
Open System Services
System Calls
Reference Manual

Abstract

This manual documents part of the HP NonStop Open System Services (OSS)
application program interface. It is written for system and application programmers.

Product Version

N.A.

Supported Release Version Updates (RVUs)

This manual supports J06.03 and all subsequent J-series RVUs, H06.08 and all
subsequent H-series RVUs, and G06.29 and all subsequent G-series RVUs until
otherwise indicated by its replacement publication.

Part Number Published

527186-023 February 2014

Document History
Part Number Product Version Published

527186-019 N/A February 2012
527186-020 N/A August 2012
527186-021 N/A February 2013
527186-022 N/A August 2013
527186-023 N/A February 2014

Contents_____________________________

What Is New in This Manual . ix

Changed Functions x

About This Manual . xi

Audience . xii

Purpose . xii

Document Usage xii

Reference Page Format xii

Related Documents xiii

Reference Section Numbers xiv

Typographic and Keying Conventions xv

Section 1. System Functions (a - d) 1-1
accept . 1-2
access . 1-6
acl . 1-10
bind . 1-14
chdir . 1-18
chmod . 1-21
chown . 1-26
chroot . 1-31
close . 1-34
connect . 1-37
creat . 1-43
creat64 . 1-51
dup . 1-58
dup2 . 1-60

Section 2. System Functions (e) 2-1
exec . 2-2
execl . 2-3
execle . 2-11
execlp . 2-19
execv . 2-27
execve . 2-35
execvp . 2-43
_exit . 2-51

Section 3. System Functions (f - i) 3-1
fchmod . 3-2
fchown . 3-7
fcntl . 3-11
fork . 3-19

527186-023 Hewlett-Packard Company iii

OSS System Calls Reference Manual

fstat . 3-24
fstat64 . 3-35
fstatvfs . 3-45
fstatvfs64 . 3-53
fsync . 3-61
ftruncate . 3-64
ftruncate64 . 3-67
getegid . 3-70
geteuid . 3-71
getgid . 3-72
getgroups . 3-73
gethostname . 3-74
getpeername . 3-75
getpgid . 3-78
getpgrp . 3-79
getpid . 3-80
getppid . 3-81
getpriority . 3-82
getsid . 3-84
getsockname . 3-85
getsockopt . 3-88
gettimeofday . 3-94
getuid . 3-96
ioctl . 3-97

Section 4. System Functions (k - m) 4-1
kill . 4-2
lchmod . 4-5
lchown . 4-10
link . 4-15
listen . 4-19
lseek . 4-22
lseek64 . 4-25
lstat . 4-28
lstat64 . 4-38
mkdir . 4-48
mknod . 4-53
msgctl . 4-59
msgget . 4-62
msgrcv . 4-65
msgsnd . 4-69

Section 5. System Functions (n - p) 5-1
nice . 5-2
open . 5-4
open64 . 5-16
pipe . 5-27
pthread_atfork . 5-29
pthread_attr_destroy 5-32
pthread_attr_getdetachstate 5-34
pthread_attr_getguardsize 5-36
pthread_attr_getguardsize_np 5-38
pthread_attr_getinheritsched 5-39
pthread_attr_getschedparam 5-41
pthread_attr_getschedpolicy 5-43
pthread_attr_getscope 5-45

iv Hewlett-Packard Company 527186-023

Contents

pthread_attr_getstackaddr 5-47
pthread_attr_getstacksize 5-49
pthread_attr_init 5-51
pthread_attr_setdetachstate 5-54
pthread_attr_setguardsize 5-57
pthread_attr_setguardsize_np 5-59
pthread_attr_setinheritsched 5-61
pthread_attr_setschedparam 5-64
pthread_attr_setschedpolicy 5-67
pthread_attr_setscope 5-69
pthread_attr_setstacksize 5-71
pthread_cancel . 5-73
pthread_cleanup_pop 5-76
pthread_cleanup_push 5-78
pthread_condattr_destroy 5-80
pthread_condattr_init 5-82
pthread_cond_broadcast 5-84
pthread_cond_destroy 5-86
pthread_cond_init 5-88
pthread_cond_signal 5-91
pthread_cond_signal_int_np 5-93
pthread_cond_timedwait 5-95
pthread_cond_wait 5-98
pthread_create . 5-101
pthread_delay_np 5-105
pthread_detach . 5-107
pthread_equal . 5-109
pthread_exit . 5-111
pthread_getattr_np 5-113
pthread_getconcurrency 5-115
pthread_get_expiration_np 5-117
pthread_getschedparam 5-119
pthread_getspecific 5-121
pthread_get_threadstateinfo_np 5-123
pthread_join . 5-125
pthread_key_create 5-128
pthread_key_delete 5-131
pthread_kill . 5-133
pthread_kill_np . 5-136
pthread_lock_global_np 5-138
pthread_mutexattr_destroy 5-140
pthread_mutexattr_getkind_np 5-142
pthread_mutexattr_gettype 5-143
pthread_mutexattr_init 5-146
pthread_mutexattr_setkind_np 5-148
pthread_mutexattr_settype 5-150
pthread_mutex_destroy 5-152
pthread_mutex_init 5-154
pthread_mutex_lock 5-156
pthread_mutex_trylock 5-158
pthread_mutex_unlock 5-160
pthread_once . 5-162
pthread_self . 5-164
pthread_setcancelstate 5-166
pthread_setcanceltype 5-168

527186-023 Hewlett-Packard Company v

OSS System Calls Reference Manual

pthread_setconcurrency 5-171
pthread_setschedparam 5-173
pthread_setspecific 5-176
pthread_sigmask 5-178
pthread_signal_to_cancel_np 5-180
pthread_testcancel 5-182
pthread_unlock_global_np 5-184
put_awaitio . 5-186
PUT_CANCEL . 5-188
PUT_CONTROL 5-190
put_fd_read_ready 5-193
put_fd_write_ready 5-195
PUT_FILE_CLOSE_ 5-197
PUT_FILE_OPEN_ 5-199
PUT_FILE_WRITEREAD_ 5-212
put_generateTag 5-215
put_getTMFConcurrentTransactions 5-216
put_INITRECEIVE 5-217
put_INITRECEIVEL 5-219
put_interrupt . 5-221
put_interruptTag 5-223
PUT_LOCKFILE 5-225
PUT_LOCKREC 5-228
PUT_READLOCKX 5-232
PUT_READUPDATELOCKX 5-236
PUT_READUPDATEX 5-240
PUT_READX . 5-243
put_RECEIVEREAD 5-249
put_RECEIVEREADL 5-251
put_regFile . 5-253
put_regFileIOHandler 5-254
put_regOSSFileIOHandler 5-256
put_regPathsendFile 5-258
put_regPathsendTagHandler 5-260
put_regTimerHandler 5-262
put_REPLYX . 5-263
put_REPLYXL . 5-265
put_select_single_np 5-267
PUT_SETMODE 5-269
put_setOSSFileIOHandler 5-272
put_setTMFConcurrentTransactions 5-274
PUT_TMF_GetTxHandle 5-275
PUT_TMF_Init . 5-277
PUT_TMF_RESUME 5-278
PUT_TMF_SetAndValidateTxHandle 5-280
PUT_TMF_SetTxHandle 5-282
PUT_TMF_SUSPEND 5-284
PUT_UNLOCKFILE 5-286
PUT_UNLOCKREC 5-288
put_unregFile . 5-291
put_unregOSSFileIOHandler 5-293
put_unregPathsendTagHandler 5-294
put_wakeup . 5-295
PUT_WRITEREADX 5-297
PUT_WRITEUPDATEUNLOCKX 5-301

vi Hewlett-Packard Company 527186-023

Contents

PUT_WRITEUPDATEX 5-305
PUT_WRITEX . 5-311

Section 6. System Functions (r) 6-1
read . 6-2
read64_ . 6-8
readlink . 6-12
readv . 6-15
recv . 6-21
recv64_ . 6-24
recvfrom . 6-27
recvfrom64_ . 6-31
recvmsg . 6-34
recvmsg64_ . 6-39
rename . 6-43
rename_guardian 6-44
rename_oss . 6-46
rmdir . 6-52

Section 7. System Functions (s and S) 7-1
sched_get_priority_max 7-2
sched_get_priority_min 7-4
sched_yield . 7-6
select . 7-8
semctl . 7-15
semget . 7-20
semop . 7-23
send . 7-27
send64_ . 7-31
sendmsg . 7-34
sendmsg64_ . 7-39
sendto . 7-44
sendto64_ . 7-49
setegid . 7-53
seteuid . 7-55
setfilepriv . 7-57
setgid . 7-59
setgroups . 7-60
setpgid . 7-61
setpgrp . 7-63
setregid . 7-64
setreuid . 7-66
setsid . 7-68
setsockopt . 7-69
setuid . 7-76
shmat . 7-77
shmctl . 7-80
shmdt . 7-83
shmget . 7-85
shutdown . 7-90
sigaction . 7-92
sigaltstack . 7-98
sigpending . 7-102
sigprocmask . 7-104
sigsuspend . 7-106
sigwait . 7-109

527186-023 Hewlett-Packard Company vii

OSS System Calls Reference Manual

sockatmark . 7-112
socket . 7-114
socketpair . 7-119
socket_transport_name_get 7-124
socket_transport_name_set 7-127
spt_accept . 7-130
spt_acceptx . 7-131
spt_alarm . 7-134
spt_awaitio . 7-136
SPT_CANCEL . 7-138
spt_close . 7-140
spt_closex . 7-141
spt_closez . 7-143
spt_connect . 7-145
spt_connectx . 7-146
SPT_CONTROL 7-151
spt_dup2x . 7-153
spt_fclose . 7-156
spt_fclosex . 7-157
spt_fcntlx . 7-159
spt_fcntlz . 7-166
spt_fd_read_ready 7-174
spt_fd_write_ready 7-175
spt_fflush . 7-176
spt_fflushx . 7-177
spt_fgetc . 7-179
spt_fgetcx . 7-180
spt_fgets . 7-182
spt_fgetsx . 7-183
spt_fgetwc . 7-185
spt_fgetwcx . 7-186
SPT_FILE_CLOSE_ 7-188
spt_FileIOHandler_p 7-190
SPT_FILE_OPEN_ 7-191
spt_fork . 7-204
spt_fprintf . 7-205
spt_fprintfx . 7-206
spt_fputc . 7-213
spt_fputcx . 7-214
spt_fputs . 7-217
spt_fputsx . 7-218
spt_fputwc . 7-220
spt_fputwcx . 7-221
spt_fread . 7-223
spt_freadx . 7-224
spt_fstat64z . 7-226
spt_fstatz . 7-236
spt_fsyncz . 7-246
spt_ftruncate64z 7-249
spt_ftruncatez . 7-252
spt_fwrite . 7-255
spt_fwritex . 7-256
spt_generateTag . 7-259
spt_getc . 7-260
spt_getchar . 7-261

viii Hewlett-Packard Company 527186-023

Contents

spt_getcharx . 7-262
spt_getcx . 7-264
spt_gets . 7-266
spt_getsx . 7-267
spt_getTMFConcurrentTransactions 7-269
spt_getw . 7-270
spt_getwc . 7-271
spt_getwchar . 7-272
spt_getwcharx . 7-273
spt_getwcx . 7-275
spt_getwx . 7-277
spt_INITRECEIVE 7-279
spt_INITRECEIVEL 7-280
spt_interrupt . 7-281
spt_interruptTag 7-282
SPT_LOCKFILE 7-283
SPT_LOCKREC 7-286
spt_lseek64z . 7-290
spt_lseekz . 7-293
spt_OSSFileIOHandler_p 7-296
spt_pause . 7-297
spt_printf . 7-298
spt_printfx . 7-299
spt_putc . 7-306
spt_putchar . 7-307
spt_putcharx . 7-308
spt_putcx . 7-311
spt_puts . 7-314
spt_putsx . 7-315
spt_putw . 7-317
spt_putwc . 7-318
spt_putwchar . 7-319
spt_putwcharx . 7-320
spt_putwcx . 7-322
spt_putwx . 7-324
spt_read . 7-327
SPT_READLOCKX 7-328
SPT_READUPDATELOCKX 7-331
SPT_READUPDATEX 7-334
spt_readv . 7-337
spt_readvx . 7-338
spt_readvz . 7-343
SPT_READX . 7-348
spt_readx . 7-354
spt_readz . 7-358
spt_RECEIVEREAD 7-363
spt_RECEIVEREADL 7-365
spt_recv . 7-367
spt_recvfrom . 7-368
spt_recvfromx . 7-369
spt_recvmsg . 7-372
spt_recvmsgx . 7-373
spt_recvx . 7-377
spt_regFile . 7-380
spt_regFileIOHandler 7-381

527186-023 Hewlett-Packard Company ix

OSS System Calls Reference Manual

spt_regOSSFileIOHandler 7-382
spt_regPathsendFile 7-383
spt_regPathsendTagHandler 7-384
spt_regTimerHandler 7-386
spt_REPLYX . 7-387
spt_REPLYXL . 7-388
spt_select . 7-390
spt_select_single_np 7-392
spt_send . 7-394
spt_sendmsg . 7-395
spt_sendmsgx . 7-396
spt_sendto . 7-401
spt_sendtox . 7-403
spt_sendx . 7-407
SPT_SETMODE 7-410
spt_setOSSFileIOHandler 7-413
spt_setTMFConcurrentTransactions 7-414
spt_sigaction . 7-415
spt_signal . 7-417
spt_sigpending . 7-419
spt_sigsuspend . 7-420
spt_sigwait . 7-422
spt_sleep . 7-424
spt_system . 7-425
spt_TimerHandler_p 7-426
SPT_TMF_GetTxHandle 7-427
SPT_TMF_Init . 7-428
SPT_TMF_RESUME 7-429
SPT_TMF_SetAndValidateTxHandle 7-430
SPT_TMF_SetTxHandle 7-431
SPT_TMF_SUSPEND 7-432
SPT_UNLOCKFILE 7-433
SPT_UNLOCKREC 7-435
spt_unregFile . 7-438
spt_unregOSSFileIOHandler 7-439
spt_unregPathsendTagHandler 7-440
spt_usleep . 7-441
spt_vfprintf . 7-442
spt_vfprintfx . 7-443
spt_vprintf . 7-446
spt_vprintfx . 7-447
spt_waitpid . 7-449
spt_wakeup . 7-451
spt_write . 7-452
SPT_WRITEREADX 7-453
SPT_WRITEUPDATEUNLOCKX 7-456
SPT_WRITEUPDATEX 7-460
spt_writev . 7-465
spt_writevx . 7-466
spt_writevz . 7-472
SPT_WRITEX . 7-478
spt_writex . 7-483
spt_writez . 7-488
stat . 7-494
stat64 . 7-505

x Hewlett-Packard Company 527186-023

Contents

statvfs . 7-515
statvfs64 . 7-524
symlink . 7-533

Section 8. System Functions (t) 8-1
tdm_execve . 8-2
tdm_execvep . 8-17
tdm_fork . 8-32
tdm_spawn . 8-43
tdm_spawnp . 8-60

Section 9. System Functions (u) 9-1
ulimit . 9-2
umask . 9-4
uname . 9-5
unlink . 9-7
utime . 9-11

Section 10. System Functions (w) 10-1
wait . 10-2
waitpid . 10-7
write . 10-14
write64_ . 10-20
writev . 10-25

Section 11. Files . 11-1
ar . 11-2
core . 11-3
cpio . 11-4
dir . 11-7
float . 11-8
limits . 11-10
math . 11-18
named.conf . 11-21
null . 11-29
saveabend . 11-30
signal . 11-31
spthread.h . 11-39
tar . 11-48
termcap . 11-51
termios . 11-64
tty . 11-70

Section 12. Miscellaneous . 12-1
acl . 12-2
ascii . 12-16
environ . 12-18
errno . 12-35
filename . 12-44
hier . 12-51
login.defs . 12-53
pathname . 12-54
process_extension_results 12-55
resolv.conf . 12-64
users . 12-67

Permuted Index . Pindex-1

527186-023 Hewlett-Packard Company xi

OSS System Calls Reference Manual

Index . Index-1

xii Hewlett-Packard Company 527186-023

Contents

LIST OF TABLES

Table 3−1. Ignored File Status Flags 3-13

Table 5−1. Levels of Guardian File Security 5-206

Table 5−2. Allowed Guardian File Accesses 5-207

Table 7−1. Ignored File Status Flags (spt_fcntlx Function) 7-160

Table 7−2. Ignored File Status Flags 7-167

Table 7−3. Levels of Guardian File Security 7-198

Table 7−4. Allowed Guardian File Accesses 7-198

Table 11−1. cpio Archive File Header Format 11-4

Table 11−2. cpio Archive File Filename Entry Format 11-5

Table 11−3. cpio Archive File Data Format 11-5

Table 11−4. cpio.h Header File Macros 11-6

Table 11−5. Values for Floating-Point Constants 11-9

Table 11−6. Values for Floating-Point Constants 11-16

Table 11−7. Values for Symbolic Constants 11-17

Table 11−8. Signals . 11-34

Table 11−9. tar Archive File Header Block 11-48

Table 11−10. Terminal Name Suffixes 11-51

Table 11−11. Terminal Capabilities 11-52

Table 12−1. ASCII Character Set Octal Values 12-16

Table 12−2. ASCII Character Set Hexadecimal Values 12-16

Table 12−3. ASCII Character Set Decimal Values 12-17

527186-023 Hewlett-Packard Company xiii

What Is New in This Manual

This section describes changes made to the Open System Services System Calls
Reference Manual since the last edition (527186-022).

Unless otherwise indicated in the text, discussions of native mode behavior, processes,
and so forth apply to both the TNS/R code that runs on systems running G-series RVUs
and to the TNS/E code that runs on systems running J-series RVUs or H-series RVUs.
Discussions of TNS or accelerated code behavior in the OSS environment apply only to
systems running G-series RVUs; systems running J-series RVUs or H-series RVUs do
not support TNS or accelerated code execution in the OSS environment.

Unless otherwise indicated in the text, all text that applies to systems running H06.14
and later H-series RVUs also applies to systems running J06.03 and later J-series RVUs.

This manual contains information about some of the following G-series development
tools. For servers running H-series RVUs, these tools are supported only in H06.05 and
subsequent H-series RVUs:

• TNS/R native C compiler

• TNS/R native C++ compiler

• TNS/R native C++ runtime library version 2

• SQL/MP for TNS/R native C

• SQL/MP Compilation Agent for TNS/R programs

• NMCOBOL compiler and nmcobol frontend

• ld

• nld

• noft

• TNS/R native pTAL

If your server is running the H06.03 or H06.04 RVU, continue to use the HP Enterprise
Toolkit.NonStop Edition or servers running G-series RVUs for development tasks that
require these tools. If your server is running J06.03 or later J-series RVUs, these tools are
supported.

527186-023 Hewlett-Packard Company ix

OSS System Calls Reference Manual

Changed Functions

The following reference pages were changed to correct errors:

• gettimeofday()

• put_awaitio()

• PUT_FILE_OPEN_()

The following reference pages were changed to support the increase in message queue
limits:

• msgctl()

• msgget()

• msgrcv()

• msgsnd()

x Hewlett-Packard Company 527186-023

About This Manual

The HP NonStop Open System Services (OSS) application program interface (API)
provides an open interface for programs to be run with the underlying HP NonStop
operating system.

The Open System Services System Calls Reference Manual contains reference pages for
OSS system functions, files, and miscellaneous topics.

The description of the OSS API is divided into system functions (documented in this
manual) and library functions (documented in the Open System Services Library Calls
Reference Manual). Functions appear in one manual or the other, based on the logical
section number assigned to the reference page for the function. For an explanation of the
logical section numbers, see Reference Section Numbers later in this section.

This division does not imply any restrictions on the use of the functions described in
either manual. The division exists for many reasons, including:

• Consistency with the documentation of the Guardian API. The Guardian API for
process management and low-level file-system access is documented separately from
other portions of the API available to users of a C run-time library.

• Consistency with the separation of functions used in some UNIX systems. In those
systems, an important distinction exists between the API for code that is to run in
kernel space and the API for code that is to run in user space. This distinction is
meaningless for users of the OSS API. The NonStop operating system does
distinguish among code that runs in user code space, code that runs in system code
space, and code that runs in library code space, but the distinction does not separate
the functions of the OSS API.

Unless otherwise indicated in the text, discussions of native mode behavior, processes,
and so forth apply to both the TNS/R code that runs on systems running G-series RVUs
and to the TNS/E code that runs on systems running J-series RVUs or H-series RVUs.
Discussions of TNS or accelerated code behavior in the OSS environment apply only to
systems running G-series RVUs; systems running J-series RVUs or H-series RVUs do
not support TNS or accelerated code execution in the OSS environment.

Unless otherwise indicated in the text, all text that applies to systems running H06.14
and later H-series RVUs also applies to systems running J06.03 and later J-series RVUs.

527186-023 Hewlett-Packard Company xi

OSS System Calls Reference Manual

Audience

This manual is for system and application programmers who want to use the OSS API
provided with the NonStop operating system. The manual assumes that the reader is a
programmer and is familiar with the C programming language.

Purpose

This manual provides a complete reference to all OSS system functions and their related
files and miscellaneous topics.

Document Usage

This manual contains a portion of the online reference (man) pages. These reference
pages are divided among 12 sections, as follows:

• Sections 1 through 10 contain reference pages for OSS system functions. These
reference pages reside in the cat2 or cat3 directory and are sorted alphabetically.

• Section 11 contains reference pages for some OSS header and special files. These
reference pages reside in the cat4 and cat7 directories and are sorted alphabetically.

• Section 12 contains reference pages for some miscellaneous OSS topics. These
reference pages reside in the cat5 directory and are sorted alphabetically.

Reference Page Format

The reference pages for functions, files, and miscellaneous topics in this manual use the
following format. If a heading has no contents for a particular reference page, it is
omitted.

NAME Function, file, or miscellaneous topic name and purpose.

LIBRARY Library containing the function. The library is identified in terms of the
run-time environment in which the compiled application must run. For
example, an H-series native Guardian process must use the specified
library when the c89 -Wtarget=TNS/E and -Wsystype=guardian flags
are specified or used by default.

xii Hewlett-Packard Company 527186-023

About This Manual

SYNOPSIS Appropriate syntax, including header files to be included and all
parameter types. Some header files are required for POSIX.1-compliant
applications but are optional for applications conforming to other
standards. These header files are noted as "optional except for POSIX.1."

PARAMETERS Descriptions of the parameters listed under the SYNOPSIS heading.

DESCRIPTION For function topics, how the function works, including the conditions
or permissions required to use it successfully, the set of values for all
parameters, and the effect of the function on the state of processes or
files. For file topic reference pages, a description of file contents. For
miscellaneous topics, a general description.

EXAMPLES Compilable C language program excerpts using the function call
described in the reference page.

NOTES Any supplementary information that is peripheral to the actual operation
of the function, file, or miscellaneous topic described.

CAUTIONS Information on possible system damage or data corruption as a result of
using the function, file, or miscellaneous topic in a specific way.

RETURN VALUES Indication of successful or unsuccessful completion when the
function is invoked.

ERRORS Error conditions under which the function might fail, and the errno
value associated with each condition.

FILES Files related to the function, file, or miscellaneous topic, except for any
header files listed under the SYNOPSIS heading.

RELATED INFORMATION Cross-references to related functions, files, commands,
and miscellaneous topics described in other OSS reference pages. This
heading does not contain titles of standards, HP manuals, or commercial
texts.

STANDARDS CONFORMANCE Summary of features that are fully described under
previous headings and are flagged as implementation-defined or HP
extensions to the cited standard.

The POSIX standards leave some features to the implementing vendor to
define. These features are flagged as implementation-defined. Features
that HP has included that are not in the cited standard are flagged as HP
extensions to the appropriate cited standard.

Related Documents

For information about OSS library functions, commands and utilities, and guidelines for
general usage, see these manuals:

• C/C++ Programmer’s Guide

• Common Run-Time Environment (CRE) Programmer’s Guide

527186-023 Hewlett-Packard Company xiii

OSS System Calls Reference Manual

• eld Manual (TNS/E systems only)

• enoft Manual (TNS/E systems only)

• H-Series Application Migration Guide

• Inspect Manual

• ld Manual

• Native Inspect Manual (TNS/E systems only)

• rld Manual

• nld Manual

• noft Manual

• Open System Services Library Calls Reference Manual

• Open System Services Porting Guide

• Open System Services Programmer’s Guide

• Open System Services Shell and Utilities Reference Manual

• Open System Services User’s Guide

• Software Internationalization Guide

• TCP/IP and TCP/IPv6 Programming Manual

• TNS/R Native Application Migration Guide

If you are working in or with the Guardian environment, see the Guardian Procedure
Calls Reference Manual and its related manuals.

Reference Section Numbers

The online documentation for Open System Services is divided into logical sections.
Each logical section has a reference section number.

Some topics in the reference pages have more than one reference page file; a reference
section number identifies a specific file. For example, chown has a reference page for the
chown() function in section 2 and a reference page for the chown command in section 1.
These topics are identified as chown(2) and chown(1), respectively.

The reference section number can be used in the man command to select the correct
reference page. For more information about the section parameter, see the man
command reference page either online or in the Open System Services Shell and Utilities
Reference Manual.

Reference section numbers are included under the RELATED INFORMATION
heading and in the heading at the top of every reference page. The following table shows
the correspondence between reference section numbers and OSS manuals.

xiv Hewlett-Packard Company 527186-023

About This Manual

Section Content Manual___

(1) User commands OSS Shell and Utilities Reference Manual

(2) System functions OSS System Calls Reference Manual

(3) Library functions OSS Library Calls Reference Manual

(4) File formats and OSS System Calls Reference Manual
OSS Library Calls Reference Manual
OSS Shell and Utilities Reference Manual

data structures

(5) Miscellaneous topics and OSS System Calls Reference Manual
OSS Library Calls Reference Manual
OSS Shell and Utilities Reference Manual

environment variables

(6) Games Not supplied by HP

(7) Special files OSS System Calls Reference Manual

(8) Administrator commands OSS Shell and Utilities Reference Manual

Typographic and Keying Conventions

This manual uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, flags, and pathnames.

Italic Italic words or characters represent variable values that you must supply.

Constant width
Examples and information that the system displays appear in the
constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

 | A vertical bar separates items in a list of choices.

... A horizontal ellipsis indicates that you can repeat the preceding item one
or more times. A vertical ellipsis indicates that you can repeat the
preceding line one or more times.

In text margins, a vertical bar indicates a line changed since the last revision of the
reference page.

527186-023 Hewlett-Packard Company xv

Section 1. System Functions (a - d)

This section contains reference pages for Open System Services (OSS) system function
calls with names that begin with a through d. These reference pages reside in the cat2
directory and are sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 1−1

accept(2) OSS System Calls Reference Manual

NAME
accept - Accepts a new connection on a socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

int accept(
int socket,
struct sockaddr *address,
socklen_t *address_len);

PARAMETERS
socket Specifies the file descriptor for a socket that was created with the socket() func-

tion, has been bound to an address with the bind() function, and has issued a
successful call to the listen() function.

address Specifies either a null pointer or a pointer to the sockaddr structure where the
address of the peer socket that requested the connection should be returned. The
length and format of the address depend on the address family of the socket.

For AF_INET sockets, a pointer to the address structure sockaddr_in must be
cast as a struct sockaddr. For AF_INET6 sockets, a pointer to the address
structure sockaddr_in6 must be cast as a struct sockaddr. For AF_UNIX sock-
ets, a pointer to the address structure sockaddr_un must be cast as a struct
sockaddr.

address_len Points to a socklen_t data item, which, on input, specifies the length of the
sockaddr structure pointed to by the address parameter, and, on output, specifies
the length of the address returned.

DESCRIPTION
The accept() function extracts the first connection on the queue of pending connections, creates
a new socket with the same socket type, protocol, and address family as the specified socket, and
allocates a new file descriptor for that socket.

In systems running AF_UNIX Release 2 software, the new socket will use the same mode (com-
patibility or portability) as the specified socket.

For more information about AF_UNIX Release 2, compatibility mode, and portability mode, see
the Open System Services Programmer’s Guide.

When the accept() function is called using a value for the address parameter that is null, suc-
cessful completion of the call returns a socket file descriptor without modifying the value pointed
to by the address_len parameter. When the accept() function is called using a value for the
address parameter that is not null, a successful call places the address of the peer socket in the
sockaddr structure pointed to by the address parameter, and places the length of the peer
socket’s address in the location pointed to by the address_len parameter.

If the length of the socket address is greater than the length of the supplied sockaddr structure,
the address is truncated when stored.

1−2 Hewlett-Packard Company 527186-023

System Functions (a - d) accept(2)

If the queue of pending connections is empty of connection requests and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the accept() function blocks until a connec-
tion is present. If the socket’s file descriptor is marked nonblocking (O_NONBLOCK is set) and
the queue of pending connections is empty, the accept() function call fails and sets errno to
[EWOULDBLOCK].

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When a connection is available, a call to the select() function indicates that the file descriptor for
the original socket is ready for reading.

The accepted socket cannot itself accept more connections. The original socket remains open
and can accept more connections.

To use the accept() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_acceptx(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the function on systems running H06.21/J06.10 or later
RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the accept() function returns the file descriptor of the accepted
socket. If the accept() function call fails, the value -1 is returned and errno is set to indicate the
error.

ERRORS
If any of the following conditions occurs, the accept() function sets errno to the corresponding
value:

527186-023 Hewlett-Packard Company 1−3

accept(2) OSS System Calls Reference Manual

[EADDRINUSE]
The address is already in use. This error is returned in the OSS environment
only.

[EBADF] The socket parameter is not a valid file descriptor.

This error is also returned if the accept() function is thread-aware and the socket
becomes invalid (is closed by another thread).

[ECONNABORTED]
The connection was aborted.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] The function call was interrupted by a signal that was caught before a valid con-
nection arrived.

This error is also returned if the accept() function is thread-aware and a signal
received from the pthread_kill() function is not blocked, ignored, or handled.

[EINVAL] The socket is not accepting connections.

[EMFILE] No more file descriptors are available for this process.

[ENFILE] One of these conditions exists:

• The maximum number of file descriptors of this file type (socket, pipe,
etc.) for this processor are already open.

• The limit for open file descriptors of this file type has not been exceeded,
but the maximum number of all file descriptors for this processor are
already open.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTSOCK] The socket parameter does not specify a socket.

[EOPNOTSUPP]
The socket type of the specified socket does not support accepting connections.

[EWOULDBLOCK]
The socket’s file descriptor is marked nonblocking (O_NONBLOCK is set) and
no connections are present to be accepted.

1−4 Hewlett-Packard Company 527186-023

System Functions (a - d) accept(2)

RELATED INFORMATION
Functions: bind(2), connect(2), fcntl(2), listen(2), socket(2), spt_acceptx(2).

STANDARDS CONFORMANCE
The XPG4 specification allows certain behaviors to be implementer-defined. The following are
choices of the HP implementation:

• The HP implementation does not return the errno values [EAGAIN], [ENOSR], or
[EPROTO].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport-provider process
is unavailable.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 1−5

access(2) OSS System Calls Reference Manual

NAME
access - Determines the accessibility of a file

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int access(
const char *path,
int access_mode);

PARAMETERS
path Points to the file pathname. When the path parameter refers to a symbolic link,

the access() function returns information about the file pointed to by the sym-
bolic link.

Permission to access all components of the path parameter is determined by
using a real user ID instead of an effective user ID, and by using a real group ID
instead of an effective group ID.

access_mode Specifies the type of access. The bit pattern contained in the access_mode
parameter is constructed by a logical OR of values from the following list:

F_OK Checks to see whether the file exists.

R_OK Checks read permission.

W_OK Checks write permission.

X_OK Checks execute (search) permission.

DESCRIPTION
The access() function checks the accessibility of a file specified by a pathname.

Only access bits are checked. A directory can be indicated as writable by access(), but an
attempt to open it for writing could fail (although files can be created there).

A process with appropriate privilege can override the file permissions of a file. For files in unres-
tricted filesets, a process with the super ID has the appropriate privilege. However, for files in
restricted-access filesets, such special access privileges are restricted even for the super ID. For
information about restricted-access filesets, see the Open System Services Management and
Operations Guide.

Access Control Lists (ACLs)
Read, write, and execute/search permissions are checked against the ACL for the file.

To determine the permission granted to the real user ID (RUID) and real group ID (RGID) of the
accessing process, the access() function checks these things in the ACL, in order:

1. If the RUID of the process is the same as the owner of the file, grant the permissions
specified in the user:: entry. Otherwise, continue to the next check.

2. If the RUID matches the UID specified in one of the additional user:uid: entries, grant
the permissions specified in that entry, bitwise-ANDed with the permissions specified in
the class entry. Otherwise, continue to the next check.

3. If the RGID or a supplementary GID of the process matches the owning GID of the file
or one of the GIDs specified in any additional group:gid: entries, grant the permissions

1−6 Hewlett-Packard Company 527186-023

System Functions (a - d) access(2)

specified in the class entry bitwise-ANDed with the result of bitwise-ORing together all
of the permissions in all matching group entries. Otherwise, continue to the next check.

4. Otherwise, grant the permissions specified in the other entry.

Files in the Guardian File System
If the specified pathname resolves to the /G directory itself, the calling process has read and exe-
cute access but not write access. The permissions are "r-xr-xr-x".

If the specified pathname resolves to a Guardian process name, the calling process has execute
access but not read or write access. The permissions are "--x--x--x".

If the specified pathname resolves to a Guardian disk volume or subvolume, then the calling pro-
cess has read, write, and execute access. The permissions are "rwxrwxrwx".

If the specified pathname resolves to a regular Guardian disk file, then Guardian standard secu-
rity and Safeguard file-level protection govern access. Refer to the stat(2) reference page for
more information.

Use From the Guardian Environment
The access() function is one of a set of functions that have the following effects when the first of
them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the access() function returns the value 0 (zero). Otherwise, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the access() function sets errno to the corresponding
value:

[EACCES] The permission bits of the file mode do not permit the requested access, or search
permission is denied on a component of the pathname prefix. The owner of a file
has permissions checked with respect to the "owner" read, write, and execute
mode bits; members of the file’s group other than the owner have permissions
checked with respect to the "group" mode bits; and all others have permissions
checked with respect to the "other" mode bits.

[EFAULT] The path parameter points outside the process’s allocated address space.

[EFSBAD] The program attempted an operation involving a fileset with a corrupted fileset
catalog.

527186-023 Hewlett-Packard Company 1−7

access(2) OSS System Calls Reference Manual

[EINTR] A signal was caught during execution of the function call.

[EINVAL] The access_mode parameter contains an invalid bit pattern.

[EIO] An I/O error occurred during a read from or a write to the fileset.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of the following conditions exists:

• The specified pathname does not exist.

• The specified pathname is an empty string.

• The specified pathname cannot be mapped to a valid Guardian filename.

• The path parameter specifies a file on a remote HP NonStop node but
communication with the remote node has been lost.

[ENOROOT] One of the following conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node and communication
with the remote name server has been lost.

[ENOTDIR] A component of the pathname prefix is not a directory.

[ENOTSUP] The path parameter specifies a Guardian file on an SMF logical volume and one
of the following conditions exists:

• The local system is running an RVU prior to J06.15 or H06.26.

• The path parameter specifies a file in /E and the remote system is run-
ning an RVU prior to J06.15 or H06.26.

[ENXIO] The fileset containing the current working directory or the root fileset is not
mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] The program attempted an operation on a SEEP-protected fileset. Valid for
J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

1−8 Hewlett-Packard Company 527186-023

System Functions (a - d) access(2)

[EROFS] Write access is requested for a file on a read-only fileset.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being exe-
cuted.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), stat(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• A process with appropriate privilege can override the file permissions of a file. For files
in unrestricted filesets, a process with the super ID has the appropriate privilege. How-
ever, for files in restricted-access filesets, such special access privileges are restricted
even for the super ID.

• The error [EINVAL] can be detected.

The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [EINTR], [EIO], [ENOROOT], [ENOTSUP],
[ENXIO], and [EOSSNOTRUNNING] can be returned.

527186-023 Hewlett-Packard Company 1−9

acl(2) OSS System Calls Reference Manual

NAME
acl - Sets access control list (ACL) information for a file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h>
#include <sys/acl.h>
int acl(

char *pathp, int cmd, int nentries,
struct acl *aclbufp);

PARAMETERS
pathp Points to the pathname of the file.

nentries Specifies the number of ACL entries pointed to by the aclbufp parameter.

aclbufp Points to the first element of a structure of type acl. The acl structure is defined
in the acl.h header file as:

struct acl {
int a_type; /* entry type */
uid_t a_id; /* user or group ID */
unsigned short a_perm; /* entry permissions */

};

The values of the a_type field are:

USER_OBJ Permissions for the owner of the object

USER Permissions for additional specified users

GROUP_OBJ Permissions for members of the owning group of the object

GROUP Permissions for members of additional specified groups

CLASS_OBJ Maximum permissions granted to the file group class

OTHER_OBJ Permissions for other users

DEF_USER_OBJ
Default permissions for the object owner

DEF_USER Default permissions for additional specified users

DEF_GROUP_OBJ
Default permissions for members of the owning group of the
object

DEF_GROUP Default permissions for members of additional specified groups

DEF_CLASS_OBJ
Default maximum permissions for the owning group, additional
specified users, and additional specified groups.

DEF_OTHER_OBJ
Default permissions for other users

1−10 Hewlett-Packard Company 527186-023

System Functions (a - d) acl(2)

cmd Specifies the action to be taken by the acl() function. The cmd parameter can be
one of these values:

ACL_SET The acl() function stores the entries specified by the nentries
and aclbufp parameters in the ACL for the file. The new ACL
replaces any existing ACL for the file. This value for cmd can
only be executed by a process that has an effective user ID equal
to the owner of the file or the super ID, or is a member of the
Safeguard SECURITY-OSS-ADMINISTRATOR group. All
directories in the pathname must be searchable.

ACL_GET The buffer aclbufp is filled with the ACL entries for the file.
Discretionary read access to the file is not required, but all direc-
tories in the pathname must be searchable.

ACL_CNT The number of entries in the ACL for the file is returned. Dis-
cretionary read access to the file is not required, but all direc-
tories in the pathname must be searchable.

DESCRIPTION
The acl() function manipulates ACLs on file system objects in filesets that support OSS ACLs.
A process on a system that does not support ACLs can use the chmod() function to remotely
modify the permissions in the base ACL entries of a file (see the chmod(2) reference page).
ACLs are supported for OSS files only. For a detailed description of ACLs, see the acl(5) refer-
ence page.

A call to acl() specified with the ACL_SET command succeeds only if all of these conditions
are true:

• The ACL contains exactly one entry each of type USER_OBJ, GROUP_OBJ,
CLASS_OBJ, and OTHER_OBJ.

• If pathp points to a directory, the ACL contains at most one entry each of type
DEF_USER_OBJ, DEF_GROUP_OBJ, DEF_CLASS_OBJ, and
DEF_OTHER_OBJ.

• Entries of type USER, GROUP, DEF_USER, or DEF_GROUP do not contain dupli-
cate entries. A duplicate entry is one of the same type containing the same numeric ID.

• If the ACL contains no entries of type USER and no entries of type GROUP, the entries
of type GROUP_OBJ and CLASS_OBJ have the same permissions.

• If the ACL contains no entries of type DEF_USER and no entries of type
DEF_GROUP, and an entry of type DEF_GROUP_OBJ is specified, an entry of type
DEF_CLASS_OBJ is also specified and the two entries have the same permissions.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

Processes that are started by a member of the Safeguard SECURITY-OSS-ADMINISTRATOR
(SOA) group have the appropriate privilege to use this function on any file in a restricted-access
fileset. However, Network File System (NFS) clients are not granted SOA group privileges, even
if these clients are accessing the system with a user ID that is a member of the SOA security
group.

527186-023 Hewlett-Packard Company 1−11

acl(2) OSS System Calls Reference Manual

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit applications or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the acl() function returns one of the following values, depending on
the value of the cmd parameter:

• For successful ACL_CNT or ACL_GET commands, the acl() function returns the
number of ACL entries.

• For successful ACL_SET commands, the acl() function returns a 0 (zero).

If the acl() function fails, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the acl() function sets errno to the corresponding value:

[EACCES] The caller does not have access to a component of the pathname.

[EINVAL] One of these conditions occurred:

• The value of the cmd parameter is not ACL_GET, ACL_SET, or
ACL_CNT.

• The value of the cmd parameter is ACL_SET, and the value of the nen-
tries parameter is less than the number of mandatory ACL entries.

• The value of the cmd parameter is ACL_SET, and the ACL specified in
the aclbufp parameter is not valid.

[EIO] A disk I/O error occurred while attempting to store or retrieve the ACL

[EPERM] One of the following conditions exist:

• The value of the cmd parameter is ACL_SET, and the effective user ID
of the caller does not match the owner of the file or the super ID, and the
effective user ID or one of its group affiliations does not qualify the
caller for membership in the Safeguard SECURITY-OSS-
ADMINISTRATOR group.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[ENOENT] A component of the path does not exist.

[ENOSPC] One of these conditions occurred:

• The value of the cmd parameter is ACL_GET, and the value of the nen-
tries parameter is less than the number of entries in the ACL for the file.

• The value of the cmd parameter is ACL_SET, and there is not enough
disk space to store the ACL.

• The value of the cmd parameter is ACL_SET, and nentries is greater
than the number of NACLENTRIES specfied in the acl.h header file.

1−12 Hewlett-Packard Company 527186-023

System Functions (a - d) acl(2)

[ENOSYS] This system does not support OSS ACLs.

[ENOTDIR] Either of these conditions is true:

• A component of the path specified by pathp is not a directory.

• The value of the cmd parameter is ACL_SET, and an attempt was made
to set a default ACL on a file type other than a directory.

[ENOTSUP] The file specified by pathp either resides in a fileset that does not support OSS
ACLs, or is a file type that does not support OSS ACLs (such as Guardian files
accessed from the //G directory).

[EROFS] The value of the cmd parameter is ACL_SET, and the file specified by pathp
resides in a fileset that is mounted as read-only.

[EFAULT] The aclbufp parameter points to an invalid address.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: aclsort(3), creat(2), creat64(2), open(2), open64(2).

Miscellaneous: acl(5).

STANDARDS CONFORMANCE
This function is an HP extension to the XPG4 Version 2 specification.

527186-023 Hewlett-Packard Company 1−13

bind(2) OSS System Calls Reference Manual

NAME
bind - Binds a name to a socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

int bind(
int socket,
const struct sockaddr *address,
socklen_t address_len);

PARAMETERS
socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure that contains the address to be bound to the
socket. The length and format of the address depend on the address family of the
socket.

For AF_INET sockets, a pointer to the address structure sockaddr_in must be
cast as a struct sockaddr. For AF_INET6 sockets, a pointer to the address
structure sockaddr_in6 must be cast as a struct sockaddr. For AF_UNIX sock-
ets, a pointer to the address structure sockaddr_un must be cast as a struct
sockaddr.

address_len Specifies the length of the sockaddr structure pointed to by the address parame-
ter.

DESCRIPTION
The bind() function assigns a name, which consists of an address stored in a sockaddr structure,
to an unnamed socket. Sockets created with the socket() function are initially unnamed; they are
identified only by their address family.

An application program can retrieve the assigned socket name with the getsockname() function.

Access Control Lists (ACLs)
If the parent directory has an ACL that contains default ACL entries, bind() creates an ACL for
the socket that inherits the default ACL entries of the parent directory as actual ACL entries for
the socket. For more information about ACL inheritance, see the acl(5) reference page.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

In a restricted-access fileset, applications that have the PRIVSOARFOPEN privilege and are
started by a member of the Safeguard SECURITY-OSS-ADMINISTRATOR (SOA) group have
the appropriate privilege to use this function on any file in the fileset. However, Network File
System (NFS) clients are not granted SOA group privileges, even if these clients are accessing
the system with a user ID that is a member of the SOA security group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

1−14 Hewlett-Packard Company 527186-023

System Functions (a - d) bind(2)

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the bind() function returns the value 0 (zero). Otherwise, the
bind() function returns -1 and sets errno to indicate the error.

ERRORS
If any of the following conditions occurs, the bind() function sets errno to the corresponding
value:

[EACCES] One of the following conditions occurred:

• The specified address is protected and the current user does not have
permission to bind to it.

• The socket is an AF_UNIX socket and either a component of the path
prefix denies search permission, or the requested name requires writing
in a directory with a mode that denies write permission.

[EADDRINUSE]
The specified address is already in use.

[EADDRNOTAVAIL]
The specified address is not available on this HP NonStop node.

[EAFNOSUPPORT]
The specified address is not a valid address for the address family of the
specified socket.

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EDESTADDRREQ]
The address parameter for an AF_UNIX socket is a null pointer.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EINVAL] One of the following conditions exists:

• The socket is already bound to an address.

• The socket has been shut down.

• The size specified for the address_len parameter is not valid for an
address in the address family that is used by this connection.

527186-023 Hewlett-Packard Company 1−15

bind(2) OSS System Calls Reference Manual

[EIO] An input or output error occurred for an AF_UNIX socket.

[ELOOP] The socket is in the AF_UNIX domain and too many symbolic links were
encountered when translating the pathname specified in the sockaddr structure.

[ENAMETOOLONG]
The socket is in the AF_UNIX domain and one of the following conditions
exists:

• The pathname in the sockaddr structure exceeds PATH_MAX charac-
ters.

• A component of the pathname in the sockaddr structure exceeds
NAME_MAX characters.

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname in the sockaddr structure exceeds PATH_MAX
characters.

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] The socket is in the AF_UNIX domain and one of the following conditions
exists:

• A component of the pathname specified in the sockaddr structure does
not name an existing file.

• The sockaddr structure specifies an empty string as a pathname.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTDIR] The socket is in the AF_UNIX domain and a component of the pathname
specified in the sockaddr structure is not a directory.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The socket type of the specified socket does not support binding to an address.

[EPERM] The program attempted an operation on a SEEP-protected fileset. Valid for
J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The socket is in the AF_UNIX domain and the specified name would reside on a
read-only fileset.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), connect(2), getsockname(2), listen(2), socket(2).

Miscellaneous topics: acl(5).

1−16 Hewlett-Packard Company 527186-023

System Functions (a - d) bind(2)

STANDARDS CONFORMANCE
The XPG4 specification allows certain behaviors to be implementer-defined. The following are
choices of the HP implementation:

• The HP implementation does not return the errno values [EISCONN], [EISDIR],
[ENOSR], or [EPROTO].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport provider process
is unavailable.

527186-023 Hewlett-Packard Company 1−17

chdir(2) OSS System Calls Reference Manual

NAME
chdir - Changes the current working directory

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int chdir(
const char *path);

PARAMETERS
path Points to the pathname of the directory.

DESCRIPTION
The chdir() function changes the current working directory to the directory indicated by the path
parameter. If the path parameter refers to a symbolic link, the chdir() function sets the current
directory to the directory pointed to by the symbolic link.

The current working directory is the starting point for searches for pathnames that do not begin
with a / (slash). For a directory to become the current working directory, the calling process must
have search (execute) access to the directory.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

Processes that are started by a member of the Safeguard SECURITY-OSS-ADMINISTRATOR
(SOA) group have the appropriate privilege to use this function on any file in a restricted-access
fileset. However, Network File System (NFS) clients are not granted SOA group privileges, even
if these clients are accessing the system with a user ID that is a member of the SOA security
group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use on Guardian Objects
Guardian process names are directories; however, they cannot be opened using chdir().
Attempts to do so fail and set errno to the value [EPERM].

A call to the chdir() function with a path parameter that points to a subprocess in the Guardian
file system fails when the process is not of subtype 30. Such a call sets errno to the value
[ENOENT].

A call to the chdir() function with a path parameter that points to an empty Guardian disk subvo-
lume (for example, /G/vol/subvol) succeeds.

A call to the chdir() function with a path parameter that points to a Guardian subvolume with a
reserved name (for example, /G/vol1/zyq00001) fails. Such a call sets errno to the value
[EPERM].

1−18 Hewlett-Packard Company 527186-023

System Functions (a - d) chdir(2)

Use From the Guardian Environment
The chdir() function is one of a set of functions that have the following effects when the first of
them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
A process running with an effective user ID or group affiliation that qualifies for membership in
the Safeguard SECURITY-OSS-ADMINISTRATOR group has read and search permissions for
any OSS directory.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the chdir() function returns the value 0 (zero). Otherwise, the
value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the chdir() function sets errno to the corresponding value:

[EACCES] The requested current working directory is not accessible because search permis-
sion is denied for a component of the pathname.

[EFAULT] The path parameter is an invalid address.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EIO] A physical input or output error occurred.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of these conditions exists:

• The named directory does not exist.

• The specified pathname is an empty string.

527186-023 Hewlett-Packard Company 1−19

chdir(2) OSS System Calls Reference Manual

• The specified pathname cannot be mapped to a valid Guardian filename.

• The specified pathname points to the name of a Guardian process that is
not of subtype 30.

• The path parameter names a symbolic link, but the directory to which it
refers does not exist.

• The path parameter specifies a file on a remote HP NonStop node, but
communication with the remote node has been lost.

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node, and communication
with the remote name server has been lost.

[ENOTDIR] A component of the pathname is not a directory.

[ENXIO] The fileset containing the client’s current working directory or root directory is
not mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] One of the following conditions exist:

• The program attempted an operation on a Guardian process or attempted
to access a Guardian ZYQ subvolume.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Commands: cd(1).

Functions: chroot(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [EIO], [ENOROOT], [ENXIO],
[EOSSNOTRUNNING], and [EPERM] can be returned.

1−20 Hewlett-Packard Company 527186-023

System Functions (a - d) chmod(2)

NAME
chmod - Changes file-access permissions

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>

int chmod(
const char *path,
mode_t mode);

PARAMETERS
path Specifies the full pathname of the file. If the path parameter refers to a symbolic

link, the chmod() function changes access permissions on the file specified by
the symbolic link.

mode Specifies the bit pattern that determines the access permissions.

DESCRIPTION
The chmod() function sets the access permissions of the file specified by the path parameter
according to the bit pattern specified by the mode parameter.

To change the file access permissions of a file or directory, the effective user ID of the process
must match the super ID or the owner of the file, or its effective user ID or one of its group
affiliations must qualify it for membership in the Safeguard SECURITY-OSS-
ADMINISTRATOR group.

If chmod() is invoked by a process whose effective user ID does not equal the super ID or file
owner, the set-user-ID and set-group-ID bits of the file mode (04000 and 02000, respectively) are
cleared.

If chmod() is invoked to set either or both of the set-user-ID and set-group-ID bits of the file
mode (04000 and 02000 respectively), then any file privileges the file might have had are
cleared.

See also "Accessing Files in Restricted-Access Filesets."

If the S_ISVTX bit is on for a directory, only processes with an effective user ID equal to the
user ID of the file’s owner or the directory’s owner, or a process with appropriate privileges, can
remove files from the directory.

A call to the chmod() function has no effect on the file descriptor for a file that is open at the
time of the call. However, new openers of the file will be authorized by using the new access per-
missions that were specified in the call.

The mode parameter is constructed by logically ORing one or more of these symbols, which are
defined in the sys/stat.h header file:

S_ISUID Sets the process’s effective user ID to the user ID of the file’s owner on execu-
tion.

527186-023 Hewlett-Packard Company 1−21

chmod(2) OSS System Calls Reference Manual

S_ISGID Sets the process’s effective group ID to the group ID of the file’s group on execu-
tion.

S_ISVTX For a directory, permits modification to the directory only if the effective user ID
of the process matches that of the file being accessed.

S_IRWXU Permits the file’s owner to read, write, and execute the file (or to search the direc-
tory).

S_IRUSR Permits the file’s owner to read the file.

S_IWUSR Permits the file’s owner to write to the file.

S_IXUSR Permits the file’s owner to execute the file (or to search the directory).

S_IRWXG Permits the file’s group to read, write, and execute the file (or to search the direc-
tory).

S_IRGRP Permits the file’s group to read the file.

S_IWGRP Permits the file’s group to write to the file.

S_IXGRP Permits the file’s group to execute the file (or to search the directory).

S_IRWXO Permits others to read, write, and execute the file (or to search the directory).

S_IROTH Permits others to read the file.

S_IWOTH Permits others to write to the file.

S_IXOTH Permits others to execute the file (or to search the directory).

S_TRUST Establishes that the file does not contain code for an uncooperative process or
code to examine or modify I/O buffers. This flag suppresses operating system
protection of the buffers when the memory segment containing the buffers is not
shared. This flag applies only to loadfiles for a TNS/E native process and can be
set only by a user with appropriate privileges (the super ID).

S_TRUSTSHARED
Establishes that the file does not contain code for an uncooperative process or
code to examine or modify I/O buffers. This flag suppresses operating system
protection of the buffers regardless of whether the memory segment containing
the buffers is shared. This flag applies only to loadfiles for a TNS/E native pro-
cess and can be set only by a user with appropriate privileges (the super ID).

If the file specified by the path parameter resides on an HP NonStop node where the calling pro-
cess is not logged in, the S_ISUID bit of the file is cleared by the call, but the S_ISGID bit of the
file is not cleared by the call.

The S_ISGID bit of the file is cleared if all of these conditions are true:

• The named file is a regular file.

• The process does not have appropriate privileges.

• The file’s group ID does not match the effective group ID of the process or one of the IDs
of the process’s group list.

Upon successful completion, the chmod() function marks the st_ctime field of the file for
update.

1−22 Hewlett-Packard Company 527186-023

System Functions (a - d) chmod(2)

Access Control Lists (ACLs)
When you execute the chmod() function, you can change the effective permissions granted by
optional entries in the ACL for a file. In particular, using the chmod() function to remove read,
write, and execute permissions from a file owner, owning group, and all others works as
expected, because the chmod() function affects the class entry in the ACL, limiting any access
that can be granted to additional users or groups through optional ACL entries. To verify the
effect, use getacl command on the file after the chmod() function completes and note that all
optional (nondefault) ACL entries with nonzero permissions also have the comment
effective:---.

To set the permission bits of ACL entries, use the acl() function instead of the chmod() function.

ACLs are not supported for symbolic links.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted. In a restricted-access fileset:

• The super ID (255,255 in the Guardian environment, 65535 in the OSS environment) is
not permitted to invoke this function on files that it does not own unless the executable
file started by the super ID has the PRIVSETID file privilege. In this case, the process
started by the super ID can switch to another ID and then access files in restricted-access
filesets as that ID.

• Processes that are started by a member of the Safeguard SECURITY-OSS-
ADMINISTRATOR (SOA) group have the appropriate privilege to use this function on
any file in a restricted-access fileset. However, if the executable file for the process does
not have the PRIVSOARFOPEN file privilege, the set-user-ID and set-group-ID bits of
the file mode (04000 and 02000 respectively) of the file accessed by this function are
cleared.

• Network File System (NFS) clients are not granted SOA group privileges, even if these
clients are accessing the system with a user ID that is a member of the SOA security
group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use on Guardian Objects
Attempting to set the access permissions on a Guardian file (that is, a file in the /G file system)
fails with errno set to [EINVAL].

Use From the Guardian Environment
The chmod() function is one of a set of functions that have these effects when the first of them is
called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

527186-023 Hewlett-Packard Company 1−23

chmod(2) OSS System Calls Reference Manual

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the chmod() function returns the value 0 (zero). Otherwise, the
value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occur, the chmod() function sets errno to the corresponding value:

[EACCES] Search permission is denied for a component of the path parameter.

[EFAULT] The path parameter points to a location outside of the allocated address space of
the process.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINVAL] One of these conditions exists:

• The value of the mode parameter is invalid.

• An attempt was made to set access permissions on a Guardian file (that
is, a file in the /G file system).

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[ELOOP] Too many symbolic links were encountered in translating the path parameter.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of these conditions exists:

• The named file does not exist, or the specified name is an empty string.

• The path parameter specifies a file on a remote HP NonStop node, but
communication with the remote node has been lost.

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node, and communication
with the remote name server has been lost.

1−24 Hewlett-Packard Company 527186-023

System Functions (a - d) chmod(2)

[ENOTDIR] A component, other than the last part, of the path parameter is not a directory.

[ENXIO] The fileset containing the client’s current working directory or root directory is
not mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] One of the following conditions exist:

• The effective user ID does not match the user ID of the owner of the file,
or the owner does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The named file resides on a read-only fileset.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: chmod(1), getacl(1), setacl(1).

Functions: acl(2), chown(2), fchmod(2), fchown(2), fcntl(2), getgroups(2), lchmod(2),
lchown(2), mknod(2), open(2), open64(2), read(2), setfilepriv(2), write(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• To change file-access permissions, either the process must have the same effective user
ID as the owner of the file or the process must have an effective user ID of the super ID.

• A call to the chmod() function has no effect on the file descriptor for a file that is open at
the time of the call. However, new openers of the file are authenticated by using the new
access permissions that were specified in the call.

HP extensions to the XPG4 Version 2 specification are:

• To change the file access permissions of a file or directory, the effective user ID of the
process must match the super ID or the owner of the file, or the effective user ID or one
of the group affiliations for the process must qualify the process for membership in the
Safeguard SECURITY-OSS-ADMINISTRATOR group.

• The errno values [EFAULT], [EFSBAD], [EINVAL], [ENOROOT], [ENXIO], and
[EOSSNOTRUNNING] can be returned.

527186-023 Hewlett-Packard Company 1−25

chown(2) OSS System Calls Reference Manual

NAME
chown - Changes the owner and group IDs of a file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

int chown(
const char *path,
uid_t owner,
gid_t group);

PARAMETERS
path Specifies the name of the file whose owner ID, group ID, or both are to be

changed. If the final component of the path parameter names a symbolic link,
the link is traversed, and pathname resolution continues.

When the path parameter refers to a symbolic link, the chown() function
changes the ownership of the file pointed to by the symbolic link.

owner Specifies a numeric value representing the owner ID.

group Specifies a numeric value representing the group ID.

DESCRIPTION
The chown() function changes the owner and group of a file.

Only a process that has an effective user ID equal to the super ID or to the file owner, or that has
an effective user ID or group affiliation qualifying for membership in the Safeguard
SECURITY-OSS-ADMINISTRATOR group can use the chown() function to change the group
of a file. However, processes that have an effective user ID equal to the file owner can only
change the group of a file to a group to which they belong (their effective group or one of their
supplementary groups).

If the chown() function is invoked by a process whose effective user ID does not equal the super
ID, the set-user-ID and set-group-ID bits of the file mode (04000 and 02000, respectively) are
cleared.

See also "Accessing Files in Restricted-Access Filesets."

If the chown() function is successfully invoked on a file, the S_ISGID and S_ISUID bits of the
st_mode field of the stat structure are cleared unless the user has appropriate privileges.

The _POSIX_CHOWN_RESTRICTED feature is enforced for any file in the OSS file system.
Only processes with appropriate privileges can change owner IDs.

If the owner or group parameter is specified as -1 cast to the type of uid_t or gid_t, respectively,
the corresponding ID of the file is unchanged. To change only one attribute, specify the other as
-1.

Upon successful completion, the chown() function marks the st_ctime field of the file for update.

1−26 Hewlett-Packard Company 527186-023

System Functions (a - d) chown(2)

Access Control Lists (ACLs)
A user can allow or deny specific individuals and groups access to a file by using an ACL on the
file. When using the chown() function with ACLs, if the new owner and/or group of a file have
optional ACL entries corresponding to user:uid:perm or group:gid:perm in the ACL for a file,
those entries remain in the ACL but no longer have any effect because they are superseded by the
user::perm or group::perm entries in the ACL.

ACLs are not supported for symbolic links.

For more information about ACLs, see the acl(5) reference page.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted. In a restricted-access fileset:

• The super ID (255,255 in the Guardian environment, 65535 in the OSS environment) is
not permitted to invoke this function on files that it does not own unless the executable
file started by the super ID has the PRIVSETID file privilege. In this case, the process
started by the super ID can switch to another ID and then access files in restricted-access
filesets as that ID.

• Processes that are started by a member of the Safeguard SECURITY-OSS-
ADMINISTRATOR (SOA) group have the appropriate privilege to use this function on
any file in a restricted-access fileset. However, if the executable file for the process does
not have the PRIVSOARFOPEN file privilege, the set-user-ID and set-group-ID bits of
the file mode (04000 and 02000 respectively) of the file accessed by this function are
cleared.

• Network File System (NFS) clients are not granted SOA group privileges, even if these
clients are accessing the system with a user ID that is a member of the SOA security
group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use on Guardian Objects
The chown() function can be used on Guardian disk files (that is, disk files in the /G file system).
Attempts to change the ownership of other types of Guardian files fail and set errno to [EIN-
VAL].

For Guardian disk files, Guardian security is used, and any user can pass file ownership to any
other user. A value other than -1 must be specified for the owner parameter (that is, an owner ID
must be specified). However, changing the owner ID also changes the group ID to the Guardian
group ID of the new owner (that is, bits <16:23> of the new access ID). The chown() function
cannot be used to set the group ID for a Guardian file except as a result of changing the owner
ID.

The _POSIX_CHOWN_RESTRICTED feature is ignored for files in the Guardian file system
(that is, for files in /G).

527186-023 Hewlett-Packard Company 1−27

chown(2) OSS System Calls Reference Manual

Use From the Guardian Environment
The chown() function is one of a set of functions that have these effects when the first of them is
called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the chown() function returns the value 0 (zero). Otherwise, the
value -1 is returned, the owner and group of the file remain unchanged, and errno is set to indi-
cate the error.

ERRORS
If any of these conditions occur, the chown() function sets errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path parameter.

[EFAULT] The path parameter is an invalid address.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINVAL] The owner or group parameter is out of range.

An attempt was made to change ownership of a Guardian file that is not a disk
file.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[ELOOP] Too many links were encountered in translating the path parameter.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

1−28 Hewlett-Packard Company 527186-023

System Functions (a - d) chown(2)

[ENOENT] One of these is true:

• The path parameter does not exist.

• The path parameter is an empty string.

• The path parameter specifies a file in the Guardian file system (in /G) but
cannot be mapped to a valid Guardian filename.

• The path parameter names a symbolic link, but the file to which it refers
does not exist.

• The path parameter specifies a file on a remote HP NonStop node, but
communication with the remote node has been lost.

[ENOTSUP] The path parameter specifies a Guardian file on an SMF logical volume and one
of the following conditions exists:

• The local system is running an RVU prior to J06.15 or H06.26.

• The path parameter specifies a file in /E and the remote system is run-
ning an RVU prior to J06.15 or H06.26.

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node, and communication
with the remote name server has been lost.

[ENOTDIR] A component of path is not a directory.

[ENXIO] The fileset containing the client’s current working directory or root directory is
not mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The named file resides on a read-only fileset.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

527186-023 Hewlett-Packard Company 1−29

chown(2) OSS System Calls Reference Manual

RELATED INFORMATION
Commands: chgrp(1), chown(1), getacl(1), setacl(1).

Functions: acl(2) chmod(2), fchmod(2), fchown(2), lchmod(2), lchown(2), setfilepriv(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• A process can change the value of the owner ID of a file only if the effective user ID of
the process gives the process appropriate privileges.

• Upon successful completion, the set-user-ID attribute (the S_ISUID bit) and the set-
group-ID attribute (the S_ISGID bit) of the file are always cleared.

• The error [EINVAL] can be detected.

HP extensions to the XPG4 Version 2 specification are:

• To change the file access permissions of a file or directory, the effective user ID of the
process must match the super ID or the owner of the file, or the effective user ID or one
of the group affiliations for the process must qualify the process for membership in the
Safeguard SECURITY-OSS-ADMINISTRATOR group.

• The errno values [EFAULT], [EFSBAD], [EIO], [ENOROOT], [ENOTSUP], [ENXIO],
and [EOSSNOTRUNNING] can be returned.

1−30 Hewlett-Packard Company 527186-023

System Functions (a - d) chroot(2)

NAME
chroot - Changes the effective root directory

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int chroot(
const char *path);

PARAMETERS
path Specifies the new effective root directory. If the path parameter refers to a sym-

bolic link, the chroot() function sets the effective root directory to the directory
pointed to by the symbolic link.

The path parameter cannot specify /E, and the current working directory of the
calling process cannot be a directory in /E. If either condition is not met, the call
fails and errno is set to the value [EINVAL].

DESCRIPTION
The chroot() function causes the directory named by the path parameter to become the effective
root directory. The effective root directory is the starting point when searching for a file with an
absolute pathname.

The current working directory is not changed by a call to the chroot() function. However, if an
absolute pathname is specified in a subsequent call to the chdir() function, that pathname is
resolved using the effective root directory.

The calling process must have appropriate privileges in order to change the effective root direc-
tory. The calling process must also have search access to the new effective root directory.

The . . (dot-dot) entry in the effective root directory is interpreted to mean the effective root
directory itself. Thus, . . (dot-dot) cannot be used to access files outside the subtree rooted at the
effective root directory.

Use on Guardian Objects
The path parameter can specify /G or any volume or subvolume in /G.

Guardian process names are directories; however, they cannot be opened using chroot().
Attempts to do so fail and set errno to the value [EPERM].

A call to the chroot() function with a path parameter that points to a subprocess in the Guardian
file system fails when the process is not of subtype 30. Such a call sets errno to the value
[ENOENT].

A call to the chroot() function with a path parameter that points to an empty Guardian disk sub-
volume (for example, /G/vol/subvol) succeeds.

A call to the chroot() function with a path parameter that points to a Guardian subvolume with a
reserved name (for example, /G/vol1/zyq00001) fails. Such a call sets errno to the value
[EPERM].

527186-023 Hewlett-Packard Company 1−31

chroot(2) OSS System Calls Reference Manual

Use From the Guardian Environment
The chroot() function is one of a set of functions that have the following effects when the first of
them is called from the Guardian environment:

• Two Guardian file-system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
Use of this function can make an application difficult to port to another system.

If the effective root directory is not / (the local node root directory), all files in /E become una-
vailable to the program when the call is completed.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the effective root directory remains unchanged and the
chroot() function sets errno to the corresponding value:

[EACCES] Search permission is denied for any component of the pathname.

[EFAULT] The path parameter points outside the process’s allocated address space.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINVAL] One of the following conditions exists:

• The path parameter specifies a Guardian process in /G.

• The path parameter specifies a file in /E.

• The current working directory of the calling process is in /E.

[ELOOP] More than MAXSYMLINKS symbolic links were encountered while resolving
path.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

1−32 Hewlett-Packard Company 527186-023

System Functions (a - d) chroot(2)

[ENOENT] One of the following conditions exists:

• The named directory does not exist.

• The specified pathname is an empty string.

• The specified pathname cannot be mapped to a valid Guardian filename.

[ENOROOT] The root fileset (fileset 0) is not in the STARTED state.

[ENOTDIR] A component of the specified pathname is not a directory.

[ENXIO] The fileset containing the client’s working directory or effective root directory is
not mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] One of the following conditions exists:

• The path parameter specifies a subvolume in /G with a reserved name
(for example, /G/volume/ZYQ00000).

• The path parameter specifies a process name in /G (for example,
/G/ztnt).

• The path parameter specifies an invalid subvolume name in /G.

• The effective user ID of the process is not the root ID and does not have
appropriate privileges to change the root directory.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

RELATED INFORMATION
Commands: cd(1).

Functions: chdir(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [EINVAL], [ENOROOT], [ENXIO], and
[EOSSNOTRUNNING] can be returned.

527186-023 Hewlett-Packard Company 1−33

close(2) OSS System Calls Reference Manual

NAME
close - Closes a file descriptor

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <unistd.h>

int close(
int filedes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), dup(), dup2(), fcntl(), open(), pipe(), socket(), or socketpair() func-
tion.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

DESCRIPTION
The close() function closes the file descriptor specified by the filedes parameter.

All regions of the file associated with the filedes parameter that this process has previously
locked with the fcntl() function are unlocked. This occurs even if the process still has the file
open by another file descriptor.

When the last file descriptor associated with an open file descriptor is closed:

• The open file descriptor is freed.

• The last modification time for the file is updated.

• All locks created by fcntl() for the file are released.

• If the link count of the file is 0 (zero), the space occupied by the file is freed, and the file
is no longer accessible.

• If the file is a socket, the socket is destroyed.

• If the file is a pipe or FIFO, any data remaining in the pipe or FIFO is discarded.

Use From a Threaded Application
If a thread calls the thread-aware close() to close a file that already has a file operation in pro-
gress by a different thread, the new thread is blocked until the prior file operation completes.

NOTES
To use the close() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_closez(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

1−34 Hewlett-Packard Company 527186-023

System Functions (a - d) close(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
and errno is set to indicate the error.

ERRORS
If any of these conditions occur, the close() function sets errno to the corresponding value:

[EBADF] The filedes parameter is not a valid open file descriptor.

[EIO] An input or output error occurred. The device that the file is stored on might be
in the down state, or both processors that provide access to the device might
have failed.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

For all other error conditions, errno is set to the appropriate Guardian file-
system error number. See the Guardian Procedure Errors and Messages
Manual for more information about a specific Guardian file-system error.

RELATED INFORMATION
Functions: exec(2), fcntl(2), getsockopt(2), open(2), pipe(2), setsockopt(2), socket(2),
spt_closez(2), tdm_execve(2), tdm_execvep(2).

Files: signal(4).

STANDARDS CONFORMANCE
This function does not return the errno value [EINTR].

For an AF_INET or AF_INET6 socket, even if all these are true:

• The socket is connection-oriented.

• The SO_LINGER option is enabled for the socket.

527186-023 Hewlett-Packard Company 1−35

close(2) OSS System Calls Reference Manual

• The socket has untransmitted data.

the close() function does not block. The system attempts to deliver unsent data after the close()
function is called, although that action can be disabled. See the setsockopt(2) reference page for
additional information.

HP extensions to the XPG4 Version 2 specification are:

• The close() function can return the errno value [EISGUARDIAN].

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

1−36 Hewlett-Packard Company 527186-023

System Functions (a - d) connect(2)

NAME
connect - Connects a socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

int connect(
int socket,
const struct sockaddr *address,
socklen_t address_len);

PARAMETERS
socket Specifies the file descriptor for the socket.

address Points to a sockaddr structure that contains the address of the peer socket. The
length and format of the address depend on the address family of the socket.

For AF_INET sockets, a pointer to the address structure sockaddr_in must be
cast as a struct sockaddr. For AF_INET6 sockets, a pointer to the address
structure sockaddr_in6 must be cast as a struct sockaddr. For AF_UNIX sock-
ets, a pointer to the address structure sockaddr_un must be cast as a struct
sockaddr.

address_len Specifies the length of the sockaddr structure pointed to by the address parame-
ter.

DESCRIPTION
The connect() function requests that a connection be made on a socket. In systems running
AF_UNIX Release 2 software, both sockets must use the same mode (compatibility or portabil-
ity). For more information about AF_UNIX Release 2, see the Open System Services
Programmer’s Guide.

The connect() function performs a different action for each of the following types of initiating
sockets:

• If the initiating socket is not connection-oriented (has the type SOCK_DGRAM), then
the connect() function sets the peer address but no connection is made. The peer
address identifies the socket where all datagrams are sent by subsequent calls to the
send() function, and limits the remote sender for subsequent recv() function calls.
Datagram sockets can use the connect() function multiple times to communicate with
different peers.

If the socket is a datagram socket and address is a null address for the protocol, the
address for the peer socket is reset.

527186-023 Hewlett-Packard Company 1−37

connect(2) OSS System Calls Reference Manual

• If the initiating socket is connection-oriented (has the type SOCK_STREAM), then the
connect() function attempts to make a connection to the socket specified by the address
parameter. Sockets of type SOCK_STREAM can successfully connect only once.

When a connection cannot be created immediately and O_NONBLOCK is not set for the file
descriptor of the socket, the connect() call blocks until one of the following occurs:

• A connection is established

• A timeout occurs

• A signal is caught

If timeout occurs, the connect() call fails and errno is set to [ETIMEDOUT]; the connection is
aborted.

If a connect() call is interrupted by a signal that is caught while the call is blocked waiting to
establish a connection, the connect() call fails and sets errno to [EINTR]; the connection is not
aborted and is later established asynchronously.

When a connection cannot be created immediately and O_NONBLOCK is set for the file
descriptor of the socket, the connect() call fails and sets errno to [EINPROGRESS]; the connec-
tion is not aborted and is later established asynchronously. Subsequent calls to the connect()
function for the same socket before the connection is completed will fail and set errno to [EAL-
READY].

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When an asynchronous connection is complete, a call to the select() function indicates that the
file descriptor for the socket is ready for writing.

To use the connect() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_connectx(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the function on systems running H06.21/J06.10 or later
RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

1−38 Hewlett-Packard Company 527186-023

System Functions (a - d) connect(2)

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the connect() function returns the value 0 (zero). Otherwise, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the connect() function sets errno to the corresponding
value:

[EACCES] The socket is in the AF_UNIX domain and either search permission is denied for
a component of the pathname in the sockaddr structure, or write access to the
specified socket is denied.

[EADDRINUSE]
An attempt was made to establish a connection using addresses that are already
in use.

[EADDRNOTAVAIL]
The specified address is not available from this HP NonStop node.

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EALREADY] A connection request is already in progress for the specified socket.

[EBADF] The socket parameter is not a valid file descriptor.

This error is also returned if the connect() function is thread-aware and the
socket becomes invalid (is closed by another thread).

[ECONNREFUSED]
One of these conditions occured:

• The specified address is not listening for connections or rejected the
attempt to connect.

• The socket bound to the AF_UNIX address is not using the same tran-
sport provider as the socket. This condition can occur if the system is
running AF_UNIX Release 2 software and the socket bound to address
is not of the same mode as socket.

• For AF_UNIX Release 1 socket or an AF_UNIX Release 2 socket in
compatibility mode:

— The caller attempted to connect a socket that previously had
been called by the listen() function with a backlog parameter
less than or equal to 0 (zero), and

— There is no pending accept() call to that socket.

527186-023 Hewlett-Packard Company 1−39

connect(2) OSS System Calls Reference Manual

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EHOSTUNREACH]
The destination host cannot be reached.

[EINPROGRESS]
The socket is marked nonblocking (O_NONBLOCK is set) and the requested
connection is not yet completed. The connection will be completed asynchro-
nously.

[EINTR] The attempt to connect was interrupted by delivery of a signal. The connection
will be completed asynchronously.

This error is also returned if the connect) function is thread-aware and a signal
received from the pthread_kill() function is not blocked, ignored, or handled.

[EINVAL] One of the following conditions exists:

• The size specified for the address_len parameter is not valid for an
address in the address family that is used by this connection.

• The sockaddr structure contains an invalid address family.

[EIO] The socket is in the AF_UNIX domain and an I/O error occurred during a read
or write to the file system.

[EISCONN] The specified socket is connection-oriented and is already connected.

[ELOOP] The socket is in the AF_UNIX domain and too many symbolic links were
encountered in translating the pathname in the sockaddr structure.

[ENAMETOOLONG]
The socket is in the AF_UNIX domain and one of the following conditions
exists:

• The pathname in the sockaddr structure exceeds PATH_MAX charac-
ters.

• A component of the pathname in the sockaddr structure exceeds
NAME_MAX characters.

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname in the sockaddr structure exceeds PATH_MAX
characters.

The pathconf() function can be called to obtain the applicable limits.

1−40 Hewlett-Packard Company 527186-023

System Functions (a - d) connect(2)

[ENETDOWN]
The local interface used to reach the destination is down.

[ENETUNREACH]
No route to the network or host is present.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time may succeed.

[ENOENT] The socket is in the AF_UNIX domain and one of the following conditions
exists:

• A component of the pathname specified in the sockaddr structure does
not name an existing file.

• The sockaddr structure specifies an empty string as a pathname.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTDIR] The socket is in the AF_UNIX domain and a component of the pathname
specified in the sockaddr structure is not a directory.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EPROTOTYPE]
The specified address has a different type than that of the socket bound to the
specified peer address.

[ETIMEDOUT]
The attempt to connect timed out during connection establishment.

[EWOULDBLOCK]
The socket is marked nonblocking and the connection cannot be immediately
completed. The application program can select the socket for writing during the
connection process. The connection request will take place asynchronously.

RELATED INFORMATION
Functions: accept(2), bind(2), getsockname(2), listen(2), select(2), send(2), sendmsg(2),
sendto(2), socket(2), spt_connectx(2).

STANDARDS CONFORMANCE
The XPG4 specification allows certain behavior to be implementer-defined. The following are
choices of the HP implementation:

• The HP implementation does not return the errno values [ENOSR] or [EOPNOTSUPP].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport-provider process
or OSS Local Server 2 process is unavailable.

The use of this function with the POSIX User Thread Model library conforms to the following

527186-023 Hewlett-Packard Company 1−41

connect(2) OSS System Calls Reference Manual

industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

1−42 Hewlett-Packard Company 527186-023

System Functions (a - d) creat(2)

NAME
creat - Creates a regular file in the OSS environment or rewrites an existing file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h> /* optional except for POSIX.1 */
#include <fcntl.h>

int creat(
const char *path,
mode_t mode);

PARAMETERS
path Points to the pathname of the file to be created or opened for writing.

You cannot specify /lost+found, /dev, /dev/tty, and /dev/null for this parameter.
Attempts to create these files cause the function call to fail with errno set to
[EINVAL].

If the path parameter refers to a symbolic link, the creat() function opens the file
pointed to by the symbolic link.

mode Specifies the read, write, and execute permissions of the file and the file type
flags for the file.

If the file already exists, you must specify a valid value for this parameter, but
this parameter has no effect on the file (you cannot use this parameter to change
the permissions of the file).

The value of this parameter is constructed by logically ORing flags that are
defined in the sys/stat.h header file. If the parent directory of the created file
does not have default OSS access control list (ACL) entries, the permissions for
the new file are the bit-wise AND of this mode parameter with the complement
of the process umask (see the umask(2) reference page). If the parent directory
of the created file has default ACL entries, the permissions for the new file are
affected by the value of this parameter but depend on both the support for OSS
ACLs on the system on which this process is running and on the fileset that con-
tains the new directory. See "ACL Inheritance" in the acl(5) reference page.

The file type flags are described in DESCRIPTION.

DESCRIPTION
This function can create:

• OSS files up to a size limit of approximately 2 gigabytes

• Guardian Format 1 files up to a size limit of approximately 2 gigabytes

For information about creating larger files, see the creat64(2) reference page.

The creat() function establishes a connection between the file indicated by the path parameter
and the returned file descriptor. Subsequent I/O function calls, such as read() and write(), use
the opened file descriptor to access that file.

527186-023 Hewlett-Packard Company 1−43

creat(2) OSS System Calls Reference Manual

The returned file descriptor is the lowest-numbered file descriptor not currently open for that pro-
cess. A corresponding Guardian environment file number is also assigned.

The file offset, marking the current position within the file, is set to the beginning of the file. The
new file descriptor is set to remain open across the processing of any of the exec or tdm_exec set
of functions. (See the fcntl(2) reference page.)

A call to the creat() function is equivalent to this call:

open(path, O_WRONLY | O_CREAT | O_TRUNC, mode);

You cannot use the creat() function to create a first-in, first-out (FIFO) special file. Use the
mkfifo() function instead.

If the file does not exist, a regular file is created with these characteristics:

• The owner ID of the file is set to the effective user ID of the process.

• The group ID of the file is determined by the value of the S_ISGID flag in the parent
directory. If S_ISGID is set, the group ID of the file is set to the group ID of the parent
directory; otherwise, the group ID of the file is set to the effective group ID of the calling
process. If the file is a Guardian file (that is, in the /G file system), the group ID is set to
that of the primary group of the effective user ID.

• If ACLs are supported, ACL entries are added to the file ACL as described in "ACL
Inheritance" in the acl(5) reference page.

• The attribute bits and file permission bits are set to the value of the mode parameter,
modified as listed:

— File permission bits are set as described in "ACL Inheritance" in the acl(5) refer-
ence page.

— The set user ID attribute (S_ISUID bit) is cleared.

— The set group ID attribute (S_ISGID bit) is cleared.

If bits other than the file permission and appropriate file-type flags are set in the mode
parameter, errno is set to [EINVAL].

If the file exists and is a regular file that is successfully opened:

• The length of the file is truncated to 0 (zero).

• The owner and group of the file are unchanged.

• The set user ID attribute of the file mode is cleared.

The open fails if any of these conditions is true:

• The file supports enforced record locks, and another process has locked a portion of the
file.

• The file does not allow write access.

1−44 Hewlett-Packard Company 527186-023

System Functions (a - d) creat(2)

File Type Flags
The file type flags that can be logically ORed into the value specified in the mode parameter are:

S_IFREG Regular file in the OSS file system or in /G, the Guardian file system.

S_ISVTX Sticky bit; used only for directories (cannot be used for files in /G, the Guardian
file system).

Access Control Lists (ACLs)
The creat() function does not change the ACL for an existing file. For more information about
ACLs for existing files, see the acl(2), chmod(2), and acl(5) reference pages.

For more information about ACLs, including ACL inheritance for newly created files, see the
acl(5) reference page.

Opening Guardian Files
If the file is a Guardian file (that is, a file in the /G file system), these rules apply:

• The file can be opened only if it is one of these:

— An odd, unstructured Enscribe file. In this case, it is opened as a regular file with
a primary and secondary extent size that is a multiple of 2. If the extent size is
odd, the open fails.

If the unstructured buffer size was not 4096, a successful open makes the buffer
size 4096 (as if the Guardian procedure SETMODE was called for mode 93 with
a parameter value of 4096).

— An EDIT file (file code 101). In this case, it is opened as a regular file for read-
only access.

— A tty simulation process.

An attempt to open any file (or device) of any other type fails, and errno is set to the
value of [EINVAL].

An attempt to open any file on a logical disk volume (virtual disk) administered through
the Storage Management Foundation (SMF) fails, and errno is set to the value of
[ENOTSUP].

An attempt to open a volume, subvolume, or process (/G/vol, /G/vol/subvol, or
/G/process, respectively) fails, and errno is set to the value of [EISDIR].

• An attempt to open a subvolume with a reserved name beginning with "ZYQ" (for exam-
ple, /G/vol2/zyq00004) fails, and errno is set to the value of [EACCES].

• An attempt to open a file within a subvolume with a reserved name beginning with
"ZYQ" (for example, /G/vol2/zyq00004/z000002x) fails, and errno is set to the value of
[EACCES].

• If the file is not an EDIT file (that is, the file code is not 101), it is opened in shared
exclusion mode.

• If the file is an EDIT file and read-only access is specified, the file is opened in protected
exclusion mode in the Guardian environment.

527186-023 Hewlett-Packard Company 1−45

creat(2) OSS System Calls Reference Manual

• If the file is an EDIT file and write access is specified, the call fails, and errno is set to
the value [EINVAL].

• The maximum number of opens is reported by the sysconf() function as the upper limit
of opens per process. The actual limit depends on other factors, such as the size of the
process file segment (PFS) and the number of existing opens on directories or on files in
the Guardian environment.

• When the Guardian file id created, it will be Format 1, odd, unstructured, and file code
180.

• The file is given access permissions compatible with the standard security permissions
for the Guardian creator access ID (CAID) of the calling process.

During creat() function processing, all access permissions are checked. This includes Guardian
environment checks by Guardian standard security mechanisms (and by the Safeguard product)
for Guardian disk file and process access.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

Executable files that have the PRIVSOARFOPEN privilege and that are started by a member of
the Safeguard SECURITY-OSS-ADMINISTRATOR (SOA) group have the appropriate privilege
to use this function on any file in a restricted-access fileset. However, Network File System
(NFS) clients are not granted SOA group privileges, even if these clients are accessing the sys-
tem with a user ID that is a member of the SOA security group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use From the Guardian Environment
A call to the creat() function in the Guardian environment requires an OSS pathname and
returns an OSS file-system file descriptor, regardless of the file system containing the file.

The creat() function belongs to a set of functions that have these effects when the first of them is
called from the Guardian environment:

• Two Guardian file-system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

1−46 Hewlett-Packard Company 527186-023

System Functions (a - d) creat(2)

RETURN VALUES
Upon successful completion, the creat() function returns the file descriptor, a nonnegative
integer. Otherwise, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the function sets errno to the corresponding value:

[EACCES] One of these conditions exists:

• Search permission is denied on a component of the pathname prefix.

• The file does not exist, and write permission is denied for the parent
directory.

• The process attempted to open a Guardian subvolume with a reserved
name beginning with "ZYQ" or a file within such a subvolume.

• The process attempted to open a static Telserv window that is not yet
connected.

[EFAULT] The path parameter is an invalid address.

[EFILEBAD] One of these conditions exists:

• The function attempted to open a Guardian EDIT file, but the structure
of the file is bad.

• The function attempted to open a Guardian EDIT file, but the corrupted
flag is set in the file label.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EGUARDIANOPEN]
The function attempted to open a Guardian EDIT file for write access or for
Guardian shared or exclusive exclusion access, but the file has already been
opened with a Guardian procedure call.

[EINTR] A signal was caught during the open operation. This value is returned only for
character special files (terminal devices) and for FIFO special files.

[EINVAL] One of these conditions exists:

• The call attempted to create a directory named lost+found in the root
directory of an OSS fileset, or it attempted to create a directory named
/dev, /dev/tty, or /dev/null in the root directory of the OSS file system.

• The function call did not specify the mode parameter.

• Bits other than the file permission and appropriate file-type flags are set
in the mode parameter.

• The function attempted to create a Guardian file (that is, a file in the /G
file system), but the pathname cannot be mapped to a valid Guardian
disk file name.

• The function attempted to open a Guardian file (that is, a file in the /G
file system) of a type other than those permitted.

• The function attempted to create a Guardian temporary file.

527186-023 Hewlett-Packard Company 1−47

creat(2) OSS System Calls Reference Manual

[EIO] A physical input or output error occurred. Data might have been lost during
transfer.

[EISDIR] One of these conditions exists:

• The named file is an OSS directory.

• The named file is a Guardian directory (/G or a directory in the /G file
system).

[ELOOP] Too many symbolic links were encountered in translating the path parameter.

[EMFILE] The system limit for open file descriptors per process has reached the maximum
permitted.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENFILE] One of these conditions exists:

• The maximum number of file descriptors of this file type (socket, pipe,
etc.) for this processor are already open.

• The limit for open file descriptors of this file type has not been exceeded,
but the maximum number of all file descriptors for this processor are
already open.

[ENOENT] One of these conditions exists:

• The pathname prefix does not exist.

• The path parameter points to an empty string.

• The function attempted to open a file in the Guardian file system, but the
specified pathname cannot be mapped to a valid Guardian filename.

• The path parameter specifies a file on a remote HP NonStop node, but
communication with the remote node has been lost.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOROOT] The root fileset (fileset 0) is not in the STARTED state.

[ENOSPC] The directory that would contain the new file cannot be extended, and the file
does not exist.

[ENOTDIR] A component of the pathname prefix is not a directory.

1−48 Hewlett-Packard Company 527186-023

System Functions (a - d) creat(2)

[ENOTSUP] The path parameter specifies a Guardian file on an SMF logical volume and one
of the following conditions exists:

• The local system is running an RVU prior to J06.15 or H06.26.

• The path parameter specifies a file in /E and the remote system is run-
ning an RVU prior to J06.15 or H06.26.

[ENXIO] One of these conditions exists:

• The named file is a character special file, and the device associated with
this special file does not exist.

• The fileset containing the client’s current working directory or root
directory is not mounted.

[EOPNOTSUPP]
The named file is a socket bound to the file system (not an AF_INET socket) and
cannot be opened.

[EOSSNOTRUNNING]
A required system process is not running.

[EOVERFLOW]
The named file already exists, and the file offset is larger than approximately 2
gigabytes.

[EPERM] One of these conditions exists:

• The call attempted to create a file named lost+found in the root directory
of an OSS fileset.

• The call attempted to create a file in the /E directory.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The named file resides on a read-only fileset, and write access is required.

[ETXTBSY] The file is being executed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), close(2), creat64(2), fcntl(2), lseek(2), lseek64(2), mknod(2),
open(2), open64(2), read(2), stat(2), umask(2), write(2).

Miscellaneous topics: acl(5).

527186-023 Hewlett-Packard Company 1−49

creat(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• The group ID of the new file is determined by the value of the O_ISGID flag in the
parent directory.

• If bits other than the file permission and appropriate file-type flags are set in the mode
parameter, errno is set to [EINVAL].

• The O_TRUNC flag is ignored for files other than regular files.

• An attempt to open an OSS directory with creat() fails.

HP extensions to the XPG4 Version 2 specification are:

• Opening Guardian files (that is, files in the /G file system) is supported, as described
under Opening Guardian Files in DESCRIPTION.

• The errno values [EFAULT], [EFILEBAD], [EFSBAD], [EGUARDIANOPEN], [EIO],
[ELOOP], [ENOTSUP], [EOSSNOTRUNNING], and [EPERM] can be returned.

1−50 Hewlett-Packard Company 527186-023

System Functions (a - d) creat64(2)

NAME
creat64 - Creates a regular file in the OSS environment or rewrites an existing file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat64(
const char *path,
mode_t mode);

PARAMETERS
path Points to the pathname of the file to be created or opened for writing.

You cannot specify /lost+found, /dev, /dev/tty, and /dev/null for this parameter.
Attempts to create these files cause the function call to fail with errno set to
[EINVAL].

If the path parameter refers to a symbolic link, the creat64() function opens the
file pointed to by the symbolic link.

mode Specifies the read, write, and execute permissions of the file and the file type
flags for the file.

If the file already exists, you must specify a valid value for this parameter, but
this parameter has no effect on the file (you cannot use this parameter to change
the permissions of the file).

The value of this parameter is constructed by logically ORing flags that are
defined in the sys/stat.h header file. If the parent directory of the created file
does not have default OSS access control list (ACL) entries, the permissions for
the new file are the bit-wise AND of this mode parameter with the complement
of the process umask (see the umask(2) reference page). If the parent directory
of the created file has default ACL entries, the permissions for the new file are
affected by the value of this parameter but depend on both the support for OSS
ACLs on the system on which this process is running and on the fileset that con-
tains the new directory. See "ACL Inheritance" in the acl(5) reference page.

The file type flags are described in DESCRIPTION.

DESCRIPTION
The creat64() function is similar to the creat() function except that, in addition to supporting
smaller files, the creat64() function supports:

• OSS files larger than approximately 2 gigabytes, up to a limit of approximately 1 terabyte
(constrained by the space available on the disk volume)

• Both Guardian Format 1 and Guardian Format 2 files, up to the limit described in the
Open System Services Management and Operations Guide

An application can explicitly call this function when you use the #define
_LARGEFILE64_SOURCE 1 feature test macro or an equivalent compiler command option to
compile the application.

527186-023 Hewlett-Packard Company 1−51

creat64(2) OSS System Calls Reference Manual

An application call to creat() is automatically mapped to this function when you use the #define
_FILE_OFFSET_BITS 64 feature test macro or an equivalent compiler command option to
compile the application.

The creat64() function establishes a connection between the file indicated by the path parameter
and the returned file descriptor. Subsequent I/O function calls, such as read() and write(), use
the opened file descriptor to access that file.

The returned file descriptor is the lowest-numbered file descriptor not currently open for that pro-
cess. A corresponding Guardian environment file number is also assigned.

The file offset, marking the current position within the file, is set to the beginning of the file. The
new file descriptor is set to remain open across the processing of any of the exec or tdm_exec set
of functions. (See the fcntl(2) reference page.)

A call to the creat64() function is equivalent to this call:

open64(path, O_WRONLY | O_CREAT | O_TRUNC, mode);

You cannot use the creat() function to create a first-in, first-out (FIFO) special file. Use the
mkfifo() function instead.

If the file does not exist, a regular file is created with these characteristics:

• The owner ID of the file is set to the effective user ID of the process.

• The group ID of the file is determined by the value of the S_ISGID flag in the parent
directory. If S_ISGID is set, the group ID of the file is set to the group ID of the parent
directory; otherwise, the group ID of the file is set to the effective group ID of the calling
process. If the file is a Guardian file (that is, in the /G file system), the group ID is set to
that of the primary group of the effective user ID.

• If ACLs are supported, ACL entries are added to the file ACL as described in "ACL
Inheritance" in the acl(5) reference page.

• The file permission and attribute bits are set to the value of the mode parameter, modified
as listed:

— The file permission bits are set as described in "ACL Inheritance" in the acl(5)
reference page.

— The set user ID attribute (S_ISUID bit) is cleared.

— The set group ID attribute (S_ISGID bit) is cleared.

If bits other than the file permission and appropriate file-type flags are set in the mode
parameter, errno is set to [EINVAL].

If the file exists and is a regular file that is successfully opened:

• The length of the file is truncated to 0 (zero).

• The owner and group of the file are unchanged.

• The set user ID attribute of the file mode is cleared.

The open fails if any of these conditions is true:

• The file supports enforced record locks, and another process has locked a portion of the
file.

1−52 Hewlett-Packard Company 527186-023

System Functions (a - d) creat64(2)

• The file does not allow write access.

File Type Flags
The file type flags that can be logically ORed into the value specified in the mode parameter are:

S_IFREG Regular file in the OSS file system or in /G, the Guardian file system.

S_ISVTX Sticky bit; used only for directories (cannot be used for files in /G, the Guardian
file system).

Access Control Lists (ACLs)
The creat64() function does not change the ACL for an existing file. For more information
about ACLs for existing files, see the acl(2), chmod(2), and acl(5) reference pages.

For more information about ACLs, including ACL inheritance for newly created files, see the
acl(5) reference page.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

Executable files that have the PRIVSOARFOPEN privilege and that are started by a member of
the Safeguard SECURITY-OSS-ADMINISTRATOR (SOA) group have the appropriate privilege
to use this function on any file in a restricted-access fileset. However, Network File System
(NFS) clients are not granted SOA group privileges, even if these clients are accessing the sys-
tem with a user ID that is a member of the SOA security group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Opening Guardian Files
If the file is a Guardian file (that is, a file in the /G file system), these rules apply:

• The file can be opened only if it is one of these:

— An odd, unstructured Enscribe file. In this case, it is opened as a regular file with
a primary and secondary extent size that is a multiple of 2. If the extent size is
odd, the open fails.

If the unstructured buffer size was not 4096, a successful open makes the buffer
size 4096 (as if the Guardian procedure SETMODE was called for mode 93 with
a parameter value of 4096).

— An EDIT file (file code 101). In this case, it is opened as a regular file for read-
only access.

— A tty simulation process.

An attempt to open any file (or device) of any other type fails, and errno is set to the
value of [EINVAL].

An attempt to open any file on a logical disk volume (virtual disk) administered through
the Storage Management Foundation (SMF) fails, and errno is set to the value of
[ENOTSUP].

An attempt to open a volume, subvolume, or process (/G/vol, /G/vol/subvol, or
/G/process, respectively) fails, and errno is set to the value of [EISDIR].

527186-023 Hewlett-Packard Company 1−53

creat64(2) OSS System Calls Reference Manual

• An attempt to open a subvolume with a reserved name beginning with "ZYQ" (for exam-
ple, /G/vol2/zyq00004) fails, and errno is set to the value of [EACCES].

• An attempt to open a file within a subvolume with a reserved name beginning with
"ZYQ" (for example, /G/vol2/zyq00004/z000002x) fails, and errno is set to the value of
[EACCES].

• If the file is not an EDIT file (that is, the file code is not 101), it is opened in shared
exclusion mode.

• If the file is an EDIT file and read-only access is specified, the file is opened in protected
exclusion mode in the Guardian environment.

• If the file is an EDIT file and write access is specified, the call fails, and errno is set to
the value [EINVAL].

• The maximum number of opens is reported by the sysconf() function as the upper limit
of opens per process. The actual limit depends on other factors, such as the size of the
process file segment (PFS) and the number of existing opens on directories or on files in
the Guardian environment.

• When a Guardian file is created, the file will be Format 2, odd, unstructured, and file code
180.

• If the open causes file creation, the file is given access permissions compatible with the
standard security permissions for the Guardian creator access ID (CAID) of the calling
process.

During creat64() function processing, all access permissions are checked. This includes Guar-
dian environment checks by Guardian standard security mechanisms (and by the Safeguard pro-
duct) for Guardian disk file and process access.

Use From the Guardian Environment
A call to the creat64() function in the Guardian environment requires an OSS pathname and
returns an OSS file-system file descriptor, regardless of the file system containing the file.

The creat64() function belongs to a set of functions that have these effects when the first of them
is called from the Guardian environment:

• Two Guardian file-system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

1−54 Hewlett-Packard Company 527186-023

System Functions (a - d) creat64(2)

RETURN VALUES
Upon successful completion, the creat64() function returns the file descriptor, a nonnegative
integer. Otherwise, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the function sets errno to the corresponding value:

[EACCES] One of these conditions exists:

• Search permission is denied on a component of the pathname prefix.

• The file does not exist, and write permission is denied for the parent
directory.

• The process attempted to open a Guardian subvolume with a reserved
name beginning with "ZYQ" or a file within such a subvolume.

• The process attempted to open a static Telserv window that is not yet
connected.

[EFAULT] The path parameter points to a location outide of the allocated address space of
the process.

[EFILEBAD] One of these conditions exists:

• The function attempted to open a Guardian EDIT file, but the structure
of the file is bad.

• The function attempted to open a Guardian EDIT file, but the corrupted
flag is set in the file label.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EGUARDIANOPEN]
The function attempted to open a Guardian EDIT file for write access or for
Guardian shared or exclusive exclusion access, but the file has already been
opened with a Guardian procedure call.

[EINTR] A signal was caught during the open operation. This value is returned only for
character special files (terminal devices) and for FIFO special files.

[EINVAL] One of these conditions exists:

• The call attempted to create a directory named lost+found in the root
directory of an OSS fileset, or it attempted to create a directory named
/dev, /dev/tty, or /dev/null in the root directory of the OSS file system.

• The function call did not specify the mode parameter.

• Bits other than the file permission and appropriate file-type flags are set
in the mode parameter.

• The function attempted to create a Guardian file (that is, a file in the /G
file system), but the pathname cannot be mapped to a valid Guardian
disk file name.

• The function attempted to open a Guardian file (that is, a file in the /G
file system) of a type other than those permitted.

527186-023 Hewlett-Packard Company 1−55

creat64(2) OSS System Calls Reference Manual

• The function attempted to create a Guardian temporary file.

[EIO] A physical input or output error occurred. Data might have been lost during
transfer.

[EISDIR] One of these conditions exists:

• The named file is an OSS directory.

• The named file is a Guardian directory (/G or a directory in the /G file
system).

[ELOOP] Too many symbolic links were encountered in translating the path parameter.

[EMFILE] The system limit for open file descriptors per process has reached the maximum
permitted.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENFILE] One of these conditions exists:

• The maximum number of file descriptors of this file type (socket, pipe,
etc.) for this processor are already open.

• The limit for open file descriptors of this file type has not been exceeded,
but the maximum number of all file descriptors for this processor are
already open.

[ENOENT] One of these conditions exists:

• The pathname prefix does not exist.

• The path parameter points to an empty string.

• The function attempted to open a file in the Guardian file system, but the
specified pathname cannot be mapped to a valid Guardian filename.

• The path parameter specifies a file on a remote HP NonStop node, but
communication with the remote node has been lost.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOROOT] The root fileset (fileset 0) is not in the STARTED state.

[ENOSPC] The directory that would contain the new file cannot be extended, and the file
does not exist.

[ENOTDIR] A component of the pathname prefix is not a directory.

1−56 Hewlett-Packard Company 527186-023

System Functions (a - d) creat64(2)

[ENOTSUP] The path parameter specifies a Guardian file on an SMF logical volume and one
of the following conditions exists:

• The local system is running an RVU prior to J06.15 or H06.26.

• The path parameter specifies a file in /E and the remote system is run-
ning an RVU prior to J06.15 or H06.26.

[ENXIO] One of these conditions exists:

• The named file is a character special file, and the device associated with
this special file does not exist.

• The fileset containing the client’s current working directory or root
directory is not mounted.

[EOPNOTSUPP]
The named file is a socket bound to the file system (not an AF_INET socket) and
cannot be opened.

[EOSSNOTRUNNING]
A required system process is not running.

[EPERM] One of these conditions exists:

• The call attempted to create a file named lost+found in the root directory
of an OSS fileset.

• The call attempted to create a file in the /E directory.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The named file resides on a read-only fileset, and write access is required.

[ETXTBSY] The file is being executed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), close(2), creat(2), fcntl(2), lseek(2), lseek64(2), mknod(2),
open(2), open64(2), read(2), stat(2), stat64(2), umask(2), write(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
This function is an HP extension to the XPG4 Version 2 specification.

527186-023 Hewlett-Packard Company 1−57

dup(2) OSS System Calls Reference Manual

NAME
dup - Duplicates an open file descriptor

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int dup(
int filedes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), dup(), dup2(), fcntl(), open(), pipe(), socket(), or socketpair() func-
tion.

DESCRIPTION
The dup() function returns a new file descriptor for the open file specified by the filedes parame-
ter. This file descriptor:

• Is the lowest-numbered available file descriptor

• References the same open

• Returns the same file pointer as the original file (that is, both file descriptors share one
file pointer if the object is a file)

• Returns the same access mode (read, write, or read/write)

• Returns the same file status flags (that is, both file descriptors share the same file status
flags)

• Clears the close-on-exec flag (FD_CLOEXEC bit) associated with the new file descrip-
tor so that the file remains open across calls to any function in the exec, tdm_exec, and
tdm_spawn sets of functions

NOTES
The dup() function provides an alternative interface to the service provided by the fcntl() func-
tion by using the F_DUPFD value of the request parameter. The call:

fid = dup(file1);

is equivalent to:

fid = fcntl(file1, F_DUPFD, 0);

RETURN VALUES
Upon successful completion, the dup() function returns a new file descriptor. If the dup() func-
tion fails, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the dup() function sets errno to the corresponding value:

[EBADF] The filedes parameter is not a valid open file descriptor.

1−58 Hewlett-Packard Company 527186-023

System Functions (a - d) dup(2)

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[EMFILE] The number of file descriptors exceeds the maximum number of opens permitted.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation on an input/output process (such as a
terminal server process) that has failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: close(2), dup2(2), exec(2), fcntl(2), open(2), read(2), tdm_execve(2),
tdm_execvep(2), write(2).

STANDARDS CONFORMANCE
HP extensions to the XPG4 Version 2 specification are:

• The errno values [EISGUARDIAN] and [EWRONGID] can be returned.

527186-023 Hewlett-Packard Company 1−59

dup2(2) OSS System Calls Reference Manual

NAME
dup2 - Duplicates and controls an open file descriptor

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <unistd.h>

int dup2(
int filedes,
int new);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), dup(), dup2(), fcntl(), open(), pipe(), socket(), or socketpair() func-
tion.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

new Specifies the open file descriptor that is returned by the dup2() function. If this
descriptor is already in use, it is first deallocated as if it had been closed.

DESCRIPTION
The dup2() function returns a new file descriptor on the open file specified by the filedes parame-
ter. If new is less than 0 (zero) or greater than or equal to the maximum number of opens permit-
ted, dup2() returns -1 with errno set to [EBADF].

The new file descriptor:

• Is the value specified as the new parameter:

— If filedes is a valid file descriptor and is equal to new, dup2() returns new
without closing it.

— If filedes is not a valid file descriptor, dup2() returns -1 and does not close new.

— The value returned is equal to the value of new upon successful completion, or it
is -1 upon failure.

• References the same open.

• Returns the same file pointer as the original file (that is, both file descriptors share one
file pointer if the object is a file).

• Returns the same access mode (read, write, or read/write).

1−60 Hewlett-Packard Company 527186-023

System Functions (a - d) dup2(2)

• Returns the same file status flags (that is, both file descriptors share the same file status
flags).

• Clears the close-on-exec flag (FD_CLOEXEC bit) associated with the new file descrip-
tor so that the file remains open across calls to any function in the exec, tdm_exec, and
tdm_spawn sets of functions.

NOTES
The dup2() function provides an alternative interface to the service provided by the fcntl() func-
tion by using the F_DUPFD value of the request parameter. The call:

fid = dup2(file1, file2);

is equivalent to:

close(file2);
fid = fcntl(file1, F_DUPFD, file2);

To use the dup2() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_dup2x(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the dup2() function returns a new file descriptor. Otherwise, the
value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the dup2() function sets errno to the corresponding value:

[EBADF] One of these conditions exists:

527186-023 Hewlett-Packard Company 1−61

dup2(2) OSS System Calls Reference Manual

• The filedes parameter is not a valid open file descriptor.

• The new parameter file descriptor is negative or greater than the max-
imum number of opens permitted.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation on an input/output process (such as a
terminal server process) that has failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: close(2), dup(2), exec(2), fcntl(2), open(2), read(2), spt_dup2x(2), tdm_execve(2),
tdm_execvep(2), write(2).

STANDARDS CONFORMANCE
The dup2() function does not return the errno value [EINTR].

HP extensions to the XPG4 Version 2 specification are:

• The errno values [EISGUARDIAN] and [EWRONGID] can be returned.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

1−62 Hewlett-Packard Company 527186-023

Section 2. System Functions (e)

This section contains reference pages for Open System Services (OSS) system function
calls with names that begin with e. These reference pages reside in the cat2 directory and
are sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 2−1

exec(2) OSS System Calls Reference Manual

NAME
exec - Specifies a set of functions that execute a file

DESCRIPTION
The exec set of functions (execl(), execle(), execlp(), execv(), execve(), and execvp()) replace
the current process image with a new process image. The new image is constructed from a regu-
lar executable file, called a new process image file. The new process image file is formatted as
an executable text or binary file in one of the formats recognized by the exec set of functions.

A successful call to any function in the exec set of functions does not return, because the calling
process image is overlaid by the new process image.

When a program is executed as a result of a call to a function in the exec set of functions, it is
entered as a function call as follows:

int main(
int argc,
char ∗∗argv[],
char ∗∗env[]);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and env[] is a pointer to a character array listing the
environment variables.

In addition, the following variable is initialized for the new process as a pointer to an array of
character pointers to the environment strings:

extern char ∗∗∗∗environ;

The argv[] array is terminated by a null pointer. The null pointer is not counted in argc.

The arguments specified by a program with one of the exec set of functions are passed on to the
new process image in the corresponding arguments to the main() function.

The env[] parameter for the main function is an HP extension and is not the preferred method of
obtaining the environment variables for the child process. Use of the **environ array is the pre-
ferred method.

For additional information, refer to the reference page for a specific function in the exec set of
functions.

RELATED INFORMATION
Commands: eld(1), ld(1), nld(1).

Functions: alarm(3), _exit(2), execl(2), execle(2), execlp(2), execv(2), execve(2), execvp(2),
fcntl(2), fork(2), getenv(3), putenv(3), semget(2), sigaction(2), system(3), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2), times(3), ulimit(3), umask(2).

Miscellaneous: environ(5).

2−2 Hewlett-Packard Company 527186-023

System Functions (e) execl(2)

NAME
execl - Executes a file using a pathname, a set of argument strings, and **environ

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <unistd.h>

extern char ∗∗∗∗environ;

int execl(
const char ∗∗path,
const char ∗∗arg, . . .);

PARAMETERS
**environ Points to an array of character pointers to environment strings. The environment

strings define the OSS environment for the new process. The environ array is
terminated by a null pointer.

The **environ array of the new process is also passed as the env[] array in the
call to the main() function of the new process. Refer to Entering the New Pro-
cess later in this reference page.

path Points to a null-terminated string containing a pathname that identifies the new
process image file. The pathname is absolute if it starts with a slash (/) character.
Otherwise, the pathname is relative and is resolved by prefixing the current
working directory.

If the final component of the path parameter names a symbolic link, the link is
traversed and pathname resolution continues.

arg Points to a null-terminated string containing an argument to be made visible to
the main function of the new program. The first such argument should point to
the null-terminated string containing the filename of the new process image. The
last of these arguments must be a null pointer.

These strings constitute the argument list available to the new process image.

DESCRIPTION
The execl() function is one of the exec set of functions. The exec set of functions replace the
current process image with a new process image. The new image is constructed from a regular
executable file, called a new process image file. The new process image file is formatted as an
executable text or binary file in one of the formats recognized by the exec set of functions.

A successful execl() function call does not return, because the calling process image is overlaid
by the new process image.

Entering the New Process
When a program is executed as a result of a call to a function in the exec set of functions, it is
entered as a function call as follows:

int main(
int argc,
char ∗∗argv[],
char ∗∗env[]);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and env[] is a pointer to a character array listing the

527186-023 Hewlett-Packard Company 2−3

execl(2) OSS System Calls Reference Manual

environment variables. The argv[] array is terminated by a null pointer. The null pointer is not
counted in argc.

The arguments specified by a program with one of the exec set of functions are passed on to the
new process image in the corresponding arguments to the main() function.

The envp[] parameter for the main function is an HP extension and is not the preferred method of
obtaining the environment variables for the new process. Use of the **environ array is the pre-
ferred method.

Passing the Arguments and the Environment
The number of bytes available for the new process’s combined argument and environment lists
has a system-imposed limit. This limit, which includes the pointers and the null terminators on
the strings, is available by calling the sysconf(_SC_ARG_MAX) function.

Executing a Binary File
If the file specified in the function call is a binary executable file, the function loads the file
directly.

Executing a Text File
If the file specified in the function call is not a binary executable file, the function examines the
file to determine whether it is an executable text file. The function checks for a header line in the
following format:

#! interpreter_name [optional_string]

The #! notation identifies the file as an executable text file. The new process image filename is
constructed from the process image filename in the interpreter_name string, treating it like the
path parameter. The arguments passed to the new process are modified as follows:

• The argv[0] parameter is set to the name of the interpreter.

• If the optional_string portion is present, argv[1] is set to optional_string.

• The next element of argv[] is set to the original value of path.

• The remaining elements of argv[] are set to the the second and subsequent values of the
arg parameter.

• The first value of arg is discarded.

The S_ISUID and S_ISGID mode bits of an executable text file are honored. Those bits of the
interpreter_name command interpreter are ignored.

When the File Is Invalid
If the process image file is not a valid executable object, or if the text file does not contain the
header line, the execl() function call fails and sets errno to the value of [ENOEXEC].

Open Files
File descriptors open in the calling process image remain open in the new process image, except
for those:

• Whose close-on-exec flag FD_CLOEXEC is set (see the fcntl(2) reference page)

• Opened using a Guardian function or procedure call

If the process file segment of the new process image is smaller than the process file segment of
the calling process image and if the calling process image has a large number of file descriptors
open, then the system might not be able to propagate all the open file descriptors to the new pro-
cess image. When this situation occurs, the function call fails and errno is set to the value of
[EMFILE].

2−4 Hewlett-Packard Company 527186-023

System Functions (e) execl(2)

For those file descriptors that remain open, all attributes of the open file descriptor, including file
locks, remain unchanged. All directory streams are closed.

Shared Memory
Any attached shared memory segments are detached by a successful call to a function in the exec
set of functions. Refer to the shmat(2) reference page for additional information about shared
memory segment use.

Semaphores
Semaphore set IDs attached to a calling process are also attached to the new process. The new
process also inherits the adjust-on-exit (semadj) values of the calling process.

Refer to the semget(2) reference page for additional information about semaphore use.

Signals
Signals set to:

• The default action (SIG_DFL) in the calling process image are set to the default action
in the new process image.

• Be ignored (SIG_IGN) by the calling process image are set to be ignored by the new
process image.

• Cause abnormal termination (SIG_ABORT) in the calling process image are set to that
action in the new process image.

• Cause entry into the debugger (SIG_DEBUG) in the calling process image are set to that
action in the new process image.

• Be caught by the calling process image are set to the default action in the new process
image.

