS-PREFETCH-USED
	FS-REREAD-STOLEN-BLKS
	FS-MAP-FAILURES
	FM-CACHE-INFOS
	FM-CALLBACKS
	FM-CALLBACK-WT-REQS
	FM-CALLBACK-WT-BLOCKS
	FM-STOLEN-BLK-WT-REQS
	PP-BLOCK-INUSE-QTIME
	PP-BLOCK-INUSE-QMAX
	PP-ALLOC-FAILURES
	PS-GETTIME-REQS
	PS-SETTIME-REQS
	LCL, REM
	PS-PROXY-READS
	PS-PROXY-WRITES
	PS-PROXY-READ-BYTES
	PS-PROXY-WRITE-BYTES
	PS-SELECT-RCVD
	PS-SELECT-SENT
	PS-SELECT-READY
	LS-SENDS
	LS-SEND-BYTES
	LS-RECVS
	LS-RECV-BYTES
	LS-QUEUES
	LS-QUEUE-BYTES
	LS-AWAKES
	LS-SELECTS

	Usage Notes for OSSCPU Entities

	OSSNS
	Entity Specification Syntax for OSSNS Entities
	DDL Record for OSSNS Entities (Legacy Style)
	DDL Record for OSSNS Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	IC-ENTRIES
	LC-ENTRIES
	RR-PROCESSED
	RR-REDIR-SENT
	RR-REDIR-PROCESSED
	IC-LOOKUPS
	IC-HITS
	IC-DIRTY-QTIME
	LC-LOOKUPS
	LC-HITS
	LC-INUSE-QTIME
	CHECKPOINT-REQS
	CHECKPOINT-BLKS
	SEM-WAITS
	SEM-WAIT-QTIME
	SEM-WAIT-QLEN-MAX
	DP2-DD-REQS
	DP2-MESSAGES
	DP2-MSG-QTIME
	DP2-MSG-QLEN-MAX
	PS-MESSAGES
	PS-MSG-QTIME
	PS-MSG-QLEN-MAX
	LS-MESSAGES
	LS-MSG-QTIME
	LS-MSG-QLEN-MAX
	GETTIME-REQS
	SETTIME-REQS

	Usage Notes for OSSNS Entities

	PROCESS
	Entity Specification Syntax for PROCESS Entities
	DDL Record for PROCESS Entities (Legacy Style)
	DDL Record for PROCESS Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PIN
	PROCESS-NAME
	PROGRAM-FILE-NAME
	PRIORITY
	CPU-BUSY-TIME
	READY-TIME
	MEM-QTIME
	DISPATCHES
	PAGE-FAULTS
	PRES-PAGES-QTIME
	PRES-PAGES-MAX
	EXT-SEGS-QTIME
	EXT-SEGS-MAX
	VSEMS
	RECV-QTIME
	RECV-QLEN-MAX
	MESSAGES-SENT
	SENT-BYTES
	RETURNED-BYTES
	MESSAGES-RECEIVED
	RECEIVED-BYTES
	REPLY-BYTES
	LBC-ALLOCATIONS
	MQC-ALLOCATIONS
	LCB-ALLOC-FAILURES
	MQC-ALLOC-FAILURES
	LCBS-INUSE-QTIME
	MQCS-INUSE-QTIME
	MAX-LCBS-INUSE
	MAX-MQCS-INUSE
	CHECKPOINTS
	USERID
	CREATORID
	ACCEL-BUSY-TIME
	NATIVE-BUSY-TIME
	TNS-BUSY-TIME
	COMP-TRAPS
	PROGRAM-ACCELERATED
	ANCESTOR-CPU
	ANCESTOR-PIN
	ANCESTOR-SYSNAME
	ANCESTOR-PROCESS-NAME
	TNSR-BUSY-TIME
	TNSR-PROCESS
	HOMETERM-SYSNAME
	HOMETERM-NAME
	PAGE-SIZE-BYTES
	ALLOC-SEG-CALLS
	LOCK-PAGES-QTIME
	LOCK-PAGES-MAX
	UCL-QTIME
	UCL-MAX
	UCL-LOCK-QTIME
	UCL-LOCK-MAX
	FILE-OPEN-CALLS
	INFO-CALLS
	BEGIN-TRANS
	ABORT-TRANS
	DEVICE-NAME
	SENT-BYTES-F
	RETURNED-BYTES-F
	RECEIVED-BYTES-F
	REPLY-BYTES-F
	PRES-PAGES-START
	PRES-PAGES-END
	ABS-SEGS-QTIME
	ABS-SEGS-QLEN-MAX
	ABS-SEGS-START
	ABS-SEGS-END
	MSGS-SENT-QTIME
	MSGS-SENT-QLEN-MAX
	SENT-CBYTES
	RETURNED-CBYTES
	RECEIVED-CBYTES
	REPLY-CBYTES
	OSSPID
	PROGRAM-FILE-NAME_MID
	OSS-TTY-WRITES
	OSS-TTY-READS
	OSS-TTY-WRITE-BYTES
	OSS-TTY-READ-BYTES
	OSS-TTY-WAIT-TIME
	OSS-DEV-NULL-OPS
	OSSNS-DD-CALLS
	OSSNS-REQUESTS
	OSSNS-MESSAGE-BYTES
	OSSNS-REDIRECTS
	OSSNS-WAIT-TIME
	LAUNCHES
	LAUNCH-WAIT-TIME
	OPEN-CLOSE-WAIT-TIME
	GMOM-NODE
	GMOM-CPU
	GMOM-PIN
	GMOM-JOBID
	GMOM-FULL-ID
	GMOM-SYSNAME
	GMOM-PROCESS-NAME
	SYSTEM-PROCESS
	IPUS
	IPU-SWITCHES
	IPU-NUM
	IPU-NUM-PREV

