
Measure User’s Guide
Abstract

This manual describes how to use the Measure performance monitor to collect and
examine data, through either a command interface or programmatic interface. This
manual is for system operators, system managers, and analysts who balance and tune
HP NonStop™ systems.

Product Version

Measure D45 and G12

Supported Release Version Updates (RVUs)

This manual supports D40.00 and all subsequent D-series RVUs and G06.03 and all
subsequent RVUs unless otherwise indicated by its replacement publication.

Part Number Published
520560-003 December 2004

Document History
Part Number Product Version Published
425663-001 Measure D45

Measure G08
July 2000

427634-001 Measure D45
Measure G09

April 2001

520560-001 Measure D45
Measure G10

August 2002

520560-002 Measure D45
Measure G11

April 2004

520560-003 Measure D45
Measure G12

December 2004

Measure User’s Guide
Index Examples Figures Tables
What’s New in This Manual vii
Manual Information vii
New and Changed Information viii
G10 PVU Changes ix
G09 PVU Changes ix

About This Manual xi
Introduction xi
Who Should Use This Manual xi
What Is in This Manual xi
Examples in This Manual xii
Related Reading xii
Notation Conventions xiv

1. Introduction to Measure
Continuous Operation and Measurement 1-2
Measurable Resources 1-2
Displays of Measurement Data 1-3
Customized Performance Tools 1-3
Measure Support for Open System Services (OSS) 1-4
Measure Support for ANSI SQL Names 1-4
Measure Support for Dynamic-Link Libraries (DLLs) 1-4
Measure Processes and Files 1-4

MEASCHMA 1-5
MEASCOM 1-5
MEASCTL 1-5
MEASDDLS 1-5
MEASDDLF 1-5
MEASDDLB 1-5
MEASDDLZ 1-6
MEASDECS 1-6
MEASFH 1-6
 Hewlett-Packard Company—520560-003
i

Contents 1. Introduction to Measure (continued)
1. Introduction to Measure (continued)
MEASIMMU 1-6
MEASMON 1-6
OMEASG 1-7
OMEASP 1-7
RMEASP 1-7

Relationship Between the Measure Components 1-8

2. Measure Command Interface (MEASCOM)
Command-Language Format 2-1

Entering Commands 2-4
Using Abbreviations in Commands 2-5

Starting and Stopping the Measure Subsystem 2-6
Starting and Stopping MEASCOM 2-7
Redirecting Command Output 2-8
Creating a Custom Startup File 2-9
Accessing Online Help 2-9
Modifying D-Series Command Files for Systems Running G-Series RVUs 2-13
Accessing D-Series Measurement Files From a System Running a G-Series

RVU 2-13

3. Configuring and Running Measurements
The Measurement Configuration 3-1

Entity Types and Specifications 3-2
Creating the Configuration 3-3

Running a Measurement 3-4
Predefined Counters 3-4
Starting a Measurement 3-5
Stopping a Measurement 3-7

Checking Measurement Activity and Data Files 3-8
Checking Subsystem Status 3-8
Checking Data File Size and Content 3-8
Checking Data File Accessibility 3-9

Potential Data File Errors 3-10
Viewing Reports of Measurement Data 3-11

Viewing Reports From Data Files 3-11
Viewing Reports From Active Counters 3-16
Measure User’s Guide—520560-003
ii

Contents 4. Formatting Reports and Plots
4. Formatting Reports and Plots
Controlling Content and Format of Reports 4-1

REPORT Attributes 4-1
Controlling the Report Window 4-6
Displaying Interpreted and Uninterpreted Values 4-8

Plotting Measurement Data 4-10
The Plot Definition 4-11
PLOT Attributes 4-13
Generating Plots 4-16
Changing the Scale 4-22
Changing the Orientation 4-23
Changing the Density 4-26
Changing the Plot Window 4-27

Plotting Execution Modes 4-28
Producing Structured Files of Measurement Data 4-31

Step 1: Produce Structured Report Files 4-31
Step 2: Load the Structured Files 4-32
Step 3: Build the Data Dictionary 4-33
Generating Reports Using Enform and SQL/MP Products 4-34
Loading Data From Different Systems to Common Files 4-34

5. Defining Custom Counters
Task 1: Instrument an Application 5-1

Step 1: Source in the MEASDECS File 5-2
Step 2: Declare Integer Variable, Array, and Offset 5-2
Step 3: Initialize the Counter (Call MEASCOUNTERBUMPINIT) 5-2
Step 4: Bump the Counter (Call MEASCOUNTERBUMP) 5-2
Sample TAL Program 5-3

Task 2: Measure the Application 5-6
Step 1: Specify the Processes Running the Application 5-6
Step 2: Specify the User-Defined Counters in the Application to Measure 5-6
Considerations 5-7

Sample COBOL Application 5-9

6. Creating a Custom Measurement Application
Preparing Your Program and Defining the Configuration 6-1

Reading Declaration Files 6-3
Allocating Space for the Measure Control Block 6-3
Defining Entities 6-4
Measure User’s Guide—520560-003
iii

Contents 6. Creating a Custom Measurement
Application (continued)
6. Creating a Custom Measurement Application (continued)
Preparing the Configuration Table 6-6

Starting and Stopping the Measure Subsystem 6-7
Starting and Stopping a Measurement 6-9

Step 1: Call MEASOPEN 6-9
Step 2: Call MEASCONFIGURE 6-9
Step 3: Call MEASCONTROL 6-10
Step 4: Call MEASCLOSE (Optional) 6-10

Reading Counter Records 6-13
Reading Counter Records From a Data File 6-14
Reading Active Counters 6-17

Checking the Status of the Subsystem or a Measurement 6-19
Reading the Measurement Configuration 6-21
Modifying D-Series Applications for G-Series Systems 6-23

7. Balancing and Tuning a System
Balancing a System 7-2
Tuning a System 7-3

Learning About the System and Its Applications 7-5
Correcting Outstanding Problems 7-9
Measuring the System 7-9
Checking and Tuning Problem Areas 7-10

A. Creating an Enform Report From Measure Data
Calculating Values A-1

Busy Values A-1
Queue Lengths A-2
Rates A-3

Creating User-Defined Variables A-3
Creating User-Defined Records A-4
Creating an Enform Report A-7

NEWSUBVL—Establishing the Subvolume A-7
STARTENF—Creating the Report A-16
Measure User’s Guide—520560-003
iv

Contents B. Examples of RECORD Statements and FIND
Queries
B. Examples of RECORD Statements and FIND Queries

C. Loading Measure Data Into an SQL Table

D. Example of Measurement Application in C

E. Converting Existing Applications or Enform Reports to ZMS
Style Record Formats
Using New Counter Fields E-1
Using Existing Counter Fields E-1
Application Conversion Considerations E-2

Index

Examples
Example 4-1. Legacy Format Report (Listed Format) 4-7
Example 4-2. Brief Version of Legacy Format Report 4-7
Example 4-3. Setting a Report Window 4-8
Example 4-4. Report of Uninterpreted Counter Values 4-9
Example 4-5. Typical Two-Axis Plot of CPU-BUSY-TIME 4-16
Example 4-6. Two-Axis Plot Showing One-Hour Intervals 4-17
Example 4-7. Two-Axis Plot Converted to Bar Graph 4-18
Example 4-8. Plot of CPU-BUSY-TIME and FILE-BUSY-TIME Data 4-21
Example 4-9. Two-Axis Plot of Five Busiest CPUs 4-22
Example 4-10. Plot of Five Busiest CPUs, Narrowed Report Window 4-22
Example 4-11. Changing the Orientation of a Two-Axis Plot 4-24
Example 4-12. Changing the Orientation of a Bar Graph 4-25
Example 4-13. Changing the Density of a Two-Axis Plot 4-26
Example 4-14. Changing the Density of a Bar Graph 4-27
Example 4-15. Five Busiest CPUs, One-Hour Time Window 4-28
Example 4-16. Typical PROCESSH Report Showing TNS and Accelerated

Modes 4-28
Example 4-17. Typical PROCESSH Report Showing TNS/R Native Mode 4-29
Example 4-18. Plotting Execution Modes—TNS and Accelerated Code

Samples 4-30
Example 4-19. Plotting Execution Modes—TNS/R Native Code Samples 4-30
Example 5-1. TAL Application Containing User-Defined Counters 5-3
Example 5-2. TAL Source of the MEAS^BUMP Procedure 5-9
Example 5-3. COBOL Application Containing User-Defined Counters 5-10
Example 6-1. Starting and Stopping the Subsystem 6-8
Measure User’s Guide—520560-003
v

Contents Examples
Examples
Example 6-2. Starting and Stopping a Measurement 6-11
Example 6-3. Reading Records From a Data File 6-16
Example 6-4. Reading Active Counters 6-19
Example 6-5. Using MEASMONSTATUS and MEASSTATUS 6-20
Example 6-6. Restarting a Measurement 6-22
Example A-1. DDLXCHNG File for Enform Reporting A-9
Example A-2. FUPXCHNG File for Enform Reporting A-12
Example A-3. FINDBCPU Query for Enform Reporting A-12
Example A-4. FINDPROC Query for Enform Reporting A-13
Example A-5. QDPROC Query for Enform Reporting A-14
Example B-1. DDL RECORD Statement for Unstructured CPU File B-1
Example B-2. Enform FIND Query for Unstructured CPU File B-2
Example B-3. DDL RECORD Statement for Entry-Sequenced CPU File B-3
Example B-4. DDL RECORD Statement for Unstructured PROCESS File B-4
Example B-5. Enform FIND Query for Unstructured PROCESS File B-5
Example B-6. DDL RECORD Statement for Entry-Sequenced PROCESS File B-7
Example D-1. Measurement Application in C D-1

Figures
Figure 1-1. Measure Subsystem and High-Level Interface 1-8
Figure 4-1. Example: Basic Two-Axis Plot Format 4-10
Figure 4-2. Example: Basic Bar Graph Format 4-10
Figure 7-1. Tuning Flow Chart 7-4
Figure 7-2. Sample System Diagram: D-Series RVU 7-6
Figure 7-3. Sample System Diagram: G-Series RVU 7-7
Figure 7-4. Sample Application Diagram 7-8

Tables
Table 2-1. MEASCOM Commands 2-2
Table 4-1. MEASCOM REPORT Attributes 4-3
Table 4-2. MEASCOM PLOT Attributes 4-14
Table 4-3. Command Option Effects on Data Written to Structured Files 4-31
Table 5-1. User-Defined Counters 5-1
Table 6-1. Measure Callable Procedures 6-2
Table 6-2. MEASDECS Entity Descriptors 6-4
Measure User’s Guide—520560-003
vi

What’s New in This Manual
Manual Information

Measure User’s Guide

Abstract

This manual describes how to use the Measure performance monitor to collect and
examine data, through either a command interface or programmatic interface. This
manual is for system operators, system managers, and analysts who balance and tune
HP NonStop™ systems.

Product Version

Measure D45 and G12

Supported Release Version Updates (RVUs)

This manual supports D40.00 and all subsequent D-series RVUs and G06.03 and all
subsequent RVUs unless otherwise indicated by its replacement publication.

Document History

Part Number Published
520560-003 December 2004

Part Number Product Version Published
425663-001 Measure D45

Measure G08
July 2000

427634-001 Measure D45
Measure G09

April 2001

520560-001 Measure D45
Measure G10

August 2002

520560-002 Measure D45
Measure G11

April 2004

520560-003 Measure D45
Measure G12

December 2004
Measure User’s Guide—520560-003
vii

What’s New in This Manual New and Changed Information
New and Changed Information
This publication has been updated to reflect new product names:

• Since product names are changing over time, this publication might contain both
HP and Compaq product names.

• Product names in graphic representations are consistent with the current product
interface.

This publication contains these updates for the G11 Measure product version update
(PVU):

• Added Measure Support for ANSI SQL Names on page 1-4

• Updated the description of MEASDDLS on page 1-5

• Added the new MEASDDLZ file on page 1-6

• Added the new commands LISTENAME and LISTEXTNAMES to Table 2-1,
MEASCOM Commands, on page 2-2

• Added the new MEASCOM report attributes STYLE and DOTS to Table 4-1,
MEASCOM REPORT Attributes, on page 4-3

• Added the new command option REPORT STYLE to Table 4-3, Command Option
Effects on Data Written to Structured Files, on page 4-31

• Added Loading Data From Different Systems to Common Files on page 4-34

• Added these procedures to Table 6-1, Measure Callable Procedures, on page 6-2:

° MEAS_ADJUSTZMSRECORD_

° MEAS_GETDESCINFO_

° MEASLISTENAME

° MEASLISTEXTNAMES

° MEASSQLNAME_COMPARE_

° MEASSQLNAME_DECOMPOSE_

° MEASSQLNAME_EDIT_

• Added Appendix E, Converting Existing Applications or Enform Reports to ZMS
Style Record Formats
Measure User’s Guide—520560-003
viii

What’s New in This Manual G10 PVU Changes
G10 PVU Changes
This publication edition contains these changes for the G10 Measure PVU:

• Added the new entities OSSCPU and OSSNS to:

° The table in Measurable Resources on page 1-2

° The table in Entity Types and Specifications on page 3-2

° Table 6-2, MEASDECS Entity Descriptors, on page 6-4

° The command descriptions throughout Section 2, Measure Command Interface
(MEASCOM)

• Added LISTOSSNAMES, LISTGNAME, LISTPNAME, OSSPATH, and PAGESIZE
to Table 2-1, MEASCOM Commands, on page 2-2

G09 PVU Changes
The G09 PVU of Measure provides an integrated view of the HP NonStop Open
System Services (OSS) and Guardian environments. The OSS Measure
enhancements assist you in the analysis and tuning of your OSS-based application by
supporting the capture, display and use of OSS file pathnames in measurement
configurations and reports. OSS file pathname support accounts for differences in
command and programmatic interfaces, entity counters, identifiers, callable interfaces,
error messages, and warning messages. For details on any of these items, see the
Measure Reference Manual.

 Measure G09 Command Interface Changes and Additions
• New commands:

° LIST OSSNAMES maps Guardian file names or Measure MID values to OSS
file pathnames.

° LISTGNAME translates OSS file pathnames to the corresponding Guardian file
name and creation volume sequence number (CRVSN).

° LISTPNAME translates Guardian file names (gname) and creation volume
sequence numbers (CRVSN) to the corresponding OSS file pathname.

° OSSPATH specifies a default directory for expansion of OSS file pathnames.

° PAGESIZE assists users in controlling the screen display of OSS file
pathnames.

• Changed commands:

° ENV

° INFO MEASUREMENT
Measure User’s Guide—520560-003
ix

What’s New in This Manual Changed Entities
° START MEASUREMENT

° STATUS MEASSUBSYS

° STATUS MEASUREMENT

Changed Entities
• DISCOPEN

• DISKFILE

• PROCESS

• PROCESSH

• SQLPROC

• SQLSTMT

• USERDEF

Callable Interface Changes and Additions
• New callable interfaces:

° MEASLISTGNAME translates an OSS file pathname to its Guardian file name
equivalent and MID content.

° MEASLISTOSSNAMES lists OSS file pathname information to the file
OSSNAMES.

° MEASLISTPNAME translates a Guardian file name or an OSS pathid to its
OSS file pathname equivalent.

• Changed callable interfaces:

° MEASMONSTATUS

° MEASOPEN

° MEASREAD_DIFF_

° MEASWRITE_DIFF_

° MEASINFO

° MEASREADCONF

° MEASSTATUS
Measure User’s Guide—520560-003
x

About This Manual
Introduction

This manual explains how to use the Measure performance monitor to collect and
display system performance data.

 This manual provides information for:

Who Should Use This Manual
This manual is written for system operators, system managers, and analysts who
balance and tune NonStop systems. Readers should be familiar with the HP NonStop
operating system and basic hardware and software characteristics of NonStop
systems. Knowledge of performance monitoring, analysis, and tuning concepts is also
helpful.

What Is in This Manual

Server Type Product Version Supported RVUs
HP NonStop K-series Measure D40 and later D40.00 and later D4x RVUs

HP NonStop S-series Measure G06.03 and later G06.03 and later G-series RVUs

Section Title This section...
1 Introduction to Measure Describes the basic features of the

Measure performance monitor

2 Measure Command Interface
(MEASCOM)

Describes how to use Measure
commands

3 Configuring and Running
Measurements

Describes how to set up and run
measurements and how to view
measurement data

4 Formatting Reports and Plots Describes how to customize Measure
reports, generate graphs, and create
files that can be used by other
applications

5 Defining Custom Counters Describes how to instrument and
measure applications using user-
defined counters

6 Creating a Custom Measurement
Application

Describes how to use the Measure
programmatic interface

7 Balancing and Tuning a System Describes basic steps for balancing
and tuning a system using Measure
data
Measure User’s Guide—520560-003
xi

About This Manual Examples in This Manual
Examples in This Manual
The screen displays in this manual represent various product versions of the Measure
software. Your screen displays might differ slightly from the examples shown.
Significant differences between product versions are described.

Within examples, the user’s command entries are shown in boldface type.

Related Reading
The Measure Reference Manual provides detailed information about the Measure
commands, data record formats, and callable procedures.

If you are interested in using other NonStop performance products to evaluate and
improve system performance, you might be interested in:

For All RVUs

A Creating an Enform Report From
Measure Data

Describes how to use Measure data
with the Enform report generator

B Examples of RECORD Statements and
FIND Queries

Provides examples of Data Definition
Language (DDL) RECORD
statements and Enform FIND queries

C Loading Measure Data Into an SQL
Table

Describes how to transfer
measurement data to an SQL table

D Example of Measurement Application
in C

Provides a sample measurement
application in the C programming
language

Manual Describes...
Guardian User’s Guide

Introduction to NonStop
Operations Management

Daily system maintenance procedures using the Measure
performance monitor and other NonStop performance
tools.

ENFORM Reference Manual

ENFORM User’s Guide

How to create a database and generate detailed reports
from measurement data.

NonStop SQL/MP Report Writer
Guide

How to convert structured Enscribe files to HP NonStop
SQL/MP tables and how to produce reports using the
report writer. (The ENSCRIBE Programmer’s Guide
describes the Enscribe database record manager.)

TCM Manual How to use the MeasTCM product to summarize
Measure data for capacity-planning studies.

File Utility Program (FUP)
Reference Manual

How to use FUP to examine the performance of
application files.

Section Title This section...
Measure User’s Guide—520560-003
xii

About This Manual For All RVUs
PEEK Reference Manual How to use PEEK to produce dynamically updated
statistical views of a system.

Guardian Disk and Tape Utilities
Reference Manual

How to use DSAP to examine disk activity.

Guardian Programmer’s Guide Provides programming information for the NonStop
operating system.

Guardian Procedure Calls
Reference Manual

Syntax and programming considerations for system
procedures.

Guardian Procedure Errors and
Messages Manual

Error codes, system messages, and trap numbers for
system procedures.

Manual Describes...
Measure User’s Guide—520560-003
xiii

About This Manual For D-Series RVUs
For D-Series RVUs

For G-Series RVUs

Notation Conventions
Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual:

 Bold Text. Bold text in an example indicates user input entered at the terminal.

Manual Describes...
Availability Guide for
Performance Management

General principles of performance management on NonStop
systems. It also describes a number of performance
management tools.

Surveyor User’s Guide

Surveyor Reference Manual

The Surveyor performance database manager, which uses
Measure files to create a database of performance
information.

ViewPoint Manual How Measure data can be used in the Pathway environment
in displays of network status information provided by the
ViewPoint application.

Communications
Management Interface (CMI)
Operator Reference Manual

How to use CMI to examine the performance of
communication lines.

Peripheral Utility Program
(PUP) Reference Manual

How to use PUP to examine disk activity.

Manual Describes...
SCF Reference Manual for the Storage Subsystem How to use the Subsystem Control

Facility (SCF) to examine disk activity.

Asynchronous Terminals and Printer Processes
Configuration and Management Manual

CP6100 Configuration and Management Manual

EnvoyACP/XF Configuration and Management
Manual

How to use SCF to examine activity on
communication lines.
Measure User’s Guide—520560-003
xiv

About This Manual General Syntax Notation
UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words; enter these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
 [OFF]
 [SMOOTH [num]]

K [X | D] address-1

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list may be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }
Measure User’s Guide—520560-003
xv

About This Manual Notation for Messages
… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address-1 [, new-value]...

[-] {0|1|2|3|4|5|6|7|8|9}...

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char..."

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example,
there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

 [, attribute-spec]...

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed
messages in this manual:

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.
Measure User’s Guide—520560-003
xvi

About This Manual Notation for Messages
lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list might
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

ADD [MEASUREMENT] <filename> [, MEASFH <filename>]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list might be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

LBU { X | Y } POWER FAIL

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

P=%p-register E=%e-register
Measure User’s Guide—520560-003
xvii

About This Manual Notation for Messages
Measure User’s Guide—520560-003
xviii

1 Introduction to Measure
The Measure performance monitor is a data collection and measurement tool that
provides a wide range of performance statistics on system resources. You can use the
Measure performance monitor to gather information from systems, network
components, and your own business applications.

You then use the Measure data to balance and tune your system, detect problem
areas or inefficiencies, balance workloads, evaluate sizing for new applications, or for
capacity planning. You can also use the Measure programmatic interface to access a
collection of services and build your own high-level performance tools for capacity
planning, resource accounting, and load balancing.

Measurable system resources include:

• Processors

• Disks

• Terminals

• Other I/O devices such as tape drives and printers

• I/O controllers, including ServerNet addressable controllers on systems running
G-series RVUs

• Communication lines

• Network lines

• Fiber Optic Extension (FOX) cluster traffic on systems running D-series RVUs

• Processes

• Process code ranges

• Logical file opens

• Physical disk file opens

• Optical disks on systems running D-series RVUs

• SQL processes and statements

Topic Page
Continuous Operation and Measurement 1-2

Measurable Resources 1-2

Displays of Measurement Data 1-3

Customized Performance Tools 1-3

Measure Support for Open System Services (OSS) 1-4

Measure Processes and Files 1-4

Relationship Between the Measure Components 1-8
Measure User’s Guide—520560-003
1-1

Introduction to Measure Continuous Operation and Measurement
• HP NonStop Transaction Management Facility (TMF) transactions

• User-defined processes

You select the resources to measure and the time frame for data collection. You can
include any combination of measurable resources in a measurement configuration.
You can start or stop measurements at any time.

The Measure performance monitor’s predefined counters give a comprehensive
picture of each resource’s performance characteristics. In addition, you can set up
user-defined counters to measure application-specific performance parameters.

While a measurement runs, you can access and display performance data in system
counter space or in the measurement data file. After a measurement ends, you can
access and display the performance data in the measurement data file. You can then:

• Display data from active and inactive measurements as basic reports, plots, or bar
graphs, depending on the reporting options you select

• Copy the data from a measurement data file to a structured file and create
performance databases

• Generate more complex performance reports using the Enform query product or
the HP NonStop SQL/MP Report Writer

Continuous Operation and Measurement
The Measure performance monitor’s low overhead makes continuous monitoring
feasible. Multiple users can run up to 64 measurements concurrently without starting
and stopping the Measure subsystem to do so.

Measurements are taken online in real time. If resources are specified for
measurement and become active after a measurement has started, those resources
are automatically included in the count. When the same resource is designated in more
than one measurement, the data (counter) record for the resource specified in the first
measurement is shared by the second and subsequent measurements.

The Measure performance monitor works with the operating system to determine
whether processors selected for measurement or being measured are up or down. If a
processor being measured halts during a measurement, the Measure monitoring
process automatically reactivates measurement activity in that processor when it is
reloaded.

Measurable Resources
The resources for which data is collected are called entity types. They include:

CLUSTER DISCOPEN OPDISK SERVERNET TMF

CONTROLLER DISKFILE OSSCPU SQLPROC USERDEF
Measure User’s Guide—520560-003
1-2

Introduction to Measure Displays of Measurement Data
For each entity type you specify for measurement, information is gathered by a set of
predefined counters. For example, if you specify a CPU entity type, predefined
counters collect information such as CPU busy time, interrupt busy time, number of
pages swapped, and so on.

You can measure all resources of a specific type, or you can identify specific resources
to be measured. For example, you can gather data on all CPUs of a system or on
selected CPUs, such as CPU 0, CPU 4, and CPU 12.

You can specify multiple entity types in the same measurement configuration. For
example, you can measure all disks and processes on a system, plus several CPUs,
files, and terminals in the same configuration.

You can define your own counters in user applications to set up new performance
indicators for your applications, such as number of user transactions, the length of a
request queue, or the amount of time spent performing certain functions.

You can specify both predefined and user-defined counters for measurement in the
same configuration.

Displays of Measurement Data
The standard data display is a listing of counter values by entity type. You can select
the entity type and manipulate the content and format of these displays. For example,
you can select a report that shows only totals for each counter of an entity, or you can
display both the totals and the individual counter values for an entity on the same
report. You can also display actual counter values or select a report that converts
actual counts into averages, percentages, and counts per second.

You can also display data in a data file in plot and bar-chart formats. These displays
help when you compare counter values for the same or different entities. You can
quickly change the type and scale of the graph and the time window of the data.

For further analysis, you can write Measure counter records to structured files, then
customize reports of measurement data using the Enform query product or the
SQL/MP command interpreter and report writer.

Customized Performance Tools
All Measure control, status, and data access functions are available through a callable
interface. The Measure command interpreter, MEASCOM, uses this interface to control
the Measure subsystem. You can also use the callable interface to implement custom
performance evaluation tools based on Measure data.

CPU FILE OSSNS SQLSTMT

DEVICE LINE PROCESS SYSTEM

DISC NETLINE PROCESSH TERMINAL
Measure User’s Guide—520560-003
1-3

Introduction to Measure Measure Support for Open System Services (OSS)
Because multiple measurements can run concurrently, you can collect data with your
custom tools at the same time you are collecting data using MEASCOM.

The user-defined counters give you a structure to further customize your own products.
You can use these counters to measure application events and write the collected data
to data files generated by Measure. Selected, continuously monitored events could
form the basis of trend analyses for capacity planning or for better system performance
management.

Measure Support for Open System Services
(OSS)

The Open System Services (OSS) product provides a UNIX-like, standards-based
programming and interactive environment on NonStop servers. The OSS run-time
environment is present on G-series RVUs and includes the POSIX 1003.1 application
programming interfaces (APIs) and the POSIX 1003.2 utilities.

Measure G09 and later PVUs provide an integrated view of the OSS and Guardian
environments. The OSS Measure enhancements assist in the analysis and tuning of
OSS-based applications by supporting the capture, display, and use of OSS file
pathnames in measurement configurations and reports. OSS file pathname support
accounts for differences in command and programmatic interfaces, entity counters,
identifiers, callable interfaces, error messages, and warning messages. For details,
see the Measure Reference Manual.

Measure Support for ANSI SQL Names
Measure G11 and later PVUs provide ANSI SQL names in various measurement
reports and output. This lets an SQL/MX user see the SQL logical names instead of
seeing only the underlying system-generated Guardian file name.

For details, see the Measure Reference Manual.

Measure Support for Dynamic-Link Libraries
(DLLs)

Measure G12 and later PVUs support measurement of DLLs. For details, see the
Measure Reference Manual.

Measure Processes and Files
Most Measure processes and files that make up the Measure software are stored in
the subvolume $SYSTEM.SYSnn.
Measure User’s Guide—520560-003
1-4

Introduction to Measure MEASCHMA
To find the subvolume name for SYSnn on your system, use the TACL STATUS *
command. SYSnn is the subvolume that contains the OSIMAGE file.

MEASCHMA
The MEASCHMA file contains the structure declarations for C and TAL. Its output is
similar to the output of the MEASDECS file.

MEASCOM
MEASCOM is the Measure command interpreter process. MEASCOM accepts and
processes commands entered at the terminal or executed in a command file. You can
control and access multiple measurements with one MEASCOM process.

MEASCTL
MEASCTL is the Measure control process. It performs these functions:

• Allocates and initializes counter records whenever a measurement starts

• Writes counter records to a data file whenever a measurement starts and stops
and at user-specified collection intervals

• Deallocates counter records whenever a measurement stops

• Displays snapshots of active counter records for viewing

The MEASMON process creates a MEASCTL process in each CPU of the local
system when the subsystem is started.

MEASDDLS
The MEASDDLS file contains the Data Definition Language (DDL) record definitions
used for structured files of measurement data, After generating a structured file, you
can use the Enform query language or SQL/MP to create custom reports from the
data.

In Measure G11 and later PVUs, the DDL run command must include a DICT! directive
to create a DDL dictionary.

MEASDDLF
The MEASDDLF file contains DDL record definitions for use by FORTRAN programs.

MEASDDLB
The MEASDDLB file contains DDL record definitions for use by COBOL programs.

Note. The MEASCTL, MEASFH, and MEASMON processes must be on the active system
subvolume (SYSnn). Other Measure files can be located on other subvolumes.
Measure User’s Guide—520560-003
1-5

Introduction to Measure MEASDDLZ
MEASDDLZ
In Measure G11 and later PVUs, the MEASDDLZ file contains ZMS-style record
templates using legacy-style naming for records and field access. MEASDDLZ is a
temporary migration aid for applications moving to use of ZMS-style records.

MEASDECS
The MEASDECS file contains the structure declarations and literal value definitions
used by the Measure callable procedures.

MEASFH
MEASFH is the measurement data file-handler process. It performs these functions:

• Creates and initializes data files

• Validates the format of new measurement configurations

• Builds indexes with entries for each record in a measurement data file

• Builds viewable counter records from data in the measurement data file

• Provides information about measurement configurations

Each MEASFH process handles one measurement data file. MEASCOM creates a
MEASFH process whenever you start a measurement or examine the contents of a
data file.

MEASIMMU
The MEASIMMU file contains the text for Measure error messages and online help
displays.

MEASMON
MEASMON is the subsystem monitoring and coordinating process. It performs these
functions:

• Creates Measure control processes (MEASCTLs) in each processor of the system

• Sends a copy of each measurement configuration to the MEASCTL processes
whenever a measurement starts or a processor is restarted

• Sends control messages to and gathers status information from the MEASCTL
processes

• Starts and stops measurements and the Measure subsystem

MEASMON runs as a process pair.
Measure User’s Guide—520560-003
1-6

Introduction to Measure OMEASG
OMEASG
The OMEASG system library file contains the Measure callable procedures used by
the operating system. OMEASG is included in the system library by the SYSGEN
program.

OMEASP
The OMEASP system library file contains the Measure callable procedures used by
applications (system-library procedures) for TNS systems. OMEASP is included in the
system library by the SYSGEN program.

RMEASP
The RMEASP system library file contains the Measure callable procedures used by
applications (system-library procedures) for TNS/R systems. RMEASP is included in
the system library by the SYSGEN program.
Measure User’s Guide—520560-003
1-7

Introduction to Measure Relationship Between the Measure Components
Relationship Between the Measure
Components

Figure 1-1 shows the relationship between the Measure components. For a description
of how the components operate together to measure system resources, see Section 2,
Measure Command Interface (MEASCOM), and Section 3, Configuring and Running
Measurements.

Figure 1-1. Measure Subsystem and High-Level Interface

Measure SubsystemMeasure High-Level Interface

MEASFH

Measure

Data File

MEASMON
$XMM

MEASCTL
$XMnn

MEASCTL
$XM15

MEASCTL
$XM00

Callable Procedures

(One MEASCTL Created for Each CPU)

MEASCOM
(or Other Calling

Process)

VST001.vsd
Measure User’s Guide—520560-003
1-8

2
Measure Command Interface
(MEASCOM)

Use the Measure command interface (MEASCOM) to start and stop the Measure
subsystem, start and stop measurements, configure measurements, display and plot
measurement data, and generate structured files of measurement data for use by other
report-writing products.

For detailed descriptions of each command, object, and attribute, see the Measure
Reference Manual.

Command-Language Format
MEASCOM uses the NonStop command-language standard format:

where:

command

is any MEASCOM command.

object

is any MEASCOM command object: COUNTER, MEASSUBSYS,
MEASUREMENT, PLOT, REPORT, or a Measure entity type.

attribute

is one or more attributes for object.

Topic Page
Command-Language Format 2-1

Starting and Stopping the Measure Subsystem 2-6

Starting and Stopping MEASCOM 2-7

Redirecting Command Output 2-8

Creating a Custom Startup File 2-9

Accessing Online Help 2-9

Modifying D-Series Command Files for Systems Running G-Series RVUs 2-13

Accessing D-Series Measurement Files From a System Running a G-Series RVU 2-13

command [object] [attribute]
Measure User’s Guide—520560-003
2-1

Measure Command Interface (MEASCOM) Command-Language Format
Table 2-1 summarizes all MEASCOM commands. Most of these commands are
described, with examples of their use, in Sections 3 through 5 of this manual. For
complete descriptions of all commands, see the Measure Reference Manual.

Table 2-1. MEASCOM Commands (page 1 of 3)

Command Object Function
Controlling the Subsystem
START MEASSUBSYS Starts the Measure subsystem.

STATUS MEASSUBSYS Displays information about the Measure
subsystem.

STOP MEASSUBSYS Stops the Measure subsystem.

Configuring Measurements
ADD COUNTER Specifies a user-defined counter for measurement.

ADD entity-type Selects an entity for measurement.

DELETE COUNTER Deletes a user-defined counter from a
measurement configuration.

DELETE entity-type Deletes an entity from a measurement
configuration.

INFO COUNTER Displays information about user-defined counters.

INFO entity-type Displays entities selected for measurement.

Controlling Measurements
START MEASUREMENT Starts a measurement.

STATUS MEASUREMENT Displays information about a measurement.

STOP MEASUREMENT Stops a measurement.

Selecting and Displaying Data
ADD MEASUREMENT Selects a data file for examination.

DELETE MEASUREMENT Deletes a data file from those selected for
examination.

INFO MEASUREMENT Displays information about a data file.

LIST entity-type Displays a report on a selected entity.

LISTACTIVE entity-type Displays a report on an entity being measured.

LISTALL entity-type Displays a report on an entity by interval records.

RESET REPORT Returns format options for data displays to default
values.

SET REPORT Sets format options for data displays.

SHOW REPORT Displays format options for data displays.

Plotting Data
ADD PLOT Selects a counter for plotting.

DELETE PLOT Deletes a counter from those selected for plotting.
Measure User’s Guide—520560-003
2-2

Measure Command Interface (MEASCOM) Command-Language Format
Plotting Data (continued)
INFO PLOT Displays information about the counters selected

for plotting.

LIST PLOT Displays a plot of selected counters.

RESET PLOT Returns plot format options to their default values.

SET PLOT Sets plot format options.

SHOW PLOT Displays plot format options.

ANSI SQL Name Interaction
LISTENAME Translates a Guardian file name and CRVSN into

its corresponding external name (ANSI SQL name
or OSS pathname).

LISTEXTNAMES Creates or appends to a key-sequenced file of
records for mapping Measure OSS PATHID values
to OSS pathnames and Guardian file names or
MIDs to ANSI SQL names and Guardian file
names.

OSS File Pathname Interaction
LISTGNAME Translates an OSS file pathname to its

corresponding Guardian file name and creation
volume sequence number (CRVSN).

LISTOSSNAMES Maps Guardian file names or Measure ID values to
OSS file pathnames.

LISTPNAME Translates a Guardian file name (gname) and
creation volume sequence number (CRVSN) to its
corresponding OSS file pathname.

OSSPATH Specifies a default directory for expansion of OSS
file pathnames.

PAGESIZE Assists you in controlling the screen display of OSS
file pathnames.

Simplifying Command Entry
ASSUME Sets the command object for succeeding

commands. The initial ASSUME default is the
MEASUREMENT command object.

FC Displays a previous command for editing and
reexecution.

HELP Displays information on commands, error
messages, and counters.

HISTORY Displays a history of entered commands. The
default is 10 lines.

Table 2-1. MEASCOM Commands (page 2 of 3)

Command Object Function
Measure User’s Guide—520560-003
2-3

Measure Command Interface (MEASCOM) Entering Commands
Entering Commands
• Enter commands only at a Measure prompt (a single plus sign, +).

• To enter multiple commands on the same line, end each command with a
semicolon (;).

• To continue a command over several lines, place an ampersand (&) at the end of
each line to be continued.

• To delimit comments on a command line, begin the comment with double
hyphens (--). The comment ends either at the first occurrence of another double
hyphen or semicolon, or the end of the line.

OBEY Executes any file containing valid MEASCOM
commands.

RUN Runs another process from within a MEASCOM
session.

SYSTEM Sets default system.

VOLUME Sets default volume and subvolume.

! Retrieves and immediately reexecutes previously
entered MEASCOM commands.

Tracking MEASCOM Sessions
ENV Displays environment parameter settings.

EXIT Ends MEASCOM session.

LOG Starts and stops logging activity for a session.

OUT Directs Measure command output to a file.

SETPROMPT Displays current environmental information, such
as the assumed object, along with the MEASCOM
prompt.

SWAPVOL Specifies swap volume for MEASFH work files.

TIME Displays the local civil time of a system.

Suppressing MEASCOM Messages
COMMENTS Specifies comments to be suppressed or displayed.

WARNINGS Specifies warnings to be suppressed or displayed.

Note. Hyphens can be used in user-defined names. Therefore, use a blank to separate
the dashes from the text of the comment to avoid possible command errors.

Table 2-1. MEASCOM Commands (page 3 of 3)

Command Object Function
Measure User’s Guide—520560-003
2-4

Measure Command Interface (MEASCOM) Using Abbreviations in Commands
Using Abbreviations in Commands
When you enter MEASCOM commands interactively (at the + prompt), you can
abbreviate the keywords for commands, objects, attributes, and counter names. For
example, instead of entering STATUS MEASUREMENT, you can enter STAT MEASU.

• MEASCOM matches abbreviations word by word and gives priority to exact
matches. For example, LIST is always recognized as the LIST command and not
as an abbreviation of LISTALL.

• For commands, objects, and attributes, MEASCOM compares each abbreviation
against all other commands, objects, and attributes. Each abbreviation you use
must be unique among all commands, objects, and attributes. For example, RE is
not an abbreviation for the RESET command because it also matches the
REPORT object.

• For counter names, MEASCOM compares abbreviations only against other
counter names for the specified entity type. For example, the DISC entity has
counters named REQUEST-QTIME and REQUEST-QLEN-MAX. You could
abbreviate these names as REQUEST-QT and REQUEST-QL. Hyphens are
treated as part of the name, not as spaces. You cannot abbreviate
REQUEST-QTIME as REQ-QT.

• As new keywords are added to MEASCOM, you might need to modify the
abbreviations you use so that they remain unique.

• You cannot use abbreviations in noninteractive command entry (that is, when you
execute a MEASCOM command from the TACL prompt).

• You cannot use abbreviations in a command (OBEY) file or in an input file used
during noninteractive command entry. Because abbreviations can change from
RVU to RVU, this prevents command files from becoming obsolete.

• You cannot abbreviate the topic in a HELP command. For example, you must enter
HELP ADD TERMINAL, not HELP ADD TER.

Note. MEASCOM recognizes DISK as an alternate spelling for the keyword DISC. You
cannot use DISK as an abbreviation for DISKFILE.
Measure User’s Guide—520560-003
2-5

Measure Command Interface (MEASCOM) Starting and Stopping the Measure Subsystem
Starting and Stopping the Measure Subsystem
The Measure subsystem must be installed and operating before you can use the
Measure command interpreter or callable procedures to configure and run
measurements and display measurement data in active data files or counter space. To
display only data in inactive data files, you do not need to start the subsystem. Only a
super-group user (255, n) can start or stop the Measure subsystem.

Starting the subsystem creates the monitoring process (MEASMON) and its backup
process. MEASMON then immediately creates a counter-record control process
(MEASCTL) in each CPU of the local system.

To start the subsystem:

35> MEASCOM
MEASURE Performance Monitor - T9086G10 - (16DEC03) - \HATI
(C)1986 Tandem (C)2003 Hewlett Packard Development Company, L.P.
1+ START MEASSUBSYS

You can also start the subsystem from the command interpreter prompt without starting
MEASCOM interactively:

36> MEASCOM START MEASSUBSYS

If a CPU fails while the subsystem is running, MEASMON automatically re-creates and
restarts a MEASCTL control process in that CPU after the CPU is reloaded. The
re-created control process receives information on all currently active measurements
and starts data collection.

The data file for any measurement that spans the CPU’s failure and reload contains at
least one record for each measured entity in that CPU: the one from the CPU restart to
the end of the measurement. If a collection interval was specified for the measurement,
the data file contains records at each specified interval up to the time of CPU failure
(except for records lost from the write buffer) and at each interval after the CPU reload.

To stop the Measure subsystem:

6+ STOP MEASSUBSYS

Stopping the Measure subsystem aborts all currently active measurements. Closing
records are not issued, so data files might be incomplete.

Note. If you start the subsystem from a Multilan window session, the Multilan Resource
Manager (MLRM) stops the MEASMON process when the window session terminates. The
MEASCTL processes continue to run. To stop them, reissue a START MEASSUBSYS
command from a Multilan session, then issue a STOP MEASSUBSYS command.

WARNING. Do not bring down MEASCTL’s swap volume while Measure is still running. Doing
so could cause all CPUs to halt.
Measure User’s Guide—520560-003
2-6

Measure Command Interface (MEASCOM) Starting and Stopping MEASCOM
To list the currently active measurements before stopping the Measure subsystem:

43> MEASCOM
MEASURE Performance Monitor - T9086G10 - (16DEC03) - \HATI
(C)1986 Tandem (C)2003 Hewlett Packard Development Company, L.P.
1+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 0
2+ STOP MEASSUBSYS

If you enter the STOP MEASSUBSYS command from an interactive MEASCOM
session and measurements are active, this prompt appears:

n measurement(s) still active; still stop the subsystem (y/n)?

A YES response aborts all active measurements before the subsystem is stopped. If
transient entities do not exist or the measurement was run without a collection interval,
the records are lost. Closing records are not written when a measurement is aborted. A
NO response cancels the STOP MEASSUBSYS command.

Starting and Stopping MEASCOM
Use the TACL RUN command to start the MEASCOM command interpreter process.

where:

RUN $disk.subvol

is required only if MEASCOM is not located in $SYSTEM.SYSTEM or
$SYSTEM.SYSnn.

To stop a MEASCOM session:

10+ EXIT
4>

14> [RUN $disk.subvol] MEASCOM
Measure User’s Guide—520560-003
2-7

Measure Command Interface (MEASCOM) Redirecting Command Output
Redirecting Command Output
You can redirect command output to save a Measure report, plot, or INFO command
display in a file:

• To redirect the output from one MEASCOM command, specify the OUT filename
option immediately after the command, on the same line and before any
arguments. For example:

4+ LIST /OUT $PERF.DATA.MYVOL/ CPU 1, FROM 12:30, TO 12:45

• To redirect the output of multiple MEASCOM commands, enter the OUT
filename command. The file named in this command will contain the prompts
and MEASCOM commands as well as the command output. For example:

6+ OUT $PERF.DATA.MYVOL

The output files created by both the OUT option and the OUT command can be edited,
printed, included in reports, or used as command (OBEY) files.

This example creates a command file named DAILY. The command file can be used,
with minimal editing, to configure a measurement.

7+ ADD MEASUREMENT NOV5
8+ INFO MEASUREMENT /OUT DAILY/ NOV5
9+ EXIT
45> FUP COPY DAILY
Add measurement $PERF.DATA.NOV5 -- Current Data File --
From 5 Nov 2003, 10::36, To 5 Nov 2003, 13:49:27
Cpu 12 Entities 564 Words
Process 1325 Entities 95400 Words
File 180 Entities 6120 Words
Discopen 161 Entities 2415 Words
-- Add Cpu *
-- Add Process *
-- Add File $SYSTEM.SYSTEM.*
-- Add Discopen $SPOOL.*.*

11 RECORDS TRANSFERRED
46>

You can also save a copy of all or part of a MEASCOM session by using the LOG TO
and LOG STOP commands.

The LOG TO command causes MEASCOM to write a copy of all succeeding prompts,
command lines, and command output to the specified file. The LOG STOP command
causes MEASCOM to stop writing to the log file and close it. MEASCOM automatically
closes the log file at the end of a session.
Measure User’s Guide—520560-003
2-8

Measure Command Interface (MEASCOM) Creating a Custom Startup File
Creating a Custom Startup File
You can create a file of MEASCOM commands to be executed similarly to a command
(OBEY) file each time MEASCOM is invoked. The file must be an EDIT file named
MEASCSTM that contains only MEASCOM commands.