See the signal(4) reference page either online or in the Open System Services System Calls Refer-
ence Manual.

User ID and Group ID
If the set-user-ID mode bit of the new process image file is set (see the chmod(2) reference
page), the effective user ID of the new process image is set to the owner ID of the new process
image file. Similarly, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the new process image is set to the group ID of the new process image file.
The real user ID, real group ID, and supplementary group IDs of the new process image remain
the same as those of the calling process image. The effective user ID and effective group ID of
the new process image are saved (as the saved-set-user ID and the saved-set-group ID) for use by
the setuid() function.

The _POSIX_SAVED_IDS flag is defined TRUE.

OSS Attributes
The following OSS attributes of the calling process image are unchanged after successful com-
pletion of any of the exec set of functions:

• OSS process ID (PID)

• Parent process ID

• Process group ID

527186-023 Hewlett-Packard Company 2−5

execl(2) OSS System Calls Reference Manual

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• The time left until an alarm clock signal is posted (see the alarm(3) reference page)

• Current working directory

• Root directory

• File mode creation mask (see the umask(2) reference page)

• Process signal mask (see the sigprocmask(2) reference page)

• Pending signals (see the sigpending(2) reference page)

• The tms_utime, tms_stime, tms_cutime, and tms_cstime fields of the tms structure

• File size limit (see the ulimit(2) reference page)

Upon successful completion of the function call, the st_atime field of the file is marked for
update.

The POSIX.1 standard does not specify the effect on the st_atime field when the function call
fails but does find the file. Likewise, the HP implementation does not guarantee the outcome.
Under these circumstances, this field should not be used for further processing.

Guardian Attributes
The newly created OSS process retains the following Guardian attributes of the process that calls
one of the exec set of functions:

• Priority

• Processor on which the process executes

• Home terminal

• Job ID

• DEFINE mode switch

• Process access ID (PAID), unless the S_ISUID mode bit of the new image file is set

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

2−6 Hewlett-Packard Company 527186-023

System Functions (e) execl(2)

• Login, remote, and saveabend flags

• File creation mask

The Guardian attributes of the new process differ from those of the calling process in the follow-
ing ways:

• Segments created or shared using Guardian procedure calls such as
SEGMENT_ALLOCATE_ are not inherited.

• The program file is the file specified in the function call.

• The library file is specified in the program file.

• The new process does not inherit the caller’s extended swap file (if any). For a G-series
TNS process or an accelerated process, the extended data segment is managed by the
Kernel Managed Storage Facility (KMSF).

• The process name for the new process is system-generated if the RUNNAMED option is
set in the program file. Otherwise the process is unnamed.

• The size of the data segment of the new process is set in the program file

• The remote login flag (PCBREMID) is set to off if the program file has had its S_ISUID
mode bit set. Otherwise, the remote login flag is set the same as for the caller.

• The size of the extended data segment of the new process is set in the program file

• The DEFINEs inherited by the new process depend on the setting of DEFINE mode in
the caller. If DEFINE mode in the caller is ON, all the caller’s DEFINEs are inherited.
If DEFINE mode is OFF, no DEFINEs are inherited.

• The process identification number (PIN) of the new process is unrelated to that of the
calling process. The PIN of the new process is unrestricted if both of the following are
true:

— The HIGHPIN flag is set in the program file and any user library file.

— The PIN of the calling process was unrestricted.

If the PIN of the new process is restricted, then the PIN is in the range 0 through 254.

• The creator access ID (CAID) is set to the process access ID (PAID) of the calling pro-
cess.

• The PAID depends on whether the S_ISUID mode bit of the image file is set. If so, the
PAID is based on the file owner ID. If not, the PAID is the same as for the caller. (The
S_ISUID mode bit of the image file has no effect on the security group list.)

• The MOM field for the new process depends on whether the calling process is named. If
so, the MOM field for the new process is set to the caller’s ANCESTOR field. Other-
wise, the MOM field for the new process is set to the caller’s MOM field.

• System debugger selection for the new process is based on Inspect mode.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

527186-023 Hewlett-Packard Company 2−7

execl(2) OSS System Calls Reference Manual

Use From the Guardian Environment
If called from a Guardian process, the function call fails and errno is set to [ENOTOSS].

RETURN VALUES
If the execl() function returns to the calling process image, an error has occurred; the return
value is -1, and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the function sets errno to the corresponding value. For
any of these error conditions, file descriptors marked close-on-exec are not closed, signals set to
be caught are not set to the default action, and none of the following are changed:

• The value of the global variable environ

• The pointers contained within the global variable environ

• The elements pointed to by environ pointers

• The effective user ID of the current process

• The effective group ID of the current process

[E2BIG] The number of bytes used by the new process image’s argument list and environ-
ment list is greater than the system-imposed limit. The limit can be obtained by
calling the sysconf(_SC_ARG_MAX) function.

[EACCES] One of the following conditions exists:

• Search permission is denied for the directory components of the path-
name prefix to the process image file.

• The new process image file, any library file, or script file denies execu-
tion permission.

• The new process image file is not a regular file.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

[EFAULT] An input address parameter is outside valid bounds limits.

[EINVAL] The new process image file is a binary executable file with invalid attributes.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error, or data has been lost during an input or out-
put transfer. This value is used for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

For systems running J06.07 and later J-series RVUs or H06.18 or later H-series
RVUs, this error can also occur when the OSS file system is out of memory and
one or more open files cannot be propagated from the parent process to the child
process. In this case, if you are running a program from the shell with the shell
reporting any errors, you might see an error like this:

/bin/-sh: /bin/ps: tdm_execve(): failed with unexpected error pr_errno=(4005)
pr_TPCerror=(110) pr_TPCdetail=(36)

where:

• pr_errno is the [EIO] error

2−8 Hewlett-Packard Company 527186-023

System Functions (e) execl(2)

• pr_TPCerror is the Guardian PROCESS_LAUNCH_ or
PROCESS_CREATE_ error.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[EMFILE] The maximum number of files is open. The process attempted to open more than
the maximum number of file descriptors allowed for the process. The process
file segment (PFS) of the new process might be smaller than that of the calling
process.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname pointed to by the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENODEV] The system cannot find the device containing the fileset containing the process
image file.

[ENOENT] One of the following conditions exists:

• One or more components of the new process image file’s pathname do
not exist.

• The path parameter points to an empty string.

[ENOEXEC] The new process image file has the appropriate access permissions, but it is nei-
ther in the correct binary executable format nor a valid executable text file.

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

[ENOTDIR] A component of the path prefix of the new process image file is not a directory.

[ENOTOSS] The calling process is not an OSS process. A function in the exec set of func-
tions cannot be called from the Guardian environment.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[ETXTBSY] The new process image file is currently open for writing by a process.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

527186-023 Hewlett-Packard Company 2−9

execl(2) OSS System Calls Reference Manual

RELATED INFORMATION
Commands: eld(1), ld(1), nld(1).

Functions: alarm(3), _exit(2), execle(2), execlp(2), execv(2), execve(2), execvp(2, fcntl(2),
fork(2), getenv(3), putenv(3), semget(2), sigaction(2), system(3), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2), times(3), ulimit(3), umask(2).

Miscellaneous: environ(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• Guardian attributes are associated with the new OSS process. See Guardian Attributes
under DESCRIPTION.

• The contents of the st_atime field following a failed function call in which the file was
found should not be depended upon for further processing.

• The use of *env[] as a parameter in the call to main() is an
HP extension.

The following are HP extensions to the XPG4 Version 2 specification:

• Text files containing the #! interpreter_name [optional_string] header line can execute.

• The [EINVAL], [EIO], [ENODEV], [ENOTOSS], and [EUNKNOWN] error values are
an HP extension.

2−10 Hewlett-Packard Company 527186-023

System Functions (e) execle(2)

NAME
execle - Executes a file using a pathname, a set of argument strings, and an undeclared envp array

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <unistd.h>

extern char ∗∗∗∗environ;

int execle(
const char ∗∗path,
const char ∗∗arg, . . .,

char *const envp[]);

PARAMETERS
**environ Points to an array of character pointers to environment strings. The environment

strings define the OSS environment for the calling process. The environ array is
terminated by a null pointer.

When the new process is created, the corresponding **environ array is not ini-
tialized for it with the content of the **environ array of the calling process.
Instead, the undeclared envp[] array that can follow the arg parameter list is
written into the **environ array of the new process when the execle() function
call is processed.

The **environ array of the new process is also passed as the env[] array in the
call to the main() function of the new process. Refer to Entering the New Pro-
cess later in this reference page.

path Points to a null-terminated string containing a pathname that identifies the new
process image file. The pathname is absolute if it starts with a slash (/) character.
Otherwise, the pathname is relative and is resolved by prefixing the current
working directory.

If the final component of the path parameter names a symbolic link, the link is
traversed and pathname resolution continues.

arg Points to a null-terminated string containing an argument to be made visible to
the main function of the new program. The first such argument should point to
the null-terminated string containing the filename of the new process image. The
last of these arguments must be a null pointer.

These strings constitute the argument list available to the new process image.

DESCRIPTION
The execle() function is one of the exec set of functions. The exec set of functions replace the
current process image with a new process image. The new image is constructed from a regular
executable file, called a new process image file. The new process image file is formatted as an
executable text or binary file in one of the formats recognized by the exec set of functions.

A successful execle() function call does not return, because the calling process image is overlaid
by the new process image.

527186-023 Hewlett-Packard Company 2−11

execle(2) OSS System Calls Reference Manual

Entering the New Process
When a program is executed as a result of a call to a function in the exec set of functions, it is
entered as a function call as follows:

int main(
int argc,
char ∗∗argv[],
char ∗∗env[]);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and env[] is a pointer to a character array listing the
environment variables. The argv[] array is terminated by a null pointer. The null pointer is not
counted in argc.

The arguments specified by a program with one of the exec set of functions are passed on to the
new process image in the corresponding arguments to the main() function.

The env[] parameter for the main function is an HP extension and is not the preferred method of
obtaining the environment variables for the new process. Use of the the **environ array of the
new process is the preferred method.

Passing the Arguments and the Environment
Instead of passing the **environ array of the calling process, the environment for the new pro-
cess is provided by following the null pointer that terminates the list of arg parameters with an
additional parameter as if it were declared as:

char ∗∗ const envp[]

The envp[] parameter names an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process image. The environment array is ter-
minated with a null pointer.

The number of bytes available for the new process’s combined argument and environment lists
has a system-imposed limit. This limit, which includes the pointers and the null terminators on
the strings, is available by calling the sysconf(_SC_ARG_MAX) function.

Executing a Binary File
If the file specified in the function call is a binary executable file, the function loads the file
directly.

Executing a Text File
If the file specified in the function call is not a binary executable file, the function examines the
file to determine whether it is an executable text file. The function checks for a header line in the
following format:

#! interpreter_name [optional_string]

The #! notation identifies the file as an executable text file. The new process image filename is
constructed from the process image filename in the interpreter_name string, treating it like the
path parameter. The arguments passed to the new process are modified as follows:

• The argv[0] parameter is set to the name of the interpreter.

• If the optional_string portion is present, argv[1] is set to optional_string.

• The next element of argv[] is set to the original value of path.

• The remaining elements of argv[] are set to the original elements of argv[], starting with
the second and subsequent values of the arg parameter.

2−12 Hewlett-Packard Company 527186-023

System Functions (e) execle(2)

• The first value of arg is discarded.

The S_ISUID and S_ISGID mode bits of an executable text file are honored. Those bits of the
interpreter_name command interpreter are ignored.

When the File Is Invalid
If the process image file is not a valid executable object, or if the text file does not contain the
header line, the execle() function call fails and sets errno to the value of [ENOEXEC].

Open Files
File descriptors open in the calling process image remain open in the new process image, except
for those:

• Whose close-on-exec flag FD_CLOEXEC is set (see the fcntl(2) reference page)

• Opened using a Guardian function or procedure call

If the process file segment of the new process image is smaller than the process file segment of
the calling process image and if the calling process image has a large number of file descriptors
open, then the system might not be able to propagate all the open file descriptors to the new pro-
cess image. When this situation occurs, the function call fails and errno is set to the value of
[EMFILE].

For those file descriptors that remain open, all attributes of the open file descriptor, including file
locks, remain unchanged. All directory streams are closed.

Shared Memory
Any attached shared memory segments are detached by a successful call to a function in the exec
set of functions. Refer to the shmat(2) reference page for additional information about shared
memory segment use.

Semaphores
Semaphore set IDs attached to a calling process are also attached to the new process. The new
process also inherits the adjust-on-exit (semadj) values of the calling process.

Refer to the semget(2) reference page for additional information about semaphore use.

Signals
Signals set to:

• The default action (SIG_DFL) in the calling process image are set to the default action
in the new process image.

• Be ignored (SIG_IGN) by the calling process image are set to be ignored by the new
process image.

• Cause abnormal termination (SIG_ABORT) in the calling process image are set to that
action in the new process image.

• Cause entry into the debugger (SIG_DEBUG) in the calling process image are set to that
action in the new process image.

• Be caught by the calling process image are set to the default action in the new process
image.

See the signal(4) reference page either online or in the Open System Services System Calls Refer-
ence Manual.

527186-023 Hewlett-Packard Company 2−13

execle(2) OSS System Calls Reference Manual

User ID and Group ID
If the set-user-ID mode bit of the new process image file is set (see the chmod(2) reference
page), the effective user ID of the new process image is set to the owner ID of the new process
image file. Similarly, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the new process image is set to the group ID of the new process image file.
The real user ID, real group ID, and supplementary group IDs of the new process image remain
the same as those of the calling process image. The effective user ID and effective group ID of
the new process image are saved (as the saved-set-user ID and the saved-set-group ID) for use by
the setuid() function.

The _POSIX_SAVED_IDS flag is defined TRUE.

OSS Attributes
The following OSS attributes of the calling process image are unchanged after successful com-
pletion of any of the exec set of functions:

• OSS process ID (PID)

• Parent process ID

• Process group ID

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• The time left until an alarm clock signal is posted (see the alarm(3) reference page)

• Current working directory

• Root directory

• File mode creation mask (see the umask(2) reference page)

• Process signal mask (see the sigprocmask(2) reference page)

• Pending signals (see the sigpending(2) reference page)

• The tms_utime, tms_stime, tms_cutime, and tms_cstime fields of the tms structure

• File size limit (see the ulimit(2) reference page)

Upon successful completion of the function call, the st_atime field of the file is marked for
update.

The POSIX.1 standard does not specify the effect on the st_atime field when the function call
fails but does find the file. Likewise, the HP implementation does not guarantee the outcome.
Under these circumstances, this field should not be used for further processing.

Guardian Attributes
The newly created OSS process retains the following Guardian attributes of the process that calls
one of the exec set of functions:

• Priority

• Processor on which the process executes

2−14 Hewlett-Packard Company 527186-023

System Functions (e) execle(2)

• Home terminal

• Job ID

• DEFINE mode switch

• Process access ID (PAID), unless the S_ISUID mode bit of the new image file is set

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Login, remote, and saveabend flags

• File creation mask

The Guardian attributes of the new process differ from those of the calling process in the follow-
ing ways:

• Segments created or shared using Guardian procedure calls such as
SEGMENT_ALLOCATE_ are not inherited.

• The program file is the file specified in the function call.

• The library file is specified in the program file.

• The new process does not inherit the caller’s extended swap file (if any). For a G-series
TNS process or an accelerated process, the extended data segment is managed by the
Kernel Managed Storage Facility (KMSF).

• The process name for the new process is system-generated if the RUNNAMED option is
set in the program file. Otherwise the process is unnamed.

• The size of the data segment of the new process is set in the program file.

• The remote login flag (PCBREMID) is set to off if the program file has had its S_ISUID
mode bit set. Otherwise, the remote login flag is set the same as for the caller.

• The size of the extended data segment of the new process is set in the program file.

• The DEFINEs inherited by the new process depend on the setting of DEFINE mode in
the caller. If DEFINE mode in the caller is ON, all the caller’s DEFINEs are inherited.
If DEFINE mode is OFF, no DEFINEs are inherited.

• The process identification number (PIN) of the new process is unrelated to that of the
calling process. The PIN of the new process is unrestricted if both of the following are
true:

— The HIGHPIN flag is set in the program file and any user library file.

— The PIN of the calling process was unrestricted.

If the PIN of the new process is restricted, then the PIN is in the range 0 through 254.

527186-023 Hewlett-Packard Company 2−15

execle(2) OSS System Calls Reference Manual

• The creator access ID (CAID) is set to the process access ID (PAID) of the calling pro-
cess.

• The PAID depends on whether the S_ISUID mode bit of the image file is set. If so, the
PAID is based on the file owner ID. If not, the PAID is the same as for the caller. (The
S_ISUID mode bit of the image file has no effect on the security group list.)

• The MOM field for the new process depends on whether the calling process is named. If
so, the MOM field for the new process is set to the caller’s ANCESTOR field. Other-
wise, the MOM field for the new process is set to the caller’s MOM field.

• System debugger selection for the new process is based on Inspect mode.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Use From the Guardian Environment
If called from a Guardian process, the function call fails and errno is set to [ENOTOSS].

RETURN VALUES
If the execle() function returns to the calling process image, an error has occurred; the return
value is -1, and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the function sets errno to the corresponding value. For
any of these error conditions, file descriptors marked close-on-exec are not closed, signals set to
be caught are not set to the default action, and none of the following are changed:

• The envp[] array of pointers

• The elements pointed to by this array

• The effective user ID of the current process

• The effective group ID of the current process

[E2BIG] The number of bytes used by the new process image’s argument list and environ-
ment list is greater than the system-imposed limit. The limit can be obtained by
calling the sysconf(_SC_ARG_MAX) function.

[EACCES] One of the following conditions exists:

• Search permission is denied for the directory components of the path-
name prefix to the process image file.

• The new process image file, any library file, or script file denies execu-
tion permission.

• The new process image file is not a regular file.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

2−16 Hewlett-Packard Company 527186-023

System Functions (e) execle(2)

[EFAULT] An input address parameter is outside valid bounds limits.

[EINVAL] The new process image file is a binary executable file with invalid attributes.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error, or data has been lost during an input or out-
put transfer. This value is used for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

For systems running J06.07 and later J-series RVUs or H06.18 or later H-series
RVUs, this error can also occur when the OSS file system is out of memory and
one or more open files cannot be propagated from the parent process to the child
process. In this case, if you are running a program from the shell with the shell
reporting any errors, you might see an error like this:

/bin/-sh: /bin/ps: tdm_execve(): failed with unexpected error pr_errno=(4005)
pr_TPCerror=(110) pr_TPCdetail=(36)

where:

• pr_errno is the [EIO] error

• pr_TPCerror is the Guardian PROCESS_LAUNCH_ or
PROCESS_CREATE_ error.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[EMFILE] The maximum number of files is open. The process attempted to open more than
the maximum number of file descriptors allowed for the process. The process
file segment (PFS) of the new process might be smaller than that of the calling
process.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname pointed to by the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENODEV] The system cannot find the device containing the fileset containing the process
image file.

[ENOENT] One of the following conditions exists:

• One or more components of the new process image file’s pathname do
not exist.

• The path parameter points to an empty string.

[ENOEXEC] The new process image file has the appropriate access permissions, but it is nei-
ther in the correct binary executable format nor a valid executable text file.

527186-023 Hewlett-Packard Company 2−17

execle(2) OSS System Calls Reference Manual

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

[ENOTDIR] A component of the path prefix of the new process image file is not a directory.

[ENOTOSS] The calling process is not an OSS process. A function in the exec set of func-
tions cannot be called from the Guardian environment.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[ETXTBSY] The new process image file is currently open for writing by a process.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

RELATED INFORMATION
Commands: eld(1), ld(1), nld(1).

Functions: alarm(3), _exit(2), execl(2), execlp(2), execv(2), execve(2), execvp(2), execl(2),
fcntl(2), fork(2), getenv(3), putenv(3), semget(2), sigaction(2), system(3), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2), times(3), ulimit(3), umask(2).

Miscellaneous: environ(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• Guardian attributes are associated with the new OSS process. See Guardian Attributes
under DESCRIPTION.

• The contents of the st_atime field following a failed function call in which the file was
found should not be depended upon for further processing.

• The use of *env[] as a parameter in the call to main() is an HP extension.

The following are HP extensions to the XPG4 Version 2 specification:

• Text files containing the #! interpreter_name [optional_string] header line can execute.

• The [EINVAL], [EIO], [ENODEV], [ENOTOSS], and [EUNKNOWN] error values are
an HP extension.

2−18 Hewlett-Packard Company 527186-023

System Functions (e) execlp(2)

NAME
execlp - Executes a file using a filename, a set of argument strings, and **environ

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <unistd.h>

extern char ∗∗∗∗environ;

int execlp(
const char ∗∗file,
const char ∗∗arg, . . .);

PARAMETERS
**environ Points to an array of character pointers to environment strings. The environment

strings define the OSS environment for the new process. The environ array is
terminated by a null pointer.

The **environ array of the new process is also passed as the env[] array in the
call to the main() function of the new process. Refer to Entering the New Pro-
cess later in this reference page.

file Identifies the new process image file. If this parameter

• Starts with a slash (/) character, then it contains the absolute pathname.

• Does not start with a slash but does contain a slash, then the pathname
resolves relative to the current working directory.

• Contains no slash, the system searches the directories listed in the PATH
environment variable for the file and prefixes the directory in which it is
found.

arg Points to a null-terminated string containing an argument to be made visible to
the main function of the new program. The first such argument should point to
the null-terminated string containing the filename of the new process image. The
last of these arguments must be a null pointer.

These strings constitute the argument list available to the new process image.

DESCRIPTION
The execlp() function is one of the exec set of functions. The exec set of functions replace the
current process image with a new process image. The new image is constructed from a regular
executable file, called a new process image file. The new process image file is formatted as an
executable text or binary file in one of the formats recognized by the exec set of functions.

A successful execlp() function call does not return, because the calling process image is overlaid
by the new process image.

527186-023 Hewlett-Packard Company 2−19

execlp(2) OSS System Calls Reference Manual

Entering the New Process
When a program is executed as a result of a call to a function in the exec set of functions, it is
entered as a function call as follows:

int main(
int argc,
char ∗∗argv[],
char ∗∗env[]);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and env[] is a pointer to a character array listing the
environment variables. The argv[] array is terminated by a null pointer. The null pointer is not
counted in argc.

The arguments specified by a program with one of the exec set of functions are passed on to the
new process image in the corresponding arguments to the main() function.

The env[] parameter for the main function is an HP extension and is not the preferred method of
obtaining the environment variables for the new process. Use of the **environ array is the pre-
ferred method.

Passing the Arguments and the Environment
The number of bytes available for the new process’s combined argument and environment lists
has a system-imposed limit. This limit, which includes the pointers and the null terminators on
the strings, is available by calling the sysconf(_SC_ARG_MAX) function.

Executing a Binary File
If the file specified in the function call is a binary executable file, the function loads the file
directly.

Executing a Text File
If the file specified in the function call is not a binary executable file, the function examines the
file to determine whether it is an executable text file. The function checks for a header line in the
following format:

#! interpreter_name [optional_string]

The #! notation identifies the file as an executable text file. The new process image filename is
constructed from the process image filename in the interpreter_name string, treating it like the
path parameter. The arguments passed to the new process are modified as follows:

• The argv[0] parameter is set to the name of the interpreter.

• If the optional_string portion is present, argv[1] is set to optional_string.

• The next element of argv[] is set to the original value of file.

• The remaining elements of argv[] are set to the original elements of argv[], starting with
the second and subsequent values of the arg parameter.

• The first value of arg is discarded.

The S_ISUID and S_ISGID mode bits of an executable text file are honored. Those bits of the
interpreter_name command interpreter are ignored.

When the File Is Invalid
If the process image file is not a valid executable object, or if the text file does not contain the
header line, the execlp() function invokes the /bin/sh command interpreter as the new process
image and pass the following arguments to it:

2−20 Hewlett-Packard Company 527186-023

System Functions (e) execlp(2)

• argv[0] is set to the string "sh".

• argv[1] is set to the original value of the file parameter.

• The remaining elements of argv[] are set to the second and subsequent values of the arg
parameter.

• The first instance of arg is discarded.

Open Files
File descriptors open in the calling process image remain open in the new process image, except
for those:

• Whose close-on-exec flag FD_CLOEXEC is set (see the fcntl(2) reference page)

• Opened using a Guardian function or procedure call

If the process file segment of the new process image is smaller than the process file segment of
the calling process image and if the calling process image has a large number of file descriptors
open, then the system might not be able to propagate all the open file descriptors to the new pro-
cess image. When this situation occurs, the function call fails and errno is set to the value of
[EMFILE].

For those file descriptors that remain open, all attributes of the open file descriptor, including file
locks, remain unchanged. All directory streams are closed.

Shared Memory
Any attached shared memory segments are detached by a successful call to a function in the exec
set of functions. Refer to the shmat(2) reference page for additional information about shared
memory segment use.

Semaphores
Semaphore set IDs attached to a calling process are also attached to the new process. The new
process also inherits the adjust-on-exit (semadj) values of the calling process.

Refer to the semget(2) reference page for additional information about semaphore use.

Signals
Signals set to:

• The default action (SIG_DFL) in the calling process image are set to the default action
in the new process image.

• Be ignored (SIG_IGN) by the calling process image are set to be ignored by the new
process image.

• Cause abnormal termination (SIG_ABORT) in the calling process image are set to that
action in the new process image.

• Cause entry into the debugger (SIG_DEBUG) in the calling process image are set to that
action in the new process image.

• Be caught by the calling process image are set to the default action in the new process
image.

See the signal(4) reference page either online or in the Open System Services System Calls Refer-
ence Manual.

527186-023 Hewlett-Packard Company 2−21

execlp(2) OSS System Calls Reference Manual

User ID and Group ID
If the set-user-ID mode bit of the new process image file is set (see the chmod(2) reference
page), the effective user ID of the new process image is set to the owner ID of the new process
image file. Similarly, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the new process image is set to the group ID of the new process image file.
The real user ID, real group ID, and supplementary group IDs of the new process image remain
the same as those of the calling process image. The effective user ID and effective group ID of
the new process image are saved (as the saved-set-user ID and the saved-set-group ID) for use by
the setuid() function.

The _POSIX_SAVED_IDS flag is defined TRUE.

OSS Attributes
The following OSS attributes of the calling process image are unchanged after successful com-
pletion of any of the exec set of functions:

• OSS process ID (PID)

• Parent process ID

• Process group ID

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• The time left until an alarm clock signal is posted (see the alarm(3) reference page)

• Current working directory

• Root directory

• File mode creation mask (see the umask(2) reference page)

• Process signal mask (see the sigprocmask(2) reference page)

• Pending signals (see the sigpending(2) reference page)

• The tms_utime, tms_stime, tms_cutime, and tms_cstime fields of the tms structure

• File size limit (see the ulimit(2) reference page)

Upon successful completion of the function call, the st_atime field of the file is marked for
update.

The POSIX.1 standard does not specify the effect on the st_atime field when the function call
fails but does find the file. Likewise, the HP implementation does not guarantee the outcome.
Under these circumstances, this field should not be used for further processing.

Guardian Attributes
The newly created OSS process retains the following Guardian attributes of the process that calls
one of the exec set of functions:

• Priority

• Processor on which the process executes

2−22 Hewlett-Packard Company 527186-023

System Functions (e) execlp(2)

• Home terminal

• Job ID

• DEFINE mode switch

• Process access ID (PAID), unless the S_ISUID mode bit of the new image file is set

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Login, remote, and saveabend flags

• File creation mask

The Guardian attributes of the new process differ from those of the calling process in the follow-
ing ways:

• Segments created or shared using Guardian procedure calls such as
SEGMENT_ALLOCATE_ are not inherited.

• The program file is the file specified in the function call.

• The library file is specified in the program file.

• The new process does not inherit the caller’s extended swap file (if any). For a G-series
TNS process or an accelerated process, the extended data segment is managed by the
Kernel Managed Storage Facility (KMSF).

• The process name for the new process is system-generated if the RUNNAMED option is
set in the program file. Otherwise the process is unnamed.

• The size of the data segment of the new process is set in the program file.

• The remote login flag (PCBREMID) is set to off if the program file has had its S_ISUID
mode bit set. Otherwise, the remote login flag is set the same as for the caller.

• The size of the extended data segment of the new process is set in the program file.

• The DEFINEs inherited by the new process depend on the setting of DEFINE mode in
the caller. If DEFINE mode in the caller is ON, all the caller’s DEFINEs are inherited.
If DEFINE mode is OFF, no DEFINEs are inherited.

• The process identification number (PIN) of the new process is unrelated to that of the
calling process. The PIN of the new process is unrestricted if both of the following are
true:

— The HIGHPIN flag is set in the program file and any user library file.

— The PIN of the calling process was unrestricted.

If the PIN of the new process is restricted, then the PIN is in the range 0 through 254.

527186-023 Hewlett-Packard Company 2−23

execlp(2) OSS System Calls Reference Manual

• The creator access ID (CAID) is set to the process access ID (PAID) of the calling pro-
cess.

• The PAID depends on whether the S_ISUID mode bit of the image file is set. If so, the
PAID is based on the file owner ID. If not, the PAID is the same as for the caller. (The
S_ISUID mode bit of the image file has no effect on the security group list.)

• The MOM field for the new process depends on whether the calling process is named. If
so, the MOM field for the new process is set to the caller’s ANCESTOR field. Other-
wise, the MOM field for the new process is set to the caller’s MOM field.

• System debugger selection for the new process is based on Inspect mode.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Use From the Guardian Environment
If called from a Guardian process, the function call fails and errno is set to [ENOTOSS].

RETURN VALUES
If the execlp() function returns to the calling process image, an error has occurred; the return
value is -1, and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the function sets errno to the corresponding value. For
any of these error conditions, file descriptors marked close-on-exec are not closed, signals set to
be caught are not set to the default action, and none of the following are changed:

• The value of the global variable environ

• The pointers contained within the global variable environ

• The elements pointed to by environ pointers

• The effective user ID of the current process

• The effective group ID of the current process

[E2BIG] The number of bytes used by the new process image’s argument list and environ-
ment list is greater than the system-imposed limit. The limit can be obtained by
calling the sysconf(_SC_ARG_MAX) function.

[EACCES] One of the following conditions exists:

• Search permission is denied for the directory components of the path-
name prefix to the process image file.

• The new process image file, any library file, or script file denies execu-
tion permission.

• The new process image file is not a regular file.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

2−24 Hewlett-Packard Company 527186-023

System Functions (e) execlp(2)

[EFAULT] An input address parameter is outside valid bounds limits.

[EINVAL] The new process image file is a binary executable file with invalid attributes.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error, or data has been lost during an input or out-
put transfer. This value is used for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

For systems running J06.07 and later J-series RVUs or H06.18 or later H-series
RVUs, this error can also occur when the OSS file system is out of memory and
one or more open files cannot be propagated from the parent process to the child
process. In this case, if you are running a program from the shell with the shell
reporting any errors, you might see an error like this:

/bin/-sh: /bin/ps: tdm_execve(): failed with unexpected error pr_errno=(4005)
pr_TPCerror=(110) pr_TPCdetail=(36)

where:

• pr_errno is the [EIO] error

• pr_TPCerror is the Guardian PROCESS_LAUNCH_ or
PROCESS_CREATE_ error.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[EMFILE] The maximum number of files is open. The process attempted to open more than
the maximum number of file descriptors allowed for the process. The process
file segment (PFS) of the new process might be smaller than that of the calling
process.

[ENAMETOOLONG]
One of the following is too long:

• The filename pointed to by the file parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the value specified for the file parameter

The pathconf() function can be called to obtain the applicable limits.

[ENODEV] The system cannot find the device containing the fileset containing the process
image file.

[ENOENT] The file parameter points to an empty string.

[ENOEXEC] The new process image file has the appropriate access permissions, but it is nei-
ther in the correct binary executable format nor a valid executable text file. The
/bin/sh command interpreter could not be invoked as a substitute.

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

[ENOTOSS] The calling process is not an OSS process. A function in the exec set of func-
tions cannot be called from the Guardian environment.

527186-023 Hewlett-Packard Company 2−25

execlp(2) OSS System Calls Reference Manual

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[ETXTBSY] The new process image file is currently open for writing by a process.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

RELATED INFORMATION
Commands: nld(1).

Functions: alarm(3), _exit(2), execl(2), execle(2), execv(2), execve(2), execvp(2), fcntl(2),
fork(2), getenv(3), putenv(3), semget(2), sigaction(2), system(3), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2), times(3), ulimit(3), umask(2).

Miscellaneous: environ(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• Guardian attributes are associated with the new OSS process. See Guardian Attributes
under DESCRIPTION.

• [ENOENT] is returned in errno if the environment variable PATH is not defined when
the execlp() function is called.

• The contents of the st_atime field following a failed function call in which the file was
found should not be depended upon for further processing.

• The use of *env[] as a parameter in the call to main() is an HP extension.

The following are HP extensions to the XPG4 Version 2 specification:

• Text files containing the #! interpreter_name [optional_string] header line can execute.

• The [EINVAL], [EIO], [ENODEV], [ENOTOSS], and [EUNKNOWN] error values are
an HP extension.

2−26 Hewlett-Packard Company 527186-023

System Functions (e) execv(2)

NAME
execv - Executes a file using a pathname, an argv array, and **environ

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <unistd.h>

extern char ∗∗∗∗environ;

int execv(
const char ∗∗path,
char ∗∗ const argv[]);

PARAMETERS
**environ Points to an array of character pointers to environment strings. The environment

strings define the OSS environment for the new process. The environ array is
terminated by a null pointer.

The **environ array of the new process is also passed as the env[] array in the
call to the main() function of the new process. Refer to Entering the New Pro-
cess later in this reference page.

path Points to a null-terminated string containing a pathname that identifies the new
process image file. The pathname is absolute if it starts with a slash (/) character.
Otherwise, the pathname is relative and is resolved by prefixing the current
working directory.

If the final component of the path parameter names a symbolic link, the link is
traversed and pathname resolution continues.

argv[] Specifies an array of character pointers to null-terminated strings containing
arguments to be passed to the main function of the new program. argv[0] should
point to the null-terminated string containing the filename of the new process
image. The last member of this array must be a null pointer.

These strings constitute the argument list available to the new process image.

DESCRIPTION
The execv() function is one of the exec set of functions. The exec set of functions replace the
current process image with a new process image. The new image is constructed from a regular
executable file, called a new process image file. The new process image file is formatted as an
executable text or binary file in one of the formats recognized by the exec set of functions.

A successful execv() function call does not return, because the calling process image is overlaid
by the new process image.

Entering the New Process
When a program is executed as a result of a call to a function in the exec set of functions, it is
entered as a function call as follows:

int main(
int argc,
char ∗∗argv[],
char ∗∗env[]);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and env[] is a pointer to a character array listing the

527186-023 Hewlett-Packard Company 2−27

execv(2) OSS System Calls Reference Manual

environment variables. The argv[] array is terminated by a null pointer. The null pointer is not
counted in argc.

The arguments specified by a program with one of the exec set of functions are passed on to the
new process image in the corresponding arguments to the main() function.

The env[] parameter for the main function is an HP extension and is not the preferred method of
obtaining the environment variables for the new process. Use of the **environ array is the pre-
ferred method.

Passing the Arguments and the Environment
The number of bytes available for the new process’s combined argument and environment lists
has a system-imposed limit. This limit, which includes the pointers and the null terminators on
the strings, is available by calling the sysconf(_SC_ARG_MAX) function.

Executing a Binary File
If the file specified in the function call is a binary executable file, the function loads the file
directly.

Executing a Text File
If the file specified in the function call is not a binary executable file, all forms of the function
examine the file to determine whether it is an executable text file. The function checks for a
header line in the following format:

#! interpreter_name [optional_string]

The #! notation identifies the file as an executable text file. The new process image filename is
constructed from the process image filename in the interpreter_name string, treating it like the
path parameter. The arguments passed to the new process are modified as follows:

• The argv[0] parameter is set to the name of the interpreter.

• If the optional_string portion is present, argv[1] is set to optional_string.

• The next element of argv[] is set to the original value of path).

• The remaining elements of argv[] are set to the original elements of argv[], starting with
argv[1].

• The original argv[0] is discarded.

The S_ISUID and S_ISGID mode bits of an executable text file are honored. Those bits of the
interpreter_name command interpreter are ignored.

When the File Is Invalid
If the process image file is not a valid executable object, or if the text file does not contain the
header line, the execv() function call fails and errno is set to the value of [ENOEXEC].

Open Files
File descriptors open in the calling process image remain open in the new process image, except
for those:

• Whose close-on-exec flag FD_CLOEXEC is set (see the fcntl(2) reference page)

• Opened using a Guardian function or procedure call

If the process file segment of the new process image is smaller than the process file segment of
the calling process image and if the calling process image has a large number of file descriptors
open, then the system might not be able to propagate all the open file descriptors to the new pro-
cess image. When this situation occurs, the function call fails and errno is set to the value of
[EMFILE].

2−28 Hewlett-Packard Company 527186-023

System Functions (e) execv(2)

For those file descriptors that remain open, all attributes of the open file descriptor, including file
locks, remain unchanged. All directory streams are closed.

Shared Memory
Any attached shared memory segments are detached by a successful call to a function in the exec
set of functions. Refer to the shmat(2) reference page for additional information about shared
memory segment use.

Semaphores
Semaphore set IDs attached to a calling process are also attached to the new process. The new
process also inherits the adjust-on-exit (semadj) values of the calling process.

Refer to the semget(2) reference page for additional information about semaphore use.

Signals
Signals set to:

• The default action (SIG_DFL) in the calling process image are set to the default action
in the new process image.

• Be ignored (SIG_IGN) by the calling process image are set to be ignored by the new
process image.

• Cause abnormal termination (SIG_ABORT) in the calling process image are set to that
action in the new process image.

• Cause entry into the debugger (SIG_DEBUG) in the calling process image are set to that
action in the new process image.

• Be caught by the calling process image are set to the default action in the new process
image.

See the signal(4) reference page either online or in the Open System Services System Calls Refer-
ence Manual.

User ID and Group ID
If the set-user-ID mode bit of the new process image file is set (see the chmod(2) reference
page), the effective user ID of the new process image is set to the owner ID of the new process
image file. Similarly, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the new process image is set to the group ID of the new process image file.
The real user ID, real group ID, and supplementary group IDs of the new process image remain
the same as those of the calling process image. The effective user ID and effective group ID of
the new process image are saved (as the saved-set-user ID and the saved-set-group ID) for use by
the setuid() function.

The _POSIX_SAVED_IDS flag is defined TRUE.

OSS Attributes
The following OSS attributes of the calling process image are unchanged after successful com-
pletion of any of the exec set of functions:

• OSS process ID (PID)

• Parent process ID

• Process group ID

527186-023 Hewlett-Packard Company 2−29

execv(2) OSS System Calls Reference Manual

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• The time left until an alarm clock signal is posted (see the alarm(3) reference page)

• Current working directory

• Root directory

• File mode creation mask (see the umask(2) reference page)

• Process signal mask (see the sigprocmask(2) reference page)

• Pending signals (see the sigpending(2) reference page)

• The tms_utime, tms_stime, tms_cutime, and tms_cstime fields of the tms structure

• File size limit (see the ulimit(2) reference page)

Upon successful completion of the function call, the st_atime field of the file is marked for
update.

The POSIX.1 standard does not specify the effect on the st_atime field when the function call
fails but does find the file. Likewise, the HP implementation does not guarantee the outcome.
Under these circumstances, this field should not be used for further processing.

Guardian Attributes
The newly created OSS process retains the following Guardian attributes of the process that calls
one of the exec set of functions:

• Priority

• Processor on which the process executes

• Home terminal

• Job ID

• DEFINE mode switch

• Process access ID (PAID), unless the S_ISUID mode bit of the new image file is set

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

2−30 Hewlett-Packard Company 527186-023

System Functions (e) execv(2)

• Login, remote, and saveabend flags

• File creation mask

The Guardian attributes of the new process differ from those of the calling process in the follow-
ing ways:

• Segments created or shared using Guardian procedure calls such as
SEGMENT_ALLOCATE_ are not inherited.

• The program file is the file specified in the function call.

• The library file is specified in the program file.

• The new process does not inherit the caller’s extended swap file (if any). For a G-series
TNS process or an accelerated process, the extended data segment is managed by the
Kernel Managed Storage Facility (KMSF).

• The process name for the new process is system-generated if the RUNNAMED option is
set in the program file. Otherwise the process is unnamed.

• The size of the data segment of the new process is set in the program file.

• The remote login flag (PCBREMID) is set to off if the program file has had its S_ISUID
mode bit set. Otherwise, the remote login flag is set the same as for the caller.

• The size of the extended data segment of the new process is set in the program file.

• The DEFINEs inherited by the new process depend on the setting of DEFINE mode in
the caller. If DEFINE mode in the caller is ON, all the caller’s DEFINEs are inherited.
If DEFINE mode is OFF, no DEFINEs are inherited.

• The process identification number (PIN) of the new process is unrelated to that of the
calling process. The PIN of the new process is unrestricted if both of the following are
true:

— The HIGHPIN flag is set in the program file and any user library file.

— The PIN of the calling process was unrestricted.

If the PIN of the new process is restricted, then the PIN is in the range 0 through 254.

• The creator access ID (CAID) is set to the process access ID (PAID) of the calling pro-
cess.

• The PAID depends on whether the S_ISUID mode bit of the image file is set. If so, the
PAID is based on the file owner ID. If not, the PAID is the same as for the caller. (The
S_ISUID mode bit of the image file has no effect on the security group list.)

• The MOM field for the new process depends on whether the calling process is named. If
so, the MOM field for the new process is set to the caller’s ANCESTOR field. Other-
wise, the MOM field for the new process is set to the caller’s MOM field.

• System debugger selection for the new process is based on Inspect mode.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

527186-023 Hewlett-Packard Company 2−31

execv(2) OSS System Calls Reference Manual

Use From the Guardian Environment
If called from a Guardian process, the function call fails and errno is set to [ENOTOSS].

RETURN VALUES
If the execv() function returns to the calling process image, an error has occurred; the return
value is -1, and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the function sets errno to the corresponding value. For
any of these error conditions, file descriptors marked close-on-exec are not closed, signals set to
be caught are not set to the default action, and none of the following are changed:

• The argv[] array of pointers

• The elements pointed to by this array

• The value of the global variable environ

• The pointers contained within the global variable environ

• The elements pointed to by environ pointers

• The effective user ID of the current process

• The effective group ID of the current process

[E2BIG] The number of bytes used by the new process image’s argument list and environ-
ment list is greater than the system-imposed limit. The limit can be obtained by
calling the sysconf(_SC_ARG_MAX) function.

[EACCES] One of the following conditions exists:

• Search permission is denied for the directory components of the path-
name prefix to the process image file.

• The new process image file, any library file, or script file denies execu-
tion permission.

• The new process image file is not a regular file.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

[EFAULT] An input address parameter is outside valid bounds limits.

[EINVAL] The new process image file is a binary executable file with invalid attributes.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error, or data has been lost during an input or out-
put transfer. This value is used for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

For systems running J06.07 and later J-series RVUs or H06.18 or later H-series
RVUs, this error can also occur when the OSS file system is out of memory and
one or more open files cannot be propagated from the parent process to the child
process. In this case, if you are running a program from the shell with the shell
reporting any errors, you might see an error like this:

/bin/-sh: /bin/ps: tdm_execve(): failed with unexpected error pr_errno=(4005)
pr_TPCerror=(110) pr_TPCdetail=(36)

where:

2−32 Hewlett-Packard Company 527186-023

System Functions (e) execv(2)

• pr_errno is the [EIO] error

• pr_TPCerror is the Guardian PROCESS_LAUNCH_ or
PROCESS_CREATE_ error.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[EMFILE] The maximum number of files is open. The process attempted to open more than
the maximum number of file descriptors allowed for the process. The process
file segment (PFS) of the new process might be smaller than that of the calling
process.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname pointed to by the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENODEV] The system cannot find the device containing the fileset containing the process
image file.

[ENOENT] One of the following conditions exists:

• One or more components of the new process image file’s pathname do
not exist.

• The path parameter points to an empty string.

[ENOEXEC] The new process image file has the appropriate access permissions, but it is nei-
ther in the correct binary executable format nor a valid executable text file.

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

[ENOTDIR] A component of the path prefix of the new process image file is not a directory.

[ENOTOSS] The calling process is not an OSS process. A function in the exec set of func-
tions cannot be called from the Guardian environment.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[ETXTBSY] The new process image file is currently open for writing by a process.

527186-023 Hewlett-Packard Company 2−33

execv(2) OSS System Calls Reference Manual

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

RELATED INFORMATION
Commands: eld(1), ld(1), nld(1).

Functions: alarm(3), _exit(2), execl(2), execle(2), execlp(2), execve(2), execvp(2), fcntl(2),
fork(2), getenv(3), putenv(3), semget(2), sigaction(2), system(3), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2), times(3), ulimit(3), umask(2).

Miscellaneous: environ(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• Guardian attributes are associated with the new OSS process. See Guardian Attributes
under DESCRIPTION.

• The contents of the st_atime field following a failed function call in which the file was
found should not be depended upon for further processing.

• The use of *env[] as a parameter in the call to main() is an HP extension.

The following are HP extensions to the XPG4 Version 2 specification:

• Text files containing the #! interpreter_name [optional_string] header line can execute.

• The [EINVAL], [EIO], [ENODEV], [ENOTOSS], and [EUNKNOWN] error values are
an HP extension.

2−34 Hewlett-Packard Company 527186-023

System Functions (e) execve(2)

NAME
execve - Executes a file using a pathname, an argv array, and an envp array

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <unistd.h>

extern char ∗∗∗∗environ;

int execve(
const char ∗∗path,
char ∗∗ const argv[],
char ∗∗ const envp[]);

PARAMETERS
**environ Points to an array of character pointers to environment strings. The environment

strings define the OSS environment for the calling process. The environ array is
terminated by a null pointer.

When the new process is created, the corresponding **environ array is not ini-
tialized for it with the content of the **environ array of the calling process.
Instead, the envp[] array is written into the **environ array of the new process
when the execve() function call is processed.

The **environ array of the new process is also passed as the env[] array in the
call to the main() function of the new process. Refer to Entering the New Pro-
cess later in this reference page.

path Points to a null-terminated string containing a pathname that identifies the new
process image file. The pathname is absolute if it starts with a slash (/) character.
Otherwise, the pathname is relative and is resolved by prefixing the current
working directory.

If the final component of the path parameter names a symbolic link, the link is
traversed and pathname resolution continues.

argv[] Specifies an array of character pointers to null-terminated strings containing
arguments to be passed to the main function of the new program. argv[0] should
point to the null-terminated string containing the filename of the new process
image. The last member of this array must be a null pointer.

These strings constitute the argument list available to the new process image.

envp[] Specifies an array of character pointers to null-terminated strings that describe
the environment for the new process. The last member of this array must be a
null pointer.

DESCRIPTION
The execve() function is one of the exec set of functions. The exec set of functions replace the
current process image with a new process image. The new image is constructed from a regular
executable file, called a new process image file. The new process image file is formatted as an
executable text or binary file in one of the formats recognized by the exec set of functions.

527186-023 Hewlett-Packard Company 2−35

execve(2) OSS System Calls Reference Manual

A successful execve() function call does not return, because the calling process image is overlaid
by the new process image.

Entering the New Process
When a program is executed as a result of a call to a function in the exec set of functions, it is
entered as a function call as follows:

int main(
int argc,
char ∗∗argv[],
char ∗∗env[]);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and env[] is a pointer to a character array listing the
environment variables. The argv[] array is terminated by a null pointer. The null pointer is not
counted in argc.

The arguments specified by a program with one of the exec set of functions are passed on to the
new process image in the corresponding arguments to the main() function.

The env[] parameter for the main function is an HP extension and is not the preferred method of
obtaining the environment variables for the new process. Use of the **environ array is the pre-
ferred method.

Passing the Arguments and the Environment
The number of bytes available for the new process’s combined argument and environment lists
has a system-imposed limit. This limit, which includes the pointers and the null terminators on
the strings, is available by calling the sysconf(_SC_ARG_MAX) function.

Executing a Binary File
If the file specified in the function call is a binary executable file, the function loads the file
directly.

Executing a Text File
If the file specified in the function call is not a binary executable file, the function examines the
file to determine whether it is an executable text file. The function checks for a header line in the
following format:

#! interpreter_name [optional_string]

The #! notation identifies the file as an executable text file. The new process image filename is
constructed from the process image filename in the interpreter_name string, treating it like the
path parameter. The arguments passed to the new process are modified as follows:

• The argv[0] parameter is set to the name of the interpreter.

• If the optional_string portion is present, argv[1] is set to optional_string.

• The next element of argv[] is set to the original value of path.

• The remaining elements of argv[] are set to the original elements of argv[], starting with
argv[1].

• The original argv[0] is discarded.

The S_ISUID and S_ISGID mode bits of an executable text file are honored. Those bits of the
interpreter_name command interpreter are ignored.

2−36 Hewlett-Packard Company 527186-023

System Functions (e) execve(2)

When the File Is Invalid
If the process image file is not a valid executable object, or if the text file does not contain the
header line, the execve() function call fails and errno is set to the value of [ENOEXEC].

Open Files
File descriptors open in the calling process image remain open in the new process image, except
for those:

• Whose close-on-exec flag FD_CLOEXEC is set (see the fcntl(2) reference page)

• Opened using a Guardian function or procedure call

If the process file segment of the new process image is smaller than the process file segment of
the calling process image and if the calling process image has a large number of file descriptors
open, then the system might not be able to propagate all the open file descriptors to the new pro-
cess image. When this situation occurs, the function call fails and errno is set to the value of
[EMFILE].

For those file descriptors that remain open, all attributes of the open file descriptor, including file
locks, remain unchanged. All directory streams are closed.

Shared Memory
Any attached shared memory segments are detached by a successful call to a function in the exec
set of functions. Refer to the shmat(2) reference page for additional information about shared
memory segment use.

Semaphores
Semaphore set IDs attached to a calling process are also attached to the new process. The new
process also inherits the adjust-on-exit (semadj) values of the calling process.

Refer to the semget(2) reference page for additional information about semaphore use.

Signals
Signals set to:

• The default action (SIG_DFL) in the calling process image are set to the default action
in the new process image.

• Be ignored (SIG_IGN) by the calling process image are set to be ignored by the new
process image.

• Cause abnormal termination (SIG_ABORT) in the calling process image are set to that
action in the new process image.

• Cause entry into the debugger (SIG_DEBUG) in the calling process image are set to that
action in the new process image.

• Be caught by the calling process image are set to the default action in the new process
image.

See the signal(4) reference page either online or in the Open System Services System Calls Refer-
ence Manual.

User ID and Group ID
If the set-user-ID mode bit of the new process image file is set (see the chmod(2) reference
page), the effective user ID of the new process image is set to the owner ID of the new process
image file. Similarly, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the new process image is set to the group ID of the new process image file.
The real user ID, real group ID, and supplementary group IDs of the new process image remain
the same as those of the calling process image. The effective user ID and effective group ID of

527186-023 Hewlett-Packard Company 2−37

execve(2) OSS System Calls Reference Manual

the new process image are saved (as the saved-set-user ID and the saved-set-group ID) for use by
the setuid() function.

The _POSIX_SAVED_IDS flag is defined TRUE.

OSS Attributes
The following OSS attributes of the calling process image are unchanged after successful com-
pletion of any of the exec set of functions:

• OSS process ID (PID)

• Parent process ID

• Process group ID

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• The time left until an alarm clock signal is posted (see the alarm(3) reference page)

• Current working directory

• Root directory

• File mode creation mask (see the umask(2) reference page)

• Process signal mask (see the sigprocmask(2) reference page)

• Pending signals (see the sigpending(2) reference page)

• The tms_utime, tms_stime, tms_cutime, and tms_cstime fields of the tms structure

• File size limit (see the ulimit(2) reference page)

Upon successful completion of the function call, the st_atime field of the file is marked for
update.

The POSIX.1 standard does not specify the effect on the st_atime field when the function call
fails but does find the file. Likewise, the HP implementation does not guarantee the outcome.
Under these circumstances, this field should not be used for further processing.

Guardian Attributes
The newly created OSS process retains the following Guardian attributes of the process that calls
one of the exec set of functions:

• Priority

• Processor on which the process executes

• Home terminal

• Job ID

• DEFINE mode switch

• Process access ID (PAID), unless the S_ISUID mode bit of the new image file is set

2−38 Hewlett-Packard Company 527186-023

System Functions (e) execve(2)

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Login, remote, and saveabend flags

• File creation mask

The Guardian attributes of the new process differ from those of the calling process in the follow-
ing ways:

• Segments created or shared using Guardian procedure calls such as
SEGMENT_ALLOCATE_ are not inherited.

• The program file is the file specified in the function call.

• The library file is specified in the program file.

• The new process does not inherit the caller’s extended swap file (if any). For a G-series
TNS process or an accelerated process, the extended data segment is managed by the
Kernel Managed Storage Facility (KMSF).

• The process name for the new process is system-generated if the RUNNAMED option is
set in the program file. Otherwise the process is unnamed.

• The size of the data segment of the new process is set in the program file.

• The remote login flag (PCBREMID) is set to off if the program file has had its S_ISUID
mode bit set. Otherwise, the remote login flag is set the same as for the caller.

• The size of the extended data segment of the new process is set in the program file.

• The DEFINEs inherited by the new process depend on the setting of DEFINE mode in
the caller. If DEFINE mode in the caller is ON, all the caller’s DEFINEs are inherited.
If DEFINE mode is OFF, no DEFINEs are inherited.

• The process identification number (PIN) of the new process is unrelated to that of the
calling process. The PIN of the new process is unrestricted if both of the following are
true:

— The HIGHPIN flag is set in the program file and any user library file.

— The PIN of the calling process was unrestricted.

If the PIN of the new process is restricted, then the PIN is in the range 0 through 254.

• The creator access ID (CAID) is set to the process access ID (PAID) of the calling pro-
cess.

527186-023 Hewlett-Packard Company 2−39

execve(2) OSS System Calls Reference Manual

• The PAID depends on whether the S_ISUID mode bit of the image file is set. If so, the
PAID is based on the file owner ID. If not, the PAID is the same as for the caller. (The
S_ISUID mode bit of the image file has no effect on the security group list.)

• The MOM field for the new process depends on whether the calling process is named. If
so, the MOM field for the new process is set to the caller’s ANCESTOR field. Other-
wise, the MOM field for the new process is set to the caller’s MOM field.

• System debugger selection for the new process is based on Inspect mode.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Use From the Guardian Environment
If called from a Guardian process, the function call fails and errno is set to [ENOTOSS].

RETURN VALUES
If the execve() function returns to the calling process image, an error has occurred; the return
value is -1, and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the function sets errno to the corresponding value. For
any of these error conditions, file descriptors marked close-on-exec are not closed, signals set to
be caught are not set to the default action, and none of the following are changed:

• The argv[] array of pointers

• The envp[] array of pointers

• The elements pointed to by these arrays

• The effective user ID of the current process

• The effective group ID of the current process

[E2BIG] The number of bytes used by the new process image’s argument list and environ-
ment list is greater than the system-imposed limit. The limit can be obtained by
calling the sysconf(_SC_ARG_MAX) function.

[EACCES] One of the following conditions exists:

• Search permission is denied for the directory components of the path-
name prefix to the process image file.

• The new process image file, any library file, or script file denies execu-
tion permission.

• The new process image file is not a regular file.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

[EFAULT] An input address parameter is outside valid bounds limits.

2−40 Hewlett-Packard Company 527186-023

System Functions (e) execve(2)

[EINVAL] The new process image file is a binary executable file with invalid attributes.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error, or data has been lost during an input or out-
put transfer. This value is used for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

For systems running J06.07 and later J-series RVUs or H06.18 or later H-series
RVUs, this error can also occur when the OSS file system is out of memory and
one or more open files cannot be propagated from the parent process to the child
process. In this case, if you are running a program from the shell with the shell
reporting any errors, you might see an error like this:

/bin/-sh: /bin/ps: tdm_execve(): failed with unexpected error pr_errno=(4005)
pr_TPCerror=(110) pr_TPCdetail=(36)

where:

• pr_errno is the [EIO] error

• pr_TPCerror is the Guardian PROCESS_LAUNCH_ or
PROCESS_CREATE_ error.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[EMFILE] The maximum number of files is open. The process attempted to open more than
the maximum number of file descriptors allowed for the process. The process
file segment (PFS) of the new process might be smaller than that of the calling
process.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname pointed to by the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENODEV] The system cannot find the device containing the fileset containing the process
image file.

[ENOENT] One of the following conditions exists:

• One or more components of the new process image file’s pathname do
not exist.

• The path parameter points to an empty string.

[ENOEXEC] The new process image file has the appropriate access permissions, but it is nei-
ther in the correct binary executable format nor a valid executable text file.

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

527186-023 Hewlett-Packard Company 2−41

execve(2) OSS System Calls Reference Manual

[ENOTDIR] A component of the path prefix of the new process image file is not a directory.

[ENOTOSS] The calling process is not an OSS process. A function in the exec set of func-
tions cannot be called from the Guardian environment.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[ETXTBSY] The new process image file is currently open for writing by a process.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

RELATED INFORMATION
Commands: eld(1), ld(1), nld(1).

Functions: alarm(3), _exit(2), execl(2), execle(2), execlp(2), execv(2), execvp(2), fcntl(2),
fork(2), getenv(3), putenv(3), semget(2), sigaction(2), system(3), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2), times(3), ulimit(3), umask(2).

Miscellaneous: environ(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• Guardian attributes are associated with the new OSS process. See Guardian Attributes
under DESCRIPTION.

• The contents of the st_atime field following a failed function call in which the file was
found should not be depended upon for further processing.

• The use of *env[] as a parameter in the call to main() is an HP extension.

The following are HP extensions to the XPG4 Version 2 specification:

• Text files containing the #! interpreter_name [optional_string] header line can execute.

• The [EINVAL], [EIO], [ENODEV], [ENOTOSS], and [EUNKNOWN] error values are
an HP extension.

2−42 Hewlett-Packard Company 527186-023

System Functions (e) execvp(2)

NAME
execvp - Executes a file using a filename, an argv array, and **environ

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <unistd.h>

extern char ∗∗∗∗environ;

int execvp(
const char ∗∗file,
char ∗∗ const argv[]);

PARAMETERS
**environ Points to an array of character pointers to environment strings. The environment

strings define the OSS environment for the new process. The environ array is
terminated by a null pointer.

The **environ array of the new process is also passed as the env[] array in the
call to the main() function of the new process. Refer to Entering the New Pro-
cess later in this reference page.

file Identifies the new process image file. If this parameter

• Starts with a slash (/) character, then it contains the absolute pathname.

• Does not start with a slash but does contain a slash, then the pathname
resolves relative to the current working directory.

• Contains no slash, the system searches the directories listed in the PATH
environment variable for the file and prefixes the directory in which it is
found.

argv[] Specifies an array of character pointers to null-terminated strings containing
arguments to be passed to the main function of the new program. argv[0] should
point to the null-terminated string containing the filename of the new process
image. The last member of this array must be a null pointer.

These strings constitute the argument list available to the new process image.

DESCRIPTION
The execvp() function is one of the set of exec functions. The exec set of functions replace the
current process image with a new process image. The new image is constructed from a regular
executable file, called a new process image file. The new process image file is formatted as an
executable text or binary file in one of the formats recognized by the exec set of functions.

A successful execvp() function call does not return, because the calling process image is over-
laid by the new process image.

527186-023 Hewlett-Packard Company 2−43

execvp(2) OSS System Calls Reference Manual

Entering the New Process
When a program is executed as a result of a call to a function in the exec set of functions, it is
entered as a function call as follows:

int main(
int argc,
char ∗∗argv[],
char ∗∗env[]);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and env[] is a pointer to a character array listing the
environment variables. The argv[] array is terminated by a null pointer. The null pointer is not
counted in argc.

The arguments specified by a program with one of the exec set of functions are passed on to the
new process image in the corresponding arguments to the main() function.

The env[] parameter for the main function is an HP extension and is not the preferred method of
obtaining the environment variables for the new process. Use of the **environ array is the pre-
ferred method.

Passing the Arguments and the Environment
The number of bytes available for the new process’s combined argument and environment lists
has a system-imposed limit. This limit, which includes the pointers and the null terminators on
the strings, is available by calling the sysconf(_SC_ARG_MAX) function.

Executing a Binary File
If the file specified in the function call is a binary executable file, the function loads the file
directly.

Executing a Text File
If the file specified in the function call is not a binary executable file, the function examines the
file to determine whether it is an executable text file. The function checks for a header line in the
following format:

#! interpreter_name [optional_string]

The #! notation identifies the file as an executable text file. The new process image filename is
constructed from the process image filename in the interpreter_name string, treating it like the
path parameter. The arguments passed to the new process are modified as follows:

• The argv[0] parameter is set to the name of the interpreter.

• If the optional_string portion is present, argv[1] is set to optional_string.

• The next element of argv[] is set to the original value of file.

• The remaining elements of argv[] are set to the original elements of argv[], starting with
argv[1].

• The original argv[0] is discarded.

The S_ISUID and S_ISGID mode bits of an executable text file are honored. Those bits of the
interpreter_name command interpreter are ignored.

When the File Is Invalid
If the process image file is not a valid executable object, or if the text file does not contain the
header line, the execvp() function invokes the /bin/sh command interpreter as the new process
image and pass the following arguments to it:

2−44 Hewlett-Packard Company 527186-023

System Functions (e) execvp(2)

• argv[0] is set to the string "sh".

• argv[1] is set to the original value of the file parameter.

• The remaining elements of argv[] are set to the original elements of argv[], starting with
argv[1].

• The original value of argv[0] is discarded.

Open Files
File descriptors open in the calling process image remain open in the new process image, except
for those:

• Whose close-on-exec flag FD_CLOEXEC is set (see the fcntl(2) reference page)

• Opened using a Guardian function or procedure call

If the process file segment of the new process image is smaller than the process file segment of
the calling process image and if the calling process image has a large number of file descriptors
open, then the system might not be able to propagate all the open file descriptors to the new pro-
cess image. When this situation occurs, the function call fails and errno is set to the value of
[EMFILE].

For those file descriptors that remain open, all attributes of the open file descriptor, including file
locks, remain unchanged. All directory streams are closed.

Shared Memory
Any attached shared memory segments are detached by a successful call to a function in the exec
set of functions. Refer to the shmat(2) reference page for additional information about shared
memory segment use.

Semaphores
Semaphore set IDs attached to a calling process are also attached to the new process. The new
process also inherits the adjust-on-exit (semadj) values of the calling process.

Refer to the semget(2) reference page for additional information about semaphore use.

Signals
Signals set to:

• The default action (SIG_DFL) in the calling process image are set to the default action
in the new process image.

• Be ignored (SIG_IGN) by the calling process image are set to be ignored by the new
process image.

• Cause abnormal termination (SIG_ABORT) in the calling process image are set to that
action in the new process image.

• Cause entry into the debugger (SIG_DEBUG) in the calling process image are set to that
action in the new process image.

• Be caught by the calling process image are set to the default action in the new process
image.

See the signal(4) reference page either online or in the Open System Services System Calls Refer-
ence Manual.

527186-023 Hewlett-Packard Company 2−45

execvp(2) OSS System Calls Reference Manual

User ID and Group ID
If the set-user-ID mode bit of the new process image file is set (see the chmod(2) reference
page), the effective user ID of the new process image is set to the owner ID of the new process
image file. Similarly, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the new process image is set to the group ID of the new process image file.
The real user ID, real group ID, and supplementary group IDs of the new process image remain
the same as those of the calling process image. The effective user ID and effective group ID of
the new process image are saved (as the saved-set-user ID and the saved-set-group ID) for use by
the setuid() function.

The _POSIX_SAVED_IDS flag is defined TRUE.

OSS Attributes
The following OSS attributes of the calling process image are unchanged after successful com-
pletion of any of the exec set of functions:

• OSS process ID (PID)

• Parent process ID

• Process group ID

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• The time left until an alarm clock signal is posted (see the alarm(3) reference page)

• Current working directory

• Root directory

• File mode creation mask (see the umask(2) reference page)

• Process signal mask (see the sigprocmask(2) reference page)

• Pending signals (see the sigpending(2) reference page)

• The tms_utime, tms_stime, tms_cutime, and tms_cstime fields of the tms structure

• File size limit (see the ulimit(2) reference page)

Upon successful completion of the function call, the st_atime field of the file is marked for
update.

The POSIX.1 standard does not specify the effect on the st_atime field when the function call
fails but does find the file. Likewise, the HP implementation does not guarantee the outcome.
Under these circumstances, this field should not be used for further processing.

Guardian Attributes
The newly created OSS process retains the following Guardian attributes of the process that calls
one of the exec set of functions:

• Priority

2−46 Hewlett-Packard Company 527186-023

System Functions (e) execvp(2)

• Processor on which the process executes

• Home terminal

• Job ID

• DEFINE mode switch

• Process access ID (PAID), unless the S_ISUID mode bit of the new image file is set

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Login, remote, and saveabend flags

• File creation mask

The Guardian attributes of the new process differ from those of the calling process in the follow-
ing ways:

• Segments created or shared using Guardian procedure calls such as
SEGMENT_ALLOCATE_ are not inherited.

• The program file is the file specified in the function call.

• The library file is specified in the program file.

• The new process does not inherit the caller’s extended swap file (if any). For a G-series
TNS process or an accelerated process, the extended data segment is managed by the
Kernel Managed Storage Facility (KMSF).

• The process name for the new process is system-generated if the RUNNAMED option is
set in the program file. Otherwise the process is unnamed.

• The size of the data segment of the new process is set in the program file.

• The remote login flag (PCBREMID) is set to off if the program file has had its S_ISUID
mode bit set. Otherwise, the remote login flag is set the same as for the caller.

• The size of the extended data segment of the new process is set in the program file.

• The DEFINEs inherited by the new process depend on the setting of DEFINE mode in
the caller. If DEFINE mode in the caller is ON, all the caller’s DEFINEs are inherited.
If DEFINE mode is OFF, no DEFINEs are inherited.

• The process identification number (PIN) of the new process is unrelated to that of the
calling process. The PIN of the new process is unrestricted if both of the following are
true:

— The HIGHPIN flag is set in the program file and any user library file.

527186-023 Hewlett-Packard Company 2−47

execvp(2) OSS System Calls Reference Manual

— The PIN of the calling process was unrestricted.

If the PIN of the new process is restricted, then the PIN is in the range 0 through 254.

• The creator access ID (CAID) is set to the process access ID (PAID) of the calling pro-
cess.

• The PAID depends on whether the S_ISUID mode bit of the image file is set. If so, the
PAID is based on the file owner ID. If not, the PAID is the same as for the caller. (The
S_ISUID mode bit of the image file has no effect on the security group list.)

• The MOM field for the new process depends on whether the calling process is named. If
so, the MOM field for the new process is set to the caller’s ANCESTOR field. Other-
wise, the MOM field for the new process is set to the caller’s MOM field.

• System debugger selection for the new process is based on Inspect mode.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Use From the Guardian Environment
If called from a Guardian process, the function call fails and errno is set to [ENOTOSS].

RETURN VALUES
If the execvp() function returns to the calling process image, an error has occurred; the return
value is -1, and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the function sets errno to the corresponding value. For
any of these error conditions, file descriptors marked close-on-exec are not closed, signals set to
be caught are not set to the default action, and none of the following are changed:

• The argv[] array of pointers

• The elements pointed to by this array

• The value of the global variable environ

• The pointers contained within the global variable environ

• The elements pointed to by environ pointers

• The effective user ID of the current process

• The effective group ID of the current process

[E2BIG] The number of bytes used by the new process image’s argument list and environ-
ment list is greater than the system-imposed limit. The limit can be obtained by
calling the sysconf(_SC_ARG_MAX) function.

[EACCES] One of the following conditions exists:

• Search permission is denied for the directory components of the path-
name prefix to the process image file.

2−48 Hewlett-Packard Company 527186-023

System Functions (e) execvp(2)

• The new process image file, any library file, or script file denies execu-
tion permission.

• The new process image file is not a regular file.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

[EFAULT] An input address parameter is outside valid bounds limits.

[EINVAL] The new process image file is a binary executable file with invalid attributes.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error, or data has been lost during an input or out-
put transfer. This value is used for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

For systems running J06.07 and later J-series RVUs or H06.18 or later H-series
RVUs, this error can also occur when the OSS file system is out of memory and
one or more open files cannot be propagated from the parent process to the child
process. In this case, if you are running a program from the shell with the shell
reporting any errors, you might see an error like this:

/bin/-sh: /bin/ps: tdm_execve(): failed with unexpected error pr_errno=(4005)
pr_TPCerror=(110) pr_TPCdetail=(36)

where:

• pr_errno is the [EIO] error

• pr_TPCerror is the Guardian PROCESS_LAUNCH_ or
PROCESS_CREATE_ error.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[EMFILE] The maximum number of files is open. The process attempted to open more than
the maximum number of file descriptors allowed for the process. The process
file segment (PFS) of the new process might be smaller than that of the calling
process.

[ENAMETOOLONG]
One of the following is too long:

• The intermediate result of pathname resolution when a symbolic link is
part of the value specified by the file parameter

The pathconf() function can be called to obtain the applicable limits.

[ENODEV] The system cannot find the device containing the fileset containing the process
image file.

[ENOENT] The file parameter points to an empty string.

[ENOEXEC] The new process image file has the appropriate access permissions, but it is nei-
ther in the correct binary executable format nor a valid executable text file. The
/bin/sh command interpreter could not be invoked as a substitute.

527186-023 Hewlett-Packard Company 2−49

execvp(2) OSS System Calls Reference Manual

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

[ENOTDIR] A component of the path prefix of the new process image file is not a directory.

[ENOTOSS] The calling process is not an OSS process. A function in the exec set of func-
tions cannot be called from the Guardian environment.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[ETXTBSY] The new process image file is currently open for writing by a process.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

RELATED INFORMATION
Commands: eld(1), ld(1), nld(1).

Functions: alarm(3), _exit(2), execl(2), execle(2), execlp(2), execv(2), execve(2), fcntl(2),
fork(2), getenv(3), putenv(3), semget(2), sigaction(2), system(3), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2), times(3), ulimit(3), umask(2).

Miscellaneous: environ(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• Guardian attributes are associated with the new OSS process. See Guardian Attributes
under DESCRIPTION.

• [ENOENT] is returned in errno if the environment variable PATH is not defined when
the execvp() function is called.

• The contents of the st_atime field following a failed function call in which the file was
found should not be depended upon for further processing.

• The use of *env[] as a parameter in the call to main() is an HP extension.

The following are HP extensions to the XPG4 Version 2 specification:

• Text files containing the #! interpreter_name [optional_string] header line can execute.

• The [EINVAL], [EIO], [ENODEV], [ENOTOSS], and [EUNKNOWN] error values are
an HP extension.

2−50 Hewlett-Packard Company 527186-023

System Functions (e) _exit(2)

NAME
_exit - Terminates a process

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series native Guardian processes: implicit libraries
H-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

void _exit(
int status);

PARAMETERS
status Indicates the status of the process.

DESCRIPTION
The _exit() function terminates the calling process and causes the following to occur:

• All the file descriptors and directory streams that are open in the calling process are
closed.

• All shared memory segments attached to the calling process are detached from it. The
value of the shm_nattch field in the data structure associated with the shared memory
identifier of each affected shared memory segment is decremented by 1. Refer to the
shmget(2) reference page for more information.

• The semadj value established by the calling process for each semaphore is added to the
semval value for that semaphore. Refer to the semop(2) reference page for more infor-
mation.

• Terminating a process by exiting does not terminate its child processes. Instead, the
parent process ID of all the calling process’s child processes and zombie child processes
is set to 1.

• If the parent process of the calling process is executing the wait() or waitpid() function,
the parent is notified of the termination of the calling process and the low-order 8 bits
(that is, bits 24 through 31) of the status parameter are made available to it.

• If the parent process is not executing the wait() or waitpid() function when the child
process terminates, the parent can do so later and the child’s status will be returned to it
at that time. Meanwhile, the child process is transformed into a zombie process, and its
parent process is sent a SIGCHLD signal to notify it of the termination of a child pro-
cess.

A zombie process is a process that occupies a slot in the process table but has no other
space allocated to it either in user or kernel space. The process table slot that it occupies
is partially overlaid with time-accounting information to be used by the times() function.
(See the sys/proc.h header file.)

A process remains a zombie process until its parent process issues a call to the wait() or
waitpid() function. At this time, the zombie process goes away and its process table
entry is released.

• If the process is a controlling process, a SIGHUP signal is sent to each process in the
foreground process group of the controlling terminal belonging to the calling process.
The controlling terminal is dissociated from the session, allowing it to be acquired by a

527186-023 Hewlett-Packard Company 2−51

_exit(2) OSS System Calls Reference Manual

new controlling process.

• If the exit of a process causes a process group to become orphaned, and if any member of
the newly orphaned process group is stopped, then a SIGHUP signal followed by a
SIGCONT signal is sent to each member of the orphaned process group.

• Locks set by the fcntl() function are removed.

Use From the Guardian Environment
The _exit() function can be called from any Guardian process as well as from OSS processes.
Guardian processes, however, have no OSS process ID (PID) and therefore have no wait con-
siderations.

NOTES
Open System Services currently does not support Common-Usage C.

RETURN VALUES
The _exit() function does not return.

RELATED INFORMATION
Functions: atexit(3), close(2), exit(3), semop(2), shmget(2), sigaction(2), times(3), wait(2).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HPimplementation:

• Open System Services currently does not support Common-Usage C.

• Child processes of a terminated process are assigned a parent process ID of 1.

2−52 Hewlett-Packard Company 527186-023

Section 3. System Functions (f - i)

This section contains reference pages for Open System Services (OSS) system function
calls with names that begin with f through i. These reference pages reside in the cat2
directory and are sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 3−1

fchmod(2) OSS System Calls Reference Manual

NAME
fchmod - Changes file-access permissions

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>

int fchmod(
int filedes,
mode_t mode);

PARAMETERS
filedes Specifies the file descriptor of an open file.

mode Specifies the bit pattern that determines the access permissions.

DESCRIPTION
The fchmod() function sets the access permissions of a file pointed to by the filedes parameter
according to the bit pattern specified by the mode parameter. The fchmod() function is like the
chmod() function except that it operates on a file descriptor instead of a pathname.

To change the file access permissions of a file or directory, the effective user ID of the process
must match the super ID or the owner of the file, or its effective user ID or one of its group
affiliations must qualify it for membership in the Safeguard SECURITY-OSS-
ADMINISTRATOR group.

If fchmod() is invoked by a process whose effective user ID does not equal the super ID or file
owner, the set-user-ID and set-group-ID bits of the file mode (04000 and 02000, respectively) are
cleared.

If fchmod() is invoked to set either or both of the set-user-ID and set-group-ID bits of the file
mode (04000 and 02000 respectively), then any file privileges the file might have had are
cleared.

See also "Accessing Files in Restricted-Access Filesets."

If the S_ISVTX bit is on for a directory, only processes with an effective user ID equal to the
user ID of the file’s owner or the directory’s owner, or a process with appropriate privileges, can
remove files from the directory.

A call to the fchmod() function has no effect on the file descriptor for a file that is open at the
time of the call. However, new openers of the file will be authorized by using the new access per-
missions that were specified in the call.

The mode parameter is constructed by logically ORing one or more of these symbols, which are
defined in the sys/stat.h header file:

S_ISUID Sets the process’s effective user ID to the user ID of the file’s owner on execu-
tion.

3−2 Hewlett-Packard Company 527186-023

System Functions (f - i) fchmod(2)

S_ISGID Sets the process’s effective group ID to the group ID of the file’s group on execu-
tion.

S_ISVTX For a directory, permits modification to the directory only if the effective user ID
of the process matches that of the file being accessed.

S_IRWXU Permits the file’s owner to read, write, and execute the file (or to search the direc-
tory).

S_IRUSR Permits the file’s owner to read the file.

S_IWUSR Permits the file’s owner to write to the file.

S_IXUSR Permits the file’s owner to execute the file (or to search the directory).

S_IRWXG Permits the file’s group to read, write, and execute the file (or to search the direc-
tory).

S_IRGRP Permits the file’s group to read the file.

S_IWGRP Permits the file’s group to write to the file.

S_IXGRP Permits the file’s group to execute the file (or to search the directory).

S_IRWXO Permits others to read, write, and execute the file (or to search the directory).

S_IROTH Permits others to read the file.

S_IWOTH Permits others to write to the file.

S_IXOTH Permits others to execute the file (or to search the directory).

S_TRUST Establishes that the file does not contain code for an uncooperative process or
code to examine or modify I/O buffers. This flag suppresses operating system
protection of the buffers when the memory segment containing the buffers is not
shared. This flag applies only to loadfiles for a TNS/E native process and can be
set only by a user with appropriate privileges (the super ID).

S_TRUSTSHARED
Establishes that the file does not contain code for an uncooperative process or
code to examine or modify I/O buffers. This flag suppresses operating system
protection of the buffers regardless of whether the memory segment containing
the buffers is shared. This flag applies only to loadfiles for a TNS/E native pro-
cess and can be set only by a user with appropriate privileges (the super ID).

The S_ISUID bit of the file is not changed by the call if the file specified by the path parameter
resides on a node where the calling process is not logged in.

The S_ISGID bit of the file is cleared if all of these conditions are true:

• The named file is a regular file.

• The process does not have appropriate privileges.

• The file’s group ID does not match the effective group ID of the process or one of the IDs
of the process’s group list.

Upon successful completion, the fchmod() function marks the st_ctime field of the file for
update.

527186-023 Hewlett-Packard Company 3−3

fchmod(2) OSS System Calls Reference Manual

Access Control Lists (ACLs)
When you execute the fchmod() function, you can change the effective permissions granted by
optional entries in the ACL for a file. In particular, using the fchmod() function to remove read,
write, and execute permissions from a file owner, owning group, and all others works as
expected, because the fchmod() function affects the class entry in the ACL, limiting any access
that can be granted to additional users or groups through optional ACL entries. To verify the
effect, use getacl command on the file after the fchmod() function completes and note that all
optional (nondefault) ACL entries with nonzero permissions also have the comment
effective:---.

To set the permission bits of ACL entries, use the acl() function instead of the fchmod() func-
tion.

ACLs are not supported for symbolic links.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted. In a restricted-access fileset:

• The super ID (255,255 in the Guardian environment, 65535 in the OSS environment) is
not permitted to invoke this function on files that it does not own unless the executable
file started by the super ID has the PRIVSETID file privilege. In this case, the process
started by the super ID can switch to another ID and then access files in restricted-access
filesets as that ID.

• Processes that are started by a member of the Safeguard SECURITY-OSS-
ADMINISTRATOR (SOA) group have the appropriate privilege to use this function on
any file in a restricted-access fileset. However, if the executable file for the process does
not have the PRIVSOARFOPEN file privilege, the set-user-ID and set-group-ID bits of
the file mode (04000 and 02000 respectively) of the file accessed by this function are
cleared.

• Network File System (NFS) clients are not granted SOA group privileges, even if these
clients are accessing the system with a user ID that is a member of the SOA security
group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use on Guardian Objects
Attempting to set the access permissions on a Guardian file (that is, a file in the /G file system)
fails with errno set to [EINVAL].

Use From the Guardian Environment
The fchmod() function is one of a set of functions that have these effects when the first of them
is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

3−4 Hewlett-Packard Company 527186-023

System Functions (f - i) fchmod(2)

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the fchmod() function returns the value 0 (zero). Otherwise, the
value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occur, the fchmod() function sets errno to the corresponding value:

[EBADF] The file descriptor filedes is not valid.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINTR] A signal was caught during execution of the system call.

[EINVAL] One of these conditions exists:

• The value of the mode parameter is invalid.

• An attempt was made to set access permissions on a Guardian file (that
is, a file in the /G file system).

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[ENOENT] The program attempted an operation on a file that is open but that has been
unlinked (and the attributes of the file are no longer alterable).

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote node, and communication with the
remote name server has been lost.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] The effective user ID does not match the ID of the owner of the file, and the cal-
ling process does not have super ID privilege.

[EROFS] The file referred to by filedes resides on a read-only fileset.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: chmod(1), getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), fcntl(2), fchown(2), getgroups(2), lchmod(2),
lchown(2), mknod(2), open(2), open64(2), read(2), setfilepriv(2), write(2).

527186-023 Hewlett-Packard Company 3−5

fchmod(2) OSS System Calls Reference Manual

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• To change file-access permissions, either the process must have the same effective user
ID as the owner of the file or the process must have an effective user ID of the super ID.

• A call to the fchmod() function has no effect on the file descriptor for a file that is open
at the time of the call. However, new openers of the file are authenticated by using the
new access permissions that were specified in the call.

• The errors [EINTR] and [EINVAL] can be detected.

HP extensions to the XPG4 Version 2 specification are:

• To change the file access permissions of a file or directory, the effective user ID of the
process must match the super ID or the owner of the file, or the effective user ID or one
of the group affiliations for the process must qualify the process for membership in the
Safeguard SECURITY-OSS-ADMINISTRATOR group.

• The errno values [EIO], [EFSBAD], [ENOROOT], and [EOSSNOTRUNNING] can be
returned.

3−6 Hewlett-Packard Company 527186-023

System Functions (f - i) fchown(2)

NAME
fchown - Changes the owner and group IDs of a file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

int fchown(
int filedes,
uid_t owner,
gid_t group);

PARAMETERS
filedes Specifies a valid file descriptor.

owner Specifies a numeric value representing the owner ID.

group Specifies a numeric value representing the group ID.

DESCRIPTION
The fchown() function changes the owner and group of a file pointed to by the filedes parameter.
The fchown() function is like the chown() function except that it operates on a file descriptor
instead of a pathname.

Only a process that has an effective user ID equal to the super ID or to the file owner, or that has
an effective user ID or group affiliation qualifying for membership in the Safeguard
SECURITY-OSS-ADMINISTRATOR group can use the fchown() function to change the group
of a file. However, processes that have an effective user ID equal to the file owner can only
change the group of a file to a group to which they belong (their effective group or one of their
supplementary groups).

If the fchown() function is invoked by a process whose effective user ID does not equal the
super ID, the set-user-ID and set-group-ID bits of the file mode (04000 and 02000, respectively)
are cleared.

See also "Accessing Files in Restricted-Access Filesets."

A process can change the value of the owner ID of an OSS file only if the effective user ID of the
process gives the process appropriate privileges. A process can change the value of the file
group ID if the effective user ID of the process matches the owner ID of the file or the process
has appropriate privileges. A process without appropriate privileges can change the group ID of
a file only to the value of its effective group ID or to a value in its group list. However, if the
fchown() function is successfully invoked on a file, the S_ISGID and S_ISUID bits of the
st_mode field of the stat structure are cleared unless the user has appropriate privileges.

The _POSIX_CHOWN_RESTRICTED feature is enforced for any file in the OSS file system.
Only processes with appropriate privileges can change owner IDs.

If the owner or group parameter is specified as -1 cast to the type of uid_t or gid_t, respectively,
the corresponding ID of the file is unchanged. To change only one attribute, specify the other as
-1.

Upon successful completion, the fchown() function marks the st_ctime field of the file for
update.

527186-023 Hewlett-Packard Company 3−7

fchown(2) OSS System Calls Reference Manual

Access Control Lists (ACLs)
A user can allow or deny specific individuals and groups access to a file by using an ACL on the
file. When using the fchown() function with ACLs, if the new owner and/or group of a file have
optional ACL entries corresponding to user:uid:perm or group:gid:perm in the ACL for a file,
those entries remain in the ACL but no longer have any effect because they are superseded by the
user::perm or group::perm entries in the ACL.

ACLs are not supported for symbolic links.

For more information about ACLs, see the acl(5) reference page.

Use on Guardian Objects
You can use the fchown() function on Guardian disk files (that is, disk files in the /G file system).
Attempts to change the ownership of other types of Guardian files fail and set errno to [EIN-
VAL].

For Guardian disk files, Guardian security is used, and any user can pass file ownership to any
other user. You must specify a value other than -1 for the owner parameter (that is, an owner ID
must be specified). However, changing the owner ID also changes the group ID to the Guardian
group ID of the new owner (that is, bits <16:23> of the new access ID). You cannot use the
fchown() function to set the group ID for a Guardian file except as a result of changing the
owner ID.

The _POSIX_CHOWN_RESTRICTED feature is ignored for files in the Guardian file system
(that is, for files in /G).

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted. In a restricted-access fileset:

• The super ID (255,255 in the Guardian environment, 65535 in the OSS environment) is
not permitted to invoke this function on files that it does not own unless the executable
file started by the super ID has the PRIVSETID file privilege. In this case, the process
started by the super ID can switch to another ID and then access files in restricted-access
filesets as that ID.

• Processes that are started by a member of the Safeguard SECURITY-OSS-
ADMINISTRATOR (SOA) group have the appropriate privilege to use this function on
any file in a restricted-access fileset. However, if the executable file for the process does
not have the PRIVSOARFOPEN file privilege, the set-user-ID and set-group-ID bits of
the file mode (04000 and 02000 respectively) of the file accessed by this function are
cleared.

• Network File System (NFS) clients are not granted SOA group privileges, even if these
clients are accessing the system with a user ID that is a member of the SOA security
group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

3−8 Hewlett-Packard Company 527186-023

System Functions (f - i) fchown(2)

Use From the Guardian Environment
The fchown() function is one of a set of functions that have these effects when the first of them is
called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the fchown() function returns the value 0 (zero). Otherwise, the
value -1 is returned, the owner and group of the file remain unchanged, and errno is set to indi-
cate the error.

ERRORS
If any of these conditions occur, the fchown() function sets errno to the corresponding value:

[EBADF] The file descriptor filedes is not valid.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINTR] A signal was caught during execution of the system call.

[EINVAL] The owner or group parameter is out of range.

An attempt was made to change ownership of a Guardian file that is not a disk
file.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[ENOENT] The program attempted an operation on a file that is open but that has been
unlinked (and the attributes of the file are no longer alterable).

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote node, and communication with the
remote name server has been lost.

527186-023 Hewlett-Packard Company 3−9

fchown(2) OSS System Calls Reference Manual

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] The calling process does not have appropriate privileges.

[EROFS] The file referred to by filedes resides on a read-only fileset.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: chgrp(1), chown(1), getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), fchmod(2), lchmod(2), lchown(2), setfilepriv(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• A process can change the value of the owner ID of a file only if the effective user ID of
the process gives the process appropriate privileges.

• Upon successful completion, the set-user-ID attribute (the S_ISUID bit) and the set-
group-ID attribute (the S_ISGID bit) of the file are always cleared.

• To change the file access permissions of a file or directory, the effective user ID of the
process must match the super ID or the owner of the file, or the effective user ID or one
of the group affiliations for the process must qualify the process for membership in the
Safeguard SECURITY-OSS-ADMINISTRATOR group.

• The errors [EINTR], [EINVAL], and [EIO] can be detected.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [EFSBAD], [EIO], [ENOROOT], and [EOSSNOTRUNNING] can be
returned.

3−10 Hewlett-Packard Company 527186-023

System Functions (f - i) fcntl(2)

NAME
fcntl - Controls open file descriptors

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h> /* optional except for POSIX.1 */
#include <fcntl.h>

int fcntl(
int filedes,
int request
[, int argument1 |
[, struct flock *argument2 |
, struct flock64 *argument2]]);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), dup(), dup2(), fcntl(), open(), pipe(), socket(), or socketpair() func-
tion.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

request Specifies the operation to be performed.

argument1 Specifies a variable that depends on the value of the request parameter.

argument2 Specifies a variable that depends on the value of the request parameter.

DESCRIPTION
The fcntl() function performs controlling operations on the open file specified by the filedes
parameter.

Values for the request parameter are:

F_DUPFD Returns a new file descriptor as listed:

• Returns the lowest-numbered available file descriptor that is greater than
or equal to the argument1 parameter.

• References the same open file description as the original file descriptor.

• Returns the same file pointer as the original file (that is, both file descrip-
tors share one file pointer if the object is a file).

• Returns the same access mode (read, write, or read/write).

• Returns the same file status flags (that is, both file descriptors share the
same file status flags).

527186-023 Hewlett-Packard Company 3−11

fcntl(2) OSS System Calls Reference Manual

• Clears the close-on-exec flag (FD_CLOEXEC bit) associated with the
new file descriptor so that the file remains open across calls to any func-
tion in the exec, tdm_exec, or tdm_spawn sets of functions.

The value F_DUPFD is invalid for an OSSTTY or Telserv terminal device. If
this value is used in a call that specifies such a device for the filedes parameter,
the call fails and errno is set to [EINVAL].

F_GETFD Gets the value of the file descriptor flags, defined in the fcntl.h header file, that
are associated with the value of the filedes parameter. File descriptor flags are
associated with a single file descriptor and do not affect other file descriptors that
refer to the same file. The argument1 parameter or argument2 parameter is
ignored.

The value F_GETFD is invalid for an OSSTTY or Telserv terminal device. If
this value is used in a call that specifies such a device for the filedes parameter,
the call fails and errno is set to [EINVAL].

F_SETFD Sets the value of the file descriptor flags, defined in the fcntl.h header file, that
are associated with the filedes parameter to the value of the argument1 parame-
ter.

If the FD_CLOEXEC flag in the argument1 parameter is 0 (zero), the file
remains open across calls to any function in the exec, tdm_exec, and
tdm_spawn sets of functions; otherwise, the file is closed on successful execu-
tion of the next function in an exec, tdm_exec, or tdm_spawn function set.
When the FD_CLOEXEC flag is set, no other flag can be set in the call.

The value F_SETFD is invalid for an OSSTTY or Telserv terminal device. If
this value is used in a call that specifies such a device for the filedes parameter,
the call fails and errno is set to [EINVAL].

F_GETFL Gets the file status flags and file access modes, defined in the fcntl.h header file,
for the file referred to by the filedes parameter.

The file access modes can be extracted by using the mask O_ACCMODE on the
return value. File status flags and file access modes are associated with the file
descriptor and do not affect other file descriptors that refer to the same file with
different open file descriptors.

The argument1 or argument2 parameter is ignored.

The O_APPEND, O_NONBLOCK, and O_SYNC flags are not returned as set
if they were ignored in a previous call using F_SETFL.

F_SETFL Sets the file status flags O_APPEND, O_NONBLOCK, and O_SYNC for the
file to which the filedes parameter refers, from the corresponding bits in the argu-
ment1 parameter. Some flags are ignored, depending on the file type, as listed:

3−12 Hewlett-Packard Company 527186-023

System Functions (f - i) fcntl(2)

Table 3−1. Ignored File Status Flags

File type Ignored file status flags___

O_APPEND, O_NONBLOCK,
O_SYNC

Directory

FIFO, pipe O_APPEND, O_SYNC
Character special file O_APPEND, O_SYNC
Regular file O_NONBLOCK
Socket O_APPEND, O_SYNC

These file status flags are always accepted and ignored:

O_ACCMODE
O_CREAT
O_EXCL
O_TRUNC

The file access mode is not changed when F_SETFL is used.

F_GETOWN Gets the process ID or process group ID currently receiving the SIGURG signal
for a socket. A process group ID is returned as a negative value. A positive
value indicates the process ID.

The value F_GETOWN is invalid for these calls:

• Guardian use of OSS sockets is not supported. If this value is used in a
call from the Guardian environment, the call fails, and errno is set to
[ENOTOSS].

• If this value is used in a call that specifies anything other than a socket
for the filedes parameter, the call fails, and errno is set to [EINVAL].

F_SETOWN Sets the process ID or process group ID to receive the SIGURG signal for a
socket. A process group ID is specified by supplying it as a negative value in the
argument1 parameter; otherwise, the argument1 parameter is interpreted as a
process ID.

The value F_SETOWN is invalid for these calls:

• Guardian use of OSS sockets is not supported. If this value is used in a
call from the Guardian environment, the call fails, and errno is set to
[ENOTOSS].

• If this value is used in a call that specifies anything other than a socket
for the filedes parameter, the call fails, and errno is set to [EINVAL].

These values listed for the request parameter are available for advisory record locking on regular
files. Advisory record locking is supported only for regular files. If attempted on other files, the
operation fails, and errno is set to [EINVAL].

F_GETLK Gets the first lock that blocks the lock description pointed to by the argument2
parameter. The information retrieved overwrites the information passed to the
fcntl() function in the flock structure. If no lock is found that would prevent this
lock from being created, the structure is left unchanged except for the lock type,
which is set to F_UNLCK.

527186-023 Hewlett-Packard Company 3−13

fcntl(2) OSS System Calls Reference Manual

F_GETLK64 Similar to F_GETLK, except that it takes a pointer to a flock64 structure instead
of a pointer to a flock structure.

F_SETLK Sets or clears a file segment lock according to the lock description pointed to by
the argument2 parameter. F_SETLK is used to establish shared locks
(F_RDLCK) or exclusive locks (F_WRLCK) and, additionally, to remove
either type of lock (F_UNLCK). If a shared (read) or exclusive (write) lock can-
not be set, the fcntl() function returns immediately with the value -1.

F_SETLK64 Similar to F_SETLK, except that it takes a pointer to a flock64 structure instead
of a pointer to a flock structure.

F_SETLKW Same as F_SETLK except that, if a shared or exclusive lock is blocked by other
locks, the process waits until it is unblocked. If a signal is received while fcntl()
is waiting for a region, the function is interrupted, -1 is returned, and errno is set
to [EINTR].

For regular files, if a thread-aware fcntl() function needs to wait for
F_SETLKW requests, the thread-aware fcntl() blocks the thread that called the
function (instead of blocking the entire process).

F_SETLKW64
Similar to F_SETLKW, except that it takes a pointer to a flock64 structure
instead of a pointer to a flock structure.

For regular files, if a thread-aware fcntl() function needs to wait for
F_SETLKW64 requests, the thread-aware fcntl() blocks the thread that called
the function (instead of blocking the entire process).

The O_NONBLOCK file status flag affects only operations against file descriptors derived from
the same open() function.

When a shared lock is set on a segment of a file, other processes can set shared locks on that seg-
ment or a portion of it. A shared lock prevents any other process from setting an exclusive lock
on any portion of the protected area. A request for a shared lock fails if the file descriptor is not
opened with read access.

An exclusive lock prevents any other process from setting a shared lock or an exclusive lock on
any portion of the protected area. A request for an exclusive lock fails if the file descriptor was
not opened with write access.

The flock and flock64 structures describe the type (l_type field), starting offset (l_whence), rela-
tive offset (l_start), size (l_len), and process ID (l_pid) of the segment of the file to be affected.

The value of l_whence is set to SEEK_SET, SEEK_CUR, or SEEK_END to indicate that the
relative offset of l_start bytes is measured from the start of the file, from the current position, or
from the end of the file, respectively. The value of l_len is the number of consecutive bytes to be
locked. The l_len value can be negative (where the definition of type off_t permits negative
values of l_len). The l_pid field is used only with F_GETLK or F_GETLK64 to return the pro-
cess ID of the process holding a blocking lock. After a successful F_GETLK or F_GETLK64
request, the value of l_whence becomes SEEK_SET.

If l_len is positive, the area affected starts at l_start and ends at l_start + l_len - 1. If l_len is
negative, the area affected starts at l_start + l_len and ends at l_start - 1. Lock lengths can be
negative.

Locks can start and extend beyond the current end of a file, but they cannot be negative relative
to the beginning of the file. If l_len is set to 0 (zero), a lock can be set to always extend to the
largest possible value of the file offset for that file. If such a lock also has l_start set to 0 (zero)
and l_whence is set to SEEK_SET, the whole file is locked.

3−14 Hewlett-Packard Company 527186-023

System Functions (f - i) fcntl(2)

Changing or unlocking a portion from the middle of a larger locked segment leaves a smaller
segment at either end. Locking a segment that is already locked by the calling process causes the
old lock type to be removed and the new lock type to take effect. All locks associated with a file
for a given process are removed when a file descriptor for that file is closed by that process or
when the process holding that file descriptor terminates. Locks are not inherited by a child pro-
cess in a function like fork(), tdm_fork(), or tdm_spawn().

NOTES
To use the fcntl() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_fcntlz(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the value returned by the fcntl() function depends on the value of
the request parameter, listed:

F_DUPFD Returns a new file descriptor.

F_GETFD Returns the value of the file descriptor flags. The return value is not negative.

F_GETFL Returns the value of file status flags and access modes. The return value is not
negative.

F_GETLK Returns the value 0 (zero).

F_GETLK64 Returns the value 0 (zero).

F_GETOWN Returns the process ID or process group ID of the socket receiving a SIGURG
signal. A positive value is a process ID; a negative value is a process group ID.

F_SETFD Returns the value 0 (zero).

527186-023 Hewlett-Packard Company 3−15

fcntl(2) OSS System Calls Reference Manual

F_SETFL Returns the value 0 (zero).

F_SETLK Returns the value 0 (zero).

F_SETLK64 Returns the value 0 (zero).

F_SETLKW Returns the value 0 (zero).

F_SETLKW64
Returns the value 0 (zero).

F_SETOWN Returns the value 0 (zero).

If the fcntl() function fails, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the fcntl() function sets errno to the corresponding value:

[EAGAIN] The request parameter is F_SETLK or F_SETLK64, the type of lock (l_type) is
shared (F_RDLCK) or exclusive (F_WRLCK), and a segment of a file to be
locked is already exclusive-locked by another process.

The request parameter is is F_SETLK or F_SETLK64, the type of lock is
exclusive, and some portion of a segment of a file to be locked is already
shared-locked or exclusive-locked by another process.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion is in progress on a regular file and a function that is process-blocking for
regular files attempts to begin an I/O operation on the same open file.

If the fcntl() function is thread-aware, the [EALREADY] value is not returned.

[EBADF] One of these conditions exists:

• The request parameter is F_SETLK, F_SETLK64, F_SETLKW,or
F_SETLKW64, the type of lock is shared (F_RDLCK), and filedes is
not a valid file descriptor open for reading.

• The type of lock is exclusive (F_WRLCK), and filedes is not a valid file
descriptor open for writing.

• The filedes parameter is not a valid open file descriptor.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The peer socket forcibly closed the connection.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The argument2 parameter is an invalid address.

[EINTR] The request parameter is F_SETLKW or F_SETLKW64, and the fcntl() func-
tion was interrupted by a signal that was caught.

3−16 Hewlett-Packard Company 527186-023

System Functions (f - i) fcntl(2)

[EINVAL] One of these conditions exists:

• The request parameter is F_DUPFD, and the argument1 parameter is
negative or greater than or equal to the maximum number of open file
descriptors permitted.

• The request parameter is F_GETLK, F_GETLK64, F_SETLK,
F_SETLK64, F_SETLKW,or F_SETLKW64, and the data pointed to
by argument2 is invalid, or filedes refers to a file that does not support
locking.

• The request parameter is F_GETOWN, and the filedes parameter does
not specify a socket.

• The request parameter is F_SETFD, and a flag in addition to
FD_CLOEXEC in the argument1 parameter is set. When the request
parameter is F_SETFD and FD_CLOEXEC is set, no other flag can be
set.

• The request parameter is F_SETFL, and any file status flag other than
O_NONBLOCK, O_APPEND, O_CREAT, O_EXCL, O_SYNC, or
O_TRUNC is set. (Values set in the O_ACCMODE mask are ignored.)

• The request parameter is F_SETOWN, and the filedes parameter does
not specify a socket.

• The call attempted to set an advisory record lock on a file that is not a
regular file.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[EMFILE] The request parameter is F_DUPFD and the maximum number of open file
descriptors permitted are currently open in the calling process, or no file descrip-
tors greater than or equal to argument1 are available.

[ENETDOWN]
The request parameter is F_SETLK or F_SETLK64, the filedes parameter
specifies a file on a remote node, and communication with the remote node has
been lost.

[ENOLCK] The request parameter is F_SETLK, F_SETLK64, F_SETLKW, or
F_SETLKW64, and satisfying the lock or unlock request would cause the
number of locked regions in the system to exceed a system-imposed limit.

[ENOTOSS] The filedes parameter specifies a socket, and the calling process is running in the
Guardian environment. You cannot use the fcntl() function on an OSS socket
from the Guardian environment.

527186-023 Hewlett-Packard Company 3−17

fcntl(2) OSS System Calls Reference Manual

[EOVERFLOW]
The command argument is F_GETLK, F_SETLK, or FSETLKW, and the
smallest offset (if l_len parameter is zero), or the highest offset (if the l_len
parameter is nonzero), of any byte in the requested segment cannot be
represented correctly in an object of type off_t.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that failed or is
in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and the backup process took over.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process for using the file descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: creat(2), creat64(2), close(2), dup(2), dup2(2), exec(2), open(2), open64(2),
read(2), socket(2), spt_fcntlz(2), tdm_execve(2), tdm_execvep(2), write(2).

STANDARDS CONFORMANCE
The fcntl() function does not return the errno value [EDEADLK].

The fcntl() function does not support the O_ASYNC flag.

The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• Advisory record locking is supported only for regular files. If attempted on other files,
the operation fails, and errno is set to [EINVAL].

• For record-locking operations, the l_len value can be negative (where the definition of
off_t permits negative values of l_len). If l_len is negative, the area affected by the lock
starts at l_start + l_len and ends at l_start - 1.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [ECONNRESET], [EFAULT], [EIO], [EISGUARDIAN], [ENET-
DOWN], [ENOTOSS], and [EWRONGID] can be returned.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

3−18 Hewlett-Packard Company 527186-023

System Functions (f - i) fork(2)

NAME
fork - Creates a new process

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
The fork() function creates a new OSS process. The created process is referred to as the child
and the caller as the parent. The child process executes the same program file as the parent and
retains many other Guardian attributes as well as OSS attributes of the parent.

The _POSIX_SAVED_IDS flag is defined TRUE. The saved-set-user-ID and saved-set-group-
ID fields of the parent process are therefore inherited by the child.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined and errno is set to
[ENOTOSS].

OSS Attributes
The child process inherits the following OSS attributes from the parent process:

• Environment

• Close-on-exec flags

• Signal handling settings

• Saved-set-user-ID mode bit

• Saved-set-group-ID mode bit

• Process group ID

• Current directory

• Root directory

• File mode creation mask

• File size limit (see the ulimit(2) reference page)

• Attached shared memory segments

• Attached semaphore set IDs

The OSS attributes of the child process differ from those of the parent process in the following
ways:

• The child process has a unique OSS process ID (PID) and does not match any active pro-
cess group ID.

527186-023 Hewlett-Packard Company 3−19

fork(2) OSS System Calls Reference Manual

• The parent process ID of the child process matches the PID of the parent.

• The child process has its own copy of the parent process’s file descriptors. However,
each of the child’s file descriptors shares a common file pointer with the corresponding
file descriptor of the parent process.

• The child process does not inherit any file open created by a Guardian function or pro-
cedure call.

• The child process does not inherit file locks.

• The child process’s tms_utime, tms_stime, tms_cutime, and tms_cstime values are set
to 0 (zero).

• Any pending alarms are cleared in the child process.

• Any signals pending for the parent process are not inherited by the child process.

• Any adjust-on-exit (semadj) values of the parent process are cleared in the child process.

• The child process shares directory streams with the parent. They share the same block of
directory entries. When reading an entry, the buffer pointer is advanced by one entry.
From the perspective of either process, an entry might be skipped.

If both processes call the readdir() function for a shared stream, the results are
undefined. After such a call by both functions, another call to the readdir() function by
either process has undefined results.

Guardian Attributes
The child process inherits the following Guardian attributes from the parent process:

• Program file

• Any library files

• The size and contents of any instance data segments for native libraries

• Priority (the child process inherits the parent’s current priority)

• Processor on which the process executes

• Home terminal

• For G-series TNS or accelerated processes, the size and contents of the data segment

• For G-series TNS or accelerated processes, the size and contents of the extended data
segment

The assignment of the data segment size is different from the assignment made when
creating a new process with Guardian procedures.

• For native processes, the contents of the stack segment from the origin of the stack
through the currently in-use location; the balance of the child process stack contains 0
(zero)

• For native processes, the size and contents of the globals-heap segment

• Job ID

• DEFINE mode

3−20 Hewlett-Packard Company 527186-023

System Functions (f - i) fork(2)

• Creator access ID (CAID)

• Process access ID (PAID)

• Security group list

• Job ancestor or GMOM

• Unread system message index count (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Login, remote login, and saveabend flags

• File creation mask

The Guardian attributes of the child process differ from those of the parent process in the follow-
ing ways:

• Segments created or shared using Guardian procedures such as
SEGMENT_ALLOCATE_ are not inherited.

• The child process does not inherit the parent process extended swap file (if any). For a
G-series TNS process or an accelerated process, the extended data segment is managed
by the Kernel Managed Storage Facility (KMSF).

• The child’s process name is system-generated if the RUNNAMED option is set in the
program file. Otherwise the process is unnamed.

• The DEFINEs inheritance for the child depends on the parent’s DEFINE mode.

• The process identification number (PIN) of the child process is unrelated to that of the
parent process. The PIN of the child process is unrestricted if both of the following are
true:

— The HIGHPIN flag is set in the program file and any user library file.

— The PIN of the parent process was unrestricted.

If the PIN of the child process is restricted, then the PIN is in the range 0 through 254.

• The MOM field for the child process is set to 0 (zero).

• System debugger selection for the child process is based on Inspect mode and OSS read
access rights on the program file.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

527186-023 Hewlett-Packard Company 3−21

fork(2) OSS System Calls Reference Manual

Sharing Guardian Files
After a successful call to the fork() function, the initial position within an EDIT file (file code
101) in the Guardian file system (a file in /G) that was opened by a call to the OSS open() func-
tion is the same for both the parent and child processes. However, the position is not shared; that
is, changing the position used by one process does not change the position used by the other pro-
cess.

Floating-Point Data
If the parent process uses IEEE floating-point data, the child process inherits all of the floating-
point register contents of the parent process and any computation started before the fork() func-
tion call completes in the child process. The contents of the status and control register are also
inherited.

Use From a Threaded Application
The thread-aware version of the fork() function call creates a new process from the current
thread.

NOTES
To use the fork() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_fork(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the fork() function returns the value 0 (zero) to the child process
and returns the PID of the child process to the parent process. If the fork() function fails, the
value -1 is returned to the parent process, no child process is created, and errno is set to indicate
the error.

3−22 Hewlett-Packard Company 527186-023

System Functions (f - i) fork(2)

ERRORS
If any of the following conditions occurs, the fork() function sets errno to the corresponding
value:

[EACCES] Open for execute access on the code file or any library file was denied.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error or data has been lost during an input or output
transfer. This value is used only for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

[ENOTOSS] The calling process is not an OSS process. The fork() function cannot be called
from the Guardian environment.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

RELATED INFORMATION
Functions: exec(2), _exit(2), exit(3), raise(3), semop(2), shmat(2), sigaction(2), spt_fork(2),
tdm_execve(2), tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2), times(3),
ulimit(3), umask(2), wait(2).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The child process shares directory streams with the parent. They share the same block of
directory entries, but each stream can be used by only one of the processes.

• Guardian attributes are associated with the new OSS process. See Guardian Attributes
under DESCRIPTION.

The following are HP extensions to the XPG4 Version 2 specification:

• The [EFAULT], [ENOTOSS], and [EUNKNOWN] error values are HP extensions.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

This function does not conform to the async-signal safe requirement of the POSIX.1 standard.

527186-023 Hewlett-Packard Company 3−23

fstat(2) OSS System Calls Reference Manual

NAME
fstat - Provides information about an open file

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>

int fstat(
int filedes,
struct stat *buffer);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(),dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

buffer Points to a stat structure, into which information is placed about the file. The stat
structure is described in the sys/stat.h header file.

DESCRIPTION
The fstat() function obtains information about the open file associated with the filedes parameter.

The file information is written to the area specified by the buffer parameter, which is a pointer to
a stat structure. For J06.11 and later J-series RVUs and H06.22 and later H-series RVUs, the
stat structure uses this definition from the sys/stat.h header file:

struct stat {
dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:7;
unsigned int st_fileprivs:8; /* File privileges */
uid_t st_uid;
gid_t st_gid;

#if _FILE_OFFSET_BITS != 64 || _TANDEM_ARCH_ == 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

#if _FILE_OFFSET_BITS == 64 && _TANDEM_ARCH_ != 0

3−24 Hewlett-Packard Company 527186-023

System Functions (f - i) fstat(2)

mode_t st_basemode; /* Permissions with original group perms */
#endif

int64_t st_reserved[3];
};

For J06.10 and earlier J-series RVUs and H06.21 and earlier H-series RVUs, the stat structure
uses this definition from the sys/stat.h header file:

struct stat {
dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:15;
uid_t st_uid;
gid_t st_gid;

#if _FILE_OFFSET_BITS != 64 || _TANDEM_ARCH_ == 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

#if _FILE_OFFSET_BITS == 64 && _TANDEM_ARCH_ != 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
int64_t st_reserved[3];

};

The fstat() function updates any time-related fields associated with the file before writing into
the stat structure, unless it is a read-only fileset. Time-related fields are not updated for read-only
OSS filesets.

The fields in the stat structure have these meanings and content:

st_dev OSS device identifier for a fileset.

Values for local OSS objects are listed next. Values for local Guardian objects
are described in Use on Guardian Objects, and values for remote Guardian or
OSS objects are described in Use on Remote Objects, later in this reference
page.

For Contains

Regular file ID of device containing directory entry
Directory ID of device containing directory
Pipe or FIFO ID of special fileset for pipes
AF_INET or AF_INET6 socket ID of special fileset for sockets
AF_UNIX socket ID of device containing the fileset in which

the socket file was created

527186-023 Hewlett-Packard Company 3−25

fstat(2) OSS System Calls Reference Manual

/dev/null ID of device containing directory entry
/dev/tty ID of device containing directory entry

st_ino File serial number (inode number). The file serial number and OSS device
identifier uniquely identify a regular OSS file within an OSS fileset.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file File serial number (unique)
Directory File serial number (unique)
Pipe or FIFO File serial number (unique)
AF_INET or AF_INET6 socket File serial number (not unique within the

HP NonStop node)
AF_UNIX socket File serial number of the socket file

(unique)
/dev/null File serial number (unique)
/dev/tty File serial number (unique)

The st_ino value for all node entries in /E (including the entry for the logical
link from the local node name to the root fileset on the local node) is the value
for the root fileset on the corresponding node. If normal conventions are fol-
lowed, this value is always 0 (zero), so entries in /E appear to be nonunique.
Values for objects on remote nodes are unique only among the values for objects
within the same fileset on that node.

st_mode File mode. These bits are ORed into the st_mode field:

S_IFMT File type. This field can contain one of these values:

S_IFCHR Character special file.

S_IFDIR Directory.

S_IFIFO Pipe or FIFO.

S_IFREG Regular file.

S_IFSOCK Socket.

For an AF_INET or AF_INET6 socket, the
user default permissions are returned for the per-
mission bits. The access flags are set to read
and write.

For an AF_UNIX socket, the user permissions
from the inode for the socket are returned for the
permission bits. The access flags are also
returned from the inode.

S_IRWXG Permissions for the owning group, or if the st_acl flag is set, per-
missions for the the class ACL entry.

S_IRWXO Other class

3−26 Hewlett-Packard Company 527186-023

System Functions (f - i) fstat(2)

S_IRWXU Owner class

S_ISGID Set group ID on execution

S_ISUID Set user ID on execution

S_ISVTX Sticky bit; used only for directories (not ORed for files in /G, the
Guardian file system)

S_TRUST Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers when the
memory segment containing the buffers is not shared. This flag
applies only to loadfiles for a process, and only a user with
appropriate privileges (the super ID) can set it.