	Usage Note for All PROCESS Entities
	Usage Notes for G-Series PROCESS Entities
	Usage Notes for H-Series and J-Series PROCESS Entities

	PROCESSH
	Entity Specification Syntax for PROCESSH Entities
	DDL Record for PROCESSH Entities (Legacy Style)
	DDL Record for PROCESSH Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PIN
	PROCESS-NAME
	PROGRAM-FILE-NAME
	PRIORITY
	PROCESS-BUSY-SAMPLES
	CODE-SPACE
	CODE-SPACE-BUSY-SAMPLES
	CODE-RANGE
	CODE-RANGE-BUSY-SAMPLES
	USERID
	CREATORID
	ACCEL-BUSY-SAMPLES
	TNS-BUSY-SAMPLES
	NATIVE-BUSY-SAMPLES
	ANCESTOR-CPU
	ANCESTOR-PIN
	ANCESTOR-SYSNAME
	ANCESTOR-PROCESS-NAME
	TNSR-BUSY-SAMPLES
	DEVICE-NAME
	OSSPID
	PROGRAM-FILE-NAME-MID
	CODE-RANGE-FLAGS
	CODE-RANGE-LENGTH
	OBJECT-DEVICE-NAME
	OBJECT-FILE-NAME-MID

	Usage Notes for G-Series PROCESSH Entities
	Usage Notes for H-Series and J-Series PROCESSH Entities
	Examples of PROCESSH Measurements

	SERVERNET
	Entity Specification Syntax for SERVERNET Entities
	DDL Record for SERVERNET Entities (Legacy Style)
	DDL Record for SERVERNET Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	CHANNEL
	CTRL
	CTRL-TYPE
	REQUESTS
	TOTAL-IO-BYTES
	IO-QTIME
	IO-QLEN-MAX
	ADAPTER-NAME
	SAC-NAME
	NODE-CLASS
	NODE-CLASS-S
	GMS
	SUBDEVICE
	REMOTE-CPU
	PF
	PORT
	FIBER
	IO-QBUSY-TIME
	READ-REQUESTS
	READ-BYTES
	READ-QTIME
	READ-QLEN-MAX
	READ-QBUSY-TIME
	WRITE-REQUESTS
	WRITE-BYTES
	WRITE-QTIME
	WRITE-QLEN-MAX
	WRITE-QBUSY-TIME
	READ-CBYTES
	WRITE-CBYTES
	SERVER-QTIME
	SERVER-QLEN-MAX
	RETRIES
	ACKS
	X-DEFRD-BUSY-TIME
	Y DEFRD-BUSY-TIME
	READ-CREQUESTS
	WRITE-CREQUESTS

	Usage Notes for SERVERNET Entities
	Usage Notes for ServerNet IPC and RIPC
	Usage Notes for CLIMs
	Examples of Configuring Measurements for ServerNet Cluster
	Examples of Configuring Measurements for CLIMs