You can set up multiple MEASCSTM files to perform different measurements. Each
MEASCSTM file must be in a different subvolume. MEASCOM first looks for the
MEASCSTM file in the current subvolume. If the file is not found, MEASCOM looks in
your default subvolume.

This example shows a MEASCSTM file:

COMMENTS SUPPRESS 2000
WARNINGS SUPPRESS 3014
SETPROMPT VOLUME
SET REPORT RATE OFF
SET REPORT LOADID TEST

Accessing Online Help
During an interactive MEASCOM session, you can access online help text for the
various MEASCOM elements. Enter the HELP command to display help text.

The help text for some topics is more than one screen long. For these topics,
MEASCOM uses a double prompt (++) at the end of the first screenful of text to
indicate more information. To view additional help text, press RETURN. To return to
command entry, press CTRL Y or type the word BREAK at the double prompt.

For a list of all MEASCOM keywords (commands, objects, and attributes) as well as
guidance to more specific help topics, enter HELP ALL.

• To display the cause, result, and recovery action to be taken for any error
message, enter HELP and the error number. For example:

31+ HELP 3055
Cause: The parser encountered a syntax error
Result: The requested operation is ignored
Recovery: Correct the syntax according to HELP or the MEASURE
 Reference Manual

• To get information about how to use a Measure command keyword, enter HELP
and the command. For example:

32+ HELP ADD
 The ADD command can operate on three objects: 1) entities
(such as CPU, Process, etc.), 2) a measurement datafile, and
3) the plot list.

 Before a measurement can be taken, the measurement
configuration must be built. To do this, one or more ADD
entity commands are executed. For example, ADD CPU *; ADD
PROCESS $SYSTEM.SYSTEM.*, would cause all CPUs and any
Measure User’s Guide—520560-003
2-9

Measure Command Interface (MEASCOM) Accessing Online Help
process whose programfile was in $SYSTEM.SYSTEM to be
measured. To view the measurement configuration for each
entity type use the INFO entity command. Once the
configuration is complete, a START MEASUREMENT command is
executed.

 To view the results of the measurement the ADD
MEASUREMENT command is used (the START and STOP MEASUREMENT
commands perform an implicit ADD MEASUREMENT). This
operation starts a MEASURE file handler process (MEASFH)
which is used to retrieve the data stored in the file. To
view the data, use the LIST or LISTALL entity commands.

 After a LIST command, the ADD PLOT command can be used to
add counters to the current plot list. For each ADD PLOT,
one or more entities are added to the list, along with the
counter of interest. To display the PLOT, use the LIST PLOT
command.

 For specific command syntax perform:
++
 HELP ADD ENTITY (for general syntax)
 HELP ADD <entity type> (e.g.HELP ADD CPU, for specific
syntax)
 HELP ADD MEASUREMENT
 HELP ADD PLOT

• To get command syntax information, enter HELP, the command, and the object:

33+ HELP ADD MEASUREMENT
ADD [MEASUREMENT] < filename> [, MEASFH <filename>]

If either <filename> is a logical Define name, the define
must exist, and map to a permanent disk filename.

• If the command object is an entity type, you can get both general syntax
information and entity-specific syntax information. To get general syntax, enter
HELP, the command, and ENTITY. For example:

34+ HELP LIST ENTITY

LIST [<entity type>] <entity spec> [, <list spec>] ...

 where <list spec> is:
 { IF <item name> <relop> <value> }
 { BY <item name> [(ASCENDING | DESCENDING)] }
 { FROM <time> }
 { FOR <time interval> }
 { TO <time> }
 { LOADID <name8> }
 { TOLERANCE { ON | OFF } } defaults to ON
 { <report attribute> }

 <relop> is { < | > | = | <> }
 <value> is { 0:2147482.999 }
 <name8> is { 1-8 character name, first character must be
Measure User’s Guide—520560-003
2-10

Measure Command Interface (MEASCOM) Accessing Online Help
 alphabetic,
}
 { remaining characters can be digits,
 hyphens (-),
}
 { underscores (_), or carets (^).
}

See HELP ADD <entity type> for <entity spec>, except for
 SQLSTMT, see HELP LIST SQLSTMT.
See HELP ADD PLOT for <item name>.
See HELP REPORT for <report attribute>, <time>, and <time
 interval>.

• To get syntax for a specific entity type, enter HELP ADD and the entity type:

35+ HELP ADD DISKFILE
ADD [DISKFILE] <diskfile spec> [, <diskfile spec>] ...

 where <diskfile spec> is one of the following:

 { * }

 { <disk fname set> }--a permanent or temporary disk
 file name (or file name set), or a
 logical Define name that maps to
 such a file name. MEASCOM expands
 partially entered names using the
 current SYSTEM and VOLUME defaults.

Any file name entered or expanded must describe a local disk
file name. Only local disk files can be measured.

• To get information about an object’s attributes, type HELP and the object name:

36+ HELP PLOT
VERT-BASE { ON | OFF } -- defaults to ON
TIME-BASE [ON | OFF } -- defaults to unspecified
SCALE-FROM { 0:999999999999.999 } -- defaults to 0
SCALE-TO { 0:999999999999.999 } -- defaults to 100
WIDE-ITEM { ON | OFF } -- defaults to OFF
FROM { <item> } -- defaults to unspecified
TO { <item> } -- defaults to unspecified
FOR { <item> } -- defaults to unspecified

 <time> { [<date>,] <time of day>
}
 <date> { <dd> <mmm> [<yyyy>] | <mmm> <dd> [<yyyy>]
}
 <time of day> { <hour> : <minute> [:<second>]
}
 <time interval> {{ 1:9999 } {SECOND[S]| MINUTE[S]| HOUR[S]}}

PLOTs can be produced with rated or unrated values. To do
Measure User’s Guide—520560-003
2-11

Measure Command Interface (MEASCOM) Accessing Online Help
this, change the RATE attribute of the REPORT object. For
example:

SET REPORT RATE ON; LIST PLOT -- generates a plot with rated
 values

SET REPORT RATE OFF; LIST PLOT -- generates a plot with
 unrated values

• To view possible counter names for an entity type, type HELP, the entity type, and
COUNTERS. For example:

6+ help diskfile counters
block-splits extent-allocations max-lockwait-time
cache-read-hits fcb-number+ open-qlen-max
cache-write-cleans file-code+ open-qtime
cache-write-hits file-name* os-version+
cpu-num+ file-type+ requests
delta-time+ from-timestamp+ requests-blocked
driver-input-calls loadid* starting-eof
driver-output-calls lock-bounces system-name*
ending-eof lock-timeouts to-timestamp+
error+ lockwait-time transient-opens

+ -- Item can only be used in the IF and BY clauses (i.e. it
 cannot be used in a PLOT command)
* -- Item can only be used in the BY clause

• To view counter types and descriptions and their appearance in different reports,
type HELP and the counter name. For example:

38+ HELP READS
File Report:
 Calls to READ, READUPDATE, or READUPDATELOCK.
 Counter type: Incrementing

Disc and Opdisk Reports
 Physical disk reads. Counter type: Incrementing

Device, Line, Netline, and Terminal Reports
 Physical reads. Counter type: Incrementing.

• To view a list of MEASCOM keywords, type HELP ABBREVIATIONS. This list
helps you determine the number of characters needed to make an abbreviation
unique.
Measure User’s Guide—520560-003
2-12

Measure Command Interface (MEASCOM) Modifying D-Series Command Files for Systems
Running G-Series RVUs
Modifying D-Series Command Files for
Systems Running G-Series RVUs

After you migrate from a D-series RVU to a G-series RVU, you might have to change
your Measure command (OBEY) files.

In command files written for D-series RVUs, you use channel, controller, and unit
numbers to identify specific storage devices (DEVICE, DISC) and communication
devices (LINE, NETLINE, TERMINAL). In G-series RVUs, instead of channel,
controller, and unit numbers, you must specify group, module, and slot numbers for
storage devices, or track ID, CLIP, and line numbers for communication devices.
Therefore, you must change any command file that specifies channel, controller, or
unit.

You might not have to change a command file that specifies all devices of a particular
type (such as ADD DISC *) or that specifies only a CPU number or device name.
Assuming that the CPU and device exist on the G-series RVU, the command file runs
without modification.

The CONTROLLER entity type does not exist in G-series PVUs. It is replaced by the
SERVERNET entity type, which measures ServerNet addressable controllers (SACs).
However, you can use a command file that specifies all controllers (ADD
CONTROLLER *) to measure all SACs on a G-series RVU. To measure a specific
SAC, you must use the SERVERNET entity type and specify the SAC identifiers.

Similar considerations apply to custom measurement applications migrated from a
D-series RVU to a G-series RVU. To modify applications to measure G-series entities,
see Modifying D-Series Applications for G-Series Systems on page 6-23.

Accessing D-Series Measurement Files From a
System Running a G-Series RVU

You can access a measurement data file created by a D-series PVU of the Measure
performance monitor from a system running a G-series RVU. However, you must use a
D-series PVU of MEASCOM. To ensure compatibility with all D-series RVUs, always
use the most recent D-series MEASCOM.

In all Measure PVUs, the MEASFH version and the data file version must be the same.
You must use D30 MEASFH to access a D30 data file, G02 MEASFH to access a G02
data file, and so on.

Note. OPDISK entities are also identified by channel, controller, and unit numbers. Optical
disks are currently supported only in D-series RVUs.
Measure User’s Guide—520560-003
2-13

Measure Command Interface (MEASCOM) Accessing D-Series Measurement Files From a
System Running a G-Series RVU
Measure User’s Guide—520560-003
2-14

3
Configuring and Running
Measurements

Taking a measurement involves selecting the resources to be measured, creating a
measurement configuration for those resources, and starting the measurement. While
a measurement runs, you can check its status and display data in the measurement
data file or in the active counters associated with the measurement configuration. After
it stops, you can display or plot data from the measurement data file.

The Measurement Configuration
The measurement configuration identifies the system resources you want to measure.

Measurement configurations vary depending on the kind of performance information
you need. For example:

• A configuration useful for collecting data for performance analyses and capacity
planning projects might include all CPUs, disks, devices, communication lines,
Fiber Optic Extension (FOX) messages, and Expand traffic, as well as major
application processes on a system.

• A configuration aimed at monitoring and balancing the performance of processes
on a system might include all CPUs and all major processes.

• A configuration aimed at debugging or fine-tuning process code might include
process code-ranges for all the processes on a system that are potential problems.

A typical measurement configuration usually includes all CPUs, processes, and disks,
and selected disk opens and files on a system.

Topic Page
The Measurement Configuration 3-1

Running a Measurement 3-4

Checking Measurement Activity and Data Files 3-8

Potential Data File Errors 3-10

Viewing Reports of Measurement Data 3-11

Note. When you start a measurement using the START MEASUREMENT command, you
specify other information needed for a measurement, such as the starting and ending times,
the name of the data file associated with the configuration, and the intervals at which data is
written to the data file.
Measure User’s Guide—520560-003
3-1

Configuring and Running Measurements Entity Types and Specifications
Entity Types and Specifications
The measurement configuration describes each resource to be measured in terms of
its entity type and entity specification.

This list describes each entity type:

CLUSTER Measures the number of FOX messages sent and received by all
processes on the local server. Currently supported only in D-series
PVUs.

CONTROLLER Measures I/O activity on disk, tape, terminal, and other device controllers
on NonStop K-series servers.

CPU Measures one or more CPUs on the local server.

DEVICE In D-series RVUs, measures all devices on the local server except disks,
communication lines, subdevices, and asynchronous terminals. In
G-series RVUs, measures tape devices.

DISC Measures one or more disks on the local server.

DISCOPEN Measures the I/O operations performed by the disk process on a
specified file (physical file access). Reports measurements separately for
each opener process.

DISKFILE Measures the I/O operations performed by the disk process on a
specified file (physical file access). Reports measurements collectively for
the whole file.

FILE Measures the I/O operations performed by a user process on an explicitly
opened file (logical file access).

LINE Measures communication lines.

NETLINE Measures network communication lines.

OPDISK Measures optical disks on the local server. Currently supported only in
D-series PVUs.

OSSCPU OSS elements in each system processor.

OSSNS OSS Name Server processes.

PROCESS Measures system and user processes.

PROCESSH Measures how often a program executes specified code ranges.

SERVERNET Measures I/O activity on ServerNet addressable controllers (NonStop
S-series servers only). Measures interprocessor communication (IPC).
For HP NonStop ServerNet Cluster (Measure G08 and later), measures
remote interprocessor communication (RIPC).

SQLPROC Measures SQL/MP processes.

SQLSTMT Measures statements within an SQL/MP process.

SYSTEM Measures network traffic through Expand line handlers.
Measure User’s Guide—520560-003
3-2

Configuring and Running Measurements Creating the Configuration
An entity specification describes a particular resource within an entity type. For
example, the specification for a CPU entity is a CPU number (0, 1, 2, and so on). The
specification for a DISC entity is a disk name ($DATA, $INFO, $BUYER, and so on).
The specification for a CLUSTER entity is a system name or a system name and CPU
number. You can measure specific resources or all resources of a particular type.

For entity specifications for each type of resource, see the Measure Reference Manual.

Creating the Configuration
To create a measurement configuration, use the ADD entity-type command to
specify the entities to be measured. For example, to build a configuration to measure
all CPUs, processes, and disks on a system plus all disk opens on $MYVOL:

4+ ADD CPU *
5+ ADD PROCESS *
6+ ADD DISC *
7+ ADD DISCOPEN $MYVOL.*.*

To exclude specific entities from a group of entities to be measured, use the DELETE
entity-type command. For example, to exclude CPU 0 from the measurement
configuration:

8+ DELETE CPU 0

Also use the DELETE entity-type command to delete an ADD command from an
existing configuration. For example, to delete the ADD DISC * command:

9+ DELETE DISC *

To view the entities specified in a configuration, use the INFO entity-type
command. For example:

10+ INFO DISCOPEN
Add Discopen $MYVOL.*.*
11+ INFO CPU
Add Cpu *
Delete Cpu 0

To reinclude an entity in a configuration, use the ADD entity-type command. For
example, to reinclude CPU 0 in the previously defined configuration:

12+ ADD CPU 0
13+ INFO CPU
Add CPU *

If you exit MEASCOM before starting the measurement, the configuration is not saved.

TERMINAL Measures terminal and subdevice I/O.

TMF Measures TMF transactions.

USERDEF Measures activity in a user process that has been instrumented to
maintain user-defined counters.
Measure User’s Guide—520560-003
3-3

Configuring and Running Measurements Running a Measurement
Running a Measurement
1. By default, MEASCOM starts a measurement immediately after you issue the

START MEASUREMENT command and ends it when you enter the STOP
MEASUREMENT command. However, you can specify starting and ending times
for the measurement in the START MEASUREMENT command.

2. When you start a measurement, MEASCOM creates a file-handling process
(MEASFH), converts your measurement configuration to an internal format, then
passes the configuration to MEASFH.

3. MEASFH can perform additional processing on the records before passing the
configuration to MEASMON. When MEASMON receives the configuration, it
passes a copy of it to each MEASCTL process in each CPU of the system.

4. The MEASCTL processes allocate and initialize the counter records for each entity
in the measurement configuration. If an entity is already being measured, the
MEASCTL process writes the current counter values for that entity to the data file
as the initial counter values. It does not allocate and initialize new counters for the
entity. If an entity is not already being measured, its initial value is zero.

5. As the measurement continues running, the NonStop operating system, file
system, SQL executor, disk processes, communications processes, and TMF
update (bump) the counters.

6. For every entity being measured, the MEASCTL process writes counter
information to the data file at least twice: when the measurement starts and when it
ends. If you specify a collection interval in the START MEASUREMENT command,
the MEASCTL process also writes counter values to the data file at the interval you
specify.

A collection interval lets you see cumulative counter values from specified intervals
within a measurement. A collection interval is particularly useful to view data while
a measurement is running or to analyze part of a measurement. However, a
collection interval uses more system resources during a measurement. For more
information, see Specifying a Collection Interval on page 3-6.

7. The data file is made up of variable-length records that hold information about
each resource and the value of each counter associated with each resource. The
MEASFH process creates an index on the data file with pointers to the records in it
and then sorts the index. The larger the data file, the longer it takes MEASFH to
scan the records and sort the index.

Predefined Counters
For each entity type you specify in a measurement configuration, the counters
predefined for that entity are used to collect information during the measurement.

For example, when you specify the CPU entity in a configuration, all predefined CPU
counters are activated when the measurement starts: the CPU-BUSY-TIME counter
Measure User’s Guide—520560-003
3-4

Configuring and Running Measurements Starting a Measurement
collects information about the amount of time the CPU was busy, the
INTR-BUSY-TIME counter records the amount of time the CPU spent handling
interrupts, the SWAPS counter records the number of pages the CPU swapped, and so
on.

Similarly, when you specify the DISC entity in a configuration, all predefined DISC
counters are activated when the measurement starts. The REQUESTS counter
records the number of requests the disk received, the READ-BUSY-TIME and
WRITE-BUSY-TIME counters determine the amount of time the disk spent reading and
writing data, and so on.

Each counter is one of these types:

For descriptions of the types of counters predefined for each entity type, the kind of
information each collects, the record structure for each entity, and descriptions of each
field in the record, see the Measure Reference Manual.

Starting a Measurement
To specify a data file name and start the measurement, use the START
MEASUREMENT command.

Typically, you specify a nonexistent data file, and MEASFH creates an unstructured file
(code 175). If you specify the name of a data file that already exists, MEASFH purges
the contents of that file so it can receive measurement data.

Accumulating Totals the number of bytes input or output to a file, disk, or other entity.

Busy Measures the time during which a resource is busy.

Elapsed Measures the time required for an event to take place, start to finish.

Fixed
Accumulating

Totals the number of bytes input or output to a file, disk, or other entity.
This is a 64-bit accumulating counter type.

Incrementing Counts the number of times a particular event occurs (for example, swaps
and disk I/Os).

Max value Tracks the maximum value of a counter.

Max queue Tracks the maximum length of a queue.

Queue Measures the amount of time elements spent on a queue.

Queue-busy Measures the time during which there are elements on a queue.

Response time Tracks the time between a read of a terminal and the following write to the
same terminal.

Sampling Finds the approximate busy time for procedure code ranges.

Snapshot Records a value taken at a specific time, such as at the start of a
measurement.

Transaction Increments each time a response-time counter is bumped.
Measure User’s Guide—520560-003
3-5

Configuring and Running Measurements Starting a Measurement
To start a measurement that collects data in the file named $PERF.DATA.NOV5:

16+ START MEASUREMENT $PERF.DATA.NOV5

Specifying a Start and Stop Time
Use the TO, FROM, and FOR clauses of the START MEASUREMENT command to
direct MEASCOM to start or stop the measurement at a specific time. The TO and
FOR clauses cannot be used together. For detailed descriptions of the FROM, TO, and
FOR clauses, see the Measure Reference Manual.

These clauses let you collect data at particular times of the day or run regularly
scheduled performance checks. For example, you might take a standard set of
measurements each day to monitor system performance at peak and off-peak hours.

To start a measurement that runs from 9:00 a.m. to 5:00 p.m.:

4+ START MEASUREMENT $PERF.DATA.NOV5, FROM 9:00, TO 17:00

To specify the same timeframe using the FROM and FOR clauses:

4+ START MEASUREMENT $PERF.DATA.NOV5, FROM 9:00, FOR 8 HOURS

For example, to enter MEASCOM, build a measurement configuration to collect
information about all CPUs and two disks ($DATA and $BUYER), start the
measurement, directing the data to a file named $DATA.PERF.NOV05, and exit from
MEASCOM:

45> MEASCOM
MEASURE Performance Monitor - T9086G10 - (16DEC03) - \HATI
(C)1986 Tandem (C)2003 Hewlett Packard Development Company, L.P.
1+ ADD CPU *
2+ ADD DISC $DATA
3+ ADD DISC $BUYER
4+ START MEASUREMENT $DATA.PERF.NOV05
5+ EXIT

This measurement starts as soon as the START command is issued and runs until you
issue the STOP MEASUREMENT command.

Specifying a Collection Interval
A collection interval records measurement data at specified intervals within a
measurement. A collection interval can help you identify peak periods within a
measurement or analyze interactions between measured resources.

FROM date/time Specifies the date and time to start the measurement.

TO date/time Specifies the date and time to end the measurement.

FOR duration Specifies how long the measurement will run. duration is a whole
number followed by HOURS, MINUTES, or SECONDS. The FOR
clause can be used by itself or with the FROM clause.
Measure User’s Guide—520560-003
3-6

Configuring and Running Measurements Stopping a Measurement
This command starts a measurement at 9:00 a.m., ends the measurement at 5:00
p.m., and specifies a 30-minute collection interval:

4+ START MEASUREMENT $PERF.DATA.NOV5, FROM 9:00, TO 17:00,&
4& INTERVAL 30 MINUTES

Using a collection interval does not cause counters to be reset during a measurement.
Counter values are always accumulated for the entire measurement.

Use a collection interval only when you need a detailed view of system performance. A
collection interval can increase Measure overhead and the size of the data file. The
shorter the interval and the longer the measurement, the higher the overhead.

Stopping a Measurement
When a measurement stops:

1. MEASMON notifies all active MEASCTL processes that the command was issued.

2. The MEASCTL processes write ending records to the data file, deallocate the
counter records, perform some cleanup work, and notify MEASMON.

3. MEASMON writes wrap-up information in the data file and breaks the connection.

If you use the FROM-FOR, FROM-TO, or FOR clauses in the START
MEASUREMENT command, the measurement stops automatically at the specified
time.

If you have not used these clauses or if you choose to stop a measurement before the
specified time, you must use the STOP MEASUREMENT command. To use this
command, you must have the same user ID as the process that started the
measurement or be a super-group user (255,n).

You must also name the data file associated with the measurement configuration in the
STOP command:

4+ STOP MEASUREMENT $DATA.PERF.NOV05

When a measurement is stopped using this command, an ADD MEASUREMENT
operation is performed automatically on the data file so you can access it. To stop a
measurement without accessing its data file, use the NO ADD option of the STOP
MEASUREMENT command. For example:

4+ STOP MEASUREMENT $DATA.PERF.NOV05, NO ADD
5+ EXIT
10>

Note. On systems running G-series RVUs, some data files might be smaller than the files for
comparable measurements on systems running D-series RVUs. The difference is due to a
change in how MEASCTL writes data records when there is a collection interval. The
difference is most noticeable in large measurements, especially those measuring all FILE and
DISCOPEN entities.
Measure User’s Guide—520560-003
3-7

Configuring and Running Measurements Checking Measurement Activity and Data Files
Checking Measurement Activity and Data Files
To find out how many measurements are active on or configured for a system, use the
STATUS MEASSUBSYS, STATUS MEASUREMENT, and INFO MEASUREMENT
commands.

Active includes not only measurements that are running, but also any measurements
whose data files have filled up but that have not been stopped. Configured includes
both measurements for which a START MEASUREMENT command has been issued
but whose start time has not yet been reached and measurements that have aborted.
For more information, see Potential Data File Errors on page 3-10.

Checking Subsystem Status
The STATUS MEASSUBSYS command shows the number of measurements active or
configured on a system and lists their data file names. It also shows the total number of
MEASCTL processes active or to be activated for all the measurements listed and their
associated CPUs. For example:

20+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 2
 $DATA.PERF.JUL01
 $DATA.PERF.JUL02

Number of Active MEASCTL Processes = 16
 in CPU(s): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15

Checking Data File Size and Content
To check the contents and size of active or configured measurement data files, enter
the STATUS MEASUREMENT command. To display information with this command,
you must be a member of the super-user group or be the same user ID that started the
measurement. Otherwise, when you enter a STATUS MEASUREMENT command, this
message appears:

MEAS 3302 The requestor does not have proper security rights
 to perform this action; check the request from
 Measstatus

For a configured measurement, this command shows the starting time, the ending time
(if specified), and the current and maximum size of the data file. For example:

28+ STATUS MEASUREMENT $DATA.PERF.JUL01
From 2 Jul 2003, 15:30:00, To 2 Jul 2003, 17:30:00
Current EOF 256 B Maximum EOF 15728640 B
 Percentage Used 0.00 %

Note. Starting with G08 Measure, the data file size increased from 127.5 MB to 1 GB.
Measure User’s Guide—520560-003
3-8

Configuring and Running Measurements Checking Data File Accessibility
For an active measurement, this command shows the number of entities being
measured, the space allocated to each, the current and maximum size of the data file,
and the percentage of space used. For example:

30+ STATUS MEASUREMENT $DATA.PERF.JUL01
From 2 Jul 2003, 15:30:00, To 2 Jul 2003, 17:30:00
Cpu 16 Entities 752 Words
File 1399 Entities 47566 Words
Discopen 5670 Entities 85050 Words
Disc 320 Entities 33920 Words
 Current EOF 464978 B Maximum EOF 15728640 B
 Percentage Used 2.95 %

Checking Data File Accessibility
To list the measurement data files accessible to MEASCOM, enter the INFO
MEASUREMENT command. The file specified in the most recent ADD
MEASUREMENT command is always marked as the current data file.

In this example, the first and third measurements are active; the second measurement
is inactive; and the third data file is the current data file:

3+ INFO MEASUREMENT *
Add measurement $DATA.PERF.JUL01A
Data collected from system \HATI, MEASURE release version G10
From 2 Jul 2003, 15:07:30
-- Add Cpu *
-- Add File $*
-- Add Discopen *
-- Add Disc $*

Add measurement $DATA.PERF.JUL01B
Data collected from system \HATI, MEASURE release version G10
From 2 Jul 2003, 15:08:42, To 2 Jul 2003, 15:09:49
Cpu 15 Entities 705 Words
File 1405 Entities 47770 Words
Discopen 5677 Entities 85155 Words
Disc 320 Entities 33920 Words
-- Add Cpu *
-- Delete Cpu 6
-- Add File $*
-- Add Discopen *
-- Add Disc $*

Add measurement $DATA.PERF.JUL01C -- Current Data File --
Data collected from system \HATI, MEASURE release version G10
From 2 Jul 2003, 15:30:00, To 2 Jul 2003, 17:30:00
-- Add Cpu *
-- Delete Cpu 6
-- Add File $*
-- Add Discopen *
-- Add Disc $*

MEASCOM can display configuration information for any data file displayed by the
INFO MEASUREMENT command. However, it can read measurement data only from
Measure User’s Guide—520560-003
3-9

Configuring and Running Measurements Potential Data File Errors
the current data file. To change the current data file, you must issue the ADD
MEASUREMENT data-file-name command.

For example, to make $DATA.PERF.JUL01A the current data file:

5+ ADD MEASUREMENT $DATA.PERF.JUL01A
6+ INFO MEASUREMENT *
Add measurement $DATA.PERF.JUL01A -- Current Data File --
Data collected from system \HATI, MEASURE release version G10
From 2 Jul 2003, 15:07:30
-- Add Cpu *
-- Add File $*
-- Add Discopen *
-- Add Disc $*

Add measurement $DATA.PERF.JUL01B
Data collected from system \HATI, MEASURE release version G10
From 2 Jul 2003, 15:08:42, To 2 Jul 2003, 15:09:49
Cpu 15 Entities 705 Words
File 1405 Entities 47770 Words
Discopen 5677 Entities 85155 Words
Disc 320 Entities 33920 Words
-- Add Cpu *
-- Delete Cpu 6
-- Add File $*
-- Add Discopen *
-- Add Disc $*

Add measurement $DATA.PERF.JUL01C
Data collected from system \HATI, MEASURE release version G10
From 2 Jul 2003, 15:30:00, To 2 Jul 2003, 17:30:00
-- Add Cpu *
-- Delete Cpu 6
-- Add File $*
-- Add Discopen *
-- Add Disc $*

Potential Data File Errors
If the measurement data file becomes full before the end of a measurement, each
MEASCTL process stops writing data to the file and displays this console message:

Measurement nn datafile: write to datafile failed.
 File system err: 45

Closing information such as the ending measurement time and counter-space usage
statistics cannot be written to the file. In this case, the measurement remains active
and appears as an active measurement when you enter the STATUS commands. The
counters continue to be updated in memory, but the data is not written out. To stop the
measurement and close the data file, issue the STOP MEASUREMENT command.

When a write to a data file encounters any file-system error (except an error 43 or 45),
the MEASCTL processes abort the measurement. The aborted measurement is
Measure User’s Guide—520560-003
3-10

Configuring and Running Measurements Viewing Reports of Measurement Data
inactive, but MEASMON keeps the file open until you stop the measurement. To stop
the measurement and close the file, enter the STOP MEASUREMENT command.

If you issue a STATUS MEASSUBSYS command against an aborted measurement,
the measurement is included in the list of active and configured measurements. If you
try to access the active counters of an aborted measurement, an error 3407 is
produced because the measurement is no longer active but is still configured:

MEAS 3407 Invalid measurement number; correct and retry.
MEAS 2000 Comment. For more information type HELP 3407

Message 3407 indicates that MEASCOM passed an invalid measurement number to
the MEASREADACTIVE procedure (the Measure procedure that returns the
information for the LISTACTIVE command). To stop the measurement and close the
data file, enter the STOP MEASUREMENT command.

For more information about MEASREADACTIVE, see Section 6, Creating a Custom
Measurement Application, and the Measure Reference Manual.

For error message descriptions, see the online help or the Measure Reference Manual.

Viewing Reports of Measurement Data
You can view reports of measurement data from active data files, inactive data files, or
active counters. To view a report, you must first make the measurement data file
accessible to MEASCOM by using the ADD MEASUREMENT command.

To use this command, you need read access to the data file, and you might need free
disk space up to three times the size of the data file on the disk containing the data file.

For example, to make the file $PERF.DATA.NOV5 accessible to MEASCOM:

2+ ADD MEASUREMENT $PERF.DATA.NOV5

When you finish with a data file, to stop the MEASFH process and free the disk space
it was using, either:

• Enter the DELETE MEASUREMENT command to delete access to the file.

• Exit MEASCOM.

Viewing Reports From Data Files
A measurement data file can contain data from either a currently active or an inactive
measurement. Each MEASCTL process writes counter values to the data file:

• At the beginning of the measurement

• When a transient entity starts or stops

• At each collection interval (if specified)

• At the end of the measurement
Measure User’s Guide—520560-003
3-11

Configuring and Running Measurements Viewing Reports From Data Files
When you access a data file associated with a currently active measurement, you
might encounter a delay before counters appear because the MEASCTL processes
buffer data before writing it to the file. Also, an active data file contains data primarily
from transient entities unless you started the measurement with a collection interval.

The ADD MEASUREMENT command creates a file-handling process (MEASFH) that
reads configuration information and counter records from the measurement data file
and translates them into external counter record formats. MEASFH creates an index in
the data file and translates records from internal to external format. It requires sufficient
free disk space to hold these structures.

MEASFH reads the data from the counter record, subtracts its initial value (if any), and
passes the adjusted value to MEASCOM, which displays this adjusted value.

To examine data in an active or inactive measurement data file, enter the LIST
entity-type and LISTALL entity-type commands. The LIST entity-type
command displays the data collected for all counters of the entity since the
measurement began. The LISTALL command displays the data collected for all
counters of the entity at each collection interval specified in the START
MEASUREMENT command.

Using the LIST entity-type Command
The LIST entity-type command displays one set of counter values for one or more
entity specifications. These values represent data collected from the time the
measurement began to the time the LIST command is issued.

In this example, the LIST entity-type command displays counter values for CPU 1
on a TNS system:

12+ LIST CPU 1
Cpu 1 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 483 Page Size 2048
Local System \HATI From 6 Dec 2003, 11:20:00 For 30 Minutes

Cpu-Busy-Time 64.23 % Swaps 0.76
Cpu-Qtime 1.36 # Cpu-Qlen-Max 39 #
Mem-Qtime 0.10 # Mem-Qlen-Max 13 #
Dispatches 205.30 Intr-Busy-Time 5.70 %
Process-Ovhd 0.12 % Send-Busy-Time 0.61 %
Disc-IOs Cache-Hits
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000

Use an asterisk to select all specifications of an entity type. For example, this
command displays counter values for all CPUs on a two-CPU TNS/R system running
NSR-L processors:

13+ LIST CPU *
Cpu 0 Initial Lock Pgs 2048 Mem Pages 8192
Measure User’s Guide—520560-003
3-12

Configuring and Running Measurements Viewing Reports From Data Files
Memory MB 32 PCBs 483 Page Size 4096
Local System \SPAR From 10 Nov 2003, 15:48:29 for 3.6 Minutes

Cpu-Busy-Time 23.81 % Swaps
Cpu-Qtime 0.26 # Cpu-Qlen-Max 63 #
Mem-Qtime Mem-Qlen-Max 24 #
Dispatches 126.83 Intr-Busy-Time 2.28 %
Process-Ovhd Send-Busy-Time 0.22 %
Disc-IOs 0.77 Cache-Hits 0.54
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000
Accel-Busy-Time 14.35 % TNS-Busy-Time 0.13 %
TNSR-Busy-Time 7.05 % Comp-Traps 2.04 #

++

Cpu 1 NSR-L Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 32 PCBs 483 Page Size 4096
Local System \SPAR From 10 Nov 2003, 15:48:29 for 3.6 Minutes

Cpu-Busy-Time 9.41 % Swaps 0.19
Cpu-Qtime 0.04 # Cpu-Qlen-Max 63 #
Mem-Qtime 0.01 # Mem-Qlen-Max 24 #
Dispatches 20.30 Intr-Busy-Time 0.65 %
Process-Ovhd 0.08 % Send-Busy-Time 0.02 %
Disc-IOs 1.15 Cache-Hits 1.29
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000
Accel-Busy-Time 3.68 % TNS-Busy-Time 4.13 %
TNSR-Busy-Time 0.95 % Comp-Traps 2.04 #

This INFO MEASUREMENT command displays the measurement configuration for
data file FILDATA. The LIST FILE command displays all files opened by processes in
CPU 1 and their counter values.

14+ INFO MEASUREMENT FILDATA
Add measurement $PERF.DATA.FILDATA -- Current Data File --
Data collected from system \HATI, MEASURE release version G10
From 6 Dec 2003, 11:20:37, Interval 10 Seconds
-- Add Cpu *
-- Add File *
15+ LIST FILE * (1, *)
File Open $SYSTEM.SYSTEM.USERID
Device Type 3 (Disk)

Note. The ACCEL-BUSY-TIME, TNS-BUSY-TIME, COMP-TRAPS, and TNSR-BUSY-TIME
counters appear only in measurements of TNS/R systems. The PROCESS and PROCESSH
entity types also have counters specific to TNS/R systems. For counter descriptions, see the
Measure Reference Manual.
Measure User’s Guide—520560-003
3-13

Configuring and Running Measurements Viewing Reports From Data Files
Opener 1,66 ($PRF1) Program $SYSTEM.SYSTEM.PERF File Num 11
Local System \HATI From 6 Dec 2003, 11:20:38 For 0.2 Seconds

File-Busy-Time 54.85 % Disc Reads
Reads 4.66 Writes
Updates-or-Replies 4.66 Deletes-or-Writereads
Records-Used Records-Accessed
Messages 18.62 Message-Bytes 2,830
Lock-Waits Timeouts
Escalations Info-Calls

++

File Open $SYSTEM.SYSTEM.FSEARCH
Device Type 3 (Disk)
Opener 1,76 ($ZTA) Program $SYSTEM.SYSTEM.AUDIT File Num 1
Local System \HATI From 6 Dec 2003, 11:23:27 For 0.5 Seconds

File-Busy-Time 10.63 % Disc-Reads 1.98
Reads 3.97 Writes
Updates-or-Replies Deletes-or-Writereads
Records-Used Records-Accessed
Messages 21.83 Message-Bytes 1,702
Lock-Waits Timeouts
Escalations Info-Calls 1.98
 .
 .
 .

When using the LIST entity-type command, if you specify an entity that returns no
records, the record for that entity probably contains all zero values. By default,
MEASCOM suppresses the display of such records. To override this default, you can
set the ZERO-REPORTS option of the REPORT object or reenter the LIST
entity-type command with its ZERO-REPORTS INCLUDE option to indicate that
all records should be displayed. For example:

16+ LIST FILE * (5,*), ZERO-REPORTS INCLUDE

Note. Because you can open processes as files, the FILE entity type can display file names
that do not match MEASCOM syntax. For example, a name such as \BUYER.05,048, which is
syntactically incorrect, might be listed under File Open. To refer to the file associated with such
a name, you must specify its file number, the CPU number, and the PIN of the opener process
in the LIST command. For example:

9+ LIST FILE * (5,40,1)
File Open \BUYER.05,048
Device Type 0 (Process)
Opener 5,40 ($USR) Program $SYSTEM.SYSTEM.TRANS File Num 1
Local System \BUY From 5 Nov 2003, 17:15:11 For 0.112 Seconds

File-Busy-Time 0.01 Disc-Reads%
Reads 0.03 Writes
Updates-or-Replies 0.03 Deletes or Writereads
 .
 .
 .
Measure User’s Guide—520560-003
3-14

Configuring and Running Measurements Viewing Reports From Data Files
You can control the content and format of reports by using the BY and IF options of the
LIST command or by setting REPORT object attributes. For details and examples, see
Section 4, Formatting Reports and Plots.

MEASCOM automatically allocates an extended segment to hold retrieved counter
records, increasing the segment size as needed up to 16 megabytes. MEASCOM
displays a warning message each time it resizes the segment. If a report uses so much
memory that it causes system problems, stop MEASCOM and redefine the LIST
command to retrieve fewer records (for example, by defining a time window, using
fewer wild-card characters, or using the BY or IF clause).

Using the LISTALL entity-type Command
The counter values displayed by the LISTALL entity-type command are associated
with the collection interval specified for a measurement. If you do not specify a
collection interval, LISTALL entity-type operates like the LIST entity-type
command. If you do specify a collection interval, LISTALL entity-type displays the
values recorded at the end of each elapsed interval.

In this example, a measurement was started at 11:30 a.m. with a collection interval of
30 minutes. At 12:30, a LISTALL command was issued, requesting information on CPU
1. Two sets of counter values are displayed for CPU 1—one for each collection interval
that has elapsed since the measurement started.

3+ START $PERF.DEC06.DATA1, FROM 11:30, INTERVAL 30 MINUTES
 .
 .
 .
20+ LISTALL CPU 1
Cpu 1 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 256 Page Size 2048
Local System \HATI From 6 Dec 2003, 11:30:00 For 30 Minutes
Cpu-Busy-Time 64.23 % Swaps 0.76
Cpu-Qtime 1.36 # Cpu-Qlen-Max 39 #
Mem-Qtime 0.10 # Mem-Qlen-Max 13 #
Dispatches 205.30 Intr-Busy-Time 5.70 %
Process-Ovhd 0.12 % Send-Busy-Time 0.61 %
Disc-IOs Cache-Hits
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000

Cpu 1 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 256 Page Size 2048
Local System \HATI From 6 Dec 1995, 12:00:00 For 30 Minutes

Cpu-Busy-Time 60.34 % Swaps 2.61
Cpu-Qtime 1.78 # Cpu-Qlen-Max 39 #
Mem-Qtime 0.24 # Mem-Qlen-Max 13 #
Dispatches 162.35 Intr-Busy-Time 6.00 %
Process-Ovhd 0.16 % Send-Busy-Time 1.11 %
Measure User’s Guide—520560-003
3-15

Configuring and Running Measurements Viewing Reports From Active Counters
Disc-IOs Cache-Hits
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000

Use an asterisk to select all specifications of an entity. When you use the
measurement described previously, the next command lists two reports for each CPU
being measured:

21+ LISTALL CPU *

Use the FROM, TO, and FOR clauses to display data collected between specific times.
For example, to request listings for CPU 2 for intervals completed between 9:00 a.m.
and noon:

22+ LISTALL CPU 2, FROM 9:00, TO 12:00

You can specify the same timeframe using the FROM-FOR clause. For example:

23+ LISTALL CPU 2, FROM 9:00, FOR 3 HOURS

To control the content and format of LISTALL reports, use BY and IF clauses and
REPORT attributes. For more information, see Section 4, Formatting Reports and
Plots, and the Measure Reference Manual.

Viewing Reports From Active Counters
Active counter records are read by the MEASCTL processes rather than by the
MEASFH process. Each MEASCTL process reads the data from the counters and
passes the information to MEASCOM.

Differences between active counter values and active data file counter values occur in
two cases:

• Examining a CPU entity

CPU counters are initialized when the CPU is system loaded. Each MEASCTL
process stores current counter values in the data file when a measurement starts.
These values are used to compute CPU use during the measurement. Because
MEASCTL does not initialize the CPU counters when a measurement starts, it
returns the current CPU counter values, which reflect CPU activity since the
system load.

• Examining an entity included in more than one active measurement

Counter values are stored in a data file for each measurement when the
measurement starts. These initial values are used to compute the counter values
for the life of a measurement. MEASCTL does not keep the counter values for the
start of each measurement, so it returns counter values that reflect entity activity
since the counter was initialized by the first measurement started.
Measure User’s Guide—520560-003
3-16

Configuring and Running Measurements Viewing Reports From Active Counters
Identifying Active Measurements
To list currently active measurements, enter the STATUS MEASSUBSYS command:

10+ STATUS MEASSUBSYS
Number of Active (or Configured) Measurements = 1
 $PERF.DATA.FILCPU

To list the configuration of an active measurement, enter the ADD MEASUREMENT
command to make the measurement available to MEASCOM and the INFO
MEASUREMENT command to display the configuration:

11+ ADD MEASUREMENT $PERF.DATA.FILCPU
12+ INFO MEASUREMENT $PERF.DATA.FILCPU
Add measurement $PERF.DATA.FILCPU -- Current Data File --
Data collected from system \HATI, MEASURE release version G10
From 5 Apr 2003, 17:15:10, Interval 30 Minutes
-- Add Cpu *
-- Add File $MYVOL.MYSUBVOL.*

Using the LISTACTIVE entity-type Command
To examine currently active counters, enter the LISTACTIVE entity-type command.
The format and output of this command are similar to those of the LIST entity-type
command. However, the LISTACTIVE entity-type command displays data for only
one entity at a time.

You must specify a unique entity in the LISTACTIVE command because each
MEASCTL process uses the entity specification to locate the active counter record in
system counter space. In this example, the CPU, PIN, and file number (0,38,1)
uniquely identify the open of the user ID file.

13+ LISTACTIVE FILE * (0,38,1)
File Open $SYSTEM.SYSTEM.USERID
Opener 0,38 ($TMP) Program $SYSTEM.SYSTEM.TRANSACT File Num 1
Local System \HATI From 6 Dec 2003, 11:20:01 For 12 Seconds

File-Busy-Time Disc-Reads 1.98
Reads 0.43 Write 0.92
Updates-or-Replies Deletes-or-Writereads 0.67
Records-Used Records-Accessed
Messages 3.51 Message-Bytes 0.10
Lock-Waits Timeouts
Escalations Info-Calls

You can use the FOR clause of the LISTACTIVE command to define a specific
timeframe for monitoring. For example, this command displays counter values for CPU

Note. The LISTACTIVE entity-type command cannot be used to read active counters for
DISCOPEN or PROCESSH entities. If you specified a collection interval, you can read data for
these entities in an active data file by using either the LIST entity-type or the LISTALL
entity-type command. If you did not specify a collection interval, you cannot view the data
until the measurement stops.
Measure User’s Guide—520560-003
3-17

Configuring and Running Measurements Viewing Reports From Active Counters
0 collected over a 5-minute period. The period begins when you enter the LISTACTIVE
command.

24+ LISTACTIVE CPU 0, FOR 5 MINUTES
Cpu 0 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 256 Page Size 2048
Local System \HATI From 6 Dec 2003, 11:25:11 For 5 Minutes

Cpu-Busy-Time 15.83 % Swaps
Cpu-Qtime 0.19 # Cpu-Qlen-Max 24 #
Mem-Qtime Mem-Qlen-Max 7 #
Dispatches 88.79 Intr-Busy-Time 3.58 %
Process-Ovhd 0.01 % Send-Busy-Time 0.32 %
Disc-IOs 11.71 Cache-Hits 30.09
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000

When you enter a LISTACTIVE command with a FOR clause interactively, your
terminal remains locked until the time period ends and the listing is displayed.
Measure User’s Guide—520560-003
3-18

4 Formatting Reports and Plots
Measure provides two types of data displays:

You can also use MEASCOM to convert Measure data files, which are unstructured, to
structured files. Report-writing products, such as the Enform query product and the
NonStop SQL/MP Report Writer, can access structured files to produce more
customized reports of measurement data.