S_TRUSTSHARED
Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers regardless
of whether the memory segment containing the buffers is shared.
This flag applies only to loadfiles for a process, and only a user
with appropriate privileges (the super ID) can set it.

Values for Guardian objects are described in Use on Guardian Objects, later in
this reference page.

st_nlink Number of links.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Number of links to the file
Directory Number of links to the directory
FIFO Number of links to the file
Pipe -1
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket Number of links to the socket file
/dev/null Number of links to the file
/dev/tty Number of links to the file

st_acl If set to 1, indicates that the file has optional access control list (ACL) entries.
For compatibility with HP-UX, the member name st_aclv is provided as alias for
st_acl. For more information about ACLs, see the acl(5) reference page.

st_fileprivs File privileges. For information about file privileges see the setfilepriv(2) refer-
ence page.

st_uid User ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 3−27

fstat(2) OSS System Calls Reference Manual

For Contains

Regular file User ID of the file owner
Directory User ID of the file owner
Pipe or FIFO User ID of the file owner
AF_INET or AF_INET6 socket User ID of the calling process
AF_UNIX socket User ID of the creator of the socket file
/dev/null User ID of the super ID
/dev/tty User ID of the super ID

st_gid Group ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Group ID of the file group
Directory Group ID of the file group
Pipe or FIFO Group ID of the file group
AF_INET or AF_INET6 socket Group ID of the calling process
AF_UNIX socket Group ID of the creator of the socket file
/dev/null Group ID of the super ID
/dev/tty Group ID of the super ID

st_basemode If the st_acl flag is set, contains the permissions for the file owner, owning
group, and others. If the st_acl flag is not set, st_basemode is 0 (zero).

st_rdev Remote device ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Undefined
Directory Undefined
Pipe or FIFO Undefined
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null Undefined
/dev/tty ID of the device

st_size File size.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

3−28 Hewlett-Packard Company 527186-023

System Functions (f - i) fstat(2)

For Contains

Regular file Size of the file in bytes
Directory 4096
Pipe or FIFO 0 (zero)
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null 0 (zero)
/dev/tty 0 (zero)

st_atime Access time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last access
Directory Time of the last access
Pipe or FIFO Time of the last access
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_mtime Modification time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last data modification
Directory Time of the last modification
Pipe or FIFO Time of the last data modification
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

527186-023 Hewlett-Packard Company 3−29

fstat(2) OSS System Calls Reference Manual

st_ctime Status change time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last file status change
Directory Time of the last file status change
Pipe or FIFO Time of the last file status change
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

Use on Guardian Objects
The st_dev and st_ino fields of the stat structure do not uniquely identify Guardian files (files in
/G).

The st_dev field is unique for /G, for each disk volume, and for each Telserv process (or other
process of subdevice type 30), because each of these is a separate fileset.

The S_ISGUARDIANOBJECT macro can indicate whether an object is a Guardian object
when the st_dev field is passed to the macro. The value of the macro is TRUE if the object is a
Guardian object and FALSE otherwise.

The st_ino field is a nonunique encoding of the Guardian filename.

The st_rdev field contains a unique minor device number for each entry in /G/ztnt/, representing
each Telserv process subdevice.

The st_size field of an EDIT file (file code 101) is the actual (physical) end of file, not the number
of bytes in the file. For directories, st_size is set to 4096.

When an OSS function is called for a Guardian EDIT file, the st_mtime field is set to the last
modification time. The st_atime field indicates the last time the file was opened, and the
st_ctime field is set equal to st_mtime. No other time-related fields are updated by OSS function
calls.

The st_ctime and st_atime fields for Guardian regular disk files (except for EDIT files) are
updated by OSS function calls, not by Guardian procedure calls.

The time fields for /G, /G/vol, and /G/vol/subvol always contain the current time.

The mapping between Guardian files and their corresponding file types described in the st_mode
field is listed next:

3−30 Hewlett-Packard Company 527186-023

System Functions (f - i) fstat(2)

Guardian st_mode
Example in /G File Type File Type Permissions___

N/A Directory r-xr-xr-x/G
vol Disk volume Directory rwxrwxrwx
vol/subvol Subvolume Directory rwxrwxrwx
vol/subvol/fileid Disk file Regular file See following text
vol/#123 Temporary disk file Regular file See following text
ztnt Subtype 30 process Directory --x--x--x
ztnt/#pty0001 Subtype 30 process

with qualifier
Character special rw-rw-rw-

vol1/zyq00001 Subvolume Directory ---------

A Guardian file classified as a directory is always owned by the super ID.

Guardian permissions are mapped as follows:

• Guardian network or any user permission is mapped to OSS other permission.

• Guardian community or group user permission is mapped to OSS group permission.

• Guardian user or owner permission is mapped to OSS owner permission.

• Guardian super ID permission is OSS super ID permission.

• Guardian read permission is mapped to OSS read permission.

• Guardian write permission is mapped to OSS write permission.

• Guardian execute permission is mapped to OSS execute permission.

• Guardian purge permission is ignored.

Users are not allowed read access to Guardian processes.

OSS file permissions are divided into three groups (owner, group, and other) of three permission
bits each (read, write, and execute). The OSS permission bits do not distinguish between remote
and local users as Guardian security does; local and remote users are treated alike.

Use on Remote Objects
The content of the st_dev field of the stat structure is unique for each node in /E because each
node is a separate fileset. Values for directories within /E are the same as values for objects on
the local HP NonStop node.

The S_ISEXPANDOBJECT macro can indicate whether an object in the /E directory is on a
remote HP NonStop server node when the st_dev field is passed to the macro. The value of the
macro is TRUE if the object is on a remote HP NonStop node and FALSE otherwise.

Use From a Threaded Application
This function serializes file operations on an open file. If a thread calls fstat() to access a file
that already has a file operation in progress by a different thread, this thread is blocked until the
prior file operation is complete.

NOTES
For J06.08 and earlier J-series RVUs, H06.19 and earlier H-series RVUs, or G-series RVUs, the
OSS Network File System (NFS) cannot access OSS objects that have OSS ACLs that contain
optional ACL entries.

527186-023 Hewlett-Packard Company 3−31

fstat(2) OSS System Calls Reference Manual

For J06.09 and later J-series RVUs and H06.20 and later H-series RVUs, access by the OSS Net-
work File System (NFS) to OSS objects that have OSS ACLs that contain optional ACL entries
can be allowed, depending upon the NFSPERMMAP attribute value for the fileset that contains
the object. For more information about NFS and ACLs, see the acl(5) reference page.

To use the fstat() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_fstatz(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the fstat() function sets errno to the corresponding value:

[EBADF] The filedes parameter is not a valid file descriptor.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFSBAD] The program attempted an operation involving a fileset with a corrupted fileset
catalog.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

3−32 Hewlett-Packard Company 527186-023

System Functions (f - i) fstat(2)

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOROOT] The program attempted an operation while the root fileset was unavailable.

[ENXIO] An invalid device or address was specified during an input or output operation
on a special file. One of these events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

• The file size (in bytes) or the file inode number (serial number) cannot be
represented correctly in the structure pointed to by the buffer parameter.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation on an input/output process (such as a
terminal server process) that has failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), fstat64(2), link(2), mknod(2), open(2), open64(2),
pipe(2), setfilepriv(2), spt_fstatz(2), utime(2).

Miscellaneous Topics: acl(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• For files other than regular disk files, the st_size field of the stat structure is set to 0
(zero). For directories, st_size is set to 4096.

527186-023 Hewlett-Packard Company 3−33

fstat(2) OSS System Calls Reference Manual

• The S_IRWXU, S_IRWXG, S_IRWXO, S_IFMT, S_ISVTX, S_ISGID, and S_ISUID
bits are ORed into the st_mode field of the stat structure.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [EFAULT], [EFSBAD], [EIO], [EISGUARDIAN], [ENETDOWN],
[ENOROOT], [ENXIO], and [EWRONGID] can be returned by the fstat() function.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

3−34 Hewlett-Packard Company 527186-023

System Functions (f - i) fstat64(2)

NAME
fstat64 - Provides information about an open file

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>

int fstat64(
int filedes,
struct stat64 *buffer);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(),dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

buffer Points to a stat64 structure, into which information is placed about the file. The
stat64 structure is described in the sys/stat.h header file.

DESCRIPTION
The fstat64() function is similar to the fstat() function except that, in addition to supporting
smaller files, the fstat64() function supports OSS files larger than approximately 2 gigabytes.

An application can explicitly call this function you compile the application using the #define
_LARGEFILE64_SOURCE 1 feature test macro or an equivalent compiler command option.

An application call to fstat() is automatically mapped to this function when you compile the
application using the #define _FILE_OFFSET_BITS 64 feature test macro or an equivalent
compiler command option.

The fstat64() function obtains information about the open file associated with the filedes parame-
ter.

527186-023 Hewlett-Packard Company 3−35

fstat64(2) OSS System Calls Reference Manual

The file information is written to the area specified by the buffer parameter, which is a pointer to
a stat64 structure which is a pointer to a stat64 structure. For J06.11 and later J-series RVUs and
H06.22 and later H-series RVUs, the stat64 structure uses this definition from the sys/stat.h
header file:

struct stat64 {
dev_t st_dev;
ino64_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int __filler_1:7;
unsigned int st_fileprivs:8; /* File privileges */
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
off64_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
mode_t st_basemode; /* Permissions with original group perms */
int64_t reserved[3];

};

For J06.10 and earlier J-series RVUs and H06.21 and earlier H-series RVUs, the stat structure
uses this definition from the sys/stat.h header file:

struct stat64 {
dev_t st_dev;
ino64_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:15;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
off64_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
mode_t st_basemode; /* Permissions with original group perms */
int64_t reserved[3];

};

The fstat64() function updates any time-related fields associated with the file before writing into
the stat64 structure, unless it is a read-only fileset. Time-related fields are not updated for read-
only OSS filesets.

The fields in the stat64 structure have these meanings and content:

st_dev OSS device identifier for a fileset.

Values for local OSS objects are listed next. Values for local Guardian objects
are described in Use on Guardian Objects, and values for remote Guardian or
OSS objects are described in Use on Remote Objects, later in this reference
page.

3−36 Hewlett-Packard Company 527186-023

System Functions (f - i) fstat64(2)

For Contains

Regular file ID of device containing directory entry
Directory ID of device containing directory
Pipe or FIFO ID of special fileset for pipes
AF_INET or AF_INET6 socket ID of special fileset for sockets
AF_UNIX socket ID of device containing the fileset in which

the socket file was created
/dev/null ID of device containing directory entry
/dev/tty ID of device containing directory entry

st_ino File serial number (inode number). The file serial number and OSS device
identifier uniquely identify a regular OSS file within an OSS fileset.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file File serial number (unique)
Directory File serial number (unique)
Pipe or FIFO File serial number (unique)
AF_INET or AF_INET6 socket File serial number (not unique within the

HP NonStop node)
AF_UNIX socket File serial number of the socket file

(unique)
/dev/null File serial number (unique)
/dev/tty File serial number (unique)

The st_ino value for all node entries in /E (including the entry for the logical
link from the local node name to the root fileset on the local node) is the value
for the root fileset on the corresponding node. If normal conventions are fol-
lowed, this value is always 0 (zero), so entries in /E appear to be nonunique.
Values for objects on remote nodes are unique only among the values for objects
within the same fileset on that node.

st_mode File mode. These bits are ORed into the st_mode field:

S_IFMT File type. This field can contain one of these values:

S_IFCHR Character special file.

S_IFDIR Directory.

S_IFIFO Pipe or FIFO.

S_IFREG Regular file.

S_IFSOCK Socket.

For an AF_INET or AF_INET6 socket, the
user default permissions are returned for the per-
mission bits. The access flags are set to read
and write.

For an AF_UNIX socket, the user permissions

527186-023 Hewlett-Packard Company 3−37

fstat64(2) OSS System Calls Reference Manual

from the inode for the socket are returned for the
permission bits. The access flags are also
returned from the inode.

S_IRWXG Permissions for the owning group, or if the st_acl flag is set, per-
missions for the the class ACL entry.

S_IRWXO Other class

S_IRWXU Owner class

S_ISGID Set group ID on execution

S_ISUID Set user ID on execution

S_ISVTX Sticky bit; used only for directories (not ORed for files in /G, the
Guardian file system)

S_TRUST Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers when the
memory segment containing the buffers is not shared. This flag
applies only to loadfiles for a process, and only a user with
appropriate privileges (the super ID) can set it.

S_TRUSTSHARED
Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers regardless
of whether the memory segment containing the buffers is shared.
This flag applies only to loadfiles for a process, and only a user
with appropriate privileges (the super ID) can set it.

Values for Guardian objects are described in Use on Guardian Objects, later in
this reference page.

st_nlink Number of links.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Number of links to the file
Directory Number of links to the directory
FIFO Number of links to the file
Pipe -1
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket Number of links to the socket file
/dev/null Number of links to the file
/dev/tty Number of links to the file

st_acl If set to 1, indicates that the file has optional access control list (ACL) entries.
For compatibility with HP-UX, the member name st_aclv is provided as alias for
st_acl. For more information about ACLs, see the acl(5) reference page.

3−38 Hewlett-Packard Company 527186-023

System Functions (f - i) fstat64(2)

st_fileprivs File privileges. For information about file privileges see the setfilepriv(2) refer-
ence page.

st_uid User ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file User ID of the file owner
Directory User ID of the file owner
Pipe or FIFO User ID of the file owner
AF_INET or AF_INET6 socket User ID of the calling process
AF_UNIX socket User ID of the creator of the socket file
/dev/null User ID of the super ID
/dev/tty User ID of the super ID

st_gid Group ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Group ID of the file group
Directory Group ID of the file group
Pipe or FIFO Group ID of the file group
AF_INET or AF_INET6 socket Group ID of the calling process
AF_UNIX socket Group ID of the creator of the socket file
/dev/null Group ID of the super ID
/dev/tty Group ID of the super ID

st_basemode If the st_acl flag is set, contains the permissions for the file owner, owning
group, and others. If the st_acl flag is not set, st_basemode is 0 (zero).

st_rdev Remote device ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Undefined
Directory Undefined
Pipe or FIFO Undefined
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null Undefined
/dev/tty ID of the device

527186-023 Hewlett-Packard Company 3−39

fstat64(2) OSS System Calls Reference Manual

st_size File size.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Size of the file in bytes
Directory 4096
Pipe or FIFO 0 (zero)
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null 0 (zero)
/dev/tty 0 (zero)

st_atime Access time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last access
Directory Time of the last access
Pipe or FIFO Time of the last access
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_mtime Modification time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last data modification
Directory Time of the last modification
Pipe or FIFO Time of the last data modification
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

3−40 Hewlett-Packard Company 527186-023

System Functions (f - i) fstat64(2)

st_ctime Status change time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last file status change
Directory Time of the last file status change
Pipe or FIFO Time of the last file status change
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

Use on Guardian Objects
The st_dev and st_ino fields of the stat64 structure do not uniquely identify Guardian files (files
in /G).

The st_dev field is unique for /G, for each disk volume, and for each Telserv process (or other
process of subdevice type 30), because each of these is a separate fileset.

The S_ISGUARDIANOBJECT macro can indicate whether an object is a Guardian object
when the st_dev field is passed to the macro. The value of the macro is TRUE if the object is a
Guardian object and FALSE otherwise.

The st_ino field is a nonunique encoding of the Guardian filename.

The st_rdev field contains a unique minor device number for each entry in /G/ztnt/, representing
each Telserv process subdevice.

The st_size field of an EDIT file (file code 101) is the actual (physical) end of file, not the number
of bytes in the file. For directories, st_size is set to 4096.

When an OSS function is called for a Guardian EDIT file, the st_mtime field is set to the last
modification time. The st_atime field indicates the last time the file was opened, and the
st_ctime field is set equal to st_mtime. No other time-related fields are updated by OSS function
calls.

The st_ctime and st_atime fields for Guardian regular disk files (except for EDIT files) are
updated by OSS function calls, not by Guardian procedure calls.

The time fields for /G, /G/vol, and /G/vol/subvol always contain the current time.

The mapping between Guardian files and their corresponding file types described in the st_mode
field is listed next:

527186-023 Hewlett-Packard Company 3−41

fstat64(2) OSS System Calls Reference Manual

Guardian st_mode
Example in /G File Type File Type Permissions___

N/A Directory r-xr-xr-x/G
vol Disk volume Directory rwxrwxrwx
vol/subvol Subvolume Directory rwxrwxrwx
vol/subvol/fileid Disk file Regular file See following text
vol/#123 Temporary disk file Regular file See following text
ztnt Subtype 30 process Directory --x--x--x
ztnt/#pty0001 Subtype 30 process

with qualifier
Character special rw-rw-rw-

vol1/zyq00001 Subvolume Directory ---------

A Guardian file classified as a directory is always owned by the super ID.

Guardian permissions are mapped as follows:

• Guardian network or any user permission is mapped to OSS other permission.

• Guardian community or group user permission is mapped to OSS group permission.

• Guardian user or owner permission is mapped to OSS owner permission.

• Guardian super ID permission is OSS super ID permission.

• Guardian read permission is mapped to OSS read permission.

• Guardian write permission is mapped to OSS write permission.

• Guardian execute permission is mapped to OSS execute permission.

• Guardian purge permission is ignored.

Users are not allowed read access to Guardian processes.

OSS file permissions are divided into three groups (owner, group, and other) of three permission
bits each (read, write, and execute). The OSS permission bits do not distinguish between remote
and local users as Guardian security does; local and remote users are treated alike.

Use on Remote Objects
The content of the st_dev field of the stat64 structure is unique for each node in /E because each
node is a separate fileset. Values for directories within /E are the same as values for objects on
the local HP NonStop node.

The S_ISEXPANDOBJECT macro can indicate whether an object in the /E directory is on a
remote HP NonStop server node when the st_dev field is passed to the macro. The value of the
macro is TRUE if the object is on a remote HP NonStop node and FALSE otherwise.

Use From a Threaded Application
This function serializes file operations on an open file. If a thread calls fstat64() to access a file
that already has a file operation in progress by a different thread, this thread is blocked until the
prior file operation is complete.

NOTES
For J06.08 and earlier J-series RVUs, H06.19 and earlier H-series RVUs, or G-series RVUs, the
OSS Network File System (NFS) cannot access OSS objects that have OSS ACLs that contain
optional ACL entries.

3−42 Hewlett-Packard Company 527186-023

System Functions (f - i) fstat64(2)

For J06.09 and later J-series RVUs and H06.20 and later H-series RVUs, access by the OSS Net-
work File System (NFS) to OSS objects that have OSS ACLs that contain optional ACL entries
can be allowed, depending upon the NFSPERMMAP attribute value for the fileset that contains
the object. For more information about NFS and ACLs, see the acl(5) reference page.

To use the fstat64() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_fstat64tz(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the fstat64() function sets errno to the corresponding value:

[EBADF] The filedes parameter is not a valid file descriptor.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFSBAD] The program attempted an operation involving a fileset with a corrupted fileset
catalog.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

527186-023 Hewlett-Packard Company 3−43

fstat64(2) OSS System Calls Reference Manual

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOROOT] The program attempted an operation while the root fileset was unavailable.

[ENXIO] An invalid device or address was specified during an input or output operation
on a special file. One of these events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation on an input/output process (such as a
terminal server process) that has failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), fstat(2), link(2), mknod(2), open(2), open64(2),
pipe(2), spt_fstat64z(2), utime(2).

Miscellaneous Topics: acl(5).

STANDARDS CONFORMANCE
This function is an HP extension to the XPG4 Version 2 specification.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

3−44 Hewlett-Packard Company 527186-023

System Functions (f - i) fstatvfs(2)

NAME
fstatvfs - Gets fileset information for an open file

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/statvfs.h>

int fstatvfs(
int filedes,
struct statvfs *buffer);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the creat(),

creat64(), dup(), dup2(), fcntl(),open(), or open64() function.

buffer Points to a statvfs structure that is to hold the returned information for the
fstatvfs() call.

DESCRIPTION
The fstatvfs() function returns descriptive information about a mounted fileset. The information
is returned in a statvfs structure, which has this definition from the sys/statvfs.h header file:

typedef struct statvfs {
unsigned long f_bsize;
unsigned long f_frsize;
unsigned long f_blocks;
unsigned long f_bfree;
unsigned long f_bavail;
unsigned long f_files;
unsigned long f_ffree;
unsigned long f_favail;
unsigned long f_fsid;
char f_basetype[FSTYPSZ];
unsigned long f_flag;
unsigned long f_namemax;
char f_fstr[32];
unsigned long f_bminavail;
unsigned long f_bmaxavail;
unsigned long f_filler[5];

} statvfs_t;

The fields in this structure have these meanings and content:

f_bsize Fileset block size:

527186-023 Hewlett-Packard Company 3−45

fstatvfs(2) OSS System Calls Reference Manual

For Contains

Regular file 4096
Directory 4096
FIFO 4096
/dev/null 4096
Object in /G 4096
/G 4096
Terminal device file 4096
/E 4096

f_frsize Fundamental file system block size:

For Contains

Regular file 4096
Directory 4096
FIFO 4096
/dev/null 4096
Object in /G 4096
/G 4096
Terminal device file 4096
/E 4096

f_blocks Total number of blocks in fileset, in units of f_frsize:

For Contains

Regular file Number of blocks on all volumes ever used
in the fileset.

Directory Number of blocks on all volumes ever used
in the fileset.

FIFO Number of blocks on all volumes ever used
in the fileset.

/dev/null Number of blocks on all volumes ever used
in the fileset.

Object in /G Number of blocks on the volume contain-
ing the object.

/G 0
Terminal device file 0
/E 0

f_bfree Total number of free blocks in fileset:

3−46 Hewlett-Packard Company 527186-023

System Functions (f - i) fstatvfs(2)

For Contains

Regular file Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Directory Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

FIFO Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

/dev/null Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Object in /G Number of free blocks in the volume con-
taining the object.

/G 0
Terminal device file 0
/E 0

f_bavail Number of free blocks available to a process without appropriate privileges:

For Contains

Regular file Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Directory Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

FIFO Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

/dev/null Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Object in /G Number of free blocks in the volume con-
taining the object.

/G 0
Terminal device file 0
/E 0

f_files Total number of file serial numbers (inode numbers) in the fileset:

527186-023 Hewlett-Packard Company 3−47

fstatvfs(2) OSS System Calls Reference Manual

For Contains

Regular file Number of inode numbers in the fileset.
Directory Number of inode numbers in the fileset.
FIFO Number of inode numbers in the fileset.
/dev/null Number of inode numbers in the fileset.
Object in /G The value of ULONG_MAX.
/G 0
Terminal device file 0
/E 0

f_ffree Total number of free file serial numbers (inode numbers) in the fileset:

For Contains

Regular file Number of free inode numbers in the
fileset.

Directory Number of free inode numbers in the
fileset.

FIFO Number of free inode numbers in the
fileset.

/dev/null Number of free inode numbers in the
fileset.

Object in /G The value of ULONG_MAX.
/G 0
Terminal device file 0
/E 0

f_favail Number of file serial numbers (inode numbers) available to a process without
appropriate privileges:

For Contains

Regular file Number of free inode numbers in the
fileset.

Directory Number of free inode numbers in the
fileset.

FIFO Number of free inode numbers in the
fileset.

/dev/null Number of free inode numbers in the
fileset.

Object in /G The value of ULONG_MAX.
/G 0
Terminal device file 0
/E 0

3−48 Hewlett-Packard Company 527186-023

System Functions (f - i) fstatvfs(2)

f_fsid Fileset identifier:

For Contains

Regular file Lower 32 bits of the st_dev field in the stat
structure.

Directory Lower 32 bits of the st_dev field in the stat
structure.

FIFO Lower 32 bits of the st_dev field in the stat
structure.

/dev/null Lower 32 bits of the st_dev field in the stat
structure.

Object in /G Lower 32 bits of the st_dev field in the stat
structure.

/G Lower 32 bits of the st_dev field in the stat
structure.

Terminal device file Lower 32 bits of the st_dev field in the stat
structure.

/E Lower 32 bits of the st_dev field in the stat
structure.

f_basetype Type of file system:

For Contains

Regular file OSS
Directory OSS
FIFO OSS
/dev/null OSS
Object in /G GUARDIAN
/G GUARDIAN
Terminal device file GUARDIAN
/E EXPAND

f_flag Bit mask indicating type of fileset access allowed:

For Contains

Regular file 4 if fileset is read/write, 5 if fileset is read-
only.

Directory 4 if fileset is read/write, 5 if fileset is read-
only.

FIFO 4 if fileset is read/write, 5 if fileset is read-
only.

/dev/null 4 if fileset is read/write, 5 if fileset is read-
only.

Object in /G 2
/G 3

527186-023 Hewlett-Packard Company 3−49

fstatvfs(2) OSS System Calls Reference Manual

Terminal device file 2
/E 3

The content of the f_flag field can be tested with these symbolic values:

ST_NOSUID This bit flag is set if the fileset does not allow the setuid bit to be
set for its member files.

ST_NOTRUNC
This bit flag is set if the fileset does not truncate filenames.

ST_RDONLY This bit flag is set if the fileset is mounted for read-only access.

f_namemax Maximum number of character bytes in a filename within the fileset:

For Contains

Regular file 248
Directory 248
FIFO 248
/dev/null 248
Object in /G 8
/G 7
Terminal device file 7
/E 7

f_fstr Fileset pathname prefix string:

For Contains

Regular file /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

Directory /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

FIFO /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

/dev/null /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

Object in /G /E/nodename/G/volume, identifying the
disk volume containing the specified file.

/G /E/nodename/G
Terminal device file /E/nodename/G
/E /E

3−50 Hewlett-Packard Company 527186-023

System Functions (f - i) fstatvfs(2)

f_bminavail Number of blocks free on the disk volume with the least space remaining:

For Contains

Regular file Number of blocks.
Directory Number of blocks.
FIFO Number of blocks.
/dev/null Number of blocks.
Object in /G Number of blocks.
/G 0
Terminal device file 0
/E 0

f_bmaxavail Number of blocks free on the disk volume with the most space remaining:

For Contains

Regular file Number of blocks.
Directory Number of blocks.
FIFO Number of blocks.
/dev/null Number of blocks.
Object in /G Number of blocks.
/G 0
Terminal device file 0
/E 0

NOTES
This function provides compatibility with the System V Interface Definition, Revision 3.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the fstatvfs() function returns the value 0 (zero). Otherwise, it
returns the value -1, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the fstatvfs() function sets errno to the corresponding value:

[EBADF] The filedes parameter is not a valid file descriptor.

[EFAULT] The buffer parameter points to an invalid address.

[EINTR] The function was interrupted by a signal before any data arrived.

[EINVAL] The file pointed to by the filedes parameter is an OSS pipe or a socket.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device

527186-023 Hewlett-Packard Company 3−51

fstatvfs(2) OSS System Calls Reference Manual

might have failed. Data might have been lost during a transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[EOVERFLOW]
One of the values returned cannot be represented correctly in the structure
pointed to by the buffer parameter.

[EWRONGID]
One of these conditions occurred:

• The process attempted an input or output operation through an operating
system input/output process (such as a terminal server process) that has
failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for use of the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: fstat(2), fstat64(2), lstat(2), lstat64(2), stat(2), stat64(2), statvfs(2), statvfs64(2).

STANDARDS CONFORMANCE
HP extensions to the XPG4 Version 2 specification are:

• The errno values [EINVAL], [EISGUARDIAN], [ENETDOWN], and [EWRONGID]
can be returned.

3−52 Hewlett-Packard Company 527186-023

System Functions (f - i) fstatvfs64(2)

NAME
fstatvfs64 - Gets fileset information for an open file

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/statvfs.h>

int fstatvfs64(
int filedes,
struct statvfs64 *buffer);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the creat(),

creat64(), dup(), dup2(), fcntl(), open(), or open64() function.

buffer Points to a statvfs64 structure that is to hold the returned information for the
fstatvfs64() call.

DESCRIPTION
The fstatvfs64() function is similar to the fstatvfs() function except that, in addition to support-
ing smaller files, the fstatvfs64() function supports OSS files larger than approximately 2 giga-
bytes.

An application can explicitly call this function when the application is compiled using the
#define _LARGEFILE64_SOURCE 1 feature test macro or an equivalent compiler command
option.

An application call to fstatvfs() is automatically mapped to this function when the applciation is
compiled using the #define _FILE_OFFSET_BITS 64 feature test macro or an equivalent com-
piler command option.

The fstatvfs64() function returns descriptive information about a mounted fileset. The informa-
tion is returned in a statvfs64 structure, which has this definition from the sys/statvfs.h header
file:

typedef struct statvfs64 {
u_long f_bsize;
u_long f_frsize;
fsblkcnt64_t f_blocks;
fsblkcnt64_t f_bfree;
fsblkcnt64_t f_bavail;
fsfilcnt64_t f_files;
fsfilcnt64_t f_ffree;
fsfilcnt64_t f_favail;
u_long f_fsid;
char f_basetype[FSTYPSZ];
u_long f_flag;
u_long f_namemax;
char f_fstr[32];
fsblkcnt64_t f_bminavail;
fsblkcnt64_t f_bmaxavail;
u_long f_filler[5];

} statvfs64_t;

527186-023 Hewlett-Packard Company 3−53

fstatvfs64(2) OSS System Calls Reference Manual

The fields in this structure have these meanings and content:

f_bsize Fileset block size:

For Contains

Regular file 4096
Directory 4096
FIFO 4096
/dev/null 4096
Object in /G 4096
/G 4096
Terminal device file 4096
/E 4096

f_frsize Fundamental file system block size:

For Contains

Regular file 4096
Directory 4096
FIFO 4096
/dev/null 4096
Object in /G 4096
/G 4096
Terminal device file 4096
/E 4096

f_blocks Total number of blocks in fileset, in units of f_frsize:

For Contains

Regular file Number of blocks on all volumes ever used
in the fileset.

Directory Number of blocks on all volumes ever used
in the fileset.

FIFO Number of blocks on all volumes ever used
in the fileset.

/dev/null Number of blocks on all volumes ever used
in the fileset.

Object in /G Number of blocks on the volume contain-
ing the object.

/G 0
Terminal device file 0
/E 0

3−54 Hewlett-Packard Company 527186-023

System Functions (f - i) fstatvfs64(2)

f_bfree Total number of free blocks in fileset:

For Contains

Regular file Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Directory Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

FIFO Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

/dev/null Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Object in /G Number of free blocks in the volume con-
taining the object.

/G 0
Terminal device file 0
/E 0

f_bavail Number of free blocks available to a process without appropriate privileges:

For Contains

Regular file Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Directory Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

FIFO Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

/dev/null Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Object in /G Number of free blocks in the volume con-
taining the object.

/G 0
Terminal device file 0
/E 0

527186-023 Hewlett-Packard Company 3−55

fstatvfs64(2) OSS System Calls Reference Manual

f_files Total number of file serial numbers (inode numbers) in the fileset:

For Contains

Regular file Number of inode numbers in the fileset.
Directory Number of inode numbers in the fileset.
FIFO Number of inode numbers in the fileset.
/dev/null Number of inode numbers in the fileset.
Object in /G The value of ULONG_MAX.
/G 0
Terminal device file 0
/E 0

f_ffree Total number of free file serial numbers (inode numbers) in the fileset:

For Contains

Regular file Number of free inode numbers in the
fileset.

Directory Number of free inode numbers in the
fileset.

FIFO Number of free inode numbers in the
fileset.

/dev/null Number of free inode numbers in the
fileset.

Object in /G The value of ULONG_MAX.
/G 0
Terminal device file 0
/E 0

f_favail Number of file serial numbers (inode numbers) available to a process without
appropriate privileges:

For Contains

Regular file Number of free inode numbers in the
fileset.

Directory Number of free inode numbers in the
fileset.

FIFO Number of free inode numbers in the
fileset.

/dev/null Number of free inode numbers in the
fileset.

Object in /G The value of ULONG_MAX.
/G 0
Terminal device file 0
/E 0

3−56 Hewlett-Packard Company 527186-023

System Functions (f - i) fstatvfs64(2)

f_fsid Fileset identifier:

For Contains

Regular file Lower 32 bits of the st_dev field in the stat
structure.

Directory Lower 32 bits of the st_dev field in the stat
structure.

FIFO Lower 32 bits of the st_dev field in the stat
structure.

/dev/null Lower 32 bits of the st_dev field in the stat
structure.

Object in /G Lower 32 bits of the st_dev field in the stat
structure.

/G Lower 32 bits of the st_dev field in the stat
structure.

Terminal device file Lower 32 bits of the st_dev field in the stat
structure.

/E Lower 32 bits of the st_dev field in the stat
structure.

f_basetype Type of file system:

For Contains

Regular file OSS
Directory OSS
FIFO OSS
/dev/null OSS
Object in /G GUARDIAN
/G GUARDIAN
Terminal device file GUARDIAN
/E EXPAND

f_flag Bit mask indicating type of fileset access allowed:

For Contains

Regular file 4 if fileset is read/write, 5 if fileset is read-
only.

Directory 4 if fileset is read/write, 5 if fileset is read-
only.

FIFO 4 if fileset is read/write, 5 if fileset is read-
only.

/dev/null 4 if fileset is read/write, 5 if fileset is read-
only.

Object in /G 2
/G 3

527186-023 Hewlett-Packard Company 3−57

fstatvfs64(2) OSS System Calls Reference Manual

Terminal device file 2
/E 3

The content of the f_flag field can be tested with these symbolic values:

ST_NOSUID This bit flag is set if the fileset does not allow the setuid bit to be
set for its member files.

ST_NOTRUNC
This bit flag is set if the fileset does not truncate filenames.

ST_RDONLY This bit flag is set if the fileset is mounted for read-only access.

f_namemax Maximum number of character bytes in a filename within the fileset:

For Contains

Regular file 248
Directory 248
FIFO 248
/dev/null 248
Object in /G 8
/G 7
Terminal device file 7
/E 7

f_fstr Fileset pathname prefix string:

For Contains

Regular file /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

Directory /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

FIFO /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

/dev/null /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

Object in /G /E/nodename/G/volume, identifying the
disk volume containing the specified file.

/G /E/nodename/G
Terminal device file /E/nodename/G
/E /E

3−58 Hewlett-Packard Company 527186-023

System Functions (f - i) fstatvfs64(2)

f_bminavail Number of blocks free on the disk volume with the least space remaining:

For Contains

Regular file Number of blocks.
Directory Number of blocks.
FIFO Number of blocks.
/dev/null Number of blocks.
Object in /G Number of blocks.
/G 0
Terminal device file 0
/E 0

f_bmaxavail Number of blocks free on the disk volume with the most space remaining:

For Contains

Regular file Number of blocks.
Directory Number of blocks.
FIFO Number of blocks.
/dev/null Number of blocks.
Object in /G Number of blocks.
/G 0
Terminal device file 0
/E 0

NOTES
This function provides compatibility with the System V Interface Definition, Revision 3.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the fstatvfs64() function returns the value 0 (zero). Otherwise, it
returns the value -1, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the fstatvfs64() function sets errno to the corresponding value:

[EBADF] The filedes parameter is not a valid file descriptor.

[EFAULT] The buffer parameter points to an invalid address.

[EINTR] The function was interrupted by a signal before any data arrived.

[EINVAL] The file pointed to by the filedes parameter is an OSS pipe or a socket.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device

527186-023 Hewlett-Packard Company 3−59

fstatvfs64(2) OSS System Calls Reference Manual

might have failed. Data might have been lost during a transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[EWRONGID] One of these conditions occurred:

• The process attempted an input or output operation through an operating
system input/output process (such as a terminal server process) that has
failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for use of the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: fstat(2), fstat64(2), lstat(2), lstat64(2), stat(2), stat64(2), statvfs(2) statvfs64(2).

STANDARDS CONFORMANCE
This function is an HP extension to the XPG4 Version 2 specification.

3−60 Hewlett-Packard Company 527186-023

System Functions (f - i) fsync(2)

NAME
fsync - Writes modified data and file attributes to permanent storage

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <unistd.h>

int fsync(
int filedes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), dup(), dup2(), fcntl(), open(), pipe(), socket(), or socketpair() func-
tion.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

DESCRIPTION
The fsync() function saves all modifications for the file open specified by the filedes parameter.
On return from the fsync() function, all updated data and file attributes have been saved on per-
manent storage.

Use on Guardian Objects
The filedes parameter can specify any regular file in /G including Guardian EDIT files. Time
values are not saved for other file types in /G, such as terminal files.

Use From a Threaded Application
If this function must wait for an I/O operation to complete on an open file, this function blocks
the thread (instead of the entire process) that called it, while it waits for the I/O operation to com-
plete.

NOTES
The fsync() function offers an alternative to the O_SYNC file status flag. Using fsync() calls
gives an application control over the performance trade offs involved in guaranteeing data
integrity. OSS file-system caching can be used for files that are protected only by fsync() func-
tion calls.

To use the fsync() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_fsyncz(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

527186-023 Hewlett-Packard Company 3−61

fsync(2) OSS System Calls Reference Manual

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the fsync() function returns the value 0 (zero). Otherwise, it returns
the value -1, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the fsync() function sets errno to the value that corresponds to
the condition:

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion is in progress on a regular file and a function that is process-blocking for
regular files attempts to begin an I/O operation on the same open file.

If the fsync() function is thread-aware, the [EALREADY] value is not returned.

[EBADF] The filedes parameter is not a valid file descriptor.

[EINTR] The fsync() function was interrupted by a signal that was caught.

[EINVAL] The filedes parameter, although valid, does not refer to a file on which this opera-
tion is possible.

[EIO] An I/O error occurred during a write to the fileset.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENXIO] No such device or address. An invalid device or address was specified during an
input or output operation on a special file. One of these events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

3−62 Hewlett-Packard Company 527186-023

System Functions (f - i) fsync(2)

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: open(2), socket(2), spt_fsynchz(2), stat(2), write(2).

STANDARDS CONFORMANCE
HP extensions to the XPG4 Version 2 specification are:

• The errno values [EISGUARDIAN], [ENETDOWN], [ENXIO], and [EWRONGID] can
be returned.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 3−63

ftruncate(2) OSS System Calls Reference Manual

NAME
ftruncate - Changes file length

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h>

int ftruncate(
int filedes,
off_t length);

PARAMETERS
filedes Specifies the descriptor of a file that must be open for writing.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), or open64()
function, or the thread-aware dup2() or fcntl() function.

length Specifies the new length of the file in bytes.

DESCRIPTION
The ftruncate() function changes the length of a file to the size, in bytes, specified by the length
parameter.

If the new length is less than the previous length, the ftruncate() function removes all data
beyond length bytes from the specified file. All file data between the new EOF and the previous
EOF is discarded.

If the new length is greater than the previous length, zeros are added between the previous EOF
and the new EOF.

Full blocks are returned to the fileset so that they can be used again, and the file size is changed
to the value of the length parameter.

The ftruncate() function has no effect on First-in, First-out (FIFO) special files. This function
does not modify the seek pointer of the file. If ftruncate() is called for a FIFO file, the call fails,
and errno is set to [EINVAL].

Upon successful completion, the ftruncate() function marks the st_ctime and st_mtime fields of
the file for update. If the file is a regular file, the ftruncate() function clears the S_ISUID and
S_ISGID attributes of the file.

Use From a Threaded Application
The thread-aware ftruncate() function offers an alternative to the O_SYNC file status flag.
Using thread-aware ftruncate() gives a threaded application control over the performance trade
offs involved in guaranteeing data integrity. OSS file-system caching can be used for files that
are protected only by thread-aware ftruncate() function calls.

If this function must wait for an I/O operation to complete on an open file, this function blocks
the thread (instead of the entire process) that called it, while it waits for the I/O operation to com-
plete.

3−64 Hewlett-Packard Company 527186-023

System Functions (f - i) ftruncate(2)

NOTES
To use the ftruncate() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_ftruncatez(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the ftruncate() function sets errno to the corresponding value:

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion is in progress on a regular file and a function that is process-blocking for
regular files attempts to begin an I/O operation on the same open file.

If the ftruncate() function is thread-aware, the [EALREADY] value is not
returned.

[EBADF] The filedes parameter does not specify a valid file descriptor open for writing.

[EFBIG] The length parameter is greater than the minimum of 2 gigabytes minus 1 byte
and the maximum file size established during file open.

[EINTR] The function was interrupted by a signal before any data arrived.

[EINVAL] One of these conditions occurred:

• The file pointed to by the filedes parameter is not a regular file.

• The value specified for the length parameter was less than 0 (zero).

527186-023 Hewlett-Packard Company 3−65

ftruncate(2) OSS System Calls Reference Manual

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[EROFS] The file resides on a read-only fileset.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: chmod(2), fcntl(2), ftruncate64(2), open(2), open64(2), spt_ftruncatez(2).

STANDARDS CONFORMANCE
HP extensions to the XPG4 Version 2 specification are:

• The errno values [EISGUARDIAN], [ENETDOWN], and [EROFS] can be returned.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

This function cannot be used as a cancellation point when the function is used with the POSIX
User Thread Model library.

3−66 Hewlett-Packard Company 527186-023

System Functions (f - i) ftruncate64(2)

NAME
ftruncate64 - Changes file length

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h>

int ftruncate64(
int filedes,
off64_t length);

PARAMETERS
filedes Specifies the descriptor of a file that must be open for writing.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), or open64()
function, or the thread-aware dup2() or fcntl() function.

length Specifies the new length of the file in bytes.

DESCRIPTION
The ftruncate64() function is similar to the ftruncate() function except that, in addition to sup-
porting smaller files, the ftruncate64() function supports OSS files larger than approximately 2
gigabytes.

An application can explicitly call this function when the application is compiled using the
#define _LARGEFILE64_SOURCE 1 feature test macro or an equivalent compiler command
option.

An application call to ftruncate() is automatically mapped to this function when the applciation
is compiled using the #define _FILE_OFFSET_BITS 64 feature test macro or an equivalent
compiler command option.

The ftruncate64() function changes the length of a file to the size, in bytes, specified by the
length parameter.

If the new length is less than the previous length, the ftruncate64() function removes all data
beyond length bytes from the specified file. All file data between the new EOF and the previous
EOF is discarded.

If the new length is greater than the previous length, zeros are added between the previous EOF
and the new EOF. If the new length would exceed the file size limit for the calling process, the
call to ftruncate64() fails, and errno is set to [EFBIG].

Full blocks are returned to the fileset so that they can be used again, and the file size is changed
to the value of the length parameter.

The ftruncate64() function has no effect on First-in, First out (FIFO) special files. This function
does not modify the seek pointer of the file. If ftruncate64() is called for a FIFO file, the call
fails, and errno is set to [EINVAL].

Upon successful completion, the ftruncate64() function marks the st_ctime and st_mtime fields
of the file for update. If the file is a regular file, the ftruncate64() function clears the S_ISUID
and S_ISGID attributes of the file.

527186-023 Hewlett-Packard Company 3−67

ftruncate64(2) OSS System Calls Reference Manual

Use From a Threaded Application
The thread-aware ftruncate64() function offers an alternative to the O_SYNC file status flag.
Using thread-aware ftruncate64() gives a threaded application control over the performance
trade offs involved in guaranteeing data integrity. OSS file-system caching can be used for files
that are protected only by thread-aware ftruncate64() function calls.

If this function must wait for an I/O operation to complete on an open file, this function blocks
the thread (instead of the entire process) that called it, while it waits for the I/O operation to com-
plete.

NOTES
To use the ftruncate64() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_ftruncate64z(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the ftruncate64() function sets errno to the corresponding
value:

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion is in progress on a regular file and a function that is process-blocking for
regular files attempts to begin an I/O operation on the same open file.

If the ftruncate64() function is thread-aware, the [EALREADY] value is not
returned.

[EBADF] The filedes parameter does not specify a valid file descriptor open for writing.

3−68 Hewlett-Packard Company 527186-023

System Functions (f - i) ftruncate64(2)

[EFBIG] The length parameter is greater than the minimum of 2 gigabytes minus 1 byte
and the maximum file size established during file open.

[EINTR] The function was interrupted by a signal before any data arrived.

[EINVAL] One of these conditions occurred:

• The file pointed to by the filedes parameter is not a regular file.

• The value specified for the length parameter was less than 0 (zero).

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[EROFS] The file resides on a read-only fileset.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: chmod(2), fcntl(2), open(2), open64(2), spt_ftruncate64z(2).

STANDARDS CONFORMANCE
This function is an HP extension to the XPG4 Version 2 specification.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

This function cannot be used as a cancellation point when the function is used with the POSIX
User Thread Model library.

527186-023 Hewlett-Packard Company 3−69

getegid(2) OSS System Calls Reference Manual

NAME
getegid - Gets the effective group ID

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

gid_t getegid(void);

DESCRIPTION
The getegid() function returns the effective group ID of the calling process.

The real, effective, and saved group IDs are set at login time and when a process with appropriate
privileges calls the setgid() function. The effective and saved group IDs can also change as a
result of executing a set-group-ID program.

NOTES
A process’s effective group ID can be different from the group membership indicated by the
operating system process access ID (PAID) of the process.

RETURN VALUES
The getegid() function returns the effective group ID. It is always successful.

The "uninitialized" group ID (hexadecimal 80000000) is returned when authentication informa-
tion of a process is uninitialized.

RELATED INFORMATION
Functions: getgid(2), getgroups(2), setgid(2).

Commands: id(1).

3−70 Hewlett-Packard Company 527186-023

System Functions (f - i) geteuid(2)

NAME
geteuid - Gets the effective user ID of the current process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

uid_t geteuid(void);

DESCRIPTION
The geteuid() function returns the effective user ID of the current process.

RETURN VALUES
The geteuid() function returns the requested user ID. It is always successful.

When the authentication information for a process is uninitialized, the "uninitialized" user ID
(hexadecimal 80000000) is returned.

RELATED INFORMATION
Functions: getuid(2), setuid(2).

527186-023 Hewlett-Packard Company 3−71

getgid(2) OSS System Calls Reference Manual

NAME
getgid - Gets the real group ID

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

gid_t getgid(void);

DESCRIPTION
The getgid() function returns the real group ID of the calling process.

The real, effective, and saved group IDs are set at login time and when a process with appropriate
privileges calls the setgid() function.

NOTES
A process’s real group ID can be different from the group number in the operating system creator
access ID (CAID) for a process.

RETURN VALUES
The getgid() function returns the real group ID. It is always successful.

The "uninitialized" group ID (hexadecimal 80000000) is returned when authentication informa-
tion of a process is uninitialized.

RELATED INFORMATION
Functions: getegid(2), getgroups(2), setgid(2).

Commands: id(1).

3−72 Hewlett-Packard Company 527186-023

System Functions (f - i) getgroups(2)

NAME
getgroups - Gets the group list of the current process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <unistd.h>
#include <sys/types.h>

int getgroups(
int gidsetsize,
gid_t grouplist []);

PARAMETERS
gidsetsize Specifies the number of entries that can be stored in the array pointed to by the

grouplist parameter.

grouplist Points to the array in which the group list of the process is stored.

DESCRIPTION
The getgroups() function gets the group list of the current process. The list is stored in the array
pointed to by the grouplist parameter. The gidsetsize parameter indicates the number of entries
that can be stored in this array.

The getgroups() function never returns more than NGROUPS_MAX entries.
(NGROUPS_MAX is a constant defined in the limits.h header file.) If the gidsetsize parameter
is 0 (zero), the getgroups() function returns the number of groups in the group list.

The effective group ID may not occur in the returned group ID list if the effective group ID has
been changed by executing a set-group-ID program or by calling the setgid() function.

RETURN VALUES
Upon successful completion, the getgroups() function returns the number of elements stored in
the array pointed to by the grouplist parameter. If getgroups() fails, then the value -1 is returned
and errno is set to indicate the error.

The value 0 (zero) is returned when the authentication information for a process is uninitialized.

ERRORS
If any of these conditions occur, the getgroups() function sets errno to the corresponding value:

[EFAULT] The gidsetsize and grouplist parameters specify an array that is partially or com-
pletely outside the allocated address space of the process.

[EINVAL] The gidsetsize parameter is nonzero and smaller than the number of groups in the
group list, or the grouplist parameter is out of range.

RELATED INFORMATION
Commands: id(1).

527186-023 Hewlett-Packard Company 3−73

gethostname(2) OSS System Calls Reference Manual

NAME
gethostname - Gets the name of the local host

LIBRARY
G-series native OSS processes: /G/system/sysnn/zinetsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zinetdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yinetdll

SYNOPSIS
#include <netdb.h>

int gethostname(
char *address,
int address_len);

PARAMETERS
address Returns the address of an array of bytes where the hostname is stored. If

sufficient space is provided, the returned address parameter is NULL terminated.

address_len Specifies the length of the array pointed to by the address parameter.

DESCRIPTION
The gethostname() function retrieves the standard hostname of the local host. The name
returned corresponds to the hostname returned in the Subsystem Command Facility (SCF) com-
mand INFO PROCESS for the TCP subsystem.

RETURN VALUES
Upon successful completion, the gethostname() function returns a value of 0 (zero). Otherwise,
a value of -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occur, the gethostname() function sets errno to the corresponding
value:

[EINVAL] The address parameter or address_len parameter refers to an invalid address in
the user’s address space.

RELATED INFORMATION
Functions: gethostid(2).

3−74 Hewlett-Packard Company 527186-023

System Functions (f - i) getpeername(2)

NAME
getpeername - Gets the name of the peer socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

int getpeername(
int socket,
struct sockaddr *address,
socklen_t *address_len);

PARAMETERS
socket Specifies the open file descriptor of the socket.

address Points to a sockaddr structure, where the address of the peer socket is returned.

If the length of the address is greater than the length of the supplied sockaddr
structure, the address is truncated when stored.

If the protocol permits connection by unbound clients, and if the peer socket is
not bound to an address, then the value stored is unspecified.

The length and format of the address depend on the address family of the socket.

For AF_INET sockets, a pointer to the address structure sockaddr_in can be
cast as a struct sockaddr. For AF_INET6 sockets, a pointer to the address
structure sockaddr_in6 can be cast as a struct sockaddr. For AF_UNIX sock-
ets, a pointer to the address structure sockaddr_un must be cast as a struct
sockaddr.

address_len Points to a socklen_t data item, which, on input, specifies the length of the
sockaddr structure pointed to by the address parameter, and, on output, specifies
the length of the address returned.

DESCRIPTION
The getpeername() function retrieves the peer address of the specified socket, stores this
address in the sockaddr structure pointed to by the address parameter, and stores the length of
this address in the object pointed to by the address_len parameter.

The behavior of this function differs depending on the type of socket and whether the socket is an
AF_UNIX Release 1 socket or an AF_UNIX Release 2 socket in compatibility mode, or the
socket is an AF_UNIX Release 2 socket in portability mode.

527186-023 Hewlett-Packard Company 3−75

getpeername(2) OSS System Calls Reference Manual

AF_UNIX Release 1 or
AF_UNIX Release 2 in AF_UNIX Release 2 in
Compatibility Mode Portability Mode__

After a successful call to con-
nect() on a stream socket where a
relative pathname is passed in the
address parameter, a subsequent
call to getpeername() returns the
relative path name passed to con-
nect().

After a successful call to con-
nect() on a stream socket where a
relative pathname is passed in the
address parameter, a subsequent
call to getpeername() returns the
fully-qualified equivalent of the
relative path name passed to con-
nect().

After a successful call to con-
nect() on a datagram socket, when
the file specified in the address
parameter is renamed, a subse-
quent call to getpeername() fails
with errno set to [ENOENT].

After a successful call to con-
nect() on a datagram socket, when
the file specified in the address
parameter is renamed, a subse-
quent call to getpeername()
returns the name of the file at the
time of the connect() call.

After a successful call to con-
nect() on a datagram socket, if the
file specified in the address param-
eter is unlinked, a subsequent call
to getpeername() fails with errno
set to [ENOENT].

After a successful call to con-
nect() on a datagram socket, if the
file specified in the address param-
eter is unlinked, a subsequent call
to getpeername() returns the
fully-qualified name of the file
passed to the connect() call.

For more information about AF_UNIX Release 2 sockets, portability mode, and compatibility
mode, see the Open System Services Programmer’s Guide.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

A process can use the getsockname() function to retrieve the locally bound name of a socket.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the getpeername() function returns the value 0 (zero). Otherwise,
the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the getpeername() function sets errno to the
corresponding value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

3−76 Hewlett-Packard Company 527186-023

System Functions (f - i) getpeername(2)

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINVAL] The socket has been shut down.

[ENOBUFS] There were not enough system resources available to complete the call. A retry
at a later time might succeed.

[ENOENT] The socket is either an AF_UNIX Release 1 datagram socket or an AF_UNIX
Release 2 datagram socket in compatibility mode and one of these conditions
occurred:

• The underlying file of the peer socket specified in the address parameter
was renamed.

• The underlying file of the peer socket specfied in the address parameter
was unlinked.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTCONN] The socket is not connected or has not had the peer socket previously specified.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The operation is not supported for the protocol of the socket specified by the
socket parameter.

RELATED INFORMATION
Functions: accept(2), bind(2), getsockname(2), socket(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno value [ENOSR].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport-provider process
is unavailable.

527186-023 Hewlett-Packard Company 3−77

getpgid(2) OSS System Calls Reference Manual

NAME
getpgid - Gets the process group ID for a specified OSS process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <unistd.h>

pid_t getpgid(
pid_t pid);

PARAMETERS
pid Specifies the process ID of the target process. If the specified value is 0 (zero),

the target process is the calling process.

DESCRIPTION
The getpgid() function returns the process group ID of the process specified by the process ID
pid.

Use From the Guardian Environment
This function cannot be used in the Guardian environment. When the getpgid() function is
called from the Guardian environment, the call fails and errno is set to [ENOTOSS].

RETURN VALUES
The getpgid() function returns the process group ID of the specified process. If an error occurs,
the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the getpgid() function sets errno to the corresponding
value.

[EINVAL] The pid parameter is out of range.

[ENOTOSS] The calling process is not an OSS process. The requested operation is not sup-
ported from the Guardian environment.

[EPERM] The specified process is not in the same session as the calling process.

[ESRCH] The value of the pid parameter does not match the OSS process ID of the calling
process or of a child process of the calling process.

RELATED INFORMATION
Functions: exec(2), fork(2), getpgrp(2), setpgid(2), setsid(2), tcsetpgrp(2), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2).

STANDARDS CONFORMANCE
The following is an HP extension to the XPG4 Version 2 specification:

• The function can return the errno value [ENOTOSS].

3−78 Hewlett-Packard Company 527186-023

System Functions (f - i) getpgrp(2)

NAME
getpgrp - Gets the process group ID of the calling process

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

pid_t getpgrp(void);

DESCRIPTION
The getpgrp() function returns the process group ID of the calling process.

Use From the Guardian Environment
Calls to getpgrp() from Guardian processes are not successful.

RETURN VALUES
When called by an OSS process, this function returns the requested process group ID. When
called by a Guardian process, Guardian trap number 5 is set.

RELATED INFORMATION
Commands: ps(1).

Functions: exec(2), _exit(2), fork(2), kill(2), setpgid(2), setsid(2), tdm_fork(2).

527186-023 Hewlett-Packard Company 3−79

getpid(2) OSS System Calls Reference Manual

NAME
getpid - Gets the OSS process ID

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

pid_t getpid(void);

DESCRIPTION
The getpid() function returns the OSS process ID of the calling process.

Use From the Guardian Environment
Calls to getpid() from Guardian processes are not successful.

RETURN VALUES
When called by an OSS process, this function returns the requested OSS process ID. When
called by a Guardian process, Guardian trap number 5 is set.

RELATED INFORMATION
Commands: ps(1).

Functions: exec(2), _exit(2), fork(2), kill(2), setpgid(2), setsid(2), tdm_fork(2).

3−80 Hewlett-Packard Company 527186-023

System Functions (f - i) getppid(2)

NAME
getppid - Gets the parent OSS process ID

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

pid_t getppid(void);

DESCRIPTION
The getppid() function returns the parent OSS process ID of the calling process. If the parent
process terminates or the calling process was created by a Guardian process, getppid() returns a
parent OSS process ID of 1.

Use From the Guardian Environment
Calls to getppid() from Guardian processes are not successful.

RETURN VALUES
When called by an OSS process, this function returns the requested OSS process ID. When
called by a Guardian process, Guardian trap number 5 is set.

RELATED INFORMATION
Commands: ps(1).

Functions: exec(2), _exit(2), fork(2), kill(2), setpgid(2), setsid(2), tdm_fork(2).

527186-023 Hewlett-Packard Company 3−81

getpriority(2) OSS System Calls Reference Manual

NAME
getpriority - Gets the OSS process scheduling priority

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/resource.h>

int getpriority(
int which,
id_t who);

PARAMETERS
which Specifies the symbolic value for the source of the nice value to be returned. The

following symbolic values defined in the sys/resource.h header file are valid:

PRIO_PGRP The nice value for the process group should be returned.

PRIO_PROCESS
The nice value for the process should be returned.

PRIO_USER The nice value associated with the user ID should be returned.

who Specifies a numeric value interpreted relative to the which parameter (a process
group ID, an OSS process ID, and a user ID, respectively). A 0 (zero) value for
the who parameter indicates the current process group ID, OSS process ID, or
user ID.

DESCRIPTION
The getpriority() function obtains the nice value of a process group, process, or user ID.

The getpriority() function returns the highest priority (lowest numerical value) pertaining to any
of the specified processes.

Use From the Guardian Environment
This function cannot be called from the Guardian environment. When the getpriority() function
is called from the Guardian environment, the call fails and errno is set to [ENOTOSS].

RETURN VALUES
Because getpriority() can legitimately return the value of -1, set the external variable errno to 0
(zero) before calling the getpriority() function. If a value of -1 is returned from getpriority(),
check errno to see whether an error occurred or the value is a legitimate priority.

Upon successful completion, the getpriority() function returns an integer in the range -20
through 19. Otherwise, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the getpriority() function sets errno to the
corresponding value.

[EINVAL] One of the following conditions occurred:

• The value specified by the which parameter is invalid.

• The value specified as a process group ID, OSS process ID, or user ID by
the who parameter is out of range.

3−82 Hewlett-Packard Company 527186-023

System Functions (f - i) getpriority(2)

[ENOTOSS] The calling process is not an OSS process. The requested operation is not sup-
ported from the Guardian environment.

[ESRCH] No process was located using the which and who parameter values specified.

RELATED INFORMATION
Functions: nice(2).

STANDARDS CONFORMANCE
The following is an HP extension to the XPG4 Version 2 specification:

• The function can return the errno value [ENOTOSS].

527186-023 Hewlett-Packard Company 3−83

getsid(2) OSS System Calls Reference Manual

NAME
getsid - Gets the process group ID of the session leader

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

pid_t getsid(
pid_t pid);

PARAMETERS
pid Specifies the OSS process ID of the target process. If the value specified is

pid_t(0) (an OSS process ID of zero), the function uses the OSS process ID of
the calling process.

DESCRIPTION
The getsid() function returns the process group ID of the process that is the session leader of the
process specified by the OSS process ID in the pid parameter. Specifying a pid of 0 (zero) returns
the process group ID of the calling process.

Use From the Guardian Environment
Calls to getsid() from Guardian processes are not successful because Guardian processes do not
have OSS process IDs. Such calls return an errno value of [ENOTOSS].

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the getsid() function returns the process group ID of the specified
process. If the function call fails, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the getsid() function sets errno to the corresponding value:

[ENOTOSS] The calling process is not an OSS process. The requested operation is not sup-
ported from the Guardian environment.

[EPERM] The specified process is not in the same session as the calling process, and the
calling process lacks sufficient privilege to read the specified process.

[ESRCH] No process has been found that has an OSS process ID identical to that specified
by the pid parameter.

RELATED INFORMATION
Functions: execl(2), execle(2), execlp(2), execv(2), execve(2), execvp(2), fork(2), setsid(2),
tdm_execve(2), tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2).

STANDARDS CONFORMANCE
The following is an HP extension to the XPG4 Version 2 specification:

• The errno value [ENOTOSS] can be returned.

3−84 Hewlett-Packard Company 527186-023

System Functions (f - i) getsockname(2)

NAME
getsockname - Gets the locally bound name of a socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

int getsockname(
int socket,
struct sockaddr *address,
socklen_t *address_len);

PARAMETERS
socket Specifies the file descriptor of the socket.

address Points to a sockaddr structure, where the locally bound address of the specified
socket is returned.

If the length of the socket address is greater than the length of the supplied
sockaddr structure, the address is truncated when stored.

If the socket has not been bound to a local address, the value stored is
unspecified.

The length and format of the address depend on the address family of the socket.

For AF_INET sockets, a pointer to the address structure sockaddr_in can be
cast as a struct sockaddr. For AF_INET6 sockets, a pointer to the address
structure sockaddr_in6 can be cast as a struct sockaddr. For AF_UNIX sock-
ets, a pointer to the address structure sockaddr_un must be cast as a struct
sockaddr.

address_len Points to a socklen_t data item, which, on input, specifies the length of the
sockaddr structure pointed to by the address parameter, and, on output, specifies
the length of the address returned.

DESCRIPTION
The getsockname() function retrieves the locally-bound address of the specified socket, stores
this address in the sockaddr structure pointed to by the address parameter, and stores the length
of this address in the object pointed to by the address_len parameter.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

A process can use the getpeername() function to retrieve the name of a peer socket in a socket
connection.

After a successful call to bind(), if the underlying file is unlinked or renamed, the behavior of
getsockname() depends on the mode of the socket:

• For AF_UNIX Release 1 sockets and AF_UNIX Release 2 sockets in compatibility
mode, getsockname() fails and errno is set to [ENOENT].

• For AF_UNIX Release 2 sockets in portability mode, the fully-qualified name of the file
is returned.

527186-023 Hewlett-Packard Company 3−85

getsockname(2) OSS System Calls Reference Manual

For more information about AF_UNIX Release 2 sockets, portability mode, and compatibility
mode, see the Open System Services Programmer’s Guide.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the getsockname() function returns the value 0 (zero). Otherwise,
the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occur, the getsockname() function sets errno to the
corresponding value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINVAL] The socket has been shut down.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOENT] The socket is either an AF_UNIX Release 1 datagram socket or an AF_UNIX
Release 2 datagram socket in compatibility mode and one of these conditions
occured:

• The underlying file of the peer socket specified in the address parameter
was renamed.

• The underlying file of the peer socket specfied in the address parameter
was unlinked.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified operation is not supported by the protocol used by the socket.

RELATED INFORMATION
Functions: accept(2), bind(2), getpeername(2), socket(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno value [ENOSR].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport-provider process
is unavailable.

3−86 Hewlett-Packard Company 527186-023

System Functions (f - i) getsockname(2)

527186-023 Hewlett-Packard Company 3−87

getsockopt(2) OSS System Calls Reference Manual

NAME
getsockopt - Gets socket options

LIBRARY
G-series native OSS processes: /G/system/sysnn/zinetsrl
H-series and J-series OSS processes: /G/system/zdllnnn/zinetdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>
[#include <netinet/in.h>] Required for IP protocol level
[#include <netinet/tcp.h>] Required for TCP protocol level

int getsockopt(
int socket,
int level,
int option_name,
void *option_value,
socklen_t *option_len);

PARAMETERS
socket Specifies the file descriptor for the socket.

level Specifies the protocol level at which the option resides. The following values
can be specified for the level parameter in an OSS application program:

IPPROTO_IPV6
Return IP protocol-level options defined for an Internet Protocol
version 6 (IPv6) socket

IPPROTO_IP Return IP protocol-level options defined for an Internet Protocol
version 4 (IPv4) socket

IPPROTO_TCP
Return TCP protocol-level options defined for a socket

SOL_SOCKET
Return socket-level protocol options defined for a socket

To retrieve options at other levels, supply the appropriate protocol number for
the protocol controlling the option. Supported protocol numbers are listed in
/etc/protocols.

option_name Specifies a single option to be retrieved.

The getsockopt() function retrieves information about the following
IPPROTO_IPV6 (IP protocol-level IPv6) options:

IPV6_MULTICAST_IF
Indicates the interface (subnet) used for outbound multicast
UDP datagrams. The interface value is an unsigned int.

IPV6_MULTICAST_HOPS
Indicates the hop limit for outbound multicast UDP datagrams.
The limit is an int that is either:

• Between 0 and 255 to indicate the maximum number of
hops allowed.

3−88 Hewlett-Packard Company 527186-023

System Functions (f - i) getsockopt(2)

• -1 to indicate that the default value should be used.

IPV6_MULTICAST_LOOP
Indicates that the host belongs to the multicast group that it is
sending to, and a copy of the datagram should be sent by loop-
back to the originating host.

IPV6_UNICAST_HOPS
Indicates the hop limit for outbound unicast UDP datagrams.
The limit is an int that is either:

• Between 0 and 255 to indicate the maximum number of
hops allowed.

• -1 to indicate that the default value should be used.

IPV6_V6ONLY
Indicates that AF_INET6 sockets are restricted to IPv6-only
communication.

The getsockopt() function retrieves information about the following
IPPROTO_IP (IP protocol-level IPv4) options:

IP_OPTIONS Indicates that the value of the IP_OPTIONS flag should be
returned. The IP_OPTIONS flag indicates that options
specified in a setsockopt() function call are set for each outgo-
ing packet, in conformance with RFC 791.

IP_MULTICAST_IF
Indicates the interface (subnet) used for outbound multicast
UDP datagrams. The interface value is an unsigned int.

IP_MULTICAST_TTL
Indicates the hop limit for outbound multicast UDP datagrams.
The limit is an int that is either:

• Between 0 and 255 to indicate the maximum number of
hops allowed.

• -1 to indicate that the default value should be used.

IP_MULTICAST_LOOP
Indicates that the host belongs to the multicast group that it is
sending to, and a copy of the datagram should be sent by loop-
back to the originating host.

The getsockopt() function retrieves information about the following
SOL_SOCKET (socket protocol-level) options:

SO_ACCEPTCONN
Reports whether socket listening is enabled. This option returns
an int value in the buffer pointed to by the option_value parame-
ter.

527186-023 Hewlett-Packard Company 3−89

getsockopt(2) OSS System Calls Reference Manual

SO_BROADCAST
Reports whether transmission of broadcast messages is sup-
ported. This option returns an int value in the buffer pointed to
by the option_value parameter.

SO_DEBUG Reports whether debugging information is being recorded. This
option returns an int value in the buffer pointed to by the
option_value parameter.

SO_DONTROUTE
Reports whether outgoing messages should bypass the standard
routing facilities and be directed to the appropriate network
interface, according to the destination address. (This option is
for debugging purposes only and is not recommended.) This
option returns an int value in the buffer pointed to by the
option_value parameter.

SO_ERROR Reports information about error status and clears it. This option
returns an int value in the buffer pointed to by the option_value
parameter.

SO_KEEPALIVE
Reports whether connections are kept active with periodic
transmission of messages. This option returns an int value in the
buffer pointed to by the option_value parameter.

SO_LINGER Reports whether the system attempts to deliver data after the
close() function is called if unsent data is queued.

The SO_LINGER option is always enabled for AF_INET or
AF_INET6 sockets and is not implemented for AF_UNIX sock-
ets.

This option returns a linger structure value in the buffer pointed
to by the option_value parameter.

SO_OOBINLINE
Reports whether the socket leaves received out-of-band data
(data marked urgent) queued with other data (in line) for proto-
cols that support out-of-band data. This option returns an int
value in the buffer pointed to by the option_value parameter.

SO_RCVBUF Reports the receive buffer size in bytes. This option returns an
int value in the buffer pointed to by the option_value parameter.

SO_REUSEADDR
Reports whether the rules used in validating addresses supplied
by a bind() function call should allow reuse of local addresses.
This option returns an int value in the buffer pointed to by the
option_value parameter.

SO_REUSEPORT
Reports whether the rules used in validating ports supplied by a
bind() function call should allow reuse of local ports. This
option returns an int value in the buffer pointed to by the
option_value parameter.

This option is valid only for UDP ports.

3−90 Hewlett-Packard Company 527186-023

System Functions (f - i) getsockopt(2)

SO_SNDBUF Reports the send buffer size in bytes. This option returns an int
value in the buffer pointed to by the option_value parameter.

SO_TYPE Reports the socket type in a form that can be tested against a
symbolic value such as SOCK_DGRAM or SOCK_STREAM.
This option returns an int value in the buffer pointed to by the
option_value parameter.

The getsockopt(\|) function retrieves information about the following
IPPROTO_TCP (TCP protocol-level) options:

TCP_MAXRXMT
Reports the maximum retransmission timeout value in multiples
of 500 milliseconds. This option returns an int value in the
buffer pointed to by the option_value parameter.

TCP_MINRXMT
Reports the minimum retransmission timeout value in multiples
of 500 milliseconds. This option returns an int value in the
buffer pointed to by the option_value parameter.

TCP_NODELAY
Reports whether data packets are buffered before transmission.
This option returns an int value in the buffer pointed to by the
option_value parameter.

TCP_RXMTCNT
Reports the maximum retransmission count. This option returns
an int value in the buffer pointed to by the option_value parame-
ter.

TCP_SACKENA
Reports whether TCP selective acknowledgments are enabled.
This option returns an int value in the buffer pointed to by the
option_value parameter.

TCP_TOTRXMTVAL
Reports the total maximum retransmission duration in multiples
of 500 milliseconds. This option returns an int value in the
buffer pointed to by the option_value parameter.

Options at other protocol levels vary in format and name.

option_value Points to the buffer to receive the option value. The data type of the value
returned for each option is indicated in the description of option_name.

If the length of the value returned for an option is greater than the length of the
supplied option_value buffer, the value is truncated when stored.

option_len Points to a socklen_t data item, which, on input, specifies the length of the sup-
plied buffer pointed to by the option_value parameter, and, on output, specifies
the length of the value returned in the supplied buffer.

527186-023 Hewlett-Packard Company 3−91

getsockopt(2) OSS System Calls Reference Manual

DESCRIPTION
The getsockopt() function allows an application program to query socket options. The calling
program specifies the file descriptor, the option, and a place to store the requested information.
The operating system gets the socket option information from its internal data structures and
passes the requested information back to the calling program.

Upon successful completion, the getsockopt() function returns the value of the specified option
in the buffer pointed to by the option_value parameter. For options that can be classified as dis-
abled or enabled, a value of 0 (zero) indicates that the option is disabled and a value of 1 indi-
cates that the option is enabled. The socket-level options can be enabled or disabled by the set-
sockopt() function.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the getsockopt() function returns the value 0 (zero). Otherwise,
the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the getsockopt() function sets errno to the
corresponding value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINVAL] One of the following conditions occurred:

• The specified option is not valid at the specified socket level.

• The socket has been shut down.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOPROTOOPT]
The specified option is not supported by the protocol used by the socket.

3−92 Hewlett-Packard Company 527186-023

System Functions (f - i) getsockopt(2)

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified operation is not supported by the protocol used by the socket.

RELATED INFORMATION
Functions: bind(2), close(2), endprotoent(3), getprotobynumber(3), getprotoent(3), setpro-
toent(3), setsockopt(2), socket(2), socketpair(2).

STANDARDS CONFORMANCE
The HP implementation does not:

• Implement the SO_LINGER option for AF_UNIX sockets.

• Return the errno value [ENOSR].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport provider process
is unavailable.

• The SO_REUSEPORT option is supported.

527186-023 Hewlett-Packard Company 3−93

gettimeofday(2) OSS System Calls Reference Manual

NAME
gettimeofday - Gets date and time

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/time.h>

int gettimeofday(
struct timeval *tp,
struct timezone *tzp);

PARAMETERS
tp Points to a timeval structure, defined in the sys/time.h file. The timeval struc-

ture contains the current time when the call is completed. If a null pointer is
specified, the current time is not returned. If an invalid writable address is
specified, a SIGSEGV signal is generated.

tzp Points to a timezone structure, defined in the sys/time.h file. The timezone
structure contains the current time zone when the call is completed. If a null
pointer is specified, the current time zone is not returned. If an invalid writable
address is specified, a SIGSEGV signal is generated.

DESCRIPTION
The gettimeofday() function gets the system values for the current time and time zone. The time
is expressed in seconds and microseconds since midnight (0 hour), January 1, 1970.

The timeval structure contains the following fields:

tv_sec The number of whole seconds of elapsed time.

tv_usec The number of additional microseconds of elapsed time.

The timezone structure contains the following fields:

tz_minuteswest
The local time zone, measured in minutes of time westward from Coordinated
Universal Time (Greenwich, England).

tz_dsttime A value that indicates which daylight-saving time correction applies locally dur-
ing the appropriate part of the year.

This value is always set to 0 (zero) upon successful completion, because the
information required to return an accurate nonzero value is not available.

Use From the Guardian Environment
This function can be used in the Guardian environment.

NOTES
The gettimeofday() function is supported for compatibility with BSD programs. This function
provides a process-local time-zone parameter in addition to the systemwide time and date.

3−94 Hewlett-Packard Company 527186-023

System Functions (f - i) gettimeofday(2)

RETURN VALUES
Upon completion, the value 0 (zero) is returned.

RELATED INFORMATION
Functions: ctime(3), strftime(3).

Commands: date(1).

STANDARDS CONFORMANCE
In the HP implementation:

• The tzp parameter is not a type void data item.

• The tz_dsttime field is always set to 0 (zero).

The following are HP extensions to the XPG4 Version 2 specification:

• The behavior when the tzp parameter is a null pointer is specified.

527186-023 Hewlett-Packard Company 3−95

getuid(2) OSS System Calls Reference Manual

NAME
getuid - Gets the the real user ID of the current process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

uid_t getuid(void);

DESCRIPTION
The getuid() function returns the real user ID of the current process.

NOTES
A process’s real user ID is not always numerically equal to its operating system creator access ID
(CAID).

RETURN VALUES
The getuid() function returns the requested user ID. It is always successful.

When the authentication information for a process is uninitialized, the "uninitialized" user ID
(hexadecimal 80000000) is returned.

RELATED INFORMATION
Functions: geteuid(2), setuid(2).

3−96 Hewlett-Packard Company 527186-023

System Functions (f - i) ioctl(2)

NAME
ioctl - Controls device files

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <stropts.h>
#include <sys/ioctl.h>

int ioctl(
int filedes,
int request,
/ * arg */ . . .);

The ellipsis (. . .) indicates that the function is variable.

PARAMETERS
filedes Specifies the open file descriptor of the tty device or socket.

request Specifies the function to be performed for the tty device or socket.

arg A pointer to data to be used by the function or to be provided by the function.

DESCRIPTION
The ioctl() function controls the operations of devices. The requests that ioctl() performs on
devices are device-specific.

The ioctl() function passes the request parameter to the file designated by the open file descriptor
filedes. If the filedes parameter identifies an unsupported device type, the function call fails, and
errno is set to the value [EINVAL].

Valid values for the request parameter for AF_INET or AF_INET6 sockets are:

FIONREAD Gets the number of bytes available for reading and stores it at the int pointed at
by arg.

SIOCATMARK
Examines whether the socket is at an out-of-band data mark and stores it at the
int pointed at by arg. A nonzero value indicates that the socket is at an out-of-
band data mark; a zero value indicates that the socket is not at an out-of-band
data mark.

SIOCGIFNUM
Gets the number of interfaces that have been configured and stores it at the int
pointed at by arg.

FIONBIO Sets the blocking I/O/nonblocking I/O flag for the socket. If the arg is zero, the
socket is set to blocking I/O; otherwise, the socket is set to nonblocking I/O and
the flag is stored at the int pointed at by arg.

SIOCADDRT Adds a route. The data structure pointed to by arg is of type rtentry.

SIOCDELRT Deletes a route. The data structure pointed to by arg is of type rtentry.

527186-023 Hewlett-Packard Company 3−97

ioctl(2) OSS System Calls Reference Manual

SIOCSIFADDR
Sets the interface address. The data structure pointed to by arg is of type ifreq.
Returns the error [EOPNOTSUPP].

SIOCSIFDSTADDR
Sets the destination address on a point-to-point interface. The data structure
pointed to by arg is of type ifreq. Returns the error [EOPNOTSUPP].

SIOCSIFFLAGS
Sets the interface flags. The data structure pointed to by arg is of type ifreq.
Returns the error [EOPNOTSUPP].

SIOCSIFBRDADDR
Sets the destination address on a broadcast interface. The data structure pointed
to by arg is of type ifreq. Returns the error [EOPNOTSUPP].

SIOCSIFNETMASK
Sets the network address mask, which specifies the portion of the IP host ID and
IP network number that should be masked to define a subnet. The data structure
pointed to by arg is of type ifreq. Returns the error [EOPNOTSUPP].

SIOCSARP Sets the ARP protocol address entry in the translation table. The data structure
pointed to by arg is of type arpreq.

SIOCDARP Deletes the ARP protocol address entry from the translation table. The data
structure pointed to by arg is of type arpreq.

SIOCGIFADDR
Gets the interface address. The data structure pointed to by arg is of type ifreq.
Returns the error [ENXIO].

SIOCGIFDSTADDR
Gets the destination address on a point-to-point interface. The data structure
pointed to by arg is of type ifreq.

SIOCGIFFLAGS
Gets the interface flags. The data structure pointed to by arg is of type ifreq.

SIOCGIFBRDADDR
Gets the destination address on a broadcast interface. The data structure pointed
to by arg is of type ifreq.

SIOCGIFCONF
Gets the interface configuration list. The data structure pointed to by arg is of
type ifconf.

SIOCGIFNETMASK
Gets the network address mask, which specifies the portion of the IP host ID and
IP network number that should be masked to define a subnet. The data structure
pointed to by arg is of type ifreq.

SIOCGARP Gets the ARP protocol address entry from the translation table. The data struc-
ture pointed to by arg is of type arpreq.

The values valid for the request parameter for tty devices are:

TIOCGWINSZ
Causes the current values for the Telserv window identified by the filedes param-
eter to be stored in the winsize structure pointed to by arg.

3−98 Hewlett-Packard Company 527186-023

System Functions (f - i) ioctl(2)

TIOCSWINSZ
Causes the values stored in the winsize structure pointed to by arg to be sent to
the Telserv window identified by the filedes parameter.

When the request parameter specifies either TIOCGWINSZ or TIOCSWINSZ, the third and
only additional parameter is a pointer to:

struct winsize {
unsigned short ws_row;
unsigned short ws_col;
unsigned short ws_xpixel;
unsigned short ws_ypixel;

};

The winsize structure contains these fields:

ws_row The number of rows, in characters, contained in the window

ws_col The number of columns, in characters, contained in the window

ws_xpixel The horizontal size, in pixels, of the window (zero if the size is not known or if
pixel values are not meaningful)

ws_ypixel The vertical size, in pixels, of the window (zero if the size is not known or if
pixel values are not meaningful)

If the function is called with a request value of TIOCSWINSZ and if a value in the winsize
structure has changed since the last call, a SIGWINCH signal is sent to all processes in the fore-
ground group.

Use From the Guardian Environment
A Guardian process cannot receive the SIGWINCH signal.

Use on Guardian Objects
The filedes parameter can specify a terminal file in /G.

NOTES
If your application uses the Cluster I/O Protocols (CIP) subsystem, options for this function
might not be supported or might result in behaviors that are different from those described in this
reference page. For more information about the Cluster I/O Protocols, see the Cluster I/O Proto-
cols (CIP) Configuration and Management Manual.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
If the ioctl() function succeeds, it returns a value different from -1. The value returned depends
on the device-control function. If an error occurs, the value -1 is returned, and errno is set to
indicate the error.

ERRORS
If any of these conditions occurs, the ioctl() function sets errno to the corresponding value:

[EBADF] The filedes parameter is not a valid descriptor.

[EFAULT] The optional parameter is to be used as an address, but it points outside the pro-
cess address space.

[EINTR] A signal was caught during execution of the function.

527186-023 Hewlett-Packard Company 3−99

ioctl(2) OSS System Calls Reference Manual

[EINVAL] The function was called for a device other than a terminal.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node (a remote
$ZTNT process), but communication with the remote node has been lost.

[ENOTSUP] The request parameter specifies an operation that is not supported on the device
specified by the filedes parameter.

[ENOTTY] The device parameter is not associated with a character-special device, or the
specified request does not apply to the type of object that descriptor device refer-
ences.

[ENXIO] No such device or address exists.

[EOPNOTSUPP]
Operation not supported on socket. The type of socket (address family or proto-
col) does not support the requested operation.

[EWRONGID] One of these conditions occurred:

• The process attempted an input or output operation on an input/output
process (such as a terminal server process) that has failed or is in the
down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Files: tty(7).

STANDARDS CONFORMANCE
The OSS version of this function does not conform to a published standard.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [EFAULT], [ENETDOWN], [ENOTSUP], [ENXIO], [EOPNOTSUPP],
and [EWRONGID] can be returned.

3−100 Hewlett-Packard Company 527186-023

Section 4. System Functions (k - m)

This section contains reference pages for Open System Services (OSS) system function
calls with names that begin with k through m. These reference pages reside in the cat2
directory and are sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 4−1

kill(2) OSS System Calls Reference Manual

NAME
kill - Sends a signal to a process or group of processes

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <signal.h>

int kill(
pid_t pid,
int signal);

PARAMETERS
pid Specifies the process or group of processes to be sent a signal.

signal Specifies the signal. If the signal parameter has the value 0 (zero, the null sig-
nal), error checking is performed but no signal is sent. The null signal can be
used to check the validity of the pid parameter.

DESCRIPTION
The kill() function sends the signal specified by the signal parameter to the process or group of
processes specified by the pid parameter.

To send a signal to another process, at least one of the following must be true:

• The real or effective user ID of the sending process must match the real or saved-set-user
ID of the receiving process.

• The process is trying to send the SIGCONT signal to a process in the same session.

• The calling process has appropriate privileges.

Processes can send signals to themselves.

Use on Guardian Objects
The kill() function cannot send signals to Guardian processes.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined and errno is set to
[ENOTOSS].

Specifying the Target Process
The kill() function allows the calling process to send a signal to a specific group of processes.
The pid parameter specifies the group according to the following rules:

• If the pid parameter is greater than 0 (zero), the signal specified by the signal parameter
is sent to the process that has an OSS process ID (PID) equal to the value of the pid
parameter.

• If the pid parameter is equal to 0 (zero), the signal specified by the signal parameter is
sent to all of the processes whose process group ID is equal to the process group ID of
the sender and for which the process has permission to send the signal.

• If the pid parameter is negative but not equal to -1, the signal specified by the signal
parameter is sent to all of the processes whose process group ID is equal to the absolute
value of the pid parameter and for which the process has permission to send the signal.

4−2 Hewlett-Packard Company 527186-023

System Functions (k - m) kill(2)

The POSIX.1 standard leaves unspecified the set of system processes that does not receive a sig-
nal when the kill() function is called with pid equal to 0, -1, or a negative number less than -1.
Applications in the HP implementation should therefore not depend on which system processes
receive signals.

Safeguard Considerations
HP recommends that users not use Safeguard protection on OSS processes. However, if users do
use Safeguard protection on OSS processes, the following constraints apply.

For unnamed processes, the Safeguard software applies additional protection if the special
UNNAMED process protection record exists. For signals whose default action is to terminate
the process, the system checks the access control list associated with the UNNAMED protection
record and sends the signal only if the caller has purge authority.

When authority is granted to send a signal to a group of unnamed processes, all group members
receive the signal in one step if the sending process has authority to send signals to all the
processes in the group. Otherwise, the signal is not sent to any member of the group.

For named processes, the Safeguard software applies additional protection if a protection record
exists for the specific process name. For signals whose default action is to terminate the process,
the system checks the access control list associated with the protection record and sends the sig-
nal to the process only if the caller has purge authority.

When the kill() function attempts to send a signal to a group that contains named processes, the
signal is sent to the named members of the group one at a time; that is, not all in one step as with
unnamed processes. Processes joining or leaving the group between sending the signal to the first
process and sending the signal to the last process can therefore affect the result of the combined
operation.

Guardian Process Deletion Messages
When an OSS process terminates, the system performs most of the Guardian process-termination
sequence. One of the steps in that sequence is to check if a Guardian Process Deletion (-101)
message needs to be sent. The Guardian MOM, GMOM, and ANCESTOR attributes of the pro-
cess determine the need to send the message and the recipient of the message.

OSS processes normally have null values for these attributes and therefore do not cause Process
Deletion messages to be sent. If an OSS process is created using any of the following functions
with nonnull values for MOM, GMOM, and ANCESTOR in its process_extension_def struc-
ture, a Process Deletion message is sent during termination:

tdm_fork()
tdm_exec set of functions
tdm_spawn set of functions

If an OSS process uses the Guardian PROCESS_SETINFO_ procedure to set nonnull values for
MOM, GMOM, and ANCESTOR, a Process Deletion message is sent during termination.

See the Guardian Procedure Errors and Messages Manual for details on the Process Deletion
message. See the PROCESS_SETINFO_ procedure in the Guardian Procedure Calls Reference
Manual for information on setting the MOM field.

Terminated Processes
The kill() function does not return an error when applied to any process that has terminated but
whose process lifetime is not yet exhausted. However, the operation has no effect, because the
process is already terminated. The termination wait status of the process is unaffected by the
operation.

527186-023 Hewlett-Packard Company 4−3

kill(2) OSS System Calls Reference Manual

RETURN VALUES
Upon successful completion, the kill() function returns the value 0 (zero). Otherwise, the value
-1 is returned, errno is set to indicate the error, and no signal is sent.

ERRORS
If any of the following conditions occurs, the kill() function sets errno to the corresponding
value:

[EINVAL] The value in the signal parameter is an invalid or unsupported signal number.

[ENOTOSS] The calling process was not an OSS process. The kill() function cannot be used
from the Guardian environment.

[EPERM] The process does not have permission to send the signal to any receiving pro-
cess.

[ESRCH] No process or process group can be found corresponding to that specified by the
pid parameter.

RELATED INFORMATION
Functions: getpid(2), setpgid(2), setsid(2), sigaction(2), signal(3).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The mechanism that grants a process the appropriate privileges to send signals is
described under DESCRIPTION.

• The POSIX.1 standard leaves unspecified the set of system processes that does not
receive a signal when the kill() function is called with pid equal to 0 (zero), -1, or a
negative number less than -1. Applications in the HP implementation should therefore
not depend on which system processes receive signals.

• Additional restrictions are imposed by the Safeguard security mechanism on the sending
of signals. See Safeguard Considerations.

The following are HP extensions to the XPG4 Version 2 specification:

• Safeguard considerations

• The ability to send signals to named processes

• The error [ENOTOSS]

4−4 Hewlett-Packard Company 527186-023

System Functions (k - m) lchmod(2)

NAME
lchmod - Changes file-access permissions

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>

int lchmod(
const char *path,
mode_t mode);

PARAMETERS
path Specifies the full pathname of the file. If the final component of the path param-

eter refers to a symbolic link, the lchmod() function changes access permissions
for the symbolic link instead of the file to which it refers.

mode Specifies the bit pattern that determines the access permissions.

DESCRIPTION
The lchmod() function sets the access permissions of a file specified by the path parameter
according to the bit pattern specified by the mode parameter. The lchmod() function is similar to
the chmod() function except when the final component specified by the path parameter is a sym-
bolic link. If the final component of the path parameter refers to a symbolic link, the lchmod()
function changes access permissions for the symbolic link instead of the file to which it refers.

Access control lists (ACLs) are not supported for symbolic links.

To change the file access permissions of a file or directory, the effective user ID of the process
must match the super ID or the owner of the file, or its effective user ID or one of its group
affiliations must qualify it for membership in the Safeguard SECURITY-OSS-
ADMINISTRATOR group.

If lchmod() is invoked by a process whose effective user ID does not equal the super ID or file
owner, the set-user-ID and set-group-ID bits of the file mode (04000 and 02000, respectively) are
cleared.

If lchmod() is invoked to set either or both of the set-user-ID and set-group-ID bits of the file
mode (04000 and 02000 respectively), then any file privileges the file might have had are
cleared.

See also "Accessing Files in Restricted-Access Filesets."

If the S_ISVTX bit is on for a directory, only processes with an effective user ID equal to the
user ID of the file’s owner or the directory’s owner, or a process with appropriate privileges, can
remove files from the directory.

A call to the lchmod() function has no effect on the file descriptor for a file that is open at the
time of the call. However, new openers of the file will be authorized by using the new access per-
missions that were specified in the call.

The mode parameter is constructed by logically ORing one or more of these symbols, which are
defined in the sys/stat.h header file:

S_ISUID Sets the process’s effective user ID to the user ID of the file’s owner on execu-
tion.

527186-023 Hewlett-Packard Company 4−5

lchmod(2) OSS System Calls Reference Manual

S_ISGID Sets the process’s effective group ID to the group ID of the file’s group on execu-
tion.

S_ISVTX For a directory, permits modification to the directory only if the effective user ID
of the process matches that of the file being accessed.

S_IRWXU Permits the file’s owner to read, write, and execute the file (or to search the direc-
tory).

S_IRUSR Permits the file’s owner to read the file.

S_IWUSR Permits the file’s owner to write to the file.

S_IXUSR Permits the file’s owner to execute the file (or to search the directory).

S_IRWXG Permits the file’s group to read, write, and execute the file (or to search the direc-
tory).

S_IRGRP Permits the file’s group to read the file.

S_IWGRP Permits the file’s group to write to the file.

S_IXGRP Permits the file’s group to execute the file (or to search the directory).

S_IRWXO Permits others to read, write, and execute the file (or to search the directory).

S_IROTH Permits others to read the file.

S_IWOTH Permits others to write to the file.

S_IXOTH Permits others to execute the file (or to search the directory).

S_TRUST Establishes that the file does not contain code for an uncooperative process or
code to examine or modify I/O buffers. This flag suppresses operating system
protection of the buffers when the memory segment containing the buffers is not
shared. This flag applies only to loadfiles for a TNS/E native process and can be
set only by a user with appropriate privileges (the super ID).

S_TRUSTSHARED
Establishes that the file does not contain code for an uncooperative process or
code to examine or modify I/O buffers. This flag suppresses operating system
protection of the buffers regardless of whether the memory segment containing
the buffers is shared. This flag applies only to loadfiles for a TNS/E native pro-
cess and can be set only by a user with appropriate privileges (the super ID).

The S_ISUID bit of the file is not changed by the call if the file specified by the path parameter
resides on a node where the calling process is not logged in.

The S_ISGID bit of the file is cleared if all of these conditions are true:

• The named file is a regular file.

• The process does not have appropriate privileges.

• The file’s group ID does not match the effective group ID of the process or one of the IDs
of the process’s group list.

Upon successful completion, the lchmod() function marks the st_ctime field of the file for
update.

4−6 Hewlett-Packard Company 527186-023

System Functions (k - m) lchmod(2)

Access Control Lists (ACLs)
When you execute the lchmod() function, you can change the effective permissions granted by
optional entries in the ACL for a file. In particular, using the lchmod() function to remove read,
write, and execute permissions from a file owner, owning group, and all others works as
expected, because the lchmod() function affects the class entry in the ACL, limiting any access
that can be granted to additional users or groups through optional ACL entries. To verify the
effect, use getacl command on the file after the lchmod() function completes and note that all
optional (nondefault) ACL entries with nonzero permissions also have the comment
effective:---.

To set the permission bits of ACL entries, use the acl() function instead of the lchmod() func-
tion.

ACLs are not supported for symbolic links.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted. In a restricted-access fileset:

• The super ID (255,255 in the Guardian environment, 65535 in the OSS environment) is
not permitted to invoke this function on files that it does not own unless the executable
file started by the super ID has the PRIVSETID file privilege. In this case, the process
started by the super ID can switch to another ID and then access files in restricted-access
filesets as that ID.

• Processes that are started by a member of the Safeguard SECURITY-OSS-
ADMINISTRATOR (SOA) group have the appropriate privilege to use this function on
any file in a restricted-access fileset. However, if the executable file for the process does
not have the PRIVSOARFOPEN file privilege, the set-user-ID and set-group-ID bits of
the file mode (04000 and 02000 respectively) of the file accessed by this function are
cleared.

• Network File System (NFS) clients are not granted SOA group privileges, even if these
clients are accessing the system with a user ID that is a member of the SOA security
group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use on Guardian Objects
Attempting to set the access permissions on a Guardian file (that is, a file in the /G file system)
fails with errno set to [EINVAL].

Use From the Guardian Environment
The lchmod() function is one of a set of functions that have these effects when the first of them
is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

527186-023 Hewlett-Packard Company 4−7

lchmod(2) OSS System Calls Reference Manual

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the lchmod() function returns the value 0 (zero). Otherwise, the
value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occur, the lchmod() function sets errno to the corresponding value:

[EACCES] Search permission is denied for a component of the path parameter.

[EFAULT] The path parameter points to a location outside of the allocated address space of
the process.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINVAL] One of these conditions exists:

• The value of the mode parameter is invalid.

• An attempt was made to set access permissions on a Guardian file (that
is, a file in the /G file system).

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[ELOOP] Too many symbolic links were encountered in translating the path parameter.

[ENAMETOOLONG]
One of these names is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

You can call the pathconf() function to obtain the applicable limits.

[ENOENT] One of these conditions exists:

• The named file does not exist, or the specified name is an empty string.

• The path parameter specifies a file on a remote HP NonStop node, but
communication with the remote node has been lost.

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote node, and communication with the
remote name server has been lost.

4−8 Hewlett-Packard Company 527186-023

System Functions (k - m) lchmod(2)

[ENOTDIR] A component, other than the last part, of the path parameter is not a directory.

[ENXIO] The fileset containing the client’s current working directory or root directory is
not mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] The effective user ID does not match the user ID of the owner of the file, or the
owner does not have appropriate privileges.

[EROFS] The named file resides on a read-only fileset.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: chmod(1), getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), fcntl(2), getgroups(2), fchmod(2), fchown(2),
lchown(2), mknod(2), open(2), open64(2), read(2), setfilepriv(2), write(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
This function is an HP extension to the XPG4 Version 2 specification.

527186-023 Hewlett-Packard Company 4−9

lchown(2) OSS System Calls Reference Manual

NAME
lchown - Changes the owner and group IDs of a file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

int lchown(
const char *path,
uid_t owner,
gid_t group);

PARAMETERS
path Specifies the name of the file whose owner ID, group ID, or both are to be

changed. If the final component of the path parameter names a symbolic link,
the lchown function changes the ownership of the symbolic link instead of the
file or directory to which the symbolic link refers.

owner Specifies a numeric value representing the owner ID.

group Specifies a numeric value representing the group ID.

DESCRIPTION
The lchown() function changes the owner and group of a file. The lchown() function is
equivalent to the chown() function except when the final component of the path parameter refers
to a symbolic link. If the final component of the path parameter names a symbolic link:

• The lchown function changes the ownership of the symbolic link instead of the file or
directory to which the symbolic link refers.

• Access control lists (ACLs) are not supported for a symbolic link.

Only a process that has an effective user ID equal to the super ID or to the file owner, or that has
an effective user ID or group affiliation qualifying for membership in the Safeguard
SECURITY-OSS-ADMINISTRATOR group can use the lchown() function to change the group
of a file. However, processes that have an effective user ID equal to the file owner can only
change the group of a file to a group to which they belong (their effective group or one of their
supplementary groups).

If the lchown() function is invoked by a process whose effective user ID does not equal the super
ID, the set-user-ID and set-group-ID bits of the file mode (04000 and 02000, respectively) are
cleared.

See also "Accessing Files in Restricted-Access Filesets."

A process can change the value of the owner ID of an OSS file only if the effective user ID of the
process gives the process appropriate privileges. A process can change the value of the file
group ID if the effective user ID of the process matches the owner ID of the file or the process
has appropriate privileges. A process without appropriate privileges can change the group ID of
a file only to the value of its effective group ID or to a value in its group list. However, if the
lchown() function is successfully invoked on a file, the S_ISGID and S_ISUID bits of the
st_mode field of the stat structure are cleared unless the user has appropriate privileges.

4−10 Hewlett-Packard Company 527186-023

System Functions (k - m) lchown(2)

The _POSIX_CHOWN_RESTRICTED feature is enforced for all files in the OSS file system.
Only processes with appropriate privileges can change owner IDs.

If the owner or group parameter is specified as -1 cast to the type of uid_t or gid_t, respectively,
the corresponding ID of the file is unchanged. To change only one attribute, specify the other as
-1.

Upon successful completion, the lchown() function marks the st_ctime field of the file for
update.

Access Control Lists (ACLs)
A user can allow or deny specific individuals and groups access to a file by using an ACL on the
file. When using the lchown() function with ACLs, if the new owner and/or group of a file have
optional ACL entries corresponding to user:uid:perm or group:gid:perm in the ACL for a file,
those entries remain in the ACL but no longer have any effect because they are superseded by the
user::perm or group::perm entries in the ACL.

ACLs are not supported for symbolic links.

For more information about ACLs, see the acl(5) reference page.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted. In a restricted-access fileset:

• The super ID (255,255 in the Guardian environment, 65535 in the OSS environment) is
not permitted to invoke this function on files that it does not own unless the executable
file started by the super ID has the PRIVSETID file privilege. In this case, the process
started by the super ID can switch to another ID and then access files in restricted-access
filesets as that ID.

• Processes that are started by a member of the Safeguard SECURITY-OSS-
ADMINISTRATOR (SOA) group have the appropriate privilege to use this function on
any file in a restricted-access fileset. However, if the executable file for the process does
not have the PRIVSOARFOPEN file privilege, the set-user-ID and set-group-ID bits of
the file mode (04000 and 02000 respectively) of the file accessed by this function are
cleared.

• Network File System (NFS) clients are not granted SOA group privileges, even if these
clients are accessing the system with a user ID that is a member of the SOA security
group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use on Guardian Objects
You can use lchown() function on Guardian disk files (that is, disk files in the /G file system).
Attempts to change the ownership of other types of Guardian files fail and set errno to [EIN-
VAL].

For Guardian disk files, Guardian security is used, and any user can pass file ownership to any
other user. You must specify value other than -1 for the owner parameter (that is, an owner ID
must be specified). However, changing the owner ID also changes the group ID to the Guardian
group ID of the new owner (that is, bits <16:23> of the new access ID). You cannot use the
lchown() function to set the group ID for a Guardian file except as a result of changing the owner
ID.

The _POSIX_CHOWN_RESTRICTED feature is ignored for files in the Guardian file system
(that is, for files in /G).

527186-023 Hewlett-Packard Company 4−11

lchown(2) OSS System Calls Reference Manual

Use From the Guardian Environment
The lchown() function is one of a set of functions that have these effects when the first of them is
called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the lchown() function returns the value 0 (zero). Otherwise, the
value -1 is returned, the owner and group of the file remain unchanged, and errno is set to indi-
cate the error.

ERRORS
If any of these conditions occur, the lchown() function sets errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path parameter.

[EFAULT] The path parameter is an invalid address.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINVAL] The owner or group parameter is out of range.

An attempt was made to change ownership of a Guardian file that is not a disk
file.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[ELOOP] Too many symbolic links were encountered in translating the path parameter.

[ENAMETOOLONG]
One of these names is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

You can call pathconf() function to obtain the applicable limits.

4−12 Hewlett-Packard Company 527186-023

System Functions (k - m) lchown(2)

[ENOENT] One of these conditions is true:

• The path parameter does not exist.

• The path parameter is an empty string.

• The path parameter specifies a file in the Guardian file system (in /G) but
cannot be mapped to a valid Guardian filename.

• The path parameter names a symbolic link, but the file to which it refers
does not exist.

• The path parameter specifies a file on a remote node, but communication
with the remote node has been lost.

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node, and communication
with the remote name server has been lost.

[ENOTDIR] A component of path is not a directory.

[ENOTSUP] The path parameter specifies a Guardian file on an SMF logical volume and one
of the following conditions exists:

• The local system is running an RVU prior to J06.15 or H06.26.

• The path parameter specifies a file in /E and the remote system is run-
ning an RVU prior to J06.15 or H06.26.

[ENXIO] The fileset containing the client’s current working directory or root directory is
not mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The named file resides on a read-only fileset.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

527186-023 Hewlett-Packard Company 4−13

lchown(2) OSS System Calls Reference Manual

RELATED INFORMATION
Commands: chgrp(1), chown(1), getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), fchmod(2), fchown(2), lchmod(2), setfilepriv(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• A process can change the value of the owner ID of a file only if the effective user ID of
the process gives the process appropriate privileges.

• Upon successful completion, the set-user-ID attribute (the S_ISUID bit) and the set-
group-ID attribute (the S_ISGID bit) of the file are always cleared.

• The error [EINVAL] can be detected.

HP extensions to the XPG4 Version 2 specification are:

• To change the file access permissions of a file or directory, the effective user ID of the
process must match the super ID or the owner of the file, or the effective user ID or one
of the group affiliations for the process must qualify the process for membership in the
Safeguard SECURITY-OSS-ADMINISTRATOR group.

• The errno values [EFAULT], [EFSBAD], [EIO], [ENOROOT], [ENXIO], and
[EOSSNOTRUNNING] can be returned.

4−14 Hewlett-Packard Company 527186-023

System Functions (k - m) link(2)

NAME
link - Creates an additional directory entry for an existing file on the current fileset

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int link(
const char *path1,
const char *path2);

PARAMETERS
path1 Points to the pathname of an existing file.

If any component of the path1 parameter refers to a symbolic link, the link is
traversed and pathname resolution continues.

path2 Points to the pathname for the directory entry to be created.

If any component of the path2 parameter refers to a symbolic link, the link is
traversed and pathname resolution continues.

If the final component of the path2 parameter refers to an existing entity, the call
fails and errno is set to [EEXIST].

DESCRIPTION
The link() function creates an additional hard link (directory entry) for an existing file. Both the
old and the new link share equal access rights to the underlying file. The link() function atomi-
cally creates a new link for the existing file and increments the link count of the file by 1.

The pathnames pointed to by both the path1 and path2 parameters must reside on the same
fileset. If this is not the case, errno is set to [EXDEV].

The path1 parameter must not name a directory; a hard link to a directory cannot be created.
Attempting to create a link to a directory fails. The value -1 is returned and errno is set to
[EPERM].

Attempting to create a link to /dev/tty or /dev/null or attempting to create a link in the root direc-
tory of an OSS fileset to a file named lost+found fails and causes errno to be set to [EPERM].

The calling process requires the following:

• Execute (search) permission on the directory containing the existing file.

• Execute (search) and write permission on the directory into which the link is being
added.

Upon successful completion, the link() function marks the st_ctime field of the file for update
and marks the st_ctime and st_mtime fields of the directory containing the new entry for update.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

Executable files that have the PRIVSOARFOPEN privilege and that are started by a member of
the Safeguard SECURITY-OSS-ADMINISTRATOR (SOA) group have the appropriate privilege

527186-023 Hewlett-Packard Company 4−15

link(2) OSS System Calls Reference Manual

to use this function on any file in a restricted-access fileset. However, Network File System
(NFS) clients are not granted SOA group privileges, even if these clients are accessing the sys-
tem with a user ID that is a member of the SOA security group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use From the Guardian Environment
The link() function is one of a set of functions that have the following effects when the first of
them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

Use on Guardian Objects
Attempting to create a link to a Guardian file (that is, a file within the /G file system) fails and
causes errno to be set to [EINVAL].

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the link() function returns the value 0 (zero). If the link() function
fails, the value -1 is returned, no link is created, and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the link() function sets errno to the corresponding
value:

[EACCES] The requested link requires writing in a directory with a mode that denies write
permission, or a component of the pathname pointed to by either the path1 or
path2 parameter denies search permission.

[EEXIST] The link named by the path2 parameter already exists.

[EFAULT] Either the path1 or path2 parameter is an invalid address.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINVAL] The call attempted to create a link to a Guardian file (that is, a file in /G or in any
directory within /G).

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

4−16 Hewlett-Packard Company 527186-023

System Functions (k - m) link(2)

[ELOOP] Too many symbolic links were encountered in translating either the path1 or
path2 parameter.

[EMLINK] The number of links to the file specified by the path1 parameter would exceed
the maximum permitted. The pathconf() function can be called to obtain the
configured limit.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path1 parameter

• The pathname pointed to by the path2 parameter

• A component of the pathname pointed to by the path1 parameter

• A component of the pathname pointed to by the path2 parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path1 or path2 parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of the following is true:

• The file specified by the path1 parameter does not exist.

• The path1 or path2 parameter is an empty string.

• The path1 parameter names a symbolic link, but the file to which it
refers does not exist.

• The path1 or path2 parameter specifies a file on a remote HP NonStop
node but communication with the remote node has been lost.

[ENOROOT] One of the following conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node and communication
with the remote name server has been lost.

[ENOSPC] The directory in which the entry for the new link is being placed cannot be
extended, because there is no space left on the fileset containing the directory.

[ENOTDIR] A component of either pathname prefix is not a directory.

[ENXIO] The fileset containing the client’s current working directory or root directory is
not mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

527186-023 Hewlett-Packard Company 4−17

link(2) OSS System Calls Reference Manual

[EPERM] One of the following conditions occurred:

• The file specified by the path1 parameter is a directory.

• The call attempted to create a link in the root directory of an OSS fileset
to a file called lost+found.

• The call attempted to create a link to /dev/tty or /dev/null.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The requested link requires writing to a directory on a read-only fileset.

[EXDEV] The link specified by the path2 parameter and the file specified by the path1
parameter are on different filesets.

RELATED INFORMATION
Commands: ln(1).

Functions: unlink(2).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The link() function is not supported between filesets.

• The link() function is not supported for directories.

The following are HP extensions to the XPG4 Version 2 specification:

• The errors [EFAULT], [EFSBAD], [EINVAL], [EIO], [ENOROOT], [ENOTDIR],
[ENXIO], and [EOSSNOTRUNNING] can be returned.

4−18 Hewlett-Packard Company 527186-023

System Functions (k - m) listen(2)

NAME
listen - Listens for socket connections and limits the backlog of incoming connections

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

int listen(
int socket,
int backlog
);

PARAMETERS
socket Specifies the file descriptor for the socket.

backlog Specifies the maximum number of outstanding connections. The effect of this
parameter varies according to the connection type and the stack implementation
in use. Refer to the DESCRIPTION section of this reference page for more
information.

DESCRIPTION
The listen() function marks a connection-oriented socket as accepting connections, and limits
the number of outstanding connections in the socket’s queue to the value specified by the back-
log parameter.

For AF_INET sockets using conventional TCP/IP, a backlog parameter value of less than or
equal to 0 allows the socket to accept the number of connections configured for the TCP-
LISTEN-QUE-MIN parameter of the transport process. These values can allow up to 5 connec-
tions (the default value for TCP-LISTEN-QUE-MIN).

For AF_INET or AF_INET6 sockets using parallel library TCP/IP or TCP/IPv6, a backlog
parameter value of less than or equal to 0 is ignored. The maximum number of pending connec-
tions is always 5.

If the backlog parameter value is less than or equal to 0:

• For AF_UNIX Release 1 sockets or for AF_UNIX Release 2 sockets in compatibility
mode, subsequent calls to the connect() function that specify the path name to which the
listening socket is bound fail and errno is set to [ECONNREFUSED] unless there is a
pending accept() function call on the listening socket.

• For AF_UNIX Release 2 sockets in portability mode:

— Subsequent attempts to issue blocking calls to the connect() function that
specify the path name to which the listening socket is bound block the calling
process until there is a corresponding accept() call to the socket, at which time
the connect() function call succeeds. If there is no corresponding accept() call
within 2 minutes, the call to the connect() function fails and errno is set to
[ETIMEDOUT].

— Subsequent attempts to issue nonblocking calls to the connect() function that
specify the path name to which the listening socket is bound fail with errno set
to [EWOULDBLOCK], unless there is a pending accept() call to the socket, in
which case the connect() function call succeeds.

527186-023 Hewlett-Packard Company 4−19

listen(2) OSS System Calls Reference Manual

For more information about AF_UNIX Release 2 sockets, portability mode, and compatibility
mode, see the Open System Services Programmer’s Guide.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

RETURN VALUES
Upon successful completion, the listen() function returns the value 0 (zero). Otherwise, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the listen() function sets errno to the corresponding
value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EDESTADDRREQ]
The socket is not bound to a local address, and the protocol does not support
listening on an unbound socket.

[EINVAL] One of the following conditions occurred:

• The socket is already connected.

• The socket has been shut down.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time may succeed.

[ENOMEM] Required memory resources were not available. A retry at a later time may
succeed.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The socket specified by the socket parameter is not a type that supports the
listen() function.

RELATED INFORMATION
Functions: accept(2), connect(2), socket(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport provider process
is unavailable.

• The behavior when the backlog parameter is 0 (zero) is defined.

4−20 Hewlett-Packard Company 527186-023

System Functions (k - m) listen(2)

527186-023 Hewlett-Packard Company 4−21

lseek(2) OSS System Calls Reference Manual

NAME
lseek - Sets file offset for read or write operation

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

off_t lseek(
int filedes,
off_t offset,
int whence);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

offset Specifies a value, in bytes, that is used with the whence parameter to set the file
pointer. A negative value causes seeking in the reverse direction.

whence Specifies how to interpret the offset parameter in setting the file pointer associ-
ated with the filedes parameter. Values for the whence parameter are:

SEEK_CUR Sets the file pointer to its current location plus the value of the
offset parameter.

SEEK_END Sets the file pointer to the size of the file plus the value of the
offset parameter.

SEEK_SET Sets the file pointer to the value of the offset parameter.

DESCRIPTION
The lseek() function sets the file offset for the open file specified by the filedes parameter. The
whence parameter determines how the offset is to be interpreted.

The lseek() function allows the file offset to be set beyond the end of existing data in the file. If
data is later written at this point, subsequent reading of data in the gap returns bytes with the
value 0 (zero) until data is actually written into the gap.

The lseek() function does not, by itself, extend the size of the file.

Use From a Threaded Application
This function serializes file operations on an open file. If a thread calls lseek() to access a file
that already has a file operation in progress by a different thread, this thread is blocked until the
prior file operation is complete.

4−22 Hewlett-Packard Company 527186-023

System Functions (k - m) lseek(2)

NOTES
To use the lseek() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_lseekz(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the resulting pointer location, measured in bytes from the beginning
of the file, is returned. For First-in, First-out (FIFO) files, pipes, and character special files, the
value 0 (zero) is returned. For character special files, errno is not set.

If the lseek() function fails, the file offset remains unchanged, the value -1 cast to the type off_t
is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the file offset remains unchanged, and the lseek() function sets
errno to the corresponding value:

[EBADF] The filedes parameter is not an open file descriptor.

[EINVAL] One of these conditions exists:

• The whence parameter is an invalid value, or the resulting file offset
would be an invalid value (that is, a value less than 0 [zero]).

• The filedes parameter refers to a file (other than a pipe, FIFO, or direc-
tory) on which seeking cannot be performed.

527186-023 Hewlett-Packard Company 4−23

lseek(2) OSS System Calls Reference Manual

[EISDIR] The filedes parameter refers to an OSS directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[EOVERFLOW]
The application was compiled in a regular compilation environment or was com-
piled using the #define _LARGEFILE64_SOURCE 1 feature test macro (or an
equivalent compiler command option), and the application attempted to set the
pointer location at a position between 2 gigabytes minus 1 byte and the max-
imum file offset established when the file was opened.

[ESPIPE] The filedes parameter refers to a pipe, FIFO, or socket.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and the backup process took over.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: fcntl(2), fseek(3), lseek64(2), open(2), open64(2), read(2), spt_lseekz(2), write(2).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• If the lseek() function is called for a pipe or FIFO, the errno value [ESPIPE] is returned.

• If the lseek() function is called for a character special file, no errno value is returned.

• If the lseek() function is called for any other device on which seeking cannot be per-
formed, the operation fails, and errno is set to [EINVAL].