	SQLPROC
	Entity Specification Syntax for SQLPROC Entities
	DDL Record for SQLPROC Entities (Legacy Style)
	DDL Record for SQLPROC Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PIN
	PROCESS-NAME
	PROGRAM-FILE-NAME
	PRIORITY
	USERID
	SQL-OBJ-RECOMPILES
	SQL-OBJ-RECOMPILE-TIME
	SQL-STMT-RECOMPILES
	SQL-STMT-RECOMPILE-TIME
	SQL-NEWPROCESSES
	SQL-NEWPROCESS-TIME
	OPENS
	OPEN-TIME
	CREATORID
	ANCESTOR-CPU
	ANCESTOR-PIN
	ANCESTOR-SYSNAME
	ANCESTOR-PROCESS-NAME
	DEVICE-NAME
	OSSPID
	PROGRAM-FILE-NAME-MID
	GMOM-NODE
	GMOM-CPU
	GMOM-PIN
	GMOM-JOBID
	GMOM-FULL-ID
	GMOM-SYSNAME
	GMOM-PROCESS-NAME

	Usage Note for New Format SQLPROC Entities

	SQLSTMT
	Entity Specification Syntax for SQLSTMT Entities
	DDL Record for SQLSTMT Entities (Legacy Style)
	DDL Record for SQLSTMT Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PIN
	PROCESS-NAME
	PROGRAM-FILE-NAME
	PRIORITY
	USERID
	RUN-UNIT
	STATEMENT-INDEX
	CALLS
	ELAPSED-BUSY-TIME
	RECORDS-USED
	RECORDS-ACCESSED
	DISC-READS
	MESSAGES
	MESSAGE-BYTES
	SORTS
	ELAPSED-SORT-TIME
	RECOMPILES
	ELAPSED-RECOMPILE-TIME
	LOCK-WAITS
	TIMEOUTS
	ESCALATIONS
	CREATORID
	ANCESTOR-CPU
	ANCESTOR-PIN
	ANCESTOR-SYSNAME
	ANCESTOR-PROCESS-NAME
	DEVICE-NAME
	MESSAGE-BYTES-F
	CALLS-F
	RECORDS-USED-F
	RECORDS-ACCESSED-F
	DISC-READS-F
	MESSAGES-F
	OSSPID
	PROGRAM-FILE-NAME-MID
	RUN-UNIT-128
	GMOM-NODE
	GMOM-CPU
	GMOM-PIN
	GMOM-JOBID
	GMOM-FULL-ID
	GMOM-SYSNAME
	GMOM-PROCESS-NAME
	VERSION
	CREATOR-TYPE
	RUN-UNIT-LEN
	RUN-UNIT
	FULL-NAME-OFFSET
	FULL-NAME-LEN
	FULL-NAME

	Usage Notes for All SQLSTMT Entities
	Example

	SYSTEM
	Entity Specification Syntax for SYSTEM Entities
	DDL Record for All SYSTEM Entities (Legacy Style)
	DDL Record for All SYSTEM Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	REMOTE-SYSTEM
	REMOTE-SYSTEM-NAME
	LINKS
	LINK-TIME
	SENT
	RECEIVED
	SENT-FORWARD
	RECEIVED-FORWARD

	Usage Notes for All SYSTEM Entities

	TERMINAL
	Entity Specification Syntax for TERMINAL Entities
	DDL Record for TERMINAL Entities (Legacy Style)
	DDL Record for TERMINAL Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	TERMINAL-NAME
	LOGICAL-DEVICE
	REQUESTS
	READS
	WRITES
	INPUT-BYTES
	OUTPUT-BYTES
	TRANSACTIONS
	RESPONSE-TIME
	INPUT-BYTES-F
	OUTPUT-BYTES-F

	Usage Notes for All TERMINAL Entities
	Usage Notes for G-Series TERMINAL Entities
	Usage Notes for H-Series and J-Series TERMINAL Entities

	TMF
	Entity Specification Syntax for TMF Entities
	DDL Record for TMF Entities (Legacy Style)
	DDL Record for TMF Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	HOME-TRANS
	HOME-TRANS-QTIME
	HOME-TRANS-QMAX
	REMOTE-TRANS
	REMOTE-TRANS-QTIME
	REMOTE-TRANS-QMAX
	HOME-NET-TRANS
	HOME-NET-TRANS-QTIME
	HOME-NET-TRANS-QMAX
	ABORTING-TRANS
	TRANS-BACKOUT-QTIME
	TRANS-BACKOUT-QMAX