Controlling Content and Format of Reports
When you enter the LIST entity-type, LISTALL entity-type, and LISTACTIVE
entity-type commands, MEASCOM displays the measurement data for the
specified entity vertically in lists on a screen or page. Multiple reports are displayed
one after another. Continuations are indicated by a double plus sign(++) in the prompt
area on a screen.

To change the content and format of reports, either:

• Set REPORT attributes in MEASCOM. The settings apply until you reset them,
change them, or end the session. They return to their default values when you exit
MEASCOM.

• Specify REPORT attributes and reporting clauses in the LIST entity-type,
LISTALL entity-type, and LISTACTIVE entity-type commands. The
settings override the REPORT attribute settings but apply only to the command
that contains them.

REPORT Attributes
The LIST entity-type and LISTALL entity-type commands generate reports for
one or more entities from data in active and inactive data files. The LISTACTIVE
entity-type command generates reports for one entity at a time from data in active
counters. With REPORT attributes, you can modify the content and format of any
reports produced by these commands.

Display Type Display... Commands That Produce Them
Reports Lists of counter values LIST entity-type, LISTALL entity-type,

LISTACTIVE entity-type

Plots Data values in graphs LIST PLOT

Topic Page
Controlling Content and Format of Reports 4-1

Plotting Measurement Data 4-10

Plotting Execution Modes 4-28

Producing Structured Files of Measurement Data 4-31
Measure User’s Guide—520560-003
4-1

Formatting Reports and Plots REPORT Attributes
To display the current settings of REPORT attributes, use the SHOW REPORT
command. For example, to display the setting for the REPORT TOTALS attribute:

5+ SHOW REPORT TOTALS
 Set Report Totals suppress

To display all REPORT attributes:

6+ SHOW REPORT *
 Set Report Dots off
 Set Report Format normal
 Set Report Rate on
 Set Report Style legacy
 Set Report Totals suppress
 Set Report Zero-Values suppress
 Set Report Zero-Reports suppress
 Set Report From
 Set Report To
 Set Report For
 Set Report LoadId
 Set Report Style legacy
 Set Report Dots off

These values are the initial defaults for the REPORT attributes. They are used for all
reports unless you set new values or specify different attributes in the LIST
entity-type, LISTALL entity-type, or LISTACTIVE entity-type commands.

For a summary or these attributes, see Table 4-1 on page 4-3. For detailed
descriptions, see the Measure Reference Manual.

Setting Report Attributes
To set the REPORT attributes in MEASCOM, use the SET REPORT command. For
example, to set the default FORMAT attribute to BRIEF and verify it with the SHOW
command:

7+ SET REPORT FORMAT BRIEF
8+ SHOW REPORT FORMAT
 Set Report Format brief

Unless you specify a different FORMAT attribute in a LIST entity-type, LISTALL
entity-type, or LISTACTIVE entity-type command or set or reset this attribute,
all subsequent reports of data from this data file appear in BRIEF format.

You can set several REPORT attributes in the same command. For example:

9+ SET REPORT TOTALS INCLUDE, ZERO-VALUES INCLUDE, RATE OFF
10+ SHOW REPORT *
 Set Report Dots off
 Set Report Format brief
 Set Report Rate off
 Set Report Style legacy
 Set Report Totals include
 Set Report Zero-Values include
 Set Report Zero-Reports include
Measure User’s Guide—520560-003
4-2

Formatting Reports and Plots REPORT Attributes
 Set Report From
 Set Report To
 Set Report For
 Set Report LoadId

Table 4-1. MEASCOM REPORT Attributes (page 1 of 2)

Attribute Description
FORMAT Sets the basic format of reports:

NORMAL displays all counters (default).

BRIEF displays a Measure-defined subset of counters.

STRUCTURED writes data to structured files for use by
 report-writing products.

RATE Specifies whether to display interpreted or uninterpreted counter values:

ON displays interpreted counter values (default).

OFF displays uninterpreted counter values.

TOTALS Specifies whether to create a summary record containing the total
values of each counter across the reports produced by the LIST
command:

SUPPRESS displays specified reports without totals (default).

ONLY displays counter totals only.

INCLUDE displays specified reports and counter totals.

ZERO-VALUES Specifies whether to display counter values of less than 0.005:

SUPPRESS displays counter values less than 0.005 as zeros
 or blanks (default).

INCLUDE displays all actual values.

ZERO-REPORTS Specifies whether to display records whose counter values are all
zeros:

SUPPRESS does not display these records (default).

INCLUDE displays all counter records regardless of value.

FROM [date/time] Defines the beginning of a report window. Date and time are optional.
Use by itself or with the TO or FOR clause.

TO [date/time] Defines the end of a report window. Date and time are optional. Use by
itself or with the FROM clause.

FOR duration Defines the duration of a report window. Use by itself or with the FROM
clause.

STYLE Specifies whether displays or structured reports are based on the ZMS-
style (Measure G11 and later) or legacy-style records and report
formats.

ZMS uses ZMS-style records and reports.

LEGACY uses legacy-style format records and reports
 (default).
Measure User’s Guide—520560-003
4-3

Formatting Reports and Plots REPORT Attributes
Resetting REPORT Attributes
To reset a REPORT attribute to its initial default setting, use the RESET REPORT
command. For example, to reset the FORMAT attribute to its initial default value:

9+ RESET REPORT FORMAT
10+ SHOW REPORT FORMAT
 Set Report Format normal

To reset all REPORT attributes to their initial defaults, use an asterisk in the RESET
command. For example:

11+ RESET REPORT *
12+ SHOW REPORT *
 Set Report Dots off
 Set Report Format normal
 Set Report Rate on

DOTS Specifies whether displays include a string of dots between counter
labels and a formatted numeric value (Measure G11 and later).

ON adds dots to the report display.

OFF formats spaces between labels and numeric
values (default).

LOADID loadid Specifies the name to be put in the LOADID field of the records
generated by this command.

CR-NAME-LEN Controls the displayed length of procedure (code-range) names:

SHORT truncates procedure (code-range) names (if
 necessary) at 32 characters.

LONG displays both short and long forms of procedure
 names.

CR-NAME-FORM Controls whether demangled procedure (code-range) names are
displayed (if applicable):

STANDARD displays whatever form was specified in the
 code file (mangled) or EDIT file (demangled).
 STANDARD is the default.

DEMANGLED displays demangled procedure names.

BOTH displays both STANDARD and DEMANGLED
 procedure names.

CR-NAME-QUAL Controls whether procedure (code-range) names are displayed with
object file name qualifiers, if available:

UNQUALIFIED displays in traditional form with no qualifiers
 (default).

QUALIFIED with the Guardian or OSS object file name of
 the associated code.

Table 4-1. MEASCOM REPORT Attributes (page 2 of 2)

Attribute Description
Measure User’s Guide—520560-003
4-4

Formatting Reports and Plots REPORT Attributes
 Set Report Style ZMS
 Set Report Totals suppress
 Set Report Zero-Values suppress
 Set Report Zero-Reports suppress
 Set Report From
 Set Report To
 Set Report For
 Set Report LoadId

Overriding REPORT Attributes
To override REPORT attributes, specify them in the LIST entity-type, LISTALL
entity-type, and LISTACTIVE entity-type commands. The values specified in
these commands remain in effect only for the life of the command. The settings of the
REPORT attributes remain unchanged. For example, to change the NORMAL format
named in the previous RESET command to BRIEF format for this display of CPU data:

14+ LIST CPU *, FORMAT BRIEF

In addition, to control report format and content, use the BY and IF clauses of the LIST
entity-type and LISTALL entity-type commands. Because the LISTACTIVE
command displays only one entity at a time, it does not support the BY and IF clauses.

The IF clause displays reports based on the value of a specified counter or a numeric
identification item such as PIN or PRIORITY. (The DDL record for each entity type lists
the identification items associated with that entity. See the Measure Reference
Manual.)

To display only the records that contain a CPU-BUSY-TIME value greater than 10:

5+ LIST CPU *, IF CPU-BUSY-TIME > 10

For PROCESSH entities, the object of the IF clause is a code-range name rather than
a counter name. For example:

8+ LIST PROCESSH $ABC, BY CODE-RANGE, IF CODE-RANGE > 0

For DISC entities, the counter name for a cache counter must be preceded by C0-,
C1-, C2-, or C3- to differentiate between the different cache block sizes. To display
only disk records that contain a HITS value for the 512-byte cache (C0) greater than
10:

9+ LIST DISC *, IF C0-HITS > 10

The BY clause arranges reports in order based on the value of a specified counter or
numeric identification item. You can specify an ascending or descending sort order. By
default, counter items are sorted in descending order, and identification items are
sorted in ascending order.

For example, to display all CPU reports in ascending order according to the value of
the CPU-BUSY-TIME counter:

6+ LIST CPU *, BY CPU-BUSY-TIME (ASCENDING)
Measure User’s Guide—520560-003
4-5

Formatting Reports and Plots Controlling the Report Window
For PROCESSH entities, the object of the BY clause is a code-range name rather than
a counter name.

For DISC entities, the counter name for a cache counter must be preceded by C0-,
C1-, C2-, or C3- to differentiate between the different cache block sizes. For example,
to display all DISC records in descending order according to the value of the HITS
counter for the 512-byte cache (C0):

7+ LIST DISC *, BY C0-HITS

Controlling the Report Window
Specifying a report window directs MEASCOM to read and display only records written
to the data file within a specified time period (plus or minus half a collection interval).
Because you are viewing a subset of the available data, the statistics displayed by a
report window are typically different from those displayed by default.

Use the TO, FROM, and FOR clauses of the LIST entity-type and LISTALL
entity-type commands or the FOR clause of the LISTACTIVE entity-type
command to adjust the report window.

Example 4-1 is a standard data display showing all the data collected for CPU 1 during
a 2-hour measurement. The last four lines of the report apply to measurements taken
on TNS/R systems. These lines do not appear for measurements taken on TNS
systems.

Note. Changes made to the REPORT attributes ZERO-REPORTS, FORMAT, and TOTALS
and the IF clause of the LIST entity-type and LISTALL entity-type commands also
change the information written to structured report files. For example, if you specify FORMAT
STRUCTURED and TOTALS ONLY, only the record containing counter totals is written to the
structured report file.

Changes made to the REPORT attributes RATE and ZERO-VALUES and the BY clause of the
LIST entity-type and LISTALL entity-type commands do not change the information
written to structured report files.
Measure User’s Guide—520560-003
4-6

Formatting Reports and Plots Controlling the Report Window
Example 4-2 shows the brief form of this report. Counters displayed are predefined for
each entity. For a list of the counters included in brief reports, see the Measure
Reference Manual.

Example 4-3 shows data collected for the same CPU (1), but between the hours of
11:30 and 12:00. The FROM and TO clauses specify a report window of 30 minutes,
beginning at 11:30.

Example 4-1. Legacy Format Report (Listed Format)

9+ LIST CPU 1

Cpu 1 NSR-L Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 32 PCBs 256 Page Size 4096
Local System \SPAR From 17 Aug 2003, 11:20:00 For 2 Hours

Cpu-Busy-Time 48.19 % Swaps 1.26 #
Cpu-Qtime 1.07 # Cpu-Qlen-Max 39 #
Mem-Qtime 0.11 # Mem-Qlen-Max 13 #
Dispatches 155.31 # Intr-Busy-Time 4.73 %
Process-Ovhd 0.16 % Send-Busy-Time 0.52 %
Disc-IOs 1.70 Cache-Hits 0.76
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME 0
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000
Accel-Busy-Time 0.95 % TNS-Busy-Time 0.10 %
TNSR-Busy-Time 1.00 % Comp-Traps 13.37 #

Example 4-2. Brief Version of Legacy Format Report

10+ LIST CPU 1, FORMAT BRIEF
Cpu 1 NSR-L Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 32 PCBs 256 Page Size 4096
Local System \SPAR From 17 Aug 1996, 11:20:00 For 2 Hours

Cpu-Busy-Time 48.19 % Swaps 1.26
Ending-Free-Mem 4096 Ending-UCME 0
Measure User’s Guide—520560-003
4-7

Formatting Reports and Plots Displaying Interpreted and Uninterpreted Values
Displaying Interpreted and Uninterpreted Values
You can display interpreted or uninterpreted counter values in reports:

• Interpreted values are raw counts divided by delta-time per second. Interpreted
values are particularly useful for making relative comparisons of data.

• Uninterpreted values are actual counts taken during the measurement period.
Uninterpreted values are particularly useful for determining the time needed to run
a process or application, how often an event occurs over the life of a process or
application, and so on.

To display interpreted values, set REPORT RATE ON (the default). To display
uninterpreted values, set REPORT RATE OFF.

Example 4-4 shows uninterpreted counter values displayed for CPU 1 of a TNS VLX
system. Compare this report with the report in Example 4-3 on page 4-8, which shows
interpreted values (for a different measurement).

The REPORT RATE attribute also determines whether plots contain interpreted or
uninterpreted values. For information on creating plots, see Plotting Measurement Data
on page 4-10.

Example 4-3. Setting a Report Window

11+ LIST CPU 1, FROM 11:30, TO 12:00
Cpu 1 NSR-L Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 32 PCBs 256 Page Size 4096
Local System \SPAR From 17 Aug 2003, 11:30:00 For 30 Minutes

Cpu-Busy-Time 38.73 % Swaps 1.49
Cpu-Qtime 1.01 # Cpu-Qlen-Max 39 #
Mem-Qtime 0.13 # Mem-Qlen-Max 13 #
Dispatches 111.27 Intr-Busy-Time 6.16 %
Process-Ovhd 0.11 % Send-Busy-Time 0.64 %
Disc-IOs Cache-Hits
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME 0
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000
Accel-Busy-Time 18.45 % Accel-Busy-Time 3.10 %
TNSR-Busy-Time 11.02 % Comp-Traps 9.07 #
Measure User’s Guide—520560-003
4-8

Formatting Reports and Plots Displaying Interpreted and Uninterpreted Values
Example 4-4. Report of Uninterpreted Counter Values

44+ LIST CPU 1, RATE OFF
Cpu 1 NSR-L Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 32 PCBs 256 Page Size 4096
Local System \SPAR From 16 Aug 1996, 11:20:00 For 3 Minutes

Cpu-Busy-Time 52.04 sec Swaps
Cpu-Qtime 56.47 sec Cpu-Qlen-Max 63 #
Mem-Qtime Mem-Qlen-Max 24 #
Dispatches 27,599 # Intr-Busy-Time 4.99 sec
Process-Ovhd Send-Busy-Time 473.82 ms
Disc-IOs 169 # Cache-Hits 119 #
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME 0
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000
Accel-Busy-Time 35.76 sec TNS-Busy-Time 106.00 ms
TNSR-Busy-Time 10.23 sec Comp-Traps 445 #
Measure User’s Guide—520560-003
4-9

Formatting Reports and Plots Plotting Measurement Data
Plotting Measurement Data
Plots are used to compare counters graphically. You can plot data from an active or
inactive measurement data file. You cannot plot data from active counter records or
from multiple data files.

MEASCOM provides two types of plots: two-axis plots and bar graphs. Both types of
plots can be modified using PLOT attributes.

A two-axis plot shows time on one axis and the counter value range on the other. Plot
characters inside the graph mark counter values for each entity at each time. The two-
axis plot is the default plot type when a collection interval is used to collect the data.

.

A bar graph shows the plot character for each entity-counter pair on the vertical axis
and the counter value range on the horizontal axis. Bars of asterisks show average
counter values for each entity-counter pair during the measurement period. (For the
PROCESSH entity, the bars show counter value totals rather than averages.) The bar
graph is the default plot type when a collection interval is not used to collect the data.

Figure 4-1. Example: Basic Two-Axis Plot Format

Figure 4-2. Example: Basic Bar Graph Format

 0:::::+:::20.0::::+:::40.0::::+:::60.0::::+:::80.0::::+:::100
1:00:00 - A C B
2:00:00 - B C A
3:00:00 -B C A
4:00:00 -B A C
5:00:00 - B A C
 0:::::+:::20.0::::+:::40.0::::+:::60.0::::+:::80.0::::+:::100

Counter Value Range

Time

VST006.vsd

 0:::::+:::20.0::::+:::40.0::::+:::60.0::::+:::80.0::::+:::100
1:00:00 - A C B
2:00:00 - B C A
3:00:00 -B C A
4:00:00 -B A C
5:00:00 - B A C
 0:::::+:::20.0::::+:::40.0::::+:::60.0::::+:::80.0::::+:::100

Counter Value Range

Time

VST007.vsd
Measure User’s Guide—520560-003
4-10

Formatting Reports and Plots The Plot Definition
Variations on these basic plot formats are described and illustrated in this section.

To plot data:

1. Define the plot using the LIST entity-type command followed by the ADD
PLOT commands.

2. Set PLOT attributes.

3. Generate the plot using the LIST PLOT command.

The Plot Definition
A plot definition is a list of entity-counter pairs built by MEASCOM. The LIST
entity-type command specifies the entities to plot. The ADD PLOT command
specifies the counters to plot.

A plot definition can contain up to 26 counters. When you specify a counter using the
ADD PLOT command, MEASCOM reads the list of entities specified by the most
recent LIST entity-type command, pairs the same counter to each entity in that list,
and adds the entity-counter pairs to the plot definition.

In Measure G11 and later PVUs, a plot can display ANSI SQL names as well as
Guardian file names.

In this example, CPU-BUSY-TIME counters from all CPUs (specified in the LIST CPU
command) are included in a plot definition (specified by the ADD PLOT command):

5+ LIST CPU *
Cpu 0 NSR-L Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 32 PCBs 256 Page Size 4096
Local System \HATI From 6 Dec 2003, 11:20:00 For 2 Hours

Cpu-Busy-Time 16.00 % Swaps
Cpu-Qtime 0.21 # Cpu-Qlen-Max 24 #
Mem-Qtime Mem-Qlen-Max 7 #
Dispatches 101.52 Intr-Busy-Time 6.51 %
Process-Ovhd Send-Busy-Time 0.57 %
Disc-IOs 9.28 Cache-Hits 24.27
Transactions Response-Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME 0
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000
Accel-Busy-Time 1.34 % TNS-Busy-Time 0.95 %
TNSR-Busy-Time 8.20 % Comp-Traps 0.50

++
Cpu 1 VLX Initial Lock Pgs 2048 Mem Pages 8192
Memory MB 16 PCBs 483 Page Size 2048
Local System \HATI From 6 Dec 2003, 11:20:00 For 2 Hours

Cpu-Busy-Time 48.19 % Swaps 1.26
Cpu-Qtime 1.07 # Cpu-Qlen-Max 39 #
Measure User’s Guide—520560-003
4-11

Formatting Reports and Plots The Plot Definition
Mem-Qtime 0.11 # Mem-Qlen-Max 13 #
Dispatches 155.31 Intr-Busy-Time 4.73 %
Process-Ovhd 0.16 % Send-Busy-Time 0.52 %
Disc-IoS Cache-Hits
Transactions Response_Time
Page-Requests Page-Scans
Ending-Free-Mem 4092 Ending-UCME 0
Ending-UDS 500 Ending-SDS 1500
Ending-UCL 100 Ending-SCL 2000

6+ ADD PLOT CPU-BUSY-TIME

To add other entity-counter pairs to the plot definition, you must specify another LIST
entity-type command followed by the ADD PLOT counter-name command. (For
an example of graphing different entity-counter pairs in the same plot, see Generating
Plots on page 4-16.)

Displaying the PLOT Definition
The INFO PLOT command displays the current plot definition, the LIST entity-type
command used to identify the entities, and the ADD PLOT command used to specify
the counters. For example, this INFO command displays the plot definition of the
previous CPU example:

7+ INFO PLOT *
Add measurement $SPOOL.PERF.DATA1
--A-- List Cpu 0
 Add plot CPU-BUSY-TIME
--B-- List Cpu 1
 Add plot CPU-BUSY-TIME
--C-- List Cpu 2
 Add plot CPU-BUSY-TIME
 .
 .
 .

--L-- List Cpu 11
 Add plot CPU-BUSY-TIME

Deleting Entity-Counter Pairs From a Plot Definition
To delete one or more counters from a plot definition, enter the DELETE PLOT
command. For example, this command deletes the CPU-BUSY-TIME counter for CPU
0 from the previous definition:

8+ DELETE PLOT CPU-BUSY-TIME (A)

If more than one counter of the same name is specified in a plot definition, you must
specify both its name (CPU-BUSY-TIME) and its plot character (A) in the DELETE
PLOT command to distinguish the entity-counter pair to be deleted. If the counter
name is unique in the plot definition, you can specify only its name in the DELETE
PLOT command.
Measure User’s Guide—520560-003
4-12

Formatting Reports and Plots PLOT Attributes
When the plot definition is redisplayed, the counter for CPU 0, associated with plot
character A, has been deleted:

9+ INFO PLOT *
Add measurement $SPOOL.PERF.DATA1
--B-- List Cpu 1
 Add plot CPU-BUSY-TIME
--C-- List Cpu 2
 Add plot CPU-BUSY-TIME
 .
 .
 .

--L-- List Cpu 11
 Add plot CPU-BUSY-TIME

To delete all counters of the same type from a plot definition, use an asterisk in place of
the plot character. For example, this command deletes all entity-counter pairs defined
for CPU-BUSY-TIME from the plot definition:

8+ DELETE PLOT CPU-BUSY-TIME (*)

When you issue the LIST PLOT command after deleting entity-counter pairs, the pairs
are relettered sequentially beginning with the letter A. Even though you delete an
entity-counter pair from a definition, its letter can be reused in the plot display. A key
below the plotted data lists each plot character shown in the graph, its counter name,
and its entity specification. Use this key to identify the newly assigned plot characters.
(For examples of the key, see Generating Plots on page 4-16.)

PLOT Attributes
With PLOT attributes, you can control the format of the graphic displays generated by
the LIST PLOT command.

To display the current settings of PLOT attributes, enter the SHOW PLOT command:

5+ SHOW PLOT
 Set Plot Vert-Base on
 Set Plot Time-Base
 Set Plot Scale-From 0.000
 Set Plot Scale-To 100.000
 Set Plot Wide-Item off
 Set Plot From
 Set Plot To
 Set Plot For

These values are the initial defaults of the PLOT attributes. They are used for all data
plots unless you set new values or specify different attributes in the LIST PLOT
command. When you select a new data file using the ADD MEASUREMENT command
or exit from MEASCOM, the PLOT attributes return to their default settings. For a
summary of PLOT attributes, see Table 4-2 on page 4-14. For detailed descriptions,
see the Measure Reference Manual.
Measure User’s Guide—520560-003
4-13

Formatting Reports and Plots PLOT Attributes
Note. To select interpreted or uninterpreted counter values for plotting, you must set the
REPORT RATE attribute. If REPORT RATE is ON, interpreted values are plotted when you
issue the LIST PLOT command. If REPORT RATE is OFF, uninterpreted values are plotted
when you issue the LIST PLOT command. For more information about the REPORT RATE
attribute, see Displaying Interpreted and Uninterpreted Values on page 4-8.

Table 4-2. MEASCOM PLOT Attributes
Attribute Description
VERT-BASE For a two-axis plot, varies the axis on which time is displayed. For a bar

graph, varies the orientation of the bars:

ON Two-axis plot: displays time on the vertical axis (default).
Bar graph: bases bars on the vertical axis and positions them
horizontally (default).

OFF Two-axis plot: displays time on the horizontal axis.
Bar graph: bases bars on the horizontal axis and positions them
vertically.

TIME-BASE Specifies whether a two-axis plot or a bar graph is displayed:

ON Displays a two-axis plot of counter values over time. If a
collection interval was used to collect data, ON is the default.

OFF Displays a bar graph of average percentage counter values. If a
collection interval was not used to collect data, OFF is the
default.

SCALE-FROM n Sets the lower boundary of the value axis. n is a number from 0 through
999999999999.999. The default is 0.

SCALE-TO n Sets the upper boundary of the value axis. n is a number from 0
through 999999999999.999. The default is 100.

WIDE-ITEM Sets the density of a plot.

OFF For a two-axis plot, displays one plot character for each counter
value at each interval (default). For a bar graph, uses bars that
are one-character wide (default).

ON For a two-axis plot, fills the area between the time axis and the
lowest counter value. For a bar graph, uses bars that are from
two to six characters wide (adjusted to the number of values on
the graph).

FROM [date/time] Defines the beginning of a plot window. Date and time are optional.
Use by itself or with the TO or FOR clause.

TO [date/time] Defines the end of a plot window. Date and time are optional. Use by
itself or with the FROM clause.

FOR duration Defines the duration of a plot window. Use by itself or with the FROM
clause.
Measure User’s Guide—520560-003
4-14

Formatting Reports and Plots PLOT Attributes
Setting PLOT Attributes
To set the PLOT attributes in MEASCOM, use the SET PLOT command. For example,
to set the default VERT-BASE attribute to OFF:

7+ SET PLOT VERT-BASE OFF
8+ SHOW PLOT VERT-BASE
 Set Plot Vert-Base off

The SHOW command displays the new setting.

You can set several PLOT attributes in the same command. For example:

9+ SET PLOT TIME-BASE OFF, SCALE-FROM 15, SCALE-TO 50
10+ SHOW PLOT
 Set Plot Vert-Base off
 Set Plot Time-Base off
 Set Plot Scale-From 15.000
 Set Plot Scale-To 50.000
 Set Plot Wide-Item off
 Set Plot From
 Set Plot To
 Set Plot For

To reset any PLOT attribute to its default setting, use the RESET PLOT command:

9+ RESET PLOT VERT-BASE
10+ SHOW PLOT VERT-BASE
 Set Plot Vert-Base on

To reset all PLOT attributes to their initial defaults, use an asterisk in the RESET
command:

11+ RESET PLOT *
12+ SHOW PLOT
 Set Plot Vert-Base on
 Set Plot Time-Base
 Set Plot Scale-From 0.000
 Set Plot Scale-To 100.000
 Set Plot Wide-Item off
 Set Plot From
 Set Plot To
 Set Plot For

Overriding PLOT Attributes
You can override PLOT attribute settings by specifying them in the LIST PLOT
command. The values specified in this command remain in effect only for the life of the
command. The setting of the PLOT attributes remain unchanged. For example, to
change the orientation of the data in the plot from vertical to horizontal:

14+ LIST PLOT, VERT-BASE OFF
Measure User’s Guide—520560-003
4-15

Formatting Reports and Plots Generating Plots
Generating Plots
The LIST PLOT command in Example 4-5 generates a two-axis plot of CPU-BUSY-
TIME for 12 CPUs. The measurement ran from 11:20 a.m. to 1:20 p.m. A 30-minute
interval was used to collect the data. The alphabetic (plot) characters on the plot
correspond to the CPUs listed in the key below the plot. Each plot character represents
the value of a CPU-BUSY-TIME counter at the time shown on the vertical axis.

Example 4-6 on page 4-17 shows how to use the INTERVAL attribute of the LIST
PLOT command to divide the measurement data into different time intervals for plotting
(1-hour intervals in the figure). The INTERVAL specified in the LIST PLOT command
must be equal to or greater than the collection interval used to collect the data, and it
should be a multiple of the collection interval. When you specify an INTERVAL smaller
than the collection interval, the plot is blank.

Example 4-5. Typical Two-Axis Plot of CPU-BUSY-TIME
24+ LIST PLOT

 0 :::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100
11:20:00 - I JFH A LGE K C B D -
11:50:00 - I GAF JE C KL D B -
12:20:00 - I GF AJ L C E D K -
12:50:00 - H A J E F BK D C -
13:20:00 -H IEL A CG K D F B
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100

 Min value = 2.152 Max value = 100.000

 A: CPU-BUSY-TIME Cpu 0
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 3
 E: CPU-BUSY-TIME Cpu 4
 F: CPU-BUSY-TIME Cpu 5
 G: CPU-BUSY-TIME Cpu 6
 H: CPU-BUSY-TIME Cpu 7
 I: CPU-BUSY-TIME Cpu 8
 J: CPU-BUSY-TIME Cpu 9
 K: CPU-BUSY-TIME Cpu 10
 L: CPU-BUSY-TIME Cpu 11
Measure User’s Guide—520560-003
4-16

Formatting Reports and Plots Generating Plots
A plot character can be absent from a display line because the value for its associated
counter fell outside the plot range or was overwritten by another letter contending for
its place in the display. To possibly improve display resolution, narrow the plot range.
See Changing the Scale on page 4-22. You can also avoid this kind of overwriting by
generating plots of individual entities.

To change a two-axis plot to a bar graph, use the TIME-BASE attribute in the LIST
PLOT command, as shown in Example 4-7 on page 4-18.

Example 4-6. Two-Axis Plot Showing One-Hour Intervals
21+ LIST PLOT, INTERVAL 1 HOUR
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100
11:20:00 - I A G E L K C B D -
12:20:00 - I H A GJ E B C K D -
13:20:00 -H IEL A CG K D F B
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100

 Min value = 2.152 Max value = 100.000

 A: CPU-BUSY-TIME Cpu 0
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 3
 E: CPU-BUSY-TIME Cpu 4
 F: CPU-BUSY-TIME Cpu 5
 G: CPU-BUSY-TIME Cpu 6
 H: CPU-BUSY-TIME Cpu 7
 I: CPU-BUSY-TIME Cpu 8
 J: CPU-BUSY-TIME Cpu 9
 K: CPU-BUSY-TIME Cpu 10
 L: CPU-BUSY-TIME Cpu 11
Measure User’s Guide—520560-003
4-17

Formatting Reports and Plots Generating Plots
Each bar in the graph in Example 4-7 corresponds to a CPU listed in the key following
the graph and represents the average value of the counter for that CPU during the
measurement interval.

You can combine information from more than one counter type to compare values or
track trends. For example, this command sequence adds the FILE-BUSY-TIME
counter for each file measured to the CPU-BUSY-TIME plot definition:

13+ LIST FILE *
 .
 Display of all files appears here.
 .
14+ ADD PLOT FILE-BUSY-TIME
MEAS 3008 WARNING. Plot became full during ADD; there can be
 a maximum of 26 entities; some entities
 were not ADDed.
For more information about error 3008 type HELP 3008
15+ INFO PLOT *
Add measurement $SPOOL.PERF.DATA1
--A-- List Cpu 0
 Add plot CPU-BUSY-TIME
--B-- List Cpu 1
 Add plot CPU-BUSY-TIME
--C-- List Cpu 2
 Add plot CPU-BUSY-TIME

Example 4-7. Two-Axis Plot Converted to Bar Graph
26+ LIST PLOT, TIME-BASE OFF
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100
 A ***********| -
 B *********************************| -
 C *******************************| -
 D **| -
 E *******************| -
 F ***************| -
 G ************| -
 H *********| -
 I *****| -
 J *************| -
 K ******************************| -
 L *****************| -
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100

 Min value = 8.453 Max value = 60.852

 A: CPU-BUSY-TIME Cpu 0
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 3
 E: CPU-BUSY-TIME Cpu 4
 F: CPU-BUSY-TIME Cpu 5
 G: CPU-BUSY-TIME Cpu 6
 H: CPU-BUSY-TIME Cpu 7
 I: CPU-BUSY-TIME Cpu 8
 J: CPU-BUSY-TIME Cpu 9
 K: CPU-BUSY-TIME Cpu 10
 L: CPU-BUSY-TIME Cpu 11
Measure User’s Guide—520560-003
4-18

Formatting Reports and Plots Generating Plots
--D-- List Cpu 3
 Add plot CPU-BUSY-TIME
--E-- List Cpu 4
 Add plot CPU-BUSY-TIME
--F-- List Cpu 5
 Add plot CPU-BUSY-TIME
--G-- List Cpu 6
 Add plot CPU-BUSY-TIME
--H-- List Cpu 7
 Add plot CPU-BUSY-TIME
--I-- List Cpu 8
 Add plot CPU-BUSY-TIME
--J-- List Cpu 9
 Add plot CPU-BUSY-TIME
--K-- List Cpu 10
 Add plot CPU-BUSY-TIME
--L-- List Cpu 11
 Add plot CPU-BUSY-TIME
--M-- List File $SYSTEM.SYSTEM.DMON (9, 0, 4)
 Add plot FILE-BUSY-TIME
--N-- List File $SYSTEM.SYSTEM.NSSMON (9, 0, 15)
 Add plot FILE-BUSY-TIME
--O-- List File $SYSTEM.SYSTEM.USERID (9, 48, 1)
 Add plot FILE-BUSY-TIME
--P-- List File $SYSTEM.SYSTEM.DMON (6, 0, 2)
 Add plot FILE-BUSY-TIME
--Q-- List File $SYSTEM.SYSTEM.FULIST (6, 0, 56)
 Add plot FILE-BUSY-TIME
--R-- List File $SYSTEM.SYSTEM.NSSMON (6, 0, 77)
 Add plot FILE-BUSY-TIME
--S-- List File $SYSTEM.SYSTEM.USERID (6, 31, 2)
 Add plot FILE-BUSY-TIME
--T-- List File $SYSTEM.SYSTEM.DMON (0, 0, 14)
 Add plot FILE-BUSY-TIME
--U-- List File $SYSTEM.SYSTEM.SPOOL (0, 0, 16)
 Add plot FILE-BUSY-TIME
--V-- List File $SYSTEM.SYSTEM.CSPOOL (0, 0, 19)
 Add plot FILE-BUSY-TIME
--W-- List File $SYSTEM.SYSTEM.NULL (1, 0, 16)
 Add plot FILE-BUSY-TIME
--X-- List File $SYSTEM.SYSTEM.IMON (1, 0, 18)
 Add plot FILE-BUSY-TIME
--Y-- List File $SYSTEM.SYSTEM.DMON (1, 0, 20)
 Add plot FILE-BUSY-TIME
--Z-- List File $SYSTEM.SYSTEM.NETACL (0, 0, 41)
 Add plot FILE-BUSY-TIME

Because a plot definition can include only 26 entity-counter pairs, only the first 14 files
displayed can be added to the 12 CPU entity-counter pairs already defined for the plot.
Error message 3008 indicates this restriction.

To order the files so the 14 files with the highest FILE-BUSY-TIME values are added to
the plot definition, use the BY clause of the LIST command. In this example, the
DELETE PLOT command deletes all the FILE-BUSY-TIME counters from the plot
Measure User’s Guide—520560-003
4-19

Formatting Reports and Plots Generating Plots
definition. The LIST FILE command orders the files by FILE-BUSY-TIME, from busiest
to least busy. The ADD PLOT command adds the 14 busiest files to the plot definition:

16+ DELETE PLOT FILE-BUSY-TIME (*)
17+ LIST FILE *, BY FILE-BUSY-TIME
 .
 .
 (Display of all files from busiest to least busy appears here.)
 .
 .
18+ ADD PLOT FILE-BUSY-TIME
MEAS 3008 WARNING. Plot became full during ADD; there can be a
maximum of 26 entities; some entities were not ADDed
For more information about error 3008 type HELP 3008
19+ INFO PLOT *
Add measurement $SPOOL.PERF.DATA1
--A-- List Cpu 0
 Add plot CPU-BUSY-TIME
--B-- List Cpu 1
 Add plot CPU-BUSY-TIME
--C-- List Cpu 2
 Add plot CPU-BUSY-TIME
--D-- List Cpu 3
 Add plot CPU-BUSY-TIME
--E-- List Cpu 4
 Add plot CPU-BUSY-TIME
--F-- List Cpu 5
 Add plot CPU-BUSY-TIME
--G-- List Cpu 6
 Add plot CPU-BUSY-TIME
--H-- List Cpu 7
 Add plot CPU-BUSY-TIME
--I-- List Cpu 8
 Add plot CPU-BUSY-TIME
--J-- List Cpu 9
 Add plot CPU-BUSY-TIME
--K-- List Cpu 10
 Add plot CPU-BUSY-TIME
--L-- List Cpu 11
 Add plot CPU-BUSY-TIME
--M-- List File $SYSTEM.SYSTEM.SQLCI2 (4, 99, 1)
 Add plot FILE-BUSY-TIME
--N-- List File $SYSTEM.SYSTEM.SQLCI2 (8, 60, 1)
 Add plot FILE-BUSY-TIME
--O-- List File $SYSTEM.SYSTEM.SQLCI2 (8, 60, 1)
 Add plot FILE-BUSY-TIME
--P-- List File $SYSTEM.SYSTEM.USERID (2, 174, 1)
 Add plot FILE-BUSY-TIME
--Q-- List File $SYSTEM.SYSTEM.TEDPROFL (10, 151, 3)
 Add plot FILE-BUSY-TIME
--R-- List File $SYSTEM.SYSTEM.USERID (7, 80, 3)
 Add plot FILE-BUSY-TIME
--S-- List File $SYSTEM.SYSTEM.SQLCI2 (8, 60, 1)
 Add plot FILE-BUSY-TIME
--T-- List File $SYSTEM.SYSTEM.SQLCI2 (2, 180, 1)
Measure User’s Guide—520560-003
4-20

Formatting Reports and Plots Generating Plots
 Add plot FILE-BUSY-TIME
--U-- List File $SYSTEM.SYSTEM.XRLSTOOL (3, 166, 6)
 Add plot FILE-BUSY-TIME
--V-- List File $SYSTEM.SYSTEM.USERID (2, 96, 6)
 Add plot FILE-BUSY-TIME
--W-- List File $SYSTEM.SYSTEM.USERID (8, 84, 6)
 Add plot FILE-BUSY-TIME
--X-- List File $SYSTEM.SYSTEM.USERID (7, 73, 6)
 Add plot FILE-BUSY-TIME
--Y-- List File $SYSTEM.SYSTEM.USERID (11, 145, 2)
 Add plot FILE-BUSY-TIME
--Z-- List File $SYSTEM.SYSTEM.USERID (4, 101, 3)
 Add plot FILE-BUSY-TIME

Example 4-8 shows the two-axis plot of the combined CPU-BUSY-TIME and
FILE-BUSY-TIME data defined in the previous example.

Example 4-8. Plot of CPU-BUSY-TIME and FILE-BUSY-TIME Data
34+ LIST PLOT
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100
11:20:00 - I JFH A LGE K C B D QP -
11:50:00 - I GAF JE C KL D B Y R -
12:20:00 - I GF AJ L C E D K ZUT M -
12:50:00 - H A J E F BK D C W S ON -
13:20:00 -H IEL A CG K D F B
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100

 Min value = 2.152 Max value = 100.000

 A: CPU-BUSY-TIME Cpu 0
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 3
 E: CPU-BUSY-TIME Cpu 4
 F: CPU-BUSY-TIME Cpu 5
 G: CPU-BUSY-TIME Cpu 6
 H: CPU-BUSY-TIME Cpu 7
 I: CPU-BUSY-TIME Cpu 8
 J: CPU-BUSY-TIME Cpu 9
 K: CPU-BUSY-TIME Cpu 10
 L: CPU-BUSY-TIME Cpu 11
 M: FILE-BUSY-TIME File $SYSTEM.SYSTEM.SQLCI2 (4, 99, 1)
 N: FILE-BUSY-TIME File $SYSTEM.SYSTEM.SQLCI2 (8, 60, 1)
 O: FILE-BUSY-TIME File $SYSTEM.SYSTEM.SQLCI2 (8, 60, 1)
 P: FILE-BUSY-TIME File $SYSTEM.SYSTEM.USERID (2, 174, 1)
 Q: FILE-BUSY-TIME File $SYSTEM.SYSTEM.TEDPROFL (10, 151, 3)
 R: FILE-BUSY-TIME File $SYSTEM.SYSTEM.USERID (7, 80, 3)
 S: FILE-BUSY-TIME File $SYSTEM.SYSTEM.SQLCI2 (8, 60, 1)
 T: FILE-BUSY-TIME File $SYSTEM.SYSTEM.SQLCI2 (2, 180, 1)
 U: FILE-BUSY-TIME File $SYSTEM.SYSTEM.XRLSTOOL (3, 166, 6)
 V: FILE-BUSY-TIME File $SYSTEM.SYSTEM.USERID (2, 96, 6)
 W: FILE-BUSY-TIME File $SYSTEM.SYSTEM.USERID (8, 84, 6)
 X: FILE-BUSY-TIME File $SYSTEM.SYSTEM.USERID (7, 73, 6)
 Y: FILE-BUSY-TIME File $SYSTEM.SYSTEM.USERID (11, 145, 2)
 Z: FILE-BUSY-TIME File $SYSTEM.SYSTEM.USERID (4, 101, 3)
Measure User’s Guide—520560-003
4-21

Formatting Reports and Plots Changing the Scale
Changing the Scale
Changing the scale of a graph can make its data more distinct and accessible. To
change the scale on a two-axis plot or a bar graph, use the SCALE-FROM and
SCALE-TO plot attributes of the SET PLOT or LIST PLOT command.

The default scale is 0 to 100. To plot values larger than 100, you must change the
scale default. The minimum and maximum data values shown in each plot appear
following each graph. These values can help you select different scale values.

By default, the time intervals on the Y-axis of two-axis plots are the collection intervals.
To change the time interval, use the INTERVAL clause of the LIST PLOT command. To
change the beginning or ending times of the time axis, use the FROM and TO clauses
of the LIST PLOT command. See Changing the Plot Window on page 4-27.

Example 4-9 shows a two-axis plot of CPU-BUSY-TIME for the five busiest CPUs on
the system. These CPUs were identified by listing all 12 CPUs by CPU-BUSY-TIME,
then adding each of the top five CPUs to the plot definition.

Example 4-10 uses the minimum and maximum values listed following the graph in
Example 4-9 to change the report window. The plot is scaled from 5 to 70 rather than
from 0 to 100.

Example 4-9. Two-Axis Plot of Five Busiest CPUs
68+ LIST PLOT, INTERVAL 1 HOUR
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100
11:20:00 - E D C B A -
12:20:00 - E B C D A -
13:20:00 - E C D A B
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100

 Min value = 5.838 Max value = 100.000

 A: CPU-BUSY-TIME Cpu 3
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 10
 E: CPU-BUSY-TIME Cpu 4

Example 4-10. Plot of Five Busiest CPUs, Narrowed Report Window
70+ LIST PLOT, INTERVAL 1 HOUR, SCALE-FROM 5, SCALE-TO 70
 5.00:::::+:::18.0:::::+:::31.0::::::+:::44.0:::::+:::57.0:::::+:::70.0
11:20:00 - E D C B A -
12:20:00 - E B C D A -
13:20:00 E C D A -
 5.00:::::+:::18.0:::::+:::31.0::::::+:::44.0:::::+:::57.0:::::+:::70.0

 Min value = 5.838 Max value = 100.000

 A: CPU-BUSY-TIME Cpu 3
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 10
 E: CPU-BUSY-TIME Cpu 4
Measure User’s Guide—520560-003
4-22

Formatting Reports and Plots Changing the Orientation
Changing the Orientation
For a two-axis plot, changing the orientation means changing the time interval from the
vertical axis (the default) to the horizontal axis.

For a bar graph, changing the orientation means changing the base of the bars from
the vertical axis, running horizontally (the default), to the horizontal axis, running
vertically.

Use the VERT-BASE attribute of the LIST PLOT or SET PLOT command to set the
orientation for a plot. VERT-BASE ON (the default) specifies a vertical orientation.
VERT-BASE OFF specifies a horizontal orientation.