HP extensions to the XPG4 Version 2 specification are:

• The errno values [EINVAL], [EISDIR], [EISGUARDIAN], and [EWRONGID] can be
returned.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

4−24 Hewlett-Packard Company 527186-023

System Functions (k - m) lseek64(2)

NAME
lseek64 - Sets file offset for read or write operation

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

off64_t lseek64(
int filedes,
off64_t offset,
int whence);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

offset Specifies a value, in bytes, that is used with the whence parameter to set the file
pointer. A negative value causes seeking in the reverse direction.

whence Specifies how to interpret the offset parameter in setting the file pointer associ-
ated with the filedes parameter. Values for the whence parameter are:

SEEK_CUR Sets the file pointer to its current location plus the value of the
offset parameter.

SEEK_END Sets the file pointer to the size of the file plus the value of the
offset parameter.

SEEK_SET Sets the file pointer to the value of the offset parameter.

DESCRIPTION
The lseek64() function is similar to the lseek() function except that, in addition to supporting
smaller files, the lseek64() function supports OSS files larger than approximately 2 gigabytes.

An application can explicitly call this function you compile the application using the #define
_LARGEFILE64_SOURCE 1 feature test macro or an equivalent compiler command option.

An application call to lseek() is automatically mapped to this function when you compile the
application using the #define _FILE_OFFSET_BITS 64 feature test macro or an equivalent
compiler command option.

The lseek64() function sets the file offset for the open file specified by the filedes parameter. The
whence parameter determines how the offset is to be interpreted.

The lseek64() function allows the file offset to be set beyond the end of existing data in the file.
If data is later written at this point, subsequent reading of data in the gap returns bytes with the

527186-023 Hewlett-Packard Company 4−25

lseek64(2) OSS System Calls Reference Manual

value 0 (zero) until data is actually written into the gap.

The lseek64() function does not, by itself, extend the size of the file.

Use From a Threaded Application
This function serializes file operations on an open file. If a thread calls lseek64() to access a file
that already has a file operation in progress by a different thread, this thread is blocked until the
prior file operation is complete.

NOTES
To use the lseek64() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_lseek64z(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the resulting pointer location, measured in bytes from the beginning
of the file, is returned. For First-in, First-out (FIFO) files, pipes, and character special files, the
value 0 (zero) is returned. For character special files, errno is not set.

If the lseek64() function fails, the file offset remains unchanged, the value -1 cast to the type
off_t is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the file offset remains unchanged, and the lseek64() function
sets errno to the corresponding value:

[EBADF] The filedes parameter is not an open file descriptor.

4−26 Hewlett-Packard Company 527186-023

System Functions (k - m) lseek64(2)

[EINVAL] One of these conditions exists:

• The whence parameter is an invalid value, or the resulting file offset
would be an invalid value (that is, a value less than 0 [zero]).

• The filedes parameter refers to a file (other than a pipe, FIFO, or direc-
tory) on which seeking cannot be performed.

[EISDIR] The filedes parameter refers to an OSS directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[EOVERFLOW]
The application attempted to set the file offset beyond the maximum file offset
supported for the file.

[ESPIPE] The filedes parameter refers to a pipe, FIFO, or socket.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and the backup process took over.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: fcntl(2), fseek(3), open(2), open64(2), read(2), spt_lseek64z(2), write(2).

STANDARDS CONFORMANCE
This function is an HP extension to the XPG4 Version 2 specification.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 4−27

lstat(2) OSS System Calls Reference Manual

NAME
lstat - Provides information about a symbolic link or any file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/stat.h>

int lstat(
const char *path,
struct stat *buffer);

PARAMETERS
path Points to the pathname of a file. If used for a symbolic link, the path parameter

points to the pathname of the symbolic link identifying the file.

buffer Points to a stat structure, into which information is placed about the file.

DESCRIPTION
The lstat() function obtains information about the symbolic link whose name is pointed to by the
path parameter or about any file pointed to by the path parameter.

The lstat() function is like the stat() or fstat() function, except that lstat() returns information
about the link, while the stat() and fstat() functions return information about the file that the link
refers to.

Read, write, or execute permission for the named file is not required, but all directories listed in
the pathname leading to the file must be searchable.

The file information is written to the area specified by the buffer parameter, which is a pointer to
a stat structure. For J06.11 and later J-series RVUs and H06.22 and later H-series RVUs, the
stat structure uses this definition from the sys/stat.h header file:

struct stat {
dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:7;
unsigned int st_fileprivs:8; /* File privileges */
uid_t st_uid;
gid_t st_gid;

#if _FILE_OFFSET_BITS != 64 || _TANDEM_ARCH_ == 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

#if _FILE_OFFSET_BITS == 64 && _TANDEM_ARCH_ != 0
mode_t st_basemode; /* Permissions with original group perms */

#endif

4−28 Hewlett-Packard Company 527186-023

System Functions (k - m) lstat(2)

int64_t st_reserved[3];
};

For J06.10 and earlier J-series RVUs and H06.21 and earlier H-series RVUs, the stat structure
uses this definition from the sys/stat.h header file:

struct stat {
dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:15;
uid_t st_uid;
gid_t st_gid;

#if _FILE_OFFSET_BITS != 64 || _TANDEM_ARCH_ == 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

#if _FILE_OFFSET_BITS == 64 && _TANDEM_ARCH_ != 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
int64_t st_reserved[3];

};

For symbolic links to local OSS objects, the st_mode and st_size fields are valid and the other
fields in the structure are undefined. For symbolic links that resolve to files in /E, the st_dev,
st_ino, st_atime, st_mtime, and st_ctime fields are defined as described in this reference page.

For files other than a symbolic link, the lstat() function sets the st_size field of the stat structure
to the length in characters of the absolute pathname resulting from the resolution of the name
pointed to by path. For a symbolic link, the lstat() function sets the st_size field of the stat struc-
ture to the length in characters of the link name used as the pathname pointed to by path (not
including the null terminator).

The lstat() function also sets the st_mode field to indicate the file type.

The lstat() function updates any time-related fields associated with the file before writing into
the stat structure, unless it is a read-only fileset. Time-related fields are not updated for read-only
OSS filesets.

The fields in the stat structure have the following meanings and content:

st_dev OSS device identifier for a fileset.

Values for local OSS objects are listed in the following table. Values for local
Guardian objects are described in Use on Guardian Objects, and values for
remote Guardian or OSS objects are described in Use on Remote Objects, later
in this reference page.

527186-023 Hewlett-Packard Company 4−29

lstat(2) OSS System Calls Reference Manual

For Contains

Regular file ID of device containing directory entry
Directory ID of device containing directory
FIFO ID of special fileset for pipes
AF_UNIX socket ID of device containing the fileset in which

the socket file was created
/dev/null ID of device containing directory entry
/dev/tty ID of device containing directory entry

st_ino File serial number (inode number). The file serial number and OSS device
identifier uniquely identify a regular OSS file within an OSS fileset.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file File serial number (unique)
Directory File serial number (unique)
FIFO File serial number (unique)
AF_UNIX socket File serial number of the socket file

(unique)
/dev/null File serial number (unique)
/dev/tty File serial number (unique)

The st_ino value for all node entries in /E (including the entry for the logical
link from the local node name to the root fileset on the local node) is the value
for the root fileset on the corresponding node. If normal conventions are fol-
lowed, this value is always 0 (zero), so entries in /E appear to be nonunique.
Values for objects on remote nodes are unique only among the values for objects
within the same fileset on that node.

st_mode File mode. The following bits are ORed into the st_mode field:

S_IFMT File type. This field can contain one of the following values:

S_IFCHR Character special file.

S_IFDIR Directory.

S_IFIFO FIFO.

S_IFREG Regular file.

S_IFSOCK Socket.

For an AF_UNIX socket, the user permissions
from the inode for the socket are returned for the
permission bits. The access flags are also
returned from the inode.

4−30 Hewlett-Packard Company 527186-023

System Functions (k - m) lstat(2)

S_IRWXG Permissions for the owning group, or if the st_acl flag is set, per-
missions for the the class ACL entry.

S_IRWXO Other class

S_IRWXU Owner class

S_ISGID Set group ID on execution

S_ISUID Set user ID on execution

S_ISVTX Sticky bit; used only for directories (not ORed for files in /G, the
Guardian file system)

Values for Guardian objects are described in Use on Guardian Objects, later in
this reference page.

st_nlink Number of links.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Number of links to the file
Directory Number of links to the directory
FIFO Number of links to the file
AF_UNIX socket Number of links to the socket file
/dev/null Number of links to the file
/dev/tty Number of links to the file

st_acl If set to 1, indicates that the file has optional access control list (ACL) entries.
For compatibility with HP-UX, the member name st_aclv is provided as alias for
st_acl. For more information about ACLs, see the acl(5) reference page.

st_fileprivs File privileges. For information about file privileges see the setfilepriv(2) refer-
ence page.

st_uid User ID.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file User ID of the file owner
Directory User ID of the file owner
FIFO User ID of the file owner
AF_UNIX socket User ID of the creator of the socket file
/dev/null User ID of the super ID
/dev/tty User ID of the super ID

st_gid Group ID.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 4−31

lstat(2) OSS System Calls Reference Manual

For Contains

Regular file Group ID of the file group
Directory Group ID of the file group
FIFO Group ID of the file group
AF_UNIX socket Group ID of the creater of the socket file
/dev/null Group ID of the super ID
/dev/tty Group ID of the super ID

st_basemode If the st_acl flag is set, contains the permissions for the file owner, owning
group, and others. If the st_acl flag is not set, st_basemode is 0 (zero).

st_rdev Remote device ID.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Undefined
Directory Undefined
FIFO Undefined
AF_UNIX socket 0 (zero)
/dev/null Undefined
/dev/tty ID of the device

st_size File size.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Size of the file in bytes
Directory 4096
FIFO 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null 0 (zero)
/dev/tty 0 (zero)

st_atime Access time.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

4−32 Hewlett-Packard Company 527186-023

System Functions (k - m) lstat(2)

For Contains

Regular file Time of the last access
Directory Time of the last access
FIFO Time of the last access
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_mtime Modification time.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last data modification
Directory Time of the last modification
FIFO Time of the last data modification
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_ctime Status change time.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last file status change
Directory Time of the last file status change
FIFO Time of the last file status change
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

527186-023 Hewlett-Packard Company 4−33

lstat(2) OSS System Calls Reference Manual

Use on Guardian Objects
You can use the lstat() function like the stat() or fstat() function on files in /G, but you cannot
create symbolic links in /G.

The st_dev and st_ino fields of the stat structure do not uniquely identify Guardian files (files in
/G).

The st_dev field is unique for /G, for each disk volume, and for each Telserv process (or other
process of subdevice type 30), because each of these is a separate fileset.

The S_ISGUARDIANOBJECT macro can indicate whether an object is a Guardian object
when the st_dev field is passed to the macro. The value of the macro is TRUE if the object is a
Guardian object and FALSE otherwise.

The st_ino field is a nonunique encoding of the Guardian filename.

The st_rdev field contains a minor device number for each ptyn entry in /G/ztnt/, representing
each Telserv process subdevice.

The st_size field of an EDIT file (file code 101) is the actual (physical) end of file, not the number
of bytes in the file. For directories, st_size is set to 4096.

When an OSS function is called for a Guardian EDIT file, the st_mtime field is set to the last
modification time. The st_atime field indicates the last time the file was opened, and the
st_ctime field is set equal to st_mtime. No other time-related fields are updated by OSS func-
tions.

The st_ctime and st_atime fields for Guardian regular disk files (except for EDIT files) are
updated by OSS function calls, not by Guardian procedure calls.

The time fields for /G, /G/vol, and /G/vol/subvol always contain the current time.

When the path parameter points to the name of a Guardian process that is not a process of sub-
type 30, the lstat() function call fails. The value -1 is returned and errno is set to [ENOENT].

The lstat() function always returns access modes of "d---------" when the path parameter points
to a Guardian subvolume that has a reserved name beginning with ZYQ. The other access modes
reported for files in /G vary according to the file type.

The following table shows the mapping between Guardian files and their corresponding file types
described in the st_mode field.

4−34 Hewlett-Packard Company 527186-023

System Functions (k - m) lstat(2)

Guardian st_mode
Example in /G File Type File Type Permissions___

N/A Directory r-xr-xr-x/G
vol Disk volume Directory rwxrwxrwx
vol/subvol Subvolume Directory rwxrwxrwx
vol/subvol/fileid Disk file Regular file See following text
vol/#123 Temporary disk file Regular file See following text
ztnt Subtype 30 process Directory --x--x--x
ztnt/#pty0001 Subtype 30 process

with qualifier
Character special rw-rw-rw-

vol1/zyq00001 Subvolume Directory ---------

A Guardian file classified as a directory is always owned by the super ID.

Guardian permissions are mapped as follows:

• Guardian network or any user permission is mapped to OSS other permission.

• Guardian community or group user permission is mapped to OSS group permission.

• Guardian user or owner permission is mapped to OSS owner permission.

• Guardian super ID permission is mapped to OSS super ID permission.

• Guardian read permission is mapped to OSS read permission.

• Guardian write permission is mapped to OSS write permission.

• Guardian execute permission is mapped to OSS execute permission.

• Guardian purge permission is ignored.

Users are not allowed read access to Guardian processes.

OSS file permissions are divided into three groups (owner, group, and other) of three permission
bits each (read, write, and execute). The OSS permission bits do not distinguish between remote
and local users as Guardian security does; local and remote users are treated alike.

Use on Remote Objects
The content of the st_dev field of the stat structure is unique for each node in /E because each
node is a separate fileset. Values for directories within /E are the same as described for objects
on the local HP NonStop node.

The S_ISEXPANDOBJECT macro can indicate whether an object in the /E directory is on a
remote HP NonStop node when the st_dev field is passed to the macro. The value of the macro
is TRUE if the object is on a remote HP NonStop node and FALSE otherwise.

Use From the Guardian Environment
A Guardian process can use thee lstat() function when you use the #define
_XOPEN_SOURCE_EXTENDED 1 feature test macro or an equivalent compiler command
option to compile the process.

The lstat() function belongs to a set of functions that have the following effects when the first of
them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. You cannot close these
file numbers by calling the Guardian FILE_CLOSE_ procedure.

527186-023 Hewlett-Packard Company 4−35

lstat(2) OSS System Calls Reference Manual

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
For J06.08 and earlier J-series RVUs, H06.19 and earlier H-series RVUs, or G-series RVUs, the
OSS Network File System (NFS) cannot access OSS objects that have OSS ACLs that contain
optional ACL entries.

For J06.09 and later J-series RVUs and H06.20 and later H-series RVUs, access by the OSS Net-
work File System (NFS) to OSS objects that have OSS ACLs that contain optional ACL entries
can be allowed, depending upon the NFSPERMMAP attribute value for the fileset that contains
the object. For more information about NFS and ACLs, see the acl(5) reference page.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the lstat() function sets errno to the corresponding value:

[EACCES] Search permission is denied for a component of the pathname pointed to by the
path parameter.

[EFAULT] Either the buffer parameter or the path parameter points to a location outside of
the allocated address space of the process.

[EFSBAD] The program attempted an operation involving a fileset with a corrupted fileset
catalog.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG]
One of these names is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

You can call the pathconf() function to obtain the applicable limits.

[ENOENT] One of the following conditions exists:

• The file specified by the path parameter does not exist.

4−36 Hewlett-Packard Company 527186-023

System Functions (k - m) lstat(2)

• path points to an empty string.

• The specified pathname cannot be mapped to a valid Guardian filename.

• The specified pathname points to the name of a Guardian process that is
not of subtype 30.

• The path parameter specifies a file on a remote HP NonStop node but
communication with the remote node has been lost.

[ENOROOT] The program attempted an operation while the root fileset was unavailable.

[ENOTDIR] A component of the pathname specified by the path parameter is not a directory.

[ENOTSUP] The path parameter refers to a file on a logical disk volume administered
through the Storage Management Foundation (SMF).

[ENXIO] An invalid device or address was specified during an input or output operation
on a special file. One of the following events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EOVERFLOW]
The file size (in bytes) or the file inode number (serial number) cannot be
represented correctly in the structure pointed to by the buffer parameter.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), lstat64(2), fstat(2), open(2), pipe(2), readlink(2),
setfilepriv(2), stat(2), symlink(2), utime(2).

Miscellaneous Topics: acl(5).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [ENOROOT], [ENOTSUP], [ENXIO], and
[EOSSNOTRUNNING] can be returned by the lstat() function.

527186-023 Hewlett-Packard Company 4−37

lstat64(2) OSS System Calls Reference Manual

NAME
lstat64 - Provides information about a symbolic link or any file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/stat.h>

int lstat64(
const char *path,
struct stat64 *buffer);

PARAMETERS
path Points to the pathname of a file. If used for a symbolic link, the path parameter

points to the pathname of the symbolic link identifying the file.

buffer Points to a stat64 structure, into which information is placed about the file.

DESCRIPTION
The lstat64() function is similar to the lstat() function except that, in addition to supporting
smaller files, the lstat64() function supports OSS files larger than approximately 2 gigabytes.

An application can explicitly call this function when you compile the application using the
#define _LARGEFILE64_SOURCE 1 feature test macro or an equivalent compiler command
option.

An application call to lstat() is automatically mapped to this function when you compile the
application using the #define _FILE_OFFSET_BITS 64 feature test macro or an equivalent
compiler command option.

The lstat64() function obtains information about the symbolic link whose name is pointed to by
the path parameter or about any file pointed to by the path parameter.

The lstat64() function is like the stat64() or fstat64() function, except that lstat64() returns
information about the link, while the stat64() and fstat64() functions return information about
the file that the link refers to.

Read, write, or execute permission for the named file is not required, but all directories listed in
the pathname leading to the file must be searchable.

4−38 Hewlett-Packard Company 527186-023

System Functions (k - m) lstat64(2)

The file information is written to the area specified by the buffer parameter, which is a pointer to
a stat64 structure. For J06.11 and later J-series RVUs and H06.22 and later H-series RVUs, the
stat64 structure uses this definition from the sys/stat.h header file:

struct stat64 {
dev_t st_dev;
ino64_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:7;
unsigned int st_fileprivs:8; /* File privileges */
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
off64_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
mode_t st_basemode; /* Permissions with original group perms */
int64_t reserved[3];

};

For J06.10 and earlier J-series RVUs and H06.21 and earlier H-series RVUs, the stat64 structure
uses this definition from the sys/stat.h header file:

struct stat64 {
dev_t st_dev;
ino64_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:15;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
off64_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
mode_t st_basemode; /* Permissions with original group perms */
int64_t reserved[3];

};

For symbolic links to local OSS objects, the st_mode and st_size fields are valid and the other
fields in the structure are undefined. For symbolic links that resolve to files in /E, the st_dev,
st_ino, st_atime, st_mtime, and st_ctime fields are defined as described in this reference page.

For files other than a symbolic link, the lstat64() function sets the st_size field of the stat64
structure to the length in characters of the absolute pathname resulting from the resolution of the
name pointed to by path. For a symbolic link, the lstat64() function sets the st_size field of the
stat64 structure to the length in characters of the link name used as the pathname pointed to by
path (not including the null terminator).

The lstat64() function also sets the st_mode field to indicate the file type.

527186-023 Hewlett-Packard Company 4−39

lstat64(2) OSS System Calls Reference Manual

The lstat64() function updates any time-related fields associated with the file before writing into
the stat64 structure, unless it is a read-only fileset. Time-related fields are not updated for read-
only OSS filesets.

The fields in the stat64 structure have the following meanings and content:

st_dev OSS device identifier for a fileset.

Values for local OSS objects are listed in the following table. Values for local
Guardian objects are described in Use on Guardian Objects, and values for
remote Guardian or OSS objects are described in Use on Remote Objects, later
in this reference page.

For Contains

Regular file ID of device containing directory entry
Directory ID of device containing directory
FIFO ID of special fileset for pipes
AF_UNIX socket ID of device containing the fileset in which

the socket file was created
/dev/null ID of device containing directory entry
/dev/tty ID of device containing directory entry

st_ino File serial number (inode number). The file serial number and OSS device
identifier uniquely identify a regular OSS file within an OSS fileset.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file File serial number (unique)
Directory File serial number (unique)
FIFO File serial number (unique)
AF_UNIX socket File serial number of the socket file

(unique)
/dev/null File serial number (unique)
/dev/tty File serial number (unique)

The st_ino value for all node entries in /E (including the entry for the logical
link from the local node name to the root fileset on the local node) is the value
for the root fileset on the corresponding node. If normal conventions are fol-
lowed, this value is always 0 (zero), so entries in /E appear to be nonunique.
Values for objects on remote nodes are unique only among the values for objects
within the same fileset on that node.

st_mode File mode. The following bits are ORed into the st_mode field:

S_IFMT File type. This field can contain one of the following values:

S_IFCHR Character special file.

S_IFDIR Directory.

4−40 Hewlett-Packard Company 527186-023

System Functions (k - m) lstat64(2)

S_IFIFO FIFO.

S_IFREG Regular file.

S_IFSOCK Socket.

For an AF_UNIX socket, the user permissions
from the inode for the socket are returned for the
permission bits. The access flags are also
returned from the inode.

S_IRWXG Permissions for the owning group, or if the st_acl flag is set, per-
missions for the the class ACL entry.

S_IRWXO Other class

S_IRWXU Owner class

S_ISGID Set group ID on execution

S_ISUID Set user ID on execution

S_ISVTX Sticky bit; used only for directories (not ORed for files in /G, the
Guardian file system)

Values for Guardian objects are described in Use on Guardian Objects, later in
this reference page.

st_nlink Number of links.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Number of links to the file
Directory Number of links to the directory
FIFO Number of links to the file
AF_UNIX socket Number of links to the socket file
/dev/null Number of links to the file
/dev/tty Number of links to the file

st_acl If set to 1, indicates that the file has optional access control list (ACL) entries.
For compatibility with HP-UX, the member name st_aclv is provided as alias for
st_acl. For more information about access control lists, see the acl(5) reference
page.

st_fileprivs File privileges. For information about file privileges see the setfilepriv(2) refer-
ence page.

st_uid User ID.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 4−41

lstat64(2) OSS System Calls Reference Manual

For Contains

Regular file User ID of the file owner
Directory User ID of the file owner
FIFO User ID of the file owner
AF_UNIX socket User ID of the creator of the socket file
/dev/null User ID of the super ID
/dev/tty User ID of the super ID

st_gid Group ID.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Group ID of the file group
Directory Group ID of the file group
FIFO Group ID of the file group
AF_UNIX socket Group ID of the creater of the socket file
/dev/null Group ID of the super ID
/dev/tty Group ID of the super ID

st_basemode If the st_acl flag is set, contains the permissions for the file owner, owning
group, and others. If the st_acl flag is not set, st_basemode is 0 (zero).

st_rdev Remote device ID.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Undefined
Directory Undefined
FIFO Undefined
AF_UNIX socket 0 (zero)
/dev/null Undefined
/dev/tty ID of the device

st_size File size.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

4−42 Hewlett-Packard Company 527186-023

System Functions (k - m) lstat64(2)

For Contains

Regular file Size of the file in bytes
Directory 4096
FIFO 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null 0 (zero)
/dev/tty 0 (zero)

st_atime Access time.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last access
Directory Time of the last access
FIFO Time of the last access
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_mtime Modification time.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last data modification
Directory Time of the last modification
FIFO Time of the last data modification
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_ctime Status change time.

Values for OSS objects are listed in the following table. Values for Guardian
objects are described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 4−43

lstat64(2) OSS System Calls Reference Manual

For Contains

Regular file Time of the last file status change
Directory Time of the last file status change
FIFO Time of the last file status change
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

Use on Guardian Objects
You can use the lstat64() function like the stat64() or fstat64() function on files in /G, but you
cannot create symbolic links in /G.

The st_dev and st_ino fields of the stat64 structure do not uniquely identify Guardian files (files
in /G).

The st_dev field is unique for /G, for each disk volume, and for each Telserv process (or other
process of subdevice type 30), because each of these is a separate fileset.

The S_ISGUARDIANOBJECT macro can indicate whether an object is a Guardian object
when the st_dev field is passed to the macro. The value of the macro is TRUE if the object is a
Guardian object and FALSE otherwise.

The st_ino field is a nonunique encoding of the Guardian filename.

The st_rdev field contains a minor device number for each ptyn entry in /G/ztnt/, representing
each Telserv process subdevice.

The st_size field of an EDIT file (file code 101) is the actual (physical) end of file, not the number
of bytes in the file. For directories, st_size is set to 4096.

When an OSS function is called for a Guardian EDIT file, the st_mtime field is set to the last
modification time. The st_atime field indicates the last time the file was opened, and the
st_ctime field is set equal to st_mtime. No other time-related fields are updated by OSS func-
tions.

The st_ctime and st_atime fields for Guardian regular disk files (except for EDIT files) are
updated by OSS function calls, not by Guardian procedure calls.

The time fields for /G, /G/vol, and /G/vol/subvol always contain the current time.

When the path parameter points to the name of a Guardian process that is not a process of sub-
type 30, the lstat64() function call fails. The value -1 is returned and errno is set to [ENOENT].

The lstat64() function always returns access modes of "d---------" when the path parameter
points to a Guardian subvolume that has a reserved name beginning with ZYQ. The other access
modes reported for files in /G vary according to the file type.

The following table shows the mapping between Guardian files and their corresponding file types
described in the st_mode field.

4−44 Hewlett-Packard Company 527186-023

System Functions (k - m) lstat64(2)

Guardian st_mode
Example in /G File Type File Type Permissions___

N/A Directory r-xr-xr-x/G
vol Disk volume Directory rwxrwxrwx
vol/subvol Subvolume Directory rwxrwxrwx
vol/subvol/fileid Disk file Regular file See following text
vol/#123 Temporary disk file Regular file See following text
ztnt Subtype 30 process Directory --x--x--x
ztnt/#pty0001 Subtype 30 process

with qualifier
Character special rw-rw-rw-

vol1/zyq00001 Subvolume Directory ---------

A Guardian file classified as a directory is always owned by the super ID.

Guardian permissions are mapped as follows:

• Guardian network or any user permission is mapped to OSS other permission.

• Guardian community or group user permission is mapped to OSS group permission.

• Guardian user or owner permission is mapped to OSS owner permission.

• Guardian super ID permission is mapped to OSS super ID permission.

• Guardian read permission is mapped to OSS read permission.

• Guardian write permission is mapped to OSS write permission.

• Guardian execute permission is mapped to OSS execute permission.

• Guardian purge permission is ignored.

Users are not allowed read access to Guardian processes.

OSS file permissions are divided into three groups (owner, group, and other) of three permission
bits each (read, write, and execute). The OSS permission bits do not distinguish between remote
and local users as Guardian security does; local and remote users are treated alike.

Use on Remote Objects
The content of the st_dev field of the stat64 structure is unique for each node in /E because each
node is a separate fileset. Values for directories within /E are the same as described for objects
on the local HP NonStop node.

The S_ISEXPANDOBJECT macro can indicate whether an object in the /E directory is on a
remote HP NonStop node when the st_dev field is passed to the macro. The value of the macro
is TRUE if the object is on a remote HP NonStop node and FALSE otherwise.

Use From the Guardian Environment
A Guardian process can use thee lstat() function when you use the #define
_XOPEN_SOURCE_EXTENDED 1 feature test macro or an equivalent compiler command
option to compile the process.

The lstat64() function belongs to a set of functions that have the following effects when the first
of them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. You cannot close these
file numbers by calling the Guardian FILE_CLOSE_ procedure.

527186-023 Hewlett-Packard Company 4−45

lstat64(2) OSS System Calls Reference Manual

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
For J06.08 and earlier J-series RVUs, H06.19 and earlier H-series RVUs, or G-series RVUs, the
OSS Network File System (NFS) cannot access OSS objects that have OSS ACLs that contain
optional ACL entries.

For J06.09 and later J-series RVUs and H06.20 and later H-series RVUs, access by the OSS Net-
work File System (NFS) to OSS objects that have OSS ACLs that contain optional ACL entries
can be allowed, depending upon the NFSPERMMAP attribute value for the fileset that contains
the object. For more information about NFS and ACLs, see the acl(5) reference page.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the lstat64() function sets errno to the corresponding value:

[EACCES] Search permission is denied for a component of the pathname pointed to by the
path parameter.

[EFAULT] Either the buffer parameter or the path parameter points to a location outside of
the allocated address space of the process.

[EFSBAD] The program attempted an operation involving a fileset with a corrupted fileset
catalog.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG]
One of these names is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

You can call the pathconf() function to obtain the applicable limits.

[ENOENT] One of the following conditions exists:

• The file specified by the path parameter does not exist.

4−46 Hewlett-Packard Company 527186-023

System Functions (k - m) lstat64(2)

• path points to an empty string.

• The specified pathname cannot be mapped to a valid Guardian filename.

• The specified pathname points to the name of a Guardian process that is
not of subtype 30.

• The path parameter specifies a file on a remote HP NonStop node but
communication with the remote node has been lost.

[ENOROOT] The program attempted an operation while the root fileset was unavailable.

[ENOTDIR] A component of the pathname specified by the path parameter is not a directory.

[ENOTSUP] The path parameter refers to a file on a logical disk volume administered
through the Storage Management Foundation (SMF).

[ENXIO] An invalid device or address was specified during an input or output operation
on a special file. One of the following events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), fstat(2), fstat64(2), open(2), open64(2), pipe(2),
readlink(2), stat(2), stat64(2), symlink(2), utime(2).

STANDARDS CONFORMANCE
This function is an HP extension to the XPG4 Version 2 specification.

527186-023 Hewlett-Packard Company 4−47

mkdir(2) OSS System Calls Reference Manual

NAME
mkdir - Creates a directory

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>

int mkdir(
const char *path,
mode_t mode);

PARAMETERS
path Points to the pathname for the new directory.

If any component of the path parameter refers to a symbolic link, the link is
traversed and pathname resolution continues.

If the final component of the path parameter refers to an existing entity, the call
fails and errno is set to [EEXIST].

mode Specifies the mask for the read, write, and search/execute (RWX) flags for
owner, group, and others. Also specifies the file type flags for the directory.

The value of this parameter is constructed by logically ORing flags that are
defined in the sys/stat.h header file. The permission bits are affected by the
value of this parameter but depend on both the support for OSS ACLs on the sys-
tem on which this process is running and on the fileset that contains the new
directory. See "ACL Inheritance" in the acl(5) reference page.

The file type flags are described in DESCRIPTION.

DESCRIPTION
The mkdir() function creates a new directory with the following attributes:

• The owner ID is set to the effective user ID of the calling process. Directories within /G
(the Guardian file system) are the exception; for them, the owner ID is set to 65535 (the
super ID).

• The group ID is set to the group ID of the parent directory if the S_ISGID flag is set in
the parent directory; otherwise, the group ID is set to the effective group ID of the calling
process. Directories within /G (the Guardian file system) are the exception; for them, the
group ID is set to 255.

• The value of the mode parameter is constructed by logically ORing flags that are defined
in the sys/stat.h header file.

If the parent directory of the created file does not have default OSS access control list
(ACL) entries, the permissions for the new file are the bit-wise AND of this mode param-
eter with the complement of the process umask (see the umask(2) reference page). If the
parent directory of the created file has default ACL entries, the permissions for the new
file are affected by the value of this parameter but depend on both the support for OSS
ACLs on the system on which this process is running and on the fileset that contains the
new directory. See "ACL Inheritance" in the acl(5) reference page.

Directories within /G (the Guardian file system) are the exception; for them, all the

4−48 Hewlett-Packard Company 527186-023

System Functions (k - m) mkdir(2)

permission bits ("rwxrwxrwx") are automatically set.

• The new directory is empty except for . (dot) and . . (dot-dot).

To execute the mkdir() function, a process must have search permission for the parent directory
of the directory pointed to by the path parameter and write permission in the parent directory of
the path directory.

The mkdir() function cannot create a directory named /dev, /dev/tty, or /dev/null in the root
directory of the OSS file system. The mkdir() function cannot create a directory named
lost+found in the root directory of an OSS fileset. If these directories are missing from the sys-
tem, such a function call fails and sets errno to the value [EPERM]. When these directories
already exist (the normal case), errno is set to [EEXIST].

If bits in the mode parameter other than the file permission bits, S_ISVTX, or S_IFDIR are set,
mkdir() fails and sets errno to [EINVAL].

Upon successful completion, the mkdir() function marks the st_atime, st_ctime, and st_mtime
fields of the directory for update and marks the st_ctime and st_mtime fields of the new
directory’s parent directory for update.

Use on Guardian Objects
The mkdir() function succeeds within /G (the Guardian file system) only when creating a Guar-
dian subvolume that is exactly three directories under the root (for example, /G/vol/subvol). This
Guardian subvolume must be empty. If the subvolume is not empty, errno is set to [EEXIST].
When the call succeeds, the resulting directory (subvolume) is owned by the super ID.

File Type Flags
The file type flags that can be logically ORed into the value specified in the mode parameter are
as follows:

S_IFDIR Directory in the OSS file system or empty subvolume in /G, the Guardian file
system.

S_ISVTX Sticky bit; used only for directories (cannot be used for files in /G, the Guardian
file system).

When set, a user can remove files from the directory only if the user either:

• Has write permission for the directory and is the owner of either the
directory or the file being removed

• Has appropriate privileges

Use From the Guardian Environment
The mkdir() function is one of a set of functions that have the following effects when the first of
them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

527186-023 Hewlett-Packard Company 4−49

mkdir(2) OSS System Calls Reference Manual

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the mkdir() function returns the value 0 (zero). If the function call
fails, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the directory is not created and the mkdir() function
sets errno to the corresponding value:

[EACCES] Creating the requested directory requires writing in a directory with a mode that
denies write permission, or search permission is denied on the parent directory of
the directory to be created.

[EEXIST] The named file already exists.

[EFAULT] The path parameter is an invalid address.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINVAL] One of the following conditions exists:

• The program supplied an invalid value for the mode parameter.

• The pathname supplied in the call attempts to create a directory in the
Guardian file system, but the pathname cannot be mapped to a valid
Guardian subvolume name.

[EIO] A physical input or output error has occurred.

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of the following is true:

• A component of the prefix of the pathname pointed to by the path param-
eter does not exist.

• The path parameter points to an empty string.

• The path parameter names a symbolic link, but the file to which it refers
does not exist.

• The path parameter specifies a file on a remote HP NonStop node but
communication with the remote node has been lost.

4−50 Hewlett-Packard Company 527186-023

System Functions (k - m) mkdir(2)

[ENOROOT] One of the following conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node and communication
with the remote name server has been lost.

[ENOSPC] The fileset does not contain enough space to hold the contents of the new direc-
tory or to extend the parent directory of the new directory.

[ENOTDIR] A component of the pathname prefix is not a directory.

[ENXIO] The fileset containing the client’s current working directory or root directory is
not mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] One of the following conditions is true:

• The call attempted to create a directory named lost+found in the root
directory of an OSS fileset, or attempted to create a directory named
/dev, /dev/tty, or /dev/null in the the root directory of the OSS file sys-
tem.

• The call attempted to create a subvolume directory in /G (the Guardian
file system) that has a name beginning with ZYQ.

• The call attempted to create a file in the /E directory.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The named file resides on a read-only fileset.

RELATED INFORMATION
Commands: chmod(1), getacl(1), mkdir(1), setacl(1).

Functions: acl(2), chmod(2), mknod(2), rmdir(2), umask(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• If bits in the mode parameter other than the file permission bits, S_ISVTX, or S_IFDIR
are set, mkdir() fails and sets errno to [EINVAL].

• The group ID is set to the group ID of the parent directory if the S_ISGID flag is set in
the parent directory; otherwise, the group ID is set to the effective group ID of the calling
process. Directories within /G (the Guardian file system) are the exception; for them, the
group ID is set to 255.

527186-023 Hewlett-Packard Company 4−51

mkdir(2) OSS System Calls Reference Manual

The following are extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [EINVAL], [EIO], [ENOROOT], [ENXIO],
[EOSSNOTRUNNING], and [EPERM] can be returned.

4−52 Hewlett-Packard Company 527186-023

System Functions (k - m) mknod(2)

NAME
mknod - Creates a file or assigns a pathname to a character special file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/stat.h>

int mknod(
const char *path,
mode_t mode,
dev_t device);

PARAMETERS
path Specifies the pathname of the new file. If the final component of the path param-

eter names a symbolic link, the link is traversed and pathname resolution contin-
ues.

mode Specifies the file type, attributes, and access permissions. This parameter is con-
structed by logically ORing one file type value with any valid value for an attri-
bute for a file of that type, and with any valid access permissions.

The following file type values are supported:

S_IFCHR The file is a character special file.

S_IFDIR The file is a directory special file.

S_IFIFO The file is a FIFO special file.

S_IFREG The file is a regular file.

Values other than S_IFIFO can be used only if the process has appropriate
privileges.

The file type value S_IFBLK is not supported in the OSS file system. If
S_IFBLK is specified, the function call fails and errno is set to the value of
[EINVAL].

The following access permissions are supported:

S_IRGRP Read access by members of the group list

S_IROTH Read access by others

S_IRUSR Read access by the owner of the file

S_IRWXG Read, write, or execute (search) access by members of the group
list

S_IRWXO Read, write, or execute (search) access by others

S_IRWXU Read, write, or execute (search) access by the owner of the file

527186-023 Hewlett-Packard Company 4−53

mknod(2) OSS System Calls Reference Manual

S_ISGID Set the group ID of the file upon execution of the file

S_ISUID Set the user ID of the file upon execution of the file

S_ISVTX Restrict the deletion of files in a directory (ignored for other file
types)

S_IWGRP Write access by members of the group list

S_IWOTH Write access by others

S_IWUSR Write access by the owner of the file

S_IXGRP Execute (search) access by members of the group list

S_IXOTH Execute (search) access by others

S_IXUSR Execute (search) access by the owner of the file

device Specifies the type of device on which the file is created. This hexadecimal value
must be 0 (zero) unless the file type S_IFCHR is specified for the mode parame-
ter. When S_IFCHR is specified, the following values are valid:

0x0000000300000000
The device is an infinite data source or data sink, such as
/dev/null.

0x0000000200000000
The device is a controlling terminal, such as /dev/tty.

Specifying any other value for the device parameter when S_IFCHR is specified
for the mode parameter causes the function call to fail and errno to be set to
[EINVAL].

DESCRIPTION
The mknod() function creates a new special or regular file. Using the mknod() function to
create file types other than FIFOs requires appropriate privileges.

When the mknod() function creates a regular file in a fileset that supports access control lists
(ACLs), and the parent directory for that file has an ACL that contains default ACL entries, the
ACL for the file inherits the default ACL entries of the parent directory as actual (nondefault)
ACL entries for the new file. When the mknod() function creates a directory in a fileset that
supports ACLs, the ACL for the new directory inherits the default ACL entries of the parent
directory both as default and as actual (nondefault) ACL entries. For detailed information about
ACL inheritance, see the acl(5) reference page.

For the mknod() function to finish successfully, a process must have search permission and write
permission in the parent directory of the path parameter.

The new file has the following characteristics:

• A file type as specified by the mode parameter.

• An owner ID set to the effective user ID of the process.

• A group ID set to the effective group ID of the process or to the group ID of the parent
directory of the file.

4−54 Hewlett-Packard Company 527186-023

System Functions (k - m) mknod(2)

• Access permission and attribute bits set according to the value of the mode parameter,
modified as described in "ACL Inheritance" in the acl(5) reference page.

Upon successful completion of the function call, the st_atime, st_ctime, and st_mtime fields of
the file are marked for update. The st_ctime and st_mtime fields of the directory that contains
the new entry are also marked for update.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

Executable files that have the PRIVSOARFOPEN privilege and that are started by a member of
the Safeguard SECURITY-OSS-ADMINISTRATOR (SOA) group have the appropriate privilege
to use this function on any file in a restricted-access fileset. However, Network File System
(NFS) clients are not granted SOA group privileges, even if these clients are accessing the sys-
tem with a user ID that is a member of the SOA security group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use From the Guardian Environment
The mknod() function can be used by a Guardian process when the process has been compiled
using the #define _XOPEN_SOURCE_EXTENDED 1 feature-test macro or an equivalent com-
piler command option.

The mknod() function is one of a set of functions that have the following effects when the first
of them is called from the Guardian environment:

• Two Guardian file-system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

Use on Guardian Objects
When S_IFREG is specified for the mode parameter, the path parameter can be any valid version
of the following:

/G/vol/subvol Where vol already exists. If vol does not exist, the function call fails and errno
is set to the value of [EINVAL].

/G/vol/subvol/fileid
Where vol already exists and fileid specifies a regular disk file (an odd unstruc-
tured Enscribe file). If vol does not exist, the function call fails and errno is set
to the value of [EINVAL].

If only /G/vol is specified, the function call fails and errno is set to the value of [EPERM].

When S_IFCHR is specified for the mode parameter, any specification for the path parameter
that uses /G causes the function call to fail and errno to be set to [EPERM].

527186-023 Hewlett-Packard Company 4−55

mknod(2) OSS System Calls Reference Manual

When S_IFDIR is specified for the mode parameter, a specification of /G/vol for the path param-
eter causes the function call to fail and errno to be set to [EINVAL].

If any other file type value is used for the mode parameter of a file in /G, the function call fails
and errno is set to the value of [EINVAL].

The file access permissions S_ISUID, S_ISGID, and S_ISVTX are ignored when you are creat-
ing files in the Guardian file system.

NOTES
Use the mkfifo() function instead of the mknod() function to create a FIFO when you need to
port an application to a UNIX system that does not support XPG4 Version 2.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the new file is not created and the mknod() function
sets errno to the corresponding value:

[EACCES] A component of the pathname prefix denies search permission, or write permis-
sion is denied on the parent directory of the file to be created.

[EEXIST] The named file exists.

[EFAULT] The path parameter points outside the process’s allocated address space.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINVAL] One of the following conditions exists:

• The value S_IFBLK was specified for the mode parameter.

• A value other than 0 (zero) was specified for the device parameter when
a value other than S_IFCHR was specified for the mode parameter.

• An invalid value was specified for the device parameter when the value
S_IFCHR was specified for the mode parameter.

• The mode parameter specifies a file type of S_IFDIR but the path
parameter specifies a pathname of the form /G/vol.

• The mode parameter specifies a file type of S_IFIFO but the path
parameter specifies a pathname in /G (the Guardian file system).

[EIO] During an access of the file system, an I/O error occurred.

[ELOOP] Too many symbolic links were encountered in resolving the value of the path
parameter.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

4−56 Hewlett-Packard Company 527186-023

System Functions (k - m) mknod(2)

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname pointed to by the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of the following conditions exists:

• The named directory does not exist.

• The specified pathname is an empty string.

• The specified pathname cannot be mapped to a valid Guardian filename.

• The path parameter includes a symbolic link, but the file to which it
refers does not exist.

• The path parameter specifies a file on a remote HP NonStop node but
communication with the remote node has been lost.

[ENOROOT] The root fileset (fileset 0) is not in the STARTED state.

[ENOSPC] The directory that would contain the new file cannot be extended, or the fileset is
out of resources.

[ENOTDIR] A component of the pathname prefix is not a directory.

[ENXIO] The fileset containing the client’s working directory or effective root directory is
not mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] One of the following conditions exists:

• The mode parameter specifies a file type other than S_IFIFO and the
calling process does not have appropriate privileges.

• The mode parameter specifies a file type of S_IFREG but the path
parameter specifies a pathname of the form /G/vol.

• The mode parameter specifies a file type of S_IFCHR but the path
parameter specifies a pathname in /G (the Guardian file system).

• The call attempted to create a file in the /E directory.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The directory in which the file is to be created is located on a read-only fileset.

RELATED INFORMATION
Commands: chmod(1), getacl(1), mkdir(1), setacl(1).

Functions: acl(2), chmod(2), mkdir(2), mkfifo(3), open(2), open64(2), stat(2), stat64(2),
umask(2).

Miscellaneous topics: acl(5).

527186-023 Hewlett-Packard Company 4−57

mknod(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
The OSS file system does not support block special files. The file type S_IFBLK is therefore not
valid.

The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [ENOROOT], [ENXIO], and [EOSSNO-
TRUNNING] can be returned.

• Behavior is defined when values for the mode parameter other than S_IFIFO are
specified.

• Behavior is defined when values for the device parameter other than 0 (zero) are
specified.

4−58 Hewlett-Packard Company 527186-023

System Functions (k - m) msgctl(2)

NAME
msgctl - Performs message control operations

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/msg.h>

int msgctl(
int msqid,
int cmd,
struct msqid_ds *buf);

PARAMETERS
msqid Specifies the message queue identifier.

cmd Specifies the type of operation. The possible values for cmd and the operations
they perform are as follows:

IPC_RMID Removes the message queue identifier and deallocates its asso-
ciated msqid_ds structure.

This is a restricted operation. The effective user ID of the calling
process either must have appropriate privileges or must be equal
to the value of the owner’s user ID (msg_perm.uid field) or the
creator’s user ID (msg_perm.cuid field) in the associated
msqid_ds structure.

IPC_SET Sets the message queue identifier by copying selected values in
the structure specified by the buf parameter into corresponding
fields in the msqid_ds structure associated with the message
queue identifier.

This is a restricted operation. The effective user ID of the calling
process must have appropriate privileges or must be equal to the
value of the owner’s user ID (msg_perm.uid field) or the
creator’s user ID (msg_perm.cuid field) in the associated
msqid_ds structure.

Only a process with appropriate privileges can increase the
value of msg_qbytes.

IPC_SETNONFT
Disables fault tolerance for the message queue specified by the
msqid parameter. The default operation of message queues
makes them fault tolerant so that interprocess communication
does not lose data.

This is a restricted operation. The effective user ID of the cal-
ling process must have appropriate privileges or must be equal
to the value of the owner’s user ID (msg_perm.uid field) or the
creator’s user ID (msg_perm.cuid field) in the associated
msqid_ds structure.

527186-023 Hewlett-Packard Company 4−59

msgctl(2) OSS System Calls Reference Manual

IPC_STAT Queries the message queue identifier by copying the contents of
its associated msqid_ds data structure into the structure
specified by the buf parameter.

buf Specifies the address of a msqid_ds structure. This structure is used only with
the IPC_STAT and IPC_SET values of the cmd parameter. With IPC_STAT,
the results of the query are copied to this structure. With IPC_SET, the values in
this structure are used to set certain fields in the msqid_ds structure associated
with the message queue identifier. In either case, the calling process must have
allocated the structure before making the call.

DESCRIPTION
The msgctl() function allows a process to query or set the contents of the msqid_ds structure
associated with the specified message queue identifier. It also allows a process to remove the
message queue identifier and its associated msqid_ds structure. The value of the cmd parameter
determines which operation is performed.

The IPC_SET value of the cmd parameter uses the user-supplied contents of the buf parameter
to set the corresponding fields of the msqid_ds structure associated with the message queue
identifier:

• The owner’s user ID field (msg_perm.uid) is set as specified in the input.

• The owner’s group ID field (msg_perm.gid) is set as specified in the input.

• The access modes field (msg_perm.mode) is set as specified in the low-order nine bits
of the corresponding field in the input.

• The maximum number of bytes field (msg_qbytes) for the queue is set as specified in the
input.

• The field for the time of the last msgctl() operation that changed the structure
(msg_ctime) is set as specified in the input.

Message Queue Use Between Environments
Guardian processes cannot use OSS functions for access to OSS message queues. If called from
a Guardian process, this function fails and errno is set to [ENOTOSS].

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the msgctl() function sets errno to the value that
corresponds to the condition.

[EACCES] The cmd parameter is IPC_STAT, but the calling process does not have read
permission.

[EFAULT] The msqid_ds structure associated with the message queue identifier cannot be
found.

[EINVAL] One of the following conditions exists:

• The msqid parameter does not specify a valid message queue identifier.

• The cmd parameter is not a valid command.

4−60 Hewlett-Packard Company 527186-023

System Functions (k - m) msgctl(2)

• All processes for the relevant message server have failed.

• The message queue corresponding to the value specified as the msqid
parameter has been removed from the system.

[EMSGQNOTRUNNING]
The message queue server associated with the message queue identifier is not
running.

[ENOMEM] Memory allocation failed and one possibility is that the amount of memory con-
sumed by the message queues exceeds 16GB.

[ENOTOSS] The calling process is not an OSS process. The requested operation is not sup-
ported from the Guardian environment.

[EPERM] One of the following conditions exists:

• The cmd parameter is equal to either IPC_RMID or IPC_SET, and the
calling process does not have appropriate privileges.

• The cmd parameter is equal to IPC_SET, and an attempt is being made
to increase the value of the msg_qbytes field when the effective user ID
of the calling process does not have appropriate privileges.

RELATED INFORMATION
Functions: msgget(2), msgrcv(2), msgsnd(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The IPC_SETNONFT value for the cmd parameter is supported.

• The errno values [EFAULT], [EMSGQNOTRUNNING], [ENOMEM], and [ENOTOSS]
can be returned.

527186-023 Hewlett-Packard Company 4−61

msgget(2) OSS System Calls Reference Manual

NAME
msgget - Creates or returns the identifier for a message queue

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/msg.h>

int msgget(
key_t key,
int msgflg);

PARAMETERS
key Specifies the key that identifies the message queue. The IPC_PRIVATE key can

be used to ensure the return of a new (unused) message queue identifier.

msgflg Specifies the following creation flag values:

IPC_CREAT If the key does not exist, the msgget() function creates a mes-
sage queue identifier using the given key.

IPC_CREAT | IPC_EXCL
If the key already exists, the msgget() function fails and returns
an error notification.

DESCRIPTION
The msgget() function returns the message queue identifier for the message queue identified by
the key parameter. If the key parameter already has a message queue identifier associated with it
and (msgflg & IPC_CREAT) is 0 (zero), that identifier is returned.

A new message queue identifier and its associated data structure are created when either of the
following is true:

• The value of IPC_PRIVATE is used for the key parameter.

• The key parameter does not already have a message queue identifier associated with it,
and (msgflg & IPC_CREAT) is not 0 (zero).

After creating a new message queue identifier, the msgget() function initializes the msqid_ds
structure associated with the identifier as follows:

• The msg_perm.cuid and msg_perm.uid fields are set to the effective user ID of the cal-
ling process.

• The msg_perm.cgid and msg_perm.gid fields are set to the effective group ID of the
calling process.

• The low-order nine bits of the msg_perm.mode field are set to the low-order nine bits of
msgflg.

• The msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime fields are all set to
0 (zero).

4−62 Hewlett-Packard Company 527186-023

System Functions (k - m) msgget(2)

• The msg_ctime field is set to the current time. This field is updated when any of the fol-
lowing events occur:

— The message queue identifier is created.

— The message queue identifier is removed.

• The msg_qbytes field is set to the system limit.

The message queue identifier is used for the following purposes:

• It identifies a specific message server.

• It allows detection of references to a previously removed message queue.

• It allows detection of attempts to reference message queues in other processors.

Key Creation
The key represents a user-designated name for a given message queue. Keys are usually selected
by calling the ftok() function before calling the msgget() function. The ftok() function returns a
key based on a path and an interprocess communications identifier. This key is passed to the
msgget() function, which returns a message queue identifier.

The message queue identifier is then used in calls to the msgctl(), msgrcv(), and msgsnd()
functions.

Uniqueness of Identifiers
The system recycles no-longer-used message queue identifiers after a long time elapses.

Processor or Disk Process Failures
If a processor fails and if its OSS message-queue server was running as a process pair, no queued
messages are lost. The backup server process takes over, and there are no effects on the success-
ful completion of this function.

If the OSS message-queue server was not running as a process pair when its processor failed,
queued messages are lost and the function call fails with errno set to [EINVAL]. Thereafter, a
process cannot successfully call any function using the associated message queue identifier.

Cleaning Up Message Queue Identifiers
A message queue identifier remains allocated until it is removed. An allocated message queue
identifier is not removed when the last process using it terminates. The user must remove allo-
cated message queue identifiers that are not attached to processes to avoid wasting system
resources.

The status of message queue identifiers can be checked with the ipcs command. Message queue
identifiers can be removed using the ipcrm command. The associated data structure is removed
only after the final detach operation.

Message Queue Use Between Environments
Guardian processes cannot use OSS functions for access to OSS message queues. Such a call
fails, and errno is set to [ENOTOSS].

RETURN VALUES
Upon successful completion, a message queue identifier is returned. Otherwise, the value -1 is
returned and errno is set to indicate the error.

527186-023 Hewlett-Packard Company 4−63

msgget(2) OSS System Calls Reference Manual

ERRORS
If any of the following conditions occurs, the msgget() function sets errno to the value that
corresponds to the condition.

[EACCES] A message queue identifier exists for the key parameter but operation permis-
sion, which is specified by the low-order nine bits of the msgflg parameter, is not
granted.

[EEXIST] A message queue identifier exists for the key parameter, and both IPC_CREAT
and IPC_EXCL are set.

[EFAULT] The msqid_ds structure associated with the message queue identifier cannot be
found.

[EINVAL] One of the following conditions exists:

• All processes for the relevant message server have failed.

• The message queue corresponding to the message queue identifier asso-
ciated with the key parameter has been removed from the system.

[EMSGQNOTRUNNING]
The message queue server associated with the message queue identifier is not
running.

[ENOENT] A message queue identifier does not exist for the key parameter and the
IPC_CREAT value is not set.

[ENOMEM] Memory allocation failed and one possibility is that the amount of memory con-
sumed by the message gueues exceeds 16GB.

[ENOSPC] A message queue identifier cannot be created because the system-imposed limit
on the maximum number of allowed message queue identifiers would be
exceeded.

[ENOTOSS] The calling process is not an OSS process. The requested operation cannot be
performed from the Guardian environment.

RELATED INFORMATION
Commands: ipcrm(1), ipcs(1).

Functions: ftok(3), msgctl(2), msgrcv(2), msgsnd(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EINVAL], [EMSGQNOTRUNNING], [ENOMEM], and
[ENOTOSS] can be returned.

4−64 Hewlett-Packard Company 527186-023

System Functions (k - m) msgrcv(2)

NAME
msgrcv - Receives a message from a message queue

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/msg.h>

int msgrcv(
int msqid,
void *msgp,
size_t msgsz,
long int msgtyp,
int msgflg);

PARAMETERS
msqid Specifies the identifier of the message queue from which to read a message.

msgp Specifies a pointer to the msgbuf structure that is to receive the message. (See
the NOTES section.)

msgsz Specifies the maximum number of bytes allowed for the received message.

msgtyp Specifies the message type to read from the queue.

msgflg Specifies the following actions:

• The action to be taken by the system if there are no msgtyp messages in
the queue.

• Whether to truncate the message if its length exceeds the value specified
by msgsz.

• Whether the msgp parameter is formatted for 32-bit and 64-bit interoper-
ability. (See the NOTES section for detailed information on how to use
the MSG_32BIT_MTYPE flag and msgbuf structure to allow 32-bit
and 64-bit processes to communicate using one msgbuf structure.)

DESCRIPTION
The msgrcv() function reads a message from the queue associated with the msqid parameter. It
returns the number of bytes in the received message.

The msgp parameter points to a user-defined msgbuf structure. The structure receives the mes-
sage read from the queue.

The msgsz parameter specifies the maximum size allowed for the received message. If the mes-
sage is longer than the value specified by the msgsz parameter, the system takes action based on
the use of the MSG_NOERROR flag in the msgflg parameter.

The msgtyp parameter specifies the message type that the process wants to receive. Possible
values and their results are as follows:

0 (zero) The process receives the message at the head of the queue.

> 0 (positive) The process receives the first message of the requested message type.

527186-023 Hewlett-Packard Company 4−65

msgrcv(2) OSS System Calls Reference Manual

< 0 (negative) The process receives the first message of the lowest type on the queue. To qual-
ify as the lowest type, a message’s type must be less than or equal to the absolute
value of the msgtyp parameter.

The msgflg parameter specifies actions that the system should take:

• If the IPC_NOWAIT flag is used and the queue does not contain a message of the
requested type, the function call returns immediately with the value -1 and errno is set to
[ENOMSG].

• If the IPC_NOWAIT flag is not used and the queue does not contain a message of the
requested type, the system suspends the calling process. The process remains suspended
until one of the following occurs:

— A message of the requested type appears in the queue. In this case, the system
wakes the process to receive the message.

— The specified message queue identifier is removed from the system. In this case,
the system sets errno to [EIDRM] and returns the value -1 to the calling process.

— The process catches a signal. In this case, the process does not receive the mes-
sage; instead, it resumes execution as directed by a sigaction() function call.

• If the MSG_NOERROR flag is used and the message is longer than the value specified
by the msgsz parameter, the system truncates the message to msgsz bytes and discards
the truncated portion without notifying the calling process.

• If the MSG_NOERROR flag is not used and the message is longer than the value
specified by the msgsz parameter, the system returns an errno value of [E2BIG] to the
calling process and leaves the message in the queue.

• If the MSG_32BIT_MTYPE flag is logically ORed with msgflg and the caller is a 64-bit
process, the function assumes the mtype field in the struct msgbuf pointed to by msgp is
of type int instead of type long. (See the NOTES section for detailed information on
how to use the MSG_32BIT_MTYPE flag and msgbuf structure to allow 32-bit and
64-bit processes to communicate using one msgbuf structure.)

• If the MSG_32BIT_MTYPE flag is not present, the function assumes the mtype field in
the struct msgbuf pointed to by msgp is of type long int. (The type long int is a different
size for 32-bit processes and 64-bit processes.)

Message Queue Use Between Environments
Guardian processes cannot use OSS functions to access OSS message queues. If called from a
Guardian process, the function call fails and errno is set to [ENOTOSS].

NOTES
The IPC_NOWAIT flag is defined in the sys/ipc.h header file.

The user-supplied msgbuf structure, used to store received messages, can be defined as follows:

struct msgbuf {
long int mtype;
char mtext[];

};

The mtype field is set to the message type assigned by the sender.

The mtext field is set to the message text. The message size is less than or equal to the value of
the msgsz parameter specified in the last successful call to msgrcv().

4−66 Hewlett-Packard Company 527186-023

System Functions (k - m) msgrcv(2)

However, the data type for the mtype field (long int) is a problem when 64-bit processes send
and receive messages with 32-bit processes because the length of the field varies depending on
whether the caller is a 32-bit or 64-bit process. This field is 32 bits for 32-bit processes and 64
bits for 64-bit processes.

Because the msgbuf structure is user supplied, it is the application’s responsibility to handle the
differences in data types between 32-bit and 64-bit senders and receivers. For example, suppose a
64-bit process sends a msgbuf structure that contains a 64-bit mtype field to a 32-bit process.
The 32-bit process that receives the structure does not understand how to process the message
because it expects this field to be only 32 bits long. Additionally, although the mtext field starts
at the 65th bit of the message, the 32-bit process expects the mtype field to start at the 33rd bit of
the message.

To allow interoperability between 64-bit and 32-bit processes, it is recommended that 64-bit
applications define their msgbuf structure as follows:

struct msgbuf {
int mtype;
char mtext[];

};

and that all 64-bit callers use the MSG_32BIT_MTYPE flag in the msgflg parameter for all calls
to msgrcv() and msgsnd().

RETURN VALUES
Upon successful completion, the msgrcv() function returns the number of bytes actually stored
in the mtext field. Also, the system updates the msqid_ds structure associated with the message
queue identifier as follows:

• Decrements the value in the msg_qnum field by 1.

• Decrements the value in the msg_cbytes field by the message text size.

• Sets the msg_lrpid field to the OSS process ID of the calling process.

• Sets the msg_rtime field to the current time.

When the msgrcv() function fails, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the msgrcv() function sets errno to the value that
corresponds to the condition.

[E2BIG] The number of bytes to be received in the mtext field is greater than the value of
the msgsz parameter and the MSG_NOERROR flag is used in the msgflg param-
eter.

[EACCES] The calling process does not have read permission for the specified message
queue.

[EFAULT] The msqid_ds structure associated with the message queue identifier cannot be
found.

[EIDRM] The message queue identified by the msqid parameter has been removed from
the system.

527186-023 Hewlett-Packard Company 4−67

msgrcv(2) OSS System Calls Reference Manual

[EINTR] The operation was interrupted by a signal.

[EINVAL] One of the following conditions exists:

• The msqid parameter does not specify a valid message queue identifier.

• The value of the msgsz parameter is less than 0 (zero) or greater than the
system-defined limit.

• All processes for the relevant message server have failed.

• Both MSG_32BIT_MTYPE and MSG_64BIT_MTYPE are specified
in the msgflag parameter.

[EMSGQNOTRUNNING]
The message queue server associated with the message queue identifier is not
running.

[ENOMEM] Memory allocation failed and one possibility is that the amount of memory con-
sumed by the message queues exceeds 16GB.

[ENOMSG] The queue does not contain a message of the requested type and the
IPC_NOWAIT flag is used in the msgflg parameter.

[ENOTOSS] The calling process is not an OSS process. The requested operation cannot be
performed from the Guardian environment.

RELATED INFORMATION
Functions: msgctl(2), msgget(2), msgsnd(2), sigaction(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EMSGQNOTRUNNING], [ENOMEM], and [ENOTOSS]
can be returned.

4−68 Hewlett-Packard Company 527186-023

System Functions (k - m) msgsnd(2)

NAME
msgsnd - Sends a message to a message queue

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/msg.h>

int msgsnd(
int msqid,
const void *msgp,
size_t msgsz,
int msgflg);

PARAMETERS
msqid Specifies the identifier of the message queue in which to place the message. The

identifier is typically returned by a previous call to the msgget() function.

msgp Specifies a pointer to the msgbuf structure that contains the message. (See the
NOTES section.)

msgsz Specifies the size of the data array in the msgbuf structure.

msgflg Specifies the following actions:

• The action that the system should take if either or both of the following
are true (the system runs out of internal buffer space):

— The current number of bytes in the message queue is equal to
msg_qbytes (in the msqid_ds structure).

— The total number of messages in all message queues is equal to
the system-defined limit.

• Whether the msgp parameter is formatted for 32-bit and 64-bit interoper-
ability. (See the NOTES section for detailed information on how to use
the MSG_32BIT_MTYPE flag and msgbuf structure to allow 32-bit
and 64-bit processes to communicate using one msgbuf structure.)

DESCRIPTION
The msgsnd() function sends a message to the queue associated with the msqid parameter.

The msgp parameter points to a user-defined msgbuf structure. The structure identifies the mes-
sage type and contains a data array with the message text.

The size of the data array is specified by the msgsz parameter. The msgsz value can be from 0
(zero) through a system-defined maximum.

The msgflg parameter specifies actions that the system should take:

• If the IPC_NOWAIT flag is used in the msgflg parameter and the system runs out of
internal buffer space, the system does not send the message and returns to the calling
process immediately.

527186-023 Hewlett-Packard Company 4−69

msgsnd(2) OSS System Calls Reference Manual

• If the IPC_NOWAIT flag is not used in the msgflg parameter the system runs out of
internal buffer space, the system suspends the calling process. The process remains
suspended until one of the following occurs:

— The blocking condition is removed. In this case, the system sends the message.

— The specified message queue identifier is removed from the system. In this case,
the system sets errno to [EIDRM] and returns the value -1 to the calling process.

— The process catches a signal. In this case, the message is not sent and the process
resumes execution as directed by a sigaction() function call.

• If the MSG_32BIT_MTYPE flag is logically ORed with msgflg and the caller is a 64-bit
process, the function assumes the mtype field in the struct msgbuf pointed to by msgp is
of type int instead of type long. (See the NOTES section for detailed information on
how to use the MSG_32BIT_MTYPE flag and msgbuf structure to allow 32-bit and
64-bit processes to communicate using one msgbuf structure.)

• If the MSG_32BIT_MTYPE flag is not present, the function assumes the mtype field in
the struct msgbuf pointed to by msgp is of type long int. (The type long int is a different
size for 32-bit processes and 64-bit processes.)

If the msgsnd() function finishes successfully, the system updates the msqid_ds structure associ-
ated with the msqid parameter. Specifically, it does the following:

• Increments the value in the msg_qnum field by 1.

• Increments the value in the msg_cbytes field by the message text size.

• Sets the msg_lspid field to the OSS process ID of the calling process.

• Sets the msg_stime field to the current time.

Message Queue Use Between Environments
Guardian processes cannot use OSS functions to access OSS message queues. If called from a
Guardian process, the function call fails and errno is set to [ENOTOSS].

NOTES
The IPC_NOWAIT flag is defined in the sys/ipc.h header file.

The user-supplied msgbuf structure can be defined as follows:

struct msgbuf {
long int mtype;
char mtext[];

};

The mtype field is a user-chosen positive integer that represents the message type. A receiving
process can use the message type to select only those messages it wants to receive from the
queue. (See the msgrcv(2) reference page.)

The mtext field contains any text of the length specified by the msgsz parameter.

However, the data type for the mtype field (long int) is a problem when 64-bit processes send
and receive messages with 32-bit processes because the length of the field varies depending on
whether the caller is a 32-bit or 64-bit process. This field is 32 bits for 32-bit processes and 64
bits for 64-bit processes.

Because the msgbuf structure is user supplied, it is the application’s responsibility to handle the
differences in data types between 32-bit and 64-bit senders and receivers. For example, suppose a

4−70 Hewlett-Packard Company 527186-023

System Functions (k - m) msgsnd(2)

64-bit process sends a msgbuf structure that contain a 64-bit mtype field to a 32-bit process. The
32-bit process that receives the structure does not understand how to process the message
because it expects this field to be only 32 bits long. Additionally, although the mtext field starts
at the 65th bit of the message, the 32-bit process expects the mtype field to start at the 33rd bit of
the message.

To allow interoperability between 64-bit and 32-bit processes, it is recommended that 64-bit
applications define their msgbuf structure as follows:

struct msgbuf {
int mtype;
char mtext[];

};

and that all 64-bit callers use the MSG_32BIT_MTYPE flag in the msgflg parameter for all calls
to msgrcv() and msgsnd().

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the msgsnd() function sets errno to the value that
corresponds to the condition.

[EACCES] The calling process does not have the correct access permission for the opera-
tion.

[EAGAIN] The IPC_NOWAIT flag is used in the msgflg parameter, and either the max-
imum number of message headers has been allocated or the size of the message
exceeds the amount of space currently available on the target queue.

[EFAULT] The msqid_ds structure associated with the message queue identifier cannot be
found.

[EIDRM] The message queue identified by the msqid parameter has been removed from
the system.

[EINTR] The operation was interrupted by a signal.

[EINVAL] One of the following conditions is true:

• The msqid parameter does not specify a valid message queue identifier.

• The value of the mtype field is less than 1.

• The value of the msgsz parameter is less than 0 (zero) or greater than the
value defined by the MAXMSG value in SCF.

• All processes for the relevant message server have failed.

• Both MSG_32BIT_MTYPE and MSG_64BIT_MTYPE are specified
in the msgflag parameter.

[EMSGQNOTRUNNING]
The message queue server associated with the message queue identifier is not
running.

527186-023 Hewlett-Packard Company 4−71

msgsnd(2) OSS System Calls Reference Manual

[ENOMEM] Memory allocation failed and one possibility is that the amount of memory con-
sumed by the message queues exceeds 16GB.

[ENOTOSS] The calling process is not an OSS process. The requested operation cannot be
performed from the Guardian environment.

RELATED INFORMATION
Functions: msgctl(2), msgget(2), msgrcv(2), sigaction(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EMSGQNOTRUNNING], [ENOMEM], and [ENOTOSS]
can be returned.

4−72 Hewlett-Packard Company 527186-023

Section 5. System Functions (n - p)

This section contains reference pages for Open System Services (OSS) system function
calls with names that begin with n through p. These reference pages reside in the cat2
directory and are sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 5−1

nice(2) OSS System Calls Reference Manual

NAME
nice - Changes the scheduling priority of the calling process

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series native Guardian processes: implicit libraries
H-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int nice(
int increment);

PARAMETERS
increment Specifies a value that is added to the current nice value of the calling process.

The nice value of the calling process is maintained by the system and affects the
scheduling priority of the process. Increasing the nice value lowers the schedul-
ing priority of the process. Decreasing the nice value increases the scheduling
priority of the process.

If the value specified for increment increases the nice value of the calling pro-
cess such that it exceeds the maximum value possible for nice, nice is set to its
maximum value.

A negative value can be specified for increment if the process has appropriate
privileges.

If the value specified for increment decreases the nice value of the calling pro-
cess such that it becomes less than the minimum value possible for nice, nice is
set to its minimum value.

DESCRIPTION
The nice() function increases or decreases the nice value of the calling process.

The nice value is a nonnegative number in the range 0 through (2*NZERO -1). NZERO is
defined in the limits.h header file.

The nice value is a relative value for scheduling priority among executing processes.

The nice value is an attribute of a process in both the Guardian and OSS environments. The
default value of nice for a newly created process is the value defined for NZERO in the limits.h
header file. The nice value affects scheduling priority but does not determine scheduling prior-
ity.

Use on Guardian Objects
The nice() function can only be used by a process on itself.

The Guardian priority of a process after a call to the nice() function is calculated as follows:

New Guardian priority = old Guardian priority
- (new nice value - old nice value)

which is the same as:

New Guardian priority = old Guardian priority
- ((old nice value + increment) - old nice value)

5−2 Hewlett-Packard Company 527186-023

System Functions (n - p) nice(2)

If the sum of the old nice value and the increment is

• less than 0 (zero), then the new nice value is 0 (zero).

• greater than 39, then the new nice value is 39 because the current value of 2*NZERO -1
is 39.

Refer to NOTES for a description of the relative priorities of Guardian and OSS processes.

Use From the Guardian Environment
The nice() function can be used from the Guardian environment.

NOTES
Changing the Guardian priority of a process does not affect the nice value of the process.

The nice value of a process can also be changed by a call to the Guardian procedure
PROCESS_SETINFO_. The nice value can be determined by a call to the Guardian procedure
PROCESS_GETINFOLIST_. Refer to the Guardian Procedure Calls Reference Manual for
additional information.

The nice value is not the value used by the operating system to compare scheduling priorities
among processes in all environments.

The scheduling priority for processes running in the Guardian environment is defined as increas-
ing as the priority number increases. This convention is the opposite of the convention used on
UNIX systems, where a lower priority number means a higher scheduling priority.

Processes running in the OSS environment have their scheduling priorities determined using
UNIX conventions. The OSS priority of a process after a call to the nice() function is calculated
as follows:

New OSS priority = 199 - new Guardian priority
- new nice value

which is the same as:

New OSS priority = 199 - new Guardian priority
- (old nice value + increment)

RETURN VALUES
Upon successful completion, the nice() function returns the new nice value minus the value of
NZERO. If the function call fails, the value -1 is returned, the nice value for the process is not
changed, and errno is set to indicate the error.

Because a value of -1 also can be returned by a successful completion of the function call, an
application program that needs to check for failure of the function call should set errno to 0
(zero) before calling the nice() function.

ERRORS
If the following condition occurs, nice() sets errno to the corresponding value:

[EPERM] The calling process specified a negative value for the increment parameter but
does not have appropriate privileges.

RELATED INFORMATION
Functions: execl(2), execle(2), execlp(2), execv(2), execve(2), execvp(2), fork(2),
tdm_execve(2), tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2).

527186-023 Hewlett-Packard Company 5−3

open(2) OSS System Calls Reference Manual

NAME
open - Opens a file for reading or writing; creates a regular file in the OSS environment

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h> /* optional except for POSIX.1 */
#include <fcntl.h>

int open(
const char *path,
int oflag
[, mode_t mode]);

PARAMETERS
path Points to the pathname of the file to be opened or created.

You cannot specify the files /lost+found, /dev, /dev/tty, and /dev/null for this
parameter when the O_CREAT flag is set for the oflag parameter. Attempts to
create these files cause the function call to fail and errno to be set to [EINVAL].

If the path parameter refers to a symbolic link, the open() function opens the file
pointed to by the symbolic link.

If the path parameter refers to a file in the Guardian file system (/G), additional
restrictions apply. See the subsection Opening Guardian Files in the
DESCRIPTION section of this reference page for more information.

oflag Specifies the type of access, special open processing, the type of update, and the
initial state of the open file. The parameter value is constructed by logically
ORing special open processing flags. These flags are defined in the fcntl.h
header file and are described in DESCRIPTION.

mode Specifies the read, write, and execute permissions of the file and the file type
flags for the file.

This parameter is required if the file does not exist and the O_CREAT flag is set
in the oflag parameter. If the file already exists and O_CREAT is set, this
parameter is required and must have a valid value, but this parameter has no
effect on the file (you cannot use this parameter to change the permissions of the
file).

If this parameter is specified when values other than O_CREAT are used in the
oflag parameter, the values specified for mode have no effect on whether the file
is opened for reading or writing.

The value of this parameter is constructed by logically ORing flags that are
defined in the sys/stat.h header file.

If the parent directory of the created file does not have default OSS access con-
trol list (ACL) entries, the permissions for the new file are the bit-wise AND of
this mode parameter with the complement of the process umask (see the
umask(2) reference page). If the parent directory of the created file has default
ACL entries, the permissions for the new file are affected by the value of this
parameter but depend on both the support for OSS ACLs on the system on which

5−4 Hewlett-Packard Company 527186-023

System Functions (n - p) open(2)

this process is running and on the fileset that contains the new directory. See
"ACL Inheritance" in the acl(5) reference page.

If a file opened for writing has file privileges such as PRIVSOARFOPEN or
PRIVSETID, these file privileges are removed. Only Members of Safeguard
SECURITY-PRV-ADMINISTRATOR (SEC-PRIV-ADMIN or SPA) group are
permitted to explicitly set file privileges. File privileges can be set using the
setfilepriv() function or the setfilepriv command only. See also "Considerations
for Restricted-Access Filesets."

The file type flags are described in DESCRIPTION.

DESCRIPTION
This function can open:

• OSS files up to a size limit of approximately 2 gigabytes

• Guardian Format 1 files up to a size limit of approximately 2 gigabytes

• Guardian Format 2 files up to a size limit of approximately 2 gigabytes

For information about opening larger files, see the open64(2) reference page.

The open() function establishes a connection between the file indicated by the path parameter
and the returned file descriptor. Subsequent I/O function calls, such as read() and write(), use
the opened file descriptor to access that file.

The returned file descriptor is the lowest-numbered file descriptor not currently open for that pro-
cess. A corresponding Guardian environment file number is also assigned.

The file offset, marking the current position within the file, is set to the beginning of the file. The
new file descriptor is set to remain open across the processing of any of the exec or tdm_exec set
of functions. (See the fcntl(2) reference page.)

The file status flags and file access flags are designated by the oflag parameter. The oflag parame-
ter is constructed by a bitwise-inclusive-OR of exactly one of the file access flags (O_RDONLY,
O_WRONLY, or O_RDWR) with one or more of the file status flags.

You cannot use the open() function to create a First-in, First-out (FIFO) special file. Use the
mkfifo() function instead.

File Access Flags
The file access flags are:

O_RDONLY The file is open only for reading.

O_WRONLY The file is open only for writing.

O_RDWR The file is open for reading and writing.

You must specify exactly one of the file access flags.

527186-023 Hewlett-Packard Company 5−5

open(2) OSS System Calls Reference Manual

File Status Flags
The file status flags that specify special open processing are:

O_CREAT Create and open the file. If the file exists, this flag has no effect except as noted
under the O_EXCL flag. If the file does not exist, a regular file is created with
these characteristics:

• If access control lists (ACLs) are supported, ACL entries are added to
the file ACL as described in "ACL Inheritance" in the acl(5) reference
page.

• The owner ID of the file is set to the effective user ID of the process.

• The group ID of the file is determined by the value of the S_ISGID flag
in the parent directory. If S_ISGID is set, the group ID of the file is set to
the group ID of the parent directory; otherwise, the group ID of the file is
set to the effective group ID of the calling process. If the file is a Guar-
dian file (that is, within /G), the group ID is set to that of the primary
group of the effective user ID.

• The file permission and attribute bits are set to the value of the mode
parameter, modified as listed:

— The file permission bits are set as described in "ACL Inheri-
tance" in the acl(5) reference page.

— The set user ID attribute (S_ISUID bit) is cleared.

— The set group ID attribute (S_ISGID bit) is cleared.

If bits other than the file permission and appropriate file-type bits are set
in the mode parameter, errno is set to [EINVAL].

O_EXCL Open the file in exclusive access mode.

If the file exists and the O_EXCL and O_CREAT flags are set, the open fails. If
the file exists and the O_EXCL flag is set and the O_CREAT flag is not set, the
open succeeds.

O_NOCTTY Open the file but not as a controlling terminal. If the path parameter identifies a
terminal device, this flag ensures that the terminal device does not become the
controlling terminal for the process.

When opening a file that is not a terminal device, the O_NOCTTY flag is
ignored.

O_TRUNC Open the file and empty it. If the file does not exist or if the file is not a regular
file, this flag has no effect. If the file exists and is a regular file, and if the file is
successfully opened with either read/write access or write-only access:

• The length of the file is truncated to 0 (zero).

• The owner and group of the file are unchanged.

• The set user ID attribute of the file mode is cleared.

5−6 Hewlett-Packard Company 527186-023

System Functions (n - p) open(2)

The open fails if any of these conditions is true:

• The file supports enforced record locks, and another process has locked a
portion of the file.

• The file does not allow write access.

• The oflag parameter also specifies the O_RDONLY flag.

If the oflag parameter also specifies the O_SYNC flag, the truncation is a syn-
chronous update.

A program can request some control over when updates should be made per-
manent for a regular file opened for write access.

The file status flags that define the initial state of the open file are:

O_APPEND Open the file only for append access. If set, the file pointer is set to the end of
the file before each write.

This flag is ignored for Telserv terminal devices.

O_NONBLOCK
Open the file for nonblocked access. If set, the call to open() does not block,
and subsequent read() or write() operations on the file are nonblocking.

When opening a regular disk file or an OSS directory, the O_NONBLOCK flag
is ignored.

Calling the open() function with the O_NONBLOCK flag for FIFO files and for
character special devices that support nonblocking opens is supported.

Calling the open() function with the O_NONBLOCK flag is supported for Tel-
serv terminal devices (tty) as listed:

• For a static window, the open operation is always allowed; it finishes
when the connection is established.

• For a dynamic window, the open operation is allowed only if a connec-
tion is already established.

Calling the open() function with the O_NONBLOCK flag is supported for
OSSTTY terminal devices (ztty). OSSTTY devices support only three static
windows, one each for #stdin, #stdout, and #stderr.

O_SYNC The O_SYNC flag provides a high level of data integrity for writes to regular
files. For HP NonStop systems, you can use the OSS Monitor to select one of
multiple levels of fault tolerance. For more information, see the discussion of the
FTIOMODE attribute in the Open System Services Management and Operations
Guide.

General Notes on oflag Parameter Flag Values
The effect of setting the O_CREAT flag is immediate.

When opening a file with the O_CREAT flag set:

• If the named file does not already exist, a regular disk file is created.

527186-023 Hewlett-Packard Company 5−7

open(2) OSS System Calls Reference Manual

• If the named file is not a regular file, the O_CREAT flag is ignored.

When opening a FIFO file with the O_RDONLY flag set:

• If the O_NONBLOCK flag is not set, the open() function blocks until another process
opens the file for writing. If the file is already open for writing (even by the calling pro-
cess), the function returns without delay.

• If the O_NONBLOCK flag is set, the open() function returns immediately.

When opening a FIFO file with the O_WRONLY flag set:

• If the O_NONBLOCK flag is not set, the open() function blocks until another process
opens the file for reading. If the file is already open for reading (even by the calling pro-
cess), the function returns without delay.

• If the O_NONBLOCK flag is set, the open() function returns an error if no process
currently has the file open for reading.

The O_RDWR file access flag is supported when opening a FIFO file; the call to the open()
function finishes immediately, even if the O_NONBLOCK flag is not set.

When opening a character special file that supports nonblocking opens, such as a terminal dev-
ice:

• If the O_NONBLOCK flag is not set, the open() function blocks until the device is
ready or available.

• If the O_NONBLOCK flag is set, the open() function returns without waiting for the
device to be ready or available. Subsequent behavior of the device is device-specific.

When opening a directory, the open fails, and errno is set to [EISDIR], if either of these condi-
tions is true:

• The directory is /E or /G (the Guardian file system) or a directory within /G.

• The directory is not /E or /G and is not within /E or /G, and the file access flag is either
O_WRONLY or O_RDWR.

File Type Flags
The file type flags that can be logically ORed into the value specified in the mode parameter are:

S_IFREG Regular file in the OSS file system or in /G, the Guardian file system.

S_ISVTX Sticky bit; used only for directories (cannot be used for files in /G, the Guardian
file system).

S_NONSTOP S_NONSTOP is an alias for O_SYNC.

5−8 Hewlett-Packard Company 527186-023

System Functions (n - p) open(2)

Opening Guardian Files
If the file is a Guardian file (that is, if it is in the /G file system):

• The file can be opened only if it is:

— A Format 1 file or a Format 2 file that is smaller than 2 gigabytes, on a physical
disk volume, and either:

— An odd, unstructured Enscribe file. In this case, it is opened as a regular
file with a primary and secondary extent size that is a multiple of 2. If
the extent size is odd, the open fails.

If the unstructured buffer size was not 4096, a successful open makes the
buffer size 4096 (as if the Guardian procedure SETMODE was called for
mode 93 with a parameter value of 4096).

— An EDIT file (file code 101). In this case, it is opened as a regular file
for read-only access.

— A Telserv or OSSTTY terminal process.

You cannot use the open() function on any other type of Guardian object. An attempt to
open:

— A Format 2 file that is larger than approximately 2 gigabytes fails with errno set
to [EOVERFLOW].

— A structured file fails with errno set, usually to [EINVAL].

— A file administered through the Storage Management Foundation (SMF) fails
with errno set to [ENOTSUP].

— Any file or device of any other type not described here fails with errno set, usu-
ally to [EINVAL].

An attempt to open a volume, a subvolume, or a process other than a TTY simulation
process (/G/vol, /G/vol/subvol, or /G/process, respectively) fails with errno set to [EIS-
DIR].

• An attempt to open a subvolume with a reserved name beginning with ZYQ (for exam-
ple, /G/vol2/zyq00004) fails with errno set to [EACCES].

• An attempt to open a file within a subvolume with a reserved name beginning with ZYQ
(for example, /G/vol2/zyq00004/z000002x) fails with errno set to [EACCES].

• If the file is not an EDIT file (that is, the file code is not 101), it is opened in shared
exclusion mode.

• If the file is an EDIT file and read-only access is specified, the file is opened in protected
exclusion mode in the Guardian environment.

• If the file is an EDIT file and write access is specified, the call fails with errno set to
[EINVAL].

• The sysconf() function reports the maximum number of opens as the upper limit of
opens per process. The actual limit depends on other factors, such as the size of the pro-
cess file segment (PFS) and the number of existing opens on directories or on files in the
Guardian environment.

527186-023 Hewlett-Packard Company 5−9

open(2) OSS System Calls Reference Manual

• If the open requires file creation, the Guardian file created will be Format 1, odd, unstruc-
tured, and file code 180.

• If the open requires file creation, the file is given access permissions compatible with the
standard security permissions for the Guardian creator access ID (CAID) of the calling
process.

During open() processing, all access permissions are checked. This includes Guardian environ-
ment checks by Guardian standard security mechanisms (and by the Safeguard product) for
Guardian disk file and process access.

Considerations for Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID.

Executable files that have the PRIVSETID file privilege and that are started by super ID can per-
form privileged switch ID operations (such as by using the setuid() function) to switch to
another ID and then access files in restricted-access filesets as that ID. Executable files without
the PRIVSETID file privilege that perform privileged switch ID operations are unconditionally
denied access to restricted-access filesets.

Executable files that have the PRIVSOARFOPEN privilege and that are started by a member of
the Safeguard SECURITY-OSS-ADMINISTRATOR (SOA) group have the appropriate privilege
to use this function on any file in a restricted-access fileset. Network File System (NFS) clients
are not granted SOA group privileges, even if these clients are accessing the system with a user
ID that is a member of the SOA security group.

If a file opened for writing has file privileges such as PRIVSOARFOPEN or PRIVSETID, these
file privileges are removed. Only Members of Safeguard SECURITY-PRV-ADMINISTRATOR
(SEC-PRIV-ADMIN or SPA) group are permitted to explicitly set file privileges. File privileges
can be set using the setfilepriv() function or the setfilepriv command only.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use From the Guardian Environment
A call to the open() function in the Guardian environment requires an OSS pathname and returns
an OSS file-system file descriptor, regardless of the file system containing the file.

The open() function belongs to a set of functions that have these effects when the first of them is
called from the Guardian environment:

• Two Guardian file-system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. You cannot close these file
numbers by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

5−10 Hewlett-Packard Company 527186-023

System Functions (n - p) open(2)

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the function returns the file descriptor, a nonnegative integer. Oth-
erwise, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the function sets errno to the corresponding value:

[EACCES] One of these conditions exists:

• Search permission is denied on a component of the pathname prefix.

• The type of access specified by the oflag parameter is denied for the
named file.

• The file does not exist, and write permission is denied for the parent
directory.

• The O_TRUNC flag is specified, and write permission is denied.

• The process attempted to open a Guardian subvolume with a reserved
name beginning with ZYQ or a file within such a subvolume.

• The process attempted to open a static Telserv window that is not yet
connected.

[EEXIST] The O_CREAT and O_EXCL flags are set, and the named file exists.

[EFAULT] The path parameter is an invalid address.

[EFILEBAD] One of these conditions exists:

• The function call attempted to open a Guardian EDIT file, but the struc-
ture of the file is bad.

• The function call attempted to open a Guardian EDIT file, but the cor-
rupted flag is set in the file label.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EGUARDIANOPEN]
The function call attempted to open a Guardian EDIT file for write access or for
Guardian shared or exclusive exclusion access, but the file has already been
opened with a Guardian procedure call.

[EINTR] A signal was caught during the open operation. This value is returned only for
character special files (terminal devices) and for FIFO special files.

[EINVAL] One of these conditions exists:

• The call attempted to create a directory named lost+found in the root
directory of an OSS fileset, or it attempted to create a directory named
/dev, /dev/tty, or /dev/null in the root directory of the OSS file system.

527186-023 Hewlett-Packard Company 5−11

open(2) OSS System Calls Reference Manual

• The function call specified the O_CREAT flag but did not specify the
mode parameter.

• The O_CREAT flag is set and bits other than the file permission and
appropriate file type flags are set in the mode parameter.

• Both the O_TRUNC flag and O_RDONLY flag are set.

• None of the access flags O_RDONLY, O_WRONLY, or O_RDWR are
set.

• The function call attempted to create a Guardian file (that is, a file in the
/G file system), but the pathname cannot be mapped to a valid Guardian
filename.

• The function call attempted to open a Guardian file of a type other than
those permitted.

• The function call attempted to create a Guardian temporary file.

[EIO] A physical input or output error occurred. The device where the file is stored
might be in the down state, or both processors that provide access to the device
might have failed.

Data might have been lost during transfer.

[EISDIR] One of these conditions exists:

• The named file is an OSS directory, and write access is requested.

• The named file is a Guardian directory (/G or a directory in the /G file
system).

[ELOOP] Too many symbolic links were encountered in translating the path parameter.

[EMFILE] The system limit for open file descriptors per process has reached the maximum
permitted.

[ENAMETOOLONG]
One of these names is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

You can call the pathconf() function to obtain the applicable limits.

[ENETDOWN]
The call was blocked during access to a FIFO, and communication has been lost
with the remote node containing the other end of the FIFO.

[ENFILE] One of these conditions exists:

• The maximum number of file descriptors of this file type (socket, pipe,
etc.) for this processor are already open.

5−12 Hewlett-Packard Company 527186-023

System Functions (n - p) open(2)

• The limit for open file descriptors of this file type has not been exceeded,
but the maximum number of all file descriptors for this processor are
already open.

[ENOENT] One of these conditions exists:

• The O_CREAT flag is not set, and the named file does not exist.

• O_CREAT is set, and the pathname prefix does not exist.

• The path parameter points to an empty string.

• The function call attempted to open a file in the Guardian file system, but
the specified pathname cannot be mapped to a valid Guardian filename.

• The path parameter points to a file on a remote HP NonStop node, but
communication with the remote node has been lost.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node, and communication
with the remote name server has been lost.

[ENOSPC] The directory that would contain the new file cannot be extended, the file does
not exist, and the O_CREAT flag is set.

[ENOTDIR] A component of the pathname prefix is not a directory.

[ENOTSUP] The path parameter specifies a Guardian file on an SMF logical volume and one
of the following conditions exists:

• The local system is running an RVU prior to J06.15 or H06.26.

• The path parameter specifies a file in /E and the remote system is run-
ning an RVU prior to J06.15 or H06.26.

[ENXIO] One of these conditions exists:

• The named file is a character special file, and the device associated with
this special file does not exist.

• The O_NONBLOCK flag is set, the named file is a FIFO file, the
O_WRONLY flag is set, and no process has the file open for reading.

• The fileset containing the client’s current working directory or root
directory is not mounted.

[EOPNOTSUPP]
The named file is a socket bound to the file system (not an AF_INET or
AF_INET6 socket) and cannot be opened.

527186-023 Hewlett-Packard Company 5−13

open(2) OSS System Calls Reference Manual

[EOSSNOTRUNNING]
A required system process is not running.

[EOVERFLOW]
The file size is larger than approximately 2 gigabytes.

[EPERM] One of these conditions exists:

• The function call attempted to create a file named lost+found in the root
directory of an OSS fileset.

• The call attempted to create a file in /E.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The named file resides on a read-only fileset, and write access is required.

[ETXTBSY] The file is being executed, and the oflag value is O_WRONLY or O_RDWR.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), close(2), creat(2), creat64(2), fcntl(2), lseek(2), lseek64(2),
mknod(2), open64(2), read(2), stat(2), stat64(2), umask(2), write(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• The O_RDWR flag is supported for FIFO files.

• The group ID of the new file is determined by the value of the O_ISGID flag in the
parent directory.

• The O_NONBLOCK flag is ignored for regular disk files and directory files.

• The O_NOCTTY flag is ignored for regular disk files and directory files.

• The O_CREAT flag is ignored for FIFOs and tty files.

• If the O_CREAT flag is specified and bits other than the file permission and appropriate
file type flags are set in the mode parameter, errno is set to [EINVAL].

• If the O_TRUNC flag is specified and the O_RDONLY access flag is specified, the open
fails.

• The O_TRUNC flag is ignored for files other than regular files.

• Attempting to open an OSS directory with an access flag of O_WRONLY or O_RDWR
fails.

5−14 Hewlett-Packard Company 527186-023

System Functions (n - p) open(2)

• Specifying the O_NONBLOCK flag when opening character special devices that sup-
port nonblocking opens is supported.

HP extensions to the XPG4 Version 2 specification are:

• Opening Guardian files (that is, files in the /G file system) is supported, as described
under Opening Guardian Files in DESCRIPTION.

• Access control lists (ACLs) for OSS files are supported.

• The errno values [EFAULT], [EFILEBAD], [EFSBAD], [EGUARDIANOPEN], [EIO],
[ELOOP], [ENETDOWN], [ENOTSUP], [EOSSNOTRUNNING], and [EPERM] can be
returned.

527186-023 Hewlett-Packard Company 5−15

open64(2) OSS System Calls Reference Manual

NAME
open64 - Opens a file for reading or writing; creates a regular file in the OSS environment

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h> /* optional except for POSIX.1 */
#include <fcntl.h>

int open64(
const char *path,
int oflag
[, mode_t mode]);

PARAMETERS
path Points to the pathname of the file to be opened or created.

You cannot specify the files /lost+found, /dev, /dev/tty, and /dev/null for this
parameter when the O_CREAT flag is set for the oflag parameter. Attempts to
create these files cause the function call to fail and errno to be set to [EINVAL].

If the path parameter refers to a symbolic link, the open64() function opens the
file pointed to by the symbolic link.

If the path parameter refers to a file in the Guardian file system (/G), additional
restrictions apply. See the subsection Opening Guardian Files in the
DESCRIPTION section of this reference page for more information.

oflag Specifies the type of access, special open processing, the type of update, and the
initial state of the open file. The parameter value is constructed by logically
ORing special open processing flags. These flags are defined in the fcntl.h
header file and are described in DESCRIPTION.

mode Specifies the read, write, and execute permissions of the file and the file type
flags for the file.

This parameter is required if the file does not exist and the O_CREAT flag is set
in the oflag parameter. If the file already exists and O_CREAT is set, this
parameter is required and must have a valid value, but this parameter has no
effect on the file (you cannot use this parameter to change the permissions of the
file).

If this parameter is specified when values other than O_CREAT are used in the
oflag parameter, the values specified for mode have no effect on whether the file
is opened for reading or writing.

The value of this parameter is constructed by logically ORing flags that are
defined in the sys/stat.h header file. If the parent directory of the created file
does not have default OSS access control list (ACL) entries, the permissions for
the new file are the bit-wise AND of this mode parameter with the complement
of the process umask (see the umask(2) reference page). If the parent directory
of the created file has default ACL entries, the permissions for the new file are
affected by the value of this parameter but depend on both the support for OSS
ACLs on the system on which this process is running and on the fileset that con-
tains the new directory. See "ACL Inheritance" in the acl(5) reference page.

5−16 Hewlett-Packard Company 527186-023

System Functions (n - p) open64(2)

The file type flags are described in DESCRIPTION.

DESCRIPTION
The open64() function is similar to the open() function except that, in addition to supporting
smaller files, the open64() function supports:

• OSS files larger than approximately 2 gigabytes, up to a limit of approximately 1 terabyte
(constrained by the space available on the disk volume)

• Both Guardian Format 1 and Guardian Format 2 files, up to the limit described in the
Open System Services Management and Operations Guide

An application can explicitly call this function when you compile the applicaton using the
#define _LARGEFILE64_SOURCE 1 feature test macro or an equivalent compiler command
option.

An application call to creat() is automatically mapped to this function when you compile the
application using the #define _FILE_OFFSET_BITS 64 feature test macro or an equivalent
compiler command option.

The open64() function establishes a connection between the file indicated by the path parameter
and the returned file descriptor. Subsequent I/O function calls, such as read() and write(), use
the opened file descriptor to access that file.

The returned file descriptor is the lowest-numbered file descriptor not currently open for that pro-
cess. A corresponding Guardian environment file number is also assigned.

The file offset, marking the current position within the file, is set to the beginning of the file. The
new file descriptor is set to remain open across the processing of any of the exec or tdm_exec set
of functions. (See the fcntl(2) reference page.)

The file status flags and file access flags are designated by the oflag parameter. The oflag parame-
ter is constructed by a bitwise-inclusive-OR of exactly one of the file access flags (O_RDONLY,
O_WRONLY, or O_RDWR) with one or more of the file status flags.

You cannot use the open64() function to create a First-in, First-out (FIFO) special file. Use the
mkfifo() function instead.

File Access Flags
The file access flags are:

O_RDONLY The file is open only for reading.

O_WRONLY The file is open only for writing.

O_RDWR The file is open for reading and writing.

You must specify exactly one of the file access flags.

527186-023 Hewlett-Packard Company 5−17

open64(2) OSS System Calls Reference Manual

File Status Flags
The file status flags that specify special open processing are:

O_CREAT Create and open the file. If the file exists, this flag has no effect except as noted
under the O_EXCL flag. If the file does not exist, a regular file is created with
these characteristics:

• If access control lists (ACLs) are supported, ACL entries are added to
the file ACL as described in "ACL Inheritance" in the acl(5) reference
page.

• The owner ID of the file is set to the effective user ID of the process.

• The group ID of the file is determined by the value of the S_ISGID flag
in the parent directory. If S_ISGID is set, the group ID of the file is set to
the group ID of the parent directory; otherwise, the group ID of the file is
set to the effective group ID of the calling process. If the file is a Guar-
dian file (that is, within /G), the group ID is set to that of the primary
group of the effective user ID.

• The file permission and attribute bits are set to the value of the mode
parameter, modified as listed:

— The file permission bits are set as described in "ACL Inheri-
tance" in the acl(5) reference page.

— The set user ID attribute (S_ISUID bit) is cleared.

— The set group ID attribute (S_ISGID bit) is cleared.

If bits other than the file permission and appropriate file-type bits are set
in the mode parameter, errno is set to [EINVAL].

O_EXCL Open the file in exclusive access mode.

If the file exists and the O_EXCL and O_CREAT flags are set, the open fails. If
the file exists and the O_EXCL flag is set and the O_CREAT flag is not set, the
open succeeds.

O_NOCTTY Open the file but not as a controlling terminal. If the path parameter identifies a
terminal device, this flag ensures that the terminal device does not become the
controlling terminal for the process.

When opening a file that is not a terminal device, the O_NOCTTY flag is
ignored.

O_TRUNC Open the file and empty it. If the file does not exist or if the file is not a regular
file, this flag has no effect. If the file exists and is a regular file, and if the file is
successfully opened with either read/write access or write-only access:

• The length of the file is truncated to 0 (zero).

• The owner and group of the file are unchanged.

• The set user ID attribute of the file mode is cleared.

5−18 Hewlett-Packard Company 527186-023

System Functions (n - p) open64(2)

The open fails if any of these conditions is true:

• The file supports enforced record locks, and another process has locked a
portion of the file.

• The file does not allow write access.

• The oflag parameter also specifies the O_RDONLY flag.

If the oflag parameter also specifies the O_SYNC flag, the truncation is a syn-
chronous update.

A program can request some control over when updates should be made per-
manent for a regular file opened for write access.

The file status flags that define the initial state of the open file are:

O_APPEND Open the file only for append access. If set, the file pointer is set to the end of
the file before each write.

This flag is ignored for Telserv terminal devices.

O_NONBLOCK
Open the file for nonblocked access. If set, the call to open64() does not block,
and subsequent read() or write() operations on the file are nonblocking.

When opening a regular disk file or an OSS directory, the O_NONBLOCK flag
is ignored.

Calling the open64() function with the O_NONBLOCK flag for FIFO files and
for character special devices that support nonblocking opens is supported.

Calling the open64() function with the O_NONBLOCK flag is supported for
Telserv terminal devices (tty) as listed:

• For a static window, the open operation is always allowed; it finishes
when the connection is established.

• For a dynamic window, the open operation is allowed only if a connec-
tion is already established.

Calling the open64() function with the O_NONBLOCK flag is supported for
OSSTTY terminal devices (ztty). OSSTTY devices support only three static
windows, one each for #stdin, #stdout, and #stderr.

O_SYNC The O_SYNC flag provides a high level of data integrity for writes to regular
files. For HP NonStop systems, you can use the OSS Monitor to select one of
multiple levels of fault tolerance. For more information, see the discussion of the
FTIOMODE attribute in the Open System Services Management and Operations
Guide.

General Notes on oflag Parameter Flag Values

527186-023 Hewlett-Packard Company 5−19

open64(2) OSS System Calls Reference Manual

The effect of setting the O_CREAT flag is immediate.

When opening a file with the O_CREAT flag set:

• If the named file does not already exist, a regular disk file is created.

• If the named file is not a regular file, the O_CREAT flag is ignored.

When opening a FIFO file with the O_RDONLY flag set:

• If the O_NONBLOCK flag is not set, the open64() function blocks until another process
opens the file for writing. If the file is already open for writing (even by the calling pro-
cess), the function returns without delay.

• If the O_NONBLOCK flag is set, the open64() function returns immediately.

When opening a FIFO file with the O_WRONLY flag set:

• If the O_NONBLOCK flag is not set, the open64() function blocks until another process
opens the file for reading. If the file is already open for reading (even by the calling pro-
cess), the function returns without delay.

• If the O_NONBLOCK flag is set, the open64() function returns an error if no process
currently has the file open for reading.

The O_RDWR file access flag is supported when opening a FIFO file; the call to the open64()
function finishes immediately, even if the O_NONBLOCK flag is not set.

When opening a character special file that supports nonblocking opens, such as a terminal dev-
ice:

• If the O_NONBLOCK flag is not set, the open64() function blocks until the device is
ready or available.

• If the O_NONBLOCK flag is set, the open64() function returns without waiting for the
device to be ready or available. Subsequent behavior of the device is device-specific.

When opening a directory, the open fails, and errno is set to [EISDIR], if either of these condi-
tions is true:

• The directory is /E or /G (the Guardian file system) or a directory within /G.

• The directory is not /E or /G and is not within /E or /G, and the file access flag is either
O_WRONLY or O_RDWR.

File Type Flags
The file type flags that can be logically ORed into the value specified in the mode parameter are:

S_IFREG Regular file in the OSS file system or in /G, the Guardian file system.

S_ISVTX Sticky bit; used only for directories (cannot be used for files in /G, the Guardian
file system).

S_NONSTOP S_NONSTOP is an alias for O_SYNC.

5−20 Hewlett-Packard Company 527186-023

System Functions (n - p) open64(2)

Opening Guardian Files
If the file is a Guardian file (that is, if it is in the /G file system):

• The file can be opened only if it is:

— A file on a physical disk volume and either:

— An odd, unstructured Enscribe file. In this case, it is opened as a regular
file with a primary and secondary extent size that is a multiple of 2. If
the extent size is odd, the open fails.

If the unstructured buffer size was not 4096, a successful open makes the
buffer size 4096 (as if the Guardian procedure SETMODE was called for
mode 93 with a parameter value of 4096).

— An EDIT file (file code 101). In this case, it is opened as a regular file
for read-only access.

— A Telserv or OSSTTY terminal process.

You cannot use the open64() function on any other type of Guardian object. An attempt
to open:

— A structured file fails with errno set, usually to [EINVAL].

— A file administered through the Storage Management Foundation (SMF) fails
with errno set to [ENOTSUP].

— Any file or device of any other type not described here fails with errno set, usu-
ally to [EINVAL].

An attempt to open a volume, a subvolume, or a process other than a TTY simulation
process (/G/vol, /G/vol/subvol, or /G/process, respectively) fails with errno set to [EIS-
DIR].

• An attempt to open a subvolume with a reserved name beginning with ZYQ (for exam-
ple, /G/vol2/zyq00004) fails with errno set to [EACCES].

• An attempt to open a file within a subvolume with a reserved name beginning with ZYQ
(for example, /G/vol2/zyq00004/z000002x) fails with errno set to [EACCES].

• If the file is not an EDIT file (that is, the file code is not 101), it is opened in shared
exclusion mode.

• If the file is an EDIT file and read-only access is specified, the file is opened in protected
exclusion mode in the Guardian environment.

• If the file is an EDIT file and write access is specified, the call fails with errno set to
[EINVAL].

• The sysconf() function reports the maximum number of opens as the upper limit of
opens per process. The actual limit depends on other factors, such as the size of the pro-
cess file segment (PFS) and the number of existing opens on directories or on files in the
Guardian environment.

• If the open requires file creation, the Guardian file created will be Format 2, odd, unstruc-
tured, and file code 180.

• If the open requires file creation, the Guardian file created is given access permissions
compatible with the standard security permissions for the Guardian creator access ID

527186-023 Hewlett-Packard Company 5−21

open64(2) OSS System Calls Reference Manual

(CAID) of the calling process.

During open64() processing, all access permissions are checked. This includes Guardian
environment checks by Guardian standard security mechanisms (and by the Safeguard product)
for Guardian disk file and process access.

Considerations for Restricted-Access Filesets
See the open(2) reference page.

Use From the Guardian Environment
A call to the open64() function in the Guardian environment requires an OSS pathname and
returns an OSS file-system file descriptor, regardless of the file system containing the file.

The open64() function belongs to a set of functions that have these effects when the first of them
is called from the Guardian environment:

• Two Guardian file-system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. You cannot close these
file numbers by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the function returns the file descriptor, a nonnegative integer. Oth-
erwise, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the function sets errno to the corresponding value:

[EACCES] One of these conditions exists:

• Search permission is denied on a component of the pathname prefix.

• The type of access specified by the oflag parameter is denied for the
named file.

• The file does not exist, and write permission is denied for the parent
directory.

• The O_TRUNC flag is specified, and write permission is denied.

• The process attempted to open a Guardian subvolume with a reserved
name beginning with ZYQ or a file within such a subvolume.

• The process attempted to open a static Telserv window that is not yet
connected.

5−22 Hewlett-Packard Company 527186-023

System Functions (n - p) open64(2)

[EEXIST] The O_CREAT and O_EXCL flags are set, and the named file exists.

[EFAULT] The path parameter is an invalid address.

[EFILEBAD] One of these conditions exists:

• The function call attempted to open a Guardian EDIT file, but the struc-
ture of the file is bad.

• The function call attempted to open a Guardian EDIT file, but the cor-
rupted flag is set in the file label.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EGUARDIANOPEN]
The function call attempted to open a Guardian EDIT file for write access or for
Guardian shared or exclusive exclusion access, but the file has already been
opened with a Guardian procedure call.

[EINTR] A signal was caught during the open operation. This value is returned only for
character special files (terminal devices) and for FIFO special files.

[EINVAL] One of these conditions exists:

• The call attempted to create a directory named lost+found in the root
directory of an OSS fileset, or it attempted to create a directory named
/dev, /dev/tty, or /dev/null in the root directory of the OSS file system.

• The function call specified the O_CREAT flag but did not specify the
mode parameter.

• The O_CREAT flag is set and bits other than the file permission and
appropriate file type flags are set in the mode parameter.

• Both the O_TRUNC flag and O_RDONLY flag are set.

• None of the access flags O_RDONLY, O_WRONLY, or O_RDWR are
set.

• The function call attempted to create a Guardian file (that is, a file in the
/G file system), but the pathname cannot be mapped to a valid Guardian
filename.

• The function call attempted to open a Guardian file of a type other than
those permitted.

• The function call attempted to create a Guardian temporary file.

[EIO] A physical input or output error occurred. The device where the file is stored
might be in the down state, or both processors that provide access to the device
might have failed.

Data might have been lost during transfer.

[EISDIR] One of these conditions exists:

• The named file is an OSS directory, and write access is requested.

527186-023 Hewlett-Packard Company 5−23

open64(2) OSS System Calls Reference Manual

• The named file is a Guardian directory (/G or a directory in the /G file
system).

[ELOOP] Too many symbolic links were encountered in translating the path parameter.

[EMFILE] The system limit for open file descriptors per process has reached the maximum
permitted.

[ENAMETOOLONG]
One of these names is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

You can call the pathconf() function to obtain the applicable limits.

[ENETDOWN]
The call was blocked during access to a FIFO, and communication has been lost
with the remote node containing the other end of the FIFO.

[ENFILE] One of these conditions exists:

• The maximum number of file descriptors of this file type (socket, pipe,
etc.) for this processor are already open.

• The limit for open file descriptors of this file type has not been exceeded,
but the maximum number of all file descriptors for this processor are
already open.

[ENOENT] One of these conditions exists:

• The O_CREAT flag is not set, and the named file does not exist.

• O_CREAT is set, and the pathname prefix does not exist.

• The path parameter points to an empty string.

• The function call attempted to open a file in the Guardian file system, but
the specified pathname cannot be mapped to a valid Guardian filename.

• The path parameter points to a file on a remote HP NonStop node, but
communication with the remote node has been lost.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node, and communication
with the remote name server has been lost.

5−24 Hewlett-Packard Company 527186-023

System Functions (n - p) open64(2)

[ENOSPC] The directory that would contain the new file cannot be extended, the file does
not exist, and the O_CREAT flag is set.

[ENOTDIR] A component of the pathname prefix is not a directory.

[ENOTSUP] The path parameter specifies a Guardian file on an SMF logical volume and one
of the following conditions exists:

• The local system is running an RVU prior to J06.15 or H06.26.

• The path parameter specifies a file in /E and the remote system is run-
ning an RVU prior to J06.15 or H06.26.

[ENXIO] One of these conditions exists:

• The named file is a character special file, and the device associated with
this special file does not exist.

• The O_NONBLOCK flag is set, the named file is a FIFO file, the
O_WRONLY flag is set, and no process has the file open for reading.

• The fileset containing the client’s current working directory or root
directory is not mounted.

[EOPNOTSUPP]
The named file is a socket bound to the file system (not an AF_INET or
AF_INET6 socket) and cannot be opened.

[EOSSNOTRUNNING]
A required system process is not running.

[EPERM] One of these conditions exists:

• The function call attempted to create a file named lost+found in the root
directory of an OSS fileset.

• The call attempted to create a file in /E.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The named file resides on a read-only fileset, and write access is required.

[ETXTBSY] The file is being executed, and the oflag value is O_WRONLY or O_RDWR.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), close(2), creat(2), creat64(2), fcntl(2), lseek(2), lseek64(2),
mknod(2), read(2), stat(2), stat64(2), umask(2), write(2).

Miscellaneous topics: acl(5).

527186-023 Hewlett-Packard Company 5−25

open64(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• The O_RDWR flag is supported for FIFO files.

• The group ID of the new file is determined by the value of the O_ISGID flag in the
parent directory.

• The O_NONBLOCK flag is ignored for regular disk files and directory files.

• The O_NOCTTY flag is ignored for regular disk files and directory files.

• The O_CREAT flag is ignored for FIFOs and tty files.

• If the O_CREAT flag is specified and bits other than the file permission and appropriate
file type flags are set in the mode parameter, errno is set to [EINVAL].

• If the O_TRUNC flag is specified and the O_RDONLY access flag is specified, the open
fails.

• The O_TRUNC flag is ignored for files other than regular files.

• Attempting to open an OSS directory with an access flag of O_WRONLY or O_RDWR
fails.

• Specifying the O_NONBLOCK flag when opening character special devices that sup-
port nonblocking opens is supported.

HP extensions to the XPG4 Version 2 specification are:

• Opening Guardian files (that is, files in the /G file system) is supported, as described
under Opening Guardian Files in DESCRIPTION.

• Access control lists (ACLs) for OSS files are supported.

• The errno values [EFAULT], [EFILEBAD], [EFSBAD], [EGUARDIANOPEN], [EIO],
[ELOOP], [ENETDOWN], [EOSSNOTRUNNING], and [EPERM] can be returned.

5−26 Hewlett-Packard Company 527186-023

System Functions (n - p) pipe(2)

NAME
pipe - Creates an interprocess communication channel

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int pipe(
int filedes [2]);

PARAMETERS
filedes Specifies the address of an array of two integers into which new file descriptors

are placed.

DESCRIPTION
The pipe() function creates an interprocess channel called a pipe and returns two file descriptors
in the parameters filedes[0] and filedes[1]. The file descriptor filedes[0] is opened for reading, and
the file descriptor filedes[1] is opened for writing. Their integer values are the two lowest avail-
able at the time of the call to the pipe() function. The O_NONBLOCK flag is cleared on both
file descriptors. (The fcntl() function can be used to set the O_NONBLOCK flag.)

Upon successful completion, the pipe() function marks the st_atime, st_ctime, and st_mtime
fields of the pipe for update.

The FD_CLOEXEC flag is cleared on both file descriptors.

Use From the Guardian Environment
The pipe() function is one of a set of functions that have these effects when the first of them is
called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. If the pipe() function fails, the value
-1 is returned, and errno is set to indicate the error.

527186-023 Hewlett-Packard Company 5−27

pipe(2) OSS System Calls Reference Manual

ERRORS
If any of these conditions occurs, the pipe() function sets errno to the corresponding value:

[EFAULT] The filedes parameter is an invalid address.

[EMFILE] No more file descriptors are available for this process.

[ENFILE] One of these conditions exists:

• The maximum number of file descriptors of this file type (socket, pipe,
etc.) for this processor are already open.

• The limit for open file descriptors of this file type has not been exceeded,
but the maximum number of all file descriptors for this processor are
already open.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOROOT] The function was called while the root fileset (fileset 0) was not available.