	Usage Note for All TMF Entities

	USERDEF
	Entity Specification Syntax for USERDEF Entities
	DDL Record for USERDEF Entities (Legacy Style)
	DDL Record for USERDEF Entities (ZMS Style)
	ID Fields DDL Definition
	Counter Fields DDL Definition
	DDL Record Description Fields
	PIN
	PROCESS-NAME
	PROGRAM-FILE-NAME
	PRIORITY
	NAME
	TYPE
	INDEX
	MAX-VALUE
	TIME-VALUE
	COUNTS
	USERID
	CREATORID
	ANCESTOR-CPU
	ANCESTOR-PIN
	ANCESTOR-SYSNAME
	ANCESTOR-PROCESS-NAME
	DEVICE-NAME
	OSSPID
	PROGRAM-FILE-NAME-MID
	GMOM-NODE
	GMOM-CPU
	GMOM-PIN
	GMOM-JOBID
	GMOM-FULL-ID
	GMOM-SYSNAME
	GMOM-PROCESS-NAME

	Usage Notes for All USERDEF Entities
	Usage Notes for G-Series USERDEF Entities
	Usage Notes for H-Series and J-Series USERDEF Entities

	4 Measure Callable Procedures
	Summary of Measure Procedures
	Measure Procedures Overview
	Reading in Measure Records (DDL)
	Legacy and ZMS Style Records
	Reading in the Declaration Files
	Allocating Space for the Measure Control Block
	Specifying Entity Descriptors
	Measuring a Set of Entities
	Excluding Entities from a Set
	Specifying File and Device Names
	Specifying ANSI SQL Names

	Creating the Configuration Table
	Header Record
	Entity Descriptor Sections
	Trailer Record

	Interpreting Error Codes in Measure Procedures
	Maintaining Compatibility With New Structures in MEASDDLS and MEASCHMA
	Using Timer Cells

	MEAS_ADJUSTZMSRECORD_
	Usage Notes

	MEAS_ALLOCATE_TIMERCELLS_
	MEAS_BUMP_TIMERCELL_
	MEASCLOSE
	MEAS_CODERANGENAME_DEMANGLE_
	MEASCONFIGURE
	Related Procedures

	MEASCONTROL
	MEASCOUNTERBUMP
	MEASCOUNTERBUMPINIT
	MEAS_DEALLOCATE_TIMERCELLS_
	MEASGETVERSION
	MEAS_GETDESCINFO_
	Usage Notes
	Examples

	MEASINFO
	Usage Notes

	MEASLISTCONFIG
	Usage Note

	MEASLISTENAME
	Usage Notes
	Example

	MEASLISTEXTNAMES
	Usage Notes

	MEASLISTGNAME
	Usage Notes
	Example

	MEASLISTOSSNAMES
	Usage Notes

	MEASLISTPNAME
	Usage Notes

	MEASMONCONTROL
	MEASMONSTATUS
	Usage Notes

	MEASOPEN
	Usage Notes

	MEASREAD
	MEASREAD_DIFF_
	Usage Notes

	MEASREADACTIVE
	Usage Note

	MEAS_READACTIVE_
	Usage Notes

	MEAS_READACTIVE_MANY_
	Usage Notes

	MEASREADCONF
	Usage Notes

	MEAS_RETRIEVE_TIMERCELLS_
	MEAS_SQL_MAP_INIT_
	Usage Notes
	Example

	MEAS_SQL_MAP_STOP_
	MEAS_SQLNAME_COMPARE_
	Usage Notes

	MEAS_SQLNAME_RESOLVE_
	Usage Notes

	MEAS_SQLNAME_SCAN_
	Usage Notes
	Example

	MEASSTATUS
	Usage Notes

	MEASWRITE_DIFF_
	Usage Notes

	A Error Messages
	B Error Codes
	C Subsystem Files
	C and C++ Language Usage Notes
	Process Identification Numbers

	D Measure Data File Tool (MEASFT)
	INFO Command
	Syntax
	Example

	SPLIT Command
	Syntax
	Usage Note
	Examples

	HELP Command
	Syntax

	MEASFT Error and Warning Messages

	Index