Example 4-11 on page 4-24 shows two-axis plots in both vertical (default) and
horizontal orientations. Example 4-12 on page 4-25 shows bar graphs in both vertical
(default) and horizontal orientations.
Measure User’s Guide—520560-003
4-23

Formatting Reports and Plots Changing the Orientation
Example 4-11. Changing the Orientation of a Two-Axis Plot
56+ LIST PLOT, VERT-BASE ON-- Vertical Orientation (Default)
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0::::+::::100
11:20:00 - E D C B A -
11:50:00 - E C D A B -
12:20:00 - B C E A D -
12:50:00 - E BD A C -
13:20:00 - E C D A B
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0::::+::::100

 Min value = 5.838 Max value = 100.000

 A: CPU-BUSY-TIME Cpu 3
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 10
 E: CPU-BUSY-TIME Cpu 4

57+ LIST PLOT, VERT-BASE OFF-- Horizontal Orientation
 100 ---------B-
 95.0 - -
 90.0 - -
 85.0 - -
 80.0 - -
 75.0 -A -
 70.0 - C -
 65.0 -B B A -
 60.0 - A -
 55.0 -C D B -
 50.0 - A -
 45.0 -D A-
 40.0 - E -
 35.0 - D C D-
 30.0 -E C -
 25.0 - E E C-
 20.0 - B -
 15.0 - -
 10.0 - E-
 5.00 - -
 0 -----------
 11:20:00 20 20
 50 50

 Min value = 5.838 Max value = 100.000

 A: CPU-BUSY-TIME Cpu 3
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 10
 E: CPU-BUSY-TIME Cpu 4
Measure User’s Guide—520560-003
4-24

Formatting Reports and Plots Changing the Orientation
Example 4-12. Changing the Orientation of a Bar Graph
59+ LIST PLOT, VERT-BASE ON, TIME-BASE OFF-- Vertical Orientation
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100
 A **| -
 B *********************************| -
 C *******************************| -
 D ******************************| -
 E *******************| -
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100

 Min value = 27.771 Max value = 60.852

 A: CPU-BUSY-TIME Cpu 3
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 10
 E: CPU-BUSY-TIME Cpu 4

60+ LIST PLOT, VERT-BASE OFF, TIME-BASE OFF-- Horizontal Orientation
 100 ---
 95.0 - -
 90.0 - -
 85.0 - -
 80.0 - -
 75.0 - -
 70.0 - -
 65.0 - - -
 60.0 -| | -
 55.0 -| | -
 50.0 -| |- -
 45.0 -| | |- - -
 40.0 -| | | | | -
 35.0 -| | | | | -
 30.0 -| | | | |- -
 25.0 -| | | | | | -
 20.0 -| | | | | | -
 15.0 -| | | | | | -
 10.0 -| | | | | | -
 5.00 -| | | | | | -
 0 -| | | | | |-----------------------------
 A B C D E

 Min value = 27.771 Max value = 60.852

 A: CPU-BUSY-TIME Cpu 3
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 10
 E: CPU-BUSY-TIME Cpu 4
Measure User’s Guide—520560-003
4-25

Formatting Reports and Plots Changing the Density
Changing the Density
For a two-axis plot, setting the density means deciding whether to display one point for
each plotted value at each time interval (the default) or to display asterisks between
the time axis and the lowest value at each time interval.

For a bar graph, setting the density means deciding whether to display narrow bars or
wide bars. Narrow bars are one character wide (the default). Wide bars are two to six
characters wide.

To set the density for a plot, use the WIDE-ITEM option of the SET PLOT or LIST
PLOT command. WIDE-ITEM OFF (the default) fills in less of the plot than WIDE-ITEM
ON.

In Example 4-13, the density of the two-axis plot in Example 4-9 on page 4-22 is
changed by setting WIDE-ITEM ON. Each line in this plot represents the value of the
counter at the time shown on the Y axis. Asterisks fill the area from zero to the least
active entity at each time interval.

In Example 4-14 on page 4-27, the two-axis plot in Example 4-13 is converted to a bar
graph (TIME-BASE OFF). WIDE-ITEM ON is still in effect. The five bars represent the
average values of the CPU-BUSY-TIME counter for each CPU.

Example 4-13. Changing the Density of a Two-Axis Plot
62+ LIST PLOT, WIDE-ITEM ON
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100
11:20:00 *****************E D C B A -
11:50:00 ***************E C D A B -
12:20:00 **********B C E A D -
12:50:00 ****************E BD A C -
13:20:00 ****E C D A B
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100

 Min value = 5.838 Max value = 100.000

 A: CPU-BUSY-TIME Cpu 3
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 10
 E: CPU-BUSY-TIME Cpu 4
Measure User’s Guide—520560-003
4-26

Formatting Reports and Plots Changing the Plot Window
Changing the Plot Window
Specifying a plot window directs MEASCOM to read only records written to the data file
within the specified period. Because you are viewing a subset of the available data, the
plots displayed using the plot window are typically different from those displayed by
default.

Use the TO, FROM, and FOR clauses of the LIST PLOT command to adjust the time
window of the plot.

Example 4-15 on page 4-28 shows a two-axis plot of data collected between 11:00
a.m. and 12:00 p.m. for the five busiest CPUs. The first interval shown on the plot
corresponds to the starting time of the measurement.

Example 4-14. Changing the Density of a Bar Graph
63+ LIST PLOT, VERT-BASE OFF, TIME-BASE OFF, WIDE-ITEM ON
 100 ---
 95.0 - -
 90.0 - -
 85.0 - -
 80.0 - -
 75.0 - -
 70.0 - -
 65.0 - ----- -
 60.0 -| | -
 55.0 -| | -
 50.0 -| |----- -
 45.0 -| | |----- ----- -
 40.0 -| | | | | -
 35.0 -| | | | | -
 30.0 -| | | | |----- -
 25.0 -| | | | | | -
 20.0 -| | | | | | -
 15.0 -| | | | | | -
 10.0 -| | | | | | -
 5.00 -| | | | | | -
 0 -| | | | | |---------
 A B C D E

 Min value = 27.771 Max value = 60.852

 A: CPU-BUSY-TIME Cpu 3
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 10
 E: CPU-BUSY-TIME Cpu 4

Note. Specifying a time window in the LIST entity-type command affects the entities
included in the plot, not its time window.
Measure User’s Guide—520560-003
4-27

Formatting Reports and Plots Plotting Execution Modes
Plotting Execution Modes
Reports for the PROCESSH (process histogram) entity type show what percentage of
code samples executed in each of three execution modes:

• TNS mode

• Accelerated mode

• TNS/R native mode

Example 4-16 shows a PROCESSH report for a process that runs in both the TNS and
accelerated modes.

Example 4-17 on page 4-29 shows a PROCESSH report for a process that runs in
TNS/R native mode.

Example 4-15. Five Busiest CPUs, One-Hour Time Window
73+ LIST PLOT, FROM 11:00, TO 12:00
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100
11:20:00 - E D C B A -
11:50:00 - E C D A B -
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+::::100

 Min value = 23.915 Max value = 74.388

 A: CPU-BUSY-TIME Cpu 3
 B: CPU-BUSY-TIME Cpu 1
 C: CPU-BUSY-TIME Cpu 2
 D: CPU-BUSY-TIME Cpu 10
 E: CPU-BUSY-TIME Cpu 4

Example 4-16. Typical PROCESSH Report Showing TNS and Accelerated Modes
Process Program $SYSTEM.SYS02.MEASCOM
CPU 7 Pin 37 Priority 140 Userid 2,63 Creatorid 255,255
Local System \HOME From 17 Aug 1996, 16:51:00 For 45.6 seconds

Total Samples for the process = 786 #

Code-Map UC.0 Samples 257 # 32.69 %

 Samples in Percent
 Code-Range Name Accel TNS Code-Map of Total
-------------------------- --------- --------- ------------ -----------
FORMAT 40 # 25 # 65 # 8.26 %
PRINT^RESULTS 50 # 2 # 52 # 6.62 %
FINDT 85 # 55 # 140 # 17.81 %
Measure User’s Guide—520560-003
4-28

Formatting Reports and Plots Plotting Execution Modes
To display execution-mode statistics in a plot, use four options of the ADD PLOT
command:

You can use the ADD PLOT options separately or together. With TIME-BASE ON,
each counter is plotted separately, as in other Measure plots. With TIME-BASE OFF,
the counters can be shown separately, together, or both. For example, to generate a
plot from the report shown in Example 4-16 on page 4-28, you might enter:

75+ ADD PLOT CODE-RANGE
76+ ADD PLOT TNS-BUSY-SAMPLES
77+ SET PLOT TIME-BASE OFF
78+ LIST PLOT

Example 4-18 on page 4-30 shows the resulting plot. The asterisk (*) represents
accelerated code samples, and the plus sign (+) represents TNS code samples.
Statistics for TNS samples are displayed in two ways:

• The ADD PLOT CODE-RANGE command plots accelerated and TNS samples as
one item.

• The ADD PLOT TNS-BUSY-SAMPLES command plots TNS samples separately.

Example 4-17. Typical PROCESSH Report Showing TNS/R Native Mode
Process Program $SYSTEM.SYS02.MEASCOM
CPU 8 Pin 10 Priority 140 Userid 2,63 Creatorid 255,255
Local System \BANK From 17 Aug 1996, 16:51:00 For 53.2 seconds

Total Samples for the process = 799 #

Code-Map UCr Samples 137 # 17.43 %

 Samples in Percent
 Code-Range Name TNSR Code-Map of Total
-------------------------- --------- --------- ---------------
FORMAT 65 # 65 # 8.26 %
PRINT^RESULTS 52 # 52 # 6.61 %
FINDT 20 # 20 # 2.54 %

ACCEL-BUSY-SAMPLES Adds accelerated code samples to the plot

CODE-RANGE Adds code samples obtained in all execution modes to the plot,
combining all three modes into one plot item for each procedure

TNS-BUSY-SAMPLES Adds TNS code samples to the plot

TNSR-BUSY-SAMPLES Adds TNS/R native code samples to the plot
Measure User’s Guide—520560-003
4-29

Formatting Reports and Plots Plotting Execution Modes
These commands generate the plot shown in Example 4-19. The pound sign (#)
represents TNS/R native code.

85+ ADD PLOT TNSR-BUSY-SAMPLES
86+ SET PLOT TIME-BASE OFF
87+ LIST PLOT

Example 4-18. Plotting Execution Modes—TNS and Accelerated Code Samples
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+:::100
 A *************************++++++++++++++++++| -
 B ********************************++| -
 C ***+++++++++-
 D +++++++++++++++| -
 E +| -
 F +++++++++++++++++++++++++++++++++++| -
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+:::100

 MIN VALUE = 2.000 MAX VALUE = 88.000

A: FORMAT Processh $SYSTEM.SYS02.MEASCOM (7,37)
B: PRINT^RESULT Processh $SYSTEM.SYS02.MEASCOM (7,37)
C: FINDT Processh $SYSTEM.SYS02.MEASCOM (7,37)
D: FORMAT Processh $SYSTEM.SYS02.MEASCOM (7,37)
 (TNS)
E: PRINT^RESULT Processh $SYSTEM.SYS02.MEASCOM (7,37)
 (TNS)
F: FINDT Processh $SYSTEM.SYS02.MEASCOM (7,37)
 (TNS)

Example 4-19. Plotting Execution Modes—TNS/R Native Code Samples
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+:::100
 A ##| -
 B ################################| -
 C ######| -
 0:::::+:::20.0:::::+:::40.0:::::+:::60.0:::::+:::80.0:::::+:::100

 MIN VALUE = 2.000 MAX VALUE = 65.000

A: AC1^CKPT^GET^BLOCK Processh $SYSTEM.SYS02.TSYSDP2 (7,20)
 (TNSR)
B: AC1^RECMOVE^DATA Processh $SYSTEM.SYS02.TSYSDP2 (7,20)
 (TNSR)
C: AC1^REDOCHAIN^PURGE Processh $SYSTEM.SYS02.TSYSDP2 (7,20)
 (TNSR)
Measure User’s Guide—520560-003
4-30

Formatting Reports and Plots Producing Structured Files of Measurement Data
Producing Structured Files of Measurement
Data

The Enform query product and the NonStop SQL/MP command interpreter (SQLCI)
can access Measure data files only after they are converted to structured files and a
data dictionary that describes the structure of the file is created.

To format and write Measure data to structured data files and create a data dictionary
using MEASCOM:

1. Enter the SET REPORT command to set the format for structured report files.

2. Enter the LIST entity-type or LISTALL entity-type command to load the
structured files.

3. Exit from MEASCOM and use the RUN DDL command to build the data dictionary.

Step 1: Produce Structured Report Files
In MEASCOM, to produce structured report files, use the SET REPORT command
followed by a LIST command. For example:

45> MEASCOM
MEASURE Performance Monitor - T9086G10 - (16DEC03) - \HATI
(C)1986 Tandem (C)2003 Hewlett Packard Development Company, L.P.

1+ SET REPORT FORMAT STRUCTURED
2+ LIST PROCESS *

The REPORT attributes and LIST and LISTALL clauses you use can affect the content
of structured files.

Table 4-3. Command Option Effects on Data Written to Structured
Files (page 1 of 2)

Command Option Effect
REPORT FORMAT Determines whether counters are written to the structured file.

REPORT LOADID Determines the LOADID field value of the records written to
the structured file.

REPORT STYLE Determines if ZMS-style or legacy-style record templates and
file names will result. (Measure G11 and later)

REPORT RATE No effect. Uninterpreted counter values are always written to
the structured file.

REPORT TOTALS Determines whether counter totals are written to the
structured file.

REPORT ZERO-REPORTS Determines whether entities in which all counter values are
zero are written to the structured file.
Measure User’s Guide—520560-003
4-31

Formatting Reports and Plots Step 2: Load the Structured Files
Step 2: Load the Structured Files
For each LIST entity-type or LISTALL entity-type command, MEASFH
searches the current subvolume for a structured file named for the entity type (CPU,
PROCESS, DISC, and so on). If the file exists, MEASFH adds the records for the
specified entities to the file. If a structured file for a specified entity type does not exist
on the subvolume, MEASFH creates a file for it and adds its records to the newly
created file.

The fields within the records of the structured files contain uninterpreted counter
values. That is, busy counters are in microseconds busy, rates are in number of
occurrences, and so on. For a description of the record format and content for each
Measure entity type, see the Measure Reference Manual.

Load the structured files using the LIST entity-type or LISTALL entity-type
command. For example:

2+ ADD MEASUREMENT $PERF.DATA.JUN04
3+ SET REPORT FORMAT STRUCTURED
4+ LIST PROCESS SYSTEM-PROCESSES
5+ LIST PROCESS $*.*.BILLING

In this example, the ADD MEASUREMENT command makes measurement data file
$PERF.DATA.JUN04 accessible to MEASCOM. The SET REPORT command
indicates to write counters to a structured file. The first LIST command creates the
structured file PROCESS (if it does not already exist), then writes the counter values
for all system processes to the file. The second LIST command writes the counter
values for the PROCESS $*.*.BILLING entity in $PERF.DATA.JUN04 to the newly
created file PROCESS.

When MEASFH loads structured files, it does not check for duplicate records but lists
all records separately in the structured file. For example:

6+ LIST PROCESS SYSTEM-PROCESSES
7+ LIST PROCESS $*.*.*

These two commands cause all records for the system processes to appear twice in
the structured file. To avoid duplicate records:

REPORT ZERO-VALUES No effect. Counter values of zero are always written to the
structured file as zero.

LIST/LISTALL FROM, TO,
FOR clauses

Determines which records are written to the structured file.

LIST/LISTALL BY clause Sorts entities before data is written. The order of entities in the
structured files does not matter.

LIST/LISTALL IF clause Determines which records are written to the structured file.

Table 4-3. Command Option Effects on Data Written to Structured
Files (page 2 of 2)

Command Option Effect
Measure User’s Guide—520560-003
4-32

Formatting Reports and Plots Step 3: Build the Data Dictionary
1. Build a command (OBEY) file containing the appropriate LIST entity-type or
LISTALL entity-type commands.

2. Load the structured report files by executing the OBEY file from within MEASCOM.

Measure appends new records to existing structured files. To purge existing files
before writing out new values, issue this command or add it to your OBEY file:

42+ RUN FUP PURGE filename [, filename] ...!

Creating Records for Different Time Windows
Each record in the structured report file describes the performance of a single entity
over the specified report window. For example, for the CPU file, each record describes
the performance of a single CPU over the report window. For the PROCESS file, each
record describes the performance of a single process over the report window.

To create separate records for different time windows, use the LOADID clause in the
MEASCOM LIST entity-type or LISTALL entity-type command to identify each
window. You can also use this clause to identify the different measurements whose
records you want to write to the structured files. Finally, you can use the LOADID
clause to identify sets of records for the same entity type. For example, this LOADID
clause identifies two sets of process records:

8+ ADD MEASUREMENT $PERF.DATA.JUN04
9+ LIST PROCESS SYSTEM-PROCESSES, LOADID SYSPROC
10+ LIST DISC $DATA1
11+ LIST PROCESS $*.*.BILLING, LOADID BILLING

Step 3: Build the Data Dictionary
The DDL source file, $SYSTEM.SYSnn.MEASDDLS, contains RECORD statements
that describe the record structure for each structured report file of each entity type. To
find the subvolume name for SYSnn on your system, use the TACL STATUS *
command. SYSnn is the subvolume that contains the OSIMAGE file. Use this
subvolume name in the TACL DDL command that builds the dictionary. For example:

45> DDL /IN $SYSTEM.SYSnn.MEASDDLS, OUT $S/ DICT!

Or issue this command from MEASCOM:

23+ RUN DDL /IN $SYSTEM.SYSnn.MEASDDLS, OUT $S/ DICT!

Note. When you use the LOADID clause with the LISTALL command, the LOADID field
contains the interval number, in ASCII, associated with the time the record was copied to the
data file. LOADID is no longer unique per LISTALL command. Therefore, if you are performing
Enform queries that use LOADID as a unique identifier, you must use the LOAD-ID.PREFIX-ID
format or a LOADID of six or more characters to maintain the uniqueness of the field. To
reference any part of the LOAD-ID redefine, you must create a new dictionary:

VOLUME your-subvolume
DDL /IN $SYSTEM.SYSnn.MEASDDLS/ DICT!
Measure User’s Guide—520560-003
4-33

Formatting Reports and Plots Generating Reports Using Enform and SQL/MP
Products
The DDL command creates a dictionary in your current subvolume and writes to an out
file the records entered into it. The OUT option sends the list of records to the default
printer. There should be 14 files on your subvolume, each beginning with DICT.

Generating Reports Using Enform and SQL/MP Products
For a description of how to produce reports using Enform queries, see Appendix A,
Creating an Enform Report From Measure Data. For more Enform information, see the
ENFORM User’s Guide and the ENFORM Reference Manual.

To generate reports using the NonStop SQL/MP Report Writer:

1. Use the SQLCI CONVERT utility to load the data in the structured file into an SQL
table.

2. Use the NonStop SQL/MP Report Writer to perform any report writing function on
the data.

For More Information

• For brief procedures for converting a Measure data file to an SQL table, see
Appendix C, Loading Measure Data Into an SQL Table.

• For detailed information about the CONVERT utility, see the NonStop SQL/MP
Reference Manual.

• For information about the NonStop SQL/MP Report Writer, see the NonStop
SQL/MP Report Writer Guide.

Loading Data From Different Systems to Common Files
Data from multiple systems running the same Measure PVU can be combined in a
common set of structured files. However, in general, report processing time increases if
a query must sort through more records to find the ones pertinent to the request. To
distinguish records from different data sets in queries and reports, use LOADID.

If systems are running different Measure PVUs, combining data is more difficult:

• For legacy-style data (Measure G10 and earlier), records can be combined only if
the record format for the entity is unchanged between the PVUs. If the record
lengths differ, MEASFH does not write to the file. To combine data in this case:

1. Create files in separate subvolumes.

2. Use FUP COPY with the truncate or pad options to load the additional data
from one subvolume into the files of the other subvolume.

• For ZMS-style records (Measure G11 and later), MEASFH writes data from any
PVU to an existing file in the format of the data already in the file. MEASFH
truncates records or pad hdr, id, or ctr sections of the record with zeros as needed
to fit the format of the existing file. The padding might place binary zeros in a field
defined for ASCII data. Use a dictionary and files of the oldest PVU format your
Measure User’s Guide—520560-003
4-34

Formatting Reports and Plots Loading Data From Different Systems to Common
Files
systems run as the common format. Update to ZMS style only if your application or
query is being updated to use new counter or identifier fields.
Measure User’s Guide—520560-003
4-35

Formatting Reports and Plots Loading Data From Different Systems to Common
Files
Measure User’s Guide—520560-003
4-36

5 Defining Custom Counters
You can define custom counters to collect information about an application. Any
counters you define are of the USERDEF entity type. To use these counters, you must
first instrument the application to measure (that is, modify it so it bumps the counters).

Task 1: Instrument an Application
To instrument an application, you must determine the counters the application requires,
choose a name for each counter, and specify its type. You must then decide how
frequently the counters should be bumped and modify the application source code to
bump the counters at the selected times.

Table 5-1 lists the four types of user-defined counters you can include in an application.
For detailed descriptions, see the Measure Reference Manual.

Topic Page
Task 1: Instrument an Application 5-1

Task 2: Measure the Application 5-6

Sample COBOL Application 5-9

Table 5-1. User-Defined Counters
Type Name Description
Accumulating ACCUM Same as a Measure incrementing or accumulating counter. You

can specify either of two bump functions:

• INC increments the counter each time an event occurs.

• ADD adds a user-specified value to the counter whenever
data is transferred.

Busy BUSY Same as a Measure busy counter. It measures the amount of
time a resource is busy. You must specify two bump functions:

• SETBUSY starts the counter.

• RESETBUSY stops the counter.

Fixed
Accumulating

FACCUM Same as a Measure incrementing or accumulating counter. It is
a 64-bit accumulating or incrementing counter type. You can
specify either of two bump functions:

• INC increments the counter each time an event occurs.

• ADD adds a user-specified value to the counter whenever
data is transferred.

Queue QUEUE Same as a Measure queue counter. It measures the time that
elements spend on a queue. You must specify two bump
functions:

• INCQUEUE increases the queue length by one.

• DEQUEUE decreases the queue length by one.
Measure User’s Guide—520560-003
5-1

Defining Custom Counters Step 1: Source in the MEASDECS File
Step 1: Source in the MEASDECS File
The MEASDECS file contains the literal values that are passed to the
MEASCOUNTERBUMP procedure. MEASDECS is located on $SYSTEM.SYSnn,
where SYSnn is the subvolume that contains the OSIMAGE file.

Step 2: Declare Integer Variable, Array, and Offset
Declare the following:

When you name counters:

• You can specify a separate name for each counter or a single name that refers to
an array of counters. (In either case, the counter name is declared in the same
way.)

• You can use uppercase and lowercase letters. Alphabetic characters are not case
sensitive.

• Counters of the same name in the same program refer to the same counter, but
counters of the same name in different programs refer to different counters.

Step 3: Initialize the Counter (Call MEASCOUNTERBUMPINIT)
1. Call MEASCOUNTERBUMPINIT to initialize the counter within the user-defined

record.

MEASCOUNTERBUMPINIT returns the counter offset in offset.

2. Pass counter as the first parameter and offset as the second parameter.

If the counter specified is not part of a currently active measurement,
MEASCOUNTERBUMPINIT returns the literal value ERR^UDCNOTPRESENT in
error and -1 in offset. Always check for the ERR^UDCNOTPRESENT error.

Step 4: Bump the Counter (Call MEASCOUNTERBUMP)
1. Call MEASCOUNTERBUMP to bump the counter.

2. Pass offset as the first parameter and bumptype as the second parameter.

bumptype determines how MEASCOUNTERBUMP bumps a counter. Literal
values for bumptype are ADD, INC, SETBUSY, RESETBUSY, INCQUEUE, and
DECQUEUE, as described in Example 5-1 on page 5-3.

error An integer variable that holds the function values returned by the
MEASCOUNTERBUMPINIT and MEASCOUNTERBUMP procedures.

counter An integer array, eight words long, that contains the counter name. Declare
one counter variable for each counter name.

offset An integer variable that holds the location of the counter within the internal
user-defined counter record. Declare one offset variable for each counter.
Measure User’s Guide—520560-003
5-2

Defining Custom Counters Sample TAL Program
When specifying bumptype:

• If you specify ADD, specify the value to add to the counter as the third parameter.

• If you specify SETBUSY, you must have a matching RESETBUSY call.

• If you specify INCQUEUE, you must have a matching DECQUEUE call.

If you are using an array of counters, specify the index value of the counter as the
fourth parameter. By default, the index value is zero to indicate the only (or first) value
associated with the counter name.

If the counter specified is not part of a currently active measurement,
MEASCOUNTERBUMP returns the literal value ERR^UDCNOTPRESENT in error.
Always check for this error.

For time-critical applications, to avoid unnecessary calls to the MEASCOUNTERBUMP
procedure, set a flag in your application to indicate that a counter is not active. Testing
the flag before you call MEASCOUNTERBUMP costs fewer CPU cycles than calling
MEASCOUNTERBUMP and finding that the counter is not active.

Sample TAL Program
The TAL program in Example 5-1 bumps three counters:

• TRANSACTIONS, an accumulating counter array containing two elements

• TIMEPER, a busy counter

• WAITING, a queue counter

This sample program assumes that the measurement is already running.

Caution. Not balancing the busy and queue calls causes unpredictable counter values.

Example 5-1. TAL Application Containing User-Defined Counters (page 1 of 3)

?PAGE "GLOBAL DECLARATIONS"
?SYMBOLS, INSPECT
?NOMAP, NOLMAP, NOCODE

! error variable
int error := 0;
int .array[0:2];
string .sarray := @array '<<' 1;

! terminal name and number
int term[0:11];
int term^number;

! message variable
int .msg[0:40*[" "]];
string .smsg := @msg '<<' 1;

?NOLIST
?SOURCE $SYSTEM.SYS20.MEASDECS ! check your subvolume name
Measure User’s Guide—520560-003
5-3

Defining Custom Counters Sample TAL Program
?SOURCE $SYSTEM.SYSTEM.EXTDECS (MYTERM, OPEN, DEBUG, WRITE,
? NUMOUT, DELAY, CLOSE, MEASCOUNTERBUMP,
? MEASCOUNTERBUMPINIT)
?LIST
?PAGE "MAIN PROCEDURE -- BILLING"
PROC billing MAIN;

BEGIN

 ! counter names and offsets
 int .transactions[0:7] := ["TRANSACTIONS "];
 int .timeper[0:7] := ["TIMEPER "];
 int .waiting[0:7] := ["WAITING "];
 int transactions^offset;
 int timeper^offset;
 int waiting^offset;

 subproc printmsg;
 ! displays a message on the terminal
 begin
 CALL WRITE (term^number, msg, 80);
 IF <> THEN CALL DEBUG;
 smsg ':=' 80*[" "];
 end; !subproc

subproc checkiniterr;
 ! checks for errors returned by MEASCOUNTERBUMPINIT
 ! note, this sample program assumes an active measurement
 begin
 IF error AND (error <> ERR^UDCNOTPRESENT) THEN
 BEGIN
 CALL NUMOUT (array, error, 10, 5);
 smsg ':=' "MEASCOUNTERBUMPINIT error: " &
 sarray FOR 6 bytes;
 call printmsg;
 END;
 end; !subproc

 subproc checkerr;
 ! checks for errors returned by MEASCOUNTERBUMP
 ! note, this sample program assumes an active measurement
 begin
 IF error AND (error <> ERR^UDCNOTPRESENT) THEN
 BEGIN
 CALL NUMOUT (array, error, 10, 5);
 smsg ':=' "MEASCOUNTERBUMP error: " &
 sarray FOR 6 bytes;
 call printmsg;
 END;
 end; !subproc

 ! ********************
 ! begin main procedure
 ! ********************

Example 5-1. TAL Application Containing User-Defined Counters (page 2 of 3)
Measure User’s Guide—520560-003
5-4

Defining Custom Counters Sample TAL Program
The array size for transactions (that is, the number of elements) is defined by the
measurement configuration. For the configuration to measure this instrumented code,
see Section 6, Creating a Custom Measurement Application.

 ! open the terminal
 CALL MYTERM (term);
 CALL OPEN (term, term^number);
 IF <> THEN CALL DEBUG;

 ! determine location of each counter
 error := MEASCOUNTERBUMPINIT (transactions,
 transactions^offset);
 call checkiniterr;

 error := MEASCOUNTERBUMPINIT (timeper, timeper^offset);
 call checkiniterr;

 error := MEASCOUNTERBUMPINIT (waiting, waiting^offset);
 call checkiniterr;

 ! increment both counters of the TRANSACTIONS array
 error := MEASCOUNTERBUMP (transactions^offset, INC);
 call checkerr;
 error := MEASCOUNTERBUMP (transactions^offset, INC,,1);
 call checkerr;

 ! start the TIMEPER busy counter
 error := MEASCOUNTERBUMP (timeper^offset, SETBUSY);
 call checkerr;

 ! increment the WAITING queue counter
 error := MEASCOUNTERBUMP (waiting^offset, INCQUEUE);
 call checkerr;
 .
 . application code
 .
 ! stop the TIMEPER busy counter
 error := MEASCOUNTERBUMP (timeper^offset, RESETBUSY);
 call checkerr;

 ! decrement the WAITING queue counter
 error := MEASCOUNTERBUMP (waiting^offset, DECQUEUE);
 call checkerr;

 ! close the terminal
 CALL CLOSE (term^number);

END;

Example 5-1. TAL Application Containing User-Defined Counters (page 3 of 3)
Measure User’s Guide—520560-003
5-5

Defining Custom Counters Task 2: Measure the Application
Task 2: Measure the Application
Before starting a measurement, you must first create a measurement configuration that
names the application to measure and the user-defined counters within the application
to use. Each record written to the measurement data file contains information about a
process that is running the application and the values of the user-defined counters
bumped by that application.

Step 1: Specify the Processes Running the Application
To specify the processes running the application, use the ADD USERDEF and
DELETE USERDEF commands. To display the application processes currently in the
configuration, use the INFO USERDEF command.

The syntax for the ADD USERDEF command is:

where process-spec identifies any process running in the application.
process-spec can be any of:

{ * }
{ cpu, pin }
{ $process-name [cpu, pin] }
{ [[$device.]subvolume.]filename [cpu, pin] }

For a complete description of the USERDEF entity specification, see the Measure
Reference Manual.

Step 2: Specify the User-Defined Counters in the Application to
Measure

To specify the user-defined counters in the application to be used to collect the
application data, use the ADD COUNTER and DELETE COUNTER commands. To
display the user-defined counters in the current configuration, use the INFO
COUNTER command.

The syntax for the ADD COUNTER command is:

name

is the name of a user-defined counter in the application you plan to measure.

process-spec

is a process specification defined with a previous ADD USERDEF command. You
must specify it in this ADD COUNTER command because the user-defined counter
is associated with the processes that run the application containing the counter.

ADD USERDEF process-spec

ADD COUNTER name, PROCESS process-spec, type [, ARRAY n]
Measure User’s Guide—520560-003
5-6

Defining Custom Counters Considerations
type

is a counter type: ACCUM, BUSY, or QUEUE. The type depends on the bump
action the application uses to bump the counter. Specify type in the ADD
COUNTER command to allocate the proper amount of space for the counter.

If the application treats the specified user-defined counter as an array of counters,
specify n as the number of counters associated with the counter name.

To create a configuration that measures the BILLING application using the
TRANSACTIONS counter:

8+ ADD USERDEF BILLING
9+ ADD COUNTER TRANSACTIONS, PROCESS BILLING, ACCUM, ARRAY 2

Considerations
• You must execute the ADD USERDEF command before its associated ADD

COUNTER command.

• The process specification in the ADD COUNTER command must be identical to
the process specification in a previous ADD USERDEF command.

• The process specification in the INFO COUNTER display does not reflect the
USERDEF processes in the measurement configuration. Therefore, to restore the
current configuration, you must save both the INFO USERDEF and INFO
COUNTER displays.

• You cannot run concurrent measurements on an application containing
user-defined counters. There can be only one measurement per process running
the instrumented code. If you try to measure user-defined counters in an
application with active counters, MEASCOM displays an error message when you
next enter a LIST USERDEF command if ZERO-REPORTS is set to INCLUDE.

• To measure an application, the executing process must be measured. Therefore, a
PROCESS entity is added automatically for any USERDEF entity in the
measurement configuration. In this example, Measure automatically adds the
PROCESS entity in the measurement data file. It is not part of the measurement
configuration.

12+ INFO MEASUREMENT DATA
Add measurement $WORK.PERF.DATA
From 8 Nov 1990, 14:49:27, To 8 Nov 2002, 14:50:03
Process 1 Entities 71 Words
Userdef 1 Entities 76 Words
-- Add Userdef $WORK.APPL.BILLING
-- Add counter TRANSACTIONS, process $WORK.APPL.BILLING,
 accum, array 2
-- Add counter TIMEPER, process $WORK.APPL.BILLING, busy
-- Add counter WAITING, process $WORK.APPL.BILLING, queue

• To examine the application information, use the LIST USERDEF or LISTACTIVE
USERDEF command. Each USERDEF report contains information about the
Measure User’s Guide—520560-003
5-7

Defining Custom Counters Considerations
executing process and the values of the user-defined counters bumped by the
application.

• These reports were generated by measuring the execution of the application in
Example 5-1 on page 5-3. The application bumps each type of user-defined
counter. The first report is displayed with the RATE ON report attribute, the second
with the RATE OFF report attribute.

13+ LIST USERDEF *
Process Program $WORK.APPL.BILLING
CPU 4 Pin 45 Priority 140 Userid 255,255 Creatorid 255,255
Local System \BUYER From 8 Nov 1990, 14:49:27 For 3.5 Seconds

TRANSACTIONS 0.28 Accum 0
TRANSACTIONS 0.28 Accum 1
TIMEPER 87.48 % Busy 0
WAITING 0.87 # Max 1 # Queue 0
14+ SET REPORT RATE OFF
15+ LIST USERDEF *
Process Program $WORK.APPL.BILLING
CPU 4 Pin 45 Priority 140 Userid 255,255 Creatorid 255,255
Local System \BUYER From 8 Nov 1990, 14:49:27 For 3.5 Seconds

TRANSACTIONS 1 # Accum 0
TRANSACTIONS 1 # Accum 1
TIMEPER 3.08 s Busy 0
WAITING 3.08 s Max 1 # Queue 0

• For each user-defined counter, MEASCOM displays the name, value, type, and
index value. For queue counters, MEASCOM also displays the maximum queue
length.

• You can use the BY and IF clauses of the LIST and LISTALL commands on
USERDEF reports. For descriptions of the BY and IF clauses, see Overriding
REPORT Attributes on page 4-5.
Measure User’s Guide—520560-003
5-8

Defining Custom Counters Sample COBOL Application
Sample COBOL Application
To modify a COBOL program to establish a programmatic interface to the Measure
subsystem and update user-defined counters:

1. Create a TAL procedure named MEAS^BUMP by compiling the sample TAL
routine shown in Example 5-2.

2. Place the object in a user-named file (measlib).

The sample COBOL program in Example 5-3 on page 5-10:

1. Adds a ?SEARCH directive to identify the location of the measlib file

2. Adds the working storage Measure literals (WS-MEASURE-LITS) to the
WORKING STORAGE SECTION of the program

3. Adds a working-storage entry (WS-id-NAME) to uniquely identify each
user-defined counter

4. For every ADD-type counter, adds an extra working-storage entry
(WS-id-COUNT) to hold the value to be added to the counter

The counters are ready to use after they are defined.

Example 5-2. TAL Source of the MEAS^BUMP Procedure

?SYMBOLS,INSPECT
?NOMAP, NOLMAP, NOCODE

INT ERROR :=0;

?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (MEASCOUNTERBUMPINIT,
 MEASCOUNTERBUMP)
INT PROC MEAS^BUMP (name,bumptype,addvalue,index)
 EXTENSIBLE;
STRING .NAME;
INT bumptype, addvalue, index;
BEGIN
INT .INAME := @Name '>>' 1;
INT OFFSET;

IF NOT $PARAM(bumptype) THEN
 bumptype := 0;

IF NOT $PARAM(addvalue) THEN
 addvalue := 0;

IF NOT $PARAM(index) THEN
 index := 0;

ERROR := MEASCOUNTERBUMPINIT (iname, offset);
If error <> 0 then return error;
RETURN MEASCOUNTERBUMP (offset,bumptype,addvalue,index);

END;
Measure User’s Guide—520560-003
5-9

Defining Custom Counters Sample COBOL Application
The MEAS-NUMS section of the program contains the code to initialize and modify the
counters; for example:

where:

action

is an item from WS-MEASURE-LITS.

count

is WS-id-COUNT (required only if action is MEAS-ADD).

index

is a numeric value or WORKING-STORAGE entry that contains the index value for
an array of counters.

MEAS^BUMP determines the counter’s offset with the Measure internal user-defined
record and updates the counter values.

The returned value is not tested because the application program does not depend on
the Measure subsystem and usually is not required to report or recover from Measure
subsystem errors. However, for debugging purposes, the error codes 3221 (invalid
bump type) and 3222 (invalid index) might be useful. All possible return codes are
listed in $SYSTEM.SYSnn.MEASDECS.

ENTER TAL "MEAS^BUMP" USING WS-id-NAME,action,count,index
 GIVING MEAS-ERROR

Example 5-3. COBOL Application Containing User-Defined
Counters (page 1 of 6)

?SEARCH MEASLIB, $SYSTEM.SYSTEM.COBOLLIB
?INSPECT
?SYMBOLS
*
 IDENTIFICATION DIVISION.
*
 PROGRAM-ID. MYSERVER.
 AUTHOR.
 DATE-WRITTEN. 29 OCTOBER 1987.
 DATE-COMPILED.
*
*
 ENVIRONMENT DIVISION.
*
CONFIGURATION SECTION.
 SOURCE-COMPUTER. TNSII.
 OBJECT-COMPUTER. TNSII.
*
 INPUT-OUTPUT SECTION.
*

Measure User’s Guide—520560-003
5-10

Defining Custom Counters Sample COBOL Application
 FILE-CONTROL.
 SELECT MESSAGE-FILE
 ASSIGN TO $RECEIVE.
 SELECT REPLY-FILE
 ASSIGN TO $RECEIVE.
 SELECT PIN-FILE
 ASSIGN TO PINFILE
 ORGANIZATION IS RELATIVE
 ACCESS MODE IS RANDOM
 RELATIVE KEY IS REL-KEY
 ALTERNATE RECORD KEY IS CUST-NO-A
 ALTERNATE RECORD KEY IS PIN-NO WITH DUPLICATES
 FILE STATUS IS FILE-STATUS.

 RECEIVE-CONTROL.
 TABLE OCCURS 10 TIMES
 REPLY CONTAINS REPLY-FILE RECORD.
/
*
 DATA DIVISION.
 FILE SECTION.
 FD MESSAGE-FILE
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 1 TO 41 CHARACTERS.

 COPY CUST-NOS OF COPYLIB.

 FD REPLY-FILE
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 1 TO 142 CHARACTERS.

 COPY SEC-NAR-REPLY OF COPYLIB.

 FD PIN-FILE
 LABEL RECORDS ARE OMITTED.

 COPY PIN-RECORD OF COPYLIB.

/
*
 WORKING-STORAGE SECTION.
*
 COPY JOB-STATE OF COPYLIB.
 COPY WS-ERROR-LINE OF COPYLIB.
 01 FILE-STATUS.
 03 fstat-1 PIC 9.
 03 fstat-2 PIC 9.
 01 REL-KEY PIC 99 VALUE 1.
*
* This is the WORKING-STORAGE required to support Measure
* user-defined counters.
*

Example 5-3. COBOL Application Containing User-Defined
Counters (page 2 of 6)
Measure User’s Guide—520560-003
5-11

Defining Custom Counters Sample COBOL Application
01 WS-MEASURE-LITS.
 03 MEAS-INC PIC 9 VALUE 1.
 03 MEAS-ADD PIC 9 VALUE 2.
 03 MEAS-SETBUSY PIC 9 VALUE 3.
 03 MEAS-RESETBUSY PIC 9 VALUE 4.
 03 MEAS-INCQUEUE PIC 9 VALUE 5.
 03 MEAS-DECQUEUE PIC 9 VALUE 6.
 03 MEAS-ERROR PIC 9(4).
*
* WS-MEASURE-LITS - are numeric literals that signify
* the action required from MEAS^BUMP.
* The numeric literals are equivalent
* to those given in
* $SYSTEM.SYSnn.MEASDECS,
* for use by TAL programmers.
*
* MEAS-ERROR - is a numeric field required to store
* status information returned by the
* calls to MEAS^BUMP and
* MEAS^BUMP^INIT. The value is tested
* to determine whether the counter is
* under measurement.

 01 WS-MEASURE-COUNTERS.

 03 WS-COUNTS-NAME PIC X(16) VALUE "COUNTS".
 03 WS-BUSY-NAME PIC X(16) VALUE "BUSY-ST".
 03 WS-TOTAL-NAME PIC X(16) VALUE "TOT-CNT".
 03 WS-MEAS-TOTAL-TRANS PIC 9(4) COMP VALUE 0.

*
* WS-id-NAME - is an alphanumeric literal that
* names the Measure counter and the
* literal; it appears in the generated
* report. The entry defines either a
* single counter or an array of counters.
* Specify the counter name in the same
* way for either case.

/
*
 PROCEDURE DIVISION.
 DECLARATIVES.
 FILE-RECOVERY SECTION.
 USE AFTER STANDARD EXCEPTION PROCEDURE ON MESSAGE-FILE
 REPLY-FILE
 PIN-FILE.

Example 5-3. COBOL Application Containing User-Defined
Counters (page 3 of 6)
Measure User’s Guide—520560-003
5-12

Defining Custom Counters Sample COBOL Application
 A-00-ERROR.
* MOVE 1 TO fstat-1.
 END DECLARATIVES.
 MAIN-PROC SECTION.
*
 B-00.
 PERFORM OPENERS.
 PERFORM READ-MESSAGE UNTIL JOB-STATE = "T".
 PERFORM CLOSERS.
 B-99.
*
 STOP RUN.
/
*
 OPENERS SECTION.
*
 C-00.
 OPEN INPUT MESSAGE-FILE.
 OPEN OUTPUT REPLY-FILE.
 OPEN INPUT PIN-FILE SHARED.

 C-99.
 EXIT.

/
*
 READ-MESSAGE SECTION.
 D-00.
 READ MESSAGE-FILE AT END MOVE "T" TO JOB-STATE.
*
* For Measure on $RECEIVE access; that is, a busy counter.
*
 PERFORM MEAS-SB.

 IF JOB-STATE = "T" GO TO D-99.
 PERFORM VERIFY-PIN.
 ADD 1 TO WS-MEAS-TOTAL-TRANS.
*
 D-99.
 EXIT.

/
*
 VERIFY-PIN SECTION.
*
 F-00.
 MOVE CUST-NO-A OF MESSAGE-FILE
 TO CUST-NO-A OF PIN-RECORD.
 MOVE 0 TO REPLY-CODE OF SEC-NAR-REPLY.
 MOVE SPACES TO REPLY-MSG OF SEC-NAR-REPLY.
 READ PIN-FILE KEY IS CUST-NO-A OF PIN-RECORD.

Example 5-3. COBOL Application Containing User-Defined
Counters (page 4 of 6)
Measure User’s Guide—520560-003
5-13

Defining Custom Counters Sample COBOL Application
 IF fstat-1 NOT = 0
* I.E. RECORD NOT FOUND
 MOVE "*** CUSTOMER NOT FOUND ON FILE ***"
 TO REPLY-MSG OF SEC-NAR-REPLY
 MOVE 0 TO REPLY-CODE OF SEC-NAR-REPLY
 WRITE SEC-NAR-REPLY
 PERFORM MEAS-INCUST
 GO TO F-99.
* I.E. RECORD FOUND
 IF PIN-NO OF MESSAGE-FILE = PIN-NO OF PIN-RECORD
 MOVE "*** VERIFICATION COMPLETED ***"
 TO REPLY-MSG OF SEC-NAR-REPLY
 MOVE 0 TO REPLY-CODE OF SEC-NAR-REPLY
 WRITE SEC-NAR-REPLY
 PERFORM MEAS-SUC
 ELSE
 MOVE "*** INVALID PIN NUMBER ***"
 TO REPLY-MSG OF SEC-NAR-REPLY
 MOVE 0 TO REPLY-CODE OF SEC-NAR-REPLY
 WRITE SEC-NAR-REPLY
 PERFORM MEAS-INP.
*
*
 F-99.
 PERFORM MEAS-RB.

 F-EXIT.
 EXIT.

/
*
 MEAS-NUMS SECTION.
*
* Pinched from MEASSRC
* Measure control

 MEAS-SB.
* setbusy (3) for Measure control

 ENTER TAL "MEAS^BUMP" USING WS-BUSY-NAME, MEAS-SETBUSY
 GIVING MEAS-ERROR.

 MEAS-RB.
* resetbusy (4) for Measure control

 ENTER TAL "MEAS^BUMP" USING WS-BUSY-NAME, MEAS-RESETBUSY
 GIVING MEAS-ERROR.