[EOSSNOTRUNNING]
The function was called while a required system process was not running.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: fcntl(2), read(2), select(2), write(2).

Commands: sh(1).

STANDARDS CONFORMANCE
HP extensions to the XPG4 Version 2 specification are:

• The errno values [EFAULT], [ENOROOT], and [EOSSNOTRUNNING] can be
returned.

5−28 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_atfork(2)

NAME
pthread_atfork - Declares fork-handler routines to be called when the calling thread’s process
forks a child process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_atfork(
void (*prepare) (void),
void (*parent) (void),
void (*child) (void));

PARAMETERS
prepare Specifies the address of a routine that performs the fork preparation handling.

This routine is called in the parent process before the child process is created.

parent Specifies the address of a routine that performs the fork parent handling. This
routine is called in the parent process after the child process is created and
before the return to the caller of fork().

child Specifies the address of a routine that performs the fork child handling. This rou-
tine is called in the child process before the return to the caller of fork().

DESCRIPTION
This function allows a main program or library to control resources during a fork() operation by
declaring fork-handler routines, as follows:

• The fork-handler routine specified by the prepare parameter is called before fork() exe-
cutes.

• The fork-handler routine specified by the parent parameter is called after fork() executes
within the parent process.

• The fork-handler routine specified by the child parameter is called in the new child pro-
cess after fork() executes.

Your program (or library) can use fork handlers to ensure that program context in the child pro-
cess is consistent and meaningful. After fork() executes, only the calling thread exists in the
child process, and the state of all memory in the parent process is replicated in the child process,
including the states of any mutexes, condition variables, and so on.

For example, in the new child process there might exist locked mutexes that are copies of
mutexes that were locked in the parent process by threads that do not exist in the child process.
Therefore, any associated program state might be inconsistent in the child process.

The program can avoid this problem by calling pthread_atfork() to provide routines that
acquire and release resources that are critical to the child process. For example, the prepare
handler should lock all mutexes that you want to be usable in the child process. The parent

527186-023 Hewlett-Packard Company 5−29

pthread_atfork(2) OSS System Calls Reference Manual

handler just unlocks those mutexes. The child handler also unlocks them all — and might also
create threads or reset any program state for the child process.

If no fork handling is desired, you can set any of this function’s parameters to NULL.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

EXAMPLES
If your library uses a mutex my_mutex, you might provide pthread_atfork() handler routines
coded as follows:

void my_prepare(void)
{
pthread_mutex_lock(&my_mutex);
}

void my_parent(void)

5−30 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_atfork(2)

{
pthread_mutex_unlock(&my_mutex);
}

void my_child(void)
{
pthread_mutex_unlock(&my_mutex);
/* Reinitialize state that doesn’t apply...like heap owned */
/* by other threads */
}

{
.
.
.

pthread_atfork(my_prepare, my_parent, my_child);
.
.

fork();
}

NOTES
Do not call pthread_atfork() from within a fork-handler routine. Doing so could cause a
deadlock.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[ENOMEM] Insufficient table space exists to record the fork-handler routines’ addresses.

RELATED INFORMATION
Functions: pthread_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−31

pthread_attr_destroy(2) OSS System Calls Reference Manual

NAME
pthread_attr_destroy - Destroys a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_destroy(
pthread_attr_t *attr);

PARAMETERS
attr Specifies the thread attributes object to be destroyed.

DESCRIPTION
This function destroys a thread attributes object. Call this function when a thread attributes
object will no longer be referenced.

Threads that were created using this thread attributes object are not affected by the destruction of
this thread attributes object.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

5−32 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_destroy(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−33

pthread_attr_getdetachstate(2) OSS System Calls Reference Manual

NAME
pthread_attr_getdetachstate - Obtains the detachstate attribute of a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_getdetachstate(
const pthread_attr_t *attr,
int *detachstate);

PARAMETERS
attr Specifies the address of the thread attributes object whose detachstate attribute

is obtained.

detachstate Receives the value of the detachstate attribute.

DESCRIPTION
This function obtains the value of the detachstate attribute of the thread attributes object
specified by the attr parameter and returns it in the detachstate parameter. This attribute
specifies whether threads created using the specified thread attributes object are created in a
detached state.

See the pthread_attr_setdetachstate(2) reference page either online or in the Open System Ser-
vices System Calls Reference Manual for information about the detachstate attribute.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

5−34 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_getdetachstate(2)

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
On successful completion, this function returns a zero and the detachstate attribute value is
returned in detachstate. The attribute value PTHREAD_CREATE_JOINABLE indicates the
thread is not detached, and the attribute value PTHREAD_CREATE_DETACHED indicates
the thread is detached.

If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The attr parameter does not refer to an existing thread attributes object.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_setdetachstate(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−35

pthread_attr_getguardsize(2) OSS System Calls Reference Manual

NAME
pthread_attr_getguardsize - Obtains the guardsize attribute of a thread attributes object

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

int pthread_attr_getguardsize(
const pthread_attr_t *attr,
size_t *guardsize);

PARAMETERS
attr Specifies the address of the thread attributes object whose guardsize attribute is

obtained.

guardsize Receives the value of the guardsize attribute.

DESCRIPTION
The pthread_attr_getguardsize function obtains the value of the guardsize attribute of the
thread attributes object specified by the attr parameter and returns it in the guardsize parameter.
The specified thread attributes object must already be initialized when this function called. The
value returned for the guardsize parameter is either the guard size specified by the previous
pthread_attr_setguardsize function call if there was one, or the default guard size.

When creating a thread, use a thread attributes object to specify nondefault values for thread
attributes. The guardsize attribute of a thread attributes object specifies the minimum size (in
bytes) of the guard area for the stack of a new thread.

A guard area can help a multi-threaded program detect overflow of a thread’s stack. A guard
area is a region of no-access memory that the system allocates at the overflow end of the thread’s
stack. When any thread attempts to access a memory location within this region, a memory
addressing violation occurs.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

5−36 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_getguardsize(2)

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
The value of the guardsize attribute of a particular thread attributes object does not necessarily
correspond to the actual size of the guard area of any existing thread in a multi-threaded pro-
gram.

This function is not supported with the Standard POSIX Threads (SPT) library. SPT-based appli-
cations should use the pthread_attr_getguardsize_np() function instead.

For detailed information about writing multi-threaded applications for the Open System Services
environment using the POSIX User Thread Model library, see the Open System Services
Programmer’s Guide.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_getguardsize_np(2),
pthread_attr_setguardsize(2).

STANDARDS CONFORMANCE
This function conforms to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 5−37

pthread_attr_getguardsize_np(2) OSS System Calls Reference Manual

NAME
pthread_attr_getguardsize_np - Obtains the guardsize attribute of a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int pthread_attr_getguardsize_np(
const pthread_attr_t *attr,
size_t *guardsize);

PARAMETERS
attr specifies the address of the thread attributes object whose guardsize attribute is

obtained.

guardsize receives the value of the guardsize attribute.

DESCRIPTION
This function obtains the value of the guardsize attribute of the thread attributes object specified
by the attr parameter and returns it in the guardsize parameter. The specified thread attributes
object must already be initialized when this function called.

When creating a thread, use a thread attributes object to specify nondefault values for thread
attributes. The guardsize attribute of a thread attributes object specifies the minimum size (in
bytes) of the guard area for the stack of a new thread.

A guard area can help a multithreaded program detect overflow of a thread’s stack. A guard area
is a region of no-access memory that the system allocates at the overflow end of the thread’s
stack. When any thread attempts to access a memory location within this region, a memory
addressing violation occurs.

NOTES
The value of the guardsize attribute of a particular thread attributes object does not necessarily
correspond to the actual size of the guard area of any existing thread in a multithreaded program.

Use of this function makes your application nonportable.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_attr_init(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

5−38 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_getinheritsched(2)

NAME
pthread_attr_getinheritsched - Obtains the inherit scheduling attribute of a thread attributes
object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_getinheritsched(
const pthread_attr_t *attr,
int *inheritsched);

PARAMETERS
attr Specifies the address of the thread attributes object whose inherit scheduling

attribute is obtained.

inheritsched Receives the value of the inherit scheduling attribute.

DESCRIPTION
This function obtains the value of the inherit scheduling attribute of the thread attributes object
specified by the attr parameter and returns it in the inheritsched parameter. The inherit schedul-
ing attribute specifies whether threads created using the specified threads attributes object inherit
the scheduling attributes of the creating thread or use the scheduling attributes stored in the
threads attributes object specified by the pthread_create() attr parameter.

See the pthread_attr_setinheritsched(2) reference page either online or in the Open System
Services System Calls Reference Manual for information about the inherit scheduling attribute.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

527186-023 Hewlett-Packard Company 5−39

pthread_attr_getinheritsched(2) OSS System Calls Reference Manual

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_setinheritsched(2), pthread_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−40 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_getschedparam(2)

NAME
pthread_attr_getschedparam - Obtains the scheduling parameters of the scheduling policy
attribute of a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_getschedparam(
const pthread_attr_t *attr,
struct sched_param *param);

PARAMETERS
attr Specifies the address of the thread attributes object with the scheduling policy

attribute whose scheduling parameters are obtained.

param Receives the values of the scheduling parameters.

DESCRIPTION
This function obtains the values of the scheduling parameters of the scheduling policy attribute
of the thread attributes object specified by the attr parameter and returns them in the param
parameter.

See the pthread_attr_setschedparam(2) reference page either online or in the Open System Ser-
vices System Calls Reference Manual for information about the scheduling parameters.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

527186-023 Hewlett-Packard Company 5−41

pthread_attr_getschedparam(2) OSS System Calls Reference Manual

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_setschedparam(2), pthread_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−42 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_getschedpolicy(2)

NAME
pthread_attr_getschedpolicy - Obtains the scheduling policy attribute of a thread attributes
object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_getschedpolicy(
const pthread_attr_t *attr,
int *policy);

PARAMETERS
attr Specifies the address of the thread attributes object whose scheduling policy

attribute is obtained.

policy Receives the value of the scheduling policy attribute.

DESCRIPTION
This function obtains the value of the scheduling policy attribute of the thread attributes object
specified by the attr parameter and returns it in the policy parameter. The scheduling policy attri-
bute defines the scheduling policy for threads created using this threads attributes object.

See the pthread_attr_setschedpolicy(2) reference page either online or in the Open System Ser-
vices System Calls Reference Manual for information about the scheduling policy attribute.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

527186-023 Hewlett-Packard Company 5−43

pthread_attr_getschedpolicy(2) OSS System Calls Reference Manual

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_setschedpolicy(2), pthread_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−44 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_getscope(2)

NAME
pthread_attr_getscope - Gets the contentionscope attribute of a thread attributes object

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

int pthread_attr_getscope(
const pthread_attr_t *attr,
int *contentionscope);

PARAMETERS
attr Specifies the address of the thread attributes object whose contentionscope attri-

bute is obtained.

contentionscope
Receives the value of the contentionscope attribute.

DESCRIPTION
The pthread_attr_getscope function obtains the value of the contentionscope attribute of the
thread attributes object specified by the attr parameter and returns it in the contentionscope
parameter.

The contentionscope parameter always returns the value PTHREAD_SCOPE_PROCESS,
which signifies process scheduling contention scope. Although PTHREAD_SCOPE_SYSTEM
and PTHREAD_SCOPE_PROCESS are defined in the pthread.h header file, only
PTHREAD_SCOPE_PROCESS is supported.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

527186-023 Hewlett-Packard Company 5−45

pthread_attr_getscope(2) OSS System Calls Reference Manual

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
The POSIX User Thread Model library supports only the PTHREAD_SCOPE_PROCESS
value for the contentionscope parameter.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment using the POSIX User Thread Model library, see the Open System Ser-
vices Programmer’s Guide.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter does not refer to an initialized thread
attributes object.

RELATED INFORMATION
Functions: pthread_attr_destroy(2), pthread_attr_getinheritsched(2),
pthread_attr_getschedparam(2), pthread_attr_getschedpolicy(2), pthread_attr_setscope(2),
pthread_create(2).

STANDARDS CONFORMANCE
This function conforms to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

5−46 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_getstackaddr(2)

NAME
pthread_attr_getstackaddr - Obtains the stackbase address attribute of the specified thread
attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_getstackaddr(
const pthread_attr_t *attr,
void **stackaddr);

PARAMETERS
attr Specifies the address of the thread attributes object whose stack address attribute

is obtained.

stackaddr Receives the value of the stack address for the thread attributes object.

DESCRIPTION
This function obtains the value of the stackbase address attribute of the thread attributes object
specified by the attr parameter and returns it in the stackaddr parameter. The specified attributes
object must be initialized before this function is called.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

527186-023 Hewlett-Packard Company 5−47

pthread_attr_getstackaddr(2) OSS System Calls Reference Manual

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
This function returns 0 (zero) upon successful completion of the call.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_getattr_np(2), pthread_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−48 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_getstacksize(2)

NAME
pthread_attr_getstacksize - Obtains the stacksize attribute of a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_getstacksize(
const pthread_attr_t *attr,
size_t *stacksize);

PARAMETERS
attr Specifies the address of the thread attributes object whose stacksize attribute is

obtained.

stacksize Receives the value of the stacksize attribute.

DESCRIPTION
This function obtains the value of the stacksize attribute of the thread attributes object specified
by the attr parameter and returns it in the stacksize parameter.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

527186-023 Hewlett-Packard Company 5−49

pthread_attr_getstacksize(2) OSS System Calls Reference Manual

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
On successful completion, this function returns a 0 (zero) and the stacksize attribute value is
returned in stacksize.

If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_setstacksize(2), pthread_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−50 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_init(2)

NAME
pthread_attr_init - Initializes a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_init(
pthread_attr_t *attr);

PARAMETERS
attr Specifies the address of the thread attributes object to be initialized.

DESCRIPTION
This function initializes the thread attributes object specified by the attr parameter with a set of
default attribute values. A thread attributes object is used to specify the attributes of threads
when they are created. A thread attributes object created by this function is used only in calls to
the pthread_create() function.

The following functions change individual attributes of an initialized thread attributes object:

pthread_attr_setdetachstate()
pthread_attr_setguardsize_np()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_attr_setstacksize()

The attributes of a thread attributes object are initialized to default values. The default value of
each attribute is discussed in the reference page for the corresponding function listed above.

When a thread attributes object is used to create a thread, the object’s attribute values determine
the characteristics of the new thread. Thus, thread attributes objects act as additional arguments
to thread creation. Changing the attributes of a thread attributes object does not affect any
threads that were previously created using that thread attributes object.

You can use the same thread attributes object in successive calls to pthread_create(), from any
thread. (However, you cannot use the same value of the stack address attribute to create multiple
threads that might run concurrently; threads cannot share a stack.) If more than one thread might
change the attributes in a shared thread attributes object, your program must use a mutex to pro-
tect the integrity of the thread attributes object’s contents.

When you set the scheduling policy or scheduling parameters, or both, of a thread attributes
object, scheduling inheritance must be disabled if you want the scheduling attributes you set to
be used at thread creation. In the HP implementation, the default value of
PTHREAD_EXPLICIT_SCHED for the inherit attribute of a new thread automatically dis-
ables scheduling inheritance. At thread creation, the scheduling policy and scheduling parame-
ters stored in the thread attributes object passed to the pthread_create() function are used by
default. To enable scheduling inheritance, before creating the new thread use the

527186-023 Hewlett-Packard Company 5−51

pthread_attr_init(2) OSS System Calls Reference Manual

pthread_attr_setinheritsched() function to specify the value PTHREAD_INHERIT_SCHED
for the inherit parameter.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, the thread attributes object cannot be used and this function returns
an integer value indicating the type of error. Possible return values are:

0 Successful completion.

5−52 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_init(2)

[EINVAL] The value specified by the attr parameter is not a valid thread attributes object.

[ENOMEM] Insufficient memory exists to initialize the thread attributes object.

RELATED INFORMATION
Functions: pthread_attr_destroy(2), pthread_attr_setdetachstate(2),
pthread_attr_setguardsize_np(2), pthread_attr_setinheritsched(2),
pthread_attr_setschedparam(2), pthread_attr_setschedpolicy(2),
pthread_attr_setstacksize(2), pthread_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−53

pthread_attr_setdetachstate(2) OSS System Calls Reference Manual

NAME
pthread_attr_setdetachstate - Sets the detachstate attribute of a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_setdetachstate(
pthread_attr_t *attr,
int detachstate);

PARAMETERS
attr Specifies the thread attributes object whose detachstate attribute is to be set.

detachstate Specifies the new value for the detachstate attribute. Valid values are:

PTHREAD_CREATE_JOINABLE
This is the default value. Threads are created in "undetached"
state.

PTHREAD_CREATE_DETACHED
A created thread is detached immediately, before it begins run-
ning.

DESCRIPTION
This function sets the value of the detachstate attribute of the thread attributes object specified
by the attr parameter to the value specified by the detachstate parameter. The detachstate attri-
bute specifies whether storage used by the thread can be reclaimed by the system when the thread
terminates.

You cannot use the thread identifier (the value of type pthread_t that is returned by the
pthread_create() function) for a thread that is created detached in calls to the
pthread_detach() or pthread_join() functions.

When a thread that has not been detached finishes executing, the system retains the state of that
thread to allow another thread to join with it. If the thread is detached before it finishes execut-
ing, the system can immediately reclaim the thread’s storage and resources when the thread ter-
minates (that is, when it returns from its start routine, calls the pthread_exit() function, or is can-
celed.)

The pthread_join() or pthread_detach() function should eventually be called for every thread
that is created with the detachstate attribute of its thread attributes object set to
PTHREAD_CREATE_JOINABLE, so that storage associated with the thread can be
reclaimed.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

5−54 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_setdetachstate(2)

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is not a valid thread attributes object or
the detachstate parameter is invalid.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_getdetachstate(2), pthread_create(2),
pthread_join(2).

527186-023 Hewlett-Packard Company 5−55

pthread_attr_setdetachstate(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−56 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_setguardsize(2)

NAME
pthread_attr_setguardsize - Sets the guardsize attribute of a thread attributes object

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

int pthread_attr_setguardsize(
pthread_attr_t *attr,
size_t guardsize);

PARAMETERS
attr Specifies the address of the thread attributes object whose guardsize attribute is

to be set.

guardsize Specifies the new value for the guardsize attribute.

DESCRIPTION
The pthread_attr_setguardsize function sets the value of the guardsize attribute of the thread
attributes object specified by the attr parameter to the value specified by the guardsize parameter.

When the protected stack feature is enabled and the guard size is 0 (zero), a regular stack is
created without a guard page the next time the pthread_create function is called for the attri-
butes object.

When the protected stack feature is enabled, the value of the guard size is rounded up to a multi-
ple of a page size.

When creating a thread, use a thread attributes object to specify nondefault values for thread
attributes. The guardsize attribute of a thread attributes object specifies the minimum size (in
bytes) of the guard area for the stack of a new thread.

A guard area can help a multi-threaded program detect overflow of a thread’s stack. A guard
area is a region of no-access memory that the system allocates at the overflow end of the thread’s
stack. When any thread attempts to access a memory location within this region, a memory
addressing violation occurs.

A new thread can be created with the default value for the guardsize attribute. This value is
platform-dependent but is always at least one "hardware protection unit" (that is, at least one
page).

After this function is called, the system might reserve a larger guard area for a new thread than
was specified by the guardsize parameter.

The system allows your program to specify the size of a thread stack’s guard area because:

• When a thread allocates large data structures on its stack, a guard area with a size greater
than the default size might be required to detect stack overflow.

• Overflow protection of a thread’s stack can potentially waste system resources, such as
for an application that creates a large number of threads that will never overflow their
stacks. A multi-threaded program can conserve system resources by specifying a guard-
size parameter of 0 (zero).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

527186-023 Hewlett-Packard Company 5−57

pthread_attr_setguardsize(2) OSS System Calls Reference Manual

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
This function is not supported with the Standard POSIX Threads (SPT) library. SPT-based appli-
cations should use the pthread_attr_setguardsize_np() function instead.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment using the POSIX User Thread Model library, see the Open System Ser-
vices Programmer’s Guide.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified for the attr parameter or the guardsize parameter is invalid.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_getguardsize(2),
pthread_attr_setguardsize_np(2), pthread_attr_setstacksize(2), pthread_create(2).

STANDARDS CONFORMANCE
This function conforms to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

5−58 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_setguardsize_np(2)

NAME
pthread_attr_setguardsize_np - Sets the guardsize attribute of a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int pthread_attr_setguardsize_np(
pthread_attr_t *attr,
size_t guardsize);

PARAMETERS
attr specifies the address of the thread attributes object whose guardsize attribute is

to be set.

guardsize specifies the new value for the guardsize attribute.

DESCRIPTION
This function sets the value of the guardsize attribute of the thread attributes object specified by
the attr parameter to the value specified by the guardsize parameter.

When creating a thread, use a thread attributes object to specify nondefault values for thread
attributes. The guardsize attribute of a thread attributes object specifies the minimum size (in
bytes) of the guard area for the stack of a new thread.

A guard area can help a multithreaded program detect overflow of a thread’s stack. A guard area
is a region of no-access memory that the system allocates at the overflow end of the thread’s
stack. When any thread attempts to access a memory location within this region, a memory
addressing violation occurs.

A new thread can be created with the default value for the guardsize attribute. This value is
platform-dependent but is always at least one "hardware protection unit" (that is, at least one
page).

After this function is called, the system might reserve a larger guard area for a new thread than
was specified by the guardsize parameter.

The system allows your program to specify the size of a thread stack’s guard area because:

• When a thread allocates large data structures on its stack, a guard area with a size greater
than the default size might be required to detect stack overflow.

• Overflow protection of a thread’s stack can potentially waste system resources, such as
for an application that creates a large number of threads that will never overflow their
stacks. A multithreaded program can conserve system resources by specifying a guard-
size attribute of 0 (zero).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

527186-023 Hewlett-Packard Company 5−59

pthread_attr_setguardsize_np(2) OSS System Calls Reference Manual

[EINVAL] The value specified for the attr parameter or the guardsize parameter is invalid.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_getguardsize_np(2),
pthread_attr_setstacksize(2), pthread_create(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

5−60 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_setinheritsched(2)

NAME
pthread_attr_setinheritsched - Sets the inherit scheduling attribute of a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_setinheritsched(
pthread_attr_t *attr,
int inheritsched);

PARAMETERS
attr Specifies the address of the thread attributes object whose inherit scheduling

attribute is to be set.

inheritsched Specifies the new value for the inherit scheduling attribute. Valid values are:

PTHREAD_INHERIT_SCHED
The created thread inherits the scheduling policy and associated
scheduling attributes of the thread calling the pthread_create()
function. Any scheduling attributes in the thread attributes
object specified by the pthread_create() attr parameter are
ignored during thread creation.

PTHREAD_EXPLICIT_SCHED
This is the default value. The scheduling policy and associated
scheduling attributes of the created thread are set to the
corresponding values from the thread attributes object specified
by the pthread_create() attr parameter.

DESCRIPTION
This function sets the value of the inherit scheduling attribute of the thread attributes object
specified by the attr parameter to the value specified by the inheritsched parameter. The inherit
scheduling attribute specifies whether threads created using the specified thread attributes object
inherit the scheduling attributes of the creating thread or use the scheduling attributes stored in
the thread attributes object specified by the pthread_create() attr parameter.

The default scheduling policy for the first thread in an application is SCHED_FIFO, and cannot
be modified.

Inheriting scheduling attributes is useful when a thread is creating several helper threads — that
is, threads that are intended to work closely with the creating thread to cooperatively solve the
same problem. For example, inherited scheduling attributes ensure that helper threads created in
a sort routine execute with the same priority as the calling thread.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

527186-023 Hewlett-Packard Company 5−61

pthread_attr_setinheritsched(2) OSS System Calls Reference Manual

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is not a valid thread attributes object or
the inheritsched parameter contains an invalid value.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_getinheritsched(2),
pthread_attr_setschedpolicy(2), pthread_attr_setschedparam(2), pthread_create(2).

5−62 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_setinheritsched(2)

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−63

pthread_attr_setschedparam(2) OSS System Calls Reference Manual

NAME
pthread_attr_setschedparam - Sets the scheduling parameters of the scheduling policy attri-
bute of a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_setschedparam(
pthread_attr_t *attr,
const struct sched_param *param);

PARAMETERS
attr Specifies the address of the thread attributes object with the scheduling policy

attribute whose scheduling parameters are to be set.

param Specifies a structure containing the new values for the scheduling parameters.

The system provides only the sched_priority scheduling parameter. See
Description for information about this scheduling parameter.

DESCRIPTION
This function sets the values of the scheduling parameters of the scheduling policy attribute of
the thread attributes object specified by the attr parameter to the values specified by the param
parameter.

Use the sched_priority field of the sched_param structure to set a thread’s execution priority.
The effect of the scheduling priority you assign depends on the scheduling policy attribute of the
thread attributes object specified by the attr parameter.

By default, the prioirty of a created thread is determined by the attr parameter used in the call to
the pthread_create() function. To inherit the prioirty of the thread calling pthread_create(),
scheduling inheritance must be enabled when the thread is created. Before calling
pthread_create(), call pthread_attr_setinheritsched() and specify the value
PTHREAD_INHERIT_SCHED for the inherit parameter.

An application specifies priority only to express the urgency of executing the thread relative to
other threads. DO NOT USE PRIORITY TO CONTROL MUTUAL EXCLUSION WHEN
ACCESSING SHARED DATA. With a sufficient number of processors present, all ready
threads, regardless of priority, execute simultaneously.

Valid values of the sched_priority scheduling parameter depend on the chosen scheduling pol-
icy. Use the sched_get_priority_min() and sched_get_priority_max() functions to determine
the low and high limits of each policy.

Open System Services provides the following nonportable priority range constants:

SCHED_FIFO
PRI_FIFO_MIN to PRI_FIFO_MAX

5−64 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_setschedparam(2)

SCHED_RR PRI_RR_MIN to PRI_RR_MAX

SCHED_OTHER
PRI_OTHER_MIN to PRI_OTHER_MAX

SCHED_FG_NP
PRI_FG_MIN_NP to PRI_FG_MAX_NP

SCHED_BG_NP
PRI_BG_MIN_NP to PRI_BG_MAX_NP

The default priority is 24.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

527186-023 Hewlett-Packard Company 5−65

pthread_attr_setschedparam(2) OSS System Calls Reference Manual

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values ares:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is not a valid thread attributes object or
the value specified by param is invalid.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_getschedparam(2),
pthread_attr_setinheritsched(2), pthread_attr_setschedpolicy(2), pthread_create(2),
sched_yield(2), sched_get_priority_max(2), sched_get_priority_min(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−66 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_setschedpolicy(2)

NAME
pthread_attr_setschedpolicy - Sets the scheduling policy attribute of a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_setschedpolicy(
pthread_attr_t *attr,
int policy);

PARAMETERS
attr Specifies the address of the thread attributes object whose scheduling policy

attribute is to be set.

policy Specifies the new value for the scheduling policy attribute. Valid values are:

SCHED_FIFO is the default value and the only value supported.

DESCRIPTION
This function sets the value of the scheduling policy attribute of the thread attributes object
specified by the attr parameter to the value specified by the policy attribute. The only supported
policy is SCHED_FIFO. An attempt to change this value returns the value of [ENOTSUP] for
this function.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all

527186-023 Hewlett-Packard Company 5−67

pthread_attr_setschedpolicy(2) OSS System Calls Reference Manual

of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
Never attempt to use scheduling as a mechanism for synchronization.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the policy parameter is invalid.

[ENOTSUP] An attempt was made to set the scheduling policy to an unsupported value.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_getschedpolicy(2),
pthread_attr_setinheritsched(2), pthread_attr_setschedparam(2), pthread_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−68 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_setscope(2)

NAME
pthread_attr_setscope - Sets the contentionscope attribute of a thread attributes object

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

int pthread_attr_setscope(
pthread_attr_t *attr,
int contentionscope);

PARAMETERS
attr Specifies the address of the thread attributes object whose contentionscope attri-

bute is to be set.

contentionscope
Specifies the value to which the contentionscope attribute is to be set.

DESCRIPTION
The pthread_attr_setscope function sets the value of the contentionscope attribute of the thread
attributes object specified by the attr parameter to the value specified in the contentionscope
parameter.

The only valid value supported for the contentionscope parameter is
PTHREAD_SCOPE_PROCESS, which signifies process scheduling contention scope.
PTHREAD_SCOPE_SYSTEM and PTHREAD_SCOPE_PROCESS are defined in the
pthread.h header file.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

527186-023 Hewlett-Packard Company 5−69

pthread_attr_setscope(2) OSS System Calls Reference Manual

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
The POSIX User Thread Model library supports only the PTHREAD_SCOPE_PROCESS
value for the contentionscope parameter.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment using the POSIX User Thread Model library, see the Open System Ser-
vices Programmer’s Guide.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is not valid, or the value specified by
the contentionscope parameter is not valid.

[ENOTSUP] The value specified by the contentionscope parameter is
PTHREAD_SCOPE_SYSTEM. PTHREAD_SCOPE_SYSTEM is not a sup-
ported value.

RELATED INFORMATION
Functions: pthread_attr_destroy(2), pthread_attr_getinheritsched(2),
pthread_attr_getschedparam(2), pthread_attr_getschedpolicy(2), pthread_attr_getscope(2),
pthread_create(2).

STANDARDS CONFORMANCE
This function conforms to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

5−70 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_attr_setstacksize(2)

NAME
pthread_attr_setstacksize - Sets the stacksize attribute of a thread attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_attr_setstacksize(
pthread_attr_t *attr,
size_t stacksize);

PARAMETERS
attr Specifies the address of the thread attributes object whose stacksize attribute is

to be set.

stacksize Specifies the new value for the stacksize attribute. The stacksize parameter must
be greater than or equal to PTHREAD_STACK_MIN, which is the minimum
size (in bytes) of stack needed for a thread.

DESCRIPTION
This function sets the value of the stacksize attribute in the thread attributes object specified by
the attr parameter to the value specified by the stacksize parameter. Use this function to adjust
the size of the writable area of the stack for a new thread.

The size of a thread’s stack is fixed at the time of thread creation. Only the initial thread can
dynamically extend its stack.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

527186-023 Hewlett-Packard Company 5−71

pthread_attr_setstacksize(2) OSS System Calls Reference Manual

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
Many compilers do not check for stack overflow. Ensure that the new thread’s stack is big
enough for the resources required by routines that are called from the thread.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid, or the value specified by the
stacksize parameter either is less than PTHREAD_STACK_MIN or exceeds a
system-imposed limit.

RELATED INFORMATION
Functions: pthread_attr_init(2), pthread_attr_getstacksize(2), pthread_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−72 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cancel(2)

NAME
pthread_cancel - Requests that a thread terminate execution

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_cancel(
pthread_t thread);

PARAMETERS
thread Specifies the thread that receives the cancelation request.

DESCRIPTION
This function sends a cancelation request to the specified target thread. A cancelation request is
a mechanism by which a calling thread requests the target thread to terminate as quickly as possi-
ble. Issuing a cancelation request does not guarantee that the target thread receives or handles
the request.

When the cancelation request is acted on, all active cleanup-handler routines for the target thread
are called. When the last cleanup handler returns, the thread-specific data destructor routines are
called for each thread-specific data key with a destructor and for which the target thread has a
non-NULL value. Finally, the target thread is terminated, and a status of
PTHREAD_CANCELED is made available to any threads joining with the target thread.

Cancelation of the target thread runs asynchronously to the calling thread’s returning from
pthread_cancel(). The target thread’s cancelability state and type determine when or if the
cancelation takes place, as follows:

• The target thread can delay cancelation during critical operations by setting its cancela-
bility state to PTHREAD_CANCEL_DISABLE.

• Because of communication delays, the calling thread can rely only on the fact that a
cancelation request eventually becomes pending in the target thread (provided that the
target thread does not terminate beforehand).

• The calling thread has no guarantee that a pending cancelation request will be delivered,
because delivery is controlled by the target thread.

When a cancelation request is delivered to a thread, termination processing is similar to that for
pthread_exit(). For more information about thread termination, see the pthread_create(2)
reference page either online or in the Open System Services System Calls Reference Manual.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the

527186-023 Hewlett-Packard Company 5−73

pthread_cancel(2) OSS System Calls Reference Manual

following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[ESRCH] The value of the thread parameter does not specify an existing thread.

RELATED INFORMATION
Functions: pthread_cleanup_pop(2), pthread_cleanup_push(2), pthread_create(2),
pthread_exit(2), pthread_join(2), pthread_setcancelstate(2), pthread_setcanceltype(2),
pthread_testcancel(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

5−74 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cancel(2)

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−75

pthread_cleanup_pop(2) OSS System Calls Reference Manual

NAME
pthread_cleanup_pop - (Macro) Removes the cleanup-handler routine from the calling thread’s
cleanup-handler stack and optionally executes it

LIBRARY
None. This application program interface is implemented as a macro.

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

void pthread_cleanup_pop(
int execute);

PARAMETERS
execute Controls whether the cleanup-handler routine specified in the matching call to

pthread_cleanup_push() is executed. If execute is nonzero, the cleanup-
handler routine executes.

DESCRIPTION
This macro removes the cleanup-handler routine established by the matching call to
pthread_cleanup_push() from the calling thread’s cleanup-handler stack, then executes it if the
value of execute is nonzero.

A cleanup-handler routine can be used to clean up from a block of code whether the code is
exited by normal completion, cancelation, or the raising (or reraising) of an exception. The rou-
tine is popped from the calling thread’s cleanup-handler stack and is executed with its arg
parameter when any of the following actions occur:

• The thread calls pthread_cleanup_pop() and specifies a nonzero value for the execute
parameter.

• The thread calls pthread_exit().

• The thread is canceled.

• An exception is raised and is caught when the system unwinds the calling thread’s stack
to the lexical scope of the pthread_cleanup_push() and pthread_cleanup_pop() mac-
ros.

This macro and pthread_cleanup_push() must appear in pairs within the same lexical scope.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this macro in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

To use this macro in a threaded application that uses the Standard POSIX Threads library on sys-
tems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the follow-
ing tasks:

5−76 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cleanup_pop(2)

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

RELATED INFORMATION
Functions: pthread_cancel(2), pthread_cleanup_push(2), pthread_create(2),
pthread_exit(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−77

pthread_cleanup_push(2) OSS System Calls Reference Manual

NAME
pthread_cleanup_push - (Macro) Establishes a cleanup-handler routine to be executed when the
thread terminates

LIBRARY
None. This application program interface is implemented as a macro.

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

void pthread_cleanup_push(
void (*routine) (void *),
void *arg);

PARAMETERS
routine Specifies the routine to be executed as the cleanup handler.

arg Specifies an argument to be passed to the cleanup routine.

DESCRIPTION
This macro pushes the specified routine onto the calling thread’s cleanup- handler stack. The
cleanup-handler routine is popped from the stack and executed with the value specified by the
arg parameter when any of the following actions occur:

• The thread calls pthread_cleanup_pop() and specifies a nonzero value for the execute
parameter.

• The thread calls pthread_exit().

• The thread is canceled.

• An exception is raised and is caught when the system unwinds the calling thread’s stack
to the lexical scope of the pthread_cleanup_push() and pthread_cleanup_pop() pair.

This routine and pthread_cleanup_pop() must appear in pairs within the same lexical scope.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this macro in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

To use this macro in a threaded application that uses the Standard POSIX Threads library on sys-
tems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the follow-
ing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

5−78 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cleanup_push(2)

RELATED INFORMATION
Functions: pthread_cancel(2), pthread_cleanup_pop(2), pthread_create(2), pthread_exit(2),
pthread_testcancel(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−79

pthread_condattr_destroy(2) OSS System Calls Reference Manual

NAME
pthread_condattr_destroy - Destroys a condition variable attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_condattr_destroy(
pthread_condattr_t *attr);

PARAMETERS
attr Specifies the condition variable attributes object to be destroyed.

DESCRIPTION
This function destroys the specified condition variable attributes object by uninitializing the
object.

Destroying an attributes object does not affect any condition variables that were created using
that attributes object.

After this function is called, using the value of attr in a call to any function other than the
pthread_condattr_init() function returns an error.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

5−80 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_condattr_destroy(2)

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
The pthread_condattr_init() and pthread_condattr_destroy() functions are provided for
future expansion of the threads interface and to conform with the POSIX.1c standard. These
functions are not currently useful, because the functions to set and get the process shared attri-
bute are not supported by this implementation.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible error return values are:

0 Successful completion.

[EINVAL] The condition variable attributes object specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_condattr_init(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−81

pthread_condattr_init(2) OSS System Calls Reference Manual

NAME
pthread_condattr_init - Initializes a condition variable attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_condattr_init(
pthread_condattr_t *attr);

PARAMETERS
attr Specifies the condition variable attributes object to be initialized.

For the Standard POSIX Threads library, if the value specified is
pthread_condattr_default, then the default attribute is:

PTHREAD_PROCESS_PRIVATE
Specifies that the initialized condition variable can be used only
within a process.

DESCRIPTION
This function initializes the condition variable attributes object specified by the attr parameter
with a set of default attribute values.

When an attributes object is used to create a condition variable, the values of the individual attri-
butes determine the characteristics of the new condition variable. Attributes objects act as addi-
tional arguments to creation of condition variables. Changing individual attributes in an attri-
butes object does not affect any condition variables that were previously created using that attri-
butes object.

You can use the same condition variable attributes object in successive calls to
pthread_condattr_init() from any thread. If multiple threads can change attributes in a shared
condition variable attributes object, your program must use a mutex to protect the integrity of the
contents of that condition variable attributes object.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

5−82 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_condattr_init(2)

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
The pthread_condattr_init() and pthread_condattr_destroy() functions are provided for
future expansion of the threads interface and to conform with the POSIX.1c standard. These
functions are not currently useful because the functions to set and get the process share attribute
are not supported by this implementation.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[ENOMEM] Insufficient memory exists to initialize the condition variable attributes object.

RELATED INFORMATION
Functions: pthread_cond_init(2), pthread_condattr_destroy(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−83

pthread_cond_broadcast(2) OSS System Calls Reference Manual

NAME
pthread_cond_broadcast - Unblocks all threads that are waiting on the specified condition vari-
able

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_cond_broadcast(
pthread_cond_t *cond);

PARAMETERS
cond Specifies a condition variable upon which the threads (to be awakened) are wait-

ing.

DESCRIPTION
This function unblocks all threads waiting on the condition variable specified by cond. Calling
this function implies that data guarded by the associated mutex has changed, so one or more
waiting threads might be able to proceed. The threads that are unblocked contend for the mutex
according to their respective scheduling policies (if applicable).

This function can be called by a thread regardless of whether it currently owns the mutex associ-
ated with the condition variable specified by cond. However, if predictable scheduling behavior
is required, the mutex must be locked before the pthread_cond_broadcast() function is called.

If no threads are waiting on the specified condition variable, this function takes no action. The
broadcast does not propagate to the next condition variable wait.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

5−84 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cond_broadcast(2)

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the cond parameter is invalid.

[ENOMEM] There is insufficient memory to initialize the condition variable specified by the
cond parameter.

RELATED INFORMATION
Functions: pthread_cond_destroy(2), pthread_cond_init(2), pthread_cond_signal(2),
pthread_cond_timedwait(2), pthread_cond_wait(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

The return of [ENOMEM] is an HP extension to the POSIX standard.

527186-023 Hewlett-Packard Company 5−85

pthread_cond_destroy(2) OSS System Calls Reference Manual

NAME
pthread_cond_destroy - Destroys a condition variable

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_cond_destroy(
pthread_cond_t *cond);

PARAMETERS
cond Specifies the condition variable to be destroyed.

DESCRIPTION
This function destroys the condition variable specified by the cond parameter. This function
effectively uninitializes the condition variable. Call this function when a condition variable will
no longer be referenced. Destroying a condition variable allows the system to reclaim internal
memory associated with the condition variable.

It is safe to destroy an initialized condition variable upon which no threads are currently blocked.
Attempting to destroy a condition variable upon which other threads are blocked results in an
error and returns the value of [EBUSY].

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

5−86 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cond_destroy(2)

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EBUSY] The object referenced by cond is being referenced by another thread that is
currently executing pthread_cond_wait() or pthread_cond_timedwait() on
the condition variable specified in cond.

[EINVAL] The value specified by the cond parameter is invalid.

RELATED INFORMATION
Functions: pthread_cond_broadcast(2), pthread_cond_init(2), pthread_cond_signal(2),
pthread_cond_timedwait(2), pthread_cond_wait(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−87

pthread_cond_init(2) OSS System Calls Reference Manual

NAME
pthread_cond_init - Initializes a condition variable

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_cond_init(
pthread_cond_t *cond,
const pthread_condattr_t *attr);

PARAMETERS
cond Specifies the condition variable to be initialized.

attr Specifies the condition variable attributes object that defines the characteristics
of the condition variable to be initialized.

DESCRIPTION
This function initializes the condition variable specified by the cond parameter with attributes
indicated by the attr parameter. If the value of attr is NULL, the default condition variable attri-
butes are used.

A condition variable is a synchronization object used with a mutex. A mutex controls access to
data that is shared among threads; a condition variable allows threads to wait for that data to
enter a defined state.

Condition variables are not owned by a particular thread. Any associated storage is not automat-
ically deallocated when the creating thread terminates.

If the default condition variable attributes are appropriate, use the macro
PTHREAD_COND_INITIALIZER to initialize statically allocated condition variables. The
effect of using this macro is the same as the effect of calling pthread_cond_init() with an attr
parameter of NULL. To call this macro, specify:

pthread_cond_t condition = PTHREAD_COND_INITIALIZER;

When statically initialized, a condition variable should not also be used in the
pthread_cond_init() function.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

5−88 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cond_init(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error, the
condition variable is not initialized, and the contents of cond are undefined. Possible return
values are:

0 Successful completion.

[EAGAIN] One of the following conditions exists:

• The system lacks the necessary resources to initialize another condition
variable.

• The system-imposed limit on the total number of condition variables
under execution by a single user is exceeded.

[EBUSY] The implementation has detected an attempt to reinitialize the object indicated
by cond, a previously initialized, but not yet destroyed, condition variable.

527186-023 Hewlett-Packard Company 5−89

pthread_cond_init(2) OSS System Calls Reference Manual

[EINVAL] The value specified by the attr parameter is invalid.

[ENOMEM] Insufficient memory exists to initialize the condition variable.

RELATED INFORMATION
Functions: pthread_cond_broadcast(2), pthread_cond_destroy(2), pthread_cond_signal(2),
pthread_cond_timedwait(2), pthread_cond_wait(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−90 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cond_signal(2)

NAME
pthread_cond_signal - Unblocks at least one thread that is waiting on the specified condition
variable

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_cond_signal(
pthread_cond_t *cond);

PARAMETERS
cond Specifies the condition variable to be signaled.

DESCRIPTION
This function unblocks at least one thread waiting on the condition variable specified by cond.
Calling this function implies that data guarded by the associated mutex has changed, so one of
the waiting threads might be able to proceed. In general, only one thread is unblocked.

If no threads are waiting on the specified condition variable, this function takes no action. The
signal does not propagate to the next condition variable wait.

The scheduling policy determines which thread is unblocked. A blocked thread is chosen in
priority order, using a first-in/first-out (FIFO) algorithm within priorities.

This function can be called by a thread regardless of whether it owns the mutex associated with
the condition variable specified by the cond parameter. However, if predictable scheduling
behavior is required, the mutex must be locked before the pthread_cond_signal() function is
called.

Do not call this function from within an interrupt handler.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

527186-023 Hewlett-Packard Company 5−91

pthread_cond_signal(2) OSS System Calls Reference Manual

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the cond parameter is not a valid condition variable.

[ENOMEM] There is insufficient memory to perform the requested operation.

RELATED INFORMATION
Functions: pthread_cond_broadcast(2), pthread_cond_destroy(2), pthread_cond_init(2),
pthread_cond_timedwait(2), pthread_cond_wait(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

The return of [ENOMEM] is an HP extension to the POSIX standard.

5−92 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cond_signal_int_np(2)

NAME
pthread_cond_signal_int_np - Unblocks one thread that is waiting on the specified condition
variable; callable only from an interrupt-handler routine

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_cond_signal_int_np(
pthread_cond_t *cond);

PARAMETERS
cond Specifies the condition variable to be signaled.

DESCRIPTION
This function unblocks one thread waiting on the condition variable specified by cond. Calling
this function implies that data guarded by the associated mutex has changed, so the waiting
thread might be able to proceed.

If no threads are waiting on the specified condition variable, this function takes no action. The
signal does not propagate to the next condition variable wait.

The scheduling policy of the waiting threads determines which thread is unblocked. A blocked
thread is chosen in priority order, using a first-in/first-out (FIFO) algorithm within priorities.

This function does not cause a thread blocked on a condition variable to resume execution
immediately. The thread resumes execution at some time after the interrupt-handler routine
returns.

You can call this function regardless of whether the associated mutex is locked by some other
thread. Never lock a mutex from an interrupt- handler routine.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

527186-023 Hewlett-Packard Company 5−93

pthread_cond_signal_int_np(2) OSS System Calls Reference Manual

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
This function allows you to signal a thread from a software interrupt handler. Do not call this
function from noninterrupt code. To signal a thread from the normal noninterrupt level, use the
pthread_cond_signal() function.

RETURN VALUES
On successful completion, this function returns a 0 (zero). If an error condition occurs, this func-
tion returns -1 and sets errno to indicate the type of error.

ERRORS
The following error conditions can occur:

[EINVAL] The value specified by the cond parameter is not a valid condition variable.

RELATED INFORMATION
Functions: pthread_cond_broadcast(2), pthread_cond_destroy(2), pthread_cond_init(2),
pthread_cond_timedwait(2), pthread_cond_wait(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

5−94 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cond_timedwait(2)

NAME
pthread_cond_timedwait - Causes a thread to wait either for a condition variable to be signaled
or broadcast, or for a specific expiration time

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_cond_timedwait(
pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *abstime);

PARAMETERS
cond Specifies the condition variable that the calling thread waits on.

mutex Specifies the mutex associated with the condition variable specified by the cond
parameter.

abstime Specifies the absolute time at which the wait expires, if the condition variable
cond has not been signaled or broadcast. See the
pthread_get_expiration_np(2) reference page either online or in the Open Sys-
tem Services System Calls Reference Manual; that function is used to obtain a
value for this parameter. The abstime value is specified in Universal Coordi-
nated Time (UTC).

DESCRIPTION
This function causes a thread to wait until one of the following occurs:

• The specified condition variable is signaled or broadcasted.

• The current system clock time is greater than or equal to the time specified by the abs-
time parameter.

This function is similar to the pthread_cond_wait() function, except that this function can
return before a condition variable is signaled or broadcast if the specified time expires. For more
information, see the pthread_cond_wait(2) reference page either online or in the Open System
Services System Calls Reference Manual.

This function atomically releases the mutex and causes the calling thread to wait on the condi-
tion variable. When the thread regains control after calling pthread_cond_timedwait(), the
mutex is locked and the thread is the owner, regardless of why the wait ended. If general cance-
lability is enabled, the thread reacquires the mutex (blocking for it if necessary) before the
cleanup handlers are run (or before the exception is raised).

If the current time equals or exceeds the expiration time, this function returns immediately,
releasing and reacquiring the mutex. This function might cause the calling thread to yield (see
the sched_yield(2) reference page either online or in the Open System Services System Calls

527186-023 Hewlett-Packard Company 5−95

pthread_cond_timedwait(2) OSS System Calls Reference Manual

Reference Manual). Your code should check the return status whenever this function returns and
take the appropriate action. Otherwise, waiting on the condition variable can become a nonblock-
ing loop.

Call this function after you have locked the mutex specified by mutex. The results of this func-
tion are unpredictable if this function is called before the mutex is locked.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

5−96 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cond_timedwait(2)

[EINVAL] One of the following conditions exists:

• The value specified by cond, mutex, or abstime is invalid.

• Different mutexes are supplied for concurrent
pthread_cond_timedwait() operations or pthread_cond_wait() opera-
tions on the same condition variable.

• The mutex was not owned by the calling thread at the time of the call.

[ENOMEM] The system cannot acquire the memory needed to block using a statically initial-
ized condition variable.

[ETIMEDOUT]
The time specified by the abstime parameter expired.

RELATED INFORMATION
Functions: pthread_cond_broadcast(2), pthread_cond_destroy(2), pthread_cond_init(2),
pthread_cond_signal(2), pthread_cond_wait(2), pthread_get_expiration_np(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

The return of [ENOMEM] is an HP extension to the POSIX standard.

527186-023 Hewlett-Packard Company 5−97

pthread_cond_wait(2) OSS System Calls Reference Manual

NAME
pthread_cond_wait - Causes a thread to wait for the specified condition variable to be signaled
or broadcast

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_cond_wait(
pthread_cond_t *cond,
pthread_mutex_t *mutex);

PARAMETERS
cond Specifies the condition variable that the calling thread waits on.

mutex Specifies the mutex associated with the condition variable specified by the cond
parameter.

DESCRIPTION
This function causes a thread to wait for the specified condition variable to be signaled or broad-
cast. Each condition corresponds to one or more Boolean relations, called a predicate, based on
shared data. The calling thread waits for the data to reach a particular state for the predicate to
become true. However, return from this function does not imply anything about the value of the
predicate, and it should be reevaluated upon return.

This function atomically releases the mutex and causes the calling thread to wait on the condi-
tion variable. When the thread regains control after calling pthread_cond_wait(), the mutex is
locked and the thread is the owner, regardless of why the wait ended. If general cancelability is
enabled, the thread reacquires the mutex (blocking for it if necessary) before the cleanup
handlers are run (or before the exception is raised).

If a thread changes the state of storage protected by the mutex in such a way that a predicate
associated with a condition variable might now be true, that thread must call either the
pthread_cond_signal() or pthread_cond_broadcast() function for that condition variable. If
neither call is made, any thread waiting on the condition variable continues to wait.

This function might (with low probability) return when the condition variable has not been sig-
naled or broadcast. When this occurs, the mutex is reacquired before the function returns. To
handle this type of situation, enclose each call to this function in a loop that checks the predicate.
The loop documents your intent and protects against spurious wakeups while allowing correct
behavior even if another thread consumes the desired state before the awakened thread runs.

Threads are not allowed to wait on the same condition variable by specifying different mutexes.

Call this function after you have locked the mutex specified by mutex. The results of this func-
tion are unpredictable if this function is called before the mutex is locked.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

5−98 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_cond_wait(2)

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] One of the following conditions exists:

• The value specified by the cond or mutex parameter is invalid.

• Different mutexes are supplied for concurrent pthread_cond_wait()
operations or pthread_cond_timedwait() operations on the same condi-
tion variable.

527186-023 Hewlett-Packard Company 5−99

pthread_cond_wait(2) OSS System Calls Reference Manual

• The mutex was not owned by the calling thread at the time of the call.

[ENOMEM] The system cannot acquire the memory needed to block using a statically initial-
ized condition variable.

RELATED INFORMATION
Functions: pthread_cond_broadcast(2), pthread_cond_destroy(2), pthread_cond_init(2),
pthread_cond_signal(2), pthread_cond_timedwait(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

The return of [ENOMEM] is an HP extension to the POSIX standard.

5−100 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_create(2)

NAME
pthread_create - Creates a thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void * (*start_routine) (void *),
void *arg);

PARAMETERS
thread Specifies the location to receive the identifier for the thread being created.

attr Specifies the thread attributes object that defines the characteristics of the thread
being created. If you specify NULL, then the default attributes are:

SCHED_FIFO
The default scheduling policy for the schedpolicy attribute is
first-in, first-out.

PTHREAD_CREATE_JOINABLE
The default detachstate is joinable.

For the Standard POSIX Threads library, you can also specify
pthread_attr_default to set these default attributes.

A thread is detached when created if the detachstate attribute of its thread object
is set to PTHREAD_CREATE_DETACHED.

start_routine Specifies the function to be executed as the new thread’s start routine.

arg Specifies the argument to the thread’s start routine.

DESCRIPTION
This function creates a thread, which is a single, sequential flow of control within a program. A
thread is the active execution of a designated routine, including any nested routine invocations.

Successful execution of this function causes the following actions:

• The system creates a thread object to describe and control the thread.

• The thread parameter receives an identifier for the new thread.

527186-023 Hewlett-Packard Company 5−101

pthread_create(2) OSS System Calls Reference Manual

• An executable thread is created with attributes specified by the attr parameter (or with
default attributes if attr is NULL).

Thread Creation
The system creates a thread in the ready state and prepares the thread to begin executing its start
routine, which is the function passed to pthread_create() as the start_routine parameter.
Depending on the presence of other threads and their scheduling and priority attributes, the new
thread might start executing immediately. The new thread can also preempt its creator, depend-
ing on the two threads’ respective scheduling and priority attributes. The caller of
pthread_create() can synchronize with the new thread using either the pthread_join() function
or any mutually agreed upon mutexes or condition variables.

For the duration of the new thread’s existence, the system maintains and manages the thread
object and other thread state overhead.

The system assigns each new thread a thread identifier, which the system writes into the address
specified by the thread parameter before the new thread executes.

At thread creation, the scheduling policy and scheduling parameters stored in the thread attri-
butes object passed to pthread_create() is used by default. If you want the scheduling attributes
to be inherited from the parent thread, then before creating the new thread your program must use
the pthread_attr_setinheritsched() function with the inheritsched parameter set to
PTHREAD_INHERIT_SCHED.

The signal state of the new thread is initialized as follows:

• The signal mask is inherited from the creating thread.

• The set of signals pending for the new thread is empty.

If pthread_create() fails, no new thread is created and the contents of the location indicated by
the thread parameter are undefined.

Thread Termination
A thread terminates when one of the following occurs:

• The thread returns from its start routine.

• The thread calls the pthread_exit() function.

• The thread is canceled.

When a thread terminates, the system performs these actions:

• The system writes a return value (if one is available) into the terminated thread’s attri-
butes object, as follows:

— If the thread has been canceled, the system writes the value
PTHREAD_CANCELED into the object specified by attr.

— If the thread terminated by returning from its start routine, the system copies the
return value from the start routine (if one is available) into the object specified
by attr.

— If the thread explictly called the pthread_exit() function, the system stores the
value received in the value_ptr parameter of pthread_exit() into the object
specified by attr.

Another thread can obtain this return value by joining with the terminated thread using
the pthread_join() function. If the thread terminated by returning from its start routine

5−102 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_create(2)

normally and the start routine does not provide a return value, the results obtained by
joining with that thread are unpredictable.

• If the termination results from a cancelation request or a call to pthread_exit(), the sys-
tem calls, in turn, each cleanup handler that this thread declared using the
pthread_cleanup_push() macro that has not yet been removed using the
pthread_cleanup_pop() macro. (The system also transfers control to any appropriate
CATCH, CATCH_ALL, or FINALLY blocks.)

For C++: At normal exit from a thread, a program calls the appropriate destructor func-
tions, just as if an exception had been raised.

• To exit a thread terminated by a call to pthread_exit(), the system raises the
pthread_exit_e exception. To exit a thread terminated by cancelation, the system raises
the pthread_cancel_e exception. Your program can use the exception package to
operate on the generated exception.

• For each of the terminated thread’s thread-specific data keys that has a non-NULL value
and a non-NULL destructor pointer, the system sets the thread’s value for the
corresponding key to NULL.

In turn, the system calls each thread-specific data destructor function in this mul-
tithreaded process’s list of destructors. The destructor is given the value previously asso-
ciated with the data key as its sole argument. The destructor must delete all storage asso-
ciated with the data key; otherwise, the destructor will be called again.

The system repeats this step either until all thread-specific data values in the thread are
NULL or for up to a number of iterations equal to
PTHREAD_DESTRUCTOR_ITERATIONS. This action should destroy all thread-
specific data associated with the terminated thread.

• The system unblocks the thread (if there is one) that is currently waiting to join with the
terminated thread. That is, the system unblocks the thread that is waiting in a call to
pthread_join().

• If the thread is already detached, the system destroys its thread object. Otherwise, the
thread continues to exist until it is detached or joined with.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

527186-023 Hewlett-Packard Company 5−103

pthread_create(2) OSS System Calls Reference Manual

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
The practice of using CATCH handlers in place of pthread_cleanup_push() is not portable.

RETURN VALUES
If an error condition occurs, no thread is created, the contents of thread are undefined, and this
function returns an integer value indicating the type of error. Possible return values are:

0 Successful completion.

[EAGAIN] The system lacks the necessary resources to create another thread, or the
system-imposed limit on the total number of threads under execution by a single
user is exceeded.

[EINVAL] The value specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_atfork(2), pthread_attr_destroy(2), pthread_attr_init(2),
pthread_attr_setdetachstate(2), pthread_attr_setinheritsched(2),
pthread_attr_setschedparam(2), pthread_attr_setschedpolicy(2),
pthread_attr_setstacksize(2), pthread_cancel(2), pthread_cleanup_pop(2),
pthread_cleanup_push(2), pthread_detach(2), pthread_exit(2), pthread_join(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−104 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_delay_np(2)

NAME
pthread_delay_np - Delays execution of a thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_delay_np(
const struct timespec *interval);

PARAMETERS
interval Specifies the number of seconds and nanoseconds to delay execution. The value

specified for each must be greater than or equal to 0 (zero).

DESCRIPTION
This function causes a thread to delay execution for a specific interval of time. This interval ends
at the current time plus the specified interval. The function does not return before the end of the
interval is reached, but it might return an arbitrary amount of time after the end of the interval is
reached, because of system load, thread priorities, and system timer granularity.

Specifying an interval of 0 (zero) seconds and 0 (zero) nanoseconds is allowed and can be used
to force the thread to give up the processor or to deliver a pending cancelation request.

The timespec structure contains the following two fields:

tv_sec Is an integral number of seconds.

tv_nsec Is an integral number of nanoseconds.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running

527186-023 Hewlett-Packard Company 5−105

pthread_delay_np(2) OSS System Calls Reference Manual

H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the interval parameter is invalid.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

5−106 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_detach(2)

NAME
pthread_detach - Marks a thread object for deletion

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_detach(
pthread_t thread);

PARAMETERS
thread Specifies the thread object being marked for deletion.

DESCRIPTION
This function marks the specified thread object to indicate that storage for the corresponding
thread can be reclaimed when the thread terminates. This storage includes storage for the thread
parameter’s return value, as well as for the thread object. If the specified thread has not ter-
minated when this function is called, this function does not cause it to terminate.

A thread can be created already marked for deletion by setting its thread object’s detachstate
attribute using the pthread_attr_setdetachstate() function before creating the thread.

Once detached, the use of the thread’s thread identifier in a call to the pthread_join() function
results in an error. A joinable thread is implicitly detached when pthread_join() is called.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all

527186-023 Hewlett-Packard Company 5−107

pthread_detach(2) OSS System Calls Reference Manual

of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
The results of this function are unpredictable if the thread parameter refers to a thread object that
does not exist.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The thread parameter does not specify a joinable thread.

[ESRCH] The object specified by the thread parameter cannot be found.

RELATED INFORMATION
Functions: pthread_attr_getdetachstate(2), pthread_attr_setdetachstate(2),
pthread_cancel(2), pthread_create(2), pthread_exit(2), pthread_join(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−108 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_equal(2)

NAME
pthread_equal - Compares two thread identifiers

LIBRARY
None. This routine has been implemented as a macro.

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_equal(
pthread_t t1,
pthread_t t2);

PARAMETERS
t1 Specifies the first thread identifier to be compared.

t2 Specifies the second thread identifier to be compared.

DESCRIPTION
This macro compares two thread identifiers.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this macro in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

To use this macro in a threaded application that uses the Standard POSIX Threads library on sys-
tems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the follow-
ing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

NOTES
If either t1 or t2 is not a valid thread identifier, this macro’s behavior is undefined.

RETURN VALUES
Possible return values are:

0 The t1 and t2 parameters do not designate the same object.

Nonzero The t1 and t2 parameters designate the same object.

527186-023 Hewlett-Packard Company 5−109

pthread_equal(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−110 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_exit(2)

NAME
pthread_exit - Terminates the calling thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

void pthread_exit(
void *value_ptr);

PARAMETERS
value_ptr Specifies the value to be copied and returned to the caller of the pthread_join()

function. Note that void * is used as a universal datatype, not as a pointer. The
system treats the value_ptr parameter as a value and stores it to be returned by
pthread_join().

DESCRIPTION
This function terminates the calling thread and makes a status value (value_ptr) available to any
thread that calls pthread_join() to join the terminating thread.

Any cleanup handlers that have been pushed and not yet popped from the stack are popped in the
reverse order that they were pushed and then executed. After all cleanup handlers have been
executed, if the thread has any thread-specific data, appropriate destructor functions are called.
Thread termination does not release any application-visible process resources, including, but not
limited to, mutexes and file descriptors, nor does it perform any process-level cleanup actions,
including, but not limited to, calling any atexit routine that might exist.

An implicit call to pthread_exit() is issued when a thread returns from the start routine that was
used to create it. The system writes the function’s return value as the return value in the thread’s
thread object. The process exits with an exit status of 0 (zero) when the last running thread calls
pthread_exit().

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

527186-023 Hewlett-Packard Company 5−111

pthread_exit(2) OSS System Calls Reference Manual

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
After a thread has terminated, the result of access to local (that is, explicitly or implicitly
declared auto) variables of the thread is undefined. References to local variables of the existing
thread should not be used for the value_ptr parameter of the pthread_exit() function.

RELATED INFORMATION
Functions: pthread_cancel(2), pthread_create(2), pthread_detach(2), pthread_join(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−112 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_getattr_np(2)

NAME
pthread_getattr_np - Gets the attribute object for a thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_getattr_np(
const pthread_t thread,
pthread_attr_t **attr_p);

PARAMETERS
thread Specifies the thread for which you want the attribute object.

attr_p Receives the attribute object pointer returned by the call.

DESCRIPTION
This fuction is used to get a thread attributes object for a specific thread. The attribute object
obtained from this function call is used to set or get the individual attributes of a thread.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

527186-023 Hewlett-Packard Company 5−113

pthread_getattr_np(2) OSS System Calls Reference Manual

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
This function returns 0 (zero) upon successful completion of the call.

ERRORS
If an error occurs, this function can return the following value:

[ESRCH] No thread could be found corresponding to the specified thread parameter.

RELATED INFORMATION
Functions: pthread_attr_getstacksize(2), pthread_attr_setstacksize(2),
pthread_attr_getstackaddr(2), pthread_attr_setdetachstate(2),
pthread_attr_getdetachstate(2), pthread_attr_setinheritsched(2),
pthread_attr_getinheritsched(2), pthread_attr_setschedparam(2),
pthread_attr_getschedparam(2), pthread_attr_getschedpolicy(2),
pthread_attr_setschedpolicy(2), pthread_attr_getguardsize_np(2),
pthread_attr_setguardsize_np(2), pthread_attr_init(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−114 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_getconcurrency(2)

NAME
pthread_getconcurrency - Gets level of concurrency

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_getconcurrency(void);

DESCRIPTION
Concurrency values range from 0 to MAXINT inclusive. A concurrency level of 0 suggests to the
scheduler that the minimum possible amount of concurrency is required. Concurrency levels
greater than 0 suggest an increasingly higher level of concurrency.

The current implementation of concurrency level (Con Levl) and the minimum scheduled quan-
tum is as follows:

Con Levl Minimum Scheduled Quantum

--------- -----------------------

0 Infinity

1 1 second

2 0.5 seconds

... ...

10 0.1 seconds

... ...

100 0.01 seconds

Note that the quantum is calculated using the formula, 1 / concurrency_level.

The default concurrency level for applications that use the POSIX User Thread Model library is
20; the default concurrency level for applications that use the Standard POSIX Threads library is
0.

The pthread_setconcurrency() function does not support thread scheduling. The
pthread_setconcurrency() function checks for I/O completion when there is a context switch
between threads and when the concurrency level is met.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

527186-023 Hewlett-Packard Company 5−115

pthread_getconcurrency(2) OSS System Calls Reference Manual

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
The pthread_getconcurrency() function always returns the concurrency level set by a previous
call to pthread_setconcurrency(). If the pthread_setconcurrency() function has never been
called, pthread_getconcurrency() returns zero.

RELATED INFORMATION
Functions: pthread_setconcurrency(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−116 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_get_expiration_np(2)

NAME
pthread_get_expiration_np - Calculates an absolute expiration time

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_get_expiration_np(
const struct timespec *delta,
struct timespec *abstime);

PARAMETERS
delta Specifies the number of seconds and nanoseconds to add to the current system

time to determine an expiration time.

abstime Receives the calculated absolute expiration time. The resulting abstime value is
in Universal Coordinated Time (UTC).

DESCRIPTION
This function adds a specified interval to the current absolute system time and returns a new
absolute time, which is used as the expiration time in a call to the pthread_cond_timedwait()
function.

The timespec structure contains the following two fields:

tv_sec Is an integral number of seconds.

tv_nsec Is an integral number of nanoseconds.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running

527186-023 Hewlett-Packard Company 5−117

pthread_get_expiration_np(2) OSS System Calls Reference Manual

H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
On successful completion, this function returns a 0 (zero). If an error condition occurs, this func-
tion returns -1 and sets errno to indicate the type of error.

ERRORS
The following error conditions can occur:

[EINVAL] The value specified by the delta parameter is invalid.

RELATED INFORMATION
Functions: pthread_cond_timedwait(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

5−118 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_getschedparam(2)

NAME
pthread_getschedparam - Obtains the current scheduling policy and scheduling parameters of a
thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_getschedparam(
pthread_t thread,
int *policy,
struct sched_param *param);

PARAMETERS
thread Specifies the thread whose scheduling policy and parameters are obtained.

policy Receives the value of the scheduling policy for the thread specified by the thread
parameter. See the pthread_setschedparam(2) reference page either online or
in the Open System Services System Calls Reference Manual for valid parameter
values and their meanings.

param Receives the value of the scheduling parameters for the thread specified by the
thread parameter. See the pthread_setschedparam(2) reference page either
online or in the Open System Services System Calls Reference Manual for valid
values.

DESCRIPTION
This function obtains both the current scheduling policy and associated scheduling parameters of
the thread specified by the thread parameter.

The priority value returned in the structure specified by the param parameter is the value
specified in the attr parameter passed to the pthread_create() function or by the most recent call
to the pthread_setschedparam() function that affected this thread.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

527186-023 Hewlett-Packard Company 5−119

pthread_getschedparam(2) OSS System Calls Reference Manual

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
This function differs from the pthread_attr_getschedpolicy() and
pthread_attr_getschedparam() functions, which get the scheduling policy and parameters that
are used to establish the priority and scheduling policy of a new thread when it is created.
pthread_getschedparam() obtains the scheduling policy and parameters of an existing thread.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values ares:

0 Successful completion.

[ESRCH] The thread parameter does not refer to an existing thread.

RELATED INFORMATION
Functions: pthread_attr_getschedparam(2), pthread_attr_getschedpolicy(2),
pthread_create(2), pthread_self(2), pthread_setschedparam(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−120 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_getspecific(2)

NAME
pthread_getspecific - Obtains the thread-specific data associated with a key

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

void *pthread_getspecific(
pthread_key_t key);

PARAMETERS
key Specifies the context key that identifies the thread-specific data to be obtained.

DESCRIPTION
This function obtains the thread-specific data bound to the key specified by the key parameter for
the calling thread. Obtain this key by calling the pthread_key_create() function.

This function can be called from a thread-specific data-destructor routine.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

527186-023 Hewlett-Packard Company 5−121

pthread_getspecific(2) OSS System Calls Reference Manual

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
This function returns the thread-specific data associated with key. If no thread-specific data is
associated with key or if key is not defined, then this function returns a NULL value.

RELATED INFORMATION
Functions: pthread_key_create(2), pthread_setspecific(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−122 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_get_threadstateinfo_np(2)

NAME
pthread_get_threadstateinfo_np - Gets the thread state information

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_get_threadstateinfo_np(
pthread_t *tid,
char *state);

PARAMETERS
tid Specifies the thread ID for which the state information is to be fetched.

state Specifies a pointer to the buffer where the thread state information is to be
stored. The buffer must be at least 15 bytes in length.

DESCRIPTION
The pthread_get_threadstateinfo_np() obtains the state information of the thread identified by
the tid parameter. On successful completion, the buffer contains a string that indicates the
current state of the thread. Possible string values are:

RUNNING The thread is running.

READY The thread is ready to run.

BLOCKED The thread is blocked.

TERMINATED
The thread is terminated.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

527186-023 Hewlett-Packard Company 5−123

pthread_get_threadstateinfo_np(2) OSS System Calls Reference Manual

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, the pthread_get_threadstateinfo_np() function returns an integer
value to identify the type of error. Possible return values are:

0 Successful completion.

[EINVAL] The tid parameter does not specify an existing thread.

RELATED INFORMATION
Functions: pthread_create(2), pthread_detach(2), pthread_join(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

5−124 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_join(2)

NAME
pthread_join - Causes the calling thread to wait for the termination of a thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_join(
pthread_t thread,
void **value_ptr);

PARAMETERS
thread Specifies the thread whose termination is awaited by the calling thread.

value_ptr Receives the return value of the terminating thread.

DESCRIPTION
This function suspends execution of the calling thread until the thread specified by the thread
parameter terminates.

On return from a successful pthread_join() call with a non-NULL value for value_ptr, the value
passed to the pthread_exit() function is returned in the location specified by value_ptr and the
terminating thread is detached.

A call to pthread_join() returns after the thread thread terminates.

The pthread_join() function is a deferred cancelation point: the thread thread is not detached if
the thread blocked in pthread_join() is canceled. If the thread that is being joined is canceled,
the pthread_join() function returns PTHREAD_CANCELED in the value_ptr parameter.

If the calling thread specifies itself as the thread value, [EDEADLK] is returned. A deadlock
does not occur.

The pthread_join() or pthread_detach() function should eventually be called for every thread
that is created with the detachstate attribute of its thread attributes object set to
PTHREAD_CREATE_JOINABLE, so that storage associated with the thread can be
reclaimed.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

527186-023 Hewlett-Packard Company 5−125

pthread_join(2) OSS System Calls Reference Manual

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
If more than one thread attempts to join with the same thread, the results are unpredictable.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EDEADLK] A deadlock was detected, or the thread parameter specifies the calling thread.

[EINVAL] The thread parameter does not specify a joinable thread.

[ESRCH] The thread parameter does not specify an existing thread identifier.

RELATED INFORMATION
Functions: pthread_cancel(2), pthread_create(2), pthread_detach(2), pthread_exit(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

5−126 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_join(2)

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−127

pthread_key_create(2) OSS System Calls Reference Manual

NAME
pthread_key_create - Generates a unique thread-specific data key

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_key_create(
pthread_key_t *key,
void (*destructor)(void *));

PARAMETERS
key Specifies the location where the new thread-specific data key is to be stored.

destructor Specifies a routine called to destroy a thread-specific data value associated with
the created key when a thread terminates. The argument to the destructor for the
user-specified routine is the non-NULL value associated with a key.

DESCRIPTION
This function generates a unique thread-specific data key that is visible to all threads in the pro-
cess. The key provided by this function is an opaque object used to locate thread-specific data.
Although the same key value can be used by different threads, the values bound to the key by the
pthread_setspecific() function are maintained on a per-thread basis and persist for the life of the
calling thread.

The system imposes a maximum number of thread-specific data keys, equal to the symbolic con-
stant PTHREAD_KEYS_MAX.

Thread-specific data allows client software to associate static information with the current
thread. For example, where a routine declares a variable static in a single-threaded program, a
multithreaded version of the program might create a thread-specific data key to store the same
variable.

This function generates and returns a new key value. The key reserves a cell within each thread.
Each call to this function creates a new cell that is unique within an application invocation. Keys
must be generated from initialization code that is guaranteed to be called only once within each
process. (See the pthread_once(2) reference page either online or in the Open System Services
System Calls Reference Manual for more information.)

When a thread terminates, its thread-specific data is automatically destroyed; however, the key
remains unless it is destroyed by a call to the pthread_key_delete() function. An optional des-
tructor routine can be associated with each key. At thread exit, if a key is associated with a non-
NULL destructor parameter, and if the thread has a non-NULL value associated with that key,
the destructor routine is called with the current associated value as its only argument. The order
in which thread-specific data destructors are called at thread termination is undefined.

Before each destructor routine is called, the thread’s value for the corresponding key is set to
NULL. When each destructor routine is called, the destructor must release all storage associated
with the key; otherwise, the destructor will be called again. After the destructor routines have

5−128 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_key_create(2)

been called for all non-NULL values with associated destructor routines, if some non-NULL
values with associated destructor routines still exist, then this sequence of actions is repeated.
This sequences is repeated up to PTHREAD_DESTRUCTOR_ITERATIONS times. If, after
all allowed repetitions of this sequence, non-NULL values for any key with a destructor routine
exist, the system terminates the thread. At this point, any key values that represent allocated
heap are lost.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

527186-023 Hewlett-Packard Company 5−129

pthread_key_create(2) OSS System Calls Reference Manual

[EAGAIN] The system lacked the necessary resources to create another thread-specific data
key, or the limit on the total number of keys for a process
(PTHREAD_KEYS_MAX) has been exceeded.

[ENOMEM] Insufficient memory exists to create the key.

RELATED INFORMATION
Functions: pthread_getspecific(2), pthread_key_delete(2), pthread_once(2),
pthread_setspecific(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−130 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_key_delete(2)

NAME
pthread_key_delete - Deletes a thread-specific data key

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_key_delete(
pthread_key_t key);

PARAMETERS
key Specifies the thread-specific data key to be deleted.

DESCRIPTION
This function deletes the thread-specific data key specified by the key parameter, which must
have been previously returned by the pthread_key_create() function.

The thread-specific data values associated with the specified key need not be NULL at the time
this function is called. The application must free any application storage or perform any cleanup
actions for data structures related to the deleted key or associated thread-specific data in any
threads. This cleanup can be done either before or after this function is called.

No destructor routines are invoked by this function. Any destructor routines that might have
been associated with the specified key are not called upon thread exit. pthread_key_delete()
can be called from within destructor routines.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

527186-023 Hewlett-Packard Company 5−131

pthread_key_delete(2) OSS System Calls Reference Manual

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
Do not attempt to use the deleted key after calling this function; unpredictable behavior results.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified for the key parameter is invalid.

RELATED INFORMATION
Functions: pthread_exit(2), pthread_getspecific(2), pthread_key_create(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−132 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_kill(2)

NAME
pthread_kill - Sends a signal to a thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */
#include <signal.h>

int pthread_kill(
pthread_t thread,
int sig);

PARAMETERS
thread Specifies the thread to receive the signal.

sig Specifies the signal to send. The valid values for this parameter are described in
the signal(4) reference page available either online or in the Open System Ser-
vices System Calls Reference Manual.

DESCRIPTION
This function provides a mechanism for asynchronously directing a signal to a thread within the
calling process. Per-thread signals have the following characteristics:

• Each signal is handled in the context of the specified thread. However, the signal action
(terminating or stopping) affects the entire process.

• Signal action should be manipulated using the sigaction() function instead of the sig-
nal() function.

• Job control signals are not supported. The stop/continue-a-process actions implied by
these signals is not supported.

• Signals send using pthread_kill() are queued in first-in/first-out (FIFO) order for the tar-
get thread; more than one instance of the same signal can be pending for a thread. How-
ever, applications should not rely on this ordering.

• The realtime signals extension option is not supported.

• Whether a signal generates a saveabend file can be controled using a compiler or linker
option.

• If a signal is delivered to a thread that is waiting on a condition variable, upon return
from the signal handler the thread resumes waiting for the condition variable as if it had
not been interrupted. The thread is not unblocked with a 0 (zero) return code.

527186-023 Hewlett-Packard Company 5−133

pthread_kill(2) OSS System Calls Reference Manual

Specifying a sig value of 0 (zero) causes this function to validate the thread parameter but not to
send any signal.

If this function does not execute successfully, no signal is sent.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
The name of this function is misleading, because many signals do not terminate a thread.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

5−134 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_kill(2)

[EINVAL] The value of the sig parameter is invalid or specifies an unsupported signal.

[ESRCH] The thread parameter does not specify an existing thread.

RELATED INFORMATION
Functions: pthread_sigmask(2), sigaction(2), spt_alarm(2), spt_sigaction(2), spt_signal(2),
spt_sigpending(2), spt_sigsuspend(2), spt_sigwait(2). Files: signal(4).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−135

pthread_kill_np(2) OSS System Calls Reference Manual

NAME
pthread_kill_np - Cancels a thread if a specified signal is received

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */
#include <signal.h>

int pthread_kill_np(
pthread_t thread,
int sig);

PARAMETERS
thread Specifies the thread to receive the signal.

sig Specifies the signal to send. The valid values for this parameter are described on
the signal(4) reference page available either online or in the Open System Ser-
vices System Calls Reference Manual.

DESCRIPTION
The pthread_kill_np() function provides a mechanism for asynchronously directing a signal to a
thread within the calling process. This function provides a similar functionality to the
pthread_kill() function, but it does not yield the processor and it is safe to call from a signal
handler.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

5−136 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_kill_np(2)

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, the pthread_kill_np() function returns an integer value to identify
the type of error. Possible return values are:

0 Successful completion.

[EINVAL] The value of the sig parameter is invalid or specifies an unsupported signal.

[ESRCH] The thread parameter does not specify an existing thread.

RELATED INFORMATION
Functions: pthread_kill(2), pthread_sigmask(2), sigaction(2), spt_alarm(2), spt_sigaction(2),
spt_signal(2), spt_sigpending(2), spt_sigsuspend(2), spt_sigwait(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 5−137

pthread_lock_global_np(2) OSS System Calls Reference Manual

NAME
pthread_lock_global_np - Locks the global mutex for threads

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_lock_global_np(void);

DESCRIPTION
This function locks the threads global mutex. If the threads global mutex is currently held by
another thread when this function is called, the calling thread waits for the threads global mutex
to become available and then locks it.

The thread that locks the threads global mutex becomes its current owner and remains its owner
until the same thread unlocks it. This function returns with the threads global mutex in the
locked state and the calling thread as the threads global mutex’s current owner.

Use the threads global mutex when calling a library package that is not designed to run in a mul-
tithreaded environment. Unless documentation specifically states that a function is thread-safe,
assume that the function is not compatible; in other words, assume it is nonreentrant.

The threads global mutex is one lock. Any code that calls any function that is not known to be
reentrant should use the same lock to prevent problems resulting from dependencies among
threads that call library functions, those functions’ calling other functions, and so on.

The threads global mutex is a recursive mutex. A thread that locks the threads global mutex can
relock it without deadlocking. The locking thread must call the pthread_unlock_global_np()
function as many times as it called this function, to allow another thread to lock the threads glo-
bal mutex.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same

5−138 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_lock_global_np(2)

tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Possible return values are as follows:

0 Successful completion.

RELATED INFORMATION
Functions: pthread_unlock_global_np(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 5−139

pthread_mutexattr_destroy(2) OSS System Calls Reference Manual

NAME
pthread_mutexattr_destroy - Destroys a mutex attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_mutexattr_destroy(
pthread_mutexattr_t *attr);

PARAMETERS
attr Specifies the mutex attributes object to be destroyed.

DESCRIPTION
This function destroys a mutex attributes object by unintializing it. Call this function when your
program no longer needs the specified mutex attributes object.

After this function is called, the system might reclaim the storage used by the destroyed mutex
attributes object. Destroying a mutex attributes object does not affect any mutexes that were pre-
viously created using that mutex attributes object.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

5−140 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutexattr_destroy(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
The functions to set and get the process shared attribute are not supported by this implementa-
tion.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_mutexattr_init(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−141

pthread_mutexattr_getkind_np(2) OSS System Calls Reference Manual

NAME
pthread_mutexattr_getkind_np - Obtains the mutex type attribute of a mutex attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

extern int pthread_mutexattr_getkind_np(
pthread_mutexattr_t attr);

PARAMETERS
attr specifies the mutex attributes object whose mutex type is to be obtained.

DESCRIPTION
The pthread_mutexattr_getkind_np() function obtains the mutex type attribute of the mutex
attributes object specified by the attr parameter. See the pthread_mutexattr_setkind_np(2)
reference page either online or in the Open System Services System Calls Reference Manual for
information about the mutex type attribute.

RETURN VALUES
One of the following values can be returned:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid.

RELATED INFORMATION
Functions: pthread_mutex_init(2), pthread_mutexattr_init(2),
pthread_mutexattr_setkind_np(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

5−142 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutexattr_gettype(2)

NAME
pthread_mutexattr_gettype - Gets the mutex type attribute of a mutex attribute object

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_gettype(
const pthread_mutexattr_t *attr,
int *type);

PARAMETERS
attr Specifies the address of a pthread mutex attribute object whose mutex type attri-

bute is to be obtained.

type Specifies the mutex type based on the type value retrieved from the attr parame-
ter value.

DESCRIPTION
The pthread_mutexattr_gettype() function gets the mutex type attribute of the mutex attribute
object specified by the attr parameter.

The following are the valid values for the type parameter and their characteristics:

PTHREAD_MUTEX_NORMAL
A normal mutex does not detect deadlock. If a thread attempts to relock a nor-
mal mutex without first unlocking it, the thread deadlocks. If a thread attempts
to unlock a normal mutex locked by a different thread, the result is undefined
behavior. If a thread attempts to unlock an unlocked normal mutex, the result is
undefined behavior.

PTHREAD_MUTEX_ERRORCHECK
An error checking mutex provides error checking. If a thread attempts to relock
an error checking mutex without first unlocking it, the function returns an error.
If a thread attempts to unlock an error checking mutex locked by a different
thread, the function returns an error. If a thread attempts to unlock an unlocked
error checking mutex, the function returns an error.

PTHREAD_MUTEX_RECURSIVE
A recursive mutex can be locked more than once by the same thread without
returning an error. If a thread attempts to relock a recursive mutex without first
unlocking it, the thread succeeds in locking the mutex. The relocking deadlock
that can occur with normal mutexes cannot occur with this type of mutex. Multi-
ple locks of a recursive mutex require the same number of unlocks to release the
mutex before another thread can acquire the mutex. If a thread attempts to
unlock a recursive mutex that another thread has locked, the function returns an
error. If a thread attempts to unlock an unlocked recursive mutex, the function
returns an error.

PTHREAD_MUTEX_DEFAULT
A default mutex can be locked only once. If a thread attempts to relock a default
mutex, the result is undefined behavior. If a thread attempts to unlock a default
mutex locked by a different thread, the result is undefined behavior. If a thread
attempts to unlock an unlocked default mutex, the result is undefined behavior.
An implementation can map this mutex to one of the other mutex types.

527186-023 Hewlett-Packard Company 5−143

pthread_mutexattr_gettype(2) OSS System Calls Reference Manual

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
This function is not supported with the Standard POSIX Threads (SPT) library. SPT-based appli-
cations should use the pthread_mutexattr_getkind_np() function instead.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment using the POSIX User Thread Model library, see the Open System Ser-
vices Programmer’s Guide.

RETURN VALUES
Upon successful completion, the pthread_mutexattr_gettype() function returns 0 (zero) and
stores the retrieved value of the type parameter; otherwise, the function returns an error number
to identify the error.

ERRORS
If the pthread_mutexattr_gettype() function call fails, errno may return the following value:

[EINVAL] The value specified by the attr parameter is invalid.

This function does not return the [EINTR] error code.

RELATED INFORMATION
Functions: pthread_mutex_init(2), pthread_mutexattr_getkind_np(2),
pthread_mutexattr_init(2), pthread_mutexattr_settype(2).

5−144 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutexattr_gettype(2)

STANDARDS CONFORMANCE
This function conforms to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 5−145

pthread_mutexattr_init(2) OSS System Calls Reference Manual

NAME
pthread_mutexattr_init - Initializes a mutex attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_mutexattr_init(
pthread_mutexattr_t *attr);

PARAMETERS
attr Specifies the mutex attributes object to be initialized.

For the Standard POSIX Threads library, if the value specified is
pthread_mutexattr_default, then the default attribute is:

MUTEX_FAST_NP
specifies the mutex type (normal). A normal mutex is locked
exactly once by a thread. If a thread tries to lock the mutex
again without first unlocking it, the thread waits for itself to
release the lock and thereby deadlocks.

DESCRIPTION
This function initializes the mutex attributes object specified by the attr parameter with a set of
default attribute values. A mutex attributes object is used to specify the attributes of mutexes
when they are created. The mutex attributes object created by this function is used only in calls
to the pthread_mutex_init() function.

When a mutex attributes object is used to create a mutex, the values of the individual attributes
determine the characteristics of the new mutex. Thus, mutex attributes objects act as additional
arguments to creation of mutexes. Changing individual attributes in a mutex attributes object
does not affect any mutexes that were previously created using that mutex attributes object.

You can use the same mutex attributes object in successive calls to pthread_mutex_init() from
any thread. If multiple threads can change attributes in a shared mutex attributes object, your
program must use a mutex to protect the integrity of that mutex attributes object.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

5−146 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutexattr_init(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
The functions to set and get the process shared attribute are not supported by this implementa-
tion.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[ENOMEM] Not enough memory exists to initialize the mutex attributes object.

RELATED INFORMATION
Functions: pthread_mutex_init(2), pthread_mutexattr_destroy(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−147

pthread_mutexattr_setkind_np(2) OSS System Calls Reference Manual

NAME
pthread_mutexattr_setkind_np - Sets the mutex type attribute of a mutex attributes object

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

extern int pthread_mutexattr_setkind_np(
pthread_mutexattr_t *attr,
int kind);

PARAMETERS
attr specifies the mutex attributes object whose mutex type attribute is to be

modified.

kind specifies the new value for the mutex type attribute. Valid values are:

MUTEX_FAST_NP
This is the default value. Creates a default mutex.

MUTEX_NONRECURSIVE_NP
Creates a normal mutex.

MUTEX_RECURSIVE_NP
Creates a recursive mutex.

DESCRIPTION
The pthread_mutexattr_setkind_np() function sets the mutex type attribute of the mutex attri-
butes object specified by the attr parameter.

A fast (default) mutex is locked and unlocked in the fastest manner possible. A fast mutex can
be locked (obtained) only once. All subsequent calls to the pthread_mutex_lock() function by
the owning thread return [EDEADLK]. Subsequent calls by another thread block.

A normal (nonrecursive) mutex is locked only once by a thread, like a fast (default) mutex. If the
thread tries to lock the mutex again without first unlocking it, the thread receives an error. Also,
if someone other than the owner tries to unlock a nonrecursive mutex, an error is returned.

A recursive mutex can be locked more than once by the same thread without returning an error.
That is, a single thread can make consecutive calls to pthread_mutex_lock() without blocking.
The thread must then call the pthread_mutex_unlock() function the same number of times as it
called pthread_mutex_lock() before another thread can lock the mutex.

Never use a recursive mutex with condition variables, because the implicit unlock performed for
a call to the pthread_cond_wait() or pthread_cond_timedwait() function might not actually
release the mutex. In that case, no other thread can satisfy the condition of the predicate.

RETURN VALUES
One of the following values can be returned:

0 Successful completion.

[EINVAL] The value specified by the attr parameter is invalid.

5−148 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutexattr_setkind_np(2)

[EPERM] The caller does not have the appropriate privileges to perform this operation.

[ERANGE] One or more of the parameters have an invalid value.

RELATED INFORMATION
Functions: pthread_mutex_init(2), pthread_mutexattr_getkind_np(2),
pthread_mutexattr_init(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 5−149

pthread_mutexattr_settype(2) OSS System Calls Reference Manual

NAME
pthread_mutexattr_settype - Sets the mutex type attribute of a mutex attribute object

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_settype(
pthread_mutexattr_t *attr,
int type);

PARAMETERS
attr Specifies the address of a pthread mutex attribute object whose mutex type attri-

bute is to be updated.

type Specifies the mutex type that is used to update the type attribute for the attr
parameter value.

DESCRIPTION
The pthread_mutexattr_settype() function sets the mutex type attribute of the mutex attribute
object specified by the attr parameter.

The following are the valid type parameter values and their characteristics:

PTHREAD_MUTEX_NORMAL
A normal mutex does not detect deadlock. If a thread attempts to relock a nor-
mal mutex without first unlocking it, the thread deadlocks. If a thread attempts to
unlock a normal mutex locked by a different thread, the result is undefined
behavior. If a thread attempts to unlock an unlocked normal mutex, the result is
undefined behavior.

PTHREAD_MUTEX_ERRORCHECK
An error checking mutex returns error checking. If a thread attempts to relock an
error checking mutex without first unlocking it, the function returns an error. If a
thread attempts to unlock an error checking mutex locked by a different thread,
the function returns an error. If a thread attempts to unlock an unlocked error
checking mutex, the function returns an error.

PTHREAD_MUTEX_RECURSIVE
A recursive mutex can be locked more than once by the same thread without
returning an error. If a thread attempts to relock a recursive mutex without first
unlocking it, the thread succeeds in locking the mutex. The relocking deadlock
that can occur with normal mutexes cannot occur with this type of mutex. Multi-
ple locks of a recursive mutex require the same number of unlocks to release the
mutex before another thread can acquire the mutex. If a thread attempts to
unlock a recursive mutex that another thread has locked, the function returns an
error. If a thread attempts to unlock an unlocked recursive mutex, the function
returns an error.

PTHREAD_MUTEX_DEFAULT
A default mutex can be locked only once. If a thread attempts to relock a default
mutex, the result is undefined behavior. If a thread attempts to unlock a default
mutex locked by a different thread, the result is undefined behavior. If a thread
attempts to unlock an unlocked default mutex, the result is undefined behavior.
An implementation can map this mutex to one of the other mutex types.

5−150 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutexattr_settype(2)

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
This function is not supported with the Standard POSIX Threads (SPT) library. SPT-based appli-
cations should use the pthread_mutexattr_setkind_np() function instead.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment using the POSIX User Thread Model library, see the Open System Ser-
vices Programmer’s Guide.

RETURN VALUES
Upon successful completion, the pthread_mutexattr_settype() function returns 0 (zero); other-
wise, the function returns an error number to identify the error.

ERRORS
If the pthread_mutexattr_settype() function call fails, errno may return the following value:

[EINVAL] The value specified by the attr or type parameter is invalid.

This function does not return the [EINTR] error code.

RELATED INFORMATION
Functions: pthread_mutex_init(2), pthread_mutexattr_gettype(2),
pthread_mutexattr_init(2), pthread_mutexattr_setkind_np(2).

STANDARDS CONFORMANCE
This function conforms to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 5−151

pthread_mutex_destroy(2) OSS System Calls Reference Manual

NAME
pthread_mutex_destroy - Destroys a mutex

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_mutex_destroy(
pthread_mutex_t *mutex);

PARAMETERS
mutex Specifies the mutex to be destroyed.

DESCRIPTION
This function destroys the specified mutex by uninitializing it. Call this function when your pro-
gram no longer needs the specified mutex object.

After this function is called, the system might reclaim the storage used by the destroyed mutex.

Destroying an initialized mutex that is unlocked is safe. Destroying a locked mutex is not
allowed.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

5−152 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutex_destroy(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
The results of this function are unpredictable if the mutex object specified by the mutex parame-
ter does not exist or is not initialized.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EBUSY] An attempt was made to destroy the mutex indicated by the mutex parameter
while it is locked or referenced.

[EINVAL] The value specified for the mutex parameter is invalid.

RELATED INFORMATION
Functions: pthread_mutex_init(2), pthread_mutex_lock(2), pthread_mutex_trylock(2),
pthread_mutex_unlock(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−153

pthread_mutex_init(2) OSS System Calls Reference Manual

NAME
pthread_mutex_init - Initializes a mutex

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_mutex_init(
pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

PARAMETERS
mutex Specifies the mutex to be initialized.

attr Specifies the mutex attributes object that defines the characteristics of the mutex
to be initialized.

DESCRIPTION
This function initializes a mutex with the attributes of the mutex attributes object specified by the
attr parameter. A mutex is a synchronization object that allows multiple threads to serialize their
access to shared data.

A mutex is a resource of the process, not part of any particular thread. A mutex is neither des-
troyed nor unlocked automatically when any thread exits. If a mutex is allocated on a stack,
static initializers cannot be used on the mutex.

The mutex is initialized and set to the unlocked state. If attr is NULL, the default mutex attri-
butes are used.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running

5−154 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutex_init(2)

H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
Use the PTHREAD_MUTEX_INITIALIZER macro to statically initialize a mutex without
calling this function. Use this macro as follows:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Only normal mutexes can be statically initialized.

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error, the
mutex is not initialized, and the contents of mutex are undefined. Possible return values are:

0 Successful completion.

[EAGAIN] The system lacks the necessary resources to initialize the mutex.

[EBUSY] The system detected an attempt to reinitialize a mutex (an attempt to initialize a
previously initialized but not yet destroyed mutex).

[EINVAL] The value specified by the attr parameter is invalid.

[ENOMEM] Insufficient memory exists to initialize the mutex.

[EPERM] The caller does not have the required privileges to perform the operation.

RELATED INFORMATION
Functions: pthread_mutex_destroy(2), pthread_mutex_lock(2), pthread_mutex_trylock(2),
pthread_mutex_unlock(2), pthread_mutexattr_destroy(2), pthread_mutexattr_init(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−155

pthread_mutex_lock(2) OSS System Calls Reference Manual

NAME
pthread_mutex_lock - Locks an unlocked mutex

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_mutex_lock(
pthread_mutex_t *mutex);

PARAMETERS
mutex Specifies the mutex to be locked.

DESCRIPTION
This function locks a mutex. The result depends upon the type of mutex:

• If mutex is a fast or nonrecursive mutex, an error is returned if the current owner of the
mutex calls this function in an attempt to lock the mutex a second time.

• If mutex is a recursive mutex, the current owner of the mutex can relock the same mutex
without blocking. The lock count is incremented for each recursive lock within the
thread.

The thread that locks a mutex becomes its current owner and remains its owner until the same
thread unlocks it. This function returns with the mutex in the locked state and the current thread
as the mutex’s current owner.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

5−156 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutex_lock(2)

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EDEADLK] The current thread already owns the mutex.

[EINVAL] The value specified by the mutex parameter is not a valid mutex.

[ENOMEM] There is insufficient memory to lock a statically initialized mutex.

RELATED INFORMATION
Functions: pthread_mutex_destroy(2), pthread_mutex_init(2), pthread_mutex_trylock(2),
pthread_mutex_unlock(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

The return of [ENOMEM] is an HP extension to the POSIX standard.

527186-023 Hewlett-Packard Company 5−157

pthread_mutex_trylock(2) OSS System Calls Reference Manual

NAME
pthread_mutex_trylock - Attempts to lock a specified mutex but does not wait if the mutex is
already locked

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_mutex_trylock(
pthread_mutex_t *mutex);

PARAMETERS
mutex Specifies the mutex to be locked.

DESCRIPTION
This function attempts to lock the mutex specified by the mutex parameter. When a thread calls
this function, an attempt is made to immediately lock the mutex. If the mutex is successfully
locked, this function returns 0 (zero) and the calling thread becomes the mutex’s current owner.
If the specified mutex is already locked, the calling thread does not wait for the mutex to become
available and the function returns.

This function does the following:

• If mutex is a fast or nonrecursive mutex: if the mutex is already locked by any thread
(including the calling thread) when this function is called, this function returns [EBUSY]
and the calling thread does not wait to acquire the lock.

• If mutex is a recursive mutex: if the mutex is either unlocked or owned by the calling
thread, this function returns 0 (zero) and the mutex lock count is incremented. (To
unlock a recursive mutex, each lock must be matched by a call to the
pthread_mutex_unlock() function.)

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

5−158 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutex_trylock(2)

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EBUSY] The mutex is already locked; therefore, it was not acquired.

[EINVAL] The value specified by the mutex parameter is not a valid mutex.

[ENOMEM] There is insufficient memory to lock a statically initialized mutex.

RELATED INFORMATION
Functions: pthread_mutex_destroy(2), pthread_mutex_init(2), pthread_mutex_lock(2),
pthread_mutex_unlock(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

The return of [ENOMEM] is an HP extension to the POSIX standard.

527186-023 Hewlett-Packard Company 5−159

pthread_mutex_unlock(2) OSS System Calls Reference Manual

NAME
pthread_mutex_unlock - Unlocks a mutex

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_mutex_unlock(
pthread_mutex_t *mutex);

PARAMETERS
mutex Specifies the mutex to be unlocked.

DESCRIPTION
This function unlocks the mutex specified by the mutex parameter. This function does the fol-
lowing:

• If mutex is a fast or nonrecursive mutex: if the mutex is owned by the calling thread, it is
unlocked with no current owner. If the mutex is not locked or is already locked by
another thread, [EPERM] is returned.

• If mutex is a recursive mutex: if the mutex is owned by the calling thread, the lock count
is decremented. The mutex remains locked and owned until the lock count reaches 0
(zero). When the lock count reaches 0 (zero), the mutex becomes unlocked with no
current owner.

If one or more threads are waiting to lock the specified mutex and the mutex becomes unlocked,
this function causes one thread to unblock and try to acquire the mutex. The scheduling policy is
used to determine which thread to unblock. A blocked thread is chosen in priority order, using a
first-in/first-out (FIFO) algorithm within priorities. Note that the mutex might not be acquired by
the unblocked thread if another running thread attempts to lock the mutex first.

If a signal is delivered to a thread waiting for a mutex, then upon return from the signal handler,
the thread resumes waiting for the mutex as if it had not been interrupted.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

5−160 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_mutex_unlock(2)

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified for the mutex parameter is invalid.

[EPERM] The calling thread does not own the mutex.

RELATED INFORMATION
Functions: pthread_mutex_destroy(2), pthread_mutex_init(2), pthread_mutex_lock(2),
pthread_mutex_trylock(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−161

pthread_once(2) OSS System Calls Reference Manual

NAME
pthread_once - Calls a routine to be executed once by a single thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

pthread_once_t once_control = PTHREAD_ONCE_INIT;

int pthread_once(
pthread_once_t *once_control,
void (*routine)(void));

PARAMETERS
once_control Specifies a block that controls the one-time execution code. Each one-time exe-

cution routine must have its own unique pthread_once_t block.

routine Specifies the address of the routine to be executed once. This routine is called
only once, regardless of the number of times it and its associated once_control
block are passed to pthread_once().

DESCRIPTION
The first call to this function by any thread in a process with a given once_control block calls the
routine specified by routine with no arguments. Subsequent calls to pthread_once() with the
same once_control block do not call the routine. On return from pthread_once(), the routine is
guaranteed to have finished.

For example, a mutex or a per-thread context key must be created exactly once. Calling
pthread_once() ensures that the initialization is serialized across multiple threads. Other
threads that reach the same point in the code are delayed until the first thread is finished.

To initialize the once_control block, use the PTHREAD_ONCE_INIT macro, as shown in the
SYNOPSIS.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

5−162 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_once(2)

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
If you specify a routine that directly or indirectly results in a recursive call to pthread_once()
and that specifies the same routine argument, the recursive call can result in a deadlock.

EXAMPLES
RETURN VALUES

If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified for the once_control parameter is not valid.

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−163

pthread_self(2) OSS System Calls Reference Manual

NAME
pthread_self - Obtains the thread identifier of the calling thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

pthread_t pthread_self(void);

DESCRIPTION
This function returns the thread identifier of the calling thread.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the

5−164 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_self(2)

following tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
This function returns the thread identifier of the calling thread.

RELATED INFORMATION
Functions: pthread_cancel(2), pthread_create(2), pthread_detach(2), pthread_exit(2),
pthread_join(2), pthread_kill(2), pthread_sigmask(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−165

pthread_setcancelstate(2) OSS System Calls Reference Manual

NAME
pthread_setcancelstate - Sets the calling thread’s cancelability state

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_setcancelstate(
int state,
int *oldstate);

PARAMETERS
state Specifies the new cancelability state for the calling thread. Valid values are:

PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DISABLE

oldstate Receives the previous cancelability state for the calling thread.

DESCRIPTION
This function sets the calling thread’s cancelability state to the value of the state parameter and
returns its previous cancelability state in the oldstate parameter.

When the cancelability state is set to PTHREAD_CANCEL_DISABLE, a cancelation request
cannot be delivered to the thread, even if a cancelable routine is called or an asynchronous
cancelability type is enabled.

When a thread is created, the default cancelability state is PTHREAD_CANCEL_ENABLE.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

5−166 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_setcancelstate(2)

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

Possible Problems When Disabling Cancelability
The most important use of thread cancelation is to ensure that possibly indefinite wait operations
are terminated. For example, a thread that waits on some network connection, which can possi-
bly take days to respond (or might never respond), should be made cancelable.

When a thread’s cancelability is disabled, no routine in that thread is cancelable. As a result, the
user is unable to cancel the operation performed by that thread. When disabling cancelability, be
sure that no long waits can occur and that no cancelation requests must be deferred around that
particular region of code for other reasons.

RETURN VALUES
On successful completion, this function returns the calling thread’s previous cancelability state in
the oldstate parameter.

If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The specified cancelability state is not PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE.

RELATED INFORMATION
Functions: pthread_cancel(2), pthread_setcanceltype(2), pthread_testcancel(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−167

pthread_setcanceltype(2) OSS System Calls Reference Manual

NAME
pthread_setcanceltype - Sets the calling thread’s cancelability type

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_setcanceltype(
int type,
int *oldtype);

PARAMETERS
type Specifies the cancelability type to set for the calling thread. Valid values are:

PTHREAD_CANCEL_DEFERRED

oldtype Receives the previous cancelability type for the calling thread.

DESCRIPTION
This function sets the calling thread’s cancelability type to the value of the type parameter and
returns its previous cancelability type in the oldtype parameter.

When the cancelability state is PTHREAD_CANCEL_DISABLE (see the
pthread_setcancelstate(2) reference page either online or in the Open System Services System
Calls Reference Manual), a cancelation request cannot be delivered to the thread, even if a can-
celable routine is called or the asynchronous cancelability type is enabled.

When the cancelability state is PTHREAD_CANCEL_ENABLE, cancelability depends on the
thread’s cancelability type. If the thread’s cancelability type is
PTHREAD_CANCEL_DEFERRED, the thread can receive a cancelation request only at
specific cancelation points (including condition waits, thread joins, and calls to the
pthread_testcancel() function.)

When a thread is created, the default cancelability type is PTHREAD_CANCEL_DEFERRED.
The cancelability type of PTHREAD_CANCEL_ASYNCHRONOUS is not supported in this
implementation.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

5−168 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_setcanceltype(2)

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
If the asynchronous cancelability type is set, do not call any function unless it is explicitly docu-
mented as safe to be called with the asynchronous cancelability type. The only safe functions are
pthread_setcanceltype() and pthread_setcancelstate().

The asynchronous cancelability type should be used only when you have a compute-bound sec-
tion of code that carries no state and makes no function calls.

RETURN VALUES
On successful completion, this function returns the calling thread’s previous cancelability type in
the oldtype parameter.

If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The specified type is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

[ENOTSUP] The specified type is PTHREAD_CANCEL_ASYNCHRONOUS.

527186-023 Hewlett-Packard Company 5−169

pthread_setcanceltype(2) OSS System Calls Reference Manual

RELATED INFORMATION
Functions: pthread_cancel(2), pthread_setcancelstate(2), pthread_testcancel(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

The use of [ENOTSUP] is an HP extension to the POSIX standard.

5−170 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_setconcurrency(2)

NAME
pthread_setconcurrency - Sets level of concurrency

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_setconcurrency(int new_level);

DESCRIPTION
The pthread_setconcurrency() does not support thread scheduling. This function checks for I/O
completion when there is a context switch between threads and when the concurrency level is
met.

Concurrency values range from 0 to MAXINT inclusive. A concurrency level of 0 suggests to
the scheduler that the minimum possible amount of concurrency is required. Concurrency levels
greater than 0 suggest an increasingly higher level of concurrency.

The current implementation of concurrency level (Con Levl) and the minimum scheduled quan-
tum is as follows:

Con Levl Minimum Scheduled Quantum

--------- ----------------------------

0 Infinity

1 1 second

2 0.5 seconds

... ...

10 0.1 seconds

... ...

100 0.01 seconds

Note that the quantum is calculated using the formula, 1 / concurrency_level.

The default concurrency level for applications that use the POSIX User Thread Model library is
20; the default concurrency level for applications that use the Standard POSIX Threads library is
0.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

527186-023 Hewlett-Packard Company 5−171

pthread_setconcurrency(2) OSS System Calls Reference Manual

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If successful, the pthread_setconcurrency() function returns 0 (zero). Otherwise, an error
number is returned to indicate the error.

ERRORS
The pthread_setconcurrency() function will fail if:

[EINVAL] The value specified by new_level is negative.

[EAGAIN] The value specific by new_level would cause a system resource to be exceeded.

RELATED INFORMATION
Functions: pthread_getconcurrency(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

5−172 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_setschedparam(2)

NAME
pthread_setschedparam - Sets the scheduling policy and scheduling parameters of a thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_setschedparam(
pthread_t thread,
int policy,
const struct sched_param *param);

PARAMETERS
thread Specifies the thread whose scheduling policy and parameters are to be set.

policy Specifies the new scheduling policy value for the thread specified by the thread
parameter. Valid values are:

SCHED_FIFO

param Specifies one or more new values for the scheduling parameters associated with
the scheduling policy specified by the policy parameter. Valid values for the
sched_priority field of a sched_param structure depend on the chosen schedul-
ing policy. Use the sched_get_priority_min() and sched_get_priority_max()
functions to determine the low and high limits of each scheduling policy. The
default priority is 24.

DESCRIPTION
This function sets both the current scheduling policy and scheduling parameters of the thread
specified by the thread parameter to the policy and parameters provided by the policy and param
parameters, respectively.

The scheduling policies of all threads have one scheduling attribute named sched_priority. For
the scheduling policy you choose, you must specify an appropriate value in the sched_priority
field of the sched_param structure.

Changing the scheduling policy, priority, or both, of a thread can cause it to start executing or to
be preempted by another thread. A thread sets its own scheduling policy and priority by using
the handle returned by the pthread_self() function.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

527186-023 Hewlett-Packard Company 5−173

pthread_setschedparam(2) OSS System Calls Reference Manual

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
This function differs from the pthread_attr_setschedpolicy() and
pthread_attr_setschedparam() functions, which set the scheduling policy and scheduling
parameters used to establish the priority and scheduling policy of a new thread when it is created.
However, pthread_setschedparam() sets the scheduling policy and scheduling parameters of an
existing thread.

RETURN VALUES
If an error condition occurs, no scheduling policy or parameters are changed for the thread
thread, and this function returns an integer value indicating the type of error. Possible return
values are:

0 Successful completion.

[EINVAL] The value specified by the policy or param parameter is invalid.

[ENOTSUP] An attempt was made to set the scheduling policy or a scheduling parameter to
an unsupported value.

5−174 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_setschedparam(2)

[ESRCH] The thread parameter does not refer to an existing thread.

RELATED INFORMATION
Functions: pthread_attr_setschedparam(2), pthread_attr_setschedpolicy(2),
pthread_create(2), pthread_self(2), sched_yield(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

with the following exception:

• [EPERM] is not returned.

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−175

pthread_setspecific(2) OSS System Calls Reference Manual

NAME
pthread_setspecific - Sets the thread-specific data associated with a key

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_setspecific(
pthread_key_t key,
const void *value);

PARAMETERS
key Specifies the thread-specific key that identifies the thread-specific data to be set

to the new value. This key value is returned by the pthread_key_create() func-
tion.

value Specifies the new thread-specific data to associate with the key specified by key.

DESCRIPTION
This function sets the thread-specific data associated with the key specified by the key parameter
for the calling thread.

Different threads can bind different data to the same key. This data typically consists of pointers
to blocks of dynamically allocated memory that are reserved for use by the calling thread.

Although the data type of the value parameter (void *) implies that it represents an address, the
type is being used as a "universal scalar type." The system simply stores the value of value for
later retrieval.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running

5−176 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_setspecific(2)

H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The specified key is invalid.

[ENOMEM] Insufficient memory exists to associate the new data with the key.

RELATED INFORMATION
Functions: pthread_getspecific(2), pthread_key_create(2), pthread_key_delete(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−177

pthread_sigmask(2) OSS System Calls Reference Manual

NAME
pthread_sigmask - Examines or changes the calling thread’s signal mask

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */
[#include <signal.h>]

int pthread_sigmask(
int how,
const sigset_t *set,
sigset_t *oset);

PARAMETERS
how Indicates how the set of masked signals is to be changed. Valid values are:

SIG_BLOCK The resulting set is the union of the previous set and the signal
set indicated by the set parameter.

SIG_SETMASK
The resulting set is the signal set indicated by the set parameter.

SIG_UNBLOCK
The resulting set is the intersection of the previous signal set and
the complement of the signal set indicated by the set parameter.

set Specifies a signal set by pointing to a set of signals used to change the blocked
set. If this value is NULL, the how parameter is ignored and the signal mask is
unchanged.

oset Receives the value of the current signal mask (unless this value is NULL).

DESCRIPTION
This function examines or changes the calling thread’s signal mask. Typically, you use the
SIG_BLOCK value for the how parameter to block signals during a critical section of code, and
then use the SIG_SETMASK value for the how parameter to restore the signal mask to the value
returned by the previous call to pthread_sigmask().

If any unblocked signals are pending after a call to this function, at least one of those signals is
delivered before this function returns.

This function does not allow the SIGKILL or SIGSTOP signals to be blocked. If a program
attempts to block one of these signals, pthread_sigmask() gives no indication of the error.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

5−178 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_sigmask(2)

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EINVAL] The value specified for the how parameter is invalid.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−179

pthread_signal_to_cancel_np(2) OSS System Calls Reference Manual

NAME
pthread_signal_to_cancel_np - Cancels a thread if a specified signal is received

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_signal_to_cancel_np(
sigset_t *sigset,
pthread_t *thread);

PARAMETERS
sigset Specifies a signal mask containing a list of signals that, when received by the

thread, cancel the specified thread.

thread Specifies the thread to be canceled if a specified signal is received by the thread.

DESCRIPTION
The pthread_signal_to_cancel_np() function requests that the thread specified by the thread
parameter be canceled if one of the signals in the signal mask specified by the sigset parameter is
received by the process. The set of signals that can be specified is the same as the set for the
sigwait() function.

The sigset parameter is not validated. If it is invalid, this function returns successfully but nei-
ther the specified thread nor any previously specified thread is canceled if a signal occurs.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

5−180 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_signal_to_cancel_np(2)

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

NOTES
The address of the specified thread is saved in a per-process global variable. Therefore, any sub-
sequent call to this function by your application or any library function replaces the thread
specified in the previous call, and that thread is not canceled if one of the signals specified for it
is delivered to the process. Be careful when you call this function; if another thread calls it after
you do, the expected result of this function might not occur.

RETURN VALUES
One of the following values can be returned:

0 Successful completion.

[EINVAL] The value specified by the thread parameter is invalid.

RELATED INFORMATION
Functions: pthread_cancel(2), sigwait(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 5−181

pthread_testcancel(2) OSS System Calls Reference Manual

NAME
pthread_testcancel - Requests delivery of a pending cancelation request to the calling thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

void pthread_testcancel(void);

DESCRIPTION
This function requests delivery of a pending cancelation request to the calling thread. Thus, cal-
ling this function creates a cancelation point within the calling thread.

The cancelation request is delivered only if a request is pending for the calling thread and the
calling thread’s cancelability state is enabled. (A thread disables delivery of cancelation requests
to itself by calling the pthread_setcancelstate() function.)

When called within very long loops, this function ensures that a pending cancelation request is
noticed by the calling thread within a reasonable amount of time.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

5−182 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_testcancel(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RELATED INFORMATION
Functions: pthread_setcancelstate(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 5−183

pthread_unlock_global_np(2) OSS System Calls Reference Manual

NAME
pthread_unlock_global_np - Unlocks the threads global mutex

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
#include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int pthread_unlock_global_np(void);

DESCRIPTION
This function unlocks the threads global mutex. Because the threads global mutex is recursive,
the unlock occurs when the number of calls to this function match the number of calls to the
pthread_lock_global_np() function. For example, if you called pthread_lock_global_np()
three times, then the third time you call pthread_unlock_global_np(), it unlocks the threads glo-
bal mutex.

If no threads are waiting for the threads global mutex, it becomes unlocked with no current
owner. If one or more threads are waiting to lock the threads global mutex, this function causes
one thread to unblock and try to acquire the threads global mutex. The scheduling policy deter-
mines which thread is unblocked. For the policies SCHED_FIFO and SCHED_RR, a blocked
thread is chosen in priority order, using a first-in/first-out (FIFO) algorithm within priorities.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

5−184 Hewlett-Packard Company 527186-023

System Functions (n - p) pthread_unlock_global_np(2)

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
If an error condition occurs, this function returns an integer value indicating the type of error.
Possible return values are:

0 Successful completion.

[EPERM] The threads global mutex is unlocked or owned by another thread.

RELATED INFORMATION
Functions: pthread_lock_global_np(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification and to the following industry
standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 5−185

put_awaitio(2) OSS System Calls Reference Manual

NAME
put_awaitio - Awaits a tagged I/O file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

put_error_t put_awaitio(
const short filenum,
const long tag,
const long timelimit,
long *count_transferred,
int *error,
void *userdata);

PARAMETERS
filenum Specifies Guardian file number being waited on.

tag Specifies tag being waited on.

timelimit Specifies how many hundredths of a second to wait for a completed I/O:

-1 means wait forever

0 means immediate return

count_transferred
Specifies transfer count of completed I/O; set by callback when
PUT_SUCCESS is returned.

error Specifies Guardian error number for I/O; set by callback when PUT_SUCCESS
is returned or as described in ERRORS.

userdata Specifies address of user data area; the referenced data may be modified by a
callback.

DESCRIPTION
Awaits a tagged I/O on file number to complete, timeout, or be interrupted (see the
put_interrupt(2) reference page under RETURN VALUES). The function never cancels I/O.
I/O completes only if PUT_SUCCESS is returned. Multiple threads should not await the same
tagged I/O on any given file number.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

5−186 Hewlett-Packard Company 527186-023

System Functions (n - p) put_awaitio(2)

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
While using this API on a filenum obtained from PUT_FILE_OPEN_, the tag parameter must
be the same as the filenum parameter passed.

RETURN VALUES
PUT_SUCCESS

File number was waited on.

PUT_ERROR An error occurred. See ERRORS.

PUT_TIMEDOUT
Time limit has expired. See ERRORS.

PUT_INTERRUPTED
Wait was interrupted. See ERRORS.

ERRORS
16 filenum is not registered.

29 filenum < 0 (zero).

40 timelimit has expired.

[EINTR] Wait was interrupted via put_interrupt(), put_interruptTag(), or a signal was
received via pthread_kill() and is not blocked, ignored, or handled.

527186-023 Hewlett-Packard Company 5−187

PUT_CANCEL(2) OSS System Calls Reference Manual

NAME
PUT_CANCEL - Cancels the oldest incomplete operation on a Guardian file opened for nowait
I/O

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_CANCEL(
short filenum);

PARAMETERS
filenum Specifies the Guardian file number of a Guardian file open instance whose oldest

incomplete operation you want to cancel.

DESCRIPTION
The PUT_CANCEL() function is a thread-aware version of the Guardian CANCEL procedure.

The PUT_CANCEL() function is used to cancel the oldest incomplete operation on a Guardian
file opened for nowait I/O. The canceled operation might or might not have had effects. For disk
files, the file position might or might not be changed.

For programming information about the Guardian CANCEL procedure, see the Guardian
Programmer’s Guide.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

5−188 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_CANCEL(2)

Considerations
Queue files If a PUT_READUPDATELOCKX() function operation is canceled using the

PUT_CANCEL() function, the PUT_READUPDATELOCKX() call might
already have deleted a record from the queue file, which could result in the loss
of a record from the queue file. For audited queue files only, your application
can recover from a timeout error by calling the
PUT_ABORTTRANSACTION() function, when detecting Guardian file-
system error 40, to ensure that any dequeued records are reinserted into the file.

For nonaudited queue files, there is no recovery of a lost record. Thus, your
application should never call the Guardian AWAITIOX procedure with a time
limit greater than 0 (zero) if a PUT_READUPDATELOCKX() call is pending.
The PUT_ABORTTRANSACTION() recovery procedure does not work on
nonaudited queue files.

Messages The server process (that is, a process that was opened and to which the I/O
request was sent) receives a system message -38 (queued message cancellation)
that identifies the canceled I/O request, if it has requested receipt of such mes-
sages. If the server has already replied to the I/O request, message -38 is not
delivered. For details about system message -38, see the Guardian Procedure
Errors and Messages Manual.

RETURN VALUES
The PUT_CANCEL() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CONTROL(2), PUT_FILE_CLOSE_(2), PUT_FILE_OPEN_(2),
PUT_LOCKFILE(2), PUT_LOCKREC(2), PUT_READLOCKX(2),
PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2), PUT_READX(2),
PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

527186-023 Hewlett-Packard Company 5−189

PUT_CONTROL(2) OSS System Calls Reference Manual

NAME
PUT_CONTROL - Performs device-dependent input/output operations

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_CONTROL(
short filenum,
short operation,
short param,
long tag);

PARAMETERS
filenum Specifies the Guardian file number of a Guardian file open instance, identifying

the file on which the underlying CONTROL procedure performs an input or out-
put operation.

operation Specifies a value from 1 through 27 that defines a type of operation to be per-
formed. For tables that list operation numbers and the possible param values for
each, see the description of the CONTROL procedure in the Guardian Pro-
cedure Calls Reference Manual.

param (Optional) Specifies a value that defines the operation to be performed. For
tables that list operation numbers and the possible param values for each, see the
description of the CONTROL procedure in the Guardian Procedure Calls Refer-
ence Manual.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The PUT_CONTROL() function is a thread-aware version of the Guardian CONTROL pro-
cedure. CONTROL is used to perform device-dependent input or output operations.

If the PUT_CONTROL() function is used on a file that is opened for nowait I/O, the function
must be completed with a call to the AWAITIO procedure.

The following considerations apply to use on disk files:

Writing EOF to an unstructured file
Writing EOF to an unstructured disk file sets the EOF pointer to the relative byte
address indicated by the setting of the next-record pointer and writes the new
EOF setting in the file label on disk. (File pointer action for CONTROL opera-
tion 2, write EOF.)

File is locked If a CONTROL operation is attempted for a file locked through a filenum other
than that specified in the call to PUT_CONTROL(), the call is rejected with a
"file is locked" error 73. If any record is locked in a file, a call to
PUT_CONTROL() to write EOF (operation 2) to that same file will be rejected
with a "file is locked" error 73.

5−190 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_CONTROL(2)

The following considerations apply to use on magnetic tapes:

When device is not ready
If a magnetic tape rewind is performed concurrently with application program
execution (that is, a rewind operation other than 6), any attempt to perform a
read, write, or control operation to the rewinding tape unit while rewind is taking
place results in an error indication. A subsequent call to the FILE_GETINFO_
or FILEINFO procedure shows that an error 100 occurred.

Wait for rewind to complete
If a magnetic tape rewind operation of 6 (wait for completion) is performed as a
nowait operation, the application waits at the call to the AWAITIO procedure for
the rewind to complete.

The following considerations apply to use for interprocess communication:

Nonstandard operation and param values
You can specify any value for the operation and param parameters. An
application-defined protocol should be established for interpreting nonstandard
parameter values.

Process not accepting system messages
If the object of the control operation is not accepting process CONTROL mes-
sages, the call to PUT_CONTROL() completes but a subsequent call to the
FILE_GETINFO_ or FILEINFO procedure shows that an error 7 occurred.

Process control You can obtain the process identifier of the caller to PUT_CONTROL() in a
subsequent call to the FILE_GETRECEIVEINFO_ (or LASTRECEIVE or
RECEIVEINFO) procedure.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

527186-023 Hewlett-Packard Company 5−191

PUT_CONTROL(2) OSS System Calls Reference Manual

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
The PUT_CONTROL() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

When device handlers do not allow the operation, Guardian file-system error 2 is returned. For
information about Guardian file-system error numbers, see the Guardian Procedure Errors and
Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_FILE_CLOSE_(2), PUT_FILE_OPEN_(2),
PUT_LOCKFILE(2), PUT_LOCKREC(2), PUT_READLOCKX(2),
PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2), PUT_READX(2),
PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

5−192 Hewlett-Packard Company 527186-023

System Functions (n - p) put_fd_read_ready(2)

NAME
put_fd_read_ready - Waits on read-ready file descriptor

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

int put_fd_read_ready(
const int fd,
struct timeval *timeout);

PARAMETERS
fd Specifies an OSS file descriptor.

timeout On input, the maximum interval to wait for fd ready; if NULL, then no timeout
will occur. On output, the interval remaining.

DESCRIPTION
The put_fd_read_ready function waits on a file descriptor to be read-ready or have an exception
pending.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
0 (zero) No error.

[EINTR] A signal was received via pthread_kill() and is not blocked, ignored, or han-
dled.

527186-023 Hewlett-Packard Company 5−193

put_fd_read_ready(2) OSS System Calls Reference Manual

[EINVAL] Invalid function argument.

[EBADF] File descriptor not open for reading or closed while being waited on.

[ENOTSUP] Operation not supported on file descriptor.

[ETIMEDOUT]
The timeout has occurred.

5−194 Hewlett-Packard Company 527186-023

System Functions (n - p) put_fd_write_ready(2)

NAME
put_fd_write_ready - Waits on write-ready file descriptor

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

int put_fd_write_ready(
const int fd,
struct timeval *timeout);

PARAMETERS
fd Specifies an OSS file descriptor.

timeout On input, specifies the maximum interval to wait for fd ready.

If NULL, specifies that no timeout will occur.

On output, specifies the interval remaining.

DESCRIPTION
The put_fd_write_ready function waits on a file descriptor to be write-ready or have an excep-
tion pending.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
0 (zero) No error.

527186-023 Hewlett-Packard Company 5−195

put_fd_write_ready(2) OSS System Calls Reference Manual

[EINTR] A signal was received via pthread_kill() and is not blocked, ignored, or han-
dled.

[EINVAL] Invalid function argument.

[EBADF] File descriptor was not open for writing or was closed while being waited on.

[ENOTSUP] Operation was not supported on file descriptor.

[ETIMEDOUT]
timeout has occurred.

5−196 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_FILE_CLOSE_(2)

NAME
PUT_FILE_CLOSE_ - Closes an open Guardian file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_FILE_CLOSE_(
short filenum,
short tape_disposition);

PARAMETERS
filenum Specifies the file number of a Guardian file open instance that identifies the file

to be closed.

tape_disposition
(Optional) Indicates the tape control action to take:

0 Rewind and unload; do not wait for completion.

1 Rewind and unload, do not wait for completion.

2 Rewind and leave online; do not wait for completion.

3 Rewind and leave online; wait for completion.

4 Do not rewind; leave online.

Other input values result in no error if the file is a tape device; the control action
might be unpredictable. If this parameter is omitted, 0 (zero) is used.

DESCRIPTION
The PUT_FILE_CLOSE_ () function is a thread-aware version of the Guardian FILE_CLOSE_
procedure.

The FILE_CLOSE_ procedure closes a Guardian file open instance. Closing a file open instance
terminates access to the file through that open instance. You can use PUT_FILE_CLOSE_() to
close files that were opened by PUT_FILE_OPEN_().

For programming information about the FILE_CLOSE_ procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

527186-023 Hewlett-Packard Company 5−197

PUT_FILE_CLOSE_(2) OSS System Calls Reference Manual

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Returning space allocation after closing a file

Closing a disk file causes the space that is used by the resident file control block
to be returned to the system main-memory pool if the disk file is not open con-
currently. A temporary disk file is purged if the file was not open concurrently.
Any space that is allocated to that file is made available for other files. With any
file closure, the space allocated to the access control block (ACB) is returned to
the system.

Closing a nowait file open
If a PUT_FILE_CLOSE_() call is executed for a nowait file that has pending
operations, any incomplete operations are canceled. There is no indication as to
whether the operation completed or not.

Labeled tape processing
If your system has labeled tape processing enabled, all tape actions (as specified
by tape_disposition) wait for completion.

Process close message
A process can receive a process close system message when it is closed by
another process. It can obtain the process handle of the closer by a subsequent
call to the Guardian FILE_GETRECEIVEINFO_ procedure. For detailed infor-
mation about system messages, see the Guardian Procedure Errors and Mes-
sages Manual.

This message is also received if the close is made by the backup process of a
process pair. Therefore, a process can expect two of these messages when being
closed by a process pair.

RETURN VALUES
The PUT_FILE_CLOSE_ () function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_OPEN_(2),
PUT_LOCKFILE(2), PUT_LOCKREC(2), PUT_READLOCKX(2),
PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2), PUT_READX(2),
PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2), PUT_WRITEX(2).

5−198 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_FILE_OPEN_(2)

NAME
PUT_FILE_OPEN_ - Establishes a communication path between an application process and a
file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_FILE_OPEN_(
{const char *filename | const char*pathname}
short length,
short *filenum,
short access,
short exclusion,
short nowait_depth,
short sync_or_receive_depth,
short options,
short seq_block_buffer_id,
short seq_block_buffer_len,
short *primary_processhandle,
int elections);

PARAMETERS
filename | pathname

The filename parameter specifies the Guardian filename of a Guardian file to be
opened. The value of filename must be a valid fully or partially qualified file
name or DEFINE name. If the name is partially qualified, it is resolved using the
contents of the =_DEFAULTS DEFINE.

The pathname parameter specifies the OSS filename or pathname of an OSS file
to be opened. The value of the pathname parameter is terminated by a null char-
acter. options bit 10 must be set to 1 to open an OSS file.

filenum Returns a Guardian file number that is used to identify the Guardian file open
instance in subsequent Guardian file-system calls. If the file cannot be opened, a
value of -1 is returned.

The filenum parameter is used as an input parameter only when you are attempt-
ing a backup open. In that case, you must supply the primary_processhandle
parameter or else the input value of filenum is ignored. For a backup open, the
value specified for filenum must be the filenum value that was returned when the
file was opened by the primary process. If a backup open is successful, the input
value of filenum is returned unless options bit 3 is set, in which case a new file
number is assigned for the backup open. If the backup open is unsuccessful, -1
is returned.

access Specifies the desired access mode for the file to be opened. Valid values are:

0 Read-write

527186-023 Hewlett-Packard Company 5−199

PUT_FILE_OPEN_(2) OSS System Calls Reference Manual

1 Read only

2 Write only

3 Extend (supported only for tape)

The default is 0 (zero).

exclusion Specifies the desired mode of compatibility with other openers of the file. Valid
values are:

0 Shared

1 Exclusive

2 Process exclusive

3 Protected

The default is 0 (zero).

nowait_depth Specifies the number of nowait I/O operations that can be in progress for the file
concurrently with other processing. If this parameter is omitted or 0 (zero), only
waited I/O operations are permitted against the file. The maximum value is 1 for
disk files and $RECEIVE. The maximum value is 15 for other objects, except
for the Transaction Monitoring Facility (TMF) transaction pseudofile (TFILE),
which has a maximum of 1000. For details about the TFILE, see the TMF Appli-
cation Programmer’s Guide.

sync_or_receive_depth
The purpose of this parameter depends on the type of device being opened:

disk file Specifies the number of nonretryable (that is, write) requests
whose completion the Guardian file system must remember.
You must specify a value of 1 or greater to recover from a path
failure occurring during a write operation. This value also
implies the number of write operations that the primary process
in a process pair can perform to this file without intervening
checkpoints to its backup process. For disk files, this parameter
is called sync depth. The maximum value is 15.

If omitted, or if 0 (zero) is specified, internal checkpointing does
not occur. Disk path failures are not automatically retried by the
file system.

$RECEIVE file
Specifies the maximum number of incoming messages read by
the PUT_READUPDATEX() function that the application pro-
cess is allowed to queue before corresponding reply operations
must be performed. If omitted or 0 (zero),
PUT_READUPDATEX() and reply operations to $RECEIVE
are not permitted. For $RECEIVE, this parameter is called
receive depth, and the maximum number of queued incoming
messages is 4047 in H06.17 and J06.06 and earlier RVUs. For
H06.18 and J06.07 and later RVUs, the maximum receive depth
value is increased from 4047 to 16300.

5−200 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_FILE_OPEN_(2)

process pair Specifies whether an I/O operation is automatically redirected to
the backup process if the primary process or its processor
module fails. For processes, this parameter is called sync depth.
The process determines the maximum value. The value must be
at least 1 for an I/O operation to a remote process pair to recover
from a network failure. If this parameter is greater than or equal
to 1, the server is expected to save or be able to regenerate that
number of replies. If this parameter is 0 (zero), and if an I/O
operation cannot be performed to the primary process of a pro-
cess pair, an error indication is returned to the originator of the
message. On a subsequent I/O operation, the file system
redirects the request to the backup process.

For other device types, the meaning of this parameter depends on whether the
sync-ID mechanism is supported by the device being opened. If the device does
not support the sync-ID mechanism, 0 (zero) is used regardless of what you
specify (this is the most common case). If the device supports the sync-ID
mechanism, specifying a nonzero value causes the results of that number of
operations to be saved; in case of path failures, the operations are retried
automatically. The actual value being used can be obtained by a call to the
FILE_GETINFOLIST_ procedure.

options Specifies optional characteristics as a bit mask. The bits, when set to 1, indicate:

0 Unstructured access. For disk files, access is to occur as if the
file were unstructured, that is, without regard to record structures
and partitioning. (For unstructured files, setting this bit to 1
causes secondary partitions to be inaccessible.) This bit must be
0 (zero) for other devices.

1 Nowait open processing. Specifies that the processing of the
open proceeds in a nowait manner. Unless
PUT_FILE_OPEN_() returns an error, a nowait open must be
completed by a call to the Guardian AWAITIOX procedure.
This option cannot be specified for the TMF transaction
pseudofile (TFILE). This option does not determine the nowait
mode of I/O operations. The nowait_depth parameter, which
controls the nowait mode of I/O operations, must have a nonzero
value when you use this option.

2 No open time update. For disk files, the "time of last open" file
attribute is not updated by this open. This bit must be 0 (zero)
for other devices.

3 Any file number for backup open. When performing a backup
open, specifies that the system can use any file number for the
backup open. A value of 0 (zero) specifies that the backup open
is to have the same file number as the primary open. Guardian
file-system error 12 is returned if that file number is already in
use.

4 through 9 Reserved; specify 0 (zero).

527186-023 Hewlett-Packard Company 5−201

PUT_FILE_OPEN_(2) OSS System Calls Reference Manual

10 Open an OSS file by its OSS pathname. Specifies that the file to
be opened is identified by the pathname parameter.

11 Reserved; specify 0 (zero).

12 No transactions. For $RECEIVE, messages are not to include
transaction identifiers. This bit must be 0 (zero) if bit 15 is 1.

13 Internationalization locale support. For $RECEIVE, data mes-
sages include internationalization locale information. This bit
must be 0 (zero) if bit 15 is 1. For information about internation-
alization, see the Software Internationalization Guide.

14 Old-format system messages. For $RECEIVE, system messages
should be delivered in C-series format. If this bit is 0 (zero), D-
series format messages are delivered. For other device types,
this bit must be 0 (zero). See Interprocess Communication
Considerations in the DESCRIPTION subsection of this refer-
ence page.

15 No file-management system messages. For $RECEIVE,
specifies that the caller does not wish to receive process open,
process close, CONTROL, SETMODE, SETPARAM, RESET-
SYNC, and CONTROLBUF messages. If this bit is 0 (zero),
messages are delivered as normal; some messages are received
only with PUT_SETMODE(80). For other device types, this bit
must be 0 (zero).

When options is omitted, 0 (zero) is used for all bits.

seq_block_buffer_id
If present and not 0 (zero), identifies the buffer to be used for shared sequential
block buffering; all opens made through PUT_FILE_OPEN_() and using this
ID share the same buffer. You can supply any integer value for this parameter.

If seq_block_buffer_id is omitted or 0 (zero), and sequential block buffering is
requested, the buffer is not shared. In this case, the buffer resides in the
process’s process file segment (PFS) with the size given by
seq_block_buffer_len.

seq_block_buffer_len
Specifies whether sequential block buffering is being requested. If this parame-
ter is supplied with a value greater than 0 (zero), it indicates a request for
sequential block buffering and specifies the length in bytes of the sequential
block buffer. If this parameter is omitted or 0 (zero), sequential block buffering
is not requested. Sequential block buffering is only for disk files.

If this value is less than the data-block length that was given to this file or to any
associated alternate-key file, the larger value is used. Supplying a nonzero value
for this parameter causes a buffer to be allocated unless an existing buffer is to
be shared (see the seq_block_buffer_id parameter). If an existing buffer is to be
shared, but it is smaller than seq_block_buffer_len, sequential block buffering is
not provided and a warning value of 5 is returned.

5−202 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_FILE_OPEN_(2)

primary_processhandle
Indicates that the caller is requesting a backup open and specifies the process
handle of the primary process that already has the file open when its backup
attempts to open the file. If this parameter is supplied and not null (a null pro-
cess handle has -1 in each word), filenum must contain the filenum value that was
returned to the primary. If a null process handle is supplied, or the parameter is
omitted, a normal open is being requested. Use this option only when the
backup process is the caller. It is more common for the primary process to per-
form this operation by a call to the FILE_OPEN_CHKPT_ procedure.

elections Specifies the following options as a bit mask:

0 through 30 Reserved; specify 0 (zero).

31 Use 64-bit primary keys. For disk files only, bit 31 specifies that
64-bit primary-key values are used instead of 32-bit values for
unstructured, relative, or entry-sequenced files. Bit 31 is ignored
for key-sequenced files and nondisk devices.

You can use the elections parameter with both Format 1 and Format 2 Guardian
files. If this parameter is omitted, 0 (zero) is used for all bits.

DESCRIPTION
The PUT_FILE_OPEN_() function is a thread-aware version of the Guardian FILE_OPEN_
procedure.

The PUT_FILE_OPEN_() function establishes a communication path between an application
process and a file. When PUT_FILE_OPEN_() successfully completes, it returns a Guardian
file number to the caller. The file number identifies this access path to the file in subsequent
Guardian file-system calls.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

527186-023 Hewlett-Packard Company 5−203

PUT_FILE_OPEN_(2) OSS System Calls Reference Manual

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

General Considerations
File numbers File numbers are unique within a process. The lowest file number is 0 (zero) and

is reserved for $RECEIVE; the remaining file numbers start at 1. The lowest
available file number is always assigned, except in the case of backup opens.
When a file is closed, its file number becomes available for a subsequent file
open to use.

Maximum number of open files
The maximum number of files in the system that can be open at any given time
depends on the space available for control blocks: access control blocks
(ACBs), file control blocks (FCBs), and open control blocks (OCBs). The
amount of space available for control blocks is limited primarily by the physical
memory size of the system. The maximum amount of space for ACBs is deter-
mined by the size of the process file segment (PFS). See the description of the
pfs-size parameter for the PROCESS_CREATE_ procedure in the Guardian Pro-
cedure Calls Reference Manual.

Multiple opens by the same process
If a given file is opened more than once by the same process, a unique file
number is returned for each open. These file numbers provide logically separate
accesses to the same file; each file number has its own ACB, its own file posi-
tion, and its own last error value. If a nowait I/O operation haS begun and a
second nowait operation is started (using a second file number for the same file),
the I/O requests:

• Are independent

• Might arrive in either order at the destination

• Might complete in either order

Multiple opens on a given file can create a deadlock. Locks are granted on an
open file (that is, file number) basis. Therefore, if a process opens the same file
multiple times, a lock of one file number excludes access to the file through other
file numbers. The process is suspended forever if the default locking mode is in
effect and a deadlock occurs.

Limit on number of concurrent opens
There is a limit on the total number of concurrent opens permitted on a file. This
determination includes opens by all processes. The specific limit for a file
depends on the file’s device type:

Disk files Cannot exceed 32,767 opens per disk.

Process Defined by the process (see the discussion of controlling openers
in the Guardian Programmer’s Guide).

$0 Unlimited opens.

$0.#ZSPI 128 concurrent opens permitted.

$OSP Ten times the number of subdevices (up to a maximum of 830
opens).

5−204 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_FILE_OPEN_(2)

$RECEIVE One open per process is permitted.

Other Varies by subsystem.

Specifying a nowait_depth value greater than 0 (zero) causes all I/O operations
to be performed in a nowait manner. Nowait I/O operations must be completed
by a call to the AWAITIOX procedure.

Nowait I/O operations on different file numbers (even if for the same file) are
independent, might arrive in any order at the destination, and might be com-
pleted by AWAITIOX in any order.

Nowait opens If you open a file in a nowait manner (options bit 1 = 1) and if
PUT_FILE_OPEN_() returns no error (returns a value of 0 [zero]), the open
operation must be completed by a call to AWAITIOX.

If there is an error, no system message is sent to the object being opened and you
do not need to call AWAITIOX to complete the operation. If there is no error,
the filenum parameter returned by PUT_FILE_OPEN_() is valid; however, you
cannot initiate any I/O operation on the file until you complete the open by cal-
ling AWAITIOX.

If you specify the tag parameter in the call to AWAITIOX, a -30D is returned;
the values returned in the buffer and count parameters to AWAITIOX are
undefined. If an error returns from AWAITIOX, it is your responsibility to close
the file.

For the TMF transaction pseudofile, or for a waited file (nowait_depth = 0
[zero]), a request for a nowait open is rejected.

The Guardian file system implementation of a nowait open might use waited
calls in some cases. However, it is guaranteed that the open message is sent
using nowait I/O to a process; the opener does not wait for the process being
opened to service the open message.

Direct and buffered I/O transfers
A file opened by PUT_FILE_OPEN_() uses direct I/O transfers by default;
SETMODE 72 is used to force the system to use an intermediate buffer in the
process file segment (PFS) for I/O transfers. This behavior is unlike the obsoles-
cent Guardian OPEN procedure call, which uses a PFS buffer for I/O transfers by
default.

Sequential block buffering
Sequential block buffering is only supported for disk files. If you are using
sequential block buffering, the file should usually be opened with protected or
exclusive access. You can use shared access, but it is somewhat slower than the
other access methods, and there might be concurrency problems. See the discus-
sion of "Sequential Block Buffering" in the Enscribe Programmer’s Guide.

Named processes
If you supply a process filename for a named process, it can represent any pro-
cess with the same name. System messages are normally sent to the current pri-
mary process. The exception is when a named process supplies its own name to
PUT_FILE_OPEN_(). In that case, the name refers to the backup process and
system messages are sent to the backup process.

A named process can be represented with or without a sequence number.
PUT_FILE_OPEN_() treats the two name forms differently:

527186-023 Hewlett-Packard Company 5−205

PUT_FILE_OPEN_(2) OSS System Calls Reference Manual

• If you supply a process file name that includes a sequence number, the
process must have a matching sequence number or the open fails with
error 14. When retrying I/O on a process opened under such a name, the
file system does not attempt to send messages to a possible backup pro-
cess of the same name unless it has a matching sequence number. This
behavior ensures that the named process is a true backup of the primary
process.

• If you supply a process file name that does not include a sequence
number, any process with a matching name can be opened and can be
sent I/O retries. A newly created process that receives an I/O retry
intended for another process of the same name will usually reject it with
an error 60, but this behavior is under the control of the application.

Partitioned files
A separate FCB exists for each partition of a partitioned file. There is one ACB
per accessor (as for single-volume files), but this ACB requires more main
memory because it contains the information necessary to access all of the parti-
tions, including the location and partial-key value for each partition.

Disk file open security check
When a disk file open is attempted, the system performs a security check. The
accessor’s (that is, the caller’s) security level is checked against the file security
level for the requested access mode, as follows:

for read access read security level is checked.

for write access
write security level is checked.

for read-write access
read and write security levels are checked.

A Guardian file has one of seven levels of security for each access mode. The
owner of the file can set the security level for each access mode by using SET-
MODE function 1 or by using the File Utility Program (FUP) SECURE com-
mand. The following table shows the seven levels of security:

Table 5−1. Levels of Guardian File Security

FUP Code Program Value Access Permitted__
- 7 Local super ID only
U 6 Owner (local or remote),

that is, any user with
owner’s ID

C 5 Member of owner’s group
(local or remote), that is,
any member of owner’s
community

N 4 Any user (local or remote)
O 2 Owner only (local)

5−206 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_FILE_OPEN_(2)

G 1 Member of owner’s group
(local)

A 0 Any user (local)

For a given access mode, the accessor’s security level is checked against the file
security level. File access is allowed or not allowed as shown in the following
table. In this table, file security levels are indicated by FUP security codes. For
a given accessor security level, a Y indicates that access is allowed to a file with
the security level shown; an X indicates that access is not allowed.

Table 5−2. Allowed Guardian File Accesses

Accessor’s Security Level File Security Level
- U C N O G A__

Super ID user, local access Y Y Y Y Y Y Y
Super ID user, remote access X Y Y Y X X X

Owner or owner’s group manager,
remote access

X Y Y Y X X X

Member of owner’s group, remote
access

X X Y Y X X X

Any other user, remote access X X X Y X X X

Owner or owner’s group manager,
local access

X Y Y Y Y Y Y

Member of owner’s group, local
access

X X Y Y X Y Y

Any other user, local access X X X Y X X Y

If the caller to PUT_FILE_OPEN_() fails the security check, the open fails
with an error 48. You can obtain the security level of a file by a call to the Guar-
dian FILE_GETINFOLIST[BYNAME]_ procedure, the FILEINFO procedure, or
by the File Utility Program (FUP) INFO command.

If you are using the Safeguard product, this security information might not apply.

Tape file open access mode
The file system does not enforce read-only or write-only access for unlabeled
tape, even though no error is returned if you specify one of these access modes
when opening a tape file.

File open exclusion and access mode checking
When a file open is attempted, the requested access and exclusion modes are
compared with those of any opens already granted for the file. If the attempted
open is in conflict with other opens, the open fails with error 12. For a table that
lists the possible current modes and requested modes, indicating whether an
open succeeds or fails, see the description of the FILE_OPEN_ procedure in the
Guardian Procedure Calls Reference Manual. For the Optical Storage Facility
only, the "process exclusive" exclusion mode is also supported. Process
exclusive is the same as exclusive for opens by other processes, but the same as
shared for opens by the same process.

527186-023 Hewlett-Packard Company 5−207

PUT_FILE_OPEN_(2) OSS System Calls Reference Manual

Protected exclusion mode
Protected exclusion mode has meaning only for disk files. For other files, speci-
fying protected exclusion mode is equivalent to specifying shared exclusion
mode.

Disk File Considerations
Maximum number of concurrent nowait operations

The maximum number of concurrent nowait operations permitted for an open of
a disk file is 1. Attempting to open a disk file and specify a nowait_depth value
greater than 1 causes PUT_FILE_OPEN_() to fail with an error 28.

Unstructured files

File pointers after an open
After a disk file is opened, the current-record and next-record
pointers begin at a relative byte address (RBA) of 0, and the first
data transfer (unless positioning is performed) is from that loca-
tion. After a successful open, the pointers are:

current-record pointer = 0D
next-record pointer = 0D

Sharing the same EOF pointer
If a given disk file is opened more than once by the same pro-
cess, separate current-record and next-record pointers are pro-
vided for each open, but all opens share the same EOF pointer.

Structured files

Accessing structured files as unstructured files
The unstructured access option (options bit 0 = 1) permits a file
to be accessed as an unstructured file. You must maintain the
block format used by Enscribe if the file is be accessed again in
its structured form. (HP reserves the right to change this block
format at any time.) For information about Enscribe block for-
mats, see the Enscribe Programmer’s Guide.

For a file opened using the unstructured access option, a data
transfer occurs to the position in the file specified by an RBA
(instead of to the position indicated by a key address field or
record number); the number of bytes transferred is that specified
in the file-system procedure call (instead of the number of bytes
indicated by the record format).

If a partitioned file, either structured or unstructured, is opened
using the unstructured access option, only the first partition is
opened. You must open the remaining partitions individually
with separate calls to PUT_FILE_OPEN_() (each call specify-
ing unstructured access).

Accessing audited structured files as unstructured files is not
allowed.

5−208 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_FILE_OPEN_(2)

Current-state indicators after an open
After successful completion of an open, the current-state indicators have these
values:

• The current position is that of the first record in the file by primary key.

• The positioning mode is approximate.

• The comparison length is 0.

If the Guardian READ procedure is called immediately after
PUT_FILE_OPEN_() for a structured file, READ reads the first record in the
file; in a key-sequenced file, this is the first record by primary key. Subsequent
reads, without intervening positioning, read the file sequentially (in a relative or
entry-sequenced file) or by primary key (in a key-sequenced file) through the last
record in the file. When a key-sequenced file is opened, the Guardian KEYPO-
SITION procedure is usually called before any subsequent Guardian I/O pro-
cedure call (such as READ, READUPDATE, or WRITE) to establish a position
in the file.

Queue files If the READUPDATELOCK operation is to be used, the value of the
sync_or_receive_depth parameter must be 0 (zero). You can use a separate open
for operations with sync_or_receive_depth greater than 0 (zero).

You cannot use sequential block buffering.

64-bit primary keys
In order to access non-key-sequenced files bigger than 4 gigabytes, you must set
bit 31 of the PUT_FILE_OPEN_() elections parameter. Use of this parameter
allows the use of procedures using 32-bit primary keys (POSITION, KEYPOSI-
TION, REPOSITION, GETSYNCINFO, and SETSYNCINFO) and the 32-bit
key items of the FILE_GETINFOLIST_, FILEINFO, and FILERECINFO pro-
cedures.

Considerations for Terminals
The terminal used as the operator console should not be opened with exclusive access. If it is,
console messages are not logged.

Interprocess Communication Considerations
Maximum concurrent nowait operations for an open of $RECEIVE

The maximum number of concurrent nowait operations permitted for an open of
$RECEIVE is 1. Attempting to open $RECEIVE and to specify a value greater
than 1 causes an error 28 to be returned.

When PUT_FILE_OPEN_() completes
When process A attempts to open process B, PUT_FILE_OPEN_() completes
as follows:

• If process B has already opened $RECEIVE with file-management sys-
tem messages disabled, the open call by process A completes immedi-
ately.

• If process B has opened $RECEIVE requesting file-management system
messages enabled, the open call completes when process B reads the
open message from process A by using READX, or if B uses READUP-
DATEX, the open call completes when process B replies to the open
message (by using REPLYX).

If process B has not yet opened $RECEIVE, the open by process A does

527186-023 Hewlett-Packard Company 5−209

PUT_FILE_OPEN_(2) OSS System Calls Reference Manual

not complete until process B opens $RECEIVE. Specifically, the open
by process A completes as follows:

— When process B opens $RECEIVE with file-management sys-
tem messages disabled, a waited open by process A completes
immediately, but a nowait open by process A completes after the
first read of $RECEIVE by process B.

— When process B opens $RECEIVE with file-management sys-
tem messages enabled, the open call by process A completes
when process B reads the open message from A by using
READ[X], or if B uses READUPDATE[X], the open call com-
pletes when process B replies to the open message (by using
REPLY[X]).

Message formats
When $RECEIVE is opened by PUT_FILE_OPEN_(), system messages are
delivered to the caller in D-series format unless messages in C-series format are
requested by setting options bit 14 to 1. (No file-management system messages
are delivered to the caller if options bit 15 is set to 1 when opening $RECEIVE.)

Messages from high-PIN processes
Opening $RECEIVE with PUT_FILE_OPEN_() implies that the caller is capa-
ble of handling messages from processes with PINs greater than 255.

Opening $RECEIVE and being opened by a remote long-named process
A process that has a process name consisting of more than five characters will
fail with an error 20 if it attempts to open a process on a remote node and the
process it attempts to open:

• Used the PUT_FILE_OPEN_() procedure to open $RECEIVE and
requested that C-series format messages be delivered, or

• Used the Guardian OPEN procedure to open $RECEIVE.

Notification of this failure is not sent to the process reading $RECEIVE.

Opening an unconverted (C-series format) process from a high-PIN process
A high-PIN process cannot open an unconverted process unless the unconverted
process has the HIGHREQUESTERS object-file attribute set. If a high-PIN pro-
cess attempts to open a low-PIN process that does not have this attribute set, the
high-PIN process receives file-system error 560.

System Message
When a process is opened by either PUT_FILE_OPEN_() or the Guardian OPEN procedure, it
receives a process open message (unless it specified when opening $RECEIVE that it wants no
messages). This message is in D-series format (message -103) or in C-series format (message
-30), depending on what the receiving process specified when it opened $RECEIVE. This mes-
sage is also received if the backup process of a process pair performs an open. Therefore, a pro-
cess can expect two of these messages when being opened by a process pair.

You can obtain he process handle of the opener by a subsequent call to
FILE_GETRECEIVEINFO_. For a description of the process open message see the Guardian
Procedure Errors and Messages Manual.

5−210 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_FILE_OPEN_(2)

DEFINE Considerations
• The filename or pathname parameter can be a DEFINE name; PUT_FILE_OPEN_()

uses the file name given by the DEFINE as the name of the object to be opened. If you
specify a CLASS TAPE DEFINE without the DEVICE attribute, the system selects the
tape drive to be opened. A CLASS TAPE DEFINE has other effects when supplied to
PUT_FILE_OPEN_(). For more information about DEFINEs, see Appendix E of the
Guardian Procedure Calls Reference Manual.

• If a supplied DEFINE name is a valid name but no such DEFINE exists, the procedure
returns an error 198 (missing DEFINE).

• When performing a backup open of a file originally opened with a DEFINE, filename
must contain the same DEFINE name. The DEFINE must exist and must have the same
value as when the primary open was performed.

Safeguard Considerations
For information on files protected by Safeguard, see the Safeguard Reference Manual.

OSS Considerations
• To open an OSS file by its pathname, set options bit 10 to 1 and specify the pathname

parameter.

• You can open OSS files only with shared exclusion mode.

EXAMPLES
The open in the following example has the following defaults: waited I/O, exclusion mode
(shared), access mode (read/write), sync depth (0).

error = PUT_FILE_OPEN_ (filename, filenum);

RETURN VALUES
The PUT_FILE_OPEN_() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

This function can return any error number that the Guardian FILE_OPEN_ procedure call can
return. It can also return the following error number:

12 Callback has already been registered for this filenum.

Some error numbers are warnings (that is, they indicate conditions that do not prevent the file
from being opened); check the value returned for the filenum parameter to determine whether the
file was opened successfully. Forexplanation of other error numbers returned, see the Guardian
Procedure Errors and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_LOCKFILE(2), PUT_LOCKREC(2), PUT_READLOCKX(2),
PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2), PUT_READX(2),
PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

527186-023 Hewlett-Packard Company 5−211

PUT_FILE_WRITEREAD_(2) OSS System Calls Reference Manual

NAME
PUT_FILE_WRITEREAD_ - Writes data to a process previously opened from an array and
waits for data to be transferred back from the process

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_FILE_WRITEREAD_ (
short filenum,
char *write_buffer,
char *read_buffer,
int write_count,
int read_count,
int *count_read,
long tag);

PARAMETERS
Input

filenum Specifies the file number of a Guardian file open instance that identifies the file
to be read.

write_buffer Specifies an array in the application process in which the information to be writ-
ten to the file is stored before the call.

write_count Specifies the number of bytes to be written.

read_count Specifies the number of bytes to be read.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

Output
read_buffer Specifies an array in the application process which contains the information read

from the file.

count_read (Optional) For waited I/O only. This parameter returns a count of the number of
bytes returned from the file into read_buffer.

DESCRIPTION
The PUT_FILE_WRITEREAD_() function is the thread-aware version of the Guardian
FILE_WRITEREAD_ procedure and FILE_WRITEREAD64_ procedures.

The PUT_FILE_WRITEREAD_() function writes data to a process, which was previously
opened from an array in the application process, then waits for data to be transferred back from
the process. The data buffers for the PUT_FILE_WRITEREAD_() procedure can be either in
the caller’s stack segment or an extended data segment for the write portion.

If the file is opened for nowait I/O, you must not modify the write_buffer or read_buffer before
the I/O completes with a call to the Guardian AWAITIOX procedure. This condition also applies
to other processes that might be sharing the segment. The application must ensure that the
buffers used in the call to the PUT_FILE_WRITEREAD_() function are not reused before the

5−212 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_FILE_WRITEREAD_(2)

I/O completes with a call to AWAITIOX.

For programming information about the FILE_WRITEREAD_ and FILE_WRITEREAD64_ pro-
cedures, see the Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

You can use this function with 32-bit applications or 64-bit applications on systems running
H06.24 or later H-series RVUs or J06.13 or later J-series RVUs.

To use this function in a 32-bit application, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

To use this function in a 64-bit application, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Buffer use

PUT_FILE_WRITEREAD_() is intended for use with 32-bit extended
addresses and 64-bit extended addresses. The data buffers for
PUT_FILE_WRITEREAD_() can be either in the caller’s stack segment or
any extended data segment.

Interprocess communication
The PUT_FILE_WRITEREAD_() function is used to originate a message to
another process that was previously opened, then waits for a reply from that pro-
cess.

Waited I/O read operation
If a waited I/O PUT_FILE_WRITEREAD_() call is executed, the count_read
parameter indicates the number of bytes actually read.

Nowait I/O read operation
If a nowait I/O PUT_FILE_WRITEREAD_() call is executed, count_read has
no meaning and can be omitted. The count of the number of bytes read is
obtained when the I/O operation completes through the count-transferred param-
eter of the Guardian AWAITIOX procedure or FILE_COMPLETE_ procedure.

The PUT_FILE_WRITEREAD_() function must complete with a correspond-
ing call to the Guardian AWAITIOX procedure or FILE_COMPLETE procedure
when used with a file that is opened for nowait I/O.

Do not change the contents of the data buffers between the initiation and com-
pletion of a nowait PUT_FILE_WRITEREAD_() operation. A retry can copy
the data again from the user buffer and cause the wrong data to be written.
Avoid sharing a buffer between a PUT_FILE_WRITEREAD_() and another
I/O operation because the contents of the data buffer might change before the
write is completed.

527186-023 Hewlett-Packard Company 5−213

PUT_FILE_WRITEREAD_(2) OSS System Calls Reference Manual

Location of write_buffer, read_buffer, and count_read
The buffers and count transferred can be in the user stack or in an extended data
segment. The write_buffer, read_buffer, and count_read cannot be in the user
code space.

If the write_buffer, read_buffer, and count_read are in a selectable extended data
segment, the segment must be in use at the time of the call. Flat segments allo-
cated by a process are always accessible to the process.

Use on files opened for nowait I/O

• If the buffers are in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or FILE_COMPLETE
procedure or is canceled by a call to the PUT_CANCEL() function or
the Guardian CANCELREQ procedure.

• The extended data segment containing the buffers should not be in use at
the time of the call to AWAITIOX or FILE_COMPLETE procedure.

• You can call PUT_CANCEL() or the Guardian CANCELREQ to can-
cel nowait I/O initiated with PUT_FILE_WRITEREAD_(). The I/O is
canceled if the file is closed before the I/O completes or if you call the
Guardian AWAITIOX procedure or FILE_COMPLETE procedure with
a positive time limit and specific file number and the request times out.

Bounds checking
If the extended address of write_buffer or read_buffer is odd, bounds checking
rounds the address to the next lower word boundary and also checks an extra
byte. The odd address is used for the transfer.

RETURN VALUES
The PUT_FILE_WRITEREAD_() function returns 0 (zero) upon successful completion. Oth-
erwise, this function returns a nonzero Guardian file-system error number that indicates the out-
come of the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2),
PUT_READX(2), PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

5−214 Hewlett-Packard Company 527186-023

System Functions (n - p) put_generateTag(2)

NAME
put_generateTag - Increments and returns a static long tag

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

long put_generateTag(void);

PARAMETERS
None.

DESCRIPTION
Increments and returns a static long string appropriate for use as a tag. Note that this long string
will eventually wrap, thereby returning tags that may still be in use. For example, if a process
calls put_generateTag() 100 times per second, every second, the wrap will occur on the 248th
day.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
This function returns a long tag.

527186-023 Hewlett-Packard Company 5−215

put_getTMFConcurrentTransactions(2) OSS System Calls Reference Manual

NAME
put_getTMFConcurrentTransactions - Gets the number of concurrent TMF transactions being
used

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

int put_getTMFConcurrentTransactions(void);

PARAMETERS
None.

DESCRIPTION
This function gets the number of concurrent TMF transactions being used.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
Upon successful completion, this function returns as an integer value the number of transactions
being used.

RELATED INFORMATION
Functions: put_setTMFConcurrentTransactions(2).

5−216 Hewlett-Packard Company 527186-023

System Functions (n - p) put_INITRECEIVE(2)

NAME
put_INITRECEIVE - Registers $RECEIVE filename

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

long put_INITRECEIVE(
const short filenum,
const short receive_depth);

PARAMETERS
filenum Specifies Guardian file number whose IO has completed.

receive_depth Specifies the maximum number of incoming messages as specified in the filenum
value is FILE_OPEN() call.

DESCRIPTION
This function registers filenum as being managed by the $RECEIVE callback.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
This function returns Guardian error numbers, which include:

0 $RECEIVE was successfully registered.

527186-023 Hewlett-Packard Company 5−217

put_INITRECEIVE(2) OSS System Calls Reference Manual

29 $RECEIVE was already registered prior to this call.

29 FILE_COMPLETE_SET_() addition of $RECEIVE returned nonzero.

29 Value for filenum not 0.

5−218 Hewlett-Packard Company 527186-023

System Functions (n - p) put_INITRECEIVEL(2)

NAME
put_INITRECEIVEL - Registers $RECEIVE filename (larger message version)

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

long put_INITRECEIVEL(
const short filenum,
const short receive_depth);

PARAMETERS
filenum Specifies Guardian file number whose IO has completed.

receive_depth Specifies the maximum number of incoming messages as specified in the filenum
value is FILE_OPEN() call.

DESCRIPTION
This function is the same as the put_INITRECEIVE() function, except:

• This function can handle the longer message lengths allowed by the
PUT_SERVERCLASS_SENDL_() function.

• The Guardian file-system error 4184 (EVERSION) can be returned.

See the put_INITRECEIVE(2) reference page.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

527186-023 Hewlett-Packard Company 5−219

put_INITRECEIVEL(2) OSS System Calls Reference Manual

NOTES
This function is supported on systems running J06.10 and later J-series RVUs and H06.21 and
later H-series RVUs, and must be used instead of the put_INITRECEIVE() function when the
messages are larger than 32 kilobytes. This function also can be used for shorter messages.

RETURN VALUES
See the put_INITRECEIVE(2) reference page.

In addition, this function can return this Guardian file-system error:

4184 (EVERSION)
The function was called from a system that is running a J-series RVU earlier
than J06.10 or an H-series RVU earlier than H06.21.

RELATED INFORMATION
Functions: put_INITRECEIVE(2), PUT_SERVERCLASS_SENDL_(3).

5−220 Hewlett-Packard Company 527186-023

System Functions (n - p) put_interrupt(2)

NAME
put_interrupt - Interrupts all threads awaiting input or output

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

put_error_t put_interrupt(
const short filenum,
const put_error_t errorPUT);

PARAMETERS
filenum Specifies the Guardian file number for the file whose awaiting I/O is to be inter-

rupted.

errorPUT Specifies PUT error returned to waiting file.

DESCRIPTION
Interrupts all threads awaiting IO on file number. Note the I/O is not cancelled by this function.
Interrupted threads will return from the put_awaitio() function with a return value of
error_PUT. Additionally, the error parameter passed to the put_awaitio() function will be set
as shown in the PARAMETERS section.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

527186-023 Hewlett-Packard Company 5−221

put_interrupt(2) OSS System Calls Reference Manual

RETURN VALUES
PUT_SUCCESS

The file number awaiting I/O (if any) was interrupted.

PUT_ERROR Either the value specified for error_PUT is invalid or the value for filenum is less
than 0 (zero) or is not registered.

ERRORS
-1 - PUT_ERROR

40 - PUT_TIMEOUT

[EINTR] - PUT_INTERRUPTED

5−222 Hewlett-Packard Company 527186-023

System Functions (n - p) put_interruptTag(2)

NAME
put_interruptTag - Interrupts thread awaiting tagged I/O

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

put_error_t put_interruptTag(
const short filenum,
const long tag,
const put_error_t error_PUT);

PARAMETERS
filenum Specifies the Guardian file number for the file whose awaiting I/O is to be inter-

rupted.

tag Specifies tag whose awaiting I/O is to be interrupted.

error_PUT Specifies PUT error returned to awaiting IO.

DESCRIPTION
Interrupts the thread awaiting the tagged I/O on file number. Note that the I/O is not cancelled by
this function. Interrupted threads will return from the put_awaitio() function with a return value
of error_PUT. Additionally, the error parameter passed to put_awaitio() will be set as shown in
the ERRORS section.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

527186-023 Hewlett-Packard Company 5−223

put_interruptTag(2) OSS System Calls Reference Manual

RETURN VALUES
PUT_SUCCESS

Awaiting IO was interrupted.

PUT_ERROR One of the following conditions exists:

• The value of filenum was less than 0 (zero), or no awaiting I/O was
found

• The value of filenum is not registered

• The value for error_PUT is invalid

ERRORS
-1 PUT_ERROR

40 PUT_TIMEDOUT

EINTR PUT_INTERRUPTED

5−224 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_LOCKFILE(2)

NAME
PUT_LOCKFILE - Excludes other users from accessing a Guardian disk file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_LOCKFILE(
short filenum,
long tag);

PARAMETERS
filenum Specifies the file number of a Guardian disk file open instance that identifies the

file to be locked.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The PUT_LOCKFILE() function is a thread-aware version of the Guardian LOCKFILE pro-
cedure.

The PUT_LOCKFILE() function is used to exclude other users from accessing a file (and any
records within that file). The user is defined either as the opener of the file (identified by filenum)
if the file is not audited or as the transaction (identified by the TRANSID) if the file is audited. If
the file is currently unlocked or is locked by the current user when PUT_LOCKFILE() is
called, the file (and all its records) becomes locked, and the caller continues executing. If the file
is already locked by another user, the behavior of the system is specified by the locking mode.
Two locking modes are available:

Default The process requesting the lock is suspended. See the Considerations subsec-
tion of this reference page.

Alternate The lock request is rejected with Guardian file-system error 73. When the alter-
nate locking mode is in effect, the process requesting the lock is not suspended.
See the Considerations subsection of this reference page.

For programming information about the LOCKFILE procedure, see the Enscribe Programmer’s
Guide and the Guardian Programmer’s Guide.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

527186-023 Hewlett-Packard Company 5−225

PUT_LOCKFILE(2) OSS System Calls Reference Manual

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Record locking versus file locking

A call to PUT_LOCKFILE() is not equivalent to locking all records in a file;
that is, locking all records still allows insertion of new records, but file locking
does not. File locks and record locks are queued in the order in which they are
issued.

Nowait and PUT_LOCKFILE()
If the PUT_LOCKFILE() function is used to initiate an operation with a file
opened for nowait I/O, it must complete with a corresponding call to the Guar-
dian AWAITIO procedure.

Locking modes

Default mode If the file is already locked by another user when
PUT_LOCKFILE() is called, the process requesting the lock is
suspended and queued in a locking queue behind other users try-
ing to access the file. When the file becomes unlocked, the user
at the head of the locking queue is granted access to the file. If
the user at the head of the locking queue is requesting a lock, the
user is granted the lock and resumes execution. If the user at the
head of the locking queue is requesting a read, the read opera-
tion continues to completion.

Alternate mode If the file is already locked by another user when the call to
PUT_LOCKFILE() is made, the lock request is rejected, and
the call to PUT_LOCKFILE() completes immediately with
Guardian file-system error 73 (file is locked). The alter-
nate locking mode is specified by calling the
PUT_SETMODE() procedure and specifying function 4.

Locks and open files (applies to nonaudited files only)
Locks are granted on a file open (that is, on a file number) basis. Therefore, if a
process has multiple opens of the same file, a lock of one file number excludes
access to the file through other file numbers.

Attempting to read a locked file in default locking mode
If the default locking mode is in effect when a call to PUT_READX() or
PUT_READUPDATEX() is made for a file that is locked by another user, the
caller of PUT_READX() or PUT_READUPDATEX() is suspended and
queued in the locking queue behind other users attempting to access the file.

5−226 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_LOCKFILE(2)

For nonaudited files, a deadlock condition (a permanent suspension of your
application) occurs if PUT_READX() or PUT_READUPDATEX() is called
by the process that has a record locked with a file number other than that sup-
plied in the PUT_READX() or PUT_READUPDATEX() call. For an explana-
tion of multiple opens by the same process, see the PUT_FILE_OPEN_(2)
reference page either online or in the Open System Services System Calls Refer-
ence Manual.

Accessing a locked file
If the file is locked by a user other than the caller at the time of the call, the call
is rejected with Guardian file-system error 73 (file is locked) when:

PUT_READX() or PUT_READUPDATEX() is called, and the alternate lock-
ing mode is in effect.

PUT_WRITEX(), WRITEUPDATE, or PUT_CONTROL() is called.

A count of the locks in effect is not maintained. Multiple locks can be unlocked with one call to
PUT_UNLOCKFILE().

Use on OSS Objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The PUT_LOCKFILE() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKREC(2), PUT_READLOCKX(2),
PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2), PUT_READX(2),
PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

527186-023 Hewlett-Packard Company 5−227

PUT_LOCKREC(2) OSS System Calls Reference Manual

NAME
PUT_LOCKREC - Excludes other users from accessing a record in a Guardian disk file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_LOCKREC(
short filenum,
long tag);

PARAMETERS
filenum Specifies the file number of a Guardian disk file open instance that identifies the

file containing the record to be locked.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The PUT_LOCKREC() function is a thread-aware version of the Guardian LOCKREC pro-
cedure.

The LOCKREC procedure excludes other users from accessing a record at the current position.
The user is defined either as the opener of the file (identified by filenum) if the file is not audited
or as the transaction (identified by the TRANSID) if the file is audited.

For key-sequenced, relative, and entry-sequenced files, the current position is the record with a
key value that matches exactly the current key value. For unstructured files, the current position
is the relative byte address (RBA) identified by the current-record pointer. If the record is
unlocked when PUT_LOCKREC() is called, the record becomes locked, and the caller contin-
ues executing.

You cannot use PUT_LOCKREC() with queue files.

If the file is already locked by another user, the behavior of the system is specified by the locking
mode. Two locking modes are available:

Default The process requesting the lock is suspended. See the Considerations subsec-
tion of this reference page.

Alternate The lock request is rejected with Guardian file-system error 73. When the alter-
nate locking mode is in effect, the process requesting the lock is not suspended.
See the Considerations subsection of this reference page.

For programming information about the LOCKREC procedure, see the Enscribe Programmer’s
Guide and the Guardian Programmer’s Guide.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

5−228 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_LOCKREC(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Record locking versus file locking

A call to PUT_LOCKFILE() is not equivalent to locking all records in a file;
that is, locking all records still allows insertion of new records, but file locking
does not. File locks and record locks are queued in the order in which they are
issued.

Nowait and PUT_LOCKREC()
If the PUT_LOCKREC() function is used to initiate an operation with a file
opened for nowait I/O, it must complete with a corresponding call to the Guar-
dian AWAITIO procedure.

Default locking mode
If the record is already locked by another user when PUT_LOCKREC() is
called, the process requesting the lock is suspended and queued in a locking
queue behind other users also requesting to lock or read the record.

When the record becomes unlocked, the user at the head of the locking queue is
granted access to the record. If the user at the head of the locking queue is
requesting a lock, it is granted the lock and resumes execution. If the user at the
head of the locking queue is requesting a read operation, the read operation con-
tinues to completion.

Alternate locking mode
If the record is already locked by another user when PUT_LOCKREC() is
called, the lock request is rejected, and the call to PUT_LOCKREC() com-
pletes immediately with Guardian file-system error 73 (record is locked).
The alternate locking mode is specified by calling the PUT_SETMODE() pro-
cedure and specifying function 4.

527186-023 Hewlett-Packard Company 5−229

PUT_LOCKREC(2) OSS System Calls Reference Manual

Attempting to read a locked record in default locking mode
If the default locking mode is in effect when PUT_READX() or
PUT_READUPDATEX() is called for a record that is locked by another user,
the caller to PUT_READX() or PUT_READUPDATEX() is suspended and
queued in the locking queue behind other users attempting to lock or read the
record. (Another user means another open filenum if the file is not audited, or
another TRANSID if the file is audited.)

For nonaudited files, a deadlock condition (a permanent suspension of your
application) occurs if PUT_READX() or PUT_READUPDATEX() is called
by the process that has a record locked with a file number other than that sup-
plied in the PUT_READX() or PUT_READUPDATEX() call. For an explana-
tion of multiple opens by the same process, see the PUT_FILE_OPEN_(2)
reference page either online or in the Open System Services System Calls Refer-
ence Manual.

Selecting the locking mode with PUT_SETMODE()
The locking mode is specified by the calling SETMODE procedure with function
4.

A count of the locks in effect is not maintained. Multiple locks can be unlocked
with one call to PUT_UNLOCKFILE().

Structured files

Calling LOCKREC after positioning on a nonunique key
If the call to PUT_LOCKREC() immediately follows a call to
KEYPOSITION where a nonunique alternate key is specified,
the call to PUT_LOCKREC() fails. A subsequent call to the
Guardian FILE_GETINFO_ or FILEINFO procedure shows that
a Guardian file-system error 46 (invalid key) occurred.
However, if an intermediate call to PUT_READX() is per-
formed, the call to PUT_LOCKREC() is permitted because a
unique record is identified.

Current-state indicators after PUT_LOCKREC()
After a successful call to PUT_LOCKREC(), current-state
indicators are unchanged.

Unstructured files

Locking the relative byte address (RBA) in an unstructured file
Record positions in an unstructured file are represented by an
RBA, and the RBA can be locked with PUT_LOCKREC(). To
lock a position in an unstructured file, first call the Guardian
POSITION procedure with the desired RBA, and then call
PUT_LOCKREC(). This locks the RBA; any other process
attempting to access the file with exactly the same RBA
encounters a record is locked condition. You can access
that RBA by positioning to RBA-2. Depending on the process’s
locking mode, the call either fails with Guardian file-system
error 73 (record is locked) or is placed in the locking
queue.

5−230 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_LOCKREC(2)

Record pointers after a call to PUT_LOCKREC()
After a call to PUT_LOCKREC(), the current-record, next-
record, and end-of-file pointers remain unchanged.

Ways to avoid or resolve deadlocks
One way to avoid deadlock is to call function 4 of the
PUT_SETMODE() procedure to establish one of the alternate
locking modes. A common method of avoiding deadlock situa-
tions is to lock records in some predetermined order. Deadlocks
can be resolved if you lock records using a nowait open and call
the Guardian AWAITIO procedure with a timeout specified.

Use on OSS Objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The PUT_LOCKREC() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_READLOCKX(2),
PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2), PUT_READX(2),
PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

527186-023 Hewlett-Packard Company 5−231

PUT_READLOCKX(2) OSS System Calls Reference Manual

NAME
PUT_READLOCKX - Sequentially locks and reads records in a Guardian disk file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_READLOCKX(
short filenum,
char *buffer,

#ifdef __LP64
int read_count,
int *count_read,

#else
unsigned short read_count,
unsigned short *count_read,

#endif
long tag);

PARAMETERS
Input

filenum Specifies the file number of a Guardian file open instance that identifies the file
to be read.

read_count Specifies the number of bytes to be read.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

Output
buffer Specifies an array in the application process in which the information read from

the file is returned.

count_read (Optional) For waited I/O only. This parameter returns a count of the number of
bytes returned from the file into buffer.

DESCRIPTION
The PUT_READLOCKX() function is a thread-aware version of the Guardian READLOCKX
procedure.

The PUT_ READLOCKX() function sequentially locks and reads records in a Guardian disk
file, exactly like the combination of a PUT_LOCKREC() and PUT_READX() call.

For programming information about the READLOCKX procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

5−232 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_READLOCKX(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Buffer use PUT_READLOCKX() is intended for use with 32-bit extended addresses and

64-bit extended addresses. The data buffer for PUT_READLOCKX() can be
either in the caller’s stack segment or any extended data segment.

Nowait I/O and PUT_READLOCKX()
If the PUT_READLOCKX() function is used to initiate an operation with a file
opened for nowait I/O, it must complete with a corresponding call to the Guar-
dian AWAITIOX procedure.

Use for key-sequenced, relative, and entry-sequenced files
For key-sequenced, relative, and entry-sequenced files, a subset of the file
(defined by the current access path, positioning mode, and comparison length) is
locked and read with successive calls to PUT_READLOCKX().

For key-sequenced, relative, and entry-sequenced files, the first call to
PUT_READLOCKX() after a positioning (or open) locks and then returns the
first record of the subset. Subsequent calls to PUT_READLOCKX() without
intermediate positioning locks returns successive records in the subset. After
each of the subset’s records are read, the position of the record just read becomes
the file’s current position. An attempt to read a record following the last record
in a subset returns an EOF indication.

Locking records in an unstructured file
You can use PUT_READLOCKX() to lock record positions, represented by a
relative byte address (RBA), in an unstructured file. When sequentially reading
an unstructured file with PUT_READLOCKX(), each call to
PUT_READLOCK[X() first locks the RBA stored in the current next-record
pointer and then returns record data beginning at that pointer for read_count
bytes. After a successful call to PUT_READLOCK[X(), the current-record
pointer is set to the previous next-record pointer, and the next-record pointer is
set to the previous next-record pointer plus read_count. This process repeats for
each subsequent call to PUT_READLOCKX().

527186-023 Hewlett-Packard Company 5−233

PUT_READLOCKX(2) OSS System Calls Reference Manual

Location of buffer and count_read
The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count_read cannot be in the user code space.

If the buffer and count_read is in a selectable extended data segment, the seg-
ment must be in use at the time of the call. Flat segments allocated by a process
are always accessible to the process.

Transfer size The size of the transfer is subject to current restrictions for the type of file.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the PUT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
the Guardian AWAITIOX procedure. This restriction also applies to
other processes that might be sharing the segment. It is the application’s
responsibility to ensure this.

• If you initiated the I/O with PUT_READLOCKX(), the I/O must be
completed with a call to the Guardian AWAITIOX procedure.

• A selectable extended data segment containing the buffer need not be in
use at the time of the call to AWAITIOX.

• You can cancel Nowait I/O initiated with PUT_READLOCKX() with a
call to PUT_CANCEL() or CANCELREQ. The I/O is canceled if the
file is closed before the I/O completes or if the Guardian AWAITIOX
procedure is called with a positive time limit and specific file number
and the request times out.

Use of buffers A file opened by PUT_FILE_OPEN_() uses direct I/O transfers by default; you
can use PUT_SETMODE(72) to force the system to use an intermediate buffer
in the process file segment (PFS) for I/O transfers.

Bounds checking
If the extended address of buffer is odd, bounds checking rounds the address to
the next lower word boundary and checks an extra byte as well. The odd address
is used for the transfer.

All considerations for the PUT_READX() function also apply to this function.

Use on OSS objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The PUT_READLOCKX() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors

5−234 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_READLOCKX(2)

and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2), PUT_READX(2),
PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

527186-023 Hewlett-Packard Company 5−235

PUT_READUPDATELOCKX(2) OSS System Calls Reference Manual

NAME
PUT_READUPDATELOCKX - Allows random processing of records in a Guardian disk file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_READUPDATELOCKX(
short filenum,
char *buffer,

#ifdef __LP64
int read_count,
int *count_read,
#else
unsigned short read_count,
unsigned short *count_read,
#endif
long tag);

PARAMETERS
Input

filenum Specifies the file number of a Guardian file open instance that identifies the file
to be read.

read_count Specifies the number of bytes to be read.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

Output
buffer Specifies an array in the application process in which the information read from

the file is returned.

count_read (Optional) For waited I/O only. This parameter returns a count of the number of
bytes returned from the file into buffer.

DESCRIPTION
The PUT_READUPDATELOCKX() function is a thread-aware version of the Guardian
READUPDATELOCKX procedure.

You use PUT_READUPDATELOCKX() function for random processing of records in a Guar-
dian disk file. This function first locks then reads the record from the current position in the file
in anticipation of a subsequent call to the PUT_WRITEUPDATEX() or
PUT_WRITEUPDATEUNLOCK() procedure. PUT_READUPDATELOCKX() is intended
for reading a record after calling the Guardian POSITION or KEYPOSITION procedure.

PUT_READUPDATELOCKX() locks and reads the record in the same manner as the combi-
nation of the Guardian LOCKREC and READUPDATEX procedures but requires less system
processing than the two separate calls would require.

For programming information about the READUPDATELOCKX procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

5−236 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_READUPDATELOCKX(2)

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Buffer use PUT_READUPDATELOCKX() is intended for use with 32-bit extended

addresses and 64-bit extended addresses. The data buffer for
PUT_READUPDATELOCKX() can be either in the caller’s stack segment or
any extended data segment.

Nowait I/O and PUT_READUPDATELOCKX()
The PUT_READUPDATELOCKX() function must complete with a
corresponding call to the Guardian AWAITIOX procedure when used with a file
that is opened for nowait I/O.

Use on nondisk files
If PUT_READUPDATELOCKX() is performed on nondisk files, an error is
returned.

Random processing
For key-sequenced, relative, and entry-sequenced files, random processing
implies that a designated record must exist. Therefore, positioning for
PUT_READUPDATELOCKX() is always to the record described by the exact
value of the current key and current-key specifier. If such a record does not
exist, the call to PUT_READUPDATELOCKX() is rejected with Guardian
file-system error 11.

Queue files To use PUT_READUPDATELOCKX(), you must open a queue file with write
access and with a sync_or_receive_depth of 0 (zero).

527186-023 Hewlett-Packard Company 5−237

PUT_READUPDATELOCKX(2) OSS System Calls Reference Manual

Location of buffer and count_read
The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count_read cannot be in the user code space.

If the buffer and count_read is in a selectable extended data segment, the seg-
ment must be in use at the time of the call. Flat segments allocated by a process
are always accessible to the process.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the PUT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
the Guardian AWAITIOX procedure. This restriction also applies to
other processes that might be sharing the segment. It is the application’s
responsibility to ensure this.

• If you initiated the I/O with PUT_READUPDATELOCKX(), the I/O
must be completed with a call to the Guardian AWAITIOX procedure.

• A selectable extended data segment containing the buffer need not be in
use at the time of the call to AWAITIOX.

• You can cancel nowait I/O initiated with
PUT_READUPDATELOCKX() with a call to PUT_CANCEL() or
CANCELREQ. The I/O is canceled if the file is closed before the I/O
completes or if the Guardian AWAITIOX procedure is called with a
positive time limit and specific file number and the request times out.

Use of buffers A file opened by PUT_FILE_OPEN_() uses direct I/O transfers by default; you
can use PUT_SETMODE(72) to force the system to use an intermediate buffer
in the process file segment (PFS) for I/O transfers.

Bounds checking
If the extended address of buffer is odd, bounds checking rounds the address to
the next lower word boundary and checks an extra byte as well. The odd address
is used for the transfer.

All considerations for the PUT_LOCKREC() function also apply to this function. See also the
"Disk File Considerations" for the Guardian READUPDATE procedure.

Use on OSS objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The PUT_READUPDATELOCKX() function returns 0 (zero) upon successful completion.
Otherwise, this function returns a nonzero Guardian file-system error number that indicates the
outcome of the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

5−238 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_READUPDATELOCKX(2)

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATEX(2), PUT_READX(2), PUT_SETMODE(2),
PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2), PUT_WRITEREADX(2),
PUT_WRITEUPDATEUNLOCKX(2), PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

527186-023 Hewlett-Packard Company 5−239

PUT_READUPDATEX(2) OSS System Calls Reference Manual

NAME
PUT_READUPDATEX - Reads data from a Guardian disk or process file in anticipation of a
subsequent write to the file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_READUPDATEX(
short filenum,
char *buffer,

#ifdef __LP64
int read_count,
int *count_read,

#else
unsigned short read_count,
unsigned short *count_read,

#endif
long tag);

PARAMETERS
Input

filenum Specifies the file number of a Guardian file open instance that identifies the file
to be read.

read_count Specifies the number of bytes to be read.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

Output
buffer Specifies an array in the application process in which the information read from

the file is returned.

count_read (Optional) For waited I/O only. This parameter returns a count of the number of
bytes returned from the file into buffer.

DESCRIPTION
The PUT_READUPDATEX() function is a thread-aware version of the Guardian READUP-
DATEX procedure.

This function reads data from a disk or process file in anticipation of a subsequent write to the
file. The values of the current-record and next-record pointers do not change. This function has
the following uses:

Disk files PUT_READUPDATEX() is used for random processing. Data is read from the
file at the position of the current-record pointer. A call to this function typically
follows a corresponding call to the Guardian POSITION or KEYPOSITION pro-
cedure.

5−240 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_READUPDATEX(2)

Queue Files PUT_READUPDATEX() is not supported on queue files. An attempt to use
PUT_READUPDATEX() is rejected with Guardian file-system error 2.

Interprocess communication
PUT_READUPDATEX() reads a message from the $RECEIVE file that is
answered in a later call to the Guardian REPLYX procedure. Each message read
by PUT_READUPDATEX() must be replied to in a corresponding call to
REPLYX.

For programming information about the READUPDATEX procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Buffer use PUT_READUPDATEX() is intended for use with 32-bit extended addresses

and 64-bit extended addresses. The data buffer for PUT_READUPDATEX()
can be either in the caller’s stack segment or any extended data segment.

Random processing and positioning
A call to PUT_READUPDATEX() returns the record from the current position
in the file. Because PUT_READUPDATEX() is designed for random process-
ing, it cannot be used for successive positioning through a subset of records as
the PUT_READX() function does. Rather, PUT_READUPDATEX() reads a
record after a call to the Guardian POSITION or KEYPOSITION procedure, in
anticipation of a subsequent update through a call to the Guardian WRITEUP-
DATEX procedure.

527186-023 Hewlett-Packard Company 5−241

PUT_READUPDATEX(2) OSS System Calls Reference Manual

Calling PUT_READUPDATEX() after PUT_READX()
A call to PUT_READUPDATEX() after a call to PUT_READX(), without
intermediate positioning, returns the same record as the call to PUT_READX().

Waited PUT_READUPDATEX()
If a waited PUT_READUPDATEX() call is executed, the count_read parame-
ter indicates the number of bytes actually read.

Nowait I/O and PUT_READUPDATEX()
If a nowait PUT_READUPDATEX() call is executed, count_read has no mean-
ing and can be omitted. The count of the number of bytes read is obtained when
the I/O operation completes through the count_transferred parameter of the
Guardian AWAITIOX procedure. The PUT_READUPDATEX() function must
complete with a corresponding call to the Guardian AWAITIOX procedure when
used with a file that is opened for nowait I/O.

Default locking mode action
If the default locking mode is in effect when a call to PUT_READUPDATEX()
is made to a locked file or record, but the filenum of the locked file differs from
the filenum in the call, the caller of PUT_READUPDATEX() is suspended and
queued in the locking queue behind other processes attempting to access the file
or record.

Use on OSS objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The PUT_READUPDATEX() function returns 0 (zero) upon successful completion. Other-
wise, this function returns a nonzero Guardian file-system error number that indicates the out-
come of the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATELOCKX(2), PUT_READX(2),
PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

5−242 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_READX(2)

NAME
PUT_READX - Returns data from an open Guardian file to the application process data area

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_READX(
short filenum,
char *buffer,

#ifdef __LP64
int read_count,
int *count_read,

#else
unsigned short read_count,
unsigned short *count_read,

#endif
long tag);

PARAMETERS
Input

filenum Specifies the file number of a Guardian file open instance that identifies the file
to be read.

read_count (Optional) Specifies the number of bytes to be read.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

Output
buffer Specifies an array in the application process in which the information read from

the file is returned.

count_read (Optional) For waited I/O only. This parameter returns a count of the number of
bytes returned from the file into buffer.

DESCRIPTION
The PUT_READX() function is a thread-aware version of the Guardian READX procedure.

The PUT_READX() function returns data from an open Guardian file to the application
process’s data area. The PUT_READX() function sequentially reads a disk file. For key-
sequenced, relative, and entry-sequenced files, the PUT_READX() function reads a subset of
records in the file. (A subset of records is defined by an access path, positioning mode, and com-
parison length.)

For programming information about the Guardian READX file-system procedure, see the Guar-
dian Programmer’s Guide, the Enscribe Programmer’s Guide, and the manuals for your specific
data communications interface.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

527186-023 Hewlett-Packard Company 5−243

PUT_READX(2) OSS System Calls Reference Manual

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

General Considerations
Buffer use PUT_READX() is intended for use with 32-bit extended addresses and 64-bit

extended addresses. The data buffer for PUT_READX() can be either in the
caller’s stack segment or any extended data segment.

Waited PUT_READX()
If a waited PUT_READX() call is executed, the count_read parameter indicates
the number of bytes actually read.

Nowait PUT_READX()
If a nowait PUT_READX() call is executed, count_read has no meaning and
can be omitted. The count of the number of bytes read is obtained through the
count-transferred parameter of the Guardian AWAITIOX procedure when the
I/O operation completes.

The PUT_READX() function must complete with a call to the Guardian
AWAITIOX procedure when it is used with a file that is opened for nowait I/O.

It is possible to initiate concurrent nowait read operations that share the same
data buffer. To do this successfully with files opened by PUT_FILE_OPEN_(),
you must use PUT_SETMODE() function 72 to cause the system to use an
intermediate buffer in the process file segment (PFS) for I/O transfers.

PUT_READX() call when default locking mode is in effect
If the default locking mode is in effect when a call to PUT_READX() is made
to a locked file, but the filenum of the locked file differs from the filenum in the
call, the caller of PUT_READX() is suspended and queued in the locking queue
behind other processes attempting to lock or read the file or record.

A deadlock condition occurs if a call to PUT_READX() is made by a process
having multiple opens on the same file and the filenum used to lock the file
differs from the filenum supplied to PUT_READX().

5−244 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_READX(2)

Read call when alternate locking mode is in effect
If the alternate locking mode is in effect when PUT_READX() is called, and the
file or record is locked through a Guardian file number other than that supplied in
the call, the call is rejected with Guardian file-system error 73 (file is
locked).

Locking mode for read
The locking mode is specified by PUT_SETMODE() function 4. If you
encounter Guardian file-system error 73 (file is locked), you do not need to
call PUT_SETMODE() for every call to PUT_READX().
PUT_SETMODE()) stays in effect indefinitely (for example, until another
PUT_SETMODE() call is performed or the file is closed), and no additional
overhead is involved.

Location of buffer and count_read
The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count_read cannot be in the user code space.

If the buffer and count_read are in a selectable extended data segment, the seg-
ment must be in use at the time of the call. Flat segments allocated by a process
are always accessible to the process.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the PUT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
the Guardian AWAITIOX procedure. This restriction also applies to
other processes that might be sharing the segment. It is the application’s
responsibility to ensure this.

• If the I/O has been initiated with PUT_READX(), the I/O must be com-
pleted with a call to the Guardian AWAITIOX procedure.

• A selectable extended data segment containing the buffer need not be in
use at the time of the call to AWAITIOX.

• You can cancel nowait I/O initiated with PUT_READX() with a call to
PUT_CANCEL() or CANCELREQ. The I/O is canceled if the file is
closed before the I/O completes or if the Guardian AWAITIOX pro-
cedure is called with a positive time limit and specific file number and
the request times out.

Use of buffers A file opened by PUT_FILE_OPEN_() uses direct I/O transfers by default; you
can use PUT_SETMODE(72) to force the system to use an intermediate buffer
in the process file segment (PFS) for I/O transfers.

Bounds checking
If the extended address of buffer is odd, bounds checking rounds the address to
the next lower word boundary and checks an extra byte as well. The odd address
is used for the transfer.

527186-023 Hewlett-Packard Company 5−245

PUT_READX(2) OSS System Calls Reference Manual

Queue files You can use PUT_READX() to perform a nondestructive read of a queue file
record. If the Guardian KEYPOSITIONX procedure is used to position to the
beginning of the file, the first PUT_READX() call performed returns a record
with a length of 8 bytes and contents of all zeros. Subsequent PUT_READX()
calls return data from records written to the file.

Disk File Considerations
Large data transfers for unstructured files using default mode

For all read procedures, using default mode allows I/O sizes for unstructured
files to be as large as 56 kilobytes (57,344), if the unstructured buffer size is 4
KB (4096). Default mode here refers to the mode of the file if
PUT_SETMODE() function 141 is not invoked.

For an unstructured file with an unstructured buffer size other than 4 KB, DP2
automatically adjusts the unstructured buffer size to 4 KB, if possible,
when an I/O larger than 4KB is attempted. However, this adjustment is not pos-
sible for files that have extents with an odd number of pages; in such cases an
I/O over 4 KB is not possible. The switch to a different unstructured buffer size
will have a transient performance impact, so HP recommends that you set the
size 4 KB initially, which is the default. Transfer sizes over 4 KB are not sup-
ported in default mode for unstructured access to structured files.

Large data transfers using PUT_SETMODE(141)
For PUT_READX() only, large data transfers (more than 4096 bytes) can be
done for unstructured access to structured or unstructured files, regardless of
unstructured buffer size, by using PUT_SETMODE() function 141. When you
use PUT_SETMODE(141) to enable large data transfers, you can specify up to
56K (57344) bytes for the read_count parameter. For an explanation of function
141, see the Guardian SETMODE procedure description in the Guardian Pro-
cedure Calls Reference Manual.

Structured files

A subset of records for sequential PUT_READX() calls
The subset of records read by a series of calls to
PUT_READX() is specified through calls to the Guardian
POSITION or KEYPOSITION procedures.

Reading of an approximate subset of records
If an approximate subset is being read, the first record returned is
the one whose key field, as indicated by the current key
specifier, contains a value equal to or greater than the current
key. Subsequent reading of the subset returns successive
records until the last record in the file is read (an EOF indication
is then returned).

Reading of a generic subset of records
If a generic subset is being read, the first record returned is the
one whose key field, as designated by the current-key specifier,
contains a value equal to the current key for comparison-length
bytes. Subsequent reading of the file returns successive records
whose key matches the current key (for comparison-length
bytes). When the current key no longer matches, an EOF indica-
tion returns.

For relative and entry-sequenced files, a generic subset of the
primary key is equivalent to an exact subset.

5−246 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_READX(2)

Reading of an exact subset of records
If an exact subset is being read, the only records returned are
those whose key field, as designated by the current-key specifier,
contains a value of exactly the comparison length bytes (see the
Guardian KEYPOSITION procedure in the Guardian Procedure
Calls Reference Manual) and is equal to the key. When the
current key no longer matches, an EOF indication returns. The
exact subset for a key field having a unique value is at most one
record.

Indicators after PUT_READX() call
After a successful PUT_READX() call, the current-state indica-
tors have these values:

• Current position is the record just read.

• Positioning mode is unchanged.

• Comparison length is unchanged.

• Current primary-key value is set to the value of the
primary-key field in the record.

Unstructured files

Data transfer Data transfer begins from an unstructured disk file at the position
indicated by the next-record pointer. The READ[X] procedure
reads records sequentially on the basis of a beginning relative
byte address (RBA) and the length of the records read.

Odd unstructured
If the unstructured file is created with the odd unstructured attri-
bute (also known as ODDUNSTR) set, the number of bytes read
is exactly the number of bytes specified with read_count. If the
odd unstructured attribute is not set when the file is created, the
value of read_count is rounded up to an even number before the
PUT_READX() operation is executed.

You set the odd unstructured attribute with the Guardian
FILE_CREATE_, FILE_CREATELIST_, or CREATE pro-
cedure, or with the File Utility Program (FUP) SET and
CREATE commands.

read_count Unstructured files are transparently blocked. The BUFFERSIZE
file attribute value, if not set by the user, defaults to 4096 bytes.
The BUFFERSIZE attribute value (which is set by specifying
PUT_SETMODE() function 93) does not constrain the allow-
able read_count in any way. However, there is a performance
penalty if the PUT_READX() call does not start on a BUFFER-
SIZE boundary and does not have a read_count that is an
integral multiple of the BUFFERSIZE. The DP2 disk process
executes your requested I/O in (possibly multiple) units of BUF-
FERSIZE blocks starting on a block boundary.

527186-023 Hewlett-Packard Company 5−247

PUT_READX(2) OSS System Calls Reference Manual

count_read for unstructured reads
After a successful call to PUT_READX() for an unstructured
file, the value returned in count_read is the minimum of
read_count or the EOF pointer minus the next-record pointer.

Pointers after PUT_READX() call
After a successful PUT_READX() call to an unstructured file,
the file pointers are:

• Current-record pointer is old next-record pointer.

• Next-record pointer is old next-record pointer plus
count_read.

RETURN VALUES
The PUT_READX() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2),
PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

5−248 Hewlett-Packard Company 527186-023

System Functions (n - p) put_RECEIVEREAD(2)

NAME
put_RECEIVEREAD - Initiates thread-aware function for reading $RECEIVE

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

long put_RECEIVEREAD(
const short filenum,
char *buffer,
const short read_count,
int *count_read,
const long timelimit,
short *receive_info ,
short *dialog_info);

PARAMETERS
filenum Specifies the Guardian file number for $RECEIVE (always 0).

buffer Specifies the data buffer.

read_count Specifies the number of bytes to read.

count_read Specifies the number of bytes read.

timelimit Specifies a FILE_COMPLETE-style time limit.

receive_info Specifies a FILE_GETRECEIVEINFO-style $RECEIVE info structure; NULL
may be passed if this information is not needed; must not be NULL if filenum’s
receive_depth is greater than 0 (zero).

dialog_info Specifies a FILE_GETRECEIVEINFO-style of dialog information (a short int
used by context-sensitive Pathway servers); NULL can be passed if this informa-
tion is not needed; NULL must be passed if receive_info is NULL.

DESCRIPTION
This thread-aware function is specifically for reading $RECEIVE. put_RECEIVEREAD() is
slightly patterned after a combination of the READUPDATEX procedure and the
FILE_GETRECEIVEINFO procedure, although its parameters do not match either of its modeled
procedures. A side effect of calling put_RECEIVEREAD) puts the calling thread into a tran-
saction (via a call to the PUT_TMF_SetTxHandle() function), if the received message was tran-
sactional. The calling thread may be blocked to honor the filenum value’s receive depth. This
allows any number of threads to simultaneously call put_RECEIVEREAD(). Blocked threads
will be unblocked as other threads complete their calls to the put_REPLYX() function.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

527186-023 Hewlett-Packard Company 5−249

put_RECEIVEREAD(2) OSS System Calls Reference Manual

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
Processing of the put_RECEIVEREAD() function cannot be interrupted by specifying
put_interrupt(PUT_INTERRUPTED). The put_RECEIVEREAD() function responds to the
attempt by retrying the input or output.

To interrupt the put_RECEIVEREAD() function, use one of the following function calls:

• put_wakeup(0, -1, 0, error) where error is any error number that can be recognized as a
return value for the put_RECEIVEREAD() function.

• put_interrupt(0, PUT_ERROR).

• put_interrupt(0, PUT_TIMEDOUT).

Using any of these calls also cancels the input/output operation.

RETURN VALUES
This function returns Guardian file-system error numbers including:

16 filenum is not registered.

5−250 Hewlett-Packard Company 527186-023

System Functions (n - p) put_RECEIVEREADL(2)

NAME
put_RECEIVEREADL - Initiates thread-aware function for reading $RECEIVE (larger mes-
sage version)

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

long put_RECEIVEREADL(
const short filenum,
char *buffer,
const int read_count,
int *count_read,
const long timelimit,
short *receive_info);

PARAMETERS
filenum Specifies the Guardian file number for $RECEIVE (always 0).

buffer Specifies the data buffer.

read_count Specifies the number of bytes to read.

count_read Specifies the number of bytes read.

timelimit Specifies a FILE_COMPLETEL_-style time limit.

receive_info Specifies a FILE_GETRECEIVEINFOL_-style $RECEIVE info structure;
NULL may be passed if this information is not needed; must not be NULL if
filenum’s receive_depth is greater than 0 (zero).

DESCRIPTION
This function is the same as the put_RECEIVEREAD() function, except that:

• This function can handle the longer message lengths allowed by the
PUT_SERVERCLASS_SENDL_() function.

• The read_count parameter is type const int.

• The dialog_info parameter is not included in the put_RECEIVEREADL() function.

• The Guardian file-system error 4184 (EVERSION) can be returned.

See the put_RECEIVEREAD(2) reference page.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

527186-023 Hewlett-Packard Company 5−251

put_RECEIVEREADL(2) OSS System Calls Reference Manual

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
This function is supported on systems running J06.10 and later J-series RVUs and H06.21 and
later H-series RVUs, and must be used instead of the put_RECEIVEREAD() function when the
messages are larger than 32 kilobytes. This function also can be used for shorter messages.

RETURN VALUES
See the put_RECEIVEREAD(2) reference page.

In addition, this function can return this Guardian file-system error:

4184 (EVERSION)
The function was called from a system that is running a J-series RVU earlier
than J06.10 or an H-series RVU earlier than H06.21.

RELATED INFORMATION
Functions: put_RECEIVEREAD(2), PUT_SERVERCLASS_SENDL_(3).

5−252 Hewlett-Packard Company 527186-023

System Functions (n - p) put_regFile(2)

NAME
put_regFile - Registers the file number

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

put_error_t put_regFile(
const short filenum);

PARAMETERS
filenum Specifies the Guardian file number of the file being registered.

DESCRIPTION
Registers the file number as one that the user will manage through the default callback.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
See the put_regFileIOHandler(2) reference page.

527186-023 Hewlett-Packard Company 5−253

put_regFileIOHandler(2) OSS System Calls Reference Manual

NAME
put_regFileIOHandler - Registers the file number

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

put_error_t put_regFileIOHandler(
const short filenum,
const put_FileIOHandler_p functionPtr);

PARAMETERS
filenum Specifies the Guardian file number for the file being registered.

functionPtr Specifies user-supplied callback. This function must not block its invoking
thread; for example, it should not call the put_awaitio() function.

DESCRIPTION
This function registers the file number as one that the user will manage through a user-supplied
callback. This callback is invoked immediately after each I/O on filenum completes.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
PUT_SUCCESS

The Guardian file number was successfully registered.

5−254 Hewlett-Packard Company 527186-023

System Functions (n - p) put_regFileIOHandler(2)

PUT_ERROR The value specified for filenum was less than 0 (zero).

PUT_ERROR filenum was already registered prior to this call.

PUT_ERROR The FILE_COMPLETE_SET_ procedure addition of filenum returned a nonzero
value.

PUT_ERROR functionPtr is NULL.

527186-023 Hewlett-Packard Company 5−255

put_regOSSFileIOHandler(2) OSS System Calls Reference Manual

NAME
put_regOSSFileIOHandler - Registers the file descriptor to manage through a callback function

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

put_error_t put_regOSSFileIOHandler(
const int filedes,
const put_OSSFileIOHandler_p functionPtr);

PARAMETERS
filedes Specifies the OSS file descriptor being registered.

functionPtr Specifies the user-supplied callback function; this function must not block.

DESCRIPTION
This function registers the file descriptor as one that the user will manage through a user-supplied
callback.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
PUT_SUCCESS

Value for file descriptor was registered.

5−256 Hewlett-Packard Company 527186-023

System Functions (n - p) put_regOSSFileIOHandler(2)

PUT_ERROR The specified filedes was less than 0 (zero).

PUT_ERROR filedes was already registered prior to this call.

PUT_ERROR functionPtr is NULL.

527186-023 Hewlett-Packard Company 5−257

put_regPathsendFile(2) OSS System Calls Reference Manual

NAME
put_regPathsendFile - Registers the Pathsend file number

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

put_error_t put_regPathsendFile(
const short fileno);

PARAMETERS
fileno Contains the scsend-op-num value obtained during the first nowaited

SERVERCLASS_SEND_, SERVERCLASS_DIALOG_BEGIN_, or
SERVERCLASS_DIALOG_SEND_ procedure call.

DESCRIPTION
This function is used to register the Pathsend file number. This function should be called
immediately after the first call to a SERVERCLASS_SEND_,
SERVERCLASS_DIALOG_BEGIN_, or SERVERCLASS_DIALOG_SEND_ procedure call.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
PUT_SUCCESS

The Pathsend file number was successfully registered.

5−258 Hewlett-Packard Company 527186-023

System Functions (n - p) put_regPathsendFile(2)

PUT_ERROR The specified Pathsend file number is already registered.

527186-023 Hewlett-Packard Company 5−259

put_regPathsendTagHandler(2) OSS System Calls Reference Manual

NAME
put_regPathsendTagHandler - Registers the user-supplied Pathsend tag

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

put_error_t put_regPathsendTagHandler(
const long tag,
put_FileIOHandler_p callback,
void * userdata);

PARAMETERS
tag Specifies the Pathsend tag that should be registered.

callback Specifies a user-supplied callback function. This function should not block its
invoking thread. The callback function should have the following prototype:

callback(const short filenum,
/* Guardian file number

being waited on */
const long tag,

/* tag being waited on or
-1 for all tags */

const long completionCount,
/* byte transfer count

of completed IO */
const long fserror,

/* Guardian error number for IO */
void * userdata

/* for communication between
I/O initiator and callback. */

);

userdata Specifies data to be communicated between the I/O initiator and the callback
function.

DESCRIPTION
This function registers the Pathsend tag as a tag that the user will manage through a user-supplied
callback function. The callback function is invoked when a Pathsend operation that uses the tag
completes.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

5−260 Hewlett-Packard Company 527186-023

System Functions (n - p) put_regPathsendTagHandler(2)

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
PUT_SUCCESS

The specified tag was registered.

PUT_ERROR Another Pathsend handler has already registered the tag.

RELATED INFORMATION
Functions: put_unregPathsendTagHandler(2),
PUT_SERVERCLASS_DIALOG_ABORT_(2),
PUT_SERVERCLASS_DIALOG_BEGIN_(2), PUT_SERVERCLASS_DIALOG_END_(2),
PUT_SERVERCLASS_DIALOG_SEND_(2), PUT_SERVERCLASS_SEND_INFO_(2),
PUT_SERVERCLASS_SEND_(2).

527186-023 Hewlett-Packard Company 5−261

put_regTimerHandler(2) OSS System Calls Reference Manual

NAME
put_regTimerHandler - Registers a user-supplied timer callback function

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

put_error_t put_regTimerHandler(
const put_TimerHandler_p functionPtr);

PARAMETERS
functionPtr Specifies the user-supplied callback function; this function must not block I/O.

DESCRIPTION
This function registers a user-supplied timer callback function.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
PUT_SUCCESS

The callback function was successfully registered.

PUT_ERROR functionPtr is NULL.

PUT_ERROR The specified callback function is already registered.

5−262 Hewlett-Packard Company 527186-023

System Functions (n - p) put_REPLYX(2)

NAME
put_REPLYX - Initiates thread-aware REPLYX procedure call

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

long put_REPLYX(
const char *buffer,
const short write_count,
short *count_written,
const short msg_tag,
const short error_return);

PARAMETERS
buffer Specifies data buffer.

write_count Specifies the number of bytes to write.

count_written Specifies the number of bytes written; might be NULL.

msg_tag Specifies required tag identifying message to reply to and is ignored if the
corresponding Guardian file number receive depth is 1.

error_return Specifies a Guardian file-system error to return to sender.

DESCRIPTION
This is a thread-aware version of the REPLYX procedure call; this function clears the thread’s
transaction context if appropriate.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

527186-023 Hewlett-Packard Company 5−263

put_REPLYX(2) OSS System Calls Reference Manual

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
This function returns a Guardian file-system error number.

5−264 Hewlett-Packard Company 527186-023

System Functions (n - p) put_REPLYXL(2)

NAME
put_REPLYXL - Initiates thread-aware REPLYXL procedure call (larger message version)

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

long put_REPLYXL(
const char *buffer,
const int write_countL,
int *count_writtenL,
const short msg_tag,
const short error_return);

PARAMETERS
buffer Specifies data buffer.

write_countL Specifies the number of bytes to write.

count_writtenL Specifies the number of bytes written; might be NULL.

msg_tag Specifies required tag identifying message to reply to and is ignored if the
corresponding Guardian file number receive depth is 1.

error_return Specifies a Guardian file-system error to return to sender.

DESCRIPTION
This function is the same as the put_REPLYX() function, except:

• This function can handle the longer message lengths allowed by the
PUT_SERVERCLASS_SENDL_() function.

• The write_countL parameter is type const int.

• The count_writtenL parameter is type int.

• The Guardian file-system error 4184 (EVERSION) can be returned.

See the put_REPLYX(2) reference page.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

527186-023 Hewlett-Packard Company 5−265

put_REPLYXL(2) OSS System Calls Reference Manual

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
This function is supported on systems running J06.10 and later J-series RVUs and H06.21 and
later H-series RVUs, and must be used instead of the put_REPLYX() function when the mes-
sages are larger than 32 kilobytes long. This function also can be used for shorter messages.

RETURN VALUES
See the put_REPLYX(2) reference page.

In addition, this function can return this Guardian file-system error:

4184 (EVERSION)
The function was called from a system that is running a J-series RVU earlier
than to J06.10 or an H-series RVU earlier than H06.21.

5−266 Hewlett-Packard Company 527186-023

System Functions (n - p) put_select_single_np(2)

NAME
put_select_single_np - Initiates thread-aware select() function for a single file descriptor

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/time.h>
#include <pthread.h>

int put_select_single_np(
int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *errorfds,
struct timeval *timeout);

PARAMETERS
See the select(2) reference page.

DESCRIPTION
The put_select_single_np() function is a thread-aware version of the select() function used to
check the status of a single file descriptor.

To improve application performance, use the put_select_single_np() function instead of the
default thread-aware select() function that is mapped by the _PUT_MODEL_ feature test macro.
For multiple file desciptors, use the default thread-aware select() function mapped by the
_PUT_MODEL_ feature test macro.

In sys/time.h, a mapping of select() to put_select_single_np() has been defined:

#pragma function select (alias("put_select_single_np"), unspecified)

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

527186-023 Hewlett-Packard Company 5−267

put_select_single_np(2) OSS System Calls Reference Manual

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

NOTES
To use a combination of the default thread-aware select() and the put_select_single_np() func-
tions in a single source file, you must compile the application using the _PUT_MODEL_ feature
test macro only and explicitly call put_select_single_np().

RETURN VALUES
See the select(2) reference page. The following information also applies:

• If the file descriptor becomes invalid (is closed by another thread), -1 is returned with an
errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

RELATED INFORMATION
Functions: select(2).

5−268 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_SETMODE(2)

NAME
PUT_SETMODE - Sets device-dependent Guardian file-system functions

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_ SETMODE(
short filenum,
short function,
short param1,
short param2,
short *last_params);

PARAMETERS
filenum Specifies the Guardian file number of a Guardian file open instance, identifying

the file to receive the requested function.

function Specifies the number of a device-dependent function. For a description of valid
values, see the table of SETMODE functions in the Guardian Procedure Calls
Reference Manual.

param1 (Optional) Provides the first value or pattern of set bits that defines the specific
function setting to be used. For a description of valid values, see the table of
SETMODE functions in the Guardian Procedure Calls Reference Manual.

param2 (Optional) Provides the second value or pattern of set bits that defines the
specific function setting to be used. For a description of valid values, see the
table of SETMODE functions in the Guardian Procedure Calls Reference
Manual.

last_params (Optional) Returns the previous settings of param1 and param2 associated with
the current function.

DESCRIPTION
The PUT_SETMODE() function is a thread-aware version of the Guardian SETMODE pro-
cedure.

The PUT_SETMODE() function is used to set device-dependent Guardian file-system func-
tions. A call to the PUT_SETMODE() function is rejected with an error indication if incom-
plete nowait operations are pending on the specified file.

For programming information about the Guardian SETMODE file-system procedure, see the
Guardian Programmer’s Guide and the manual for the data communication protocol you are
using.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

527186-023 Hewlett-Packard Company 5−269

PUT_SETMODE(2) OSS System Calls Reference Manual

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Default settings

The PUT_SETMODE() settings designated as default in the Guardian Pro-
cedure Calls Reference Manual are the values that apply when a file is opened
(not if a particular function value is omitted when PUT_SETMODE() is called).

Waited PUT_SETMODE() use
The PUT_SETMODE() function is used on a file as a waited operation even if
filenum has been opened for nowait operations. Use the Guardian SETMO-
DENOWAIT procedure for nowait operations.

Use for Telserv processes
No PUT_SETMODE() calls on Telserv are allowed before doing an
PUT_CONTROL() function 11.

Ownership and security of a disk file
"Set disk file security" and "set disk file owner" are rejected unless the requester
is the owner of the file or the super ID.

Interprocess Communication Considerations
Nonstandard parameter values

You can specify any value for the function, param1, and param2 parameters.
Establish an application-defined protocol for interpreting nonstandard parameter
values.

User-defined functions
Use of function code numbers 100 to 109 avoids any potential conflict with
PUT_SETMODE() function codes defined by HP.

Incorrect use of last_params
Guardian file-system error 2 is returned when the last_params parameter is sup-
plied but the target process does not correctly return values for this parameter.

5−270 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_SETMODE(2)

Process message
Issuing a PUT_SETMODE() call to a file representing another process causes a
system message -33 (process SETMODE) to be sent to that process.

You can identify the process that called PUT_SETMODE() in a subsequent call
to the Guardian FILE_GETRECEIVEINFO_ (or LASTRECEIVE or
RECEIVEINFO) procedure. For a list of all system messages sent to processes,
see the Guardian Procedure Errors and Messages Manual.

RETURN VALUES
The PUT_SETMODE() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2),
PUT_READX(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

527186-023 Hewlett-Packard Company 5−271

put_setOSSFileIOHandler(2) OSS System Calls Reference Manual

NAME
put_setOSSFileIOHandler - Sets interest in file descriptor

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

extern put_error_t put_setOSSFileIOHandler(
const int filedes,
const int read,
const int write,
const int error);

PARAMETERS
filedes Specifies the OSS file descriptor for the file of interest.

read Nonzero indicates interest in read ready.

write Nonzero indicates interest in write ready.

error Nonzero indicates interest in exception pending.

DESCRIPTION
This function sets interest in an OSS file descriptor.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

5−272 Hewlett-Packard Company 527186-023

System Functions (n - p) put_setOSSFileIOHandler(2)

RETURN VALUES
PUT_SUCCESS

This value is returned for any of the following conditions:

• The filedes interest was successfully set

• The filedes was not registered prior to this call

• The specified filedes is invalid

• The specified filedes is not supported

PUT_ERROR The specified filedes was less than 0 (zero).

527186-023 Hewlett-Packard Company 5−273

put_setTMFConcurrentTransactions(2) OSS System Calls Reference Manual

NAME
put_setTMFConcurrentTransactions - Sets the number of concurrent TMF transactions

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

int put_setTMFConcurrentTransactions(
short max_trans);

PARAMETERS
max_trans Specifies the maximum number of concurrent transactions desired.

DESCRIPTION
This function sets the maximum number of concurrent TMF transactions.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
This function returns 0 (zero) upon successful completion of the call. If an error occurs, this
function can return the following value:

EINVAL Unable to change the maximum number of concurrent transactions because TMF
is already processing transactions.

RELATED INFORMATION
Functions: put_getTMFConcurrentTransactions(2).

5−274 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_TMF_GetTxHandle(2)

NAME
PUT_TMF_GetTxHandle - Gets the current TMF transaction handle

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

short PUT_TMF_GetTxHandle(
PUT_TMF_TxHandle_t *tx_handle);

PARAMETERS
tx_handle Receives the current active TMF transaction handle.

DESCRIPTION
This function retrieves the current active transaction handle of the thread.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
This function returns an integer value indicating the result of the call. Possible return values are:

0 (zero) Successful completion of the call. The current active transaction handle is
returned in tx_handle.

22 A bounds error occurred.

29 There are missing parameters.

527186-023 Hewlett-Packard Company 5−275

PUT_TMF_GetTxHandle(2) OSS System Calls Reference Manual

75 There is no current transaction.

RELATED INFORMATION
Functions: PUT_TMF_SetTxHandle(2), PUT_TMF_Init(2).

5−276 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_TMF_Init(2)

NAME
PUT_TMF_Init - Initializes the tfile for concurrent transaction management

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

short PUT_TMF_Init(void);

PARAMETERS
None.

DESCRIPTION
This function opens the tfile for concurrent transaction management.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
PUT_SUCCESS

The TMF file is initialized for concurrent transaction management.

error Contains the error value returned by the underlying call to the Guardian OPEN
procedure. See the Guardian Procedure Errors and Messages Manual for more
information on the specific value returned.

RELATED INFORMATION
Functions: PUT_TMF_GetTxHandle(2), PUT_TMF_SetTxHandle(2),
put_getTMFConcurrentTransactions(2), put_setTMFConcurrentTransactions(2).

527186-023 Hewlett-Packard Company 5−277

PUT_TMF_RESUME(2) OSS System Calls Reference Manual

NAME
PUT_TMF_RESUME - Resumes a previously suspended transaction associated with the
current thread

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

short PUT_TMF_RESUME(
long long *txid);

PARAMETERS
Input

txid Specifies the transactional identifier returned by PUT_TMF_SUSPEND() or
TMF_GET_TX_ID.

DESCRIPTION
This function resumes a previously suspended transaction associated with the current thread.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
A status word is returned. The value is one of the following:

0 (zero) The PUT_TMF_RESUME() operation completed successfully.

5−278 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_TMF_RESUME(2)

Nonzero values
The Guardian file-system error with this error number occurred.

RELATED INFORMATION
Functions: PUT_TMF_SUSPEND(2).

527186-023 Hewlett-Packard Company 5−279

PUT_TMF_SetAndValidateTxHandle(2) OSS System Calls Reference Manual

NAME
PUT_TMF_SetAndValidateTxHandle - Sets the current TMF transaction handle to be associ-
ated with the current thread

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

short PUT_TMF_SetAndValidateTxHandle(
PUT_TMF_TxHandle_t *tx_handle);

PARAMETERS
tx_handle Specifies the transaction handle of the current TMF transaction.

DESCRIPTION
This function sets the specified transaction handle as the current active transaction for the thread.
In addition, it validates the transaction. If the transaction is not valid, the transaction is aborted.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
This function returns an integer value indicating the result of the call. Possible return values are:

0 (zero) The PUT_TMF_SetAndValidateTxHandle() operation completed successfully;
the transaction handle was successfully set and validated.

5−280 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_TMF_SetAndValidateTxHandle(2)

Nonzero values
The Guardian file-system error with this error number occurred.

RELATED INFORMATION
Functions: PUT_TMF_GetTxHandle(2), PUT_TMF_SetTxHandle(2), PUT_TMF_Init(2).

527186-023 Hewlett-Packard Company 5−281

PUT_TMF_SetTxHandle(2) OSS System Calls Reference Manual

NAME
PUT_TMF_SetTxHandle - Sets the TMF transaction handle

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

short PUT_TMF_SetTxHandle(
PUT_TMF_TxHandle_t *tx_handle);

PARAMETERS
tx_handle Specifies the transaction handle of the current TMF transaction.

DESCRIPTION
This function sets the specified transaction handle as the current active transaction for the thread.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
This function returns an integer value indicating the result of the call. Possible return values are:

0 (zero) Indicates the transaction handle was successfully set.

22 Indicates that a bounds error occurred.

29 Indicates missing parameters.

5−282 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_TMF_SetTxHandle(2)

75 Indicates that there is no current transaction.

78 Indicates an invalid transaction identifier or that a transaction has not started on
this Expand node.

715 Indicates an invalid transaction handle.

RELATED INFORMATION
Functions: PUT_TMF_GetTxHandle(2), PUT_TMF_Init(2).

527186-023 Hewlett-Packard Company 5−283

PUT_TMF_SUSPEND(2) OSS System Calls Reference Manual

NAME
PUT_TMF_SUSPEND - Suspends a transaction associated with the current thread

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

short PUT_TMF_SUSPEND(
long long *txid);

PARAMETERS
Output

txid Returns a transactional identifier that can be used for a subsequent
PUT_TMF_RESUME() call.

DESCRIPTION
This function suspends a transaction associated with the current thread.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
A status word is returned. The value is one of the following:

0 (zero) The PUT_TMF_SUSPEND() operation completed successfully.

Nonzero values
The Guardian file-system error with this error number occurred.

5−284 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_TMF_SUSPEND(2)

RELATED INFORMATION
Functions: PUT_TMF_RESUME(2).

527186-023 Hewlett-Packard Company 5−285

PUT_UNLOCKFILE(2) OSS System Calls Reference Manual

NAME
PUT_UNLOCKFILE - Unlocks a disk file and any records in that file currently locked by the
user

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_UNLOCKFILE(
short filenum,
long tag);

PARAMETERS
filenum Specifies the Guardian file number of a Guardian file open instance for the file

that you want unlocked.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The PUT_UNLOCKFILE() function is a thread-aware version of the Guardian UNLOCKFILE
procedure.

The PUT_UNLOCKFILE() function unlocks a disk file and any records in that file currently
locked by the user. The user is defined either as the opener of the file (identified by the filenum
value used) if the file is not audited, or by the transaction (identified by the TRANSID) if the file
is audited. Unlocking a file allows other processes to access the file. This call has no affect on
an audited file if the current transaction has modified that file.

For programming information about the Guardian UNLOCKFILE file-system procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

5−286 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_UNLOCKFILE(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Nowait and PUT_UNLOCKFILE()

The PUT_UNLOCKFILE() function must complete with a corresponding call
to the Guardian AWAITIOX procedure when used with a file that is opened for
nowait I/O.

Locking queue If any users are queued in the locking queue for the file, the process at the head
of the locking queue is granted access and is removed from the queue (the next
read or lock request moves to the head of the queue). If the next user in the lock-
ing queue is waiting to:

• lock the file or lock a record in the file, the user is granted the lock
(which excludes other users from accessing the file) and resumes pro-
cessing.

• read the file, its read is processed.

Transaction Management Facility (TMF) and PUT_UNLOCKFILE()
If the current transaction modifies a file audited by TMF, locks on the file are
released only when TMF ends or aborts the transaction. In other words, a locked
audited file that the current transaction modified is unlocked during
PUT_ENDTRANSACTION() or PUT_ABORTTRANSACTION() process-
ing for that file. You can use the PUT_UNLOCKFILE() function to unlock an
unmodified audited record.

Use on OSS Objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The PUT_UNLOCKFILE() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2),
PUT_READX(2), PUT_SETMODE(2), PUT_UNLOCKREC(2), PUT_WRITEREADX(2),
PUT_WRITEUPDATEUNLOCKX(2), PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

527186-023 Hewlett-Packard Company 5−287

PUT_UNLOCKREC(2) OSS System Calls Reference Manual

NAME
PUT_UNLOCKREC - Unlocks a Guardian file record currently locked by the user

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_UNLOCKREC(
short filenum,
long tag);

PARAMETERS
filenum Specifies the Guardian file number of a Guardian file open instance for the file

containing the record you want unlocked.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The PUT_UNLOCKREC() function is a thread-aware version of the Guardian UNLOCKREC
procedure.

The PUT_UNLOCKREC() function unlocks a record in the specified file currently locked by
the user. The user is defined either as the opener of the file (identified by the filenum value used)
if the file is not audited, or by the transaction (identified by the TRANSID) if the file is audited.

This call unlocks the record at the current position in the file, allowing other users to access that
record. This call has no affect on a record of an audited file if the current transaction has
modified that record.

For programming information about the Guardian UNLOCKREC file-system procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

5−288 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_UNLOCKREC(2)

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
File opened nowait and PUT_UNLOCKREC()

The PUT_UNLOCKREC() function must complete with a corresponding call
to the Guardian AWAITIOX procedure when used with a file that is opened for
nowait I/O.

Locking queue If any users are queued in the locking queue for the record, the user at the head
of the locking queue is granted access and is removed from the queue (the next
read or lock request moves to the head of the queue).

If the user granted access is waiting to lock the record, the user is granted the
lock (which excludes other process from accessing the record) and resumes pro-
cessing. If the user granted access is waiting to read the record, its read is pro-
cessed.

Calling PUT_UNLOCKREC() after KEYPOSITION
If the call to PUT_UNLOCKREC() immediately follows a call to KEYPOSI-
TION where a nonunique alternate key is specified, the PUT_UNLOCKREC()
call fails. A subsequent call to FILE_GETINFO_ or FILEINFO shows that
Guardian file-system error 46 (invalid key) occurred. However, if an inter-
mediate call to PUT_READX() or PUT_READLOCKX() is performed, the
call to PUT_UNLOCKREC() is permitted.

Unlocking several records
If several records need to be unlocked, you can call the PUT_UNLOCKREC()
function to unlock all records currently locked by the user (rather than unlocking
the records through individual calls to PUT_UNLOCKREC()).

Current-state indicators after PUT_UNLOCKREC()
For key-sequenced, relative, and entry-sequenced files, the current-state indica-
tors after an UNLOCKREC remain unchanged.

File pointers after PUT_UNLOCKREC()
For unstructured files, the current-record pointer and the next-record pointer
remain unchanged.

Transaction Management Facility (TMF) and PUT_UNLOCKREC()
If the current transaction modifies a record in file audited by TMF, locks on the
record are released only when TMF ends or aborts the transaction. In other
words, a locked record in an audited file that the current transaction modified is
unlocked during PUT_ENDTRANSACTION() or
PUT_ABORTTRANSACTION() processing for that file. You can use the
PUT_UNLOCKREC() function to unlock an unmodified audited record.

527186-023 Hewlett-Packard Company 5−289

PUT_UNLOCKREC(2) OSS System Calls Reference Manual

Use on OSS Objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The PUT_UNLOCKREC() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2),
PUT_READX(2), PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_WRITEREADX(2),
PUT_WRITEUPDATEUNLOCKX(2), PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

5−290 Hewlett-Packard Company 527186-023

System Functions (n - p) put_unregFile(2)

NAME
put_unregFile - Unregisters a Guardian file number as one that the user manages

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

extern put_error_t put_unregFile(
const short filenum);

PARAMETERS
filenum Specifies the Guardian file number being unregistered.

DESCRIPTION
This function unregisters a Guardian file number as one that the user manages. Any threads wait-
ing on file number I/O will awaken with PUT_ERROR and Guardian file-system error 16.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
PUT_SUCCESS

The specified filenum was successfully unregistered.

PUT_ERROR One of the following conditions exists:

• The value specified for filenum s less than 0 (zero).

• The specified filenum was not registered prior to this call.

527186-023 Hewlett-Packard Company 5−291

put_unregFile(2) OSS System Calls Reference Manual

• The FILE_COMPLETE_SET_ procedure removal of filenum returned a
nonzero value.

5−292 Hewlett-Packard Company 527186-023

System Functions (n - p) put_unregOSSFileIOHandler(2)

NAME
put_unregOSSFileIOHandler - Unregisters an OSS file descriptor

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

extern put_error_t put_unregOSSFileIOHandler(
const int filedes);

PARAMETERS
filedes Specifies the OSS file descriptor being unregistered.

DESCRIPTION
This function unregisters an OSS file descriptor as one that the user manages.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
PUT_SUCCESS

The specified filedes was successfully unregistered.