 MEAS-INCUST.
* user-created counter for INVALID CUSTOMER ID

 ENTER TAL "MEAS^BUMP" USING WS-COUNTS-NAME, MEAS-INC,, 0
 GIVING MEAS-ERROR.

Example 5-3. COBOL Application Containing User-Defined
Counters (page 5 of 6)
Measure User’s Guide—520560-003
5-14

Defining Custom Counters Sample COBOL Application
 MEAS-INP.
* user-created counter for INVALID PASSWORD

 ENTER TAL "MEAS^BUMP" USING WS-COUNTS-NAME, MEAS-INC,, 1
 GIVING MEAS-ERROR.

 MEAS-SUC.
* user-created counter for SUCCESSFUL PASSWORD

 ENTER TAL "MEAS^BUMP" USING WS-COUNTS-NAME, MEAS-INC,, 2
 GIVING MEAS-ERROR.

 MEAS-CNT.
* user-created counter for NUMBER OF TOTAL TXNS

 ENTER TAL "MEAS^BUMP" USING WS-TOTAL-NAME, MEAS-ADD,
 WS-MEAS-TOTAL-TRANS
 GIVING MEAS-ERROR.

 MEAS-EXIT.
 EXIT.

/
*
 CLOSERS SECTION.
*
 G-00.
*
* In this sample application, updating is done after each
* session to reduce overhead. Updating can be done after
* each transaction if necessary, but overhead is greater.
*
 CLOSE MESSAGE-FILE REPLY-FILE PIN-FILE.

 PERFORM MEAS-CNT.
 PERFORM MEAS-RB.
*
 G-99.
 EXIT.

* *
* E N D O F P R O G R A M *
* *

Example 5-3. COBOL Application Containing User-Defined
Counters (page 6 of 6)
Measure User’s Guide—520560-003
5-15

Defining Custom Counters Sample COBOL Application
Measure User’s Guide—520560-003
5-16

6
Creating a Custom Measurement
Application

You can write application programs that control the Measure subsystem and access
measurement data. Your application must pass calls to the Measure procedures, which
provide a programmatic equivalent of the MEASCOM command functions.

For example, you can design custom performance tools that:

• Perform specialized analyses of Measure data

• Continuously collect selected performance information and present it for problem
analysis and correction

• Dynamically balance the load on CPUs by monitoring the CPUs and creating new
processes on those least loaded

• Collect capacity-planning information, analyze it, produce reports, and flag critical
performance problems

This section describes how to use the callable procedures to:

• Start and stop the Measure subsystem

• Start and stop a measurement

• Read counter records from a data file and from active counters

• Check the status of the subsystem, a measurement, and a measurement
configuration

Table 6-1 on page 6-2 lists the callable procedures. For more information, see the
Measure Reference Manual.

Preparing Your Program and Defining the
Configuration

Preparing your program is a four-step process:

1. Read declaration files into the source code global declarations.

2. Allocate space in your program’s global data area for the Measure control block.

3. Define the entities to be measured.

4. Declare and initialize the records of the configuration table.
Measure User’s Guide—520560-003
6-1

Creating a Custom Measurement Application Preparing Your Program and Defining the
Configuration
Table 6-1. Measure Callable Procedures (page 1 of 2)

Procedure Function
MEAS_ADJUSTZMSRECORD_ Adjusts ZMS-style structure records to the MEASDDLS

format with which an application was compiled.

MEAS_CODERANGENAME_DEM
ANGLE_

Supports demangling of procedure (code-range)
names.

MEASCLOSE Terminates access to a data file.

MEASCONFIGURE Defines the entities to be measured.

MEASCONTROL Starts and stops a measurement.

MEASCOUNTERBUMP Bumps a user-defined counter.

MEASCOUNTERBUMPINIT Initializes and returns the offset of a user-defined
counter.

MEASGETVERSION Returns the PVU under which a data file was created
(D25, D30, and so on).

MEASLISTCONFIG Returns system configuration information supplied by
the MEASCTL process.

MEASLISTENAME Translates Guardian file names of MIDs to
corresponding external format ANSI SQL names or
OSS pathnames

MEASLISTEXTNAMES Makes Measure list structured OSS and ANSI SQL
name information to the EXTNAMES file

MEASLISTGNAME Translates OSS file pathnames to Guardian file names.
Returns the MID (PATHID and CRVSN) content for
entity descriptor construction. Also returns the contents
of an OSS directory

MEASLISTOSSNAME Returns structured OSS file pathname translation
information to the file OSSNAMES

MEASLISTPNAME Translates Guardian file name or OSS pathid to its
OSS file pathname equivalent

MEASMONCONTROL Starts or stops the Measure subsystem.

MEASMONSTATUS Returns current or configured measurement data file
names.

MEASINFO Returns measurement configuration information from a
data file. Unlike MEASREADCONF, MEASINFO does
not require that the data file be open. Use MEASINFO
when you do not require retrieval of data records.

MEASOPEN Creates a MEASFH process to initialize or read a data
file.

MEASREAD Calls MEASREAD_DIFF_ to return counter records
from a measurement data file.

MEASREADACTIVE Reads data from active counter records, for buffers up
to 32KB.
Measure User’s Guide—520560-003
6-2

Creating a Custom Measurement Application Reading Declaration Files
Reading Declaration Files
Use the TAL compiler ?SOURCE command to read these declaration files into the
source code global declarations:

Allocating Space for the Measure Control Block
Allocate space in the program’s global data area for the Measure control block
(meascb). You must perform this allocation unless you use only the MEASCLOSE,
MEASOPEN, MEASREAD or MEASREAD_DIFF_, and MEASREADCONF procedures
in a program.

You need only one Measure control block per process, regardless of the number of
measurements the process makes.

MEASCB^DEF in the MEASDECS file is the template structure for the control block.
This referral structure allocates space for the control block:

STRUCT .MEASCB(MEASCB^DEF)

MEAS_READACTIVE_ Reads data from active counter records, for buffers
larger than 32KB.

MEASREADCONF Returns measurement configuration and resource use
information from a data file. Requires that the file be
opened (using MEASOPEN).

MEASREAD_DIFF_ Returns counter records from a measurement data file.

MEASSTATUS Returns resource use information for an active
measurement.

MEASWRITE_DIFF_ Writes counter records from a measurement data file to
a structured file.

Declaration File Description
$SYSTEM.SYSTEM.EXTDECS0 Contains the external declarations for the Measure

procedures. Each Measure procedure used in your
program must be specified in the ?SOURCE command.

$SYSTEM.SYSnn.MEASDECS Contains template structures for the Measure control
block, configuration table, and entity descriptors. It also
declares literal identifiers for the error message codes
returned by the procedures and for constants used in
the configuration table and entity descriptors.

Table 6-1. Measure Callable Procedures (page 2 of 2)

Procedure Function
Measure User’s Guide—520560-003
6-3

Creating a Custom Measurement Application Defining Entities

ric
ifier
Before you call the first procedure that uses the control block, you must initialize each
element in the block to -1:

MEASCB.FIRSTWORD ':=' -1 & MEASCB.FIRSTWORD
 FOR (($LEN(MEASCB)>>1) - 1);

The control block is used to store data for procedure calls. Do not modify the contents
of the block for subsequent Measure procedure calls.

Defining Entities
The entity descriptors define what is to be measured.

The MEASDECS file declares template structures for the entity descriptors. Table 6-2
shows which template structure to use for each entity type.

Table 6-2. MEASDECS Entity Descriptors (page 1 of 2)

Section

Descriptor
Template
Structure
(Systems Running
D-Series RVUs)

Descriptor Template
Structure (Systems Running
G-Series RVUs) Type Literal

Nume
Ident

CONTAB
header CONTAB^HDR CONTAB^HDR CONTAB^T 50

CPU CPU^DESC CPU^DESC CPU^T 1

PROCESS PROCESS^DESC PROCESS^DESC
PROCESS^OSS^DESC

PROCESS^T 2

PROCESSH PROCESSH^DESC PROCESSH^DESC
CODE^SPACE^DESC
PROCESSH^OSS^DESC
CODE^SPACE^OSS^DESC

PROCESSH^T 3

USERDEF USERDEF^DESC USERDEF^DESC
COUNTER^DESC
USERDEF^OSS^DESC

USERDEF^T 4

FILE FILE^OPEN^DESC FILE^OPEN^DESC
FILE^OPEN^DESC^D10
FILE^OPEN^OSS^DESC
FILE^OPEN^OSS^DESC^D10

FILOP^T 5

DISCOPEN FILE^OPEN^DESC FILE^OPEN^DESC
FILE^OPEN^OSS^DESC

DFILOP^T 6

DISC DEVICE^DESC DEVICE^SVNET^DESC
DEVICE^SVNET^DESC^G05

DISC^T 7

DEVICE DEVICE^DESC DEVICE^SVNET^DESC
DEVICE^SVNET^DESC^G05

IODEV^T 8

LINE DEVICE^DESC WAN^DESC LINE^T 9

NETLINE DEVICE^DESC WAN^DESC NETLINE^T 10

SYSTEM SYSTEM^DESC SYSTEM^DESC REMSYS^T 11

CLUSTER SYSTEM^DESC Not applicable CLUSTER^T 12
Measure User’s Guide—520560-003
6-4

Creating a Custom Measurement Application Defining Entities

ric
ifier
Each entity descriptor contains these fields:

The remaining fields in a descriptor vary according to entity type. In many fields,
including the cpu^number field, you can use wild-card values to describe a set of
entities. For example, in a CPU entity descriptor, you can use the literal ALL in the
cpu^number field to specify all CPUs on the system. You can also use the wild-card
character, an asterisk (*), in name fields. (However, when Measure reads from active
counters, the entity descriptor you pass to MEASREADACTIVE must specify only one
entity.)

All disk file, system, device, and process names must be in local internal name format.
If you use an asterisk in a name field or subfield, you must include the appropriate
leading character (\, $, or #) and pad the field with blanks. For an exact definition of
each entity descriptor and its allowable field values, see the description of the
MEASCONFIGURE procedure in the Measure Reference Manual.

TERMINAL DEVICE^DESC WAN^DESC TERM^T 13

TMF CPU^DESC CPU^DESC TMF^T 14

SQLPROC SQLPROC^DESC SQLPROC^DESC
SQLPROC^OSS^DESC

SQLPROC^T 15

SQLSTMT SQLSTMT^DESC SQLSTMT^DESC
SQLSTMT^OSS^DESC

SQLSTMT^T 16

OPDISK OPDISK^DESC Not applicable OPDISK^T 17

CONTROLLER CTRL^DESC Not applicable CTRL^T 18

SERVERNET Not applicable SVNET^DESC SVNET^T 18

DISKFILE DISKFILE^DESC DISKFILE^DESC
DISKFILE^OSS^DESC

DISKFILE^T 19

OSSCPU Not applicable CPU^DESC OSSCPU^T 20

OSSNS Not applicable OSSNS^DESC OSSNS^T 21

Maximum value MAX^T 24

CONTAB trailer CONTAB^TRAILER CONTAB^TRAILER CONTAB^TRAILER^T 51

type A number that identifies the type of entity being defined. The MEASDECS
file declares some literal identifiers for these numbers. For numeric
identifiers and corresponding literals, see Table 6-2.

len The length, in bytes, of the descriptor.

cpu^number The number of the CPU in which the entity resides.

Table 6-2. MEASDECS Entity Descriptors (page 2 of 2)

Section

Descriptor
Template
Structure
(Systems Running
D-Series RVUs)

Descriptor Template
Structure (Systems Running
G-Series RVUs) Type Literal

Nume
Ident
Measure User’s Guide—520560-003
6-5

Creating a Custom Measurement Application Preparing the Configuration Table
Preparing the Configuration Table
The configuration table defines which entities are in a measurement. You pass the
configuration table to MEASCONFIGURE before you start a measurement. After a
measurement is configured, you can read its configuration table by calling
MEASREADCONF or MEASINFO.

The configuration table consists of three parts:

• A header record

• The entity descriptor sections

• A trailer record

The header and trailer records have fixed lengths. The entity descriptor sections can
vary in length, so the table as a whole is variable length.

Header Record
Use the template structure CONTAB^HDR to define the header record. The header
record consists of these elements:

Entity Descriptor Sections
The body of the configuration table is an array of entity descriptors. The entity
descriptors are grouped into sections according to entity type, with the sections
ordered by their numeric identifiers. All CPU descriptors (type number 1) appear first,
followed by all PROCESS descriptors (type number 2), then all PROCESSH
descriptors (type number 3), and so on. If an entity type is not being measured, do not
include a section for that type.

To use a single descriptor to define a set of entities to measure, use wild-card values in
fields. After you define a set of entities, you can exclude individual entities from the set
and ultimately from the measurement. To exclude an entity, add a specification for that

Element Description
Type The numeric identifier 50 or the string literal CONTAB^T (declared in the

MEASDECS file). This field identifies this record as the header record.

Len The length of the entire configuration table, in bytes.

Sections An array of offsets in bytes that point to each entity type’s descriptor section
within the table. The first word of the array is always zero. The following offsets
are ordered by entity type number and are indexed to the beginning of the
configuration table. If an entity type is not being measured, its offset is zero.

Maxents The first element in the sections array (that is, SECTIONS[0]). It identifies the
header format.

Note. If you have older custom programs that do not use the current header format, HP
recommends that you recompile those programs.
Measure User’s Guide—520560-003
6-6

Creating a Custom Measurement Application Starting and Stopping the Measure Subsystem
entity to the configuration table, and set the type field to a negative value. You can
specify a negative value for the type string literal or the numeric identifier.

For example, to measure all CPUs except CPU 6:

1. Add a CPU specification in which type is set to CPU^T and cpu^number is set to
ALL.

2. Add a second CPU specification in which type is set to -CPU^T (the negative
literal that corresponds to CPU^T) and cpu^number is set to 6.

To do the same thing using numeric type identifiers instead of string literals:

1. Add a specification in which type is set to 1 (the numeric identifier for CPU) and
cpu^number is ALL (or the equivalent numeric literal, -1).

2. Add a second specification in which bit 0 of the type field is set to 1. This sets the
exclude flag and is equivalent to setting a negative value.

3. Set bits 1 through 15 of the type field to 1, the numeric type identifier for CPU.

4. Set the cpu^number field to 6.

Trailer Record
Use the template structure CONTAB^TRAILER to define the trailer record. The trailer
record consists of these elements:

• Type—the numeric identifier 51, or the string literal CONTAB^TRAILER^T
(declared in the MEASDECS file). This field identifies this record as the trailer
record.

• Len—the length of the trailer record, in bytes.

Use the template structure CONTAB^TRAILER to define the trailer record and to
assign the literal CONTAB^TRAILER^T to the type field.

Starting and Stopping the Measure Subsystem
Use the MEASMONCONTROL procedure to start and stop the Measure subsystem:

• To start the subsystem, call the procedure with a nonzero start parameter.

To start the subsystem, a process must be a member of the super-user group.

• To stop the subsystem, call the procedure with a zero-value start parameter.

Before you stop the subsystem, to determine if any measurements are active, call
the MEASMONSTATUS procedure.

Example 6-1 on page 6-8 uses MEASMONCONTROL to demonstrate all of these
actions.
Measure User’s Guide—520560-003
6-7

Creating a Custom Measurement Application Starting and Stopping the Measure Subsystem
Example 6-1. Starting and Stopping the Subsystem

DEFINE WLEN(S) = $LEN(S)>>1#;

LITERAL STOP^SUBSYS = 0,
 START^SUBSYS = -1,
 MAX^NUM^MEASUREMENTS = 64;

! Structures for the Measure control block and for the
! array of measurement names returned by MEASMONSTATUS.

STRUCT .MEASCB(MEASCB^DEF);

STRUCT .MEASNAMES[0:MAX^NUM^MEASUREMENTS-1];
 BEGIN
 INT FNAME[0:11];
 END;

INT MEASUREMENTS,
 ERROR;
 .
 .
 .

! Start the subsystem. The call to MEASMONSTATUS is the
! first Measure procedure call, so initialize the control
! block first. Then check the subsystem status by calling
! MEASMONSTATUS. If no error is returned, the subsystem is
! running. If error ERR^MEASMON is returned, the subsystem
! hasn't been started, so start it.

MEASCB.FIRSTWORD ':=' -1 & MEASCB.FIRSTWORD FOR
 (WLEN(MEASCB) - 1);
IF ERROR := MEASMONSTATUS(MEASCB, MEASUREMENTS, MEASNAMES)
 THEN
 BEGIN
 IF ERROR = ERR^NOMEASMON
 THEN
 IF ERROR := MEASMONCONTROL(MEASCB,TRUE) !start it
 THEN ... ! Handle error on start attempt
 ELSE ... ! Handle error on status attempt

! Stop the subsystem. Call MEASMONSTATUS to see if any
! measurements are active (nonzero measurements parameter
! returned). If some are, resolve appropriately (for
! example, notify operator), and do not stop the subsystem.
! If no measurements are active (zero in returned
! measurements parameter), stop the subsystem.

IF ERROR := MEASMONSTATUS(MEASCB,MEASUREMENTS,MEASNAMES)
 THEN ... ! handle error
IF MEASUREMENTS
 THEN ... ! handle case of active measurements
 ELSE ! shut down the subsystem
 IF ERROR := MEASMONCONTROL(MEASCB,FALSE)
 THEN ... ! handle error
Measure User’s Guide—520560-003
6-8

Creating a Custom Measurement Application Starting and Stopping a Measurement
Starting and Stopping a Measurement
To start a measurement:

1. Call MEASOPEN and pass it the data file plus a nonzero write parameter.

2. Call MEASCONFIGURE and pass it the data file number returned by MEASOPEN
plus the location of the configuration table.

3. Call MEASCONTROL and pass it the measurement number returned by
MEASCONFIGURE plus a specific start time and (optionally) a stop time.

4. If you will read data only from active counters, call MEASCLOSE to close the data
file and delete the MEASFH process to release resources held by MEASFH.

Step 1: Call MEASOPEN
When you call MEASOPEN, you must pass it the data file name and a nonzero write
parameter. Specifying read access when you make this call lets you later read from the
data file without calling MEASOPEN again.

MEASOPEN creates a MEASFH process and sends it the data file name. If the file
exists, MEASFH initializes the file. Any existing data in the file is deleted. If the data file
does not exist, MEASFH creates it.

An existing file passed to the MEASOPEN procedure can be a local tape file or an
unstructured local disk file with a file code of 175. (For data analysis, the data file can
be local or remote, but it must be a disk file.) If MEASOPEN creates the data file, it
creates an unstructured disk file, code 175, with a primary extent size of 30 pages and
a secondary extent size of 30 pages. Maximum extent size for the data file is set to
256, which gives a maximum file size of 15 megabytes. If you need a file larger than 15
megabytes, create the file yourself before you start the measurement.

When you call MEASOPEN to start a measurement on an existing file, the file cannot
be already open from a previous MEASOPEN call. If it is, MEASOPEN returns error
ERR^FILEINUSE (code 3255). Call MEASCLOSE to close the file, then try to start the
measurement again.

To specify a volume for MEASFH swap files other than the volume on which the data
file resides, use the MEASOPEN option SWAPVOL. SWAPVOL is an array that
contains the name of the volume for MEASFH to use for swap files when processing
the data file.

Step 2: Call MEASCONFIGURE
You must call MEASCONFIGURE and pass it the data file number returned by
MEASOPEN and the location of the configuration table.

MEASCONFIGURE passes the configuration table to MEASFH. MEASFH validates
the format of the table and writes a copy of it to the data file.
Measure User’s Guide—520560-003
6-9

Creating a Custom Measurement Application Step 3: Call MEASCONTROL
Step 3: Call MEASCONTROL
You must call MEASCONTROL and pass it the measurement number returned by
MEASCONFIGURE and a specific start time in the starttime parameter. You can
also specify a stop time for the measurement in the first or a subsequent call to
MEASCONTROL.

Specify the current time so that the measurement starts immediately. If you omit the
starttime parameter or give it a value of -1, the measurement does not start until
you call MEASCONTROL again and pass a specific start time.

You can specify a measurement interval when you call MEASCONTROL. After the
measurement starts, you cannot change the interval.

To stop a measurement, specify a stop time in one of:

• The MEASCONTROL call used to start the measurement

• A subsequent MEASCONTROL call

If you do not specify a stop time when you start a measurement, the measurement
runs until you call MEASCONTROL again and pass it a stop time. You must omit the
starttime parameter in this call (or give it a value of -1). If you specify the current
time in the stoptime parameter, the measurement stops immediately.

Step 4: Call MEASCLOSE (Optional)
To close a data file and free MEASFH resources, call MEASCLOSE. The
measurement continues even though the user process closes the data file.

Example 6-2 on page 6-11:

1. Defines a measurement configuration that measures all CPUs on a system except
CPU 0

2. Creates and opens a data file with a call to MEASOPEN

3. Passes the configuration table to MEASCONFIGURE

4. Starts the measurement immediately by a call to MEASCONTROL

5. Later stops the measurement with another call to MEASCONTROL
Measure User’s Guide—520560-003
6-10

Creating a Custom Measurement Application Step 4: Call MEASCLOSE (Optional)
Example 6-2. Starting and Stopping a Measurement (page 1 of 2)

STRUCT .CONTAB; ! structure for configuration table
 BEGIN
 STRUCT HEADER(CONTAB^HDR);
 STRUCT CPU(CPU^DESC)[0:1];
 STRUCT TRAILER(CONTAB^TRAILER);
 END;

STRUCT .MEASCB(MEASCB^DEF);

INT DFNAME[0:11] := ["$SYSTEM MEASURE CPUDATA "],
 DFNUM, ! returned by MEASOPEN
 SWAPVOL[0:3] := ["$SWAP "],
 MEASNUM, ! returned by MEASCONFIGURE
 ERROR;
 .
 .
 .
! Initialize the configuration table header record.

CONTAB.HEADER.TYPE := CONTAB^T;
CONTAB.HEADER.LEN := $LEN(CONTAB);
CONTAB.HEADER.SECTIONS ':=' 0 &
 CONTAB.HEADER.SECTIONS FOR MAX^T;
CONTAB.HEADER.SECTIONS[CPU^T] := $OFFSET(CONTAB.CPU);

! Initialize the first CPU descriptor to measure all CPUs.

CONTAB.CPU.TYPE := CPU^T;
CONTAB.CPU.LEN := $LEN(CPU^DESC);
CONTAB.CPU.CPU^NUMBER := ALL;

! Initialize the second CPU descriptor to remove CPU 0
! from the measurement configuration. The first two
! assignment statements use these DEFINEs declared in the
! file MEASDECS:

DEFINE DESCTYPE = TYPE.<1:15>#;
DEFINE EXCLUDE = TYPE.<0>#;

CONTAB.CPU[1].EXCLUDE := 1; ! set exclude flag bit
CONTAB.CPU[1].DESCTYPE := CPU^T;
CONTAB.CPU[1].LEN := $LEN(CPU^DESC);
CONTAB.CPU[1].CPU^NUMBER := 0;
Measure User’s Guide—520560-003
6-11

Creating a Custom Measurement Application Step 4: Call MEASCLOSE (Optional)
! Initialize the trailer record.

CONTAB.TRAILER.TYPE := CONTAB^TRAILER^T;
CONTAB.TRAILER.LEN := $LEN(CONTAB.TRAILER);

! Start the measurement. First open the data file with
! MEASOPEN: request both read and write access and
! specify an alternate volume for MEASFH swap files.
! Next, call MEASCONFIGURE to pass CONTAB. Finally,
! call MEASCONTROL and pass it the current time in
! starttime.

MEASCB.FIRSTWORD ':=' -1 & MEASCB.FIRSTWORD FOR
 (WLEN(MEASCB) - 1);

IF ERROR := MEASOPEN(DFNAME,DFNUM,TRUE,TRUE,SWAPVOL)
 THEN ... ! handle error
IF ERROR := MEASCONFIGURE(MEASCB,DFNUM,MEASNUM,CONTAB)
 THEN ... ! handle error
IF ERROR := MEASCONTROL(MEASCB,MEASNUM,
 CONVERTTIMESTAMP(JULIANTIMESTAMP,0))
 THEN ... ! handle error
 .
 .
 .

! Stop the measurement. Call MEASCONTROL and pass it
! a -1 in starttime and the current time in stoptime.

IF ERROR := MEASCONTROL(MEASCB, MEASNUM, -1F,
 CONVERTTIMESTAMP(JULIANTIMESTAMP,0))
 THEN... ! handle error

Example 6-2. Starting and Stopping a Measurement (page 2 of 2)
Measure User’s Guide—520560-003
6-12

Creating a Custom Measurement Application Reading Counter Records
Reading Counter Records
To read counter records, use any of these procedures:

• You must pass an entity descriptor to MEASREAD, MEASREAD_DIFF_, or
MEASREADACTIVE that specifies the entities whose records you want to read.
Because you can pass only one entity descriptor, you can read records belonging
to only one entity type in each call. If the measurement configuration includes more
than one entity type, you must issue a separate MEASREAD or
MEASREAD_DIFF_ call for each entity type whose records you want returned.

• You can use wild-card values in the entity descriptor passed to the MEASREAD
and MEASREAD_DIFF_ procedures. For the entities included in the descriptor,
MEASREAD and MEASREAD_DIFF_ return the most recent records or the
records closest to the time you specify.

• The entity descriptor passed to the MEASREADACTIVE procedure must describe
a single entity. Wild-card values in some fields, such as CPU, are not allowed.

• In general, you receive one record for each entity in your entity descriptor. For
example, if your entity descriptor describes two entities, you receive two records,
provided that records for both entities exist. In the case of USERDEF and
PROCESSH entities, however, you can receive many records per entity.

• Each USERDEF counter has its own counter record; the same is true of a
PROCESSH code range. Because you cannot pass counter descriptors or
code-range descriptors to MEASREAD, MEASREAD_DIFF_, or
MEASREADACTIVE, you cannot limit the records returned. MEASREAD and
MEASREAD_DIFF_ return all counter records associated with a PROCESSH or
USERDEF entity. MEASREADACTIVE returns all counter records associated with
a USERDEF entity. (MEASREADACTIVE cannot read PROCESSH records.) You
can select individual records from the returned records by checking the counter
name and index fields of USERDEF records and the code-space and code-range
fields of PROCESSH records.

Procedure Returns...
MEASREAD Counter records built from counter values in the data file

MEASREAD_DIFF_ Counter records built from counter values in the data file

MEASREADACTIVE Counter records built from active counter values

Note. The MEASREAD_DIFF_ procedure, an improvement on the MEASREAD procedure,
lets you specify a time window (both FROM and TO times) in the same procedure call. You can
use MEASREAD_DIFF_ with D00 or later PVUs of MEASFH. If you are using earlier PVUs of
MEASFH, you must use MEASREAD. For detailed descriptions of MEASREAD and
MEASREAD_DIFF_, see the Measure Reference Manual.
Measure User’s Guide—520560-003
6-13

Creating a Custom Measurement Application Reading Counter Records From a Data File
• The Measure Reference Manual shows the counter record format for each entity
type using DDL RECORD statements. To create a source file containing TAL
template structures for each record, use this DDL command:

DDL /IN MEASDDLS/TAL filename, TALBOUND 0

where MEASDDLS is the DDL source file provided with Measure and filename is
the TAL output file.

• The first field in a counter record is an error field. If this field is nonzero, counter
space could not be allocated for the entity, and thus valid information cannot be
returned in the counter value fields. The entire counter record is still returned, with
valid information in the measurement and entity identification fields. For
descriptions of the possible error values for each entity type, see the Measure
Reference Manual.

Reading Counter Records From a Data File
To retrieve records from a data file:

1. If you have not obtained read access to the data file, call MEASOPEN to do so. Do
not specify write access on this call. Doing so deletes the data in the file.

2. Call MEASREAD or MEASREAD_DIFF_ and pass it the entity descriptor and the
size and location of the buffer to receive the returned records.

3. Check the bytesret parameter returned by MEASREAD or MEASREAD_DIFF_.
If it is zero, the procedure could not find a record meeting the specifications.

Check the firstcall parameter returned by the MEASREAD or MEASREAD_DIFF_
procedure. If the specified buffer is too small to hold all the counter records, the
procedure returns as many complete records as it can and returns a nonzero value in
firstcall. To read the remaining records, call the read procedure again and pass it
the value returned in firstcall. Continue calling the read procedure until it returns a
zero in firstcall, indicating that all records have been read.

To access a remote data file, use the measfh parameter of the MEASOPEN procedure
to start a MEASFH process on the remote system. The MEASFH process must run on
the same system that contains either MEASCOM or the data file. If you used the
optional MEASOPEN SWAPVOL parameter to specify an alternate volume for
MEASFH swap files, the volume you specified must belong to the system on which
MEASFH is running.

You can allocate space in an extended segment for the counter records and specify a
buffer size as large as 32000 bytes (the maximum data transfer permitted by the file
system) in a MEASREAD or MEASREAD_DIFF_ call. However, the read procedure
might have more than 32000 bytes to return. If so, the procedure returns a nonzero
value in firstcall, and you must continue to call MEASREAD or
MEASREAD_DIFF_ until it returns a zero in firstcall. Each time you call the read
procedure, specify a buffer size equal to 32000 or the space remaining in the extended
segment, whichever is smaller.
Measure User’s Guide—520560-003
6-14

Creating a Custom Measurement Application Reading Counter Records From a Data File
By default, both MEASREAD and MEASREAD_DIFF_ return the most recent record
for an entity. This record is written at measurement, at entity stop time, or at the last
collection interval. Both procedures have optional parameters you can use to specify a
target time for records:

• With the MEASREAD procedure, the nomtime parameter specifies a target time.
Instead of returning the most recent record for an entity, MEASREAD returns the
record whose TO-TIMESTAMP field is closest to the specified target time.

The timetol parameter establishes a time window in which the record must
reside. The window is the interval between nomtime - timetol and nomtime +
timetol. If MEASREAD does not find a record whose TO-TIMESTAMP resides
within the window, it does not return a record for that entity. If it finds more than
one record, it returns the record whose TO-TIMESTAMP is closest to nomtime.

If you use the timetol parameter, remember that some entities do not exist for an
entire measurement interval. If you use timetol to specify a window that is less
than the measurement interval, you might unintentionally exclude transient entity
records. For example, if you have a measurement interval of 30 seconds, a
transient entity can start and stop during the first 10 seconds of this interval. If you
specify a timetol of 15 seconds, you will not receive this entity record.

• With the MEASREAD_DIFF_ procedure, the to^time and from^time
parameters specify a target time window for the records. The timetol parameter
specifies the tolerance on either side of the time window.

Instead of returning the most recent record for an entity, MEASREAD_DIFF_
returns the records at to^time subtracted from the records at from^time. If
MEASREAD_DIFF_ does not find a record within the window, it does not return a
record for that entity. If it finds more than one record that could satisfy the to^time
or from^time specification, it returns the record closest to the respective end
point (either to^time or from^time). For more information, see the
MEASREAD_DIFF_ procedure in the Measure Reference Manual.

Example 6-3 on page 6-16 shows how to use MEASREAD to open a data file and read
the most recent records for all DISC entities into an extended segment; 65536 bytes
are allocated in the extended segment for the returned records. (In many cases, you
might need more space.)
Measure User’s Guide—520560-003
6-15

Creating a Custom Measurement Application Reading Counter Records From a Data File
Example 6-3. Reading Records From a Data File (page 1 of 2)

DEFINE RECORD^LENGTH = $DBL($LEN(DISC^DEF))#;
LITERAL TRUE = -1,
 FALSE = 0;
INT .EXT RECORD^BUF[0:32767], ! space in extended segment
 .EXT READ^PTR, ! buffer pointer
 .EXT RECORD^PTR(DISC^DEF) !record pointer
 DFNAME[0:11] := ["$SYSTEM MEASURE DISCDATA"],
 DFNUM,
 BUFSIZE,
 BYTESRET := 0,
 ERROR,
 NUM^OF^RECORDS,
 I;
INT(32) SPACE^AVAILABLE := 65536D,
 TOTAL^BYTES := 0D;
FIXED FIRSTCALL := 0F; ! initialize firstcall to zero
STRUCT DESCRIPTOR(DEVICE^DESC);
! Open the data file for read access only.

IF ERROR := MEASOPEN(DFNAME,DFNUM,FALSE,TRUE)
THEN ... ! handle error
! Initialize the descriptor to describe all disks and
! initialize buffer pointer.

DESCRIPTOR.TYPE := DISC^T;
DESCRIPTOR.LEN := $LEN(DEVICE^DESC);
DESCRIPTOR.CPU^NUMBER := ALL;
DESCRIPTOR.CHNL := ALL;
DESCRIPTOR.CTL := ALL;
DESCRIPTOR.UNIT := ALL;
DESCRIPTOR.DEVICE^NAME ':=' "$* ";
@READ^PTR := @RECORD^BUF;
! Read in counter records until firstcall is zero. In a
! DO loop, first calculate the unused space in the extended
! segment, using the bytesret parameter returned by the
! last MEASREAD call. Set the buffer size to 32000 or to
! the unused space, whichever is smaller. Then call
! MEASREAD. Finally, adjust the buffer pointer and
! increment the total byte count by the number returned
! in bytesret.
Measure User’s Guide—520560-003
6-16

Creating a Custom Measurement Application Reading Active Counters
After the records are received, they are validated by checking the ERROR field. An
extended structure pointer based on the template structure DISC^DEF (not shown),
which defines a DISC record, is used for validation.

Reading Active Counters
While an entity is being measured, you can obtain a counter record for it that contains
the current values in its active counters. The active counter records are maintained by
MEASCTL, not MEASFH, so you do not need to open the measurement data file to
read an active counter record. You cannot read active counter records for DISCOPEN,
DISKFILE, or PROCESSH entities. You must use MEASREAD or MEASREAD_DIFF_
to read these records.

To read an active counter record, call MEASREADACTIVE (for buffers up to 32 KB) or
MEAS_READACTIVE_ (for buffers larger than 32 KB) and pass it an entity descriptor
and the size and location of the buffer. The entity descriptor must specify a single
entity. Besides the type and len fields, these fields in these descriptors must contain
specific values (wild-card values are not permitted):

• For systems running D-series or G-series RVUs:

° The cpu^number field in the CPU and TMF descriptors

DO
 BEGIN
 SPACE^AVAILABLE := SPACE^AVAILABLE - $DBL(BYTESRET);
 IF SPACE^AVAILABLE < RECORD^LENGTH
 THEN ... ! not enough space for one record
 IF SPACE^AVAILABLE > 32000D
 THEN BUFSIZE := 32000
 ELSE BUFSIZE := $INT(SPACE^AVAILABLE);
 IF ERROR := MEASREAD(DFNUM,DESCRIPTOR,READ^PTR,
 BUFSIZE,BYTESRET,FIRSTCALL)
 THEN ... ! handle error
 IF NOT BYTESRET
 THEN ... ! no records returned
 TOTAL^BYTES := TOTAL^BYTES + $DBL(BYTESRET);
 @READ^PTR := @READ^PTR + $DBL(BYTESRET);
 END
UNTIL FIRSTCALL = 0F OR ERROR <> 0;
! Begin FOR loop to validate returned records.
! Assumes number of records is less than 32767.

NUM^OF^RECORDS := $INT(TOTAL^BYTES/RECORD^LENGTH);
FOR I := 0 TO NUM^OF^RECORDS - 1 DO
 BEGIN
 IF RECORD^PTR[I].ERROR THEN ... !invalid counter values
 .
 .
 .

Example 6-3. Reading Records From a Data File (page 2 of 2)
Measure User’s Guide—520560-003
6-17

Creating a Custom Measurement Application Reading Active Counters
° The opener^cpu, opener^pin, and file^number fields in the FILE
descriptor

° The cpu^number and pin fields in the PROCESS and USERDEF descriptors

° The lh^cpu and system^number fields in the SYSTEM and CLUSTER
descriptors

• For systems running D-series RVUs:

° The cpu^number, channel-num, ctrl, and unit fields in the
CONTROLLER, DISC, DEVICE, LINE, NETLINE, and TERMINAL descriptors

• For systems running G-series RVUs:

° The cpu^num, servernet, group, module, and slot fields in the DISC and
DEVICE descriptors

° The cpu^number, trackid, clip, and line fields in the LINE, NETLINE,
and TERMINAL descriptors

° The cpu^number, group, module, SvNet-node-number, slot, and
remote-CPU fields in the SERVERNET descriptor

MEASREADACTIVE and MEAS_READACTIVE_ ignore the remaining fields in the
descriptors. They can contain any valid value.

You must pass MEASREADACTIVE or MEAS_READACTIVE_ the measurement
number. If you do not have this number (which is returned by MEASCONFIGURE),
obtain it by calling MEASMONSTATUS and looking up the measurement data file
name in the array returned by the procedure. The data file index into the array is the
measurement number. (See Checking the Status of the Subsystem or a Measurement
on page 6-19.)

Because you specify a single entity in the call, MEASREADACTIVE and
MEAS_READACTIVE_ usually return one counter record. The exception is for a
USERDEF entity. Each user-defined counter has its own record, and
MEASREADACTIVE and MEAS_READACTIVE_ return all the counter records
associated with a USERDEF instance if there is room. The largest bufsize value
MEASREADACTIVE supports is 32767 bytes. To configure measurements for which
returning all counters for a USERDEF instance requires more space, use
MEAS_READACTIVE_.

When you start a measurement, MEASCTL initializes any new counters to zero
(except CPU counters, which are initialized at system load). If the counters already
exist because another measurement is using them, however, MEASCTL adopts them
for the new measurement. For this reason, the counter fields in an active counter
record the activity of the entity because the counters were initialized by the first
measurement using them. The FROM-TIMESTAMP field in an active counter record
contains the time and date when the counters were initialized.

Example 6-4 on page 6-19 shows how to call MEASREADACTIVE to read active CPU
counter records one at a time into a buffer. The buffer is defined as an array of referral
Measure User’s Guide—520560-003
6-18

Creating a Custom Measurement Application Checking the Status of the Subsystem or a
Measurement
structures based on the template structure CPU^DEF (not shown), which defines a
CPU counter record.

Checking the Status of the Subsystem or a
Measurement

Two procedure calls are used to check the status of the Measure subsystem and an
active measurement.

The MEASMONSTATUS procedure call returns this information about the Measure
subsystem:

• The number of measurements currently active.

• The names of the currently active or configured measurements. The names are
ordered by measurement number. Therefore, you can use MEASMONSTATUS to
obtain the measurement number of an active measurement.

A call to MEASCONFIGURE adds a measurement to the list of active measurements.
Therefore, a measurement that is configured but not started appears in the array
returned by MEASMONSTATUS. A measurement remains on the list of active
measurements until a call to MEASCONTROL stops it.

Example 6-4. Reading Active Counters

LITERAL MAX^CPU = 15;

STRUCT .CPU(CPU^DEF)[0:MAX^CPU]; ! counter record buffer
STRUCT .DESCRIPTOR(CPU^DESC); ! CPU descriptor

INT BYTESRET,
 ERROR[0:MAX^CPU],
 I;
 .
 .
 .

! Initialize first two words of CPU descriptor.

DESCRIPTOR.TYPE := CPU^T;
DESCRIPTOR.LEN := $LEN(CPU.DESC);

! Read in CPU records.

FOR I := 0 TO MAX^CPU DO
 BEGIN
 DESCRIPTOR.CPU^NUMBER := I;
 ERROR[I] := MEASREADACTIVE(MEASCB,MEASNUM,DESCRIPTOR,
 CPU[I],$LEN(CPU^DEF),BYTESRET);
 END;
Measure User’s Guide—520560-003
6-19

Creating a Custom Measurement Application Checking the Status of the Subsystem or a
Measurement
The MEASSTATUS procedure call returns this information about an active
measurement:

• The CPUs being measured. If any entity is being measured in a CPU and a
MEASCTL process is running in that CPU, the bit corresponding to the CPU
number is set in the parameter of the returned CPU.

• The measurement start, stop, and interval times. If the measurement was started
without a stop or interval time, MEASSTATUS returns -1 in the stoptime or
interval parameter.

• The number of entities of each type that are being measured. This information is
returned in an array of MAX^T + 1 words. The first word is always zero. The
remaining words are ordered by numeric identifier (1 for CPU, and so on).

• The counter space, in words, used by each entity type. This information is returned
in an array of MAX^T + 1 words and is the same format as the entities array.

Example 6-5 calls MEASMONSTATUS and searches the array of data file names
returned by MEASMONSTATUS for the file called CPU0DATA. If the file is found,
MEASMONSTATUS assigns the index into the array to the variable measnum. It then
calls MEASSTATUS, passing it the measurement number in measnum, and checks the
entities array returned by MEASSTATUS to determine whether the measurement is
measuring PROCESS entities.

Example 6-5. Using MEASMONSTATUS and MEASSTATUS (page 1 of 2)

LITERAL MAX^NUM^MEASUREMENTS = 64;

STRUCT .MEASNAMES[0:MAX^NUM^MEASUREMENTS-1];
 BEGIN
 INT FNAME[0:11];
 END;

INT MEASUREMENTS,
 ERROR,
 CPUS,
 MEASNUM;

FIXED STARTTIME,
 STOPTIME,
 INTERVAL;

INT(32) .ENTITIES[0:MAX^T],
 .CTRSPACE[0:MAX^T];
 .
 .
 .
! Call MEASMONSTATUS to get the measurement number.
! If you have already used the Measure control block
! (MEASCB) do not initialize it again.
Measure User’s Guide—520560-003
6-20

Creating a Custom Measurement Application Reading the Measurement Configuration
Reading the Measurement Configuration
You can get this information on the configuration and resource use of a measurement
by calling MEASREADCONF:

• The measurement configuration table

• The measurement start, stop, and interval time

• The maximum number of entities of each type that were measured concurrently
during the life of the measurement (returned for inactive measurements only)

• The maximum counter space used by each entity type during the life of the
measurement (returned for inactive measurements only)

MEASREADCONF reads the configuration table from the data file. Therefore, before
you call MEASREADCONF, you must call MEASOPEN to get read access to the data
file.

When you call MEASREADCONF, you must specify a buffer to receive the
configuration table. If the buffer you specify is too small for the entire configuration
table, MEASREADCONF returns error ERR^BUFTOOSMALL (code 3204), and no
information is returned. To avoid this error, you can allocate a buffer as large as 32000
bytes in an extended segment for the configuration table.

Example 6-6 on page 6-22 restarts a measurement. It uses MEASREADCONF to get
the configuration table from the data file and then passes the table to
MEASCONFIGURE.

IF ERROR := MEASMONSTATUS(MEASCB,MEASUREMENTS,MEASNAMES)
 THEN ... ! handle error
IF NOT MEASUREMENTS
 THEN ... ! no active measurements; otherwise continue
MEASNUM := 0;
WHILE (MEASNUM < MAX^NUM^MEASUREMENTS) AND
 (MEASNAMES[MEASNUM].FNAME[8] <> "CPU0DATA")
DO MEASNUM := MEASNUM + 1;
IF MEASNUM >= MAX^NUM^MEASUREMENTS
 THEN ... ! Measurement not active; otherwise continue

! Pass measnum found above to MEASSTATUS and examine the
! returned entities array.

IF ERROR :=
MEASSTATUS(MEASCB,MEASNUM,CPUS,STARTTIME,STOPTIME,
INTERVAL, ENTITIES, CTRSPACE) THEN ... ! handle error
IF ENTITIES[PROCESS^T] > 0D
 THEN ... ! PROCESS entities are being measured

Example 6-5. Using MEASMONSTATUS and MEASSTATUS (page 2 of 2)
Measure User’s Guide—520560-003
6-21

Creating a Custom Measurement Application Reading the Measurement Configuration
Example 6-6. Restarting a Measurement (page 1 of 2)

LITERAL BUFSIZE = 32000,
 TRUE = -1,
 FALSE = 0,
 MAX^NUM^MEASUREMENTS = 64;

STRUCT .MEASNAMES[0:MAX^NUM^MEASUREMENTS-1];
 BEGIN
 INT FNAME[0:11];
 END;

INT .EXT CONTAB[0:15999], !use space in extended segment
 MEASUREMENTS,
 MEASNUM,
 FILENAME[0:11] := ["$SYSTEM MEASURE CPUDATA "],
 DFNUM,
 BYTESRET;

FIXED STARTTIME,
 STOPTIME,
 INTERVAL;

INT(32) .ENTITIES[0:MAX^T],
 .CTRSPACE[0:MAX^T];
 .
 .
 .
! Determine if measurement is already active.
! If you have already used the Measure control block
! (MEASCB), do not initialize it again here.

IF ERROR := MEASMONSTATUS(MEASCB,MEASUREMENTS,MEASNAMES)
 THEN ... ! handle error
MEASNUM := 0;
WHILE (MEASNUM < MAX^NUM^MEASUREMENTS) AND
 (MEASNAMES[MEASNUM].FNAME <> FILENAME FOR 12)
DO MEASNUM := MEASNUM + 1;
IF MEASNUM < MAX^NUM^MEASUREMENT
 THEN ... ! Measurement already active; don't continue

! Open the data file (read access only) and read the
! configuration table into an extended segment. Because a
! measurement cannot be started on an open data file, close
! the data file.
Measure User’s Guide—520560-003
6-22

Creating a Custom Measurement Application Modifying D-Series Applications for G-Series
Systems
Modifying D-Series Applications for G-Series
Systems

You might have to make changes in custom measurement applications after migrating
from a D-series RVU to a G-series RVU.

D-series RVUs use channel, controller, and unit numbers to identify specific storage
devices (DEVICE, DISC) and communication devices (LINE, NETLINE, TERMINAL).
In G-series RVUs, instead of channel, controller, and unit numbers, you must specify
group, module, and slot numbers for storage devices or track ID, CLIP, and line
numbers for communication devices. Therefore, you must change any application that
identifies an entity by channel, controller, or unit.

For example, if you have a D-series application that calls the MEASREADACTIVE
procedure and passes DISC identifiers to it, you must change that application.
MEASREADACTIVE requires the procedure call to identify a single entity, so the call
includes channel, controller, and unit identifiers. For a G-series disk, you must change
the identifiers to group, module, and slot.

You do not have to change applications in which channel, controller, and unit are
specified as -1 (ALL). For example, an application that calls the MEASREAD_DIFF_
procedure and passes DISC identifiers of -1 for channel, controller, and unit can be
used to measure all DISC entities on a system running a G-series RVU.

IF ERROR := MEASOPEN(FILENAME,DFNUM,FALSE,TRUE)
 THEN ... ! handle error
IF ERROR := MEASREADCONF(DFNUM,CONTAB,BUFSIZE,BYTESRET,
 STARTTIME,STOPTIME,INTERVAL,
 ENTITIES,CTRSPACE)
 THEN ... ! handle error
IF ERROR := MEASCLOSE(DFNUM)
 THEN ... ! handle error

Now start measurement. Reopen the data file, specifying
! both read and write access. Pass the configuration table
! to MEASCONFIGURE and start the measurement immediately,
! using the measurement interval returned by MEASREADCONF.

IF ERROR := MEASOPEN(FILENAME,DFNUM,TRUE,TRUE)
 THEN ... ! handle error
IF ERROR := MEASCONFIGURE(MEASCB,DFNUM,MEASNUM,CONTAB)
 THEN ... ! handle error
IF ERROR := MEASCONTROL(MEASCB,MEASNUM, CONVERTTIMESTAMP
 (JULIANTIMESTAMP,0), -1F, INTERVAL);
 THEN ... ! handle error

Note. OPDISK entities are also identified by channel, controller, and unit numbers. Optical
disks are currently supported only in D-series RVUs.

Example 6-6. Restarting a Measurement (page 2 of 2)
Measure User’s Guide—520560-003
6-23

Creating a Custom Measurement Application Modifying D-Series Applications for G-Series
Systems
The CTRL^DESC descriptor, which is used in D-series PVUs to identify
CONTROLLER entities, does not exist in G-series PVUs. It is replaced by the
SVNET^DESC descriptor, which identifies ServerNet addressable controllers (SACs).
However, you need not modify applications that include the CTRL^DESC descriptor if
the descriptor specifies all controllers or specifies only a CPU number. On systems
running G-series RVUs, the application measures all SACs. To identify a specific SAC,
you must use the SVNET^DESC descriptor and specify the SAC identifiers.

Applications that access Measure data files might need to be changed because of a
change for G-series RVUs in ERROR field values. The ERROR field can now return a
value of -1, indicating that there is data in the record but one or more fields overflowed.
If an application tests for the presence of data by checking for a 0 (zero) value, you
must change the application to check for either 0 or -1.
Measure User’s Guide—520560-003
6-24

7
Balancing and Tuning a System

Tuning a system lets you take full advantage of its capabilities to provide optimum
performance to all users. This requires detailed knowledge of the system with which
you are working: its hardware, applications, daily use, peak use, and so on.

The first step in system tuning often is balancing the system. In a transaction
processing environment, this means spreading the workload evenly across all
hardware and software resources that make up the system; for example, distributing
CPU usage evenly across all CPUs, distributing disk usage evenly across all disk
processes, distributing line usage evenly across all lines, and so on.

A system workload consists of the processes executing on that system. A workload
might not be static but instead be subject to periods of peak use over various times of
the day, week, month, or year. Each process uses a different mix of system resources.
Therefore, when you move a process to balance one resource (for example, CPU use),
you must be aware of the effect of that process on other system resources, particularly
during peak-period system usage.

This section describes basic steps for balancing and tuning a NonStop system using
Measure data:

The steps in this section generally work well in a transaction processing environment. If
you are not working in such an environment, consult a performance analyst before
using these guidelines.

For more information on performance products and analysis techniques for NonStop
systems, see Related Reading on page xii.

Topic Page
Balancing a System 7-2

Tuning a System 7-3
Measure User’s Guide—520560-003
7-1

Balancing and Tuning a System Balancing a System
Balancing a System
Balancing a system starts when you configure the system hardware. You should
distribute disks, terminals, and other devices evenly across all CPUs. Balancing lets
you distribute the primary I/O processes for those devices (especially disk processes)
across all CPUs. The eventual goal is to distribute workload, so consider which I/O
processes carry the heaviest loads and try to keep them on different CPUs.

When you bring up the system, start the Measure subsystem and a system
measurement. Use data from this measurement to check the load on each CPU and
the balance of the workload across all resources. It can help you identify trends as your
workload and your resource needs change. It can also help you identify trends in
system activity, such as when the system is heavily or lightly used, the resources that
are most heavily or most lightly used, and so on.

Because multiple measurements can run concurrently, the system measurement can
continuously collect performance data for use in performance analyses and capacity
planning without seriously affecting any other measurements that are configured.

Adding these commands to the system start-up file automatically starts the Measure
subsystem and a continuously running system measurement each time you start the
system. This configuration is effective for an initial evaluation of system performance.

MEASCOM
MEASSUBSYS
ADD CPU *
ADD PROCESS *
ADD DISC *
ADD DEVICES *
ADD LINE *
ADD NETLINE *
ADD CLUSTER *
ADD SYSTEM *
START MEASUREMENT datafile, INTERVAL 30 MIN

After running this measurement for 24 hours, check the size of the measurement data
file. If it is growing too rapidly, modify the measurement configuration and run it again.
Measure User’s Guide—520560-003
7-2

Balancing and Tuning a System Tuning a System
Tuning a System
Because tuning a system can easily create as many problems as it solves, start tuning
activities only if system users are not satisfied with system performance. When you are
notified of a performance problem, the measurement data file from the ongoing system
measurement gives you an excellent starting point for investigating the problem.

Figure 7-1 on page 7-4 shows typical steps used to tune a NonStop system. As you
work on the system:

• Allow enough time

• Make one change at a time

• Check the effect before making another change

Each change you make to the system affects a number of different system resources,
not just the resource on which you are working. You need to measure and understand
the systemwide effect of one change before trying a second.

At some sites, analyzing performance and modifying the system are the domain of
separate groups. If this is the case at your site, warn the appropriate groups that you
will be making numerous requests in the coming days as you work on improving
system performance.
Measure User’s Guide—520560-003
7-3

Balancing and Tuning a System Tuning a System
Figure 7-1. Tuning Flow Chart

Learn About
the System and

Applications

Correct
Outstanding

Problems

Measure the
System

Excessive
Swapping ?

Unbalanced
Disk Activity?

Unbalanced
CPU Activity?

Poor
Response

Time?

Done

Check Numbers
Yes

Fix Problem
Yes

Fix Problem
Yes

Fix Problem
Yes

Fix Problem
Yes

Fixed

Fixed

Fixed

Fixed

Okay?
Need More
Advanced
Analysis

Yes

Need Hardware

No

Yes

Yes

No

No

No

Yes

No

Yes

No

No

No

No

VST008.vsd

Remaining
Problems?
Measure User’s Guide—520560-003
7-4

Balancing and Tuning a System Learning About the System and Its Applications
Learning About the System and Its Applications
You must know your system so you can understand its limitations. You must learn
about each major application to determine how easily you can distribute its workload.
Knowing your system and the applications that run on it can help you anticipate
problems before they arise, identify problems more quickly and accurately when they
arise, and apply the best solutions to resolve those problems.

To become familiar with the system and its major applications, draw detailed diagrams
of each. Figure 7-2 on page 7-6 and Figure 7-3 on page 7-7 show sample diagrams of
systems running a D-series RVU and a G-series RVU, respectively.

The system diagram should contain this information, most of which can be found in the
SYSGEN files:

• CPU numbers, CPU types, and memory configuration.

• Disks on each CPU. Designate which CPU contains the primary disk process and
which the backup, and indicate whether the disk is mirrored and which controllers
have disks configured.

• Other I/O devices. Designate which CPU contains the primary I/O process and
which the backup. For terminals, include the name of each controller and the
number of terminals under its control.

• Communication lines on each CPU, including line names.

• Network connections on each CPU, including line names and whether the
connection is Expand or FOX.
Measure User’s Guide—520560-003
7-5

Balancing and Tuning a System Learning About the System and Its Applications
Figure 7-2. Sample System Diagram: D-Series RVU

IPB to Other Processors

CPU 0 CPU 1

X Y X Y

DISKA
Disc Controller

DISKB
Disc Controller

$SYSTEM-P
$SYSTEM-M
$DATA-P
$DATA-M

TAPEA
Tape Controller

$TAPE

NETA
Comm Controller

$SNA1
$SNA2

VST003.vsd
Measure User’s Guide—520560-003
7-6

Balancing and Tuning a System Learning About the System and Its Applications
You should also develop a diagram of each major application running on the system.
Each application diagram should reflect these system elements:

• Requesters

• Servers

• Data files, including how the file is structured and accessed, where the file is
located, whether it can be moved, and whether it can be partitioned

• Paths between requesters, servers, and files. Include the approximate number of
messages over each path.

Figure 7-4 on page 7-8 shows a sample application diagram.

Figure 7-3. Sample System Diagram: G-Series RVU

Processor
X Y

SCSI
SACs

PMF
CRU

Disks

$SYSTEM-M

$TAPE

Processor
X Y

SCSI
SACs

PMF
CRU

CCSA

$DATA-P

$AUDIT-P

$SYSTEM-P

$TAPE2
$DATA-M

$AUDIT-M

TRSA

FESA

E3S5A

$NET1 $NET2

X Y

VST005.vsd
Measure User’s Guide—520560-003
7-7

Balancing and Tuning a System Learning About the System and Its Applications
These attributes make an application easier to tune. That is, the more of these
attributes an application has, the easier it is to spread its workload across the system:

• Any application process can be moved to any CPU.

• Copies can be made of any application process, and the workload for that type of
process can be spread evenly across all its running copies.

• Any file, whether a database file or program object file, can be moved to any disk
drive.

• All transaction message-path lengths are kept to a minimum. Ideally, an application
server should never request service from another application server. Run servers
in parallel, not in series. When you arrange server tasks in a series of sequential

Figure 7-4. Sample Application Diagram

Line
Handler

Order
Detail File

Customer
File

Order
Detail File

Server
(Formatter)

Server
(Formatter)

Requester

Requester
Line

Handler

Terminal
Process

Terminal
Process

Terminal
Process

Terminal
Process

Terminal
Process

Terminal
Process

Terminal
Process

Terminal
Process

VST004.vsd
Measure User’s Guide—520560-003
7-8

Balancing and Tuning a System Correcting Outstanding Problems
server processes, you lose any chance of parallel processing and create an
unmanageable sequence of queues.

• Transient activity (process creations and deletions, and file opens and closes) is
kept to a minimum.

If an application has few of these attributes, it is difficult to spread its workload across
the system. You might have to balance the system around the application.

Pathway processes, the PATHMON-managed TCPs, and servers that make up a
Pathway application can have all the listed features. A well-designed Pathway
application is easy to tune.

Correcting Outstanding Problems
Check the system console and any error logs your site uses to locate problems in the
system or bugs in the applications. Correct these before attempting to make other
changes. Resolving a major problem in hardware or software can change the
performance of the system, so eliminate these problems before proceeding.

Measuring the System
Take a measurement that gives a comprehensive picture of the system and its major
applications. If possible, measure the system for a full day or more to make sure peak
periods are measured. Using this data, you can find the busiest hour of the day. This
peak hour is most critical for system tuning. For the longer term, it is also important to
learn about peak periods during a week and at the end of the month.

To create this comprehensive picture of the system, HP recommends this
measurement:

2+ ADD CPU *
3+ ADD DISC *
4+ ADD DEVICE *
5+ ADD LINE *
6+ ADD NETLINE *
7+ ADD CLUSTER *
8+ ADD SYSTEM *
9+ ADD PROCESS *
10+ ADD CONTROLLER *
11+ ADD DISCOPEN application data files
12+ ADD FILE application data files
13+ START MEASUREMENT file, INTERVAL 30 MIN

This example is valid for both D-series and G-series RVUs. Although the
CONTROLLER entity type is replaced by SERVERNET in G-series PVUs, the
command ADD CONTROLLER * is accepted in G-series PVUs as equivalent to ADD
SERVERNET *. Either command measures all ServerNet addressable controllers
(SACs). To measure specific SACs, you must use the ADD SERVERNET command
and specify the SACs to measure.
Measure User’s Guide—520560-003
7-9

Balancing and Tuning a System Checking and Tuning Problem Areas
Checking and Tuning Problem Areas
This subsection explains how to check and tune or balance common problem areas
found in the system. When attempting to tune a system, start with the highest-level or
most global external change. If the system problem is not resolved, progress to more
complex or lower-level tuning tasks. This strategy is, in order of priority:

1. Balance memory consumption and minimize swapping.

2. Balance disk activity.

3. Balance CPU activity, which includes:

• Balance other I/O process activity.

• Balance user process activity.

Step 1: Balance Memory Consumption and Minimize
Swapping
A page fault occurs when a process requires a page not currently in memory. In
response, the memory manager brings the required page into memory, causing one or
two swaps. A high swap rate in a CPU indicates a problem. Possible causes include:

• The CPU does not have enough memory.

• The CPU has too many primary disks primaried in the CPU.

• The disks have too much cache configured.

• Too many pages are locked into memory.

• There are too many process creations or deletions.

Applications also can cause excessive swapping by repetitively allocating and
deallocating extended data segments in their program logic.

Swapping causes performance problems for two reasons:

• Excessive swapping causes unnecessary disk I/O operations.

• The CPU time required to swap pages in and out of memory could be spent
performing more useful work.

A value greater than 2 swaps per second in the SWAPS counter of the CPU entity
indicates a possible problem. To determine the impact of swapping on your system,
use this formula to determine the maximum cost of swapping in terms of disk I/Os:

No. swaps in all CPUs * 2 = No. disk I/Os for swapping

For example, on systems running D-series RVUs, a disk can reasonably handle 20 to
35 I/Os per second. If five CPUs each generate two faults per second, the result is 20
I/Os per second. Thus, the system is devoting much of a disk to swapping, causing an
unacceptably high fault rate.
Measure User’s Guide—520560-003
7-10

Balancing and Tuning a System Checking and Tuning Problem Areas
On systems running G-series RVUs, a disk can handle approximately 40 to 70 I/Os per
second and can tolerate a somewhat higher swap rate. However, you should still try to
reduce unnecessary swapping.

Swapping usually indicates physical memory problems. To control swapping, you must
balance the physical memory requirements of all processes across all CPUs. If none of
these suggestions solve your swapping problems, you need more memory.

1. Check that each CPU has enough memory.

Use the PEEK product to determine the maximum number of process control
blocks (PCBs) used in each CPU and the number of physical memory pages in
each CPU. (For more information, see the PEEK Reference Manual.)

2. Balance system memory requirements across all CPUs.

A high swap rate in a single CPU indicates that the CPU does not have enough
physical memory to handle its current workload. Balancing the memory
requirements balances swapping.

3. Adjust cache size.

Swapping usually indicates a lack of memory. To free memory, reduce the
maximum amount of memory that can be used for disk cache. See Using Cache
on page 7-15.

4. Examine the source code to see that applications are not locking pages into
memory.

Frequent allocation and deallocation of extended data segments causes swapping.

5. Check the duration of processes on CPUs to identify short-term processes.

When a process starts, none of its required data pages are in memory. A series of
page faults brings the code and data into memory. Because the SWAPS value you
examine is swaps per second, this paging activity appears distributed across the
duration of the process.

For a normal process, the duration of the process is long enough to see a small
SWAPS value unless the CPU needs more memory. However, for a short-term
process, the initial page faults can cause a high SWAPS value even if the CPU has
enough memory. To determine whether the high SWAPS value is caused by a real
memory problem or short-term processes, check the duration of the processes in
that CPU. (In Measure reports, the FOR field of the report header shows the
duration of a process. In Enform reports, use the DELTA-TIME field.)

Note. Code page faults require only one disk I/O. Also, data pages do not need to be rewritten
unless they have been altered. For these reasons, the swapping formula might give a high
estimate of swapping cost in terms of disk I/Os.
Measure User’s Guide—520560-003
7-11

Balancing and Tuning a System Checking and Tuning Problem Areas
To balance the memory requirements across CPUs, you first need to examine the
memory requirements in each CPU. To do this, list the CPUs in order of their SWAPS
counter values:

10+ LIST CPU *, BY SWAPS

Do not accept a high SWAPS value as indicating memory problems without checking
for short-term processes (see item 5 on page 7-11).

When you know which CPUs have a memory problem and which have enough
memory, balance the memory workload by moving processes from the problem CPUs
to the other CPUs. To determine the memory requirements of each process in a CPU,
list the processes by their PRES-PAGES-QTIME counter values (specify n as the
number of the CPU):

20+ LIST PROCESS n,*, BY PRES-PAGES-QTIME

Move processes so that process memory requirements are balanced across CPUs.
Move one process at a time. After moving a process, check the effect of the change. If
you have shifted the memory problem from one CPU to the other, move the process
back and try a process with a smaller memory requirement.

Balancing Disk Activity
These components of the disk subsystem can affect performance:

• Controllers. On systems running D-series RVUs, multiple disks on each controller
can cause performance problems as the disks compete for use of the controller.

On systems running G-series RVUs, the ServerNet architecture provides faster
response time and higher throughput for I/O requests. Thus, balancing controller
loads for disk activity is generally not a significant performance issue.

• File system, disk process, and disk. Because these three operate serially, you can
treat them as a single unit for performance analysis. These entities are used to
examine this portion of the disk subsystem:

Balancing disk activity includes:

1. Balance disk processes across CPUs.

By spreading the activity of the primary disk processes evenly across the CPUs,
you prevent the processes from contending with each other for CPU time. For
more information, see Balancing Disk Processes on page 7-13.

2. Minimize disk I/O operations.

FILE Examines logical I/O operations on a file

DISCOPEN Examines physical I/O operations on a file in detail

DISKFILE Provides an overview of physical I/O operations on a file

PROCESS Examines the disk process

DISC Examines physical disk access
Measure User’s Guide—520560-003
7-12

Balancing and Tuning a System Checking and Tuning Problem Areas
Too many index levels in a key-sequenced file, poorly written applications, and the
wrong cache size for disk processes all generate unnecessary disk I/Os. Use FUP
to check and correct the index levels in key-sequenced files. For more information,
see Checking I/O Activity.

3. Distribute I/O activity evenly across all the disks. Because of application limitations
and the volume of I/O activity, balancing disk activity can be a complex operation.
These steps describe one approach to the problem:

a. Balance swap activity across the disks. To examine swap activity, list the disks
by their SWAPS counter values:

16+ LIST DISC *, BY SWAPS

To balance swapping, move object files off a heavily used disk or specify
SWAP FILE in the RUN command or the call to NEWPROCESS. Having
multiple copies of object files can aggravate swapping because code pages
are not shared. This is especially true if you create multiple versions of heavily
used object files such as library and system files. A more efficient practice is to
divide copies of object files onto multiple volumes. For example, place objects
A through M on one volume and objects N through Z on a second volume.

b. Balance disk queues, as described in Balancing Disk Queues on page 7-18.

Balancing Disk Processes

Examine your system diagram. Distribute primary I/O control processes evenly across
all CPUs. The I/O control processes are all high-priority processes. If you concentrate
them in one CPU, they contend with each other for CPU time.

If most of the I/O processes are on a few CPUs, you probably will have to reconfigure
the system and run SYSGEN on the system again. However, if the I/O processes are
distributed evenly, you might be able to balance the load by moving the primary I/O
process to a different CPU.

If your system diagram shows a number of heavily used disks on a single controller,
the disks are likely contending for use of the controller, which can cause a performance
problem.

The workload should be about the same on all PINs except the last. The last PIN
should be operating at about 5 to 10 percent of capacity.

Checking I/O Activity
A single logical I/O operation on a key-sequenced disk file typically requires from one
to three physical I/O operations. To determine the ratio of physical to logical I/O
operations for a disk, add the READS and WRITES counters for the disk (physical

Note. On newer disk controllers, the SEEK-BUSY-TIME will be zero. Seek times are not
provided. To calculate estimated time per I/O request:

DISC-BUSY / (READ-RATE + WRITE-RATE)
Measure User’s Guide—520560-003
7-13

Balancing and Tuning a System Checking and Tuning Problem Areas
I/Os) and compare the result against the REQUESTS counter (logical I/Os). Averaging
more than two physical I/Os per logical I/O indicates a possible performance problem.

The main causes of unnecessary physical I/O operations can be divided into two
classes: file structure (or access method) and cache configuration.

Structuring a File
Each index level in a key-sequenced file can cause an additional physical I/O
operation. Keeping a minimal number of index levels (no more than two) reduces the
number of physical I/O operations required for each logical I/O operation on the file.
Enter the FUP INFO command to determine the current number of index levels in a
key-sequenced file. To reduce the number of index levels, reload the file with larger
IBLOCK and BLOCK sizes or partition the file. The IBLOCK and BLOCK sizes must be
the same.

Adding and deleting records eventually causes files to fragment. Enter the FUP INFO
command to determine whether the file has a reasonable amount of slack. Too much
slack can cause unnecessary disk seek time and waste disk space. Too little slack can
cause block splits.

If a file is heavily used, partitioning it across multiple volumes spreads out the
workload. Partitions alleviate disk hot spots and spread data over multiple CPUs and
controllers. Partitioning also promotes parallel processing.

Other file attributes can cause unnecessary CPU overhead:

• Using an alternate key requires two key-sequenced searches rather than one. You
can use the DISCOPEN entity to determine how frequently the application
accesses the alternate-key file:

6+ LIST DISCOPEN alternate key file name

A poorly designed application can use alternate keys as frequently as primary keys. To
correct the problem, you must redesign the application with these considerations:

• Updating alternate-key files during peak hours can hurt performance. If possible,
turn off automatic alternate-key updates during periods of heavy usage and update
the alternate keys during periods of low use. (See the ALTKEY key NOUPDATE
option of the FUP SET command in the File Utility Program (FUP) Reference
Manual.)

• Using data or index compression on a key-sequenced file saves disk space at the
expense of CPU time. With compression off, the file system uses a binary search
algorithm when accessing records. With compression on, the file system must use
a sequential search. Thus saving disk space is rarely worth the CPU cost.

Enter the FUP INFO command to determine whether a file is compressed. If so,
you might want to reload the file with compression off. (For more information, see
the File Utility Program (FUP) Reference Manual.)
Measure User’s Guide—520560-003
7-14

Balancing and Tuning a System Checking and Tuning Problem Areas
Using Cache
A read or write operation to memory is much faster than a read or write operation to
disk. The objective of disk cache is to keep frequently accessed information in memory,
saving the time otherwise spent performing physical disk I/O.

Read and buffered write operations can use cache. Unbuffered write operations always
cause a disk I/O. Because buffered writes can be collected in cache and written out as
necessary, they save disk I/Os and, therefore, CPU time. For TMF-audited files,
buffered write operations are the default. For nonaudited files, buffered write
operations are not usually recommended because a failed disk or multiple failed CPUs
can cause data loss. However, for nonaudited files, buffered writes might be efficient in
cases where a job is rerun to re-create data. In most cases, Measure and Spooler data
files are good candidates for buffered writes.

The recommended cache size for a disk depends on a number of factors. The size of
physical memory on the CPUs containing the primary and backup disk processes and
the file activity on the disk are the most important.

• Physical memory is shared by the memory manager (to allocate process code and
data pages) and the disk cache for each disk process (primary or backup) on the
CPU. The ideal division of memory gives the memory manager all the memory it
needs (no extra) and gives the rest to the disk cache.

If disk cache is too small, disk processes might perform unnecessary physical disk
I/Os. If disk cache is too large, it can induce unnecessary swap operations and
cache faults. (Swaps are also disk I/Os and therefore time consuming.)

• File activity determines cache use:

° Random access on a key-sequenced file. When performing random access on
a key-sequenced file, you must access one or more index blocks plus the data
block for each I/O operation. By configuring enough cache to hold as many of
the index blocks for the file as possible, you avoid the physical disk I/Os
associated with the index levels and so improve performance. By adding extra
cache for the data blocks, you can improve the chance of a cache hit on a data
block and avoid the possibility of forcing a data block out of cache before a
possible update operation.

° Random access on an entry-sequenced or relative file. By providing enough
cache to hold a substantial percentage of the file, you can increase the
chances of a cache hit and thus improve performance. However, in the event
of a cache miss, an entry-sequenced or relative file requires one I/O where the
key-sequenced file might require more than one.

° Sequential access on any file. Because you are accessing the information only
once, the cache requirements for the file are minimal. Even for a
key-sequenced file, a minimal cache configuration should keep the required
index blocks in cache until they are replaced by the index blocks required for
the next set of data blocks.
Measure User’s Guide—520560-003
7-15

Balancing and Tuning a System Checking and Tuning Problem Areas
° Small files. By providing enough cache to hold the entire file, you can avoid
many disk I/Os and so improve performance. Providing cache does not
guarantee that the file remains in cache. Unless the small file is busy, its blocks
are likely to be swapped out in favor of busier files.

Use the STATISTICS and DETAIL clauses of the FUP INFO command to examine
the block sizes and index levels of the major files on each disk.

This text provides guidelines for sizing cache for DP2 disks. Adjusting disk cache can
have a major effect on system performance. Do not change cache sizes unless you
have a problem.

• Although you configure cache only for the primary disk process, the system
automatically configures the same amount of cache for the backup disk process.
Both CPUs are affected.

• When examining the file activity on a disk, consider only heavily used files. Briefly
used files do not influence performance and should not influence cache sizing.

Disk cache consists of four separate caches, each containing blocks of different sizes
(512 bytes, 1024 bytes, 2048 bytes, and 4096 bytes). RVUs prior to D40.00 provide a
number of blocks for each cache that equals the number of PINs multiplied by 7 and
rounded up to a full-page boundary. D40.00 and later RVUs provide a maximum of 56
blocks for each cache. Thus, when configuring disk cache, consider that the impact on
CPU physical memory includes all four caches for each disk process, primary and
backup, in the CPU.

When configuring the cache sizes for each disk, consider the file activity (as discussed
at the beginning of this section) in each of the four caches for that disk. The cache a
file uses is based on the file block size. Examine the block size of the major files on the
disk by using the ENDING-FREE-BLOCKS counter of the DISK entity. (Alternatively,
you can use the STATISTICS or DETAIL clause of the FUP INFO command.)

Examine the cache statistics collected in the Cn counters of the DISC entity. These
counters can help you size the cache:

• FAULTS. A cache fault occurs when the disk process expects to find a block in
cache but discovers that the memory manager has removed it. Cache faults are a
result of contention between the CPU memory manager and the CPU disk
processes. A high FAULTS value (greater than 5) might be caused by several
things:

° The disk cache on the CPU might be too large.

° Too many processes in the CPU might be locking down too many memory
pages for the PFS for each process.

° Too many system processes might be locking down memory for resident code
and data pages.

° Too little physical memory might be available to the CPU.
Measure User’s Guide—520560-003
7-16

Balancing and Tuning a System Checking and Tuning Problem Areas
° Backup disk processes might be consuming amounts of cache larger than their
primary memory (TMF and control points).

Depending on the cause of the cache faults, you might choose to reduce the
amount of cache configured for the disk, reduce the amount of cache configured in
the CPU, move processes out of the CPU, or reconfigure system processes.

• BLKS (blocks allocated). If the disk has far more blocks allocated than it has in
use, the amount of cache configured for this disk is too large. Determine which of
the caches to reduce by considering the file activity in each cache.

• Counters reflecting hit/miss ratios. When you examine the hit/miss ratio for a
particular cache, note the file activity for that cache. For example, a cache with a
substantial amount of sequential I/O activity should have a good hit/miss ratio. A
cache with a substantial amount of random I/O activity has a chance of producing
a good hit/miss ratio. A cache with a substantial amount of unbuffered write activity
cannot produce any cache write hits.

In addition, note the file activity of the other caches. For example, if all file activity
for the disk is in one cache, give that cache block size the most memory. If the file
activity for the disk is split between two caches, consider which files can benefit
most from a larger cache.

The DISC counters that reflect cache hits and cache misses are:

In general, for each CPU, configure DP2 disk cache so the READ HITS and WRITE
DIRTYS for each of the four caches for each disk process (primary and backup) in the
CPU are as high as possible while the CACHE FAULTS for each disk process and the
Measure SWAPS counter for the CPU remain low.

To get more information for cache sizing on systems running D-series RVUs, use the
PUP LISTCACHE command with the STAT option, initializing the counters with the
INIT option. Initialize the counters any time you begin a measurement—after modifying
the cache configuration, before a peak period, and so on.

DISC Counter The percentage of...
CACHE READS Cache I/O operations that were reads

CACHE READ HITS Cache read operations that found the requested block in
cache

CACHE READ MISSES Cache read operations that did not find the requested block
in cache

CACHE WRITES Cache I/O operations that were writes

CACHE WRITE DIRTYS Cache write operations that found the requested block in
cache and dirty (saving a disk I/O)

CACHE WRITE CLEANS Cache write operations that found the requested block in
cache and clean

CACHE WRITE MISSES Cache write operations that did not find the requested
block in cache
Measure User’s Guide—520560-003
7-17

Balancing and Tuning a System Checking and Tuning Problem Areas
Balancing Disk Queues
Disk queues indicate the amount of time an I/O request spent waiting within the disk
subsystem. Because a CPU frequently waits for an I/O operation, disk queues can
cause major performance problems. By balancing the disk queues across all disks, the
average I/O request wait time becomes as short as possible. Because an I/O request
travels through the disk subsystem serially, calculate the total disk queue time by
adding these counter values:

• The RECV-QTIME counter for the disk process (PROCESS entity), which
represents how long the I/O request waited for the disk process (the external
queue for the disk process). Often, a high RECV-QTIME value indicates that the
disk process resides on an overly busy CPU.

• The REQUEST-QTIME counter for the disk (DISC entity), which represents how
long the I/O process waited for the disk (the internal queue for the disk process).
Often, a high REQUEST-QTIME counter indicates an overly busy disk.

To balance disk queues, first examine the queue length of each disk. (In Enform, you
can define a new field for disk queue lengths and use that field for balancing the
queues. In MEASCOM, you must do the calculations by hand.) When you know which
disks have long queues and which have shorter queues, balance the queue lengths by
moving files from one disk to another.

Balancing queue lengths is difficult because you must balance both disk processes
and disk queues simultaneously. In addition, you might have to work around
application restrictions and shortcomings; for example, a server program that uses
hard-coded file names instead of ASSIGN messages or DEFINEs to determine target
files to open.

In deciding which file to move and its new location, consider individual queues rather
than total queue length:

• If the summation of the RECV-QTIME counters for all disk processes in the CPU
you are relieving is high, the CPU is overly busy. Move frequently accessed files off
the disk. Choose a file with a large number of logical I/O operations by examining
the READS and WRITES counters of the FILE reports. Move the chosen file to a
CPU with a relatively low RECV-QTIME counter; that is, a CPU with a relatively
light CPU load.

• If the summation of the REQUEST-QTIME counters for disk processes in the CPU
you are relieving is high, the disks are overly busy. Move a file that causes
substantial disk I/O to another disk. Choose a file with a large number of physical
I/O operations by examining the DRIVER-INPUT-CALLS and
DRIVER-OUTPUT-CALLS counters of the DISCOPEN reports. Move the chosen
file to a CPU with a relatively low REQUEST-QTIME counter; that is, a CPU with a
relatively light physical I/O load.

Also consider the ease with which you can move the file. For example, alternate key
and swap files are relatively easy to move; TMF-audited files are not.
Measure User’s Guide—520560-003
7-18

Balancing and Tuning a System Checking and Tuning Problem Areas
Continue until the disk queues are balanced, but move only one file at a time. After
moving a file, check the effect of the change. If you have shifted the problem from one
disk to another, either move the file back and try a different file or try moving the file to
a different disk.

Balancing CPU Activity
You can consider CPU activity balanced when all CPUs have approximately the same
CPU-QTIME in the LIST CPU command display. Balanced CPU activity also denotes
an even distribution of work requests among CPUs. CPU queue lengths should be
examined and balanced as well.

Processes receive CPU time based on their priority. (Process priority assignments are
discussed later. For a complete discussion of priorities and scheduling, see the
Guardian Programmer’s Guide.) Processes with the same priority compete for
processing time. Processes at different priorities do not compete because higher
priority processes preempt lower priority processes. For this reason, you should
balance processing requirements for each priority level across all CPUs. That is,
processing requirements for processes at priority 220 should be balanced, processes
at priority 200 should be balanced, and so on for each priority level. In a mixed
environment, batch processes should run at a much lower priority than anything else
on the system.

To balance CPU activity, first examine the activity in each CPU. To do so, list the CPUs
in order of their CPU-BUSY-TIME counter values. (In Enform, you can define a new
CPU busy time field and use that field for CPU balancing.)

7+ LIST CPU *, BY CPU-BUSY-TIME

When you know which CPUs are overutilized and which have processing time to
spare, balance the CPU activity by moving processes from the overutilized CPUs to
the other CPUs.

To determine the processing requirements of all processes in a CPU, list the processes
by their CPU-BUSY-TIME counter values, and balance the processing requirements
for processes at a given priority level. (In MEASCOM, you must note the priority level
in the report header. In Enform, you can list processes over the PRIORITY field of the
process records.)

To list the processes in CPU 4 according to their CPU-BUSY-TIME counter values:

8+ LIST PROCESS 4,*, BY CPU-BUSY-TIME

In choosing a process to move, consider these factors as well as the CPU-BUSY-TIME
counter value:

• The duration of the process. A short-term process does not require much
processing time, regardless of its CPU-BUSY-TIME value.

• The ease with which the process can be moved. Moving a system I/O process
(IOP) can be done by a PRIMARY command. Moving an application process can
be simple or impossible depending on the application code.
Measure User’s Guide—520560-003
7-19

Balancing and Tuning a System Checking and Tuning Problem Areas
Continue the move until the CPU activity at each priority level is balanced across all
CPUs (or is as balanced as it can be given your workload). Move one process at a
time. After moving a process, check the effect of the change. If you shifted the problem
from one CPU to the other, move the process back and try a different process.

The priorities assigned to various types of processes can also affect performance. For
example, it is common to prevent requester processes from interrupting server
processes by keeping the requester processes at a lower priority.

This is one common scheme for setting priorities for processes. The priorities are kept
10 points apart for clarity and to avoid problems. The system bumps a process priority
each time another process is merged in front of another process on the ready list to
ensure that the process is eventually serviced by the disk process.

1. Disk processes (220)

2. Communication processes (200)

3. One command interpreter for problems (190)

4. PATHMON (180)

5. Server processes (170)

6. Requester processes (160)

7. Command interpreters (150)

8. Batch jobs (130)

If possible, separate batch and transaction processing.

Limiting the Number of Processes Measured
The operating system has an architectural limit of 65,534 concurrent processes per
CPU. The actual number of concurrent processes possible in a CPU depends on the
system’s resources, such as memory.

To improve Measure performance and keep the amount of data manageable, set up
the Measure configuration to collect measurements for specific processes rather than
all processes.

Evaluating Response Time
Response time is the user’s chief indication of performance. However, the
RESPONSE-TIME counter for the TERMINAL entity does not measure the response
time as seen by the user. The user sees response time as the time between pressing
the RETURN or function key and the time the system displays a response on the
screen. For Measure, response time is the time between the terminal process receiving
the RETURN or function key and the terminal process posting a write to the terminal.

Note. There are exceptions to the priority levels of requester and server processes. Determine
these case by case by experimentation.
Measure User’s Guide—520560-003
7-20

Balancing and Tuning a System Checking and Tuning Problem Areas
Response time should improve as the system is balanced. Do not treat response time
subjectively. A system can seem faster or slower depending on how much needs to be
accomplished.

Resolving Remaining Problems
If your system still has a performance problem:

• For more tuning information on systems running Pathway applications, see the
NonStop TS/MP and Pathway System Management Guide and the NonStop
TS/MP and Pathway Management Reference Manual.

• Check for application design problems. Poorly designed applications can cause
performance problems that simple load balancing cannot solve. These symptoms
indicate design problems:

° Looping batch processes that overload disks

° Poorly assigned application process priorities causing unnecessary queues
and underutilized CPUs

° Frequent, unnecessary application process creations and file opens and closes

° Unnecessary or overly long record locks, as indicated by a high
REQUESTS-BLOCKED counter in the DISC report

° Long internal queues

PROCESS reports list MQC-ALLOCATIONS and MQC-ALLOC-FAILURES.
However, because an MQC request takes 10 seconds to fail, a CPU can waste
time waiting for MQCs without the problem appearing in MQC-ALLOC-FAILURES.

• Reduce spooler overhead by specifying printer locations, combining small jobs into
a single large job, and suppressing banner pages whenever possible.
Measure User’s Guide—520560-003
7-21

Balancing and Tuning a System Checking and Tuning Problem Areas
Measure User’s Guide—520560-003
7-22

A
Creating an Enform Report From
Measure Data

You can use Enform queries to create customized performance reports from Measure
data. The Enform product can access Measure data files after they are converted to
structured files and a data dictionary is created. For this procedure, see Producing
Structured Files of Measurement Data on page 4-31.

In Enform reports, you can display data for more than one entity on the same report to
show relationships, create new report fields, select entities in a report by using any
combination of field values, or display the fields in a report by ascending or descending
field values.

For complete Enform documentation, see the ENFORM Reference Manual.

Calculating Values
You can use Enform queries to perform addition, subtraction, multiplication, and
division operations on the measurement data. Because structured files contain
uninterpreted data, Enform queries are commonly used to calculate the same types of
averages or percentages that interpreted data would provide.

To calculate averages and percentages from the field values in structured files, be
familiar with the Enform OPEN, LIST, and WHERE statements. For detailed
information, see the ENFORM Reference Manual.

Busy Values
The uninterpreted value provided by the structured report for a busy counter is the
number of microseconds busy. To calculate percent busy, use this formula:

(counter * 100.000) / delta-time

Specifying three decimal places (100.000) in this formula indicates that the resulting
values are calculated to three decimal places.

Topic Page
Calculating Values A-1

Creating User-Defined Variables A-3

Creating User-Defined Records A-4

Creating an Enform Report A-7
Measure User’s Guide—520560-003
A-1

Creating an Enform Report From Measure Data Queue Lengths
This Enform session displays the PROCESS CPU-BUSY-TIME counter in
microseconds in the column CPU-BUSY-TIME and as a percent busy value in the
column PERCENT BUSY:

>OPEN PROCESS;
>LIST PROGRAM-FILE-NAME, CPU-BUSY-TIME,
>((CPU-BUSY-TIME*100.000)/DELTA-TIME) HEADING "PERCENT BUSY",
>WHERE PROGRAM-FILE-NAME CONTAINS "MCOM";

 PROGRAM-FILE-NAME CPU-BUSY-TIME PERCENT BUSY
------------------------ -------------- ------------

$DATD QUOTAS MCOM 7883841 1.676
$DATD QUOTAS MCOM 382553 .452

The PROGRAM-FILE-NAME field of the PROCESS record contains the name of the
executing program file. The DELTA-TIME field contains the duration of the report
window in microseconds. The WHERE clause of the LIST command selects the
records to be included in the report.

Queue Lengths
The uninterpreted value provided by the structured report for a queue counter is the
number of microseconds spent in the queue. To calculate average queue length, use
this formula:

(counter * 1.000) / delta-time

This Enform session displays the PROCESS PRES-PAGES-QTIME counter in
microseconds in the column PRES-PAGES-QTIME and as an average queue length in
the column AVG LENGTH:

>LIST PROGRAM-FILE-NAME,PRES-PAGES-QTIME,
>((PRES-PAGES-QTIME*1.000)/DELTA-TIME) HEADING "AVG LENGTH",
>WHERE PROGRAM-FILE-NAME CONTAINS "MCOM";

 PROGRAM-FILE-NAME PRES-PAGES-QTIME AVG LENGTH
------------------------ ---------------- ----------

$DATD QUOTAS MCOM 52231001254 111.082
$DATD QUOTAS MCOM 5318962216 62.978

The PROGRAM-FILE-NAME field of the PROCESS record contains the name of the
executing program file. The DELTA-TIME field contains the duration of the report
window in microseconds. The WHERE clause of the LIST command selects the
records to be included in the report.
Measure User’s Guide—520560-003
A-2

Creating an Enform Report From Measure Data Rates
Rates
The uninterpreted values provided by the structured report for incrementing and
accumulating counters are the number of operations performed. To calculate
operations per second, use this formula:

(counter * 1.000) / (delta-time/1000000)

You must divide by one million to get seconds because the length of the report window,
DELTA-TIME, is in microseconds.

This Enform session displays the PROCESS DISPATCHES counter as the number of
operations performed in the column DISPATCHES and as the number of operations
performed per second in the column under DISP RATE:

>LIST PROGRAM-FILE-NAME,DISPATCHES,
>((DISPATCHES*1.000)/(DELTA-TIME/1000000))HEADING"DISP RATE",
>WHERE PROGRAM-FILE-NAME CONTAINS "MCOM";

 PROGRAM-FILE-NAME DISPATCHES DISP RATE
------------------------ ---------- ----------

$DATD QUOTAS MCOM 2485 5.284
$DATD QUOTAS MCOM 169 2.001

The PROGRAM-FILE-NAME field of the PROCESS record contains the name of the
executing program file. The WHERE clause of the LIST command selects the records
to be included in the report.

Creating User-Defined Variables
Use DECLARE statements to create user-defined variables in Enform reports.
User-defined variables are most often used in LIST statements to calculate new report
items from existing record fields.

To use variables wherever you would use field names, you must create a new record
definition and assign the variable values to the fields of the new record. (See Creating
User-Defined Records on page A-4.)

This DECLARE statement defines the variable PROC-TIME. By default, a variable’s
initial value is 0. You can specify a different initial value by using the Enform SET
command.

>DECLARE proc-time INTERNAL F19.3 AS F9.3
>HEADING "Process/Busy Time/(seconds)";

The INTERNAL clause defines the PROC-TIME internal data structure as F19.3,
where 19 is the total number of character positions, including the decimal point, and 3
is the number of digits to the right of the decimal point. (An 18-digit decimal number
with three digits to the right of the decimal place is used for internal Enform
calculations.)
Measure User’s Guide—520560-003
A-3

Creating an Enform Report From Measure Data Creating User-Defined Records
The AS clause defines the PROC-TIME display format as F9.3. That is, PROC-TIME
values are displayed in the format “nnnnn.nnn” (9 character places including the
decimal, with 3 digits to the right of the decimal). The display format is important for
two reasons:

• If the value calculated for a field is larger than the declared display format, the
calculated value is treated as an overflow, and the report field is filled with asterisks
(*).