PUT_ERROR The specified filedes is less than 0 (zero) or was not registered prior to this call.

527186-023 Hewlett-Packard Company 5−293

put_unregPathsendTagHandler(2) OSS System Calls Reference Manual

NAME
put_unregPathsendTagHandler - Unregisters the user-supplied Pathsend tag

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

put_error_t put_unregPathsendTagHandler(
const long tag);

PARAMETERS
tag Specifies the Pathsend tag to be unregistered.

DESCRIPTION
This function unregisters the specified Pathsend tag as a tag that user manages.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

RETURN VALUES
PUT_SUCCESS

The specified tag was unregistered.

PUT_ERROR The specified tag was never registered.

RELATED INFORMATION
Functions: put_regPathsendTagHandler(2), PUT_SERVERCLASS_DIALOG_ABORT_(2),
PUT_SERVERCLASS_DIALOG_BEGIN_(2), PUT_SERVERCLASS_DIALOG_END_(2),
PUT_SERVERCLASS_DIALOG_SEND_(2), PUT_SERVERCLASS_SEND_INFO_(2),
PUT_SERVERCLASS_SEND_(2).

5−294 Hewlett-Packard Company 527186-023

System Functions (n - p) put_wakeup(2)

NAME
put_wakeup - Wakes up a thread awaiting tagged I/O

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
#include <pthread.h>

extern put_error_t put_wakeup(
const short filenum,
const long tag,
const long count_transferred,
const long error);

PARAMETERS
filenum Specifies the Guardian file number being waited on.

tag Specifies the tag that is being awaited; the value -1 indicates all tags.

count_transferred
Specifies byte transfer count of completed I/O.

error Specifies Guardian error number for IO.

DESCRIPTION
This function wakes up a thread awaiting the tagged I/O on the file with the specified Guardian
file number. The awakened thread returns from its call to the put_awaitio() function with a
return value of PUT_SUCCESS.

To use this function on systems running H06.21 or later RVUs or J06.10 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

527186-023 Hewlett-Packard Company 5−295

put_wakeup(2) OSS System Calls Reference Manual

RETURN VALUES
PUT_SUCCESS

One of the following conditions exists:

• tag was not -1 and waiting I/O was awakened. Note that only one await-
ing I/O was awakened.

• tag was -1 and awaiting I/O (if any) was awakened.

PUT_ERROR One of the following conditions exists:

• The value specified for filenum was less than 0 (zero).

• tag was not -1 and no awaiting IO was found.

5−296 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_WRITEREADX(2)

NAME
PUT_WRITEREADX - Writes data to a Guardian file from an array and waits for data to be
read back from the file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_WRITEREADX(
short filenum,
char *buffer,

#ifdef __LP64
int write_count,
int read_count,
int *count_read,

#else
unsigned short write_count,
unsigned short read_count,
unsigned short *count_read,

#endif
long tag);

PARAMETERS
Input

filenum Specifies the file number of a Guardian file open instance that identifies the file
to be read.

write_count Specifies the number of bytes to be written.

read_count Specifies the number of bytes to be read.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

Output
buffer Specifies an array in the application process in which the information to be writ-

ten to the file is stored before the call. On return, buffer contains the information
read from the file.

count_read (Optional) For waited I/O only. This parameter returns a count of the number of
bytes returned from the file into buffer.

DESCRIPTION
The PUT_WRITEREADX() function is a thread-aware version of the Guardian
WRITEREADX procedure.

The PUT_WRITEREADX() function writes data to a file from an array in the application pro-
cess, then waits for data to be transferred back from the file. The data from the read portion
returns in the same array used for the write portion.

If the file is opened for nowait I/O, you must not modify the buffer before the I/O completes with
a call to the Guardian AWAITIOX procedure. This condition also applies to other processes that

527186-023 Hewlett-Packard Company 5−297

PUT_WRITEREADX(2) OSS System Calls Reference Manual

might be sharing the segment. The application must ensure that the buffer used in the call to the
PUT_WRITEREADX() function is not reused before the I/O completes with a call to
AWAITIOX.

For programming information about the WRITEREADX procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Buffer use PUT_WRITEREADX() is intended for use with 32-bit extended addresses and

64-bit extended addresses. The data buffer for PUT_WRITEREADX() can be
either in the caller’s stack segment or any extended data segment.

Terminals A special hardware feature is incorporated in the asynchronous multiplexer con-
troller that ensures the system is ready to read from the terminal as soon as the
write is completed.

Interprocess communication
The PUT_WRITEREADX() function is used to originate a message to another
process that was previously opened, then waits for a reply from that process.

Waited I/O read operation
If a waited I/O PUT_WRITEREADX() call is executed, the count_read param-
eter indicates the number of bytes actually read.

Nowait I/O read operation
If a nowait I/O PUT_WRITEREADX() call is executed, count_read has no
meaning and can be omitted. The count of the number of bytes read is obtained
when the I/O operation completes through the count-transferred parameter of the
Guardian AWAITIOX procedure.

The PUT_WRITEREADX() function must complete with a corresponding call
to the Guardian AWAITIOX procedure when used with a file that is opened for

5−298 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_WRITEREADX(2)

nowait I/O.

Do not change the contents of the data buffer between the initiation and comple-
tion of a nowait PUT_WRITEREADX() operation. A retry can copy the data
again from the user buffer and cause the wrong data to be written. Avoid sharing
a buffer between a PUT_WRITEREADX() and another I/O operation because
the contents of the data buffer might change before the write is completed.

Carriage return/line feed sequence after the write
No carriage return and line feed sequence is sent to the terminal after the write
part of the operation.

Location of buffer and count_read
The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count_read cannot be in the user code space.

If the buffer and count_read are in a selectable extended data segment, the seg-
ment must be in use at the time of the call. Flat segments allocated by a process
are always accessible to the process.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the PUT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
the Guardian AWAITIOX procedure. This restriction also applies to
other processes that might share the segment. It is the application’s
responsibility to ensure this.

• If you initiated the I/O with PUT_WRITEREADX(), the I/O must be
completed with a call to the Guardian AWAITIOX procedure.

• A selectable extended data segment containing the buffer need not be in
use at the time of the call to AWAITIOX.

• You can call PUT_CANCEL() or CANCELREQ to cancel nowait I/O
initiated with PUT_WRITEREADX(). The I/O is canceled if the file is
closed before the I/O completes or if you call the Guardian AWAITIOX
procedure with a positive time limit and specific file number and the
request times out.

Bounds checking
If the extended address of buffer is odd, bounds checking rounds the address to
the next lower word boundary and also checks an extra byte. The odd address is
used for the transfer.

RETURN VALUES
The PUT_WRITEREADX() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

527186-023 Hewlett-Packard Company 5−299

PUT_WRITEREADX(2) OSS System Calls Reference Manual

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2),
PUT_READX(2), PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEUPDATEUNLOCKX(2), PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

5−300 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_WRITEUPDATEUNLOCKX(2)

NAME
PUT_WRITEUPDATEUNLOCKX - Performs random processing of records in a disk file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_WRITEUPDATEUNLOCKX(
short filenum,
char *buffer,

#ifdef __LP64
int write_count,
int *count_written,

#else
unsigned short write_count,
unsigned short *count_written,

#endif
long tag);

PARAMETERS
Input

filenum Specifies the file number of a Guardian file open instance that identifies the file
to be written.

buffer Specifies an array in the application process in which the information to be writ-
ten to the file is stored before the call.

write_count Specifies the number of bytes to be written.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

Output
count_written (Optional) Returns a count of the number of bytes written to the file from buffer.

DESCRIPTION
The PUT_WRITEUPDATEUNLOCKX() function is a thread-aware version of the Guardian
WRITEUPDATEUNLOCKX procedure.

The PUT_WRITEUPDATEUNLOCKX() function performs random processing of records in a
Guardian disk file. PUT_WRITEUPDATEUNLOCKX() has two purposes:

• To alter, then unlock, the contents of the record at the current position

• To delete the record at the current position in a key-sequenced or relative file

A call to PUT_WRITEUPDATEUNLOCKX() is equivalent to a call to
PUT_WRITEUPDATEX() followed by a call to PUT_UNLOCKREC(). However, the
PUT_WRITEUPDATEUNLOCKX() function requires less system processing than do the
separate calls to PUT_WRITEUPDATEX() and PUT_UNLOCKREC().

527186-023 Hewlett-Packard Company 5−301

PUT_WRITEUPDATEUNLOCKX(2) OSS System Calls Reference Manual

For programming information about the WRITEUPDATEUNLOCKX procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Buffer use PUT_WRITEUPDATEUNLOCKX() is intended for use with 32-bit extended

addresses and 64-bit extended addresses. The data buffer for
PUT_WRITEUPDATEUNLOCKX() can be either in the caller’s stack seg-
ment or any extended data segment.

Nowait I/O and PUT_WRITEUPDATEUNLOCKX()
The PUT_WRITEUPDATEUNLOCKX() function must complete with a
corresponding call to the Guardian AWAITIOX procedure when used with a file
that is opened for nowait I/O.

For files audited by the Transaction Management Facility (TMF), You must call
the AWAITIOX procedure to complete the
PUT_WRITEUPDATEUNLOCKX() operation before
PUT_ENDTRANSACTION() or PUT_ABORTTRANSACTION() is called.

Do not change the contents of the data buffer between the initiation and comple-
tion of a nowait write operation. A retry can copy the data again from the user
buffer and cause the wrong data to be written. Avoid sharing a buffer between a
write and another I/O operation because this creates the contents of the write
buffer might change before the write is completed.

Random processing and PUT_WRITEUPDATEUNLOCKX()
For key-sequenced, relative, and entry-sequenced files, random processing
implies that a designated record must exist. Positioning for
PUT_WRITEUPDATEUNLOCKX() is always to the record described by the
exact value of the current key and current-key specifier. If such a record does
not exist, the call to PUT_WRITEUPDATEUNLOCKX() is rejected with

5−302 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_WRITEUPDATEUNLOCKX(2)

Guardian file-system error 11 (record does not exist).

Unstructured files (pointers unchanged)
For unstructured files, data is written in the position indicated by the current-
record pointer. A call to PUT_WRITEUPDATEUNLOCKX() for an unstruc-
tured file typically follows a call to the Guardian POSITION procedure or
PUT_READUPDATEX(). The current-record and next-record pointers are not
changed by a call to PUT_WRITEUPDATEUNLOCKX().

How PUT_WRITEUPDATEUNLOCKX() works
The record unlocking performed by PUT_WRITEUPDATEUNLOCKX()
functions in the same manner as PUT_UNLOCKREC().

Record does not exist
Positioning for PUT_WRITEUPDATEUNLOCKX() is always to the record
described by the exact value of the current key and current-key specifier. There-
fore, if such a record does not exist, the call to
PUT_WRITEUPDATEUNLOCKX() is rejected with Guardian file-system
error 11.

Invalid write operations to queue files
DP2 rejects PUT_WRITEUPDATEUNLOCKX() operations with a Guardian
file-system error 2.

Location of buffer and count_written
The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count_written cannot be in the user code space.

If the buffer and count_written are in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a pro-
cess are always accessible to the process.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the PUT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
the Guardian AWAITIOX procedure. This restriction also applies to
other processes that might be sharing the segment. It is the application’s
responsibility to ensure this.

• If you initiated the I/O with PUT_WRITEUPDATEUNLOCKX(), the
I/O must be completed with a call to the Guardian AWAITIOX pro-
cedure.

• A selectable extended data segment containing the buffer need not be in
use at the time of the call to AWAITIOX.

• Nowait I/O initiated with PUT_WRITEUPDATEUNLOCKX() can be
canceled with a call to PUT_CANCEL() or CANCELREQ. The I/O is
canceled if the file is closed before the I/O completes or if the Guardian
AWAITIOX procedure is called with a positive time limit and specific
file number and the request times out.

527186-023 Hewlett-Packard Company 5−303

PUT_WRITEUPDATEUNLOCKX(2) OSS System Calls Reference Manual

Bounds checking
If the extended address of buffer is odd, bounds checking rounds the address to
the next lower word boundary and also checks an extra byte. The odd address is
used for the transfer.

All considerations for PUT_WRITEUPDATEX() also apply to this call.

Use on OSS Objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The PUT_WRITEUPDATEUNLOCKX() function returns 0 (zero) upon successful comple-
tion. Otherwise, this function returns a nonzero Guardian file-system error number that indicates
the outcome of the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2),
PUT_READX(2), PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEX(2), PUT_WRITEX(2).

5−304 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_WRITEUPDATEX(2)

NAME
PUT_WRITEUPDATEX - Transfers data from an array in the application program to a Guar-
dian file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_WRITEUPDATEX(
short filenum,
char *buffer,

#ifdef __LP64
int write_count,
int *count_written,

#else
unsigned short write_count,
unsigned short *count_written,

#endif
long tag);

PARAMETERS
Input

filenum Specifies the file number of a Guardian file open instance that identifies the file
to be written.

buffer Specifies an array in the application process in which the information to be writ-
ten to the file is stored before the call.

write_count Specifies the number of bytes to be written.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

Output
count_written (Optional) Returns a count of the number of bytes written to the file from buffer.

DESCRIPTION
The PUT_WRITEUPDATEX() function is a thread-aware version of the Guardian WRITEUP-
DATEX procedure.

The PUT_WRITEUPDATEX() function performs random processing of records in a Guardian
disk file. PUT_WRITEUPDATEX() has two purposes:

• To alter the contents of the record at the current position

• To delete the record at the current position in a key-sequenced or relative file

527186-023 Hewlett-Packard Company 5−305

PUT_WRITEUPDATEX(2) OSS System Calls Reference Manual

Data from the application process’s array is written in the position indicated by the setting of the
current-record pointer. A call to this procedure typically follows a corresponding call to the
PUT_READX() or PUT_READUPDATEX() function. The current-record and next-record
pointers are not affected by the PUT_WRITEUPDATEX() procedure.

For magnetic tapes, PUT_WRITEUPDATEX() is used to replace a record in an already written
tape. The tape is backspaced one record; the data from the application process’s array is written
in that area.

For programming information about the WRITEUPDATEX procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Buffer use PUT_WRITEUPDATEX() is intended for use with 32-bit extended addresses

and 64-bit extended addresses. The data buffer for PUT_WRITEUPDATEX()
can be either in the caller’s stack segment or any extended data segment.

I/O counts with unstructured files
Unstructured files are transparently blocked using one of the four valid block
sizes (512, 1024, 2048, or 4096 bytes; 4096 is the default). This transparent
block size, known as BUFFERSIZE, is the transfer size used against an unstruc-
tured file. While BUFFERSIZE does not change the maximum unstructured
transfer (4096 bytes), multiple I/O operations might be performed to satisfy a
user’s request depending on the BUFFERSIZE chosen. For example, if BUF-
FERSIZE is 512 bytes, and a request is made to write 4096 bytes, at least eight
transfers, each 512 bytes long, will be made. More than eight transfers happen,
in this case, if the requested transfer does not start on a BUFFERSIZE boundary.

DP2 performance with unstructured files is best when requested transfers begin
on BUFFERSIZE boundaries and are integral multiples of BUFFERSIZE.

Because the maximum blocksize for DP2 structured files is also 4096 bytes, this

5−306 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_WRITEUPDATEX(2)

is also the maximum structured transfer size for DP2.

Deleting locked records
Deleting a locked record implicitly unlocks that record unless the file is audited,
in which case the lock is not removed until the transaction terminates.

Waited PUT_WRITEUPDATEX() calls
If a waited PUT_WRITEUPDATEX() call is executed, the count_written
parameter indicates the number of bytes actually written.

Nowait PUT_WRITEUPDATEX() calls
If a nowait PUT_WRITEUPDATEX() call is executed, count_written has no
meaning and can be omitted. The count of the number of bytes written is
obtained through the count-transferred parameter of the Guardian AWAITIOX
procedure when the I/O completes.

The PUT_WRITEUPDATEX() procedure must finish with a corresponding
call to the Guardian AWAITIOX procedure when used with a file that is opened
for nowait I/O. For files audited by the Transaction Management Facility (TMF),
the AWAITIOX procedure must be called before the
PUT_ENDTRANSACTION() or PUT_ABORTTRANSACTION() function
is called.

Do not change the contents of the data buffer between the initiation and comple-
tion of a nowait write operation. A retry can copy the data again from the user
buffer and cause the wrong data to be written. Avoid sharing a buffer between a
write and another I/O operation because the contents of the write buffer might
change before the write is completed.

Invalid write operations to queue files
Attempts to perform PUT_WRITEUPDATEX() operations are rejected with a
Guardian file-system error 2.

Disk File Considerations
Large data transfers

To enable large data transfers (more than 4096 bytes), you can use
PUT_SETMODE() function 141. See the description of SETMODE functions
in the Guardian Procedure Calls Reference Manual.

Random processing and PUT_WRITEUPDATEX()
For key-sequenced, relative, and entry-sequenced files, random processing
implies that a designated record must exist. Positioning for
PUT_WRITEUPDATEX() is always to the record described by the exact value
of the current key and current-key specifier. If such a record does not exist, the
call to PUT_WRITEUPDATEX() is rejected with Guardian file-system error
11 (record does not exist).

File is locked
If a call to PUT_WRITEUPDATEX() is made and the file is locked through a
file number other than that supplied in the call, the call is rejected with Guardian
file-system error 73 (file is locked).

When the just-read record is updated
A call to PUT_WRITEUPDATEX() following a call to PUT_READX(),
without intermediate positioning, updates the record just read.

527186-023 Hewlett-Packard Company 5−307

PUT_WRITEUPDATEX(2) OSS System Calls Reference Manual

Unstructured files

Transferring disk file data
If the PUT_WRITEUPDATEX() call is to an unstructured disk
file, data is transferred to the record location specified by the
current-record pointer.

File pointers after a successful call
After a successful PUT_WRITEUPDATEX() call to an
unstructured file, the current-record and next-record pointers are
unchanged.

Number of bytes written
If the unstructured file is created with the odd unstructured attri-
bute (also known as ODDUNSTR) set, the number of bytes writ-
ten is exactly the number specified in write_count. If the odd
unstructured attribute is not set when the file is created, the
value of write_count is rounded up to an even value before the
PUT_WRITEUPDATEX() call is executed.

You set the odd unstructured attribute with the Guardian
FILE_CREATE_, FILE_CREATELIST_, or CREATE pro-
cedure, or with the File Utility Program (FUP) SET and
CREATE commands.

Structured files

Calling PUT_WRITEUPDATEX() after KEYPOSITION
If the call to PUT_WRITEUPDATEX() immediately follows a
call to the Guardian KEYPOSITION procedure in which a
nonunique alternate key is specified as the access path, the
PUT_WRITEUPDATEX() call fails. A subsequent call to the
Guardian FILE_GETINFO_ or FILEINFO procedure shows that
Guardian file-system error 46 (invalid key) occurred. How-
ever, if an intermediate call to PUT_READX() or
PUT_READLOCKX() is performed, the call to
PUT_WRITEUPDATEX() is permitted because a unique
record is identified.

Specifying write_count for entry-sequenced files
For entry-sequenced files, the value of write_count must match
exactly the write_count value specified when the record was ori-
ginally inserted into the file.

Changing the primary-key of a key-sequenced record
An update to a record in a key-sequenced file cannot alter the
value of the primary-key field. To change the primary-key field,
you must delete the old record (PUT_WRITEUPDATEX()
with write_count = 0 [zero]) and insert a new record with the
key field changed (PUT_WRITEX()).

Current-state indicators after PUT_WRITEUPDATEX()
After a successful PUT_WRITEUPDATEX() call, the
current-state indicators remain unchanged.

5−308 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_WRITEUPDATEX(2)

The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count transferred cannot be in the user code space.

If the buffer or count transferred is in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a pro-
cess are always accessible to the process.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the PUT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
AWAITIOX. This also applies to other processes that might be sharing
the segment. It is the application’s responsibility to ensure this.

• If you initiated the I/O with PUT_WRITEUPDATEX(), the I/O must
be completed with a call to the Guardian AWAITIOX procedure.

• The extended segment containing the buffer need not be in use at the
time of the call to AWAITIOX.

• Nowait I/O initiated with PUT_WRITEUPDATEX() can be canceled
with a call to the PUT_CANCEL() function or the Guardian CANCEL-
REQ procedure. The I/O is canceled if the file is closed before the I/O
completes or AWAITIOX is called with a positive time limit and specific
file number and the request times out.

Bounds checking
If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte as well. The odd
address is used for the transfer.

Magnetic Tape Considerations
Supported equipment

PUT_WRITEUPDATEX() is permitted only on the 3202 Controller for the
5103 or 5104 Tape Drives. This function is not supported on any other
controller/tape drive combination. PUT_WRITEUPDATEX() is specifically
not permitted on the following controller/tape drive pairs:

• 3206 Controller and the 5106 Tri-Density Tape Drive

• 3207 Controller and the 5103 & 5104 Tape Drives

• 3208 Controller and the 5130 & 5131 Tape Drives

Specifying the correct number of bytes written
When PUT_WRITEUPDATEX() is used with magnetic tape, the number of
bytes to be written must fit exactly; otherwise, information on the tape can be
lost. However, no error indication is given.

527186-023 Hewlett-Packard Company 5−309

PUT_WRITEUPDATEX(2) OSS System Calls Reference Manual

Limitation of PUT_WRITEUPDATEX() to the same record
Five is the maximum number of times a PUT_WRITEUPDATEX() call can be
executed to the same record on tape.

RETURN VALUES
The PUT_WRITEUPDATEX() function returns 0 (zero) upon successful completion. Other-
wise, this function returns a nonzero Guardian file-system error number that indicates the out-
come of the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2),
PUT_READX(2), PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2), PUT_WRITEX(2).

5−310 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_WRITEX(2)

NAME
PUT_WRITEX - Writes data from an array in the application program to an open Guardian file

LIBRARY
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yputdll

SYNOPSIS
[#include <cextdecs.h>]
#include <pthread.h>

short PUT_WRITEX(
short filenum,
char *buffer,

#ifdef __LP64
int write_count,
int *count_written,

#else
unsigned short write_count,
unsigned short *count_written,

#endif
long tag);

PARAMETERS
Input

filenum Specifies the file number of a Guardian file open instance that identifies the file
to be written.

buffer Specifies an array in the application process in which the information to be writ-
ten to the file is stored before the call.

write_count Specifies the number of bytes to be written.

tag (Optional) For nowait I/O only. The tag value you define uniquely identifies the
operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

Output
count_written (Optional) Returns a count of the number of bytes written to the file from buffer.

DESCRIPTION
The PUT_WRITEX() function is a thread-aware version of the Guardian WRITEX procedure.

This function writes data from an array in the application program to an open Guardian file.

For programming information about the WRITEX procedure, see the Enscribe Programmer’s
Guide and the Guardian Programmer’s Guide.

To use this function on systems running J06.10 or later RVUs or H06.21 or later RVUs, you must
perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

527186-023 Hewlett-Packard Company 5−311

PUT_WRITEX(2) OSS System Calls Reference Manual

• Link the application to the zputdll library.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit applications.

To use this function in a 32-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, perform the same tasks (described above) used to enable the function on systems
running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit application on systems running H06.24 or later RVUs or J06.13 or
later RVUs, you must perform all of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

Considerations
Buffer use PUT_WRITEX() is intended for use with 32-bit extended addresses and 64-bit

extended addresses. The data buffer for PUT_WRITE() can be either in the
caller’s stack segment or any extended data segment.

Waited I/O and PUT_WRITEX() calls
If a waited PUT_WRITEX() call is executed, the count_written parameter indi-
cates the number of bytes actually written.

Nowait I/O and PUT_WRITEX() calls
If a nowait PUT_WRITE () call is executed, count_written has no meaning and
can be omitted. The count of the number of bytes written is obtained when the
I/O operation completes through the count-transferred parameter of the Guar-
dian AWAITIOX procedure.

The PUT_WRITEX() function must complete with a corresponding call to the
Guardian AWAITIOX procedure when used with a file that is opened for nowait
I/O.

Do not change the contents of the data buffer between the initiation and comple-
tion of a nowait write operation. A retry can copy the data again from the user
buffer and cause the wrong data to be written. Avoid sharing a buffer between a
write and another I/O operation because the contents of the write buffer might
change before the write is completed.

Disk File Considerations
Large data transfers for unstructured files using default mode

Default mode allows I/O sizes for unstructured files to be as large as 56KB
(57,344), excepting writes to audited files, if the unstructured buffer size (or
block size) is 4KB (4096). Default mode refers to the mode of the file if
PUT_SETMODE() function 141 is not invoked.

For an unstructured file with an unstructured buffer size other than 4KB, DP2
automatically adjusts the unstructured buffer size to 4KB, if possible, when an
I/O larger than 4KB is attempted. However, this adjustment is not possible for
files that have extents with an odd number of pages; in such cases, an I/O over
4KB is not possible. The switch to a different unstructured buffer size will have
a transient performance impact, so HP recommends that the size be initially set

5−312 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_WRITEX(2)

to 4KB, which is the default. Transfer sizes over 4KB are not supported in
default mode for unstructured access to structured files.

Large data transfers using PUT_SETMODE(141)
You can use PUT_SETMODE() function 141 to enable large data transfers
(more than 4096 bytes) for files opened with unstructured access, regardless of
unstructured buffer size. When you use PUT_SETMODE(141) to enable large
data transfers, you can to specify up to 56K (57344) bytes for the write_count
parameter. See the description of SETMODE functions in the Guardian Pro-
cedure Calls Reference Manual.

File is locked
If you call PUT_WRITEX() is made and the file is locked through a file number
other than that supplied in the call, the call is rejected with Guardian file-system
error 73 (file is locked).

Inserting a new record into a file
The PUT_WRITEX() function inserts a new record into a file in the position
designated by the file’s primary key:

Key-sequenced files
The record is inserted in the position indicated by the value in its
primary-key field.

Queue files The record is inserted into a file at a unique location. The disk
process sets the timestamp field in the key, which causes the
record to be positioned after the other existing records that have
the same high-order user key.

If the file is audited, the record is available for read operations
when the transaction associated with the write operation com-
mits. If the transaction aborts, the record is never available to
read operations. If the file is not audited, the record is available
as soon as the write operation finishes successfully. Unlike
other key-sequenced files, a write operation to a queue file will
never encounter a Guardian file-system error 10 (duplicate
record) because all queue file records have unique keys gen-
erated for them.

Relative files After an open or an explicit positioning by its primary key, the
record is inserted in the designated position.

Subsequent PUT_WRITEX() calls without intermediate posi-
tioning insert records in successive record positions. If -2 is
specified in a preceding positioning, the record is inserted in an
available record position in the file.

If -1 is specified in a preceding positioning, the record is inserted
following the last position used in the file. An existing record
does not have to be in that position at the time of the
PUT_WRITEX() call.

Entry-sequenced files
The record is inserted following the last record currently exist-
ing in the file.

527186-023 Hewlett-Packard Company 5−313

PUT_WRITEX(2) OSS System Calls Reference Manual

Unstructured files
The record is inserted at the position indicated by the current
value of the next-record pointer.

If a record is to be inserted into a key-sequenced or relative file and the record
already exists, the PUT_WRITEX() call fails, and a subsequent call to the
Guardian FILE_GETINFO_ or FILEINFO procedure shows that Guardian file-
system error 10 occurred.

Structured files

Inserting records into relative or entry-sequenced files
If the record is inserted into a relative or entry-sequenced file,
the file must be positioned currently through its primary key.
Otherwise, the PUT_WRITEX() call fails, and a subsequent
call to the Guardian FILE_GETINFO_ or FILEINFO procedure
shows that Guardian file-system error 46 (invalid key)
occurred.

Current-state indicators after an PUT_WRITEX() call
After a successful PUT_WRITEX() call, the current-state indi-
cators for positioning mode and comparison length remain
unchanged.

For key-sequenced files, the current position and the current
primary-key value remain unchanged.

For relative and entry-sequenced files, the current position is that
of the record just inserted and the current primary-key value is
set to the value of the record’s primary key.

Duplicate record found on insertion request
When you attempt to insert a record into a key-sequenced file, if
a duplicate record is found, the PUT_WRITEX() function
returns Guardian file-system error 10 (record already
exists) or error 71 (duplicate record). If the operation is
part of a TMF transaction, the record is locked for the duration
of the transaction.

Unstructured files

DP2 BUFFERSIZE rules
DP2 unstructured files are transparently blocked using one of the
four valid DP2 blocksizes (512, 1024, 2048, or 4096 bytes; 4096
is the default). This transparent blocksize, known as BUFFER-
SIZE, is the transfer size used against an unstructured file.
While BUFFERSIZE does not change the maximum unstruc-
tured transfer (4096 bytes), multiple I/Os can be performed to
satisfy a user request depending on the BUFFERSIZE chosen.
For example, if BUFFERSIZE is 512 bytes, and a request is
made to write 4096 bytes, at least eight transfers, each 512 bytes
long, will be made. More than eight transfers happen, in this
case, if the requested transfer does not start on a BUFFERSIZE
boundary.

DP2 performance with unstructured files is best when requested
transfers begin on BUFFERSIZE boundaries and are integral
multiples of BUFFERSIZE.

5−314 Hewlett-Packard Company 527186-023

System Functions (n - p) PUT_WRITEX(2)

If the PUT_WRITEX() call is to an unstructured disk file, data
is transferred to the record location specified by the next-record
pointer. The next-record pointer is updated to point to the record
following the record written.

Number of bytes written
If an unstructured file is created with the odd unstructured attri-
bute (also known as ODDUNSTR) set, the number of bytes writ-
ten is exactly the number specified in write_count. If the odd
unstructured attribute is not set when the file is created, the
value of write_count is rounded up to an even value before the
PUT_WRITEX() is executed.

You set the odd unstructured attribute with the Guardian
FILE_CREATE_, FILE_CREATELIST_, or CREATE pro-
cedure, or with the File Utility Program (FUP) SET and
CREATE commands.

File pointers after an PUT_WRITEX() call
After a successful PUT_WRITEX() call to an unstructured file,
the file pointers have these values:

• Current-record pointer is the next-record pointer.

• Next-record pointer is the next-record pointer plus the
count written.

• End-of-file (EOF) pointer is the maximum of the EOF
pointer or the next-record pointer.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot
deallocate or reduce the size of the extended data seg-
ment before the I/O completes with a call to the Guar-
dian AWAITIOX procedure or is canceled by a call to
the PUT_CANCEL() function or the Guardian CAN-
CELREQ procedure.

• You must not modify the buffer before the I/O completes
with a call to the Guardian AWAITIOX procedure. This
restriction also applies to other processes that might be
sharing the segment. It is the application’s responsibil-
ity to ensure this.

• If you initiated the I/O with PUT_WRITE(), the I/O
must be completed with a call to the Guardian
AWAITIOX procedure.

• A selectable extended data segment containing the
buffer need not be in use at the time of the call to
AWAITIOX.

527186-023 Hewlett-Packard Company 5−315

PUT_WRITEX(2) OSS System Calls Reference Manual

• You can cancel nowait I/O that was initiated with
PUT_WRITEX() with a call to PUT_CANCEL() or
CANCELREQ. The I/O is canceled if the file is closed
before the I/O completes or if the Guardian AWAITIOX
procedure is called with a positive time limit and
specific file number and the request times out.

Interprocess Communication Consideration
Indication that the destination process is running

If the PUT_WRITEX() call is to another process, successful completion of the
PUT_WRITEX() call (or a Guardian AWAITIOX procedure call if nowait)
indicates that the destination process is running.

RETURN VALUES
The PUT_WRITEX() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: PUT_CANCEL(2), PUT_CONTROL(2), PUT_FILE_CLOSE_(2),
PUT_FILE_OPEN_(2), PUT_LOCKFILE(2), PUT_LOCKREC(2),
PUT_READLOCKX(2), PUT_READUPDATELOCKX(2), PUT_READUPDATEX(2),
PUT_READX(2), PUT_SETMODE(2), PUT_UNLOCKFILE(2), PUT_UNLOCKREC(2),
PUT_WRITEREADX(2), PUT_WRITEUPDATEUNLOCKX(2),
PUT_WRITEUPDATEX(2).

5−316 Hewlett-Packard Company 527186-023

Section 6. System Functions (r)

This section contains reference pages for Open System Services (OSS) system function
calls with names that begin with r. These reference pages reside in the cat2 directory and
are sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 6−1

read(2) OSS System Calls Reference Manual

NAME
read - Reads from a file

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

ssize_t read(
int filedes,
void *buffer,
size_t nbytes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

buffer Points to the buffer to receive data read.

nbytes Specifies the number of bytes to read from the file associated with the filedes
parameter.

If the value of nbytes is 0 (zero), the read() function returns 0 (zero). There are
no other results.

If the value of nbytes is greater than SSIZE_MAX, the read() function returns
-1 and sets errno to [EINVAL].

DESCRIPTION
The read() function attempts to read nbytes bytes of data from the file associated with the filedes
parameter into the buffer pointed to by the buffer parameter.

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, read() or read64_() may be
called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, read64_() must be called.

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to read64_().

On regular files and devices capable of seeking, the read() function starts at a position in the file
given by the file pointer associated with the filedes parameter. Upon return from the read() func-
tion, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. For such devices,
the value of the file pointer after a call to the read() function is always 0 (zero).

Upon successful completion, the read() function returns the number of bytes actually read and
placed in the buffer. This number is never greater than the value of the nbytes parameter.

6−2 Hewlett-Packard Company 527186-023

System Functions (r) read(2)

The value returned can be less than nbytes if the number of bytes left in the file is less than
nbytes, if the read() request was interrupted by a signal, or if the file is a pipe, FIFO file, socket,
or special file and has fewer than nbytes bytes immediately available for reading. For example, a
read() from a file associated with a terminal might return one typed line of data.

No data transfer occurs past the current end-of-file (EOF). If the starting position is at or after the
end-of-file, 0 (zero) is returned.

If a write() or writev() call contains so much data that the file system needs to resize a pipe or
FIFO buffer, a read from that pipe or FIFO file can return up to 52 kilobytes of data, regardless of
the size of PIPE_BUF. If the buffer cannot be resized for the write operation, a read from the
pipe or FIFO file does not return more than 8192 bytes per call, regardless of the setting of
O_NONBLOCK.

When attempting to read from an empty pipe (or FIFO file):

• If no process has the pipe open for writing, the read() function returns the value 0 (zero)
to indicate EOF.

• If some process has the pipe open for writing:

— If the O_NONBLOCK flag is not set, the read() function blocks until either
some data is written or the pipe is closed by all processes that had opened the
pipe for writing.

— If the O_NONBLOCK flag is set, the read() function returns the value -1 and
sets errno to [EAGAIN].

When attempting to read from a socket and no data is currently available:

• If the O_NONBLOCK flag is not set, the read() function blocks until data becomes
available or an error occurs.

• If the O_NONBLOCK flag is set, the read() function returns the value -1 and sets errno
to [EWOULDBLOCK].

When attempting to read from a character special file that supports nonblocking reads, such as a
terminal, and no data is currently available:

• If the O_NONBLOCK flag is not set, the read() function blocks until data becomes
available or an error occurs.

• If the O_NONBLOCK flag is set, the read() function returns the value -1 and sets errno
to [EAGAIN].

If the read() function is interrupted by a signal before it reads any data, it returns the value -1
with errno set to [EINTR]. If the read() function is interrupted by a signal after it has success-
fully read some data, it returns the number of bytes read.

The read() function returns the number of bytes with the value 0 (zero) for any unwritten portion
of a regular file prior to EOF.

When reading from a device special file, the return of EOF has no effect on subsequent calls to
the read() function. When modem disconnect is detected, an EOF is returned. The errno vari-
able is not set to [EIO].

Upon successful completion, the read() function marks the st_atime field of the file for update.

527186-023 Hewlett-Packard Company 6−3

read(2) OSS System Calls Reference Manual

Use on Guardian Objects
After a call to the fork(), tdm_fork(), or tdm_spawn() function, the initial position within a
Guardian EDIT file (a file in /G with file code 101) is the same for both parent and child
processes. However, the position is not shared. Moving the current position from within one
process does not move it in the other process.

Use From a Threaded Application
The thread-aware read() function behaves exactly the same as spt_readz() in the Standard
POSIX Threads library. For file descriptors for regular files, if this thread-aware read() function
must wait for an I/O operation to complete on an open file, this function blocks the thread
(instead of the entire process) that called it, while it waits for the I/O operation to complete.

This function serializes file operations on an open file. If a thread calls read() to access a file
that already has a file operation in progress by a different thread, this thread is blocked until the
prior file operation is complete.

NOTES
To use the read() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_readz(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the function on systems running H06.21/J06.10 or later
RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the read() function returns the number of bytes actually read and
placed into the buffer. The function guarantees to read the number of bytes requested only if the
descriptor references a regular file that has at least that number of bytes left before EOF.

If the read otherwise fails, the value -1 is returned, errno is set to indicate the error, and the con-
tents of the buffer pointed to by the buffer parameter are indeterminate.

6−4 Hewlett-Packard Company 527186-023

System Functions (r) read(2)

ERRORS
If any of these conditions occurs, the read() function sets errno to the corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor, and the process would be
delayed in the read operation.

The O_NONBLOCK flag is set, and no data was available.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion is in progress on a regular file and a function that is process-blocking for
regular files attempts to begin an I/O operation on the same open file.

If the read() function is thread-aware, the [EALREADY] value is not returned.

[EBADF] The filedes parameter is not a valid file descriptor open for reading.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFILEBAD] An attempt was made to read from a Guardian EDIT file (a file in /G with file
code 101) with a corrupted internal structure.

[EINTR] A read() operation was interrupted by a signal before any data arrived.

[EINVAL] The value of the nbytes parameter is greater than SSIZE_MAX.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

• A physical I/O error occurred. Data might have been lost during a
transfer.

[EISDIR] A read() operation was attempted against a directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOMEM] There was insufficient memory available to complete the operation.

527186-023 Hewlett-Packard Company 6−5

read(2) OSS System Calls Reference Manual

[ENOTCONN] The socket is no longer connected to a peer socket.

[EOVERFLOW]
The file is a regular file, the value of nbyte is greater than 0 (zero), the starting
position is before the End-of-File (EOF), and the starting position is greater than
or equal to the file offset maximum established when the file described by filedes
was opened.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWOULDBLOCK]
The process attempted an operation on a socket for which O_NONBLOCK is
set, there is no data, and no error has occurred.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: creat(2), creat64(2), dup(2), fcntl(2), ioctl(2), lseek(2), lseek64(2), open(2),
open64(2), opendir(3), pipe(2), socket(2), spt_readz(2).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• The value of the file pointer returned for a device that is incapable of seeking is always 0
(zero).

• When reading from a device special file, the return of EOF has no effect on subsequent
calls to the read() function.

• Specifying a value for the nbytes parameter that is greater than SSIZE_MAX causes the
read() function to return -1 and set errno to [EINVAL].

• errno can be set to [EIO] if a physical I/O error occurs.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [ECONNRESET], [EFAULT], [EFILEBAD], [EINVAL], [EISDIR],
[EISGUARDIAN], [ENETDOWN], [ENOTCONN], [ETIMEDOUT], and [EWRON-
GID] can be returned.

6−6 Hewlett-Packard Company 527186-023

System Functions (r) read(2)

The use of this function with the POSIX User Thread Model library conforms to industry stan-
dards as follows:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

• When a signal arrives during a call to a thread-aware read() function, the thread-aware
read() retries the I/O operation instead of returning the errno value [EINTR] with the
following exception. If the thread-aware fork() function is called by a signal handler
that is running on a thread performing a thread-aware read() call, the thread-aware
read() call in the child process returns [EINTR] to the application.

527186-023 Hewlett-Packard Company 6−7

read64_(2) OSS System Calls Reference Manual

NAME
read64_ - Reads from a file

LIBRARY
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

long long read64_(
int filedes,
void _ptr64 *buffer,
unsigned long long nbytes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

buffer Points to the buffer to receive data read.

nbytes Specifies the number of bytes to read from the file associated with the filedes
parameter.

If the value of nbytes is 0 (zero), the read64_() function returns 0 (zero). There
are no other results.

If the value of nbytes is greater than SSIZE_MAX, the read64_() function
returns -1 and sets errno to [EINVAL].

DESCRIPTION
The read64_() function attempts to read nbytes bytes of data from the file associated with the
filedes parameter into the buffer pointed to by the buffer parameter.

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, read() or read64_() may be
called with a 32-bit pointer argument.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, read64_() must be called with a
64-bit pointer argument.

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to read64_().

On regular files and devices capable of seeking, the read64_() function starts at a position in the
file given by the file pointer associated with the filedes parameter. Upon return from the
read64_() function, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. For such devices,
the value of the file pointer after a call to the read64_() function is always 0 (zero).

Upon successful completion, the read64_() function returns the number of bytes actually read
and placed in the buffer. This number is never greater than the value of the nbytes parameter.

The value returned can be less than nbytes if the number of bytes left in the file is less than
nbytes, if the read64_() request was interrupted by a signal, or if the file is a pipe, FIFO file,
socket, or special file and has fewer than nbytes bytes immediately available for reading. For
example, a read64_() from a file associated with a terminal might return one typed line of data.

6−8 Hewlett-Packard Company 527186-023

System Functions (r) read64_(2)

No data transfer occurs past the current end-of-file (EOF). If the starting position is at or after the
end-of-file, 0 (zero) is returned.

If a write(), write64_(), or writev() call contains so much data that the file system needs to
resize a pipe or FIFO buffer, a read from that pipe or FIFO file can return up to 52 kilobytes of
data, regardless of the size of PIPE_BUF. If the buffer cannot be resized for the write operation,
a read from the pipe or FIFO file does not return more than 8192 bytes per call, regardless of the
setting of O_NONBLOCK.

When attempting to read from an empty pipe (or FIFO file):

• If no process has the pipe open for writing, the read64_() function returns the value 0
(zero) to indicate EOF.

• If some process has the pipe open for writing:

— If the O_NONBLOCK flag is not set, the read64_() function blocks until either
some data is written or the pipe is closed by all processes that had opened the
pipe for writing.

— If the O_NONBLOCK flag is set, the read64_() function returns the value -1
and sets errno to [EAGAIN].

When attempting to read from a socket and no data is currently available:

• If the O_NONBLOCK flag is not set, the read64_() function blocks until data becomes
available or an error occurs.

• If the O_NONBLOCK flag is set, the read64_() function returns the value -1 and sets
errno to [EWOULDBLOCK].

When attempting to read from a character special file that supports nonblocking reads, such as a
terminal, and no data is currently available:

• If the O_NONBLOCK flag is not set, the read64_() function blocks until data becomes
available or an error occurs.

• If the O_NONBLOCK flag is set, the read64_() function returns the value -1 and sets
errno to [EAGAIN].

If the read64_() function is interrupted by a signal before it reads any data, it returns the value -1
with errno set to [EINTR]. If the read64_() function is interrupted by a signal after it has suc-
cessfully read some data, it returns the number of bytes read.

The read64_() function returns the number of bytes with the value 0 (zero) for any unwritten
portion of a regular file prior to EOF.

When reading from a device special file, the return of EOF has no effect on subsequent calls to
the read64_() function. When modem disconnect is detected, an EOF is returned. The errno
variable is not set to [EIO].

Upon successful completion, the read64_() function marks the st_atime field of the file for
update.

Use on Guardian Objects
After a call to the fork(), tdm_fork(), or tdm_spawn() function, the initial position within a
Guardian EDIT file (a file in /G with file code 101) is the same for both parent and child
processes. However, the position is not shared. Moving the current position from within one
process does not move it in the other process.

527186-023 Hewlett-Packard Company 6−9

read64_(2) OSS System Calls Reference Manual

RETURN VALUES
Upon successful completion, the read64_() function returns the number of bytes actually read
and placed into the buffer. The function guarantees to read the number of bytes requested only if
the descriptor references a regular file that has at least that number of bytes left before EOF.

If the read otherwise fails, the value -1 is returned, errno is set to indicate the error, and the con-
tents of the buffer pointed to by the buffer parameter are indeterminate.

ERRORS
If any of these conditions occurs, the read64_() function sets errno to the corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor, and the process would be
delayed in the read operation.

The O_NONBLOCK flag is set, and no data was available.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion (such as spt_writez()) is in progress on a regular file and a function that is
process-blocking for regular files (such as read(), spt_read(), or spt_readx())
attempts to begin an I/O operation on the same open file.

[EBADF] The filedes parameter is not a valid file descriptor open for reading.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFILEBAD] An attempt was made to read from a Guardian EDIT file (a file in /G with file
code 101) with a corrupted internal structure.

[EINTR] A read64_() operation was interrupted by a signal before any data arrived.

[EINVAL] The value of the nbytes parameter is greater than SSIZE_MAX.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

• A physical I/O error occurred. Data might have been lost during a
transfer.

[EISDIR] A read64_() operation was attempted against a directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

6−10 Hewlett-Packard Company 527186-023

System Functions (r) read64_(2)

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] The socket is no longer connected to a peer socket.

[EOVERFLOW]
The file is a regular file, the value of nbyte is greater than 0 (zero), the starting
position is before the End-of-File (EOF), and the starting position is greater than
or equal to the file offset maximum established when the file described by filedes
was opened.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWOULDBLOCK]
The process attempted an operation on a socket for which O_NONBLOCK is
set, there is no data, and no error has occurred.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: creat(2), creat64(2), dup(2), fcntl(2), ioctl(2), lseek(2), lseek64(2), open(2),
open64(2), opendir(3), pipe(2), read(2), socket(2).

STANDARDS CONFORMANCE
This API is an HP extension and is not standards conformant.

527186-023 Hewlett-Packard Company 6−11

readlink(2) OSS System Calls Reference Manual

NAME
readlink - Reads the value of a symbolic link

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int readlink(
const char *path,
char *buffer,
size_t buf_size);

PARAMETERS
path Specifies the pathname of the destination file or directory.

buffer Points to the user’s buffer. The buffer should be at least as large as the buf_size
parameter.

buf_size Specifies the size of the buffer.

If the actual length of the symbolic link is greater than the value of buf_size, the
symbolic link is truncated. The buffer specified by the buffer parameter contains
buf_size bytes of the link, and the value of the buf_size parameter is returned as
the value of the function.

If the actual length of the symbolic link is less than the value of buf_size, then
the contents of the buffer pointed to by the buffer parameter beyond the returned
value are undefined.

If the value of buf_size is 0 (zero), the contents of the buffer pointed to by the
buffer parameter are unchanged by the function call.

DESCRIPTION
The readlink() function places the contents of the symbolic link named by the path parameter in
buffer, which has size buf_size. If the actual length of the symbolic link is less than buf_size, the
string copied into the buffer is null-terminated.

For a readlink() function to finish successfully, the calling process must have execute (search)
permission for the directory containing the link.

Use on Guardian Objects
The readlink() function cannot be used on an object in the Guardian file system (/G). Symbolic
links cannot be created in /G.

Use From the Guardian Environment
The readlink() function can be used by a Guardian process when the process has been compiled
using the #define _XOPEN_SOURCE_EXTENDED 1 feature-test macro or an equivalent com-
piler command option.

The readlink() function is one of a set of functions that have the following effects when the first
of them is called from the Guardian environment:

• Two Guardian filesystem file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

6−12 Hewlett-Packard Company 527186-023

System Functions (r) readlink(2)

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the readlink() function returns the number of characters placed in
the buffer (not including any terminating null). If the readlink() function fails, the buffer is not
modified, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the readlink() function sets errno to the correspond-
ing value:

[EACCES] Search permission is denied on a component of the pathname prefix of the path
parameter.

[EFAULT] The path parameter points outside the process’s allocated address space.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINVAL] The file named by the path parameter is not a symbolic link.

[EIO] An I/O error occurred during a read from or write to the fileset.

[ELOOP] There were too many links encountered in translating path.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of the following conditions exists:

• The file named by the path parameter does not exist.

• The path parameter points to an empty string.

• The path parameter specifies a file on a remote HP NonStop node but
communication with the remote node has been lost.

[ENOROOT] The root fileset (fileset 0) is not in the STARTED state.

527186-023 Hewlett-Packard Company 6−13

readlink(2) OSS System Calls Reference Manual

[ENOTDIR] A component of the pathname prefix of the path parameter is not a directory.

[ENXIO] An invalid device or address was specified during an input operation on a special
file. One of the following events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process is not running.

RELATED INFORMATION
Functions: link(2), lstat(2), stat(2), symlink(2), unlink(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [ENOROOT], [ENXIO], and [EOSSNO-
TRUNNING] can be returned.

6−14 Hewlett-Packard Company 527186-023

System Functions (r) readv(2)

NAME
readv - Reads from a file into scattered buffers

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossesrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zossedll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yossedll
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>

int readv(
int filedes,
struct iovec *iov,
int iov_count);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

iov Points to an iovec structure that identifies the buffers into which the data is to be
placed.

iov_count Specifies the number of entries in the iovec structure pointed to by the iov
parameter.

DESCRIPTION
The readv() function attempts to read data from the file associated with the filedes parameter
into a set of buffers. The readv() function performs the same action as the read() function, but
it scatters the input data into the buffers specified by the array of iovec structure entries pointed
to by the iov parameter.

On regular files and devices capable of seeking, the readv() function starts at a position in the
file given by the file pointer associated with the filedes parameter. Upon return from the readv()
function, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. For such devices,
the value of the file pointer after a call to the readv() function is always 0 (zero).

Upon successful completion, the readv() function returns the number of bytes actually read and
placed in the buffers.

No data transfer occurs past the current end-of-file (EOF). If the starting position is at or after the
end-of-file, 0 (zero) is returned.

If a write() or writev() call contains so much data that the file system needs to resize a pipe or
FIFO buffer, a read from that pipe or FIFO file can return up to 52 kilobytes of data, regardless of
the size of PIPE_BUF. If the buffer cannot be resized for the write operation, a subsequent read
from the pipe or FIFO file does not return more than 8192 bytes per call, regardless of the setting

527186-023 Hewlett-Packard Company 6−15

readv(2) OSS System Calls Reference Manual

of O_NONBLOCK.

When attempting to read from an empty pipe (or FIFO file):

• If no process has the pipe open for writing, the readv() function returns the value 0
(zero) to indicate EOF.

• If some process has the pipe open for writing:

— If the O_NONBLOCK flag is not set, the readv() function blocks until either
some data is written or the pipe is closed by all processes that had opened the
pipe for writing.

— If the O_NONBLOCK flag is set, the readv() function returns the value -1 and
sets errno to [EAGAIN].

When attempting to read from a socket and no data is currently available:

• If the O_NONBLOCK flag is not set, the readv() function blocks until data becomes
available or an error occurs.

• If the O_NONBLOCK flag is set, the readv() function returns the value -1 and sets
errno to [EWOULDBLOCK].

When attempting to read from a character special file that supports nonblocking reads, such as a
terminal, and no data is currently available:

• If the O_NONBLOCK flag is not set, the readv() function blocks until data becomes
available or an error occurs.

• If the O_NONBLOCK flag is set, the readv() function returns the value -1 and sets
errno to [EAGAIN].

If it is interrupted by a signal before it reads any data, the readv() function returns the value -1
with errno set to [EINTR]. If it is interrupted by a signal after it has successfully read some
data, the readv() function returns the number of bytes read.

When reading from a device special file, the return of EOF has no effect on subsequent calls to
the readv() function. When modem disconnect is detected, an EOF is returned. The errno vari-
able is not set to [EIO].

Upon successful completion, the readv() function marks the st_atime field of the file for update.

The iov_count parameter specifies the number of entries (buffers) in the iovec structure pointed
to by the iov parameter. Each iovec entry specifies the base address and length of an area in
memory where data should be placed. The readv() function always fills a buffer completely
before proceeding to the next.

The iovec structure is defined in the sys/uio.h header file and contains entries with these
members:

caddr_t iov_base;
int iov_len;

Use on Guardian Objects
After a call to the fork(), tdm_fork(), or tdm_spawn() function, the initial position within a
Guardian EDIT file (a file in /G with file code 101) is the same for both parent and child
processes. However, the position is not shared; moving the current position from within one pro-
cess does not move it in the other process.

6−16 Hewlett-Packard Company 527186-023

System Functions (r) readv(2)

Use From a Threaded Application
The thread-aware readv() function behaves exactly the same as spt_readvz() in the Standard
POSIX Threads library. For file descriptors for regular files, if this thread-aware readv() func-
tion must wait for an I/O operation to complete on an open file, this function blocks the thread
(instead of the entire process) that called it, while it waits for the I/O operation to complete.

This function serializes file operations on an open file. If a thread calls readv() to access a file
that already has a file operation in progress by a different thread, this thread is blocked until the
prior file operation is complete.

NOTES
To use the readv() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_readvz(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the readv() function returns the number of bytes actually read and
placed into the buffers. The function guarantees to read the number of bytes requested only if the
descriptor references a regular file that has at least that number of bytes left before EOF.

If the read otherwise fails, the value -1 is returned, errno is set to indicate the error, and the con-
tents of the buffers are indeterminate.

527186-023 Hewlett-Packard Company 6−17

readv(2) OSS System Calls Reference Manual

ERRORS
If any of these conditions occurs, the readv() function sets errno to the corresponding value:

[EAGAIN] One of these conditions occurred:

• The O_NONBLOCK flag is set for the file descriptor, and the process
would be delayed in the read operation.

• The O_NONBLOCK flag is set for the file descriptor, and no data was
available.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion is in progress on a regular file and a function that is process-blocking for
regular files attempts to begin an I/O operation on the same open file.

If the readv() function is thread-aware, the [EALREADY] value is not returned.

[EBADF] The filedes parameter is not a valid file descriptor open for reading.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The iov_base member of the iovec structure points to a location outside of the
allocated address space of the process.

[EFILEBAD] An attempt was made to read from a Guardian EDIT file (a file in /G with file
code 101) with a corrupted internal structure.

[EINTR] A readv() operation was interrupted by a signal before any data arrived.

[EINVAL] One of these conditions occurred:

• The sum of the iov_len values in the iov array was negative or
overflowed a data item of type ssize_t.

• The value of the iov_count parameter was less than or equal to 0 (zero)
or greater than IOV_MAX.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

6−18 Hewlett-Packard Company 527186-023

System Functions (r) readv(2)

[EISDIR] A readv() operation was attempted against a directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] The socket is no longer connected to a peer socket.

[EOVERFLOW]
The file is a regular file, the value of nbyte is greater than 0 (zero), the starting
position is before the End-of-File (EOF), and the starting position is greater than
or equal to the file offset maximum established when the file described by filedes
was opened.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWOULDBLOCK]
The process attempted an operation on a socket for which O_NONBLOCK is
set, there is no data, and no error has occurred.

[EWRONGID] One of these conditions occurred:

• The process attempted an input or output operation through an operating
system input/output process (such as a terminal server process) that has
failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for use of the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: creat(2), dup(2), fcntl(2), ioctl(2), lseek(2), open(2), opendir(3), pipe(2), socket(2),
socketpair(2), spt_readvz(2).

STANDARDS CONFORMANCE
HP extensions to the XPG4 Version 2 specification are:

• The errno values [ECONNRESET], [EFAULT], [EFILEBAD], [EINVAL], [EISDIR],
[EISGUARDIAN], [ENETDOWN], [ENOTCONN], [ETIMEDOUT], and [EWRON-
GID] can be returned.

The use of this function with the POSIX User Thread Model library conforms to industry stan-
dards as follows:

527186-023 Hewlett-Packard Company 6−19

readv(2) OSS System Calls Reference Manual

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

• When a signal arrives during a call to a thread-aware readv() function, the thread-aware
readv() retries the I/O operation instead of returning the errno value [EINTR] with the
following exception. If the thread-aware fork() function is called by a signal handler
that is running on a thread performing a thread-aware readv() call, the thread-aware
readv() call in the child process returns [EINTR] to the application.

6−20 Hewlett-Packard Company 527186-023

System Functions (r) recv(2)

NAME
recv - Receives a message from a connected socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

ssize_t recv(
int socket,
void *buffer,
size_t length,
int flags);

PARAMETERS
socket Specifies the file descriptor of the socket.

buffer Points to the buffer where the message should be written.

length Specifies the length in bytes of the buffer pointed to by the buffer parameter.

flags Is a value that controls message reception. The value of the flags parameter is
formed by bitwise ORing zero or more of the following values:

MSG_OOB Requests out-of-band data.

MSG_PEEK Peeks at an incoming message. The data is treated as unread and
the next call to the recv() function (or similar function) will still
return this data.

DESCRIPTION
The recv() function receives messages from a connected socket.

For message-based sockets (sockets of type SOCK_DGRAM), the entire message must be read
in one call. If a message is too long to fit in the supplied buffer and MSG_PEEK is not set in the
flags parameter, the excess bytes are discarded.

For stream-based sockets (sockets of type SOCK_STREAM), message boundaries are ignored.
For such sockets, data is returned as soon as it becomes available; no data is discarded.

If no messages are available at the socket and the socket’s file descriptor is blocking
(O_NONBLOCK is not set), the recv() function blocks until a message arrives. If no messages
are available at the socket and the socket’s file descriptor is marked nonblocking
(O_NONBLOCK is set), the recv() function fails and sets errno to [EWOULDBLOCK].

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, recv() or recv64_() may be
called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, recv64_() must be called.

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to recv64_().

527186-023 Hewlett-Packard Company 6−21

recv(2) OSS System Calls Reference Manual

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data is available, a call to the select() function indicates that the file descriptor for the
socket is ready for reading.

Calling the recv() function with a flags parameter of 0 (zero) is identical to calling the read()
function.

To use the recv() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_recvx(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

A call to the thread-aware recv() function with a flags parameter value of 0 (zero) is identical to
a call to the thread-aware read() function.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the function on systems running H06.21/J06.10 or later
RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the recv() function returns the length of the received message in
bytes. If no data is available and the peer socket has performed an orderly shutdown, then 0
(zero) is returned.

If the recv() function call fails, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the recv() function sets errno to the corresponding
value:

[EBADF] The socket parameter is not a valid file descriptor.

This error is also returned if the recv() function is thread-aware and the socket
becomes invalid (is closed by another thread).

6−22 Hewlett-Packard Company 527186-023

System Functions (r) recv(2)

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] A signal interrupted the function before any data was available.

This error is also returned if the recv() function is thread-aware and a signal
received from the pthread_kill() function is not blocked, ignored, or handled.

[EINVAL] The MSG_OOB value is specified in the flags parameter and no out-of-band
data is available.

[EIO] An input or output error occurred.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] A receive operation was attempted on a connection-oriented socket that is not
connected.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[ETIMEDOUT]
A transmission timed out on an active connection.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), read(2), recvfrom(2), recvmsg(2), select(2), send(2), sendmsg(2),
sendto(2), shutdown(2), sockatmark(2), socket(2), spt_recvx(2), write(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno value [ENOSR].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport-provider process
is unavailable.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 6−23

recv64_(2) OSS System Calls Reference Manual

NAME
recv64_ - Receives a message from a connected socket

LIBRARY
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

long long recv64_(
int socket,
void _ptr64 *buffer,
unsigned long long length,
int flags);

PARAMETERS
socket Specifies the file descriptor of the socket.

buffer Points to the buffer where the message should be written.

length Specifies the length in bytes of the buffer pointed to by the buffer parameter.

flags Is a value that controls message reception. The value of the flags parameter is
formed by bitwise ORing zero or more of the following values:

MSG_OOB Requests out-of-band data.

MSG_PEEK Peeks at an incoming message. The data is treated as unread and
the next call to the recv64_() function (or similar function) will
still return this data.

DESCRIPTION
The recv64_() function receives messages from a connected socket.

For message-based sockets (sockets of type SOCK_DGRAM), the entire message must be read
in one call. If a message is too long to fit in the supplied buffer and MSG_PEEK is not set in the
flags parameter, the excess bytes are discarded.

For stream-based sockets (sockets of type SOCK_STREAM), message boundaries are ignored.
For such sockets, data is returned as soon as it becomes available; no data is discarded.

If no messages are available at the socket and the socket’s file descriptor is blocking
(O_NONBLOCK is not set), the recv64_() function blocks until a message arrives. If no mes-
sages are available at the socket and the socket’s file descriptor is marked nonblocking
(O_NONBLOCK is set), the recv64_() function fails and sets errno to [EWOULDBLOCK].

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, recv() or recv64_() may be
called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, recv64_() must be called.

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to recv64_().

6−24 Hewlett-Packard Company 527186-023

System Functions (r) recv64_(2)

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data is available, a call to the select() function indicates that the file descriptor for the
socket is ready for reading.

Calling the recv64_() function with a flags parameter of 0 (zero) is identical to calling the
read64_() function.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the recv64_() function returns the length of the received message
in bytes. If no data is available and the peer socket has performed an orderly shutdown, then 0
(zero) is returned.

If the recv64_() function call fails, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the recv64_() function sets errno to the corresponding
value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] A signal interrupted the function before any data was available.

[EINVAL] The MSG_OOB value is specified in the flags parameter and no out-of-band
data is available.

[EIO] An input or output error occurred.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] A receive operation was attempted on a connection-oriented socket that is not
connected.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

527186-023 Hewlett-Packard Company 6−25

recv64_(2) OSS System Calls Reference Manual

[ETIMEDOUT]
A transmission timed out on an active connection.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), read(2), read64_(2), recvfrom(2), recvfrom64_(2), recvmsg(2),
recvmsg64_(2), select(2), send(2), send64_(2), sendmsg(2), sendmsg64_(2), sendto(2),
sendto64_(2), shutdown(2), sockatmark(2), socket(2), write(2), write64_(2).

STANDARDS CONFORMANCE
This API is an HP extension and is not standards conformant.

6−26 Hewlett-Packard Company 527186-023

System Functions (r) recvfrom(2)

NAME
recvfrom - Receives a message from a socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

ssize_t recvfrom(
int socket,
void *buffer,
size_t length,
int flags,
struct sockaddr *address,
socklen_t *address_len);

PARAMETERS
socket Specifies the file descriptor of the socket.

buffer Points to the buffer where the message should be written.

length Specifies the length in bytes of the buffer pointed to by the buffer parameter.

flags Is a value that controls message reception. The value of the flags parameter is
formed by bitwise ORing zero or more of the following values:

MSG_OOB Requests out-of-band data.

MSG_PEEK Peeks at an incoming message. The data is treated as unread and
the next call to the recvfrom() function (or similar function)
will still return this data.

address Specifies either a null pointer or a pointer to a sockaddr structure in which the
sending address is to be stored. The length and format of the address depend on
the address family of the socket.

For AF_INET sockets, a pointer to the address structure sockaddr_in must be
cast as a struct sockaddr. For AF_INET6 sockets, a pointer to the address
structure sockaddr_in6 must be cast as a struct sockaddr. For AF_UNIX sock-
ets, a pointer to the address structure sockaddr_un must be cast as a struct
sockaddr.

address_len Points to a socklen_t data item, which, on input, specifies the length of the
sockaddr structure that is pointed to by the address parameter, and, on return,
specifies the length of the address stored.

DESCRIPTION
The recvfrom() function receives messages from a connection-oriented or connectionless
socket. recvfrom() is normally used with connectionless sockets because it includes parameters
that permit a calling program to retrieve the source address of received data.

527186-023 Hewlett-Packard Company 6−27

recvfrom(2) OSS System Calls Reference Manual

For message-based sockets (sockets of type SOCK_DGRAM), the entire message must be read
in one call. If a message is too long to fit in the supplied buffer and MSG_PEEK is not set in the
flags parameter, the excess bytes are discarded.

For stream-based sockets (sockets of type SOCK_STREAM), message boundaries are ignored.
For such sockets, data is returned as soon as it becomes available; no data is discarded.

If no messages are available at the socket and the socket’s file descriptor is blocking
(O_NONBLOCK is not set), the recvfrom() function blocks until a message arrives. If no mes-
sages are available at the socket and the socket’s file descriptor is marked nonblocking
(O_NONBLOCK is set), the recvfrom() function fails and sets errno to [EWOULDBLOCK].

If the address parameter is not a null pointer, the source address of the received message is stored
in the sockaddr structure pointed to by the address parameter, and the length of this address is
stored in the object pointed to by the address_len parameter.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the address is truncated when stored.

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, recvfrom() or recvfrom64_()
may be called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, recvfrom64_() must be called.

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to
recvfrom64_().

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data is available, a call to the select() function indicates that the file descriptor for the
socket is ready for reading.

For AF_UNIX Release 1 sockets and for AF_UNIX Release 2 sockets in compatibility mode,
when the file to which a sending datagram socket is bound is ulinked or renamed, and one of the
send set of functions is called, the receiving client’s call to recvfrom() returns a null address (all
fields in the address are zero).

For AF_UNIX Release 2 sockets in portability mode, when the file to which a sending datagram
socket is bound is unlinked or renamed, and one of the send set of functions is called, the receiv-
ing client’s call to recvfrom() returns the fully-qualified form of the address to which the send-
ing socket was originally bound.

For more information about AF_UNIX Release 2 sockets, portability mode, and compatibility
mode, see the Open System Services Programmer’s Guide.

To use the recvfrom() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_recvfromx(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

6−28 Hewlett-Packard Company 527186-023

System Functions (r) recvfrom(2)

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the function on systems running H06.21/J06.10 or later
RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the recvfrom() function returns the length of the received message
in bytes. If no data is available and the peer socket has performed an orderly shutdown, then 0
(zero) is returned.

If the recvfrom() function call fails, the value -1 is returned and errno is set to indicate the
error.

ERRORS
If any of the following conditions occurs, the recvfrom() function sets errno to the correspond-
ing value:

[EBADF] The socket parameter is not a valid file descriptor.

This error is also returned if the recvfrom() function is thread-aware and the
socket becomes invalid (is closed by another thread).

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] A signal interrupted the function before any data was available.

This error is also returned if the recvfrom() function is thread-aware and a sig-
nal received from the pthread_kill() function is not blocked, ignored, or han-
dled.

[EINVAL] The MSG_OOB value is specified in the flags parameter and no out-of-band
data is available.

527186-023 Hewlett-Packard Company 6−29

recvfrom(2) OSS System Calls Reference Manual

[EIO] An input or output error occurred.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time may succeed.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] A receive operation was attempted on a connection-oriented socket that is not
connected.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[ETIMEDOUT]
A transmission timed out on an active connection.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), read(2), recv(2), recvmsg(2), select(2), send(2), sendmsg(2), sendto(2),
shutdown(2), sockatmark(2), socket(2), spt_recvfromx(2), write(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno value [ENOSR].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport-provider process
is not available.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

6−30 Hewlett-Packard Company 527186-023

System Functions (r) recvfrom64_(2)

NAME
recvfrom64_ - Receives a message from a socket

LIBRARY
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

long long recvfrom64_(
int socket,
void _ptr64 *buffer,
unsigned long long length,
int flags,
struct sockaddr _ptr64 *address,
socklen_t _ptr64 *address_len);

PARAMETERS
socket Specifies the file descriptor of the socket.

buffer Points to the buffer where the message should be written.

length Specifies the length in bytes of the buffer pointed to by the buffer parameter.

flags Is a value that controls message reception. The value of the flags parameter is
formed by bitwise ORing zero or more of the following values:

MSG_OOB Requests out-of-band data.

MSG_PEEK Peeks at an incoming message. The data is treated as unread and
the next call to the recvfrom64_() function (or similar function)
will still return this data.

address Specifies either a null pointer or a pointer to a sockaddr structure in which the
sending address is to be stored. The length and format of the address depend on
the address family of the socket.

For AF_INET sockets, a pointer to the address structure sockaddr_in must be
cast as a struct sockaddr. For AF_INET6 sockets, a pointer to the address
structure sockaddr_in6 must be cast as a struct sockaddr. For AF_UNIX sock-
ets, a pointer to the address structure sockaddr_un must be cast as a struct
sockaddr.

address_len Points to a long long data item, which, on input, specifies the length of the
sockaddr structure that is pointed to by the address parameter, and, on return,
specifies the length of the address stored.

DESCRIPTION
The recvfrom64_() function receives messages from a connection-oriented or connectionless
socket. recvfrom64_() is normally used with connectionless sockets because it includes param-
eters that permit a calling program to retrieve the source address of received data.

For message-based sockets (sockets of type SOCK_DGRAM), the entire message must be read
in one call. If a message is too long to fit in the supplied buffer and MSG_PEEK is not set in the

527186-023 Hewlett-Packard Company 6−31

recvfrom64_(2) OSS System Calls Reference Manual

flags parameter, the excess bytes are discarded.

For stream-based sockets (sockets of type SOCK_STREAM), message boundaries are ignored.
For such sockets, data is returned as soon as it becomes available; no data is discarded.

If no messages are available at the socket and the socket’s file descriptor is blocking
(O_NONBLOCK is not set), the recvfrom64_() function blocks until a message arrives. If no
messages are available at the socket and the socket’s file descriptor is marked nonblocking
(O_NONBLOCK is set), the recvfrom64_() function fails and sets errno to [EWOULD-
BLOCK].

If the address parameter is not a null pointer, the source address of the received message is stored
in the sockaddr structure pointed to by the address parameter, and the length of this address is
stored in the object pointed to by the address_len parameter.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the address is truncated when stored.

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, recvfrom() or recvfrom64_()
may be called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, recvfrom64_() must be called.

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to
recvfrom64_().

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data is available, a call to the select() function indicates that the file descriptor for the
socket is ready for reading.

When the file to which a sending datagram socket is bound is unlinked or renamed, and one of
the send set of functions is called, the receiving client’s call to recvfrom64_() returns a null
address (all fields in the address are zero).

When the file to which a sending datagram socket is bound is unlinked or renamed, and one of
the send set of functions is called, the receiving client’s call to recvfrom64_() returns the fully-
qualified form of the address to which the sending socket was originally bound.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the recvfrom64_() function returns the length of the received mes-
sage in bytes. If no data is available and the peer socket has performed an orderly shutdown,
then 0 (zero) is returned.

If the recvfrom64_() function call fails, the value -1 is returned and errno is set to indicate the
error.

ERRORS
If any of the following conditions occurs, the recvfrom64_() function sets errno to the
corresponding value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

6−32 Hewlett-Packard Company 527186-023

System Functions (r) recvfrom64_(2)

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] A signal interrupted the function before any data was available.

[EINVAL] The MSG_OOB value is specified in the flags parameter and no out-of-band
data is available.

[EIO] An input or output error occurred.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time may succeed.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] A receive operation was attempted on a connection-oriented socket that is not
connected.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[ETIMEDOUT]
A transmission timed out on an active connection.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), read(2), read64_(2), recv(2), recv64_(2), recvfrom(2), recvmsg(2),
recvmsg64_(2), select(2), send(2), send64_(2), sendmsg(2), sendmsg64_(2), sendto(2),
sendto64_(2), shutdown(2), sockatmark(2), socket(2), write(2), write64_(2).

STANDARDS CONFORMANCE
This API is an HP extension and is not standards conformant.

527186-023 Hewlett-Packard Company 6−33

recvmsg(2) OSS System Calls Reference Manual

NAME
recvmsg - Receives a message from a socket using a message structure

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

ssize_t recvmsg(
int socket,
struct msghdr *message,
int flags);

PARAMETERS
socket Specifies the file descriptor of the socket.

message Points to a msghdr structure containing both the buffer to store the source
address and the buffers for the incoming message. The length and format of the
address depend on the address family for the socket. The msg_flags member of
the structure is ignored on input but might contain meaningful values on output.
For:

AF_INET sockets
A pointer in msghdr to the address structure sockaddr_in must
be cast as a struct sockaddr.

AF_INET6 sockets
A pointer to the address structure sockaddr_in6 must be cast as
a struct sockaddr.

AF_UNIX sockets
A pointer to the address structure sockaddr_un must be cast as a
struct sockaddr.

flags Is a value that controls message reception. The value of the flags parameter is
formed by bitwise ORing zero or more of the following values:

MSG_OOB Requests out-of-band data.

MSG_PEEK Peeks at an incoming message. The data is treated as unread,
and the next call to the recvmsg() function (or a similar func-
tion) will still return this data.

DESCRIPTION
The recvmsg() function receives messages from a connection-oriented or connectionless socket
using the msghdr structure. The recvmsg() function is normally used with connectionless sock-
ets because it includes parameters that permit a calling program to retrieve the source address of
the received data.

For message-based sockets (sockets of type SOCK_DGRAM), the entire message must be read
in one call. If a message is too long to fit in the supplied buffer and MSG_PEEK is not set in the

6−34 Hewlett-Packard Company 527186-023

System Functions (r) recvmsg(2)

flags parameter, the excess bytes are discarded, and MSG_TRUNC is set in the msg_flags field
of the msghdr structure.

For stream-based sockets (sockets of type SOCK_STREAM), message boundaries are ignored.
For such sockets, data is returned as soon as it becomes available; no data is discarded.

If no messages are available at the socket and the socket’s file descriptor is blocking
(O_NONBLOCK is not set), the recvmsg() function blocks until a message arrives. If no mes-
sages are available at the socket and the socket’s file descriptor is marked nonblocking
(O_NONBLOCK is set), the recvmsg() function fails and sets errno to [EWOULDBLOCK].

In the msghdr structure, the msg_name and msg_namelen members specify the source address
if the socket is unconnected. If the socket is connected, the msg_name and msg_namelen
members are ignored. The msg_name member can be a null pointer if no names are desired or
required. The msg_iov and msg_iovlen members describe the scatter/gather locations.

Upon successful completion of the recvmsg() call, the value of the msg_flags member of the
msghdr structure is the bitwise OR of zero or more of the following values:

MSG_CTRUNC
Control data was truncated.

MSG_OOB Out-of-band data was received.

MSG_TRUNC
Normal data was truncated.

In the msghdr structure, the msg_control and msg_controllen members specify the ancillary
data buffer that can be used only by sockets in the AF_UNIX domain to receive file descriptors
passed from another process on the same node. The msg_control member can be a null pointer
if ancillary data is not desired or required. If the msg_control member is nonnull, on input the
msg_controllen member contains the size of the ancillary data buffer and on output it contains
the size of the received ancillary data. If, on output, the msg_controllen member is nonzero, the
ancillary data buffer contains a cmsghdr structure followed by one to sixteen file descriptors.

If recvmsg() is called with an ancillary data buffer and MSG_PEEK is set, the msg_controllen
member is valid, but the ancillary data is not meaningful (no file descriptors are received).
Ancillary data is not discarded but remains available for the next call to recvmsg() where
MSG_PEEK is set.

If recvmsg() is called with an ancillary data buffer that is too small to hold the available file
descriptors, MSG_CTRUNC is set, and the excess file descriptors are discarded.

If recvmsg() is called with an ancillary data buffer and one or more of the received file descrip-
tors are unusable (perhaps because of a device error), there is no error indication until the file
descriptor is used.

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, recvmsg() must be called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, recvmsg64_() must be called.

To pass a 32-bit pointer from a 64-bit OSS client, recvmsg() must be called.

To pass a 64-bit pointer from a 64-bit OSS client, recvmsg_() must be called.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data is available, a call to the select() function indicates that the file descriptor for the
socket is ready for reading.

527186-023 Hewlett-Packard Company 6−35

recvmsg(2) OSS System Calls Reference Manual

For AF_UNIX Release 1 sockets and for AF_UNIX Release 2 sockets in compatibility mode,
when the file to which a sending datagram socket is bound is unlinked or renamed, and one of the
send set of functions is called, the receiving client’s call to recvmsg() returns a null address (all
fields in the address are zero).

For AF_UNIX Release 2 sockets in portability mode, when the file to which a sending datagram
socket is bound is unlinked or renamed, and one of the send set of functions is called, the receiv-
ing client’s call to recvmsg() returns the fully-qualified form of the address to which the sending
socket was originally bound.

For more information about AF_UNIX Release 2 sockets, portability mode, and compatibility
mode, see the Open System Services Programmer’s Guide.

For J06.07 and later J-series RVUs and H06.18 and later H-series RVUs, if a memory resource
allocation error occurs while attempting this operation, the operation succeeds but the resulting
file descriptor is not usable. All subsequent file operations that attempt to use the file descriptor
fail with the error [EBADF].

To use the recvmsg() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_recvmsgx(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the function on systems running H06.21/J06.10 or later
RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the recvmsg() function returns the length of the received message
in bytes. If no data is available and the peer socket has performed an orderly shutdown, 0 (zero)
is returned.

If the recvmsg() function call fails, the value -1 is returned, and errno is set to indicate the error.

6−36 Hewlett-Packard Company 527186-023

System Functions (r) recvmsg(2)

ERRORS
If any of these conditions occurs, the recvmsg() function sets errno to the corresponding value:

[EBADF] The socket parameter is not a valid file descriptor.

This error is also returned if the recvmsg() function is thread-aware and the
socket becomes invalid (is closed by another thread).

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] A signal interrupted the function before any data was available.

This error is also returned if the recvmsg() function is thread-aware and a signal
received from the pthread_kill() function is not blocked, ignored, or handled.

[EINVAL] One of these conditions occurred:

• The MSG_OOB value is specified in the flags parameter, and no out-of-
band data is available.

• The sum of the values specified for the msg_iovlen field of the msghdr
structure is too large for a data item of type ssize_t.

• The socket belongs to the AF_INET or AF_INET6 domain, and the
function call requested msg_control data.

• The socket belongs to the AF_UNIX domain, and the size of
msg_controllen is less than the size of the cmsghdr structure plus one
file descriptor.

[EIO] An input or output error occurred.

[EMFILE] The socket is in the AF_UNIX domain, and processing the cmsghdr structure
would cause the receiving process to exceed OPEN_MAX.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] A receive operation was attempted on a connection-oriented socket that is not
connected.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
A specified value for the flags parameter is not supported for this socket type.

527186-023 Hewlett-Packard Company 6−37

recvmsg(2) OSS System Calls Reference Manual

[ETIMEDOUT]
A transmission timed out on an active connection.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set), and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), recv(2), recvfrom(2), select(2), send(2), sendmsg(2), sendto(2), shut-
down(2), sockatmark(2), socket(2), socketpair(2), spt_recvmsgx(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno value [ENOSR].

HP extensions to the XPG4 specification are:

• The errno value [ECONNRESET] can be returned when the transport-provider process
is not available.

• The errno value [EMFILE] can be returned.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

6−38 Hewlett-Packard Company 527186-023

System Functions (r) recvmsg64_(2)

NAME
recvmsg64_ - Receives a message from a socket using a message structure

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

long long recvmsg64_(
int socket,
struct msghdr64 _ptr64 *message,
int flags);

PARAMETERS
socket Specifies the file descriptor of the socket.

message Points to a msghdr64 structure containing both the buffer to store the source
address and the buffers for the incoming message. The length and format of the
address depend on the address family for the socket. The msg_flags member of
the structure is ignored on input but might contain meaningful values on output.
For:

AF_INET sockets
A pointer in msghdr64 to the address structure sockaddr_in
must be cast as a struct sockaddr.

AF_INET6 sockets
A pointer to the address structure sockaddr_in6 must be cast as
a struct sockaddr.

AF_UNIX sockets
A pointer to the address structure sockaddr_un must be cast as a
struct sockaddr.

flags Is a value that controls message reception. The value of the flags parameter is
formed by bitwise ORing zero or more of the following values:

MSG_OOB Requests out-of-band data.

MSG_PEEK Peeks at an incoming message. The data is treated as unread,
and the next call to the recvmsg64_() function (or a similar
function) will still return this data.

DESCRIPTION
The recvmsg64_() function receives messages from a connection-oriented or connectionless
socket using the msghdr64 structure. The recvmsg64_() function is normally used with connec-
tionless sockets because it includes parameters that permit a calling program to retrieve the
source address of the received data.

For message-based sockets (sockets of type SOCK_DGRAM), the entire message must be read
in one call. If a message is too long to fit in the supplied buffer and MSG_PEEK is not set in the

527186-023 Hewlett-Packard Company 6−39

recvmsg64_(2) OSS System Calls Reference Manual

flags parameter, the excess bytes are discarded, and MSG_TRUNC is set in the msg_flags field
of the msghdr64 structure.

For stream-based sockets (sockets of type SOCK_STREAM), message boundaries are ignored.
For such sockets, data is returned as soon as it becomes available; no data is discarded.

If no messages are available at the socket and the socket’s file descriptor is blocking
(O_NONBLOCK is not set), the recvmsg64_() function blocks until a message arrives. If no
messages are available at the socket and the socket’s file descriptor is marked nonblocking
(O_NONBLOCK is set), the recvmsg64_() function fails and sets errno to [EWOULD-
BLOCK].

In the msghdr64 structure, the msg_name and msg_namelen members specify the source
address if the socket is unconnected. If the socket is connected, the msg_name and
msg_namelen members are ignored. The msg_name member can be a null pointer if no names
are desired or required. The msg_iov and msg_iovlen members describe the scatter/gather loca-
tions.

Upon successful completion of the recvmsg64_() call, the value of the msg_flags member of the
msghdr64 structure is the bitwise OR of zero or more of the following values:

MSG_CTRUNC
Control data was truncated.

MSG_OOB Out-of-band data was received.

MSG_TRUNC
Normal data was truncated.

In the msghdr64 structure, the msg_control and msg_controllen members specify the ancillary
data buffer that can be used only by sockets in the AF_UNIX domain to receive file descriptors
passed from another process on the same node. The msg_control member can be a null pointer
if ancillary data is not desired or required. If the msg_control member is nonnull, on input the
msg_controllen member contains the size of the ancillary data buffer and on output it contains
the size of the received ancillary data. If, on output, the msg_controllen member is nonzero, the
ancillary data buffer contains a cmsghdr structure followed by one to sixteen file descriptors.

If recvmsg64_() is called with an ancillary data buffer and MSG_PEEK is set, the
msg_controllen member is valid, but the ancillary data is not meaningful (no file descriptors are
received). Ancillary data is not discarded but remains available for the next call to
recvmsg64_() where MSG_PEEK is set.

If recvmsg64_() is called with an ancillary data buffer that is too small to hold the available file
descriptors, MSG_CTRUNC is set, and the excess file descriptors are discarded.

If recvmsg64_() is called with an ancillary data buffer and one or more of the received file
descriptors are unusable (perhaps because of a device error), there is no error indication until the
file descriptor is used.

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, recvmsg() must be called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, recvmsg64_() must be called.

To pass a 32-bit pointer from a 64-bit OSS client, recvmsg() must be called.

To pass a 64-bit pointer from a 64-bit OSS client, recvmsg() must be called.

6−40 Hewlett-Packard Company 527186-023

System Functions (r) recvmsg64_(2)

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data is available, a call to the select() function indicates that the file descriptor for the
socket is ready for reading.

When the file to which a sending datagram socket is bound is unlinked or renamed, and one of
the send set of functions is called, the receiving client’s call to recvmsg64_() returns a null
address (all fields in the address are zero).

When the file to which a sending datagram socket is bound is unlinked or renamed, and one of
the send set of functions is called, the receiving client’s call to recvmsg64_() returns the fully-
qualified form of the address to which the sending socket was originally bound.

If a memory resource allocation error occurs while attempting this operation, the operation
succeeds but the resulting file descriptor is not usable. All subsequent file operations that attempt
to use the file descriptor fail with the error [EBADF].

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the recvmsg64_() function returns the length of the received mes-
sage in bytes. If no data is available and the peer socket has performed an orderly shutdown, 0
(zero) is returned.

If the recvmsg64_() function call fails, the value -1 is returned, and errno is set to indicate the
error.

ERRORS
If any of these conditions occurs, the recvmsg64_() function sets errno to the corresponding
value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] A signal interrupted the function before any data was available.

[EINVAL] One of these conditions occurred:

• The MSG_OOB value is specified in the flags parameter, and no out-of-
band data is available.

• The sum of the values specified for the msg_iovlen field of the
msghdr64 structure is too large for a long long data item.

527186-023 Hewlett-Packard Company 6−41

recvmsg64_(2) OSS System Calls Reference Manual

• The socket belongs to the AF_INET or AF_INET6 domain, and the
function call requested msg_control data.

• The socket belongs to the AF_UNIX domain, and the size of
msg_controllen is less than the size of the cmsghdr structure plus one
file descriptor.

[EIO] An input or output error occurred.

[EMFILE] The socket is in the AF_UNIX domain, and processing the cmsghdr structure
would cause the receiving process to exceed OPEN_MAX.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] A receive operation was attempted on a connection-oriented socket that is not
connected.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
A specified value for the flags parameter is not supported for this socket type.

[ETIMEDOUT]
A transmission timed out on an active connection.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set), and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), recv(2), recv64_(2), recvfrom(2), recvfrom64_(2), recvmsg(2), select(2),
send(2), send64_(2), sendmsg(2), sendmsg64_(2), sendto(2), sendto64_(2), shutdown(2),
sockatmark(2), socket(2), socketpair(2).

STANDARDS CONFORMANCE
This API is an HP extension and is not standards conformant.

6−42 Hewlett-Packard Company 527186-023

System Functions (r) rename(2)

NAME
rename - Renames a file or directory

LIBRARY
G-series native Guardian processes: $SYSTEM.SYSnn.ZCRTLSRL
G-series native OSS processes: system library
H-series and J-series native Guardian processes: $SYSTEM.ZDLLnnn.ZCRTLDLL
H-series and J-series OSS processes: implicit libraries

DESCRIPTION
The C run-time library supports two variants of the rename() function: rename_oss() and
rename_guardian(). The variants support the unique file-naming conventions and structures of
the OSS and Guardian file systems, respectively.

The header file maps calls to rename() to the variant that matches the target compilation
environment. The target environment is set with the systype pragma.

Explicit calls to the rename_oss() and rename_guardian() variants in source code are made
only when the behavior of one environment is desired from the other environment.

For a description of the OSS rename() function and the rename_oss() function, see the
rename_oss(2) reference page. For a description of the Guardian rename() function and the
rename_guardian() function, see the rename_guardian(2) reference page.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

527186-023 Hewlett-Packard Company 6−43

rename_guardian(2) OSS System Calls Reference Manual

NAME
rename_guardian - Renames a file (Guardian rename() function)

LIBRARY
G-series native Guardian processes: $SYSTEM.SYSnn.ZCRTLSRL
G-series native OSS processes: /G/system/sysnn/zcrtlsrl
H-series and J-series native Guardian processes: $SYSTEM.ZDLLnnn.ZCRTLDLL
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zcrtldll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ycrtldll

SYNOPSIS
#include <stdio.h>

int rename(
const char *from,
const char *to);

int rename_guardian(
const char *from,
const char *to);

PARAMETERS
from Specifies the current Guardian filename of the file to be renamed.

to Specifies the new Guardian filename of the file to be renamed.

If the to parameter points to an existing file, that file is replaced by the contents
of the object identified by the from parameter.

DESCRIPTION
The Guardian rename() function and rename_guardian() function rename a file within the
Guardian file system.

These functions are identical in the Guardian environment. (Refer to Interoperability Variants
later in this reference page.) Unless otherwise noted, this reference page uses rename() to refer
to both the Guardian rename() function and rename_guardian() function.

The rename() function cannot rename an open file.

Interoperability Variants
The C run-time library supports two variants of the rename() function: rename_oss() and
rename_guardian(). The variants support the unique file-naming conventions and structures of
the OSS and Guardian file systems, respectively.

The header file maps calls to rename() to the variant that matches the target compilation
environment. The target environment is set with the systype pragma.

Explicit calls to the rename_oss() and rename_guardian() variants in source code are made
only when the behavior of one environment is desired from the other environment.

rename_oss() is functionally identical to the rename() function of the OSS environment. It is
the same as setting systype oss at compile time. systype oss is the default setting for use
of the c89 utility in the OSS environment.

rename_guardian() is functionally identical to the rename() function of the Guardian environ-
ment. It is the same as setting systype guardian at compile time. systype guardian is
the default setting for the C and C++ compilers in the Guardian environment.

To use the rename_oss() and rename_guardian() functions, specify the
_TANDEM_SOURCE feature test macro.

6−44 Hewlett-Packard Company 527186-023

System Functions (r) rename_guardian(2)

RETURN VALUES
Upon successful completion, the rename() function returns a 0 (zero). Otherwise, a nonzero
value is returned and the name of the file is not changed.

RELATED INFORMATION
Functions: rename(2), rename_oss(2).

STANDARDS CONFORMANCE
The rename_guardian() function is a HP extension to the XPG4 Version 2 specification.

527186-023 Hewlett-Packard Company 6−45

rename_oss(2) OSS System Calls Reference Manual

NAME
rename_oss - Renames a file or directory (OSS rename() function)

LIBRARY
G-series native Guardian processes: $SYSTEM.SYSnn.ZCRTLSRL
G-series native OSS processes: system library
H-series and J-series native Guardian processes: $SYSTEM.ZDLLnnn.ZCRTLDLL
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <stdio.h>

int rename(
const char *from,
const char *to);

int rename_oss(
const char *from,
const char *to);

PARAMETERS
from Identifies the file or directory to be renamed.

to Identifies the new pathname of the file or directory to be renamed.

If the to parameter points to an existing file or an empty directory, that file or
directory is replaced by the contents of the object identified by the from parame-
ter. If the to parameter refers to a directory that is not empty, the function exits
with an error.

DESCRIPTION
The OSS rename() function and rename_oss() function rename a directory or a file within a
fileset.

These functions are identical in the OSS environment. (Refer to Interoperability Variants later
in this reference page.) Unless otherwise noted, this reference page uses rename() to refer to
both the OSS rename() function and rename_oss() function.

If the from and to parameters both refer to the same existing file, the function returns successfully
and performs no other action.

For the function to finish successfully, the calling process must have write and search (execute)
permission for the parent directories of the entities specified by the from and to parameters. If
both the from and to parameters refer to directories, write and search (execute) permission are not
required on the specified directories.

The entities specified by the from and to parameters both must be of the same type (that is, both
directories or both files) and must reside on the same fileset. If the entity pointed to by the to
parameter already exists, it is first removed. In that case it is guaranteed that a link specified by to
will exist throughout the operation. This link refers to the file specified by either the to or from
parameter before the operation began.

If the final component of the from parameter is a symbolic link, the symbolic link (not the file or
directory to which it points) is renamed. If the final component of the to parameter is a symbolic
link, the symbolic link is destroyed.

6−46 Hewlett-Packard Company 527186-023

System Functions (r) rename_oss(2)

If the from and to parameters specify directories, the following requirements exist:

• The directory specified by the from parameter must not be an ancestor of the directory
specified by the to parameter. For example, the to pathname must not contain a path-
name prefix that specifies from.

• The directory specified by the to parameter must be empty, except for the . (dot) and . .
(dot-dot) entries.

Upon successful completion (where a rename occurs), the function marks the st_ctime and
st_mtime fields of the parent directory of each file for update.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

Executable files that have the PRIVSOARFOPEN privilege and that are started by a member of
the Safeguard SECURITY-OSS-ADMINISTRATOR (SOA) group have the appropriate privilege
to use this function on any file in a restricted-access fileset. However, Network File System
(NFS) clients are not granted SOA group privileges, even if these clients are accessing the sys-
tem with a user ID that is a member of the SOA security group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use on Guardian Objects
The OSS rename() function can be used on Guardian files (that is, files within /G). The OSS
rename() function cannot be used on directories within /G. The new pathname must correspond
to a Guardian permanent disk file name on the same volume, and the caller must have Guardian
write access to the file.

A call to rename a file in /G is implemented as the following sequence of Guardian procedure
calls:

FILE_OPEN_ with read access and shared exclusion
FILE_RENAME_
FILE_CLOSE_

Use From the Guardian Environment
The OSS rename() function belongs to a set of functions that have the following effects when
the first of them is called from the Guardian environment:

• Two Guardian file-system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

527186-023 Hewlett-Packard Company 6−47

rename_oss(2) OSS System Calls Reference Manual

Interoperability Variants
The C run-time library supports two variants of the rename() function: rename_oss() and
rename_guardian(). The variants support the unique file-naming conventions and structures of
the OSS and Guardian file systems, respectively.

The header file maps calls to rename() to the variant that matches the target compilation
environment. The target environment is set with the systype pragma.

Explicit calls to the rename_oss() and rename_guardian() variants in source code are made
only when the behavior of one environment is desired from the other environment.

rename_oss() is functionally identical to the rename() function of the OSS environment. It is
the same as setting systype oss at compile time. systype oss is the default setting for use
of the c89 utility in the OSS environment.

rename_guardian() is functionally identical to the rename() function of the Guardian environ-
ment. It is the same as setting systype guardian at compile time. systype guardian is the
default setting for the C and C++ compilers in the Guardian environment.

To use the rename_oss() and rename_guardian() functions, specify the
_TANDEM_SOURCE feature-test macro.

RETURN VALUES
Upon successful completion, the rename() function returns the value 0 (zero). Otherwise, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the rename() function sets errno to the corresponding
value. The file or directory name remains unchanged.

[EACCES] One of the following conditions exists:

• A component of either pathname denies search permission.

• One of the directories containing from or to denies write permission.

• The S_ISVTX flag is set on the directory containing the file referred to
by the from parameter. However, the calling process is not any of the
following:

— The file owner

— The directory owner

— A process with appropriate privileges

• The S_ISVTX flag is set on the directory containing an existing file
referred to by the to parameter. However, the calling process is not any
of the following:

— The file owner

— The directory owner

— A process with appropriate privileges

6−48 Hewlett-Packard Company 527186-023

System Functions (r) rename_oss(2)

[EBUSY] One of the following conditions occurred:

• The to parameter specifies a directory that exists and is one of the fol-
lowing:

— /G or /E

— A Guardian disk volume or process name in /G (a file with an
OSS pathname of the form /G/vol or /G/process)

— The root directory of a fileset

— The /dev directory or the lost+found file for a fileset (for exam-
ple, /usr/lost+found, where /usr is the mount point for a fileset)

• The from parameter specifies one of the following:

— /G or /E

— /dev

— /dev/tty or /dev/null

— lost+found

[EEXIST] The to parameter specifies an existing nonempty directory or an existing Guar-
dian file (a file in /G).

[EFAULT] Either the to or from parameter is an invalid address.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EGUARDIANOPEN]
The from parameter specifies a regular disk file on the Guardian file system (that
is, a file in /G or in a directory within /G) that is already opened in exclusive
mode by Enscribe.

[EINVAL] One of the following conditions exists:

• The from or to parameter is not a well-formed directory.

• The calling process attempted to rename . (dot) or . . (dot-dot).

• The from parameter is an ancestor of the to parameter.

[EISDIR] The to parameter specifies a directory and the from parameter specifies a
filename that is not a directory.

[ELOOP] Too many symbolic links were encountered in translating either the to or from
parameter.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the to parameter

527186-023 Hewlett-Packard Company 6−49

rename_oss(2) OSS System Calls Reference Manual

• The pathname pointed to by the from parameter

• A component of the pathname pointed to by the to parameter

• A component of the pathname pointed to by the from parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the to or from parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of the following conditions exists:

• The path specified by the from parameter is an empty string.

• The file specified by the from parameter does not exist.

• The path parameter specifies a file on a remote HP NonStop node but
communication with the remote node has been lost.

[ENOMEM] The system has insufficient resources to complete the operation.

[ENOROOT] One of the following conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node and communication
with the remote name server has been lost.

[ENOSPC] The directory that would contain to cannot be extended, because the fileset is out
of space.

[ENOTDIR] The from parameter specifies a directory and the to parameter specifies a file (not
a directory), or a component of either path is not a directory.

[ENXIO] The fileset containing the client’s current working directory or root directory is
not mounted.

[EOSSNOTRUNNING]
A required system process is not running.

[EPERM] One of the following conditions exists:

• The call attempted to create a file named lost+found in the root directory
of an OSS fileset.

• The call attempted to rename a Guardian file (that is, a file within /G)
that is not a regular file. This error usually occurs when an attempt is
made to rename a file as a Guardian subvolume or to rename a Guardian
subvolume.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

6−50 Hewlett-Packard Company 527186-023

System Functions (r) rename_oss(2)

[EROFS] The requested operation requires writing in a directory on a read-only fileset.

[ETXTBSY] The file to be renamed is already busy. The file specified by the from parameter
is a NonStop SQL/MP object file that is currently executing.

[EXDEV] The link specified by the to parameter and the file specified by the from parame-
ter are on different filesets.

RELATED INFORMATION
Functions: chmod(2), link(2), mkdir(2), rename(2), rename_guardian(2), rmdir(2),
unlink(2).

Commands: chmod(1), mkdir(1), mv(1).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The calling process is not required to have write or search permission for a directory in
order to rename the directory.

• The errno value [EBUSY] is returned when either directory is in use by another process.

• The errno value [EMLINK] is not returned, because links to directories are not allowed.

The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [EGUARDIANOPEN], [ENOMEM],
[ENOROOT], [ENXIO], [EOSSNOTRUNNING], [EPERM], and [EXDEV] can be
returned.

The rename_oss() function is a HP extension to the XPG4 Version 2 specification.

527186-023 Hewlett-Packard Company 6−51

rmdir(2) OSS System Calls Reference Manual

NAME
rmdir - Removes a directory

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int rmdir(
const char *path);

PARAMETERS
path Specifies the directory pathname. The pathname cannot be specified as . (dot) or

. . (dot-dot). If either value is used, the call fails and errno is set to [EINVAL].

The final component of the path parameter cannot be a symbolic link. If the final
component is a symbolic link, the call fails and errno is set to [ENOTDIR].

DESCRIPTION
The rmdir() function removes the directory specified by the path parameter. The directory is
removed only if it is an empty directory.

For the rmdir() function to execute successfully, the calling process must have write access to
the parent directory of the directory specified by the path parameter.

If no process has the directory open, the space occupied by the directory is freed and the direc-
tory is no longer accessible. If one or more processes have the specified directory open, the .
(dot) and . . (dot-dot) entries in the specified directory, if present, are removed before the rmdir()
function returns, and no new entries can be created in the directory. However, the directory is
not removed until all references to the directory have been closed.

The rmdir() function can be used to remove a root directory (/ cannot be removed) or the current
working directory of a process. However, such an action has the following consequence:

• If the root directory of a process is removed, subsequent attempts by that process to
resolve absolute pathnames will fail with errno set to [ENOENT].

• If the current working directory of a process is removed, subsequent attempts by that pro-
cess to resolve relative pathnames will fail with errno set to [ENOENT].

If the directory specified by the path parameter is any of the following, the operation fails and
errno is set to [EBUSY]:

• /E or /G (the Guardian file system)

• A disk volume or process within /G (/G/vol or /G/process)

• A mount point for a fileset

• lost+found in the root directory of a fileset

Upon successful completion, the rmdir() function marks the st_ctime and st_mtime fields of
the parent directory for update.

Because directories can have only one link, a successful call to the rmdir() function always sets
the link count to 0 (zero).

6−52 Hewlett-Packard Company 527186-023

System Functions (r) rmdir(2)

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

Executable files that have the PRIVSOARFOPEN privilege and that are started by a member of
the Safeguard SECURITY-OSS-ADMINISTRATOR (SOA) group have the appropriate privilege
to use this function on any file in a restricted-access fileset. However, Network File System
(NFS) clients are not granted SOA group privileges, even if these clients are accessing the sys-
tem with a user ID that is a member of the SOA security group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use From the Guardian Environment
The rmdir() function is one of a set of functions that have the following effects when the first of
them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the rmdir() function returns the value 0 (zero). If the rmdir()
function fails, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the rmdir() function sets errno to the corresponding
value:

[EACCES] One of the following conditions exists:

• Search permission is denied on a component of the directory pathname
specified by the path parameter.

• Write permission is denied on the parent directory of the directory to be
removed.

• The S_ISVTX flag is set on the directory containing the directory
referred to by the path parameter. However, the calling process is not
any of the following:

— The parent directory owner

527186-023 Hewlett-Packard Company 6−53

rmdir(2) OSS System Calls Reference Manual

— The directory owner

— A process with appropriate privileges

[EBUSY] One of the following conditions exists:

• The directory specified by the path parameter is in use as the mount
point for a fileset.

• The directory specified by the path parameter is /E or /G (the Guardian
file system) or a disk volume or process within /G (has an OSS pathname
of the form /G/vol or /G/process).

• The directory specified by the path parameter is the lost+found directory
in the root directory for a fileset.

[EFAULT] The path parameter is an invalid address.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EINVAL] The specified . (dot) or . . (dot-dot) pathname cannot be removed.

[EIO] During a read from or write to a fileset, an I/O error occurred.

[ELOOP] Too many symbolic links were encountered in translating the path parameter.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of the following conditions exists:

• The directory specified by the path parameter does not exist.

• The path parameter specifies an empty string.

• The path parameter specifies a file on a remote HP NonStop node but
communication with the remote node has been lost.

[ENOROOT] One of the following conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node and communication
with the remote name server has been lost.

6−54 Hewlett-Packard Company 527186-023

System Functions (r) rmdir(2)

[ENOTDIR] One of the following conditions exists:

• A component of the directory pathname specified by the path parameter
is not a directory.

• The final component of the path parameter is a symbolic link.

[ENOTEMPTY]
The directory specified by the path parameter is not empty.

[ENXIO] The fileset containing the client’s current working directory or root directory is
not mounted.

[EOSSNOTRUNNING]
A required OSS system process is not running.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The directory specified by the path parameter resides on a read-only fileset.

RELATED INFORMATION
Functions: chmod(2), chroot(2), mkdir(2), mkfifo(3), mknod(2), remove(3), rename(2),
umask(2), unlink(2).

Commands: rmdir(1).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The rmdir() function can be used to remove the root directory or the current working
directory of a process. The consequences of such an action are described under
DESCRIPTION.

• The errno value [ENOTEMPTY] is returned instead of [EEXIST].

The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [EINVAL], [ENOROOT], [ENOTEMPTY],
[ENXIO], and [EOSSNOTRUNNING] can be returned.

527186-023 Hewlett-Packard Company 6−55

Section 7. System Functions (s and S)

This section contains reference pages for Open System Services (OSS) system function
calls with names that begin with s or S. These reference pages reside in the cat2
directory and are sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 7−1

sched_get_priority_max(2) OSS System Calls Reference Manual

NAME
sched_get_priority_max - Returns the maximum priority for a scheduling policy

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sched.h>] #include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int sched_get_priority_max(
int policy);

PARAMETERS
policy Specifies one of the scheduling policies defined in the sched.h header file.

DESCRIPTION
The sched_get_priority_max() function returns the maximum priority for the scheduling policy
specified by the policy parameter. The value of policy must be one of the scheduling policies
(SCHED_FIFO, SCHED_RR, or SCHED_OTHER) defined in the sched.h header file.

No special privileges are needed to use the sched_get_priority_max() function.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

7−2 Hewlett-Packard Company 527186-023

System Functions (s and S) sched_get_priority_max(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
On a successful call, the requested value is returned. If a call fails, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
The sched_get_priority_max() function fails under the following condition:

[EINVAL] The value of the policy parameter does not represent a defined scheduling policy.

RELATED INFORMATION
Functions: sched_get_priority_min(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−3

sched_get_priority_min(2) OSS System Calls Reference Manual

NAME
sched_get_priority_min - Returns the minimum priority for a scheduling policy

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sched.h>] #include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int sched_get_priority_min(
int policy);

PARAMETERS
policy Specifies one of the scheduling policies defined in the sched.h header file.

DESCRIPTION
The sched_get_priority_min() function returns the minimum priority for the scheduling policy
specified by the policy parameter. The value of policy must be one of the scheduling policies
(SCHED_FIFO, SCHED_RR, or SCHED_OTHER) defined in the sched.h header file.

No special privileges are needed to use the sched_get_priority_min() function.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

7−4 Hewlett-Packard Company 527186-023

System Functions (s and S) sched_get_priority_min(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
On a successful call, the requested value is returned. If the call fails, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
The sched_get_priority_min() function fails under the following condition:

[EINVAL] The value of the policy parameter does not represent a defined scheduling policy.

RELATED INFORMATION
Functions: sched_get_priority_max(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−5

sched_yield(2) OSS System Calls Reference Manual

NAME
sched_yield - Signals a willingness to yield the processor to another thread in the current process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll
H-series and J-series OSS processes that use the Standard POSIX Threads library:
/G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sched.h>] #include <pthread.h> | #include <spthread.h>
/* pthread.h is required to use POSIX User Thread Model library */
/* spthread.h is required to use Standard POSIX Threads library */

int sched_yield(void);

DESCRIPTION
This function forces the calling thread to relinquish its processor until it again becomes the head
of its thread list. This function notifies the thread scheduler that the calling thread is willing to
release its processor to other threads of equivalent or greater scheduling precedence. (A thread
generally releases its processor to a thread of a greater scheduling precedence without calling
this function.) If no other threads of equivalent or greater scheduling precedence are ready to
execute, the calling thread continues.

This function can allow you to use knowledge of the details of an application to improve its per-
formance. If a thread does not call sched_yield(), other threads might be given the opportunity
to run at arbitrary points (possibly even when the interrupted thread holds a required resource).
By making strategic calls to sched_yield(), other threads can be given the opportunity to run
when the resources are free, which can sometimes improve performance by reducing contention
for resources.

Consider calling this function after a thread has released a resource (such as a mutex) that is
heavily used by other threads. This call can be especially important if the thread acquires and
releases the resource inside a tight loop.

Use this function carefully and sparingly, because misuse can cause unnecessary context switch-
ing, which increases overhead and degrades performance. For example, performance is degraded
if a thread yields while it holds a resource needed by the threads it is yielding to. Likewise,
yielding is pointless unless another thread is ready to run.

On systems running H06.21 or later H-series RVUs or J06.10 or later J-series RVUs, you can use
either the POSIX User Thread Model library or the Standard POSIX Threads library for threaded
applications.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
the POSIX User Thread Model library with 32-bit or 64-bit threaded applications.

7−6 Hewlett-Packard Company 527186-023

System Functions (s and S) sched_yield(2)

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the POSIX User Thread Model library on systems running
H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Include the pthread.h header file in the application.

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, this function returns a 0 (zero).

RELATED INFORMATION
Functions: pthread_attr_setschedparam(2), pthread_setschedparam(2).

STANDARDS CONFORMANCE
Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−7

select(2) OSS System Calls Reference Manual

NAME
select - Selects among file descriptors for synchronous input/output multiplexing

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/time.h>

int select(
int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *errorfds,
struct timeval *timeout);

void FD_CLR(
int fd,
fd_set *fdset);

int FD_ISSET(
int fd,
fd_set *fdset);

void FD_SET(
int fd,
fd_set *fdset);

void FD_ZERO(
fd_set *fdset);

PARAMETERS
nfds Specifies the range of open file descriptors that might be ready for reading or

writing or that have exceptions pending. The select() function tests file descrip-
tors in the range of 0 (zero) through nfds -1.

The nfds parameter cannot be greater than FD_SETSIZE.

readfds Points to a file descriptor set consisting of file descriptors of objects opened for
reading. When the function is called, this file descriptor set specifies file descrip-
tors to be checked for being ready to read. Upon return from a successful call,
this file descriptor set specifies file descriptors that are ready to be read.

writefds Points to a file descriptor set consisting of file descriptors for objects opened for
writing. When the function is called, this file descriptor set specifies file descrip-
tors to be checked for being ready to write. Upon return from a successful call,
this file descriptor set specifies file descriptors that are ready to be written.

7−8 Hewlett-Packard Company 527186-023

System Functions (s and S) select(2)

errorfds Points to a file descriptor set consisting of file descriptors for objects opened for
reading or writing. When the function is called, this file descriptor set specifies
file descriptors to be checked for having exception conditions pending. Upon
return from a successful call, this file descriptor set specifies file descriptors that
have exception conditions pending.

timeout Points to a type timeval structure that specifies the time to wait for a response
from a call to the select() function. When the timeout parameter is not a null
pointer, the maximum time interval to wait for the select() function to finish is
specified by values stored in space reserved by the type timeval structure
pointed to by the timeout parameter. A timeout value of 0 (zero) is treated as "do
not wait". A timeout value of less than 10 milliseconds is rounded up so that the
timeout value used is at least 10 milliseconds. A timeout value more than 10
milliseconds is rounded down to the nearest multiple of 10 milliseconds.

The object pointed to by the timeout parameter can be modified after successful
completion of the call.

fd Specifies a file descriptor.

fdset Points to a file descriptor set.

DESCRIPTION
The select() function checks the status of objects identified by bit masks called file descriptor
sets.

Each file descriptor set consists of an array of bits whose relative position and state represent a
file descriptor and the true or false status for the condition of its corresponding object. An object
is an open file descriptor for an OSS directory (that is, a directory that is not in /G or /E), a
socket, a regular file, a terminal device file, a pipe, or a FIFO.

There is a file descriptor set for reading, for writing, and for pending exceptions. The readfds,
writefds, and errorfds parameters point to these file descriptor sets.

When the select() function is called, it checks the file descriptor sets in the range 0 through
nfds-1. If any file descriptors are ready for reading or writing, or have a pending exception, the
select() function returns a modified file descriptor set.

If no condition is true for any specified file descriptor in any specified file descriptor set, the
select() function blocks until one of these conditions occurs:

• A specified condition is true for one of the specified descriptors in one of the specified
sets.

• The interval specified by the timeout parameter elapses. If the timeout parameter points
to a structure whose members have the value 0 (zero), process blocking does not occur.

A modified file descriptor set has these characteristics:

• It is a selected file descriptor set pointed to by the readfds, writefds, and errorfds param-
eters.

• When the function was called, the file descriptor set had at least one bit set that
corresponded to an active file descriptor.

• The object represented by the set bit is any of these:

527186-023 Hewlett-Packard Company 7−9

select(2) OSS System Calls Reference Manual

— is ready for reading

— is ready for writing

— has an exception pending

When these conditions exist, a corresponding bit position is set in the returned file
descriptor set pointed to by the readfds, writefds, and errorfds parameters.

On return, the select() function replaces the original file descriptor sets with the corresponding
file descriptor sets that have a bit set for each file descriptor representing those objects that are
ready for the requested operation. The total number of ready objects represented by set bits in all
the file descriptor sets is returned by the select() function.

After a file descriptor set is created, it can be modified with these macros:

FD_CLR(fd, &fdset)
Clears the file descriptor bit specified by the fd parameter in the file descriptor
set pointed to by the fdset parameter.

FD_ISSET(fd, &fdset)
Returns a nonzero value when the file descriptor bit specified by the fd parameter
is set in the file descriptor set pointed to by the fdset parameter. Otherwise, the
value 0 (zero) is returned.

FD_SET(fd, &fdset)
Includes the particular file descriptor bit specified by the fd parameter in the file
descriptor set pointed to by the fdset parameter.

FD_ZERO(&fdset)
Initializes the file descriptor set pointed to by the fdset parameter to a null value.

The behavior of these macros is undefined when the fd parameter has a value less than 0 (zero) or
greater than or equal to FD_SETSIZE.

Use on Guardian Objects
You can use the select() function on regular files (disk files) or EDIT files in /G. Such files are
always ready for selection.

You can use the select() function on an OSS terminal (Telserv or OSSTTY). You cannot use
select() function on any other type of Guardian object.

If select() is called using a file descriptor for a version of the Telserv process or OSSTTY pro-
cess that does not support select(), the call fails, and errno is set to the value of [ENOTSUP].

Use From the Guardian Environment
The select() function is one of a set of functions that have these effects when the first of them is
called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

7−10 Hewlett-Packard Company 527186-023

System Functions (s and S) select(2)

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

Use From a Threaded Application
The thread-aware select() function can be used to check the status of multiple file descriptors.
To check the status of a single file descriptor, use the _PUT_SELECT_SINGLE_ feature test
macro, which uses another thread-aware version of the select() function and provides better per-
formance. To use _PUT_SELECT_SINGLE_, you must include the pthread.h header file in
the application and link the application to the zputdll library (/G/system/zdllnnn/zputdll).