• The size of each field display format contributes to the overall length of each report
line. If the sum of the display format sizes and the spaces between the items is
larger than the number of characters available on a report line, each report line is
wrapped onto two lines of the listing or terminal display, which results in confusing
reports.

The HEADING clause defines the text used to label columns containing the
PROC-TIME variable. The slash specifies a line break, so HEADING “Process/Busy
Time/(seconds)” produces the heading:

 Process
 Busy Time
 (seconds)

 .
 .
 .

This example uses the PROC-TIME variable in a LIST statement to calculate a new
report item from existing record fields:

>OPEN process;
>LIST BY cpu-num HEADING "CPU/Number",
>proc-time :=
>((SUM(cpu-busy-time OVER cpu-num))/1000000);

You can also use variables in the WHERE clause of a LIST command. However, only
the initial value of the variable is used when evaluating the WHERE clause.

You cannot use a variable in an aggregate. That is, a variable cannot be a BY item, an
OVER item, or the parameter of an Enform function.

Creating User-Defined Records
Like user-defined variables, user-defined records let you calculate new report fields
from existing fields. After declaring a field in a user-defined record, you can use that
field in an Enform aggregate, such as a LIST BY command.

Although a number of restrictions are placed on user-defined variables, no such
restrictions are placed on user-defined records. You can create new record fields by
performing calculations on existing record fields.

To define and assign field values to a new record:
Measure User’s Guide—520560-003
A-4

Creating an Enform Report From Measure Data Creating User-Defined Records
1. Decide on the field names and definitions. For example:

proc-time :=
 ((SUM(cpu-busy-time OVER cpu-num))/1000000)
sys-time :=
 ((SUM(cpu-busy-time OVER cpu-num WHERE
 program-file-name CONTAINS "OSIMAGE"))/1000000)
disc-time :=
 ((SUM(cpu-busy-time OVER cpu-num WHERE
 priority >= 220))/1000000)
user-time := (proc-time - sys-time)

CPU-BUSY-TIME and CPU-NUM are fields in the existing PROCESS record.

2. Create a file containing the DDL record definition for the fields of the new record.
This example defines a record, BUSYTIME, containing the fields listed under item
1:

RECORD busytime. FILE IS busytime.

02 cpu-num TYPE binary 16 unsigned.
02 proc-time TYPE binary 64.
02 sys-time TYPE binary 64.
02 disc-time TYPE binary 64.
02 user-time TYPE binary 64.

The RECORD statement defines the record structure. The FILE IS clause identifies
the file to contain the records. The 02 is the level number of the field within the
record. The level number indicates the field’s relationship to other fields within the
record. The field name follows the level number. The TYPE clause defines the data
type and size of the field.

For the full syntax and a complete explanation of the RECORD statement, see the
Data Definition Language (DDL) Reference Manual.

3. Add the new DDL record definition to the DDL dictionary that contains the Measure
DDL records. (For an explanation of how to create the DDL dictionary, see
Producing Structured Files of Measurement Data on page 4-31.)

Assuming that the DDL record definition appears in a source file named
BUSYDDLS, this command adds the record definition to the DDL dictionary on the
current subvolume:

DDL /IN BUSYDDLS/ DICT

4. Use an Enform FIND statement to assign values to the fields of the new record:

>OPEN process, busytime;
>FIND busytime
>(
>by process.cpu-num,
>proc-time := ((SUM(cpu-busy-time OVER
> process.cpu-num))/1000000),

>sys-time := ((SUM(cpu-busy-time OVER
> process.cpu-num WHERE program-file-name
Measure User’s Guide—520560-003
A-5

Creating an Enform Report From Measure Data Creating User-Defined Records
> CONTAINS "OSIMAGE"))/1000000),
>disc-time := ((SUM(cpu-busy-time
> OVER process.cpu-num WHERE
> priority >= 220))/1000000),
>user-time := (((SUM(cpu-busy-time OVER
> process.cpu-num))/1000000)
> -((SUM(cpu-busy-time OVER
> process.cpu-num WHERE program-file-name
> CONTAINS "OSIMAGE"))/1000000))
>);

The FIND statement begins by naming the new record to receive the values listed
in the statement. The remainder of the FIND statement is much like the LIST
statement. However, instead of displaying the specified values, the FIND statement
writes the specified values to the new record.

Each field value specified in the FIND statement must include the name of the field
in the new record that is to receive the field value. In the example, the first field
value specified is PROCESS.CPU-NUM. The new record has a CPU-NUM field, so
the value of PROCESS.CPU-NUM is assigned to BUSYTIME.CPU-NUM. Use of
the BY clause causes one BUSYTIME record to be created for each CPU.

The remaining field values in the FIND statement do not have matching field
names in the new record, so the FIND statement explicitly names the field in the
new record that is to receive the value specified in the FIND statement. For
example, the PROC-TIME field receives the sum of all
PROCESS.CPU-BUSY-TIME fields in the CPU.

Because the values being assigned to the new record are grouped according to
the CPU-NUM field (the OVER item), the CPU-NUM field must be included in the
new record.

5. You can now use the new record as you would any other record. This example
displays two of the new fields. Although the user-defined variable PROC-TIME
cannot be used as a BY item, the field PROC-TIME can.

>LIST BY PROC-TIME,SYS-TIME;

 PROC-TIME SYS-TIME
---------------- ----------------
 218.423 134.772
 4.192 4.036

For more examples of DDL RECORD statements and FIND queries for CPU and
PROCESS data files, see Appendix B, Examples of RECORD Statements and FIND
Queries.
Measure User’s Guide—520560-003
A-6

Creating an Enform Report From Measure Data Creating an Enform Report
Creating an Enform Report
To create an Enform report from Measure data:

1. Use DDL to add the required RECORD statements to the DDL dictionary.

2. If you use key-sequenced or alternate-key files, create a FUP schema file.
Alternate-key files improve Enform performance when you sort the measurement
data by field.

a. Use the ?FUP command of DDL to create the schema file.

b. Use FUP to create the key-sequenced and alternate-key files described by the
schema file.

3. Use the Measure REPORT attributes to generate structured files. See Producing
Structured Files of Measurement Data on page 4-31.

4. Use the Enform product to create the unstructured files containing the data to be
used in the report.

5. Use FUP to load the key-sequenced and alternate-key files with data from the
unstructured files.

6. Use the Enform product to create the report.

If you generally use the same reports each time you analyze new measurement data,
you can create command files that perform the preceding steps. Examples of
command files and their related files follow.

• The command file NEWSUBVL performs Steps 1 and 2, setting up a subvolume so
the second command file, STARTENF, can create the report. Whenever you copy
the Enform queries and associated files to a new subvolume, run NEWSUBVL.

• The command file STARTENF performs Steps 3 through 6, creating the report and
writing it to the spooler under the name $S.#ENFOUT.

NEWSUBVL—Establishing the Subvolume
To execute NEWSUBVL (create all files in a single subvolume):

1. Type in NEWSUBVL:

NEWSUBVL:

 DDL /IN $SYSTEM.SYSnn.MEASDDLS/ DICT !
 DDL /IN DDLXCHNG/ DICT
 FUP /IN FUPPURGE/
 EDIT/OUT $s.#jnk/fupxchng;CB/SET TYPE/SET EXT
 (20,20),TYPE/A;E
 FUP /IN FUPSCHNG/
 ENFORM /IN COMPILE/
Measure User’s Guide—520560-003
A-7

Creating an Enform Report From Measure Data NEWSUBVL—Establishing the Subvolume
The first line of NEWSUBVL creates a new DDL dictionary using the RECORD
statements in $SYSTEM.SYSnn.MEASDDLS. Examine NEWSUBVL to ensure
that the specified SYSnn subvolume is correct for your system. If not, edit
NEWSUBVL and correct it.

Many of the commands in NEWSUBVL assume that the current subvolume
contains certain required files. The remaining steps in this list create these files.

2. Type in DDLXCHNG, as shown in Example A-1 on page A-9. DDLXCHNG contains
the RECORD statements that define the unstructured (UNBASE and UNPROC)
and key-sequenced (BASEREP and PROCREP) files that will contain the
information to be used in the report.

The ?FUP command at the beginning of DDLXCHNG directs DDL to create a FUP
schema file, FUPXCHNG. The schema file created by DDL contains the FUP
commands that define a file to match each RECORD statement. Later, you use
FUPXCHNG as input to FUP to create the key-sequenced and alternate key files.

You can use FUPXCHNG as written by DDL. However, in this example,
NEWSUBVL edits FUPXCHNG to create all the files with primary and secondary
extents of 20 pages.

Example A-2 on page A-12 shows the FUPXCHNG file created by DDL after it has
been edited by NEWSUBVL.

3. Type in FUPPURGE, as shown here. FUPPURGE purges the files defined by the
schema file. You cannot use FUP and the schema file to create the unstructured
and key-sequenced files if files with the specified names already exist.

FUPPURGE:

 ALLOW 100 ERRORS
 ALLOW 100 WARNINGS
 PURGE (UNPROC, UNBASE) !
 PURGE (PROCREP, BASEREP) !
 PURGE (PROCREP0) !

4. Type in COMPILE. COMPILE contains the Enform commands that compile the
queries used to create the report. By compiling the queries in NEWSUBVL, you
save time when you run them to generate the report.

COMPILE:

 ?COMPILE findbcpu TO rfbase
 ?COMPILE findproc TO rfproc
 ?COMPILE qdproc TO rqdproc

5. Enter the queries FINDBCPU, FINDPROC, and QDPROC. (See Example A-3 on
page A-12 through Example A-5 on page A-14.) FINDBCPU contains the FIND
statement that defines the fields in the UNCPU record. FINDPROC contains the
FIND statement that defines the fields in the UNPROC record. QDPROC contains
the Enform statements that generate the final report.
Measure User’s Guide—520560-003
A-8

Creating an Enform Report From Measure Data NEWSUBVL—Establishing the Subvolume
6. Execute NEWSUBVL:

44> OBEY NEWSUBVL

Example A-1. DDLXCHNG File for Enform Reporting (page 1 of 3)
?FUP FUPXCHNG!
?SECTION unproc

RECORD unproc. FILE IS unproc.

02 loadid TYPE character 8.
02 from-timestamp TYPE binary 64.
02 to-timestamp TYPE binary 64.
02 delta-time TYPE binary 64,3.
02 system-name TYPE character 8.
02 cpu-num TYPE binary 16 unsigned.
02 pin TYPE binary 16 unsigned.
02 process-name TYPE character 8.
02 program-file-name TYPE character 24.
02 priority TYPE binary 16 unsigned.
02 cpu-busy TYPE binary 64,3.
02 atime-busy TYPE binary 64,3.
02 atime-ready TYPE binary 64,3.
02 ready-busy TYPE binary 64,3.
02 atime-memq TYPE binary 64,3.
02 disp-rate TYPE binary 64,3.
02 fault-rate TYPE binary 64,3.
02 pres-pages TYPE binary 64,3.
02 pres-pagem TYPE binary 16 unsigned.
02 ext-segs TYPE binary 64,3.
02 ext-segsm TYPE binary 16 unsigned.
02 vsem-rate TYPE binary 64,3.
02 msg-rate-nr TYPE binary 64,3.
02 msg-rate TYPE binary 64,3.
02 sbyte-rate TYPE binary 64,3.
02 rbyte-rate TYPE binary 64,3.
02 recv-qlen TYPE binary 64,3.
02 recv-qlenm TYPE binary 16 unsigned.
02 recv-rate-nr TYPE binary 64,3.
02 recv-rate TYPE binary 64,3.
02 vbyte-rate TYPE binary 64,3.
02 ybyte-rate TYPE binary 64,3.
02 link-busy TYPE binary 64,3.
02 link-rate TYPE binary 64,3.
02 link-fail TYPE binary 64,3.
02 links-inuse TYPE binary 64,3.
02 links-inusem TYPE binary 16 unsigned.
02 chkpt-rate TYPE binary 64,3.
end
Measure User’s Guide—520560-003
A-9

Creating an Enform Report From Measure Data NEWSUBVL—Establishing the Subvolume
?SECTION procrep
RECORD procrep. FILE IS procrep ENTRY-SEQUENCED.

02 loadid PIC a(8) Heading "LOAD/ID".
02 from-timestamp TYPE binary 64.
02 to-timestamp TYPE binary 64.
02 delta-time TYPE binary 64,3.
02 system-name TYPE character 8 Heading "SYS/NAME".

02 pid.
 04 cpu-num TYPE binary 16 unsigned Display "m<Z9>"
 Heading "CPU".
 04 pin TYPE binary 16 unsigned Display "m<ZZ9>"
 Heading "PIN".
02 process-name TYPE character 8 Heading "PROCESS/NAME".
02 program-file-name Heading "PRGRM/FILE/NAME".
 04 volume TYPE character 8.
 04 sub-vol TYPE character 8.
 04 name TYPE character 8.
02 priority TYPE binary 16 unsigned Display "m<ZZ9>"
 Heading "PRI".
02 cpu-busy TYPE binary 64,3 Display "m<Z9.999>"
 Heading "CPU/BUSY".
02 atime-busy TYPE binary 64,3 Display "m<ZZ9.999>"
 Heading "ATIME/BUSY/in ms".
02 atime-ready TYPE binary 64,3 Display "m<ZZ9.999>"
 Heading "ATIME/READY/in ms".
02 ready-busy TYPE binary 64,3 Display "m<ZZ9.999>"
 Heading "READY/VS./BUSY".
02 atime-memq TYPE binary 64,3 Display "m<ZZ9.999>"
 Heading "ATIME/MEMQ/in ms".
02 disp-rate TYPE binary 64,3 Display "m<ZZ9.999>"
 Heading "DISP/RATE".
02 fault-rate TYPE binary 64,3 Display "m<Z9.999>"
 Heading "FAULT/RATE".
02 pres-pages TYPE binary 64,3 Display "m<ZZ9.999>"
 Heading "PRES/PAGES".
02 pres-pagem TYPE binary 16 unsigned Display "m<ZZZ9>"
 Heading "PRES/PAGES/MAX".
02 ext-segs TYPE binary 64,3 Display "m<ZZ9.99>"
 Heading "EXT/SEGS".
02 ext-segsm TYPE binary 16 unsigned Display "m<ZZ9>"
 Heading "EXT/SEGS/MAX".
02 vsem-rate TYPE binary 64,3 Display "m<ZZ9.999>"
 Heading "VSEM/RATE".
02 msg-rate-nr TYPE binary 64,3 Display "m<ZZZZZZ9>"
 Heading "MESSAGE/CNTR".
02 msg-rate TYPE binary 64,3 Display "m<ZZ9.999>"
 Heading "MESSAGE/RATE".
02 sbyte-rate TYPE binary 64,3 Display "m<ZZZZZ9.9>"
 Heading "SEND/BYTE/RATE".
02 rbyte-rate TYPE binary 64,3 Display "m<ZZZZZ9.9>"
 Heading "REPLY/TO
 SEND/BYTE/RATE".
02 recv-qlen TYPE binary 64,3 Display "m<Z9.999>"
 Heading "$RCV/RECV/QLEN".
02 recv-qlenm TYPE binary 16 unsigned Display "m<ZZ9>"
 Heading "$RCV/RECV/QLEN/MAX".
02 recv-rate-nr TYPE binary 64,3 Display "m<ZZZZZZ9>"
 Heading "$RCV/RECV/CNTR".

Example A-1. DDLXCHNG File for Enform Reporting (page 2 of 3)
Measure User’s Guide—520560-003
A-10

Creating an Enform Report From Measure Data NEWSUBVL—Establishing the Subvolume
02 recv-rate TYPE binary 64,3 Display "m<ZZ9.999>"
 Heading "$RCV/RECV/RATE".
02 vbyte-rate TYPE binary 64,3 Display "m<ZZZZZ9.9>"
 Heading "$RCV/RECV/BYTE/RATE".
02 ybyte-rate TYPE binary 64,3 Display "m<ZZZZZ9.9>"
 Heading "$RCV/REPLY/BYTE/RATE".
02 link-busy TYPE binary 64,3 Display "m<Z9.999>"
 Heading "LINK/BUSY".
02 link-rate TYPE binary 64,3 Display "m<Z9.999>"
 Heading "LINK/RATE".
02 link-fail TYPE binary 64,3 Display "m<Z9.999>"
 Heading "LINK/FAIL".
02 links-inuse TYPE binary 64,3 Display "m<ZZ9.99>"
 Heading "AVG/LINKS/IN USE".
02 links-inusem TYPE binary 16 unsigned Display "m<ZZ9>"
 Heading "LINKS/IN USE/MAX".
02 chkpt-rate TYPE binary 64,3 Display "m<Z9.999>"
 Heading "CHKPT/RATE".

key "pc" is cpu-num.
key "pn" is process-name.
key "pf" is program-file-name.name.
 SEQUENCE IS PID.
end

?SECTION baserep
RECORD baserep. FILE IS baserep ENTRY-SEQUENCED.

02 b-loadid TYPE character 8.
02 b-system-name TYPE character 8.
02 b-os-version
 03 b-letter TYPE character 1.
 03 b-number TYPE binary 8.
02 b-from-time TYPE binary 64.
02 b-to-time TYPE binary 64.
02 b-delta-time TYPE binary 64,3.
02 b-cpu-type TYPE binary 16 unsigned.

 SEQUENCE IS b-LOADID.

end
RECORD unbase. FILE IS unbase KEY-SEQUENCED.

02 loadid TYPE character 8.
02 system-name TYPE character 8.
02 os-version
 03 letter TYPE character 1.
 03 number TYPE binary 8.
02 from-timestamp TYPE binary 64.
02 to-timestamp TYPE binary 64.
02 delta-time TYPE binary 64,3.
02 cpu-type TYPE binary 16 unsigned.

key is loadid.

end

Example A-1. DDLXCHNG File for Enform Reporting (page 3 of 3)
Measure User’s Guide—520560-003
A-11

Creating an Enform Report From Measure Data NEWSUBVL—Establishing the Subvolume
Example A-2. FUPXCHNG File for Enform Reporting
< SCHEMA PRODUCED DATE - TIME : 12/10/90 09:47:46
< SECTION UNPROC
< Record UNPROC created on 12/10/90 at 09:47
RESET
 set ext (20,20), type U
 SET REC 278
CREATE UNPROC
< SECTION PROCREP
< Record PROCREP created on 12/10/90 at 09:47
RESET
 SET ALTKEY ("pc", KEYOFF 40, KEYLEN 2, FILE 0)
 SET ALTKEY ("pn", KEYOFF 44, KEYLEN 8, FILE 0)
 SET ALTKEY ("pf", KEYOFF 68, KEYLEN 8, FILE 0)
 SET NO ALTCREATE
 SET ALTFILE (0, PROCREP0)
 set ext (20,20), type E
 SET REC 278
 SET BLOCK 512
CREATE PROCREP
 RESET
 set ext (20,20), type K
 SET KEYLEN 14
 SET REC 14
 SET BLOCK 512
 SET IBLOCK 512
CREATE PROCREP0

< SECTION BASEREP
< Record BASEREP created on 12/10/90 at 09:48
RESET
 set ext (20,20), type E
 SET REC 44
 SET BLOCK 512
CREATE BASEREP
< SECTION UNBASE
< Record UNBASE created on 12/10/90 at 09:48
RESET
 set ext (20,20), type K
 SET KEYOFF 0
 SET KEYLEN 8
 SET REC 44
 SET BLOCK 512
 SET IBLOCK 512
CREATE UNBASE

Example A-3. FINDBCPU Query for Enform Reporting
?DICTIONARY

OPEN cpu, unbase;

FIND UNIQUE unbase
(
BY cpu.loadid
 system-name := cpu.system-name
 os-version := cpu.os-version
 from-timestamp := MIN(cpu.from-timestamp OVER cpu.loadid)
 to-timestamp := MAX(cpu.to-timestamp OVER cpu.loadid)
 delta-time := MAX(cpu.delta-time OVER cpu.loadid)
 cpu-type := cpu.cpu-type
);
Measure User’s Guide—520560-003
A-12

Creating an Enform Report From Measure Data NEWSUBVL—Establishing the Subvolume
Example A-4. FINDPROC Query for Enform Reporting
?DICTIONARY

OPEN process;
OPEN cpu;
OPEN unproc;

LINK process TO cpu VIA cpu-num;

FIND UNIQUE unproc (
process.loadid,
process.from-timestamp,
process.to-timestamp,
process.delta-time,
process.system-name,
process.cpu-num,
process.pin,
process.process-name,
process.program-file-name,
process.priority,
cpu-busy := ((process.cpu-busy-time * 100) / process.delta-time),
atime-busy := (if process.dispatches > 0 then
 ((process.cpu-busy-time / 1000) / process.dispatches)
 else 0),
atime-ready := (if process.dispatches > 0 then
 ((ready-time / 1000) / process.dispatches) else 0),
atime-memq := (if process.dispatches > 0 then
 ((process.mem-qtime / 1000) / process.dispatches) else 0),
disp-rate := (process.dispatches / (process.delta-time / 1000000)),
fault-rate := (page-faults / (process.delta-time / 1000000)),
pres-pages := (pres-pages-qtime / process.delta-time),
pres-pagem := pres-pages-max,
ext-segs := (ext-segs-qtime / process.delta-time),
ext-segsm := ext-segs-max,
vsem-rate := (vsems / (process.delta-time / 1000000)),
msg-rate-nr := messages-sent,
msg-rate := (messages-sent / (process.delta-time / 1000000)),
sbyte-rate := (sent-bytes / (process.delta-time / 1000000)),
rbyte-rate := (returned-bytes / (process.delta-time / 1000000)),
recv-qlen := (recv-qtime / process.delta-time),
recv-qlenm := recv-qlen-max,
recv-rate-nr := messages-received,
recv-rate := (messages-received / (process.delta-time / 1000000)),
vbyte-rate := (received-bytes / (process.delta-time / 1000000)),
ybyte-rate := (reply-bytes / (process.delta-time / 1000000)),
link-rate := (mqc-allocations / (process.delta-time / 1000000)),
link-fail := (mqc-alloc-failures / (process.delta-time / 1000000)),

links-inuse := (mqcs-inuse-qtime / process.delta-time),
links-inusem := max-mqcs-inuse,
chkpt-rate := (checkpoints / (process.delta-time / 1000000)),
)
WHERE ((process.cpu-busy-time > 0 OR process.priority = 220)
 AND process.delta-time > 0
 AND cpu.mqcs > 0)
!** (pri = 220 is to get backup disk processes with no activity)
Measure User’s Guide—520560-003
A-13

Creating an Enform Report From Measure Data NEWSUBVL—Establishing the Subvolume
Example A-5. QDPROC Query for Enform Reporting (page 1 of 3)
!=============== Measure analysis by process-group
?DICTIONARY
SET @DATE-FORMAT TO "M2-D2-Y2"
SET @WIDTH TO 132;
SET @LINES TO 54;

DECLARE TEST-DATE AS DATE *
 SERVICE-TIME INTERNAL F19.3
 CPU-TIME INTERNAL F19.3
 AR-TIME INTERNAL F19.3
 AB-TIME INTERNAL F19.3
 DLTA-FACT INTERNAL F19.3

OPEN PROCREP;
OPEN BASEREP;

LINK BASEREP.B-LOADID TO PROCREP.LOADID;

LIST

 BY LOADID NOPRINT

 BY CPU-NUM HEADING "CPU/NUM"

 BY PROGRAM-FILE-NAME.NAME HEADING "PROGRAM/NAME"

 BY PROCESS-NAME

 DLTA-FACT := (PROCREP.DELTA-TIME / BASEREP.B-DELTA-TIME)
 NOPRINT

 ((CPU-BUSY * 10.) * DLTA-FACT)
 AS I4
 HEADING "CPU/MSEC/SEC"
 SUBTOTAL OVER CPU-NUM
 TOTAL
 ((ATIME-MEMQ * DISP-RATE) * DLTA-FACT)
 AS I4
 HEADING "FALT/MSEC/SEC"
 SUBTOTAL OVER CPU-NUM
 TOTAL

 (PRES-PAGES + EXT-SEGS)
 AS I4
 HEADING "MEM/PAGES"

 RECV-QLEN
 AS F4.1
 HEADING "RECV/QLEN"

 (ATIME-READY / ATIME-BUSY)
 AS F4.1
 HEADING "READY/BUSY/RATIO"
Measure User’s Guide—520560-003
A-14

Creating an Enform Report From Measure Data NEWSUBVL—Establishing the Subvolume
 PRIORITY
 AS I3
 HEADING "PRI"

 SERVICE-TIME :=
 (IF RECV-RATE <= 0 THEN 100000.0
 ELSE
 ((ATIME-READY * DISP-RATE) / RECV-RATE))
 NOPRINT

 (IF SERVICE-TIME > 9999.8 THEN " "
 ELSE
 ((CPU-BUSY / RECV-RATE) * 10.))
 AS F6.1
 HEADING "CPU/COST/REQ"

 (IF SERVICE-TIME > 9999.8 THEN " "
 ELSE
 SERVICE-TIME)
 AS F6.1
 HEADING "SERV/TIME/REQ"

 (IF SERVICE-TIME > 9999.9 THEN " "
 ELSE
 (SERVICE-TIME * (RECV-QLEN + 1)))
 AS F6.1
 HEADING "RESP/TIME/REQ"

 (MSG-RATE)
 AS F4.1
 HEADING "MSG/RATE"
 (MSG-RATE * DLTA-FACT)
 AS F5.1
 HEADING "MSG/RATE/WINDW"
 SUBTOTAL OVER CPU-NUM
 TOTAL

 (RECV-RATE)
 AS F4.1
 HEADING "RECV/RATE"

 (RECV-RATE * DLTA-FACT)
 AS F5.1
 HEADING "RECV/RATE/WINDW"
 SUBTOTAL OVER CPU-NUM
 TOTAL

 (DELTA-TIME / 1000000)
 AS I5
 HEADING "MEAS/SEC"

 COUNT (PROCREP.PID OVER PROGRAM-FILE-NAME.NAME)
 AS I4
 SUBTOTAL OVER CPU-NUM
 HEADING "PROC/CNT"

Example A-5. QDPROC Query for Enform Reporting (page 2 of 3)
Measure User’s Guide—520560-003
A-15

Creating an Enform Report From Measure Data STARTENF—Creating the Report
STARTENF—Creating the Report
The Enform report created by the examples in this appendix uses information from the
Measure CPU and PROCESS reports. Therefore, before you can create the report,
you must take a measurement and write CPU and PROCESS data to structured report
files. This example assumes the measurement data file NOV04 contains CPU and
PROCESS data to use for the Enform report:

45> MEASCOM
MEASURE Performance Monitor - T9086D30 - (31OCT94) - \BUYER
Copyright Tandem Computers Incorporated 1986-1994
1+ ADD NOV04
2+ SET REPORT FORMAT STRUCTURED
3+ LIST CPU *
4+ LIST PROCESS *
5+ EXIT

After you copy the structured CPU and PROCESS files to the subvolume containing
the Enform information, execute STARTENF. Create all files in the subvolume
containing NEWSUBVL and its associated files.

 AVG ((PROCREP.DELTA-TIME / 1000000) OVER PROGRAM-FILE-NAME.NAME)
 AS I4
 HEADING "AVG/PROC/LIFE"

 WHERE PROCREP.CPU-BUSY > 1
 OR NOT PROGRAM-FILE-NAME.NAME = "OSIMAGE"
 OR NOT PROGRAM-FILE-NAME.SUB-VOL BEGINS WITH "SYS"
 AND
 ATIME-BUSY > 0
 OR
 PROCREP.PROCESS-NAME = "$VIRTUAL"

AT START
 PRINT SKIP 1 "TEST NO: " B-LOADID
 SKIP 1 "MEAS DATE - "
 TIMESTAMP-DATE AS DATE "M2-D2-Y2"
 SKIP 1 "FROM TIME - "
 TIMESTAMP-TIME AS TIME "H2:M2:S2"
 SKIP 1 "TO TIME - "
 TIMESTAMP-TIME AS TIME "H2:M2:S2"
 SKIP 1 "SYSTEM NAME " B-SYSTEM-NAME
 SKIP 1 "OS VERSION " B-OS-VERSION.B-LETTER
 B-OS-VERSION.B-NUMBER
 SKIP 2
TITLE
 "\NEW" SKIP 1 "MEASUREMENT ANALYSIS : PROCESS DETAIL"
 SKIP 1
 "DATE RUN : " @DATE AS DATE *,
 SPACE 5
 "TEST NO: " LOADID SPACE 5

Example A-5. QDPROC Query for Enform Reporting (page 3 of 3)
Measure User’s Guide—520560-003
A-16

Creating an Enform Report From Measure Data STARTENF—Creating the Report
1. Type in (or copy) STARTENF. Many commands in STARTENF assume that the
current subvolume contains certain required files. The remaining steps in this list
create these files.

STARTENF:

 FUP /IN FUPPURG/
 ENFORM /in ENFFBASE/
 FUP /IN LOADBASE/
 TACL /IN PRNTPROC, OUT $S.#ENFOUT/

2. Type in (or copy) FUPPURG. FUPPURG deletes the unstructured files (UNPROC
and UNBASE, which you re-create using the Enform product) and the contents of
the key-sequenced and alternate-key files (PROCREP and BASEREP, which you
reload using FUP).

FUPPURG:

 ALLOW 100 ERRORS
 ALLOW 100 WARNINGS
 PURGEDATA (PROCREP, BASEREP)
 PURGE (UNPROC, UNBASE)!

3. Type in (or copy) ENFFBASE. ENFFBASE executes the FINDBASE and
FINDPROC queries that create the unstructured files, UNBASE and UNPROC.
(The SET @STATS ON command generates Enform performance statistics.)

ENFFBASE:

 SET @STATS ON
 ?EXECUTE RFBASE
 ?EXECUTE RFPROC

4. Type in (or copy) LOADBASE. LOADBASE loads the key-sequenced and
alternate-key files, BASEREP, PROCREP, and PROCREP0, using the data from
the unstructured files, UNBASE and UNPROC.

LOADBASE:

 ALLOW 100 ERRORS
 ALLOW 100 WARNINGS
 COPY UNBASE, BASEREP, RECIN 44, COUNT 1
 LOAD UNPROC, PROCREP, RECIN 278
 LOADALTFILE 0, PROCREP

You copy only one record into BASEREP because the information describes the
measurement rather than the measurement data. The record lengths for the
RECIN option of the FUP COPY and LOAD commands were copied from the
FUPXCHNG file.

5. Type in (or copy) PRNTPROC and ENFQPROC. PRNTPROC invokes the Enform
product, specifying ENFQPROC as the input file. ENFQPROC contains the Enform
Measure User’s Guide—520560-003
A-17

Creating an Enform Report From Measure Data STARTENF—Creating the Report
command to execute the QDPROC query, which creates the report. (The SET
@STATS ON command generates Enform performance statistics.)

PRNTPROC:

 CLEAR ALL PARAM
 ENFORM/IN ENFQPROC/

ENFQPROC:

 SET @STATS ON
 ?EXECUTE QDPROC

6. Execute STARTENF:

46> OBEY STARTENF
Measure User’s Guide—520560-003
A-18

B
Examples of RECORD Statements
and FIND Queries

This appendix contains examples of Data Definition Language (DDL) RECORD
statements and Enform FIND queries for the CPU and PROCESS entities. The FIND
queries and RECORD statements can be used to create new fields for uninterpreted
counter values. This appendix also contains examples of DDL RECORD statements
that can be used to create alternate-key files for these new fields.

Example B-1. DDL RECORD Statement for Unstructured CPU File (page 1 of 2)
RECORD uncpu. FILE IS uncpu.

02 loadid TYPE character 8.
02 load-id Redefines loadid.
 03 prefix-id TYPE character 5.
 03 interval-id TYPE character 3.
02 system-name TYPE character 8.
02 os-version.
 03 letter TYPE character 1.
 03 number TYPE binary 8.
02 cpu-num TYPE binary 16 unsigned.
02 from-timestamp TYPE binary 64.
02 to-timestamp TYPE binary 64.
02 delta-time TYPE binary 64.
02 cpu-type TYPE binary 16 unsigned.
02 cpu-busy TYPE binary 64,3.
02 cpu-qlen TYPE binary 64,3.
02 cpu-qlenm TYPE binary 16 unsigned.
02 mem-qlen TYPE binary 64,3.
02 mem-qlenm TYPE binary 16 unsigned.
02 disp-rate TYPE binary 64,3.
02 swap-rate TYPE binary 64,3.
02 send-busy TYPE binary 64,3.
02 disc-rate TYPE binary 64,3.
02 chit-rate TYPE binary 64,3.
02 tran-rate TYPE binary 64,3.
02 resp-time TYPE binary 64,3.
02 accel-busy TYPE binary 64,3.
02 tns-busy TYPE binary 64,3.
02 comptrap-rate TYPE binary 64,3.
02 tnsr-busy TYPE binary 64,3.
02 page-sizeb TYPE binary 16 unsigned.
02 meminit-lock TYPE binary 32 unsigned.
02 pagereq-rate TYPE binary 64,3.
02 pagescan-rate TYPE binary 64,3.
02 Start-freemem TYPE binary 32 unsigned.
02 End-freemem TYPE binary 32 unsigned.
02 Start-UCME TYPE binary 32 unsigned.
02 End-UCME TYPE binary 32 unsigned.
02 Start-UDS TYPE binary 32 unsigned.
02 End-UDS TYPE binary 32 unsigned.
02 Start-SDS TYPE binary 32 unsigned.
Measure User’s Guide—520560-003
B-1

Examples of RECORD Statements and FIND
Queries
02 End-SDS TYPE binary 32 unsigned.
02 Start UCL TYPE binary 32 unsigned.
02 End-UCL TYPE binary 32 unsigned.
02 Start-SCL TYPE binary 32 unsigned.
02 End-SCL TYPE binary 32 unsigned.
end

Example B-2. Enform FIND Query for Unstructured CPU File
?DICTIONARY

OPEN cpu, uncpu;

FIND UNIQUE uncpu
(
cpu.loadid,
ascd cpu.cpu-num,
cpu.from-timestamp,
cpu.to-timestamp,
cpu.delta-time,
cpu-busy := ((cpu-busy-time * 100) / cpu.delta-time),
cpu-qlen := (cpu-qtime / cpu.delta-time),
cpu-qlenm := cpu.cpu-qlen-max,
mem-qlen := (mem-qtime / cpu.delta-time),
mem-qlenm := cpu.mem-qlen-max
disp-rate := (dispatches / (cpu.delta-time / 1000000)),
swap-rate := (swaps / (cpu.delta-time / 1000000)),
send-busy := ((send-busy-time * 100) / cpu.delta-time),
disc-rate := (disc-ios / (cpu.delta-time / 1000000)),
chit-rate := (cache-hits / (cpu.delta-time / 1000000)),
tran-rate := (transactions / (cpu.delta-time / 1000000)),
resp-time := (IF transactions > 0
 THEN ((response-time / 1000000) / transactions) ELSE 0),
accel-busy := ((cpu.accel-busy-time * 100) / cpu.delta-time),
tns-busy := ((cpu.tns-busy-time * 100) / cpu.delta-time),
comptrap-rate := (cpu.comp-traps / (cpu.delta-time / 1000000)),
tnsr-busy := ((tnsr-busy-time * 100) / cpu.delta-time),
page-sizeb := page-size-bytes,
meminit-lock := mem-initial-lock,
pagereq-rate := (page-requests / (cpu.delta-time / 1000000)),
pagescan-rate := (page-scans / (cpu.delta-time / 1000000)),
Start-freemem := Starting-free-mem,
End-freemem := Ending-free-mem,
Start-UCME := Starting-UCME,
End-UCME := Ending-UCME,
Start-UDS := Starting-UDS,
End-UDS := Ending-UDS,
Start-SDS := Starting-SDS,
End-SDS := Ending-SDS,
Start-UCL := Starting-UCL,
End-UCL := Ending-UCL,
Start-SCL := Starting-SCL,
End-SCL := Ending-SCL,
)
 WHERE cpu.delta-time > 0;

Example B-1. DDL RECORD Statement for Unstructured CPU File (page 2 of 2)
Measure User’s Guide—520560-003
B-2

Examples of RECORD Statements and FIND
Queries
Example B-3. DDL RECORD Statement for Entry-Sequenced CPU
File (page 1 of 2)
?FUP CPUFUP

RECORD cpurep. FILE IS cpurep ENTRY-SEQUENCED.
02 loadid TYPE character 8 HEADING "LOAD/ID".
02 load-id Redefines loadid.
 03 prefix-id TYPE character 5.
 03 interval-id TYPE character 3.
02 system-name TYPE character 8 HEADING "SYSTEM/NAME".
02 os-version.
 03 letter TYPE character 1.
 03 number TYPE binary 8 DISPLAY "m<Z99>".
02 cpu-num TYPE binary 16 unsigned DISPLAY "m<Z9>"
 HEADING "CPU/NUM".
02 from-timestamp TYPE binary 64.
02 to-timestamp TYPE binary 64.
02 delta-time TYPE binary 64 HEADING "DELTA/TIME".
02 cpu-type TYPE binary 16 unsigned DISPLAY "m<ZZ9.999>"
 HEADING "CPU/TYPE".
02 cpu-busy TYPE binary 64,3 DISPLAY "m<ZZ9.999>"
 HEADING "CPU/BUSY".
02 cpu-qlen TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "CPU/QLEN".
02 cpu-qlenm TYPE binary 16 unsigned DISPLAY "m<ZZ9>"
 HEADING "CPU/QLENM".
02 mem-qlen TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "MEM/QLEN".
02 mem-qlenm TYPE binary 16 unsigned DISPLAY "m<ZZ9>"
 HEADING "MEM/QLENM".
02 disp-rate TYPE binary 64,3 DISPLAY "m<ZZZ9.999>"
 HEADING "DISP/RATE".
02 swap-rate TYPE binary 64,3 DISPLAY "m<ZZZ9.999>"
 HEADING "SWAP/RATE".
02 send-busy TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "SEND/BUSY".
02 disc-rate TYPE binary 64,3 DISPLAY "m<ZZZ9.999>"
 HEADING "DISC/RATE".
02 chit-rate TYPE binary 64,3 DISPLAY "m<ZZZ9.999>"
 HEADING "CHIT/RATE".
02 tran-rate TYPE binary 64,3 DISPLAY "m<ZZZ9.999>"
 HEADING "TRAN/RATE".
02 resp-time TYPE binary 64,3 DISPLAY "m<ZZZ9.999>"
 HEADING "RESP/TIME".
02 accel-busy TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "ACCEL/BUSY".
02 tns-busy TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "TNS/BUSY".
02 comptrap-rate TYPE binary 64,3 DISPLAY "m<ZZZ9.999>"
 HEADING "COMPTRAP/RATE".
02 tnsr-busy TYPE binary 64,3 DISPLAY "m<Z9.999>"

HEADING "TNSR/BUSY".
02 page-sizeb TYPE binary 16 unsigned DISPLAY "m<ZZZ9>"

HEADING "PAGE/SIZE/BYTES".
02 meminit-lock TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"

HEADING "MEM/INITIAL/LOCK".
02 pagereq-rate TYPE binary 64,3 DISPLAY "m<ZZZ9.999>"

HEADING "PAGE/REQ/RATE".
02 pagescan-rate TYPE binary 64,3 DISPLAY "m<ZZZ9.999>"

HEADING "PAGE/SCAN/RATE".
Measure User’s Guide—520560-003
B-3

Examples of RECORD Statements and FIND
Queries
These examples are based on the PROCESS DDL record for systems running
D-series RVUs. The PROCESS record for systems running G-series RVUs has slightly
different fields.

02 Start-freemem TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "STARTING/FREE/MEM".

02 End-freemem TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "ENDING/FREE/MEM".

02 Start-UCME TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "STARTING/UCME".

02 End-UCME TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "ENDING/UCME".

02 Start-UDS TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "STARTING/UDS".

02 End-UDS TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "ENDING/UDS".

02 Start SDS TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "STARTING/SDS".

02 End-SDS TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "ENDING/UDS".

02 Start UCL TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "STARTING/UCL".

02 End-UCL TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "ENDING/UCL".

02 Start-SCL TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "STARTING/SCL".

02 End-SCL TYPE binary 32 unsigned DISPLAY "m<ZZZ9>"
HEADING "ENDING/SCL".

key "cc" is cpu-num.
 SEQUENCE IS CPU-NUM.

end

Example B-4. DDL RECORD Statement for Unstructured PROCESS
File (page 1 of 2)
RECORD unproc. FILE IS unproc.

02 loadid TYPE character 8.
02 load-id Redefines loadid.
 03 prefix-id TYPE character 5.
 03 interval-id TYPE character 3.
02 from-timestamp TYPE binary 64.
02 to-timestamp TYPE binary 64.
02 delta-time TYPE binary 64.
02 system-name TYPE character 8.
02 cpu-num TYPE binary 16 unsigned.
02 pin TYPE binary 16 unsigned.
02 process-name TYPE character 8.
02 program-file-name TYPE character 24.
02 priority TYPE binary 16 unsigned.
02 cpu-busy TYPE binary 64,3.
02 atime-busy TYPE binary 64,3.
02 atime-ready TYPE binary 64,3.
02 atime-memq TYPE binary 64,3.
02 disp-rate TYPE binary 64,3.

Example B-3. DDL RECORD Statement for Entry-Sequenced CPU
File (page 2 of 2)
Measure User’s Guide—520560-003
B-4

Examples of RECORD Statements and FIND
Queries
02 fault-rate TYPE binary 64,3.
02 pres-pages TYPE binary 64,3.
02 pres-pagem TYPE binary 16 unsigned.
02 ext-segs TYPE binary 64,3.
02 ext-segsm TYPE binary 16 unsigned.
02 vsem-rate TYPE binary 64,3.
02 msg-rate TYPE binary 64,3.
02 sbyte-rate TYPE binary 64,3.
02 rbyte-rate TYPE binary 64,3.
02 recv-qlen TYPE binary 64,3.
02 recv-qlenm TYPE binary 16 unsigned.
02 recv-rate TYPE binary 64,3.
02 vbyte-rate TYPE binary 64,3.
02 ybyte-rate TYPE binary 64,3.
02 link-rate TYPE binary 64,3.
02 link-fail TYPE binary 64,3.
02 links-inuse TYPE binary 64,3.
02 links-inusem TYPE binary 16 unsigned.
02 chkpt-rate TYPE binary 64,3.
02 accel-busy TYPE binary 64,3.
02 tns-busy TYPE binary 64,3.
02 comptrap-rate TYPE binary 64,3.
02 tnsr-busy TYPE binary 64,3.
02 page-sizeb TYPE binary 16 unsigned.
02 allocseq-rate TYPE binary 64,3.
02 UCLqlen TYPE binary 64,3.
02 UCLmax TYPE binary 16 unsigned.
02 fileopen-rate TYPE binary 64,3.
02 infocall-rate TYPE binary 64,3.
end

Example B-5. Enform FIND Query for Unstructured PROCESS File (page 1 of 2)
?DICTIONARY

OPEN process;
OPEN cpu;
OPEN unproc;

LINK process TO cpu VIA cpu-num;

FIND UNIQUE unproc
(
process.loadid,
process.from-timestamp,
process.to-timestamp,
process.delta-time,
process.system-name,
process.cpu-num,
process.pin,
process.process-name,
process.program-file-name,
process.priority,
cpu-busy := ((process.cpu-busy-time * 100) / process.delta-time),
atime-busy := ((process.cpu-busy-time / 1000) / process.dispatches),
atime-ready := ((ready-time / 1000) / process.dispatches),
atime-memq := ((process.mem-qtime / 1000) / process.dispatches),

Example B-4. DDL RECORD Statement for Unstructured PROCESS
File (page 2 of 2)
Measure User’s Guide—520560-003
B-5

Examples of RECORD Statements and FIND
Queries
disp-rate := (process.dispatches / (process.delta-time / 1000000)),
fault-rate := (page-faults / (process.delta-time / 1000000)),
pres-pages := (pres-pages-qtime / process.delta-time),
pres-pagem := pres-pages-max,
ext-segs := (ext-segs-qtime / process.delta-time),
ext-segsm := ext-segs-max,
vsem-rate := (vsems / (process.delta-time / 1000000)),
msg-rate := (messages-sent / (process.delta-time / 1000000)),
sbyte-rate := (sent-bytes / (process.delta-time / 1000000)),
rbyte-rate := (returned-bytes / (process.delta-time / 1000000)),
recv-qlen := (recv-qtime / process.delta-time),
recv-qlenm := recv-qlen-max,
recv-rate := (messages-received / (process.delta-time / 1000000)),
vbyte-rate := (received-bytes / (process.delta-time / 1000000)),
ybyte-rate := (reply-bytes / (process.delta-time / 1000000)),
link-rate := (mqc-allocations / (process.delta-time / 1000000)),
link-fail := (mqc-alloc-failures / (process.delta-time / 1000000)),
links-inuse := (mqcs-inuse-qtime / process.delta-time),
links-inusem := max-mqcs-inuse,
chkpt-rate := (checkpoints / (process.delta-time / 1000000)),
accel-busy := ((process.accel-busy-time * 100) / process.delta-time),
tns-busy := ((process.tns-busy-time * 100) / process.delta-time),
comptrap-rate := (process.comp-traps / (process.delta-time / 1000000)),
tnsr-busy := ((process.tnsr-busy-time * 100) / process.delta-time),
page-sizeb := process-size-bytes,
allocseg-rate := (alloc-seg-calls / (process.delta-time / 1000000)),
UCLqlen := (UCL-qtime / process.delta-time),
UCLmax := UCL-max,
fileopen-rate := (file-open-calls / (process.delta-time / 1000000)),
infocall-rate := (info-calls / (process.delta-time / 1000000)),
)
 WHERE process.cpu-busy-time > 0
 AND process.dispatches > 0;

Example B-5. Enform FIND Query for Unstructured PROCESS File (page 2 of 2)
Measure User’s Guide—520560-003
B-6

Examples of RECORD Statements and FIND
Queries
Example B-6. DDL RECORD Statement for Entry-Sequenced PROCESS
File (page 1 of 2)
?FUP PROCFUP

RECORD procrep. FILE IS procrep ENTRY-SEQUENCED.

02 loadid PIC a(8) HEADING "LOAD/ID".
02 load-id Redefines loadid.
 03 prefix-id TYPE character 5.
 03 interval-id TYPE character 3.
02 from-timestamp TYPE binary 64.
02 to-timestamp TYPE binary 64.
02 delta-time TYPE binary 64.
02 system-name TYPE character 8 HEADING "SYS/NAME".
02 pid.
 03 cpu-num TYPE binary 16 unsigned DISPLAY "m<Z9>"
 HEADING "CPU".
 03 pin TYPE binary 16 unsigned DISPLAY "m<ZZ9>"
 HEADING "PIN".
02 process-name TYPE character 8 HEADING "PROCESS/NAME".
02 program-file-name HEADING "PRGRM/FILE/NAME".
 03 volume TYPE character 8.
 03 sub-vol TYPE character 8.
 03 name TYPE character 8.
02 priority TYPE binary 16 unsigned DISPLAY "m<ZZ9>"
 HEADING "PRI".
02 cpu-busy TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "CPU/BUSY".
02 atime-busy TYPE binary 64,3 DISPLAY "m<ZZ9.999>"
 HEADING "ATIME/BUSY/in ms".
02 atime-ready TYPE binary 64,3 DISPLAY "m<ZZ9.999>"
 HEADING "ATIME/READY/in ms".
02 atime-memq TYPE binary 64,3 DISPLAY "m<ZZ9.999>"
 HEADING "ATIME/MEMQ/in ms".
02 disp-rate TYPE binary 64,3 DISPLAY "m<ZZ9.999>"
 HEADING "DISP/RATE".
02 fault-rate TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "FAULT/RATE".
02 pres-pages TYPE binary 64,3 DISPLAY "m<ZZ9.999>"
 HEADING "PRES/PAGES".
02 pres-pagem TYPE binary 16 unsigned DISPLAY "m<ZZZ9>"
 HEADING "PRES/PAGES/MAX".
02 ext-segs TYPE binary 64,3 DISPLAY "m<ZZ9.99>"
 HEADING "EXT/SEGS".
02 ext-segsm TYPE binary 16 unsigned DISPLAY "m<ZZ9>"
 HEADING "EXT/SEGS/MAX".
02 vsem-rate TYPE binary 64,3 DISPLAY "m<ZZ9.999>"
 HEADING "VSEM/RATE".
02 msg-rate TYPE binary 64,3 DISPLAY "m<ZZ9.999>"
 HEADING "SEND/MSG/RATE".
02 sbyte-rate TYPE binary 64,3 DISPLAY "m<ZZZZZ9.9>"
 HEADING "SEND/BYTE/RATE".
02 rbyte-rate TYPE binary 64,3 DISPLAY "m<ZZZZZ9.9>"
 HEADING
 "REPLY/TO SEND/BYTE/RATE".
Measure User’s Guide—520560-003
B-7

Examples of RECORD Statements and FIND
Queries
02 recv-qlen TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "$RCV/RECV/QLEN".
02 recv-qlenm TYPE binary 16 unsigned DISPLAY "m<ZZ9>"
 HEADING "$RCV/RECV/QLEN/MAX".
02 recv-rate TYPE binary 64,3 DISPLAY "m<ZZ9.999>"
 HEADING "$RCV/RECV/RATE".
02 vbyte-rate TYPE binary 64,3 DISPLAY "m<ZZZZZ9.9>"
 HEADING
 "$RCV/RECV/BYTE/RATE".
02 ybyte-rate TYPE binary 64,3 DISPLAY "m<ZZZZZ9.9>"
 HEADING
 "$RCV/REPLY/BYTE/RATE".
02 link-rate TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "LINK/RATE".
02 link-fail TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "LINK/FAIL".
02 links-inuse TYPE binary 64,3 DISPLAY "m<ZZ9.99>"
 HEADING "AVG/LINKS/IN USE".
02 links-inusem TYPE binary 16 unsigned DISPLAY "m<ZZ9>"
 HEADING "LINKS/IN USE/MAX".
02 chkpt-rate TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "CHKPT/RATE".
02 accel-busy TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "ACCEL/BUSY".
02 tns-busy TYPE binary 64,3 DISPLAY "m<Z9.999>"
 HEADING "TNS/BUSY".
02 comptrap-rate TYPE binary 64,3 DISPLAY "m<ZZZ9.999>"
 HEADING "COMPTRAP/RATE".
02 tnsr-busy TYPE binary 64,3. DISPLAY "m<Z9.999>"

HEADING :TNSR/BUSY".
02 page-sizeb TYPE binary 16 unsigned. DISPLAY "m<ZZZ9>"

HEADING $PAGE/SIZE/BYTES".
02 allocseq-rate TYPE binary 64,3. DISPLAY "m<ZZZ9.999>"

HEADING "ALLOC/SEG/RATE".
02 UCLqlen TYPE binary 64,3. DISPLAY "m<Z9.999>"

HEADING "UCL/QLEN".
02 UCLmax TYPE binary 16 unsigned. DISPLAY "m<ZZ9>"

HEADING "UCL/MAX".
02 fileopen-rate TYPE binary 64,3. DISPLAY "m<ZZZ9.999>"

HEADING "FILE/OPEN/RATE".
02 infocall-rate TYPE binary 64,3. DISPLAY "m<ZZZ9.999>"

HEADING "INFO/CALLS/RATE".
key "pc" is cpu-num.
key "pn" is process-name.
key "pf" is program-file-name.name.
 SEQUENCE IS PID.
end

Example B-6. DDL RECORD Statement for Entry-Sequenced PROCESS
File (page 2 of 2)
Measure User’s Guide—520560-003
B-8

C
Loading Measure Data Into an SQL
Table

To create a structured data file and then load the data from the file into an SQL table:

1. Create a data dictionary using the DDL utility and MEASDDLS file:

> DDL

!?dict subvol !
!?source measddls
!exit

2. Use MEASCOM to create a structured output data file. This example creates a file
that contains data for all PROCESS entities in the measurement MEASFILE:

> MEASCOM

1+ add measfile
2+ set report format structured
3+ list process *, rate off

3. Use the SQL CONVERT command to create a command file (CNVSRC) that
converts the structured file to an SQL table:

> SQLCI

>>convert record process to table $vol2.perf.prodata
+>catalog $vol2.perf, dictionary $system.sys01, file is
process
+>load, source cnvsrc clear;
>>exit

4. Edit the CNVSRC file to remove the reserved word GROUP:

> edit cnvsrc;&
> ca/GROUP /GROUP_/all;&
> exit

5. Execute CNVSRC to create an SQL table and load data from the structured file to
an SQL table:

SQLCI

>>obey cnvsrc
>>exit
Measure User’s Guide—520560-003
C-1

Loading Measure Data Into an SQL Table
Measure User’s Guide—520560-003
C-2

D
Example of Measurement
Application in C

When programming in C or C++, refer to the C declarations in files MEASCHMA and
MEASDECS to see whether a field is within a union. If the field is within a union,
include the union name when writing code that uses the field.

Existing C or C++ programs that use Measure data might not compile using the C
structure declarations in new PVUs of Measure’s MEASCHMA or MEASDECS.
References to fields that now are within a union must be changed to include the union
name in the reference.

Example D-1 shows a C program that uses the Measure callable procedures to
configure and run a measurement.

Example D-1. Measurement Application in C (page 1 of 4)

#include <cextdecs> nolist
#include <stdio.h> nolist
#include <string.h> nolist
#include <stdlib.h> nolist
#include "measc" nolist /* Contains all MEASURE
 declarations, derived
 from MEASCHMA */
#include "cmeasddl" nolist /* contains record structure
 declarations,
 derived from MEASDDLS */
int main(int argc, char *argv[])
{
 #define TRUE -1
 #define FALSE 0
 #define MAX_NUM_MEASUREMENTS 64

 /* all the measure contab definitions */
 typedef struct
 {
 contab_hdr_def Header;
 cpu_desc_def EDesc;
 contab_trailer_def Trailer;
 } ContabForCPU;

typedef struct
 {
 short FName[12];
 } MeasNamesDef;

 ContabForCPU CPURec;
 meascb_def MeasCB;
 MeasNamesDef MeasNames[MAX_NUM_MEASUREMENTS];
 cpu_def CpuData;
Measure User’s Guide—520560-003
D-1

Example of Measurement Application in C
 char DataFName[] = "MDATA";
 char ExtDataFName[40];
 short IntDataFName[12],DataFNum,Error,MeasNum,ActMeasNum;
 short cpus,BytesRead;
 long long StartTime,StopTime,Interval,FCall;
 short i, Len;
 long Entities[MAX_T], CounterSpace[MAX_T];

 printf("Initializing contab header record...\n");
 CPURec.Header.type = CONTAB_T;
 CPURec.Header.len = sizeof(CPURec);
 for (i = 0; i <= MAX_T; ++i)
 CPURec.Header.u_sections.sections[i] = 0;
 CPURec.Header.u_sections.sections[CPU_T] =
 sizeof(CPURec.Header);

 printf("Initializing CPU record...\n");
 CPURec.EDesc.type = CPU_T;
 CPURec.EDesc.len = sizeof(CPURec.EDesc);
 CPURec.EDesc.cpu_number = ALL_ELEMENTS;

 printf("Initialize the Trailer record\n");
 CPURec.Trailer.type = CONTAB_TRAILER_T;
 CPURec.Trailer.len = sizeof(CPURec.Trailer);

 /* Initialize the MEASCB */
 memset(&MeasCB,-1,sizeof(MeasCB));

 printf("Starting Measure subsystem...\n");
 Error = MEASMONCONTROL((short *)&MeasCB,TRUE);
 if (Error != 0 && Error != 3217)
 {
 printf("MEASMONCONTROL ERROR %d\n",Error);
 }

 memset(ExtDataFName, 0, sizeof(ExtDataFName));
 printf("Creating data file using MEASOPEN...\n");

 Error = FILENAME_RESOLVE_(DataFName, 5, ExtDataFName,
 sizeof(ExtDataFName),
 &Len);

 if (Error != 0)
 {
 printf("FILENAME_RESOLVE_ Error for %s\n",DataFName);
 }
 Error = FILENAME_TO_OLDFILENAME_(ExtDataFName, Len,
 IntDataFName);
 if (Error != 0)
 {
 printf("FILENAME_RESOLVE_ Error for %s\n",DataFName);
 }
 Error = MEASOPEN(IntDataFName,&DataFNum,TRUE,TRUE);

Example D-1. Measurement Application in C (page 2 of 4)
Measure User’s Guide—520560-003
D-2

Example of Measurement Application in C
 if (Error != 0)
 {
 printf("MEASOPEN ERROR %d\n",Error);
 }
 printf("Configuring CPU measurement...\n");
 Error = MEASCONFIGURE((short *)&MeasCB,DataFNum,&MeasNum,
 (short *)&CPURec);
 if (Error != 0)
 {
 printf("MEASCONFIGURE ERROR %d\n",Error);
 }

 printf("Start Measurement %s",DataFName);
 Error = MEASCONTROL((short *)&MeasCB,MeasNum,
 CONVERTTIMESTAMP(JULIANTIMESTAMP(),0));
 if (Error != 0)
 {
 printf("MEASCONTROL ERROR %d\n",Error);
 }

 printf("Checking for active measurement...\n");
 Error = MEASMONSTATUS((short *)&MeasCB,&ActMeasNum,
 (short *)MeasNames);
 if (Error != 0)
 {
 printf("MEASMONSTATUS ERROR %d\n",Error);
 }

 printf("Checking CPU entity is being measured...\n");
 Error = MEASSTATUS((short
*)&MeasCB,MeasNum,&cpus,&StartTime,

&StopTime,&Interval,Entities,CounterSpace);

 if (Error != 0)
 {
 printf("MEASSTATUS ERROR %d\n",Error);
 }

 printf("Stopping measurement...\n");
 Error = MEASCONTROL((short *)&MeasCB,MeasNum,-1,
 CONVERTTIMESTAMP(JULIANTIMESTAMP(),0));
 if (Error != 0)
 {
 printf("MEASCONTROL ERROR %d\n",Error);
 }

 printf("Closing Datafile...\n");
 Error = MEASCLOSE(DataFNum);
 if (Error != 0)
 {
 printf("MEASCLOSE ERROR %d\n",Error);
 }

Example D-1. Measurement Application in C (page 3 of 4)
Measure User’s Guide—520560-003
D-3

Example of Measurement Application in C
 printf("Opening Data file for analysis...\n");
 Error = MEASOPEN(IntDataFName,&DataFNum,FALSE,TRUE);
 if (Error != 0)
 {
 printf("MEASOPEN ERROR %d\n",Error);
 }

 printf("Doing Analysis...\n");
 FCall = 0;
 do
 {
 Error =MEASREAD(DataFNum,(short*)&CPURec.EDesc,(short*)
 &CpuData,(short)sizeof(CpuData),&BytesRead,
&FCall);
 printf("cpu_num = %d\n",CpuData.cpu_num);
 }while(FCall != 0);

 printf("Stopping Measure subsystem...\n");
 Error = MEASMONCONTROL((short *)&MeasCB,FALSE);
 if (Error != 0 && Error != 3217)
 {
 printf("MEASMONCONTROL ERROR %d\n",Error);
 }
}

Example D-1. Measurement Application in C (page 4 of 4)
Measure User’s Guide—520560-003
D-4

E
Converting Existing Applications or
Enform Reports to ZMS Style Record
Formats

This appendix describes how to convert existing Enform reports or existing applications
to ZMS-style record formats.

Because legacy-style records are still supported, you are not required to convert
existing applications or Enform reports to ZMS-style record formats. However, because
ZMS-style record management lets you store data from multiple release levels in a
common file structure, you might want to convert.

The process is the same for applications and Enform reports except for two additional
considerations when you convert applications.

The conversion procedure depends on whether you want to use new counter fields in
the ZMS-style records that do not appear in the legacy-style records.

Using New Counter Fields
To convert to ZMS-style record formats using new records that do not appear in the
legacy-style records, you must significantly modify the Enform source:

1. Recompile the Enform programs against a dictionary produced from MEASDDLS.

2. In the ZMS-style naming format, qualify each reference to a record identifier or
counter field.

For example, rename CPU.dispatches to ZMSCPU.ctr.dispatches.

Using Existing Counter Fields
To convert to ZMS-style record formats using only records that appear in the legacy-
style records:

1. Recompile the Enform source files using a dictionary built from the MEASDDLZ
file.

2. In the Enform source, remove references to these fields (which the recompile left
unresolved):
Measure User’s Guide—520560-003
E-1

Converting Existing Applications or Enform Reports
to ZMS Style Record Formats

Application Conversion Considerations
Application Conversion Considerations
To obtain ZMS-style records from the callable interface, you must modify the procedure
calls to pass the templateversion parameter as described in the Measure
Reference Manual.

If the application is written in TAL or pTAL, you might have to convert constants and
variable fields used in calculations to FIXED types if the underlying record fields have
changed.

Field Reason for Removal
All max-qlen fields Max queue values were of questionable use in the

legacy interface and are removed in the ZMS style.
Measure architecture is moving to a model in which
counter records always exist, so such values would
represent a maximum since processor reload and could
never be reset.

entity.ctrl
entity.unit

These attributes of D-series I/O addressing have been
invalid on all G-series RVUs. You can list D-series data
in ZMS-style records, but D-series addressing attributes
are mapped to G-series addressing fields and must be
referred to by the G-series names.

CPU.mem-qtime This counter applies only to data prior to the G05.00
RVU. If analysis of this attribute is required, continue to
use the legacy-style interface.

CPU.processor-status This attribute is in all G-series RVUs but always reports
as 16 CPUs, so it provides little value.

CPU.send-busy-time This counter applies only to D-series data. If analysis of
this attribute is required, continue to use the legacy-style
interface.

CPU.starting-ucl-lock
CPU.ending-ucl-lock
CPU.starting-uds-lock
CPU.ending-uds-lock
CPU.starting-scl-lock
CPU.ending-scl-lock
CPU.starting-sds-lock
CPU.ending-sds-lock
PROCESS.lock-pages-qtime
PROCESS.ucl-lock-qtime

These legacy-style record counters were reserved but
never instrumented.

DISC.seeks
DISC.seek-busy-time
DISC.ablks-inuse-qtime
DISC.cblks-inuse-qtime
OPDISK.seeks
OPDISK.seek-busy-time

These counters have been obsolete since before D-
series RVUs.
Measure User’s Guide—520560-003
E-2

Index
A
Abbreviating commands

online help 2-12
using 2-5/2-6

Aborted measurements 2-6, 3-11
Accelerated code samples 4-28/4-30
Accumulating counter 3-5, 5-6
Active counters

See Counter records
Active measurements

See Measurements, active
ADD COUNTER command 2-2, 5-6, 5-7
ADD entity-type command 2-2, 3-3
ADD literal 5-2
ADD MEASUREMENT command 2-2,
3-11, 3-12, 3-17
ADD PLOT command 2-2, 4-11/4-12, 4-19
ADD USERDEF command 5-6
Alternate-key files 7-14
ANSI SQL name support 1-4
Applications

performance problems and design
of 7-8/7-9, 7-21
sample diagram of 7-7/7-9

ASSUME command 2-3
Attributes, online help about 2-11
Audited files 7-15

B
Balancing a system

See Tuning and balancing a system
Bar graphs

See also Plots
examples of

changing density 4-26/4-27
changing vertical/horizontal
orientation 4-23, 4-26

converting two-axis plot to bar
graph 4-17/4-18

vertical/horizontal orientation 4-10
Block splits 7-14
BRIEF option (REPORT object)

example 4-7
override 4-5

Buffer too small (error code 3204) 6-21
Buffered write operations 7-15
Bumping counters 3-4
bumptype variable 5-2
Busy counter 3-5, 5-6
BY clause

and user-defined counters 5-8
with LIST entity-type command 4-5,
4-5/4-6, 4-19, 4-32
with LISTALL entity-type command 4-5,
4-5/4-6, 4-32

bytesret variable 6-14

C
Cache, disk

adjusting size of 7-15/7-17
problems caused by excessive 7-10,
7-11

Callable procedures
See also individual procedures by name
description 1-3
table of 6-2

Collection interval
data file content of 2-6, 3-4
displaying data by 3-15/3-16
effect on data file 3-4, 3-6
specifying 3-6/3-7

Command interpreter
See MEASCOM process
Measure User’s Guide—520560-003
Index-1

Index D
Command (OBEY) file
modifying, for systems running G-series
RVUs 2-13
using output as 2-8

Commands
See also individual commands
online help 2-9
rules for entering 2-1/2-6
summary of 2-2/2-8

COMMENTS command 2-4
Concurrent measurements 3-16, 5-7
Configuration table 6-6/6-7
Configuring a measurement

example, using command interface 3-6
for first performance evaluation 7-2,
7-9
getting configuration
information 6-21/6-23
overview 3-1/3-3
using programmatic interface 6-6/6-7
using the programmatic interface, TAL
example 6-10/6-23
with user-defined counters 5-6/5-7

Control block, Measure 6-3/6-4
Control process

See MEASCTL process
Controller contention 7-13
Converting from uninterpreted to interpreted
values A-1/A-3
Counter records

disk space required for 6-14, 6-18
in structured files 4-32, A-1
initialization of 3-16
reading data

example of using procedure
calls 6-19
from active counters 3-16/3-18,
6-9, 6-13/6-14, 6-17/6-19
from data files 3-12/3-16, 6-13/6-14

zero values in 3-14
counter variable 5-2

Counters
See also Counter records and User-
defined counters
allocating and initializing 3-4
description 1-3
online information for 2-12
specifying interpreted or uninterpreted
values 4-8, 4-14
types of 3-4/3-5
updating (bumping) 3-4

CPUs
balancing activity on 7-19/7-20
effect of reloading 2-6

D
Data compression 7-14
Data Definition Language (DDL)

See DDL dictionary and DDL record
definitions

Data dictionary for structured files 4-33
Data files

accessing 3-11/3-12, 6-9, 6-13
active 3-9
checking accessibility of 3-9/3-10
closing 3-7, 6-9, 6-10
current 3-9/3-10
disk space required

for current data file 3-11
for files opened by
MEASOPEN 6-9, 6-14

effect of reloading CPU on 2-6
effect of stopping subsystem on 2-7
effect of system errors on 3-10/3-11
reading data from 3-12/3-16, 6-13/6-17
records in 3-4, 5-6
remote 6-14
specifying name of measurement 3-5
structured, formatting as 4-31/4-32,
4-33/4-34

DDL dictionary 4-34, A-5
Measure User’s Guide—520560-003
Index-2

Index E
DDL record definitions
in MEASDDLS file 4-33, 6-14
user-defined A-5

Declarations files
EXTDECS0 6-3
MEASDECS 6-4/6-5

DECLARE statement (Enform) A-3
DECQUEUE literal 5-2
DELETE COUNTER command 2-2, 5-6
DELETE entity-type command 2-2, 3-3
DELETE MEASUREMENT command 2-2,
3-11
DELETE PLOT command 2-2, 4-12/4-13,
4-19
DELETE USERDEF command 5-6
Density, plot 4-26/4-27
DICT files 4-34
DISC counter names for cache
counters 4-5
DISCOPEN entities, restriction regarding
active counters and 3-17
Disk cache

adjusting size of 7-15/7-17
format of counter names for 4-5
problems caused by excessive 7-10,
7-11

Disk processes, balancing 7-12
Disk space

freeing, after accessing measurement
data 3-11
required for active counters 6-18
required for current data file 3-11
required for files opened by
MEASOPEN 6-9, 6-14

DISKFILE entities, restriction regarding
active counters and 3-17
Disks

See also Disk cache, Disk processes,
and Disk space
balancing activity on 7-12/7-19

I/O control processes 7-13
physical to logical I/O ratio 7-13

queues 7-13, 7-18
swaps 7-13

Displaying data
See Reports

E
Elapsed counter 3-5
Enform

creating user-defined records A-4/A-6
creating user-defined variables
with A-3/A-4
FIND statement A-6
LIST statement A-6

Entity descriptors
for active counter records 6-17/6-19
overview 6-4/6-5, 6-6
passing 6-13

Entity types
online help 2-10
overview 1-3
specifying, in configuration 3-3

Entry-sequenced files, cache requirements
for 7-15
ENV command 2-4
ERRM^REPLYTOOBIG (error code
3405) 6-18
Error messages

See Messages
error variable 5-2
ERR^BUFTOOSMALL (error code
3204) 6-21
ERR^UDCNOTPRESENT literal 5-2, 5-3
Execution modes, plotting 4-28/4-30
EXIT command 2-4, 2-7, 3-6, 3-7
EXTDECS0 file 6-3
Extended segment requirements 3-15,
6-14, 6-15, 6-21

F
FC command 2-3
Measure User’s Guide—520560-003
Index-3

Index G
File handler
See MEASFH process

File names for processes 3-14
File Utility Program

See FUP
File-system errors 3-10/3-11
FIND statement (Enform) A-6
firstcall variable 6-14
FOR attribute

PLOT object 4-15
REPORT window 4-4

FOR clause
with LIST entity-type command 4-6
with LIST PLOT command 4-27
with LISTACTIVE entity-type
command 3-17, 3-18, 4-6
with LISTALL entity-type
command 3-16, 4-6
with START MEASUREMENT
command 3-6, 3-7

FORMAT attribute (REPORT object) 4-3,
4-6, 4-31
Fragmented files 7-14
FROM attribute

PLOT object 4-15
REPORT window 4-4

FROM clause
with LIST entity-type command 4-6
with LIST PLOT command 4-27
with LISTALL entity-type
command 3-16, 4-6
with START MEASUREMENT
command 3-6, 3-7

FUP (File Utility Program) commands
INFO 7-14, 7-16
SET 7-14

G
Global declarations 6-3
G-series RVUs, migrating to

changes to applications 6-23/6-24

changes to command files 2-13

H
HELP command 2-3, 2-9/2-12
HISTORY command 2-3

I
IF clause

and user-defined counters 5-8
with LIST entity-type command 4-5,
4-6, 4-32
with LISTALL entity-type command 4-5,
4-6, 4-32

INC literal 5-2
INCQUEUE literal 5-2
Incrementing counter 3-5
Index compression 7-14
INFO COUNTER command 2-2, 5-6, 5-7
INFO entity-type command 2-2, 3-3
INFO MEASUREMENT command 2-2,
3-9/3-10, 3-17
INFO PLOT command 2-3, 4-12
INFO USERDEF command 5-6, 5-7
Initializing counter records 3-4, 3-16
Integer array description 5-2
INTERNAL clause 4-16
Interpreted counter values 4-8, 4-14, A-1,
A-2, A-3
INTERVAL clause (LIST PLOT
command) 4-22
Invalid measurement number (message
3407) 3-11
I/O control processes 7-13

K
Key-sequenced files

cache requirements 7-15
compression 7-14
index levels 7-13, 7-14
Measure User’s Guide—520560-003
Index-4

Index L
L
Len field in configuration table header
record 6-6
LIST entity-type command

and plot data 4-11, 4-19
BY and IF clauses 4-5/4-6
FROM, FOR, and TO clauses 4-6
overview 2-2, 4-1
using 3-12/3-15
with USERDEF object 5-7

LIST PLOT command
configuring measurements 2-3
generating plots 4-16
INTERVAL clause 4-22
plot attribute settings 4-15

LIST statement (Enform) A-6
LISTACTIVE entity-type command

configuring measurements 2-2
controlling 4-1
FOR clause 3-18, 4-6
restrictions 4-5
using 3-17
with USERDEF object 5-7

LISTALL entity-type command
BY and IF clauses 4-5/4-6
configuring measurements 2-2
FROM, FOR, and TO clauses 4-6
using 3-15/3-16

LISTALL entity-type, controlling 4-1
LISTCACHE command (PUP) 7-17
LISTENAME command 2-3
LISTEXTNAMES command 2-3
LISTGNAME command 2-3
LISTOSSNAMES command 2-3
LISTPNAME command 2-3
LOADID attribute REPORT window 4-4
LOADID clause

LIST entity-type command 4-33
LISTALL entity-type command 4-33

LOG command 2-4, 2-8

Logging to files 2-8

M
Max queue counter 3-5
Max value counter 3-5
MEASCB^DEF 6-3
MEASCHMA file 1-5
MEASCLOSE procedure 6-3, 6-9, 6-10
MEASCOM process

accessing D-series data files with 2-13
action

allocating extended segment 3-15
at measurement startup 3-4
displaying data 4-6
with user-defined counters 5-7, 5-8

command interface 2-1/2-8
description of 1-5
stopping 2-7

MEASCONFIGURE procedure 6-9, 6-18,
6-19, 6-23
MEASCONTROL procedure 6-9, 6-10,
6-19
MEASCOUNTERBUMP procedure

COBOL example 5-9
overview 5-3/5-5

MEASCOUNTERBUMPINIT procedure
COBOL example 5-9
overview 5-2
TAL example 5-3/5-5

MEASCSTM file 2-9
MEASCTL process

action
at CPU failure 2-6
at measurement startup 3-4
at measurement stop 3-7
at subsystem startup 2-6
initializing new counters 6-18
locating active counter
records 3-17
reading active counters 3-16
Measure User’s Guide—520560-003
Index-5

Index M
MEASCTL process (continued)
action (continued)

writing counter values to data
file 3-4, 3-11, 6-17, 6-20

description of 1-5
reply buffer size limitation 6-18
stopping, from Multilan 2-6

MEASDDLB file 1-5
MEASDDLF file 1-5
MEASDDLS file 1-5, 6-14
MEASDDLZ file 1-6
MEASDECS file 1-6, 5-2, 6-3, 6-4
MEASFH process

action
at measurement startup 3-4
creating data file 3-5, 6-9
freeing disk space 3-11
indexing data file 3-4
purging old data file 3-5
reading counter values from data
file 3-12
writing data to structured file 4-32

deleting 6-9
description of 1-6
freeing disk space 6-10
release dependencies and 2-13, 6-13
starting 6-14
swap files 6-9

MEASIMMU file 1-6
MEASMON process

action
at CPU failure 2-6
at measurement startup 3-4
at measurement stop 3-7
at subsystem startup 2-6

description of 1-6
MEASMONCONTROL procedure 6-7/6-9
MEASMONSTATUS procedure 6-7/6-9,
6-18, 6-19
MEASOPEN procedure 6-3, 6-9, 6-9, 6-14

MEASREAD procedure 6-3, 6-13,
6-13/6-16
MEASREADACTIVE procedure 3-11, 6-5,
6-13, 6-17/6-19
MEASREADCONF procedure 6-3,
6-21/6-23
MEASREAD_DIFF_ procedure 6-3, 6-13,
6-14, 6-15
MEASSTATUS procedure 6-20
MEASSUBSYS object

STOP command 2-6
Measure control block 6-3
Measure subsystem

files and processes that make
up 1-4/1-7
Multilan 2-6
overview of 1-1/1-4
starting 2-6
stopping 2-6/2-7

Measurements
See also Configuring a measurement,
Counter records, and Data files
aborted 2-6, 3-11
active

defined 3-8
displaying configuration of 3-17
finding measurement number
of 6-19
status of 3-8/3-9, 6-20

concurrent
effect on counter values 3-16
restriction regarding user-defined
counters 5-7

configured
definition of 3-8
status of 3-8/3-9

configuring 3-1/3-3
current 3-9
examples of

using callable procedures 6-10,
6-21/6-23, D-1/D-4
Measure User’s Guide—520560-003
Index-6

Index N
Measurements (continued)
examples of (continued)

using command interface 3-6
file-system errors during 3-10/3-11
for system tuning 7-2, 7-9
inactive, displaying configuration
of 6-21
restarting 6-21/6-23
starting 3-4, 3-5/3-7, 6-9/6-10
stopping 3-4, 3-7

Memory requirements for LIST
command 3-15
Memory use 7-11/7-12
Message quick cells (MQC) 7-21
Messages

code 3204 6-21
code 3405 6-18
file-system error 45 3-10
message 3302 3-8
message 3407 3-11
online help 2-9

Migrating from D-series to G-series
modifying applications 6-23/6-24
modifying command files 2-13

Multilan Resource Manager (MLRM),
stopping MEASCTL from 2-6

N
Native mode (TNS/R) code
samples 4-28/4-30
NEWSUBVL A-7/A-16
NORMAL option (REPORT object) 4-4

O
OBEY command 2-4
OBEY file

See Command (OBEY) file
offset variable 5-2
OMEASG file 1-7
OMEASP file 1-7

Online help
abbreviating commands 2-12
about 2-9
attributes 2-11
commands 2-9
entity types 2-10
messages 2-9

Orientation, vertical/horizontal 4-23/4-26
OSIMAGE file 4-33
OSS Measure support 1-4
OSSPATH command 2-3
OUT command 2-4, 2-8
OUT file 2-8
OUT option

example in RUN command 4-34
redirecting 2-8

P
Page fault 7-10
PAGESIZE command 2-3
Pathway applications 7-9, 7-21
Performance problems

application design and 7-21
block splits and 7-14
cache sizing and 7-15/7-17
data/index compression and 7-14
disk activity and 7-12/7-13
disk queues and 7-18
file index levels and 7-13, 7-14
fragmented files and 7-14
memory use and 7-11/7-12
MQC shortage and 7-21
process activity and 7-19/7-20
record locks and 7-21
response time and 7-20
spooler overhead and 7-21
swap rate and 7-10/7-12

Performance trending 7-2
Physical to logical I/O ratio 7-13
Measure User’s Guide—520560-003
Index-7

Index Q
PLOT object
default attribute settings 4-13
examples of

with ADD command 4-11/4-12,
4-19
with DELETE command 4-12/4-13,
4-19
with INFO command 4-12
with LIST command 4-15/4-16,
4-19, 4-22
with RESET command 4-15
with SET command 4-15
with SHOW command 4-13
with VERT-BASE attribute 4-23
with WIDE-ITEM attribute 4-26

table of attributes 4-14
Plots

See also Bar graphs
defining 4-11/4-12
deleting definitions of 4-12/4-13
displaying definitions of 4-12
examples of

changing density 4-26
changing scale 4-22
changing vertical/horizontal
orientation 4-23
converting two-axis plot to bar
graph 4-17/4-18
plotting execution modes 4-28/4-30
specifying time window 4-27/4-28
using all defaults 4-16
with multiple counter
types 4-18/4-21

generating 4-16/4-21
limit on number of data points 4-19
missing data in 4-17
overriding attribute values in 4-15
resetting attribute values in 4-15
setting attribute values in 4-15
specifying format of 4-13/4-15

specifying interpreted or uninterpreted
counter values 4-14

Pound symbol (#) 4-30
Priority, process 7-19, 7-20
Procedures, callable

See also individual procedures by name
description 1-3
table of 6-2

Processes
balancing, over CPUs 7-19/7-20
identifying, in LIST or LISTALL
commands 3-14

PROCESSH entities
restriction regarding active counters
and 3-17
used in plotting execution
modes 4-28/4-30

Q
Queue counter 3-5, 5-6
Queues 7-13, 7-21

R
Random file access 7-15
RATE attribute (REPORT object) 4-4, 4-6,
4-8, 4-14, A-1
Record locks 7-21
RECORD statements A-5
Relative files, cache requirements of 7-15
Reply buffer size limitation 6-18
Reply too big (error code 3405) 6-18
REPORT object

default attributes 4-2
examples of

with FORMAT attribute 4-31
with RATE attribute 4-8, 4-14
with SET command 4-2

table of attributes 4-3
Measure User’s Guide—520560-003
Index-8

Index S
Reports
See also Plots
description 1-3
examples of

brief format 4-7
interpreted counter values 4-8
normal format 4-7
time window 4-6/4-8
uninterpreted counter values 4-9

generating
with Enform 4-34, A-1/A-18
with LIST command 3-12/3-15
with LISTACTIVE
command 3-17/3-18
with LISTALL command 3-15/3-16
with NonStop SQL/MP 4-34, C-1

overriding attribute values in 4-5
resetting attribute values in 4-4
setting attribute values in 4-2
specifying format 4-1/4-9
specifying interpreted or uninterpreted
counter values 4-8
specifying time window 4-6/4-8

Requestor does not have (message
3302) 3-8
RESET PLOT command 2-3, 4-15
RESET REPORT command 2-2, 4-4
RESETBUSY literal 5-2
Response time 7-20
Response time counter 3-5
RMEASP file 1-7
RUN command

MEASCOM 2-4
TACL 2-7

S
Sampling counter 3-5
Scale 4-22
SCALE-FROM attribute (PLOT object) 4-15
SCALE-TO attribute (PLOT object) 4-15

Sections array in header record 6-6
Security violation (message 3302) 3-8
Sequential file access 7-15
SET PLOT command 2-2, 2-3, 4-15
SET REPORT command 2-2, 4-2
SETBUSY literal 5-2
SETPROMPT command 2-4
SHOW PLOT command 2-3, 4-13
SHOW REPORT command 2-2, 4-2
Snapshot counter 3-5
SOURCE command (TAL) 6-3
Spooler overhead 7-21
START MEASSUBSYS command 2-6
START MEASUREMENT command 2-2,
3-4, 3-5/3-7
STARTENF A-16/A-18
Starting a measurement 3-4, 3-5/3-7, 6-10
Starting MEASCOM 2-7
Starting the Measure subsystem 2-6/2-7
Startup file 2-9
STATUS MEASSUBSYS command 3-8,
3-11, 3-17
STATUS MEASUREMENT
command 3-8/3-9
STOP MEASSUBSYS command 2-6
STOP MEASUREMENT command 2-2,
3-4, 3-7, 3-10
Stopping a measurement 3-7, 6-10
Stopping MEASCOM 2-7
Stopping the Measure subsystem 2-6/2-7
Structured files

effect of REPORT attributes on
contents of 4-6, 4-31/4-32
writing measurement data to 4-31/4-34

STRUCTURED option (REPORT
object) 4-4
Subsystem monitoring process

See MEASMON process
Subsystem, Measure

and Multilan 2-6
checking status 3-8, 6-19
starting 2-6, 6-7/6-9
Measure User’s Guide—520560-003
Index-9

Index T
Subsystem, Measure (continued)
stopping 2-6/2-7, 6-7/6-9

Swap activity
balancing, across disks 7-13
excessive 7-10/7-12

SWAPVOL command 2-4
SYSTEM command 2-4
System performance

See Performance problems and Tuning
and balancing a system

System, sample diagram of 7-5/7-7

T
TACL STATUS command 4-33
TAL compiler 6-3
TAL source file 6-14
TIME command 2-4
TIME-BASE attribute (PLOT object) 4-15
TNS code samples 4-28/4-30
TNS/R native code samples 4-28/4-30
TO attribute

PLOT object 4-15
REPORT window 4-4

TO clause
with LIST entity-type command 4-6
with LIST PLOT command 4-27
with LISTALL entity-type
command 3-16, 4-6
with START MEASUREMENT
command 3-6, 3-7

TOTALS attribute (REPORT object) 4-4,
4-6
Transaction counter 3-5
Trends 7-2
Tuning and balancing a system

CPU activity 7-19/7-20
defined 7-1
disk activity 7-12/7-19
memory use 7-10/7-12
where to start 7-2/7-9

Type field

in configuration table header record 6-6
in configuration table trailer record 6-7
in entity descriptors 6-6

U
Uninterpreted counter values 4-8, 4-14,
4-32, A-1, A-2, A-3
User-defined counters

creating configuration for 5-6/5-7
displaying 5-6
getting reports from 5-7/5-8
measuring 5-7
naming conventions 5-2
reply buffer size and 6-18
restriction regarding concurrent
measurements 5-7
types of 5-1, 5-6
updating (bumping) 5-1/5-3

example program in COBOL85 5-9,
5-15
example program in TAL 5-3/5-5

V
VERT-BASE attribute (PLOT object) 4-15
VOLUME command 2-4

W
WARNINGS command 2-4
WIDE-ITEM attribute (PLOT object) 4-15
Window

for plots 4-27/4-28
for reports 4-6/4-8

Workload 7-1
Write to datafile failed (error 45) 3-10

Z
ZERO-REPORTS attribute (REPORT
object) 3-14, 4-4, 4-6, 5-7
Measure User’s Guide—520560-003
Index-10

Index Special Characters
ZERO-VALUES attribute (REPORT
object) 4-4, 4-6

Special Characters
! command 2-4
(pound symbol) 4-30
?SOURCE command (TAL) 6-3
Measure User’s Guide—520560-003
Index-11

Index Special Characters
Measure User’s Guide—520560-003
Index-12

	What’s New in This Manual
	About This Manual
	1 Introduction to Measure
	Continuous Operation and Measurement
	Measurable Resources
	Displays of Measurement Data
	Customized Performance Tools
	Measure Support for Open System Services (OSS)
	Measure Support for ANSI SQL Names
	Measure Support for Dynamic-Link Libraries (DLLs)
	Measure Processes and Files
	MEASCHMA
	MEASCOM
	MEASCTL
	MEASDDLS
	MEASDDLF
	MEASDDLB
	MEASDDLZ
	MEASDECS
	MEASFH
	MEASIMMU
	MEASMON
	OMEASG
	OMEASP
	RMEASP

	Relationship Between the Measure Components

	2 Measure Command Interface (MEASCOM)
	Command�Language Format
	Entering Commands
	Using Abbreviations in Commands

	Starting and Stopping the Measure Subsystem
	Starting and Stopping MEASCOM
	Redirecting Command Output
	Creating a Custom Startup File
	Accessing Online Help
	Modifying D-Series Command Files for Systems Running G-Series RVUs
	Accessing D-Series Measurement Files From a System Running a G�Series RVU

	3 Configuring and Running Measurements
	The Measurement Configuration
	Entity Types and Specifications
	Creating the Configuration

	Running a Measurement
	Predefined Counters
	Starting a Measurement
	Stopping a Measurement

	Checking Measurement Activity and Data Files
	Checking Subsystem Status
	Checking Data File Size and Content
	Checking Data File Accessibility

	Potential Data File Errors
	Viewing Reports of Measurement Data
	Viewing Reports From Data Files
	Viewing Reports From Active Counters

	4 Formatting Reports and Plots
	Controlling Content and Format of Reports
	REPORT Attributes
	Controlling the Report Window
	Displaying Interpreted and Uninterpreted Values

	Plotting Measurement Data
	The Plot Definition
	PLOT Attributes
	Generating Plots
	Changing the Scale
	Changing the Orientation
	Changing the Density
	Changing the Plot Window

	Plotting Execution Modes
	Producing Structured Files of Measurement Data
	Step 1: Produce Structured Report Files
	Step 2: Load the Structured Files
	Step 3: Build the Data Dictionary
	Generating Reports Using Enform and SQL/MP Products
	Loading Data From Different Systems to Common Files

	5 Defining Custom Counters
	Task 1: Instrument an Application
	Step 1: Source in the MEASDECS File
	Step 2: Declare Integer Variable, Array, and Offset
	Step 3: Initialize the Counter (Call MEASCOUNTERBUMPINIT)
	Step 4: Bump the Counter (Call MEASCOUNTERBUMP)
	Sample TAL Program

	Task 2: Measure the Application
	Step 1: Specify the Processes Running the Application
	Step 2: Specify the User-Defined Counters in the Application to Measure
	Considerations

	Sample COBOL Application

	6 Creating a Custom Measurement Application
	Preparing Your Program and Defining the Configuration
	Reading Declaration Files
	Allocating Space for the Measure Control Block
	Defining Entities
	Preparing the Configuration Table

	Starting and Stopping the Measure Subsystem
	Starting and Stopping a Measurement
	Step 1: Call MEASOPEN
	Step 2: Call MEASCONFIGURE
	Step 3: Call MEASCONTROL
	Step 4: Call MEASCLOSE (Optional)

	Reading Counter Records
	Reading Counter Records From a Data File
	Reading Active Counters

	Checking the Status of the Subsystem or a Measurement
	Reading the Measurement Configuration
	Modifying D-Series Applications for G-Series Systems

	7 Balancing and Tuning a System
	Balancing a System
	Tuning a System
	Learning About the System and Its Applications
	Correcting Outstanding Problems
	Measuring the System
	Checking and Tuning Problem Areas

	A Creating an Enform Report From Measure Data
	Calculating Values
	Busy Values
	Queue Lengths
	Rates

	Creating User�Defined Variables
	Creating User�Defined Records
	Creating an Enform Report
	NEWSUBVL—Establishing the Subvolume
	STARTENF—Creating the Report

	B Examples of RECORD Statements and FIND Queries
	C Loading Measure Data Into an SQL Table
	D Example of Measurement Application in�C
	E Converting Existing Applications or Enform Reports to ZMS Style Record Formats
	Using New Counter Fields
	Using Existing Counter Fields
	Application Conversion Considerations

	Index