NOTES
Beginning with the release of product version T9055G12 and product version update (PVU)
T8645G08 AAO, FD_SETSIZE was increased. In T8645G08 AAO, the FD_SETSIZE literal
in the sys/time.h file was increased from 1024 to 4096. Object modules that were compiled using
pre-T8645G08-AAO header files use the smaller 1024 FD_SETSIZE and are termed old objects.
Object modules that were compiled using T8645G08 AAO header files use the bigger 4096
FD_SETSIZE and are termed new objects. The way an application behaves for old or new
objects depends on the way in which it calls the select() function:

• The application can use a variable value for the nfds parameter that is based on the
highest numbered file descriptor; for example:

fd = open(... .);
err = select(fd + 1, ...);

• The application can use a fixed value for the nfds parameter that is based on the value of
the FD_SETSIZE literal at the time of compilation; for example:

err = select(FD_SETSIZE, ...);

Applications composed entirely of old objects that use a variable value for the nfds parameter run
correctly on systems running pre-T9055G12 PVUs and run correctly on systems running
T9055G12 or a more recent PVU. For such applications, select() calls are restricted to 1024 file
descriptors.

Applications composed entirely of old objects that use a fixed value for the nfds parameter run
correctly on systems running pre-T9055G12 or T9055G12 or newer PVUs. For such applica-
tions, select() calls are restricted to 1024 file descriptors.

Applications composed entirely of new objects that use a variable value for the nfds parameter
run correctly on systems running pre-T9055G12 PVUs or T9055G12 or newer PVUs. For such
applications, select() calls are restricted to 1024 file descriptors under pre-T9055G12 PVUs or to
4096 file descriptors under T9055G12 or newer PVUs.

Applications composed entirely of new objects that use a fixed value for the nfds parameter run
correctly on systems running T9055G12 or newer PVUs. For such applications, select() calls are
restricted to 4096 file descriptors.

Applications composed entirely of new objects that use a fixed value for the nfds parameter are
unsafe on systems running pre-T9055G12 PVUs.

Applications that mix old objects and new objects are unsafe on any system. You must compile
all object modules of an application using a consistent set of header file definitions.

Specifying arbitrarily large values for the nfds parameter can cause the function to behave
inefficiently.

The time limit value specified by the timeout parameter has no effect on the operation of the
alarm() or settimer() function.

527186-023 Hewlett-Packard Company 7−11

select(2) OSS System Calls Reference Manual

To use the select() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_select(2) and spt_select_single_np(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the select() function returns the number of ready objects
represented by corresponding file descriptor bits in all the file descriptor sets. When an error
occurs, the value -1 is returned, and errno is set to indicate the error.

When the time limit specified by the timeout parameter expires, the select() function returns the
value 0 (zero), and all bits in the objects pointed to by the readfds, writefds, and errorfds parame-
ters are also set to 0 (zero).

When select() returns an error, the file descriptor sets pointed to by the readfds, writefds, and
errorfds parameters remain unmodified.

The FD_CLR, FD_SET, and FD_ZERO macros do not return values. The FD_ISSET macro
returns a nonzero value when the bit for the file descriptor specified by its fd parameter is set in
the file descriptor set pointed to by its fdset parameter; otherwise, the FD_ISSET macro returns 0
(zero).

ERRORS
If any of these conditions occur, the select() function sets errno to the corresponding value:

[EBADF] One of the specified file descriptor sets is invalid. One of these conditions
occurred:

• The invalid file descriptor set contains a file descriptor for a file that is
not open.

7−12 Hewlett-Packard Company 527186-023

System Functions (s and S) select(2)

• The invalid file descriptor set contains a file descriptor that identifies an
AF_INET AF_INET6 socket, but the current processor is not running a
transport agent process to support the socket. The file descriptor can
only be closed.

This error is also returned if the select() function is thread-aware and the socket
becomes invalid (is closed by another thread).

[EINTR] A signal was delivered before the time limit specified by the timeout parameter
expired and before any of the selected events occurred.

This error is also returned if the select() function is thread-aware and a signal
received from the pthread_kill() function is not blocked, ignored, or handled.

[EINVAL] One of these conditions occurred:

• The value specified for the nfds parameter is less than 0 (zero) or greater
than FD_SETSIZE.

• The time limit specified by the timeout parameter is invalid. One of its
components is negative or too large.

[ENETDOWN]
One of the specified file descriptors specifies a file on a remote node, but com-
munication with the remote node has been lost.

[ENOTSUP] One of the specified file descriptors specifies a terminal device that does not sup-
port select(). Only terminal devices on systems running G06.27 and later G-
series RVUs and H06.05 and later H-series RVUs support the select() function.

[ETHNOTRUNNING]
One of the specified file descriptors is a terminal device file descriptor and the
OSS terminal helper process is not running in the same processor as the applica-
tion. Under normal conditions, the OSS terminal helper process runs in all pro-
cessors. If this error is returned, contact your service provider and provide a
copy of the Event Management Service (EMS) log. If your local operating pro-
cedures require contacting the Global Customer Support Center (GCSC), supply
your system number and the numbers and versions of all related products as well.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: fcntl(2), read(2), spt_select(2), spt_select_single_np(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

HP extensions to the XPG4 Version 2 specification are:

• The errno value [ENOTSUP] can be returned for a call that attempts to select a terminal
device file for a terminal process that does not support select(). Only terminal devices on
systems running G06.27 and later G-series RVUs and H06.05 and later H-series RVUs
support the select() function.

• The errno value [ENETDOWN] can be returned.

527186-023 Hewlett-Packard Company 7−13

select(2) OSS System Calls Reference Manual

• The errno value [ETHNOTRUNNING] can be returned.

• The time interval specified by the timeout parameter must meet these criteria:

— The maximum interval is 2**31 seconds plus 2**31 microseconds. If a value
greater than this is specified, the maximum is used instead.

— If a specified interval is not a whole multiple of 10 milliseconds, the next highest
whole multiple is used instead.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

7−14 Hewlett-Packard Company 527186-023

System Functions (s and S) semctl(2)

NAME
semctl - Performs semaphore control operations

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/sem.h>

int semctl(
int semid,
int semnum,
int cmd [,
. . .]);

In this instance, the elipsis (. . .) indicates that the function is extensible. An additional,
optional parameter can be specified.

PARAMETERS
semid Specifies the ID of the semaphore set.

semnum Specifies the number of the semaphore to be processed.

cmd Specifies the type of operation (see DESCRIPTION).

the fourth parameter
Is defined in the XPG4 specification in a manner that avoids conflict with the
ISO C standard.

This parameter is required when the cmd parameter has values of GETALL,
IPC_SET, IPC_STAT, SETALL, and SETVAL. The fourth parameter can be
omitted in all other calls.

This parameter must be defined in a user program as follows:

union semun {
int val;
struct semid_ds *buf;
unsigned short *array;

} arg;

The fields have the following definitions:

val Contains the semaphore value to which the semval field of the
sem structure is set when the cmd parameter has the value SET-
VAL. Individual semaphores are defined using the sem struc-
ture, where semval is one of the structure’s fields.

*buf Points to a semid_ds structure. When the IPC_STAT value is
specified for the cmd parameter, semctl() copies the contents of
the requested semid_ds structure into the location pointed to by
the *buf parameter.

When the IPC_SET value is specified for the cmd parameter,
semctl() copies the contents of the location pointed to by the
*buf parameter into the semid_ds structure associated with the
semaphore specified by the semnum parameter.

527186-023 Hewlett-Packard Company 7−15

semctl(2) OSS System Calls Reference Manual

*array Points to an array of semaphore values. These values are
returned when the cmd parameter has the value GETALL.

These values are used to set semaphore values when the cmd
parameter has the value SETALL.

arg Specifies the instance of the union used for the fourth parameter.

DESCRIPTION
An OSS semaphore is identified by a set ID and by a unique semaphore number within that set
ID. The semaphore set ID is unique within an HP NonStop server node.

The semctl() function allows a process to perform various operations on the following:

• An individual semaphore within a semaphore set

• All semaphores within a semaphore set

• The semid_ds structure associated with the semaphore set

The semctl() function also allows a process to remove the semaphore set ID and its associated
semid_ds structure. Individual semaphores are defined using the sem structure.

The cmd parameter determines which operation is performed. The following values for cmd
operate on the specified semaphore (given by the semnum parameter) within the specified sema-
phore set (given by the semid parameter):

GETNCNT Returns the number of processes waiting for the specified semaphore’s value to
become greater than its current value. This number is returned as the value of
the semncnt field from the semid_ds structure.

This operation requires read access permission.

GETPID Returns the OSS process ID of the process that last operated on the specified
semaphore. This operation requires read access permission.

GETVAL Returns the value of the specified semaphore. This operation requires read
access permission.

GETZCNT Returns the number of processes waiting for the specified semaphore’s value to
become 0 (zero). This number is returned as the value of the semzcnt field from
the semid_ds structure.

This operation requires read access permission.

SETVAL Sets the value of the specified semaphore to the value specified through the
fourth parameter (arg.val). When this operation successfully executes, the sys-
tem clears the semaphore’s adjust-on-exit value in all processes that have a
semadj value for this semaphore. It also wakes up all processes that are waiting
on this semaphore when the value of semzcnt or semncnt is greater than zero,
depending on whether the value of this semaphore is set to zero or a positive
integer respectively.

This operation requires alter access permission.

The following values for cmd operate on all the semaphores in the specified semaphore set:

GETALL Returns the values of all semaphores in the set by placing these values in the
array pointed to in fourth parameter (arg.array). This operation requires read
access permission.

7−16 Hewlett-Packard Company 527186-023

System Functions (s and S) semctl(2)

SETALL Sets the respective values of all semaphores in the set to the values specified in
the array pointed to in the fourth parameter (arg.array). When this operation
successfully executes, the system clears the semaphore’s adjust-on-exit value in
all processes that have a semadj value for this semaphore. It also wakes up all
processes that are waiting on a semaphore when the value of semzcnt or
semncnt is greater than zero, depending on whether the respective value of a
specific semaphore is set to zero or a positive integer respectively.

This operation requires alter access permission.

The following interprocess communications (IPC) commands can also be used as values for cmd:

IPC_RMID Removes the semaphore set ID and destroys the set of semaphores and the
semid_ds structure associated with it.

This is a restricted operation. The effective user ID of the calling process must
be either the super ID or equal to the value of the sem_perm.cuid or
sem_perm.uid field in the associated semid_ds structure.

IPC_SET Sets the semaphore set by copying selected user-supplied values in the structure
pointed to in the fourth parameter (arg.buf) into corresponding fields in the
semid_ds structure associated with the semaphore set ID.

This is a restricted operation. The calling process must either have appropriate
privileges, be the process that created the semaphore set, or be the process that
currently owns the semaphore set.

The fields are set as follows:

• The sem_perm.uid field is set as specified in the uid field of the
semid_ds ipc_perm structure pointed to in the fourth parameter
(arg.buf).

• The sem_perm.gid field is set as specified in the gid field of the
semid_ds ipc_perm structure pointed to in the fourth parameter
(arg.buf).

• The sem_perm.mode field is set to the access modes for the semaphore
set. Only the low-order nine bits are set.

• The sem_ctime field is updated.

IPC_STAT Queries the semaphore set ID by copying the contents of its associated semid_ds
structure into the structure pointed to in the fourth parameter (arg.buf). This
operation requires read access permission.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined and errno is set to
[ENOTOSS].

RETURN VALUES
Upon successful completion, the value returned depends on the value of the cmd parameter as
follows:

GETNCNT Returns the value of the semncnt field from the semid_ds structure.

527186-023 Hewlett-Packard Company 7−17

semctl(2) OSS System Calls Reference Manual

GETPID Returns the value of the sempid field from the semid_ds structure.

GETVAL Returns the value of the semval field from the semid_ds structure.

GETZCNT Returns the value of the semzcnt field from the semid_ds structure.

Upon successful completion, all other values of cmd return the value 0 (zero).

If the semctl() function fails, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the semctl() function sets errno to the corresponding
value:

[EACCES] The calling process does not have the required read or alter access.

[EFAULT] One of the following is true:

• The cmd parameter is IPC_STAT, and either the structure pointed to in
the fourth parameter (arg.buf) is not in the address space of the process
or the function cannot write into the structure pointed to in the fourth
parameter.

• The cmd parameter is GETALL, and either the structure pointed to in
the fourth parameter (arg.buf) is not in the address space of the process
or the function cannot write into the structure pointed to in the fourth
parameter.

[EINVAL] One of the following conditions is true:

• The semid parameter is not a valid semaphore set ID.

• The value of the semnum parameter is less than 0 (zero), or it is greater
than or equal to the value of the sem_nsems field in the semid_ds struc-
ture.

• The cmd parameter is not a valid operation.

[ENOTOSS] The calling process is not an OSS process. The requested operation is not sup-
ported from the Guardian environment.

[EPERM] All of the following conditions are true:

• The cmd parameter is equal to IPC_RMID or IPC_SET.

• The effective user ID of the calling process does not have appropriate
privileges.

• The effective user ID of the calling process is not equal to the value of
the sem_perm.cuid or sem_perm.uid field in the semid_ds structure
associated with the semaphore set ID.

[ERANGE] The cmd parameter is SETALL or SETVAL, and the semaphore value in the
semval field of the semid_ds structure associated with the semaphore set ID is
greater than the system-defined maximum.

7−18 Hewlett-Packard Company 527186-023

System Functions (s and S) semctl(2)

RELATED INFORMATION
Commands: ipcrm(1), ipcs(1).

Functions: ftok(3), semget(2), semop(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT] and [ENOTOSS] can be returned.

527186-023 Hewlett-Packard Company 7−19

semget(2) OSS System Calls Reference Manual

NAME
semget - Creates a new semaphore set ID or returns the ID of an existing semaphore set

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/sem.h>

int semget(
key_t key,
int nsems,
int semflg);

PARAMETERS
key Specifies the key that identifies the semaphore set. The IPC_PRIVATE key can

be used to ensure the return of a new (unused) semaphore set ID in the sema-
phore set table.

nsems Specifies the number of OSS semaphores to create in the semaphore set.

semflg Specifies the creation flags. Possible values are as follows:

IPC_CREAT If the key does not exist, the semget() function creates a sema-
phore set ID using the given key.

IPC_CREAT | IPC_EXCL
If the key already exists, the semget() function fails and returns
an error notification.

DESCRIPTION
The semget() function returns the semaphore set ID for the semaphore set identified by the key
parameter. If the key parameter already has a semaphore set ID associated with it and (semflg &
IPC_CREAT) is 0 (zero), that ID is returned.

A new semaphore set ID, the associated semaphore set table, and a new semaphore set of nsems
OSS semaphores are created when either of the following is true:

• The value of IPC_PRIVATE is used for the key parameter.

• The key parameter does not already have a semaphore set ID associated with it, and
(semflg & IPC_CREAT) is not 0 (zero).

After creating a new semaphore set ID, the semget() function initializes the semid_ds structure
associated with the ID as follows:

• The sem_perm.cuid and sem_perm.uid fields are set equal to the effective user ID of
the calling process.

• The sem_perm.cgid and sem_perm.gid fields are set equal to the effective group ID of
the calling process.

• The low-order nine bits of the sem_perm.mode field are set equal to the low-order nine
bits of the semflg parameter.

7−20 Hewlett-Packard Company 527186-023

System Functions (s and S) semget(2)

• The sem_nsems field is set to the value of the nsems parameter.

• The sem_otime field is set to 0 (zero), and the sem_ctime field is set equal to the current
time.

The semget() function does not initialize the sem structure associated with each semaphore in
the set. The individual OSS semaphores are initialized by using the semctl() function with the
SETVAL or SETALL value for the cmd parameter.

Key Creation
The key represents a user-designated name for a given semaphore set. Keys are usually selected
by calling the ftok() function before calling the semget() function. The ftok() function returns a
key based on a path and an interprocess communications identifier. This key is then passed to
the semget() function, which returns a semaphore set ID. The semaphore set ID is then used in
calls to the semop() and semctl() functions.

Propagation During Process Creation
Semaphore set IDs attached to a parent process are also attached to a child process. A sema-
phore set cannot be shared when a child process is created in a different processor than that used
by the parent. If a process attempts to create a child process in a different processor while the
parent process has any adjust-on-exit (semadj) value, the process creation fails and errno is set
to [EHLDSEM].

Cleaning Up Semaphores
An OSS semaphore remains allocated until it is removed. Normally, the semctl() function is
used with the IPC_RMID value of the cmd parameter to remove unneeded OSS semaphores.

The HP implementation of OSS environment semaphores does not provide facilities to detect or
avoid deadlocks.

An allocated OSS semaphore set ID is not removed automatically when the last process using it
terminates. Instead, the OSS semaphore set ID becomes inactive. The user must remove inactive
OSS semaphore set IDs to avoid wasting system resources.

The status of OSS semaphore set IDs can be checked with the ipcs command. Inactive OSS
semaphore set IDs can be removed with the ipcrm command.

Semaphore Use Between Environments
OSS and Guardian environment nonprivileged binary semaphores coexist but do not interoperate.

Guardian environment processes cannot use OSS environment function calls for access to OSS
semaphores. OSS environment processes can create and operate on nonprivileged binary sema-
phores through Guardian environment procedure calls.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined and errno is set to
[ENOTOSS].

RETURN VALUES
Upon successful completion, a nonnegative semaphore set ID is returned. Otherwise, the
semget() function returns the value -1 and sets errno to indicate the condition.

ERRORS
If any of the following conditions occurs, the semget() function sets errno to the corresponding
value:

[EACCES] A semaphore set ID already exists for the key parameter, but operation permis-
sion as specified by the low-order nine bits of the semflg parameter was not
granted.

527186-023 Hewlett-Packard Company 7−21

semget(2) OSS System Calls Reference Manual

[EEXIST] A semaphore set ID already exists for the key parameter, but ((semflg &
IPC_CREAT) && (semflg & IPC_EXCL)) is not equal to 0 (zero).

[EINVAL] One of the following conditions is true:

• A semaphore set ID already exists for the key parameter, but the number
of semaphores in the set is less than nsems and nsems is not equal to 0
(zero).

• A semaphore set ID does not already exist, but the value of the nsems
parameter is either less than or equal to 0 (zero) or greater than the
system-defined limit.

[ENOENT] A semaphore set ID does not exist for the key parameter, and (semflg &
IPC_CREAT) is equal to 0 (zero).

[ENOSPC] An attempt to create a new semaphore set ID exceeded the processor limit on the
number of allowed semaphores.

[ENOTOSS] The calling process is not an OSS process. The requested operation is not sup-
ported from the Guardian environment.

RELATED INFORMATION
Commands: ipcrm(1), ipcs(1).

Functions: exec(2), _exit(2), fork(2), ftok(3), semctl(2), semop(2), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno value [ENOTOSS] can be returned.

7−22 Hewlett-Packard Company 527186-023

System Functions (s and S) semop(2)

NAME
semop - Performs semaphore operations

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/sem.h>

int semop(
int semid,
struct sembuf *sops,
size_t nsops);

PARAMETERS
semid Specifies the ID of the semaphore set.

sops Points to the user-defined array of sembuf structures that contain the semaphore
operations.

nsops Specifies the number of sembuf structures in the array.

DESCRIPTION
The semop() function atomically performs a set of operations on the semaphores specified by the
sem_num fields in the structures pointed to by the sops parameter and by the semaphore set ID
specified as the semid parameter.

If a process cannot execute a specified operation on a single semaphore within the specified
semaphore set, it cannot execute any operation on any semaphore within that set. Values related
to any semaphores in the set remain unchanged by the failed call to the semop() function. (The
calling process’s adjust-on-exit value, semadj, for the semaphore is also unaffected by a failed
call. Refer to the exit(3) reference page for more information about semadj use.)

All processes waiting (suspended) for a semaphore are awakened when an operation occurs that
could cause any one of them to proceed.

The semaphore operations are defined in the array pointed to by the sops parameter. The sops
array contains nsops elements, each of which is represented by a sembuf structure.

The sembuf structure (from the sys/sem.h header file) is defined as follows:

struct sembuf {
unsigned short int sem_num;
short int sem_op;
short int sem_flg;

};

The fields in the sembuf structure are defined as follows:

sem_num Specifies an individual semaphore within the semaphore set.

sem_op Specifies the operation to perform on the semaphore. The sem_op operation is
specified as a negative integer, a positive integer, or 0 (zero). The effects of
these operations are described later in this reference page.

527186-023 Hewlett-Packard Company 7−23

semop(2) OSS System Calls Reference Manual

sem_flg Specifies various flags for the operations. The possible values are as follows:

SEM_UNDO Instructs the system to adjust the process’s adjust-on-exit value
(semadj) for a modified semaphore. When the process exits, the
system uses this value to restore the semaphore to the value it
had before any modifications by the process. This flag is used to
prevent locking of resources allocated through a semaphore by a
process that no longer exists.

IPC_NOWAIT
Instructs the system to return an error condition if a requested
operation would cause the process to sleep. If the system returns
an error condition, none of the requested semaphore operations
are performed.

If the sem_op field of the sembuf structure contains a negative integer and the calling process
has alter access permission, the semop() function does one of the following:

• If the semaphore’s current value (in the semval field of the sem structure) is equal to or
greater than the absolute value of sem_op, the absolute value of sem_op is subtracted
from semval. If (sem_flg & SEM_UNDO) is not zero, the absolute value of sem_op is
added to the calling process’s semadj value for the semaphore.

• If the semaphore’s current value (in the semval field of the sem structure) is less than the
absolute value of sem_op and (sem_flg & IPC_NOWAIT) is not zero, semop() returns
immediately with an error.

• If the semaphore’s current value (in the semval field of the sem structure) is less than the
absolute value of sem_op and (sem_flg & IPC_NOWAIT) is 0 (zero), semop() incre-
ments the semaphore’s semncnt value (in the sem structure) and suspends the calling
process. If the process is suspended, it sleeps until one of the following occurs:

— The semval value becomes equal to or greater than the absolute value of
sem_op. When this happens, the semaphore’s semncnt value is decremented,
the absolute value of sem_op is subtracted from semval, and, if (sem_flg &
SEM_UNDO) is not zero, the absolute value of sem_op is added to the calling
process’s semadj value for the semaphore.

— The semaphore set ID specified by the semid parameter is removed from the sys-
tem. When this happens, semop() returns immediately with an error.

— The calling process catches a signal. When this happens, the semaphore’s
semncnt value is decremented and the calling process resumes execution as
directed by the sigaction() function.

If the sem_op field of the sembuf structure contains a positive integer and the calling process has
alter access permission, semop() adds the sem_op value to the semaphore’s current semval
value (in the sem structure). If (sem_flg & SEM_UNDO) is not zero, the sem_op value is sub-
tracted from the calling process’s semadj value for the semaphore.

7−24 Hewlett-Packard Company 527186-023

System Functions (s and S) semop(2)

If the sem_op field of the sembuf structure contains 0 (zero) and the calling process has read
access permission, semop() does one of the following:

• If the semval field of the sem structure contains 0 (zero), semop() returns immediately.

• If semval is not zero and (sem_flg & IPC_NOWAIT) is not zero, semop() returns
immediately.

• If semval is not zero and (sem_flg & IPC_NOWAIT) is 0 (zero), semop() increments
the semaphore’s semzcnt value (in the sem structure) and suspends the calling process.
If the process is suspended, it sleeps until one of the following occurs:

— The semval value becomes 0 (zero). When this happens, the semaphore’s
semzcnt value (in the sem structure) is decremented.

— The semaphore set ID specified by the semid parameter is removed from the sys-
tem. When this happens, semop() returns immediately with an error.

— The calling process catches a signal. When this happens, the semaphore’s
semzcnt value is decremented and the calling process resumes execution as
directed by the sigaction() function.

The value of the sempid field in the sem structure for each OSS semaphore that is operated upon
is set to the OSS process ID of the calling process.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined and errno is set to
[ENOTOSS].

RETURN VALUES
Upon successful completion, the semop() function returns the value 0 (zero).

If the semop() function fails, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the semop() function sets errno to the corresponding
value:

[E2BIG] The value of the nsops parameter is greater than the system-defined maximum.

[EACCES] The calling process does not have the required access permission.

[EAGAIN] The value of (sem_flg && IPC_NOWAIT) is TRUE, but the requested opera-
tion would cause the calling process to be suspended.

[EFAULT] The address used for the sops parameter is invalid.

[EFBIG] The sem_num field of the sembuf structure is less than 0 (zero) or greater than
or equal to the number of semaphores in the set identified by the semid parame-
ter.

[EIDRM] The semaphore set ID specified by the semid parameter was removed from the
system while the process was waiting for it.

[EINTR] The semop() function was interrupted by a signal.

527186-023 Hewlett-Packard Company 7−25

semop(2) OSS System Calls Reference Manual

[EINVAL] One of the following conditions is true:

• The semid parameter is not a valid semaphore set ID.

• The number of semaphores for which the SEM_UNDO flag is specified
exceeds the system-defined limit.

[ENOSPC] One of the following conditions is true:

• The system-defined limit on the number of undo entries for an undo
structure would be exceeded.

• The system-defined limit on the number of SEM_UNDO structures for a
single processor would be exceeded.

• The number of semadj values for the processor would exceed the system
limit.

[ENOTOSS] The calling process is not an OSS process. The requested operation is not sup-
ported from the Guardian environment.

[ERANGE] On of the following conditions exists:

• An operation caused a semval value in a sem structure to overflow the
system-defined limit.

• An operation caused an adjust-on-exit (semadj) value to exceed the
system-defined limit.

RELATED INFORMATION
Functions: exec(2), _exit(2), fork(2), semctl(2), semget(2), sigaction(2), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT] and [ENOTOSS] can be returned.

7−26 Hewlett-Packard Company 527186-023

System Functions (s and S) send(2)

NAME
send - Sends a message on a connected socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

ssize_t send(
int socket,
const void *buffer,
size_t length,
int flags);

PARAMETERS
socket Specifies the file descriptor of the socket.

buffer Points to the buffer containing the message to send.

length Specifies the length in bytes of the message to send.

flags Is a value that controls message transmission. The value of the flags parameter
is formed by bitwise ORing zero or more of the following values:

MSG_DONTROUTE
Sends without using routing tables. (Not recommended, use for
debugging only.)

MSG_OOB Sends out-of-band data on sockets that support out-of-band com-
munications.

DESCRIPTION
The send() function begins transmission of a message to a peer socket. The send() function
sends a message only when the socket is connected.

The length of the message to be sent is specified by the length parameter. If the message is too
long to pass through the underlying protocol, the send() function fails and does not transmit the
message.

Successful completion of a call to send() does not imply successful delivery of the message. A
return value of -1 indicates only locally detected errors.

If the sending socket has no space to hold the message to be transmitted and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the send() function blocks until space is
available. If the sending socket has no space to hold the message to be transmitted and the
socket’s file descriptor is marked nonblocking (O_NONBLOCK is set), the send() function fails
and sets errno to [EWOULDBLOCK].

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, send() or send64_() may be
called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, send64_() must be called.

527186-023 Hewlett-Packard Company 7−27

send(2) OSS System Calls Reference Manual

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to send64_().

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data can be sent, a call to the select() function indicates that the file descriptor for the
socket is ready for writing.

Calling the send() function with a flags parameter of 0 (zero) is identical to calling the write()
function.

To use the send() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_sendx(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

A call to the thread-aware send() function with a flags parameter value of 0 (zero) is identical to
a call to the thread-aware write() function.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the function on systems running H06.21/J06.10 or later
RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the send() function returns the number of bytes sent. Otherwise,
the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the send() function sets errno to the corresponding
value:

[EBADF] The socket parameter is not a valid file descriptor.

This error is also returned if the send() function is thread-aware and the socket
becomes invalid (is closed by another thread).

7−28 Hewlett-Packard Company 527186-023

System Functions (s and S) send(2)

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EDESTADDRREQ]
The socket is not connection-oriented and no peer address is set.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EINTR] A signal interrupted the function before any data was transmitted.

This error is also returned if the send() function is thread-aware and a signal
received from the pthread_kill() function is not blocked, ignored, or handled.

[EIO] An input or output error occurred.

[EMSGSIZE] The message is too large to be sent all at once, as required by the socket.

[ENETDOWN]
The local interface used to reach the destination is down.

[ENETUNREACH]
No route to the network or host is present.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] The socket either is not connected or has not had the peer socket previously
specified.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[EPIPE] One of the following conditions occurred:

• An attempt was made to send a message on a socket that is shut down
for writing.

• An attempt was made to send a message on a connection-oriented socket
and the peer socket is closed or shut down for reading. The SIGPIPE
signal is also sent to the calling process.

[EWOULDBLOCK]
The socket’s file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

527186-023 Hewlett-Packard Company 7−29

send(2) OSS System Calls Reference Manual

RELATED INFORMATION
Functions: connect(2), fcntl(2), getsockopt(2), recv(2), recvfrom(2), recvmsg(2), select(2),
sendmsg(2), sendto(2), setsockopt(2), sockatmark(2), shutdown(2), socket(2), spt_sendx(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno value [ENOSR].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport-provider process
is not available.

• For systems running J06.07 and later J-series RVUs or H06.18 and later H-series RVUs,
the errno value [ENOMEM] can be returned when there is not enough system memory
available to complete the operation.

This function is an extension to the XPG4 Version 2 specification.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

7−30 Hewlett-Packard Company 527186-023

System Functions (s and S) send64_(2)

NAME
send64_ - Sends a message on a connected socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

long long send64_(
int socket,
const void _ptr64 *buffer,
unsigned long long length,
int flags);

PARAMETERS
socket Specifies the file descriptor of the socket.

buffer Points to the buffer containing the message to send.

length Specifies the length in bytes of the message to send.

flags Is a value that controls message transmission. The value of the flags parameter
is formed by bitwise ORing zero or more of the following values:

MSG_DONTROUTE
Sends without using routing tables. (Not recommended, use for
debugging only.)

MSG_OOB Sends out-of-band data on sockets that support out-of-band com-
munications.

DESCRIPTION
The send64_() function begins transmission of a message to a peer socket. The send64_() func-
tion sends a message only when the socket is connected.

The length of the message to be sent is specified by the length parameter. If the message is too
long to pass through the underlying protocol, the send64_() function fails and does not transmit
the message.

Successful completion of a call to send64_() does not imply successful delivery of the message.
A return value of -1 indicates only locally detected errors.

If the sending socket has no space to hold the message to be transmitted and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the send64_() function blocks until space is
available. If the sending socket has no space to hold the message to be transmitted and the
socket’s file descriptor is marked nonblocking (O_NONBLOCK is set), the send64_() function
fails and sets errno to [EWOULDBLOCK].

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, send() or send64_() may be
called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, send64_() must be called.

527186-023 Hewlett-Packard Company 7−31

send64_(2) OSS System Calls Reference Manual

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to send64_().

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data can be sent, a call to the select() function indicates that the file descriptor for the
socket is ready for writing.

Calling the send64_() function with a flags parameter of 0 (zero) is identical to calling the
write64_() function.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the send64_() function returns the number of bytes sent. Other-
wise, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the send64_() function sets errno to the corresponding
value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EDESTADDRREQ]
The socket is not connection-oriented and no peer address is set.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EINTR] A signal interrupted the function before any data was transmitted.

[EIO] An input or output error occurred.

[EMSGSIZE] The message is too large to be sent all at once, as required by the socket.

[ENETDOWN]
The local interface used to reach the destination is down.

[ENETUNREACH]
No route to the network or host is present.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOMEM] There was insufficient memory available to complete the operation.

7−32 Hewlett-Packard Company 527186-023

System Functions (s and S) send64_(2)

[ENOTCONN] The socket either is not connected or has not had the peer socket previously
specified.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[EPIPE] One of the following conditions occurred:

• An attempt was made to send a message on a socket that is shut down
for writing.

• An attempt was made to send a message on a connection-oriented socket
and the peer socket is closed or shut down for reading. The SIGPIPE
signal is also sent to the calling process.

[EWOULDBLOCK]
The socket’s file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: connect(2), fcntl(2), getsockopt(2), recv(2), recv64_(2), recvfrom(2),
recvfrom64_(2), recvmsg(2), recvmsg64_(2), select(2), send(2), sendmsg(2), sendmsg64_(2),
sendto(2), sendto64_(2), setsockopt(2), sockatmark(2), shutdown(2), socket(2).

STANDARDS CONFORMANCE
This API is an HP extension and is not standards conformant.

527186-023 Hewlett-Packard Company 7−33

sendmsg(2) OSS System Calls Reference Manual

NAME
sendmsg - Sends a message on a socket using a message structure

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

ssize_t sendmsg(
int socket,
const struct msghdr *message,
int flags);

PARAMETERS
socket Specifies the file descriptor of the socket.

message Points to a msghdr structure containing both the destination address for the out-
going message and the buffers for the outgoing message. The length and format
of the address depend on the address family for the socket. The msg_flags
member of the structure is ignored. For:

AF_INET sockets
A pointer in msghdr to the address structure sockaddr_in must
be cast as a struct sockaddr.

AF_INET6 sockets
A pointer to the address structure sockaddr_in6 must be cast as
a struct sockaddr.

AF_UNIX sockets
A pointer to the address structure sockaddr_un must be cast as a
struct sockaddr.

flags Is a value that controls message transmission. The value of the flags parameter
is formed by bitwise ORing zero or more of these values:

MSG_DONTROUTE
Sends without using routing tables. (Not recommended; use
only for debugging purposes.)

MSG_OOB Sends out-of-band data on sockets that support out-of-band com-
munications.

DESCRIPTION
The sendmsg() function sends a message through a connection-oriented or connectionless
socket. If the socket is connectionless, the message is sent to the address specified in the
msghdr structure. If the socket is connection-oriented, the destination address in the msghdr
structure is ignored.

Successful completion of a call to sendmsg() does not imply successful delivery of the message.
A return value of -1 indicates only locally detected errors.

7−34 Hewlett-Packard Company 527186-023

System Functions (s and S) sendmsg(2)

If the sending socket has no space to hold the message to be transmitted and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the sendmsg() function blocks until space is
available. If the sending socket has no space to hold the message to be transmitted and the
socket’s file descriptor is marked nonblocking (O_NONBLOCK is set), the sendmsg() function
fails and sets errno to [EWOULDBLOCK].

In the msghdr structure, the msg_control and msg_controllen members specify the ancillary
data buffer that can be used only by sockets in the AF_UNIX domain to pass file descriptors to
another process on the same node. The msg_control member can be a null pointer if ancillary
data is not desired or required. If the msg_control member is nonnull, it points to an ancillary
data buffer consisting of a cmsghdr structure followed by one to sixteen file descriptors. The
msg_controllen member specifies the size of the ancillary data buffer.

If sendmsg() is called with an ancillary data buffer, the members of the cmsghdr structure must
be set as follows:

• The cmsg_level member must be set to SOL_SOCKET.

• The cmsg_type member must be set to SCM_RIGHTS.

• The value of the cmsg_len member must be equal to the value of the msg_controllen
member of the msghdr structure.

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, sendmsg() must be called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, sendmsg64_() must be called.

To pass a 32-bit pointer from a 64-bit OSS client, sendmsg() must be called.

To pass a 64-bit pointer from a 64-bit OSS client, sendmsg_() must be called.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data can be sent, a call to the select() function indicates that the file descriptor for the
socket is ready for writing.

For systems running AF_UNIX Release 2 software:

• Sockets created in compatibility mode can communicate with each other but cannot
communicate with sockets in portability mode.

• Sockets created in portability mode can communicate with each other but cannot com-
municate with sockets created in compatibility mode.

For J06.07 and later J-series RVUs and H06.18 and later H-series RVUs, if a memory resource
allocation error occurs while attempting this operation, the operation succeeds but the resulting
file descriptor is not usable. All subsequent file operations that attempt to use the file descriptor
fail with the error [EBADF].

To use the sendmsg() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_sendmsgx(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

527186-023 Hewlett-Packard Company 7−35

sendmsg(2) OSS System Calls Reference Manual

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the function on systems running H06.21/J06.10 or later
RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the sendmsg() function returns the number of normal bytes sent.
Ancillary data, if present, is not counted in the total number of bytes sent.

If the sendmsg() function call fails, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the sendmsg() function sets errno to the corresponding value:

[EACCES] The socket is in the AF_UNIX domain and either search permission is denied for
a component of the pathname in the msghdr structure or write access to the
specified socket is denied.

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EBADF] One of these conditions exists:

• The socket parameter is not a valid file descriptor.

• The socket is in the AF_UNIX domain, and one or more of the file
descriptors being passed is invalid.

This error is also returned if the sendmsg() function is thread-aware and the
socket becomes invalid (is closed by another thread).

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

7−36 Hewlett-Packard Company 527186-023

System Functions (s and S) sendmsg(2)

[EDESTADDRREQ]
The socket is not connection-oriented, no peer address is set, and no destination
address is specified.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EINTR] A signal interrupted the function before any data was transmitted.

This error is also returned if the sendmsg() function is thread-aware and a signal
received from the pthread_kill() function is not blocked, ignored, or handled.

[EINVAL] One of these conditions occurred:

• The socket is in the AF_UNIX domain, and the msg_control member
contains either more than 16 file descriptors or fewer than 1 file descrip-
tor.

• The socket is in the AF_UNIX domain, and an attempt was made to
send more than one cmsghdr structure.

• The socket is in the AF_UNIX domain, and the value of the cmsg_len
member is not equal to the value of the msg_controllen member.

• The socket is in the AF_UNIX domain, and the cmsg_type member is
not equal to SCM_RIGHTS.

• The sum of the values specified for the msg_iovlen member of the
msghdr structure is too large for a data item of type ssize_t.

[EIO] The socket is in the AF_UNIX domain, and the transport agent failed to inherit
the file descriptors being passed, or an input or output error occurred.

[ELOOP] The socket is in the AF_UNIX domain, and too many symbolic links were
encountered in translating the pathname specified by the msghdr structure.

[EMSGSIZE] The message is too large to be sent all at once, as required by the socket.

[ENAMETOOLONG]
The socket is in the AF_UNIX domain, and one of these conditions exists:

• The pathname in the msghdr structure exceeds PATH_MAX characters.

• A component of the pathname in the msghdr structure exceeds
NAME_MAX characters.

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname in the msghdr structure exceeds PATH_MAX
characters.

The pathconf() function can be called to obtain the applicable limits.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOENT] The socket is in the AF_UNIX domain, and one of these conditions occurred:

• A component of the pathname in the msghdr structure does not name an
existing file.

527186-023 Hewlett-Packard Company 7−37

sendmsg(2) OSS System Calls Reference Manual

• The msghdr structure specifies an empty string as a pathname.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOPROTOOPT]
The socket is in the AF_UNIX domain, and the cmsg_level member is not equal
to SOL_SOCKET.

[ENOTCONN] The socket is connection-oriented but is not connected.

[ENOTDIR] The socket is in the AF_UNIX domain, and the pathname specified by the
msghdr structure contains a component that is not a directory.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[EPERM] The address included in the message parameter is bound to a socket whose mode
is different than the mode of the socket specified by the socket parameter.

[EPIPE] One of these conditions occurred:

• An attempt was made to send a message on a socket that is shut down
for writing.

• An attempt was made to send a message on a connection-oriented
socket, and the peer socket is closed or shut down for reading. The SIG-
PIPE signal is also sent to the calling process.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set), and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), getsockopt(2), recv(2), recvfrom(2), recvmsg(2), select(2), send(2),
sendto(2), setsockopt(2), shutdown(2), sockatmark(2), socket(2), socketpair(2),
spt_sendmsgx(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno value [ENOSR].

HP extensions to the XPG4 specification are:

• The errno value [ECONNRESET] can be returned when the transport-provider process
is not available.

• The errno value [ENOPROTOOPT] can be returned.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

7−38 Hewlett-Packard Company 527186-023

System Functions (s and S) sendmsg64_(2)

NAME
sendmsg64_ - Sends a message on a socket using a message structure

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

long long sendmsg64_(
int socket,
const struct msghdr64 _ptr64 *message,
int flags);

PARAMETERS
socket Specifies the file descriptor of the socket.

message Points to a msghdr64 structure containing both the destination address for the
outgoing message and the buffers for the outgoing message. The length and for-
mat of the address depend on the address family for the socket. The msg_flags
member of the structure is ignored. For:

AF_INET sockets
A pointer in msghdr64 to the address structure sockaddr_in
must be cast as a struct sockaddr.

AF_INET6 sockets
A pointer to the address structure sockaddr_in6 must be cast as
a struct sockaddr.

AF_UNIX sockets
A pointer to the address structure sockaddr_un must be cast as a
struct sockaddr.

flags Is a value that controls message transmission. The value of the flags parameter
is formed by bitwise ORing zero or more of these values:

MSG_DONTROUTE
Sends without using routing tables. (Not recommended; use
only for debugging purposes.)

MSG_OOB Sends out-of-band data on sockets that support out-of-band com-
munications.

DESCRIPTION
The sendmsg64_() function sends a message through a connection-oriented or connectionless
socket. If the socket is connectionless, the message is sent to the address specified in the
msghdr64 structure. If the socket is connection-oriented, the destination address in the
msghdr64 structure is ignored.

Successful completion of a call to sendmsg64_() does not imply successful delivery of the mes-
sage. A return value of -1 indicates only locally detected errors.

527186-023 Hewlett-Packard Company 7−39

sendmsg64_(2) OSS System Calls Reference Manual

If the sending socket has no space to hold the message to be transmitted and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the sendmsg64_() function blocks until
space is available. If the sending socket has no space to hold the message to be transmitted and
the socket’s file descriptor is marked nonblocking (O_NONBLOCK is set), the sendmsg64_()
function fails and sets errno to [EWOULDBLOCK].

In the msghdr64 structure, the msg_control and msg_controllen members specify the ancillary
data buffer that can be used only by sockets in the AF_UNIX domain to pass file descriptors to
another process on the same node. The msg_control member can be a null pointer if ancillary
data is not desired or required. If the msg_control member is nonnull, it points to an ancillary
data buffer consisting of a cmsghdr structure followed by one to sixteen file descriptors. The
msg_controllen member specifies the size of the ancillary data buffer.

If sendmsg64_() is called with an ancillary data buffer, the members of the cmsghdr structure
must be set as follows:

• The cmsg_level member must be set to SOL_SOCKET.

• The cmsg_type member must be set to SCM_RIGHTS.

• The value of the cmsg_len member must be equal to the value of the msg_controllen
member of the msghdr64 structure.

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, sendmsg() must be called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, sendmsg64_() must be called.

To pass a 32-bit pointer from a 64-bit OSS client, sendmsg() must be called.

To pass a 64-bit pointer from a 64-bit OSS client, sendmsg() must be called.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data can be sent, a call to the select() function indicates that the file descriptor for the
socket is ready for writing.

For AF_UNIX sockets:

• Sockets created in compatibility mode can communicate with each other but cannot
communicate with sockets in portability mode.

• Sockets created in portability mode can communicate with each other but cannot com-
municate with sockets created in compatibility mode.

If a memory resource allocation error occurs while attempting this operation, the operation
succeeds but the resulting file descriptor is not usable. All subsequent file operations that attempt
to use the file descriptor fail with the error [EBADF].

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the sendmsg64_() function returns the number of normal bytes
sent. Ancillary data, if present, is not counted in the total number of bytes sent.

If the sendmsg64_() function call fails, the value -1 is returned, and errno is set to indicate the
error.

7−40 Hewlett-Packard Company 527186-023

System Functions (s and S) sendmsg64_(2)

ERRORS
If any of these conditions occurs, the sendmsg64_() function sets errno to the corresponding
value:

[EACCES] The socket is in the AF_UNIX domain and either search permission is denied for
a component of the pathname in the msghdr64 structure or write access to the
specified socket is denied.

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EBADF] One of these conditions exists:

• The socket parameter is not a valid file descriptor.

• The socket is in the AF_UNIX domain, and one or more of the file
descriptors being passed is invalid.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EDESTADDRREQ]
The socket is not connection-oriented, no peer address is set, and no destination
address is specified.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EINTR] A signal interrupted the function before any data was transmitted.

[EINVAL] One of these conditions occurred:

• The socket is in the AF_UNIX domain, and the msg_control member
contains either more than 16 file descriptors or fewer than 1 file descrip-
tor.

• The socket is in the AF_UNIX domain, and an attempt was made to
send more than one cmsghdr structure.

• The socket is in the AF_UNIX domain, and the value of the cmsg_len
member is not equal to the value of the msg_controllen member.

• The socket is in the AF_UNIX domain, and the cmsg_type member is
not equal to SCM_RIGHTS.

• The sum of the values specified for the msg_iovlen member of the
msghdr64 structure is too large for a long long data item.

527186-023 Hewlett-Packard Company 7−41

sendmsg64_(2) OSS System Calls Reference Manual

[EIO] The socket is in the AF_UNIX domain, and the transport agent failed to inherit
the file descriptors being passed, or an input or output error occurred.

[ELOOP] The socket is in the AF_UNIX domain, and too many symbolic links were
encountered in translating the pathname specified by the msghdr64 structure.

[EMSGSIZE] The message is too large to be sent all at once, as required by the socket.

[ENAMETOOLONG]
The socket is in the AF_UNIX domain, and one of these conditions exists:

• The pathname in the msghdr64 structure exceeds PATH_MAX charac-
ters.

• A component of the pathname in the msghdr64 structure exceeds
NAME_MAX characters.

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname in the msghdr64 structure exceeds PATH_MAX
characters.

The pathconf() function can be called to obtain the applicable limits.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOENT] The socket is in the AF_UNIX domain, and one of these conditions occurred:

• A component of the pathname in the msghdr64 structure does not name
an existing file.

• The msghdr64 structure specifies an empty string as a pathname.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOPROTOOPT]
The socket is in the AF_UNIX domain, and the cmsg_level member is not equal
to SOL_SOCKET.

[ENOTCONN] The socket is connection-oriented but is not connected.

[ENOTDIR] The socket is in the AF_UNIX domain, and the pathname specified by the
msghdr64 structure contains a component that is not a directory.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[EPERM] The address included in the message parameter is bound to a socket whose mode
is different than the mode of the socket specified by the socket parameter.

[EPIPE] One of these conditions occurred:

• An attempt was made to send a message on a socket that is shut down
for writing.

7−42 Hewlett-Packard Company 527186-023

System Functions (s and S) sendmsg64_(2)

• An attempt was made to send a message on a connection-oriented
socket, and the peer socket is closed or shut down for reading. The SIG-
PIPE signal is also sent to the calling process.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set), and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), getsockopt(2), recv(2), recv64_(2), recvfrom(2), recvfrom64_(2),
recvmsg(2), recvmsg64_(2), select(2), send(2), send64_(2), sendmsg(2), sendto(2),
sendto64_(2), setsockopt(2), shutdown(2), sockatmark(2), socket(2), socketpair(2).

STANDARDS CONFORMANCE
This API is an HP extension and is not standards conformant.

527186-023 Hewlett-Packard Company 7−43

sendto(2) OSS System Calls Reference Manual

NAME
sendto - Sends a message on a socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

ssize_t sendto(
int socket,
const void *message,
size_t length,
int flags,
const struct sockaddr *dest_addr,
socklen_t dest_len);

PARAMETERS
socket Specifies the file descriptor of the socket.

message Points to the buffer containing the message to be sent.

length Specifies the length in bytes of the message to be sent.

flags Is a value that controls message transmission. The value of the flags parameter
is formed by bitwise ORing zero or more of the following values:

MSG_DONTROUTE
Sends without using routing tables. (Not recommended; use for
debugging purposes only.)

MSG_OOB Sends out-of-band data on sockets that support out-of-band com-
munications.

dest_addr Points to a sockaddr structure that contains the destination address. The length
and format of the address depends on the address family of the socket. For:

AF_INET sockets
A pointer to the address structure sockaddr_in must be cast as a
struct sockaddr.

AF_INET6 sockets
A pointer to the address structure sockaddr_in6 must be cast as
a struct sockaddr.

AF_UNIX sockets
A pointer to the address structure sockaddr_un must be cast as a
struct sockaddr.

7−44 Hewlett-Packard Company 527186-023

System Functions (s and S) sendto(2)

dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr
parameter.

DESCRIPTION
The sendto() function sends a message through a connection-oriented or connectionless socket.
If the socket is connectionless, the message is sent to the address specified in the sockaddr struc-
ture pointed to by the dest_addr parameter. If the socket is connection-oriented, the dest_addr
parameter is ignored.

Successful completion of a call to sendto() does not imply successful delivery of the message. A
return value of -1 indicates only locally detected errors.

If the sending socket has no space to hold the message to be transmitted and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the sendto() function blocks until space is
available. If the sending socket has no space to hold the message to be transmitted and the
socket’s file descriptor is marked nonblocking (O_NONBLOCK is set), the sendto() function
fails and sets errno to [EWOULDBLOCK].

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, sendto() or sendto64_() may be
called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, sendto64_() must be called.

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to
sendto64_().

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data can be sent, a call to the select() function indicates that the file descriptor for the
socket is ready for writing.

For systems running AF_UNIX Release 2 software:

• Sockets created in compatibility mode can communicate with each other but cannot
communicate with sockets in portability mode.

• Sockets created in portability mode can communicate with each other but cannot com-
municate with sockets created in compatibility mode.

To use the sendto() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_sendtox(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the function on systems running H06.21/J06.10 or later
RVUs.

527186-023 Hewlett-Packard Company 7−45

sendto(2) OSS System Calls Reference Manual

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the sendto() function returns the number of bytes sent. Otherwise,
the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the sendto() function sets errno to the corresponding
value:

[EACCES] The socket is in the AF_UNIX domain and either search permission is denied for
a component of the pathname in the sockaddr structure, or write access to the
specified socket is denied.

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EBADF] The socket parameter is not a valid file descriptor.

This error is also returned if the sendto() function is thread-aware and the socket
becomes invalid (is closed by another thread).

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EDESTADDRREQ]
The socket is not connection-oriented and does not have its peer address set, and
no destination address was specified.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EHOSTUNREACH]
The destination host cannot be reached.

[EINTR] A signal interrupted the function before any data was transmitted.

This error is also returned if the sendto() function is thread-aware and a signal
received from the pthread_kill() function is not blocked, ignored, or handled.

7−46 Hewlett-Packard Company 527186-023

System Functions (s and S) sendto(2)

[EIO] The socket is in the AF_UNIX domain and an input or output error occurred.

[EINVAL] The dest_len parameter is not a valid length for the address family.

[ELOOP] The socket is in the AF_UNIX domain and too many symbolic links were
encountered in translating the pathname in the sockaddr structure.

[EMSGSIZE] The message is too large to be sent all at once, as required by the socket.

[ENAMETOOLONG]
The socket is in the AF_UNIX domain and one of the following conditions
exists:

• The pathname in the sockaddr structure exceeds PATH_MAX charac-
ters.

• A component of the pathname in the sockaddr structure exceeds
NAME_MAX characters.

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname in the sockaddr structure exceeds PATH_MAX
characters.

The pathconf() function can be called to obtain the applicable limits.

[ENETDOWN]
The local interface used to reach the destination is down.

[ENETUNREACH]
No route to the network or host is present.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOENT] The socket is in the AF_UNIX domain and one of the following conditions
exists:

• A component of the pathname specified in the sockaddr structure does
not name an existing file.

• The sockaddr structure specifies an empty string as a pathname.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] The socket is connection-oriented but is not connected.

[ENOTDIR] The socket is in the AF_UNIX domain and the pathname in the sockaddr struc-
ture contains a component that is not a directory.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[EPERM] The file name specified by the dest_addr parameter is bound to a socket whose
mode is different than the mode of the socket specified by the socket parameter.

527186-023 Hewlett-Packard Company 7−47

sendto(2) OSS System Calls Reference Manual

[EPIPE] One of the following conditions occurred:

• An attempt was made to send a message on a socket that is shut down
for writing.

• An attempt was made to send a message on a connection-oriented socket
and the peer socket is closed or shut down for reading. The SIGPIPE
signal is also sent to the calling process.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), getsockopt(2), recv(2), recvfrom(2), recvmsg(2), select(2), send(2),
sendmsg(2), setsockopt(2), shutdown(2), sockatmark(2), socket(2), spt_sendtox(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno values [EISCONN] or [ENOSR].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned when the transport-provider process
is not available.

This function is an extension to the XPG4 Version 2 specification.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

7−48 Hewlett-Packard Company 527186-023

System Functions (s and S) sendto64_(2)

NAME
sendto64_ - Sends a message on a socket

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

long long sendto64_(
int socket,
const void _ptr64 *message,
unsigned long long length,
int flags,
const struct sockaddr _ptr64 *dest_addr,
socklen_t dest_len);

PARAMETERS
socket Specifies the file descriptor of the socket.

message Points to the buffer containing the message to be sent.

length Specifies the length in bytes of the message to be sent.

flags Is a value that controls message transmission. The value of the flags parameter
is formed by bitwise ORing zero or more of the following values:

MSG_DONTROUTE
Sends without using routing tables. (Not recommended; use for
debugging purposes only.)

MSG_OOB Sends out-of-band data on sockets that support out-of-band com-
munications.

dest_addr Points to a sockaddr structure that contains the destination address. The length
and format of the address depends on the address family of the socket. For:

AF_INET sockets
A pointer to the address structure sockaddr_in must be cast as a
struct sockaddr.

AF_INET6 sockets
A pointer to the address structure sockaddr_in6 must be cast as
a struct sockaddr.

AF_UNIX sockets
A pointer to the address structure sockaddr_un must be cast as a
struct sockaddr.

527186-023 Hewlett-Packard Company 7−49

sendto64_(2) OSS System Calls Reference Manual

dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr
parameter.

DESCRIPTION
The sendto64_() function sends a message through a connection-oriented or connectionless
socket. If the socket is connectionless, the message is sent to the address specified in the
sockaddr structure pointed to by the dest_addr parameter. If the socket is connection-oriented,
the dest_addr parameter is ignored.

Successful completion of a call to sendto64_() does not imply successful delivery of the mes-
sage. A return value of -1 indicates only locally detected errors.

If the sending socket has no space to hold the message to be transmitted and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the sendto64_() function blocks until space
is available. If the sending socket has no space to hold the message to be transmitted and the
socket’s file descriptor is marked nonblocking (O_NONBLOCK is set), the sendto64_() func-
tion fails and sets errno to [EWOULDBLOCK].

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, sendto() or sendto64_() may be
called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, sendto64_() must be called.

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to
sendto64_().

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

When data can be sent, a call to the select() function indicates that the file descriptor for the
socket is ready for writing.

Sockets created in compatibility mode can communicate with each other but cannot communi-
cate with sockets in portability mode.

Sockets created in portability mode can communicate with each other but cannot communicate
with sockets created in compatibility mode.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the sendto64_() function returns the number of bytes sent. Other-
wise, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the sendto64_() function sets errno to the correspond-
ing value:

[EACCES] The socket is in the AF_UNIX domain and either search permission is denied for
a component of the pathname in the sockaddr structure, or write access to the
specified socket is denied.

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

7−50 Hewlett-Packard Company 527186-023

System Functions (s and S) sendto64_(2)

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EDESTADDRREQ]
The socket is not connection-oriented and does not have its peer address set, and
no destination address was specified.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EHOSTUNREACH]
The destination host cannot be reached.

[EINTR] A signal interrupted the function before any data was transmitted.

[EIO] The socket is in the AF_UNIX domain and an input or output error occurred.

[EINVAL] The dest_len parameter is not a valid length for the address family.

[ELOOP] The socket is in the AF_UNIX domain and too many symbolic links were
encountered in translating the pathname in the sockaddr structure.

[EMSGSIZE] The message is too large to be sent all at once, as required by the socket.

[ENAMETOOLONG]
The socket is in the AF_UNIX domain and one of the following conditions
exists:

• The pathname in the sockaddr structure exceeds PATH_MAX charac-
ters.

• A component of the pathname in the sockaddr structure exceeds
NAME_MAX characters.

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname in the sockaddr structure exceeds PATH_MAX
characters.

The pathconf() function can be called to obtain the applicable limits.

[ENETDOWN]
The local interface used to reach the destination is down.

[ENETUNREACH]
No route to the network or host is present.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

527186-023 Hewlett-Packard Company 7−51

sendto64_(2) OSS System Calls Reference Manual

[ENOENT] The socket is in the AF_UNIX domain and one of the following conditions
exists:

• A component of the pathname specified in the sockaddr structure does
not name an existing file.

• The sockaddr structure specifies an empty string as a pathname.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTCONN] The socket is connection-oriented but is not connected.

[ENOTDIR] The socket is in the AF_UNIX domain and the pathname in the sockaddr struc-
ture contains a component that is not a directory.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[EPERM] The file name specified by the dest_addr parameter is bound to a socket whose
mode is different than the mode of the socket specified by the socket parameter.

[EPIPE] One of the following conditions occurred:

• An attempt was made to send a message on a socket that is shut down
for writing.

• An attempt was made to send a message on a connection-oriented socket
and the peer socket is closed or shut down for reading. The SIGPIPE
signal is also sent to the calling process.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), getsockopt(2), recv(2), recv64_(2), recvfrom(2), recvfrom64_(2),
recvmsg(2), recvmsg64_(2), select(2), send(2), send64_(2), sendmsg(2), sendmsg64_(2),
sendto(2), setsockopt(2), shutdown(2), sockatmark(2), socket(2), spt_sendtox(2).

STANDARDS CONFORMANCE
This API is an HP extension and is not standards conformant.

7−52 Hewlett-Packard Company 527186-023

System Functions (s and S) setegid(2)

NAME
setegid - Sets the effective group ID of the calling process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */

#include <unistd.h>

int setegid(gid_t egid);

PARAMETERS
egid Specifies the new effective group ID.

DESCRIPTION
The setegid() function sets the effective group ID of the current process to the value specified by
egid parameter.

The process that calls this function must have appropriate privileges. A process without appropri-
ate privileges can set the effective group ID only if the egid parameter is equal to either the real
or saved-set-group-ID of the process.

The value of the egid parameter must be in the range 0 (zero) through 65535.

The real group ID, the saved-set-group-ID, and the group list of the calling process are not
changed.

NOTES
This function is supported on systems running J06.07 and later J-series RVUs, H06.18 and later
H-series RVUs, and G06.33 and later G-series RVUs.

This function does not set the default file security of a process. To set the default file security for
a process, use the PROCESS_SETINFO_ Guardian procedure call with item code 41.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of these conditions occur, the setegid() function sets errno to the corresponding value:

[EINVAL] The value of the egid parameter is invalid or out of range.

[EPERM] The current process does not have appropriate privileges and the egid parameter
does not match the real group ID or the saved-set-group-ID of the process.

RELATED INFORMATION
Functions: getegid(2), getgid(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• If both the real and effective group IDs are changed so that they differ from each other
and from the saved-set-group-ID, then the saved-set-group-ID is set to the value of the
effective group ID.

527186-023 Hewlett-Packard Company 7−53

setegid(2) OSS System Calls Reference Manual

• A process without appropriate privileges can set the effective group ID if the new
effective group ID matches a group ID in the group list of the process.

7−54 Hewlett-Packard Company 527186-023

System Functions (s and S) seteuid(2)

NAME
seteuid - Sets the effective user ID of the calling process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */

#include <unistd.h>

int seteuid(uid_t euid);

PARAMETERS
euid Specifies the new effective user ID.

DESCRIPTION
The seteuid() function sets the effective user ID of the calling process to the value specified by
the euid parameter.

The process that calls this function must have appropriate privileges. A process without appropri-
ate privileges can set the effective user ID only if the euid parameter is equal to either the real or
saved-set-user-ID of the process.

The value of the euid parameter must be in the range 0 (zero) through 65535.

The real user ID and the saved-set-user-ID of the calling process are not changed.

Use on Guardian Objects
Changing the effective user ID sets the process access ID (PAID) to the value of the effective
user ID.

NOTES
This function is supported on systems running J06.07 and later J-series RVUs, H06.18 and later
H-series RVUs, and G06.33 and later G-series RVUs.

This function does not set the default file security of a process. To set the default file security for
a process, use the PROCESS_SETINFO_ Guardian procedure call with item code 41.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any these conditions occur, the seteuid() function sets errno to the corresponding value:

[EINVAL] The value of the euid parameter is invalid or out of range.

[EPERM] The current process does not have appropriate privileges and the euid parameter
does not match the real user ID or the saved-set-user-ID of the process.

RELATED INFORMATION
Functions: getuid(2), setuid(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• If both the real and effective user IDs are changed so that they differ from each other and
from the saved-set-user-ID, then the saved-set-user-ID is set to the value of the effective
user ID.

527186-023 Hewlett-Packard Company 7−55

seteuid(2) OSS System Calls Reference Manual

7−56 Hewlett-Packard Company 527186-023

System Functions (s and S) setfilepriv(2)

NAME
setfilepriv - Sets one or more file privileges for an executable file

LIBRARY
H-series and J-series native Guardian Procesess: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/privileges.h>

int setfilepriv(
const char *path,
const unsigned char *fileprivs
);

PARAMETERS
path Points to the OSS pathname of the executable file.

fileprivs Points to the bit pattern that determines the privileges for the file.

DESCRIPTION
The setfilepriv() function sets the file privileges of the OSS regular file or Guardian disk file
specified in the path parameter according to the bit pattern specified by the fileprivs parameter.

File privileges are not supported for file types other than OSS regular files or Guardian disk files.
File privileges are ignored for files that are not executable files, DLLs, or user libraries. For
example, file privileges are ignored for shell scripts and TACL scirpts.

The fileprivs parameter is constructed by logically ORing one or more of these symbols, which
are defined in the sys/privileges.h header file:

PRIVNONE Resets the file privileges so that file has no special privileges.

PRIVSETID If the super ID (255,255 in the Guardian environment, 65535 in the OSS environ-
ment) runs an executable file that has this file privilege, the resultant process is
permitted to perform a privileged switch (such as by using the setuid() function)
to another user ID, group ID, or both to access files in a restricted-access fileset.

PRIVSOARFOPEN
If a locally-authenticated member of the Safeguard
SECURITY_OSS_ADMINISTRATOR (SOA) group runs an executable file that
has this file privilege, the resultant process is permitted to perform additional
system calls needed to back up and restore files in a restricted-access fileset.
These system calls include open(), open64(), creat(), creat64(), link(),
remove_oss(), unlink(), rmdir(), and utime(),

NOTES
This function is supported on systems running J06.11 or later J-series RVUs or H06.22 or later
H-series RVUs only

Only Members of Safeguard SECURITY-PRV-ADMINISTRATOR (SEC-PRIV-ADMIN or
SPA) group are permitted to explicitly set or reset file privileges. Therefore only members can set
the PRIVSOARFOPEN file privilege on the Backup and Restore product to enable members of
the Safeguard SECURITY_OSS_ADMINISTRATOR (SOA) group to back up and to restore files
that are in restricted-access filesets. See the initfilepriv command.

File privileges are also removed from a file if the file is modified. Any changes to the file
privileges on a file is audited. File privileges are inherited by child processes created using the
fork() function.

527186-023 Hewlett-Packard Company 7−57

setfilepriv(2) OSS System Calls Reference Manual

If the main executable of a process has a file privilege, then all user libraries and ordinary DLLs
loaded into the process must also have that file privilege. Public DLLs and implicit DLLs do not
need file privileges to be loaded into a process.

NFS client processes are not allowed to write to a file that has file privileges.

RETURN VALUES
Upon successful completion, the setfilepriv() function If the setfilepriv() function call fails, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the setfilepriv() function sets errno to the corresponding
value:

[EACCES] One of these conditions occured:

• Search permission was denied on a component of the pathname prefix

• The file does not exist

• The process attempted to access a Guardian subvolume with a reserved
filename beginning with ZYQ or a file within such a subvolume

[EPERM] One of these conditions occured:

• The effective user ID was not a member of the Safeguard SECURITY-
PRV-ADMINISTRATOR (SPA) group.

• The process attempted to set file privileges on an OSS file where the
set-user-ID or set-group-ID bit of the file mode was already set.

• The process attempted to set file privileges on a Guardian file where the
PROGID bit was already set.

• The process attempted to set file privileges on a file already opened for
writing.

[EINVAL] The value specified for fileprivs is not valid.

[EIO] A physical input or output error occurred. The device where the file is stored
might be in the down state, or both processors that provide access to the device
might have failed.

[ENOSUP] The file specified by path either resides in a fileset that does not support file
privileges, or is a file type that does not support file privileges (such as a direc-
tory or an AF_UNIX socket).

[EROFS] The file resides on a read-only fileset.

RELATED INFORMATION
Commands: getfilepriv(1), initfilepriv(1), setfilepriv(1).

Functions: chmod(2), chown(2), exec(2), fork(2), open(2), stat(2).

STANDARDS CONFORMANCE
This function is an HP extension.

7−58 Hewlett-Packard Company 527186-023

System Functions (s and S) setgid(2)

NAME
setgid - Sets the group ID of the calling process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <sys/types.h> /* Optional except for POSIX.1 */
#include <unistd.h>

int setgid(
gid_t gid);

PARAMETERS
gid Specifies the new group ID.

DESCRIPTION
The setgid() function sets the real group ID, effective group ID, and saved-set-group ID of the
calling process to the value specified by the gid parameter.

If the process does not have appropriate privileges but the gid parameter is equal to the real
group ID or the saved-set-group ID, the setgid() function sets the effective group ID to gid; the
real group ID and saved-set-group ID remain unchanged.

If the calling process has appropriate privileges, the real group ID and saved-set-group ID are set
to gid along with the effective group ID.

The group list of the calling process remains unchanged.

The value of gid must be in the range 0 through 65535.

RETURN VALUES
Upon successful completion, the setgid() function returns the value 0 (zero). Otherwise, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the setgid() function sets errno to the corresponding
value:

[EINVAL] The value of the gid parameter is invalid or out of range.

[EPERM] The process lacks appropriate privileges and the gid parameter does not match
the real group ID or the saved-set-group ID.

RELATED INFORMATION
Functions: exec(2), getgid(2), setuid(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• A process without appropriate privileges can set the effective group ID if the new
effective group ID matches a group ID in the group list of the process.

527186-023 Hewlett-Packard Company 7−59

setgroups(2) OSS System Calls Reference Manual

NAME
setgroups - Sets the group list of the calling process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

int setgroups(
int ngroups,
const gid_t *gidset);

PARAMETERS
ngroups Indicates the number of entries in the array pointed to by the gidset parameter.

Must be no greater than the value of NGROUPS_MAX, which is defined in the
<limits.h> header file.

gidset Points to the array of the group list that is to be set for the calling process.

DESCRIPTION
The setgroups() function sets the group list of the calling process according to the array pointed
to by the gidset parameter. The ngroups parameter indicates the number of entries in the array,
and must not exceed the value of NGROUPS_MAX, which is defined in the <limits.h> header
file.

The calling process must have the appropriate privileges to use this function.

NOTES
This function is supported on systems running J06.07 and later J-series RVUs, H06.18 and later
H-series RVUs, and G06.33 and later G-series RVUs.

RETURN VALUES
Upon successful completion, the setgroups() function returns the value 0 (zero). Otherwise, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of these conditions occur, the setgroups() function sets errno to the corresponding value:

[EINVAL] The value of the ngroups parameter is greater than the value of
NGROUPS_MAX or is not a positive number, or an entry in the array pointed to
by the gidset parameter is not a valid group ID.

[EPERM] The process lacks appropriate privileges.

RELATED INFORMATION
Functions: getgroups(2), initgroups(3).

STANDARDS CONFORMANCE
This function conforms to the Application Environment Specification (AES) and the System V
Interface Definition, version 3 (SVID3).

7−60 Hewlett-Packard Company 527186-023

System Functions (s and S) setpgid(2)

NAME
setpgid - Sets the process group ID for job control

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

int setpgid(
pid_t pid,
pid_t pgid);

PARAMETERS
pid Specifies the process whose process group ID is to be changed.

pgid Specifies the new process group ID.

DESCRIPTION
The setpgid() function is used either to join an existing process group or to create a new process
group within the session of the calling process. The process group ID of a session leader will not
change.

The process group ID of the process designated by the pid parameter is set to the value of the
pgid parameter. If pid is 0 (zero), the process ID of the calling process is used. If pgid is 0
(zero), the process ID of the indicated process is used.

Use From the Guardian Environment
Calls to setpgid() from Guardian processes are not successful. Such calls return an errno value
of [ENOTOSS].

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. If the call was unsuccessful and ini-
tiated by an OSS process, the value -1 is returned and errno is set to indicate the error. If unsuc-
cessful and initiated by a Guardian process, Guardian trap number 5 is set.

ERRORS
If any of the following conditions occurs, the setpgid() function sets errno to the corresponding
value:

[EACCES] The value of the pid parameter matches the process ID of a child process of the
calling process, and the child process has successfully executed one of the exec,
tdm_exec, or tdm_spawn set of functions.

[EINVAL] One of the following conditions exists:

• The value of the pgid parameter is less than 0 (zero).

• The value of the pgid parameter is not a valid OSS process ID.

• Either the pgid or pid parameter is out of range.

[ENOTOSS] The calling process is not an OSS process. The requested operation is not sup-
ported from the Guardian environment.

527186-023 Hewlett-Packard Company 7−61

setpgid(2) OSS System Calls Reference Manual

[EPERM] One of the following conditions exists:

• The process indicated by the pid parameter is a session leader.

• The value of the pid parameter matches the OSS process ID of a child
process of the calling process, and the child process is not in the same
session as the calling process.

• The value of the pgid parameter is valid, but it does not match the OSS
process ID of the process indicated by the pid parameter, and there is no
process with a process group ID that matches the value of pgid in the
same session as the calling process.

[ESRCH] The value of the pid parameter does not match the OSS process ID of the calling
process or of a child process of the calling process.

RELATED INFORMATION
Functions: exec(2), getpgrp(2), setsid(2), tcsetpgrp(2), tdm_execve(2), tdm_execvep(2),
tdm_spawn(2), tdm_spawnp(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno value [ENOTOSS] can be returned.

7−62 Hewlett-Packard Company 527186-023

System Functions (s and S) setpgrp(2)

NAME
setpgrp - Sets the process group ID

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t setpgrp(void);

DESCRIPTION
The setpgrp() function creates a new session when the calling process is not a process group
leader. The calling process then becomes the session leader of this session and the process
leader of a new process group, and it has no controlling terminal. The process group ID of the
calling process is set equal to its OSS process ID. The calling process becomes the only process
in the new process group and the only process in the new session.

If the calling process is already a session group leader, the call fails and errno is set to
[EPERM].

Use From the Guardian Environment
Calls to setpgrp() from Guardian processes are not successful. Such calls return an errno value
of [ENOTOSS].

NOTES
The setpgrp() function is equivalent to the setsid() function.

RETURN VALUES
Upon successful completion, the value of the new process group ID is returned. If the call was
unsuccessful and initiated by an OSS process, the value -1 is returned and errno is set to indicate
the error. If unsuccessful and initiated by a Guardian process, Guardian trap number 5 is set.

ERRORS
If any of these conditions occurs, the setpgrp() function sets errno to the corresponding value:

[ENOTOSS] The calling process is not an OSS process. The requested operation is not sup-
ported from the Guardian environment.

[EPERM] One of these conditions exists:

• The calling process is already the process group leader.

• The process group ID of a process other than the calling process matches
the OSS process ID of the calling process.

RELATED INFORMATION
Functions: setpgid(2), setsid(2).

STANDARDS CONFORMANCE
The following errno values are HP extensions to the XPG4 Version 2 specification:

• The errno values [ENOTOSS] and [EPERM] can be returned.

527186-023 Hewlett-Packard Company 7−63

setregid(2) OSS System Calls Reference Manual

NAME
setregid - Sets the real and effective group IDs

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <unistd.h>

int setregid(
gid_t rgid,
gid_t egid);

PARAMETERS
rgid Specifies the new real group ID.

egid Specifies the new effective group ID.

DESCRIPTION
The setregid() function sets the real group ID and the effective group ID of the current process
to the values specified by the rgid and egid parameters, respectively.

A process with appropriate privileges can set either group ID to any value.

A process without appropriate privileges can:

• Set the real group ID to the saved-set group ID used with an execv() function call

• Set the effective group ID to the saved-set group ID used with an execv() function call

• Set the effective group ID to the real group ID

Supplementary group IDs remain unchanged after a call to this function.

Supplying a value of -1 for either the real or effective group ID forces the system to substitute the
current group ID in place of the -1 value.

NOTES
The setregid() function can be called only by native processes.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of the following conditions occur, the setregid() function sets errno to the corresponding
value:

[EINVAL] The value of the rgid or egid parameter is invalid or out of range.

[EPERM] The calling process does not have appropriate privileges and a change requiring
appropriate privileges was specified.

RELATED INFORMATION
Functions: execv(2), getgid(2), setgid(2).

7−64 Hewlett-Packard Company 527186-023

System Functions (s and S) setregid(2)

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• If both the real and effective group IDs are changed so that they differ from each other
and from the saved-set group ID, then the saved-set group ID is set to the value of the
effective group ID.

• A process without appropriate privileges can set the effective group ID if the new
effective group ID matches a group ID in the group list of the process.

527186-023 Hewlett-Packard Company 7−65

setreuid(2) OSS System Calls Reference Manual

NAME
setreuid - Sets the real and effective user IDs

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <unistd.h>

int setreuid(
uid_t ruid,
uid_t euid);

PARAMETERS
ruid Specifies the new real user ID.

euid Specifies the new effective user ID.

DESCRIPTION
The setreuid() function sets the real user ID and effective user ID of the current process to the
values specified by the ruid and euid parameters, respectively. If ruid or euid has a value of -1,
the current user ID (UID) is used by the system.

A process with appropriate privileges can set either ID to any value.

A process without appropriate privileges:

• Can set the effective user ID only if the euid parameter is equal to either the real,
effective, or saved user ID of the process.

• Cannot set the real user ID.

Changing the effective user ID sets the process access ID (PAID) to the value of the effective
user ID.

NOTES
The setreuid() function can be called only by native processes.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of the following conditions occur, the setreuid() function sets errno to the corresponding
value:

[EINVAL] The value of the ruid or euid parameter is invalid or out of range.

[EPERM] The current process does not have appropriate privileges and a change requiring
appropriate privileges was specified.

RELATED INFORMATION
Functions: getuid(2), setuid(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

7−66 Hewlett-Packard Company 527186-023

System Functions (s and S) setreuid(2)

• If both the real and effective user IDs are changed so that they differ from each other and
from the saved-set user ID, then the saved-set user ID is set to the value of the effective
user ID.

• A process without appropriate privileges cannot set the real user ID.

527186-023 Hewlett-Packard Company 7−67

setsid(2) OSS System Calls Reference Manual

NAME
setsid - Creates a new session and sets the process group ID

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

pid_t setsid(void);

DESCRIPTION
The setsid() function creates a new session when the calling process is not a process group
leader. The calling process then becomes the session leader of this session, the process leader of
a new process group, and has no controlling terminal. The process group ID of the calling pro-
cess is set equal to its process ID. The calling process becomes the only process in the new pro-
cess group and the only process in the new session.

Use From the Guardian Environment
Calls to setsid() from Guardian processes are not successful. Such calls return an errno value of
[ENOTOSS].

RETURN VALUES
Upon successful completion, the value of the new process group ID is returned. If the call was
unsuccessful and initiated by an OSS process, the value -1 is returned and errno is set to indicate
the error. If unsuccessful and initiated by a Guardian process, Guardian trap number 5 is set.

ERRORS
If any of the following conditions occurs, the setsid() function sets errno to the corresponding
value:

[ENOTOSS] The calling process is not an OSS process. The requested operation is not sup-
ported from the Guardian environment.

[EPERM] One of the following conditions exists:

• The calling process is already the process group leader.

• The process group ID of a process other than the calling process matches
the OSS process ID of the calling process.

RELATED INFORMATION
Functions: getpid(2), setpgid(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno value [ENOTOSS] can be returned.

7−68 Hewlett-Packard Company 527186-023

System Functions (s and S) setsockopt(2)

NAME
setsockopt - Sets socket options

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>
[#include <netinet/in.h>]
[#include <netinet/in6.h>]
[#include <netdb.h>]
[#include <netinet/tcp.h>] Required for TCP protocol level

int setsockopt(
int socket,
int level,
int option_name,
const void *option_value,
socklen_t option_len);

PARAMETERS
socket Specifies the file descriptor for the socket.

level Specifies the protocol level at which the option resides. The following values
can be specified for the level parameter in an OSS application program:

IPPROTO_IPV6
Set IP protocol-level options defined for an Internet Protocol
version 6 (IPv6) socket

IPPROTO_IP Set IP protocol-level options defined for an Internet Protocol
version 4 (IPv4) socket

IPPROTO_TCP
Set TCP protocol-level options defined for a socket

SOL_SOCKET
Set socket-level protocol options defined for a socket

To set options at other levels, supply the appropriate protocol number for the pro-
tocol controlling the option. Valid protocol numbers can be found in
/etc/protocols.

option_name Specifies the option to set. The option_name parameter and any specified
options are passed uninterpreted to the appropriate protocol module for interpre-
tation.

The sys/socket.h header file defines the socket-level options. Additional header
files are required for options at other levels.

The socket-level options can be enabled or disabled.

The IPPROTO_IPV6 (IP protocol-level IPv6) options are:

IPV6_JOIN_GROUP
Enables the receipt of IPv6 multicast UDP datagrams for a
specific group.

527186-023 Hewlett-Packard Company 7−69

setsockopt(2) OSS System Calls Reference Manual

IPV6_LEAVE_GROUP
Disables the receipt of IPv6 multicast UDP datagrams for a
specific group.

IPV6_MULTICAST_IF
Specifies the interface (subnet) to use for outbound multicast
UDP datagrams. option_value is an unsigned int.

IPV6_MULTICAST_HOPS
Specifies the hop limit for outbound multicast UDP datagrams.
option_value is an int that is either:

• Between 0 and 255 to indicate the maximum number of
hops allowed

• -1 to indicate a limit of 255 hops

The default maximum number of hops allowed is 1. All other
values cause an error and errno is set to [EINVAL].

IPV6_MULTICAST_LOOP
Enables or disables multicast messages sent to loopback for
applications that have joined the same group on the same inter-
face. This option is enabled by default. option_value is an
unsigned int.

IPV6_UNICAST_HOPS
Specifies the hop limit for outbound unicast UDP datagrams.
option_value is an int that is either:

• Between 0 and 255 to indicate the maximum number of
hops allowed

• -1 to indicate that the default value should be used

All other values cause an error and errno is set to [EINVAL].

IPV6_V6ONLY
Specifies that AF_INET6 sockets are restricted to IPv6-only
communication.

The IPPROTO_IP (IP protocol-level IPv4) options are:

IP_OPTIONS Sets IP options for each outgoing packet. The option_value
parameter is a pointer to a list of IP options and values that con-
forms with RFC 791.

IP_ADD_MEMBERSHIP
Enables the receipt of IP multicast UDP datagrams for a specific
group.

IP_DROP_MEMBERSHIP
Disables the receipt of IP multicast UDP datagrams for a specific
group.

7−70 Hewlett-Packard Company 527186-023

System Functions (s and S) setsockopt(2)

IP_MULTICAST_IF
Specifies the interface (subnet) to use for outbound multicast
UDP datagrams. option_value is an unsigned int.

IP_MULTICAST_TTL
Specifies the hop limit for outbound multicast UDP datagrams.
option_value is an int that is either:

• Between 0 and 255 to indicate the maximum number of
hops allowed

• -1 to indicate a limit of 255 hops

The default maximum number of hops allowed is 1. All other
values cause an error and errno is set to [EINVAL].

IP_MULTICAST_LOOP
Enables or disables multicast messages sent to loopback for
applications that have joined the same group on the same inter-
face. This option is enabled by default. option_value is an
unsigned int.

The SOL_SOCKET (socket-level protocol) options are:

SO_BROADCAST
Enables or disables sending of broadcast messages. The default
value used when the socket is created is 0 (zero), which disables
the option.

This option is valid only for AF_INET or AF_INET6 datagram
(UDP) sockets. If this option is specified for sockets of other
types, the function call fails and errno is set to [ENOPRO-
TOOPT].

option_value takes an int value. Specifying any nonzero value
enables broadcast messages.

SO_DEBUG Enables or disables recording of debugging information in the
underlying protocol modules. The default value used when the
socket is created is 0 (zero), which disables the option.

This option is valid only for AF_INET or AF_INET6 sockets.
If this option is specified for sockets of other types, the function
call fails and errno is set to [ENOPROTOOPT].

option_value takes an int value. Specifying a nonzero value
enables recording of debugging information.

SO_DONTROUTE
Specifies whether outgoing messages should bypass the standard
routing facilities and be directed to the appropriate network
interface, according to the destination address. The default
value used when the socket is created is 0 (zero), which indi-
cates the use of standard routing.

This option is valid only for AF_INET or AF_INET6 sockets.
If this option is specified for sockets of other types, the function
call fails and sets errno to [ENOPROTOOPT].

option_value takes an int value. Specifying any nonzero value

527186-023 Hewlett-Packard Company 7−71

setsockopt(2) OSS System Calls Reference Manual

bypasses normal routing.

SO_KEEPALIVE
Specifies whether to keep connections active by enabling the
periodic transmission of messages on a connected socket. The
default value used when the socket is created is 0 (zero), which
indicates that no periodic messages are sent.

This option is valid only for AF_INET or AF_INET6 sockets.
If this option is specified for sockets of other types, the function
call fails and sets errno to [ENOPROTOOPT].

option_value takes an int value. Specifying any nonzero value
causes periodic transmission of messages.

SO_LINGER Controls whether the system attempts to deliver unsent data that
is queued when a call to the close() function occurs.

This option is valid only for AF_INET or AF_INET6 sockets.
If this option is specified for sockets of other types, the function
call fails and errno is set to [ENOPROTOOPT].

option_value takes a struct linger value, as defined in the
sys/socket.h header file. However, regardless of the option
value, SO_LINGER is always enabled.

SO_OOBINLINE
Specifies whether received out-of-band data (data marked
urgent) is queued with other data. The default value used for the
option when the socket is created is 0 (zero), which indicates
that urgent data is delivered separately.

This option is valid only for AF_INET or AF_INET6 sockets.
If this option is specified for sockets of other types, the function
call fails and sets errno to [ENOPROTOOPT].

option_value takes an int value. Specifying any nonzero value
causes out-of-band data to remain queued with other data.

SO_RCVBUF Sets the receive buffer size in bytes. The default value used for
the option when the socket is created is 8K bytes.

This option is valid only for AF_INET or AF_INET6 sockets.
If this option is specified for sockets of other types, the function
call fails and errno is set to [ENOPROTOOPT].

option_value takes an int value. Specifying a 0 (zero) value, a
negative value, or a value greater than 262144 causes the func-
tion call to fail with errno set to [EINVAL].

SO_REUSEADDR
Specifies whether the rules used in validating addresses supplied
by a bind() function call should allow reuse of local addresses.
The default value used for the option when the socket is created
is 0 (zero), which indicates that addresses should not be reused.

option_value takes an int value. Specifying a nonzero value
permits addresses to be reused.

7−72 Hewlett-Packard Company 527186-023

System Functions (s and S) setsockopt(2)

SO_REUSEPORT
Specifies whether the rules used in validating ports supplied by a
bind() function call should allow reuse of local ports. The
default value used for the option when the socket is created is 0
(zero), which indicates that ports should not be reused.

This option is valid only for UDP ports.

This option takes an int value. Specifying a nonzero value per-
mits ports to be reused.

SO_SNDBUF Sets the send buffer size in bytes. The default value used for the
option when the socket is created is 8K bytes.

This option is valid only for AF_INET or AF_INET6 sockets.
If this option is specified for sockets of other types, the function
call fails and sets errno to [ENOPROTOOPT].

option_value takes an int value. Specifying a 0 (zero) value, a
negative value, or a value greater than 262144 causes the func-
tion call to fail with errno set to [EINVAL].

The IPPROTO_TCP (TCP protocol-level) options are:

TCP_MAXRXMT
Sets the maximum retransmission timeout value in multiples of
500 milliseconds.

option_value takes an int value. Valid values are in the range 1
through 60. The value specified for this option should be greater
than or equal to the value used for the TCP_MINRXMT option.

TCP_MINRXMT
Sets the minimum retransmission timeout value in multiples of
500 milliseconds.

option_value takes an int value. Valid values are in the range 1
through 2400. The value specified for this option should be less
than or equal to the value used for the TCP_MAXRXMT
option.

TCP_NODELAY
Specifies whether data packets are buffered before transmission.

option_value takes an int value. A nonzero value indicates that
data packets should not be buffered. A 0 (zero) value indicates
that buffering should occur.

TCP_RXMTCNT
Sets the maximum retransmission count.

option_value takes an int value. Valid values are in the range 1
through 12. When the value specified for this option is multi-
plied by the value used for the TCP_MAXRMT option and the
result is less than the value used for TCP_TOTRXMTVAL, the
TCP connection will be dropped before the
TCP_TOTRXMTVAL value is reached.

527186-023 Hewlett-Packard Company 7−73

setsockopt(2) OSS System Calls Reference Manual

TCP_SACKENA
Specifies whether TCP selective acknowledgments are enabled.

option_value takes an int value. A nonzero value indicates that
selective acknowledgments are enabled. A 0 (zero) value indi-
cates that selective acknowledgments should not be used.

TCP_TOTRXMTVAL
Sets the total maximum retransmission duration in multiples of
500 milliseconds. Once the duration is reached, the TCP
cpnnection is dropped.

option_value takes an int value. Valid values are in the range 1
through 28800. When the value specified for the
TCP_RXMTCNT option is multiplied by the value used for the
TCP_MAXRMT option and the result is less than the value
used for TCP_TOTRXMTVAL, the TCP connection will be
dropped before the TCP_TOTRXMTVAL value is reached.

Options at other protocol levels vary in format and name.

option_value Points to the buffer containing the appropriate option value. For options that can
be classified as disabled or enabled, a value of 0 (zero) indicates that the option
should be disabled and a value of 1 indicates that the option should be enabled.

option_len Contains the size of the buffer pointed to by the option_value parameter.

DESCRIPTION
The setsockopt() function sets options associated with a socket. Options can exist at multiple
protocol levels. The SO_* options are always present at the uppermost socket level.

The setsockopt() function provides an application program with the means to control socket
communication. An application program can use the setsockopt() function to enable debugging
at the protocol level, allocate buffer space, control time-outs, or permit socket data broadcasts.
The sys/socket.h header file defines all the SO_* options available to the setsockopt() function.

If your application uses the Cluster I/O Protocols (CIP) subsystem, options for this function
might not be supported or might result in behaviors that are different from those described in this
reference page. For more information about the Cluster I/O Protocols, see the Cluster I/O Proto-
cols (CIP) Configuration and Management Manual.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the setsockopt() function returns the value 0 (zero). Otherwise, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the setsockopt() function sets errno to the correspond-
ing value:

[EBADF] The socket parameter is not a valid file descriptor.

7−74 Hewlett-Packard Company 527186-023

System Functions (s and S) setsockopt(2)

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EINVAL] One of the following conditions exists:

• The specified option is not valid at the specified socket level.

• The socket has been shut down.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOPROTOOPT]
The specified option is not supported by the protocol used by the socket.

[ENOTSOCK] The socket parameter does not refer to a socket.

RELATED INFORMATION
Functions: bind(2), endprotoent(3), getprotobynumber(3), getprotoent(3), getsockopt(2), set-
protoent(3), socket(2), socketpair(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno value [ENOSR].

The following are HP extensions to the XPG4 specification:

• Nonzero values other than 1 can be used to set Boolean options.

• The SO_DONTROUTE and SO_REUSEPORT options are supported.

• The errno value [ECONNRESET] can be returned when the transport-provider process
is unavailable.

• Some of the documented uses of the errno value [ENOPROTOOPT] are not described in
the specification.

527186-023 Hewlett-Packard Company 7−75

setuid(2) OSS System Calls Reference Manual

NAME
setuid - Sets the user ID of the calling process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsecsrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zsecdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/ysecdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

int setuid(
uid_t uid);

PARAMETERS
uid Specifies the new user ID.

DESCRIPTION
When invoked by processes with appropriate privileges, the setuid() function sets the real user
ID, effective user ID, and saved-set-user ID of the calling process to the value of the uid parame-
ter.

To change the real user ID, the effective user ID, and the saved-set-user ID, the calling process
must have appropriate privileges. If the process does not have appropriate privileges but the uid
parameter is equal to the real user ID or the saved-set-user ID, the setuid() function sets the
effective user ID to uid; the real user ID and saved-set-user ID remain unchanged.

The value of uid must be in the range 0 through 65535.

NOTES
Changing the effective user ID sets the operating system process access ID (PAID) to the value
of the effective user ID.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the setuid() function sets errno to the corresponding
value:

[EINVAL] The uid parameter is out of range.

[EPERM] The process lacks appropriate privileges, and the uid parameter does not match
the real user ID or the saved-set-user ID.

RELATED INFORMATION
Functions: exec(2), getuid(2).

7−76 Hewlett-Packard Company 527186-023

System Functions (s and S) shmat(2)

NAME
shmat - Attaches a shared memory segment to the address space of the calling process

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
H-series and J-series native Guardian processes: $SYSTEM.ZDLLnnn.ZOSSKDLL
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/shm.h>

void *shmat(
int shmid,
const void *shmaddr,
int shmflag);

PARAMETERS
shmid Specifies the identifier for the shared memory segment. The identifier is usually

returned by a previous call to the shmget() function.

shmaddr Specifies the virtual address at which the process wants to attach the shared
memory segment. The process can also specify 0 (zero) to have the system
select an appropriate address.

shmflag Specifies the following attach flags:

SHM_RND If the shmaddr parameter is not a null pointer, the system rounds
off the address, if necessary.

SHM_RDONLY
The segment is attached for read-only access.

DESCRIPTION
The shmat() function attaches the shared memory segment identified by the shmid parameter to
the virtual address space of the calling process. For the shmaddr parameter, the process can
specify an explicit address, or it can pass a NULL pointer (zero) to have the system select the
address. If shmaddr is nonzero and (shmflag & SHM_RND) is not zero, the system rounds down
the specified address. For detailed information, see "Shared Memory Segment Alignment."

The segment is attached for reading if (shmflag & SHM_RDONLY) is not zero and the calling
process has read permission. If (shmflag & SHM_RDONLY) is 0 (zero) and the calling process
has read and write permission, the segment is attached for reading and writing.

Memory can be shared only within the same processor.

Shared memory uses operating system flat segments (permanently mapped shareable data seg-
ments). Refer to the Guardian Programmer’s Guide for more information about flat segments.

Address Range
An application that is using the shared memory functions shmat() and shmdt() to manage a
range of virtual addresses should use only these functions to manipulate the range.

The valid range of addresses for the shmaddr parameter can change from one release to the next.
Programs should not contain hard-coded addresses.

527186-023 Hewlett-Packard Company 7−77

shmat(2) OSS System Calls Reference Manual

Shared Segment Memory Alignment
On servers running J06.12 or later J-series RVUs, or H06.23 or later H-series RVUs:

• If shmaddr is nonzero and rounding is specified, the specified address is rounded to a
multiple of 4 MB.

• If shmaddr is nonzero and rounding is not specified, the specified address must be a
multiple of 16 KB.

• If shmaddr is zero, the system chooses an address that is a multiple of at least 16 KB.
The SHMLBA constant is irrelevant.

On servers running earlier J-series RVUs, earlier H-series RVUs, or G-series RVUs:

• If shmaddr is nonzero and rounding is specified, the specified address is rounded to a
multiple of 32 MB.

• If shmaddr is nonzero and rounding is not specified, the specified address must be a
multiple of 32 KB.

• If shmaddr is zero, the system chooses an address that is a multiple of at least 16 KB
(but not necessarily a multiple of 32 MB). The SHMLBA constant is 32 MB.

Number of Shared Segments
On servers running J06.12 or later J-series RVUs, or H06.23 or later H-series RVUs, there is no
configured limit to the number of OSS shared memory segments that can be attached by one pro-
cess. The number of OSS shared memory segments that can be attached is limited by system
resources only.

On servers running earlier J-series RVUs, earlier H-series RVUs, or G-series RVUs, a process
can attach no more than 13 segments at one time.

Propagation During Process Creation
Segments attached to a parent process are also attached to a child process created by the fork()
or tdm_fork() function.

Segments attached to a parent process are not propagated by a call to:

• Any of the exec or tdm_exec sets of functions

• Any of the tdm_spawn or PROCESS_SPAWN_ set of functions

The resulting child process has no attached shared memory segments.

Use From the Guardian Environment
On servers running J06.12 or later J-series RVUs, or H06.23 or later H-series RVUs, Guardian
processes can attach shared memory segments. Permissions are handled in the same way for
both OSS and Guardian processes.

If called from a Guardian process on servers running J06.11 or earlier J-series RVUs, H06.22 or
earlier H-series RVUs, or G-series RVUs, this function call fails and errno is set to the value of
[ENOTOSS].

NOTES
The shared memory identifier, shmid, is not the Guardian environment segid value or segment
identifier.

Programs should not be written to depend upon the maximum number of attached shared seg-
ments. This limit is subject to change.

7−78 Hewlett-Packard Company 527186-023

System Functions (s and S) shmat(2)

Refer to the SEGMENT_ALLOCATE_ procedure description in the Guardian Procedure Calls
Reference Manual for more information about segment limits.

RETURN VALUES
Upon successful completion, the shmat() function increments the value of the shm_nattch field
in the structure associated with the shared memory identifier of the attached shared memory seg-
ment. The starting address for the attached segment is returned.

Otherwise, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the shmat() function sets errno to the corresponding
value and does not attach the shared memory segment:

[EACCES] The calling process does not have access permission for the requested operation.

[EINVAL] One of the following is true:

• The shmid parameter does not specify a valid shared memory identifier.

• All of these conditions are true:

— The shmaddr parameter is not a null pointer

— Rounding is not specified: (shmflag & SHM_RND) is 0 (zero).

— There is inadequate virtual address available in the process to
allocate the requested segment at the specified or rounded or
default address.

[EMFILE] On servers running J06.11 or earlier J-series RVUs, H06.22 or earlier H-series
RVUs, or G-series RVUs, an attempt to attach a shared memory segment
exceeded the maximum number of attached segments allowed for any one pro-
cess.

[ENOMEM] There was not enough data space available to attach the shared memory segment
and allocate the associated low-level data structures.

[ENOTOSS] The calling process is not an OSS process. The requested operation cannot be
performed from the Guardian environment on servers running J06.11 or earlier
J-series RVUs, H06.22 or earlier H-series RVUs, or G-series RVUs.

RELATED INFORMATION
Commands: ipcrm(1), ipcs(1).

Functions: exec(2), _exit(2), fork(2), shmctl(2), shmdt(2), shmget(2), tdm_execve(2),
tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2).

STANDARDS CONFORMANCE
The SHMLBA constant is used for a nontraditional value.

The following are HP extensions to the XPG4 Version 2 specification:

• On servers running J06.11 or earlier J-series RVUs, H06.22 or earlier H-series RVUs, or
G-series RVUs, the errno value [ENOTOSS] can be returned if this function is called
from a Guardian process.

527186-023 Hewlett-Packard Company 7−79

shmctl(2) OSS System Calls Reference Manual

NAME
shmctl - Performs shared memory control operations

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
H-series and J-series native Guardian processes: $SYSTEM.ZDLLnnn.ZOSSKDLL
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/shm.h>

int shmctl(
int shmid,
int cmd,
struct shmid_ds *buf);

PARAMETERS
shmid Specifies the shared memory identifier for the segment.

cmd Specifies the type of operation. The possible values for cmd and the operations
they perform are as follows:

IPC_RMID Removes the shared memory identifier and deallocates its asso-
ciated shmid_ds structure.

This is a restricted operation. The effective user ID of the cal-
ling process either must have appropriate privileges or must be
equal to the value of the creator’s user ID (shm_perm.cuid
field) or the owner’s user ID (shm_perm.uid field) in the associ-
ated shmid_ds structure.

IPC_SET Sets the shared memory identifier by copying selected values in
the structure specified by the buf parameter into the correspond-
ing fields in the shmid_ds structure associated with the shared
memory identifier.

This is a restricted operation. The effective user ID of the cal-
ling process either must have appropriate privileges or must be
equal to the value of the creator’s user ID (shm_perm.cuid
field) or the owner’s user ID (shm_perm.uid field) in the associ-
ated shmid_ds structure.

IPC_STAT Queries the shared memory identifier by copying the contents of
its associated shmid_ds structure into the structure specified by
the buf parameter. The calling process must have read access to
the segment.

buf Specifies the address of a shmid_ds structure. This structure is used only with
the IPC_STAT and IPC_SET values of the cmd parameter. With IPC_STAT,
the results of the query are copied to this structure. With IPC_SET, the values
in this structure are used to set certain fields in the shmid_ds structure associated
with the shared memory identifier. In either case, the calling process must have
allocated the structure before making the call.

7−80 Hewlett-Packard Company 527186-023

System Functions (s and S) shmctl(2)

DESCRIPTION
The shmctl() function allows a process to query or set the contents of the shmid_ds structure
associated with the specified shared memory identifier. It also allows a process to remove the
shared memory identifier and its associated shmid_ds structure. The value of the cmd parameter
determines which operation is performed.

The IPC_SET value of the cmd parameter uses the user-supplied contents of the buf structure to
set the corresponding fields in the shmid_ds structure associated with the shared memory
identifier. The fields are set as follows:

• The owner’s user ID field (shm_perm.uid) is set as specified in the input.

• The owner’s group ID field (shm_perm.gid) is set as specified in the input.

• The access modes field (shm_perm.mode) is set as specified in the low-order nine bits
of the corresponding field in the input.

The IPC_SET and IPC_RMID values of the cmd parameter also update the shm_perm.ctime
field to the current time.

Use From the Guardian Environment
On servers running J06.12 or later J-series RVUs or H06.23 or later H-series RVUs, Guardian
process also can get and share shared memory segments. The Guardian process PIN is reported in
place of the process ID in the shm_lpid and shm_cpid members of the shmid_ds structure
reported by the shmctl() function. These data are for information only and cannot be passed to a
function that requires an actual pid_t value.

If called from a Guardian process on servers running J06.11 or earlier J-series RVUs, H06.22 or
earlier H-series RVUs, or G-series RVUs, the function call fails and errno is set to the value of
[ENOTOSS].

NOTES
The shared memory identifier, shmid, is not the Guardian environment segid value or segment
identifier.

Programs should not be written to depend upon the maximum number of attached shared seg-
ments. This limit is subject to change.

Refer to the SEGMENT_ALLOCATE_ procedure in the Guardian Procedure Calls Reference
Manual for more information about segment limits.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the shmctl() function sets errno to the corresponding
value:

[EACCES] The cmd parameter is IPC_STAT, but the calling process does not have read
permission.

[EFAULT] One of the following conditions exists:

• The cmd parameter is IPC_STAT, and either the buf structure is not in
the address space of the process or the function cannot write into the buf
structure.

527186-023 Hewlett-Packard Company 7−81

shmctl(2) OSS System Calls Reference Manual

• The cmd parameter is IPC_SET, and the buf structure is not in the
address space of the process.

[EINVAL] One of the following conditions exists:

• The shmid parameter does not specify a valid shared memory identifier.

• The cmd parameter is not a valid command.

[ENOTOSS] The calling process is not an OSS process. The requested operation cannot be
performed from the Guardian environment on servers running J06.11 or earlier
J-series RVUs, H06.22 or earlier H-series RVUs, or G-series RVUs.

[EPERM] The cmd parameter is equal to either IPC_RMID or IPC_SET, and the calling
process does not have the correct privileges.

RELATED INFORMATION
Commands: ipcrm(1), ipcs(1).

Functions: shmat(2), shmdt(2), shmget(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT] can be returned.

• On servers running J06.11 or earlier J-series RVUs, H06.22 or earlier H-series RVUs, or
G-series RVUs, the errno value [ENOTOSS] can be returned if this function is called
from a Guardian process.

• If the relevant action was performed by a Guardian process, the reported values of the
shm_lpid and shm_cpid members of the shmid_ds structure are Guardian PIN values.

7−82 Hewlett-Packard Company 527186-023

System Functions (s and S) shmdt(2)

NAME
shmdt - Detaches a shared memory segment

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
H-series and J-series native Guardian processes: $SYSTEM.ZDLLnnn.ZOSSKDLL
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/shm.h>

int shmdt(
const void *shmaddr);

PARAMETERS
shmaddr Specifies the starting virtual address for the shared memory segment that is to be

detached. This is the address returned by a previous shmat() function call.

DESCRIPTION
The shmdt() function detaches the shared memory segment at the indicated address from the
address space of the calling process.

Address Range
An application that is using the shared memory functions shmat() and shmdt() to manage a
range of virtual addresses should use only these functions to manipulate the range.

The valid range of addresses for the shmaddr parameter can change from one release to the next.
Programs should not contain hard-coded addresses.

Cleaning Up Shared Memory Identifiers
A shared memory identifier remains allocated until it is removed. An allocated shared memory
identifier is not removed when the last process using it terminates. The user must remove allo-
cated shared memory identifiers that are not attached to processes to avoid wasting shared
memory resources.

The status of shared memory identifiers can be checked with the ipcs command. Shared memory
identifiers can be removed using the ipcrm command. The associated shared memory segment
and data structure are removed only after the final detach operation.

Use From the Guardian Environment
On servers running J06.12 or later J-series RVUs or H06.23 or later H-series RVUs, Guardian
processes can use the shmdt() function to detach from shared memory segments.

If called from a Guardian process on servers running J06.11 or earlier J-series RVUs, H06.22 or
earlier H-series RVUs, or G-series RVUs, the function call fails and errno is set to the value of
[ENOTOSS].

NOTES
The shared memory identifier is not the Guardian environment segid value or segment identifier.

Programs should not be written to depend upon the maximum number of attached shared seg-
ments. This limit is subject to change.

Refer to the SEGMENT_ALLOCATE_ procedure in the Guardian Procedure Calls Reference
Manual for more information about segment limits.

527186-023 Hewlett-Packard Company 7−83

shmdt(2) OSS System Calls Reference Manual

RETURN VALUES
Upon successful completion, the shmdt() function returns the value 0 (zero). The shared
memory segment is detached. The value of the shm_nattch field in the structure associated with
the shared memory identifier in the shared memory table is decremented.

Otherwise, the shmdt() function returns the value -1 and sets errno to indicate the error.

ERRORS
If any of the following conditions occur, the shmdt() function sets errno to the corresponding
value and does not detach the shared memory segment:

[EINVAL] The shmaddr parameter does not specify the starting address of a shared memory
segment.

[ENOTOSS] The calling process is not an OSS process. The requested operation cannot be
performed from the Guardian environment on servers running J06.11 or earlier
J-series RVUs, H06.22 or earlier H-series RVUs, or G-series RVUs.

RELATED INFORMATION
Commands: ipcrm(1), ipcs(1).

Functions: shmat(2), shmctl(2), shmget(2).

STANDARDS CONFORMANCE
The following is a HP extension to the XPG4 Version 2 specification:

• On servers running J06.11 or earlier J-series RVUs, H06.22 or earlier H-series RVUs, or
G-series RVUs, the errno value [ENOTOSS] can be returned if this function is called
from a Guardian process.

7−84 Hewlett-Packard Company 527186-023

System Functions (s and S) shmget(2)

NAME
shmget - Creates a new shared memory segment or returns the identifier of an existing shared
memory segment

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
H-series and J-series native Guardian processes: $SYSTEM.ZDLLnnn.ZOSSKDLL
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <sys/shm.h>

int shmget(
key_t key,
size_t size,
int shmflag);

PARAMETERS
key Specifies the key that identifies the shared memory segment. The

IPC_PRIVATE key can be used to ensure the return of a new (unused) shared
memory identifier.

size Specifies the minimum number of bytes to allocate for the shared memory seg-
ment.

shmflag Specifies the access mode value to use for the segment, logically ORed with the
creation flag value to use for the segment.

The access mode value occupies the least-significant nine bits of the parameter.
These bits can be set by logically ORing any of the following symbolic values
defined in the sys/stat.h header file:

S_IRGRP
S_IROTH
S_IRUSR
S_IRWXG
S_IRWXO
S_IRWXU
S_IWGRP
S_IWOTH
S_IWUSR
S_IXGRP
S_IXOTH
S_IXUSR

Refer to the chmod(2) reference page for more information about the correct use
of these symbolic values.

The following creation flag values are valid:

IPC_CREAT If the key does not exist, the shmget() function creates a shared
memory identifier using the given key.

IPC_CREAT | IPC_EXCL
If the key already exists, the shmget() function fails and returns
an error notification.

527186-023 Hewlett-Packard Company 7−85

shmget(2) OSS System Calls Reference Manual

DESCRIPTION
The shmget() function returns the shared memory identifier for the shared memory segment
identified by the key parameter. If the key parameter already has a shared memory identifier
associated with it and (shmflag & IPC_CREAT) is 0 (zero), that identifier is returned.

A new shared memory identifier, the associated shared memory table entry, and a new shared
memory segment of at least size bytes are created when either of the following is true:

• The value IPC_PRIVATE is used for the key parameter.

• The key parameter does not already have a shared memory identifier associated with it,
and (shmflag & IPC_CREAT) is not 0 (zero).

After creating a new shared memory identifier, the shmget() function initializes the shared
memory table entry associated with the identifier as follows:

• The creator’s user ID field (shm_perm.cuid) and owner’s user ID field (shm_perm.uid)
are set equal to the effective user ID of the calling process.

• The creator’s group ID field (shm_perm.cgid) and owner’s group ID field
(shm_perm.gid) are set equal to the effective group ID of the calling process.

• The least-significant nine bits of the access mode field (shm_perm.mode) are set equal
to the least-significant nine bits of the shmflag parameter.

• The shared memory segment size field (shm_segsz) is set to the value of the size parame-
ter.

• The following fields are all set to 0 (zero):

— shm_lpid, the process ID or PIN of the latest process that performed a shmat(),
shmdt(), or shmctl() operation

— shm_nattch, the number of processes that currently have this region attached

— shm_atime, the time of the last shmat() operation

— shm_dtime, the time of the last shmdt() operation

• The shm_ctime field is set equal to the current time. This field is updated when any of
the following events occur:

— The shared memory identifier is created.

— The permissions for the shared memory segment are changed.

— The shared memory identifier is removed.

• The process ID of the process that created the shared memory identifier (the shm_cpid
field) is set to the process ID or PIN of the calling OSS or Guardian process.

The shared memory identifier is used for the following purposes:

• It identifies a specific entry in the system-maintained shared memory table.

• It allows detection of references to a previously removed shared memory identifier.

7−86 Hewlett-Packard Company 527186-023

System Functions (s and S) shmget(2)

• It allows detection of attempts to reference shared memory segments in other processors.

Key Creation
The key represents a user-designated name for a given shared memory segment. Keys are usu-
ally selected by calling the ftok() function before calling the shmget() function. The ftok()
function returns a key based on a path and an interprocess communications identifier. This key is
then passed to the shmget() function, which returns a shared memory identifier. The shared
memory identifier is then used in calls to the shmat() and shmctl() functions.

Uniqueness of Identifiers
The system recycles no-longer-used shared memory identifiers after a long time elapses.

Swap File
A shared memory segment is backed by Kernel-managed swap space so that its data remains
intact even when no processes include it in their virtual address space.

Processor or Disk Process Failures
If a processor fails, the following is lost:

• All information in the system-maintained shared memory table for that processor

• All shared memory segments for that processor

• All corresponding swap files

If the disk process controlling the swap space fails, the system monitor causes any process with
the corresponding shared memory attached to terminate abnormally. Thereafter, a process can-
not successfully call either the shmget() or shmat() function using the associated shared
memory identifier. When either function is called, the shared memory segment and its identifier
are removed from the system-maintained shared memory table.

Valid Segment Sizes
On servers running J06.12 or later J-series RVUs, or H06.23 or later H-series RVUs, there is no
configured limit to the size of an OSS shared memory segement. The size of the OSS shared
memory segment is limited by system resources only.

On servers running earlier J-series RVUs, earlier H-series RVUs, or G-series RVUs, a shared
memory segment can contain up to 128 megabytes (MB).

Number of Shared Segments and Identifiers
The maximum number of shared memory identifiers is determined by the maximum number of
processes allowed for the processor. This value cannot exceed the limit
SHMT_MAXENTRIES, which is currently set to 1000.

Cleaning Up Shared Memory Identifiers
A shared memory identifier remains allocated until it is removed. An allocated shared memory
identifier is not removed when the last process using it terminates. The user must remove allo-
cated shared memory identifiers that are not attached to processes to avoid wasting shared
memory resources.

The status of shared memory identifiers can be checked with the ipcs command. Shared memory
identifiers can be removed using the ipcrm command. The associated shared memory segment
and data structure are removed only after the final detach operation.

Use by OSS and Guardian Processes
The shared memory segments managed by the shm*() functions are distinct from segments
created by SEGMENT_ALLOCATE_ and related Guardian procedure calls. Both kinds of seg-
ments can be created and shared, but one kind cannot be shared with the other. The shared
memory identifier, shmid, is not a Guardian segid value.

527186-023 Hewlett-Packard Company 7−87

shmget(2) OSS System Calls Reference Manual

Both Guardian and OSS processes can call SEGMENT_ALLOCATE_ and related Guardian pro-
cedure calls: they can share segments as described for SEGMENT_ALLOCATE_.

On servers running J06.12 or later J-series RVUs or H06.23 or later H-series RVUs, both Guar-
dian processes and OSS processes can call shmget() and related functions; they can share seg-
ments as described for shmget().

On servers running J06.11 or earlier J-series RVUs, H06.22 or earlier H-series RVUs, or G-series
RVUs, only OSS processes can call shmget() and related functions; Guardian process calls to
these functions fail and errno is set to the value of [ENOTOSS].

NOTES
The shared memory identifier is not the Guardian environment segid value or segment identifier.

Programs should not be written to depend upon the maximum number of attached shared seg-
ments. This limit is subject to change.

Refer to the SEGMENT_ALLOCATE_ procedure in the Guardian Procedure Calls Reference
Manual for more information about segment limits.

RETURN VALUES
Upon successful completion, a nonnegative shared memory identifier is returned. Otherwise, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the shmget() function sets errno to the corresponding
value:

[EACCES] A shared memory identifier already exists for the key parameter, but operation
permission as specified by the low-order nine bits of the shmflag parameter was
not granted.

[EEXIST] A shared memory identifier already exists for the key parameter, but
IPC_CREAT and IPC_EXCL were both set in the shmflag parameter.

[EINVAL] One of the following conditions is true:

• The value of the size parameter is less than the system-defined minimum
or greater than the system-defined maximum.

• A shared memory identifier already exists for the key parameter, but the
number of bytes allocated for the region is less than size and size is not
equal to 0 (zero).

[ENOENT] A shared memory identifier does not exist for the key parameter, and
IPC_CREAT was not set in the shmflag parameter.

[ENOMEM] An attempt was made to create a shared memory identifier and its associated
shared memory table entry, but there was not enough physical or virtual memory
available.

[ENOSPC] An attempt to create a new shared memory identifier exceeded the system limit
on the maximum number of identifiers allowed.

[ENOTOSS] The calling process is not an OSS process. The requested operation cannot be
performed from the Guardian environment on servers running J06.11 or earlier
J-series RVUs, H06.22 or earlier H-series RVUs, or G-series RVUs.

7−88 Hewlett-Packard Company 527186-023

System Functions (s and S) shmget(2)

RELATED INFORMATION
Commands: ipcrm(1), ipcs(1).

Functions: ftok(3), shmat(2), shmctl(2), shmdt(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• On servers running J06.11 or earlier J-series RVUs, H06.22 or earlier H-series RVUs, or
G-series RVUs, the errno value [ENOTOSS] can be returned if this function is called
from a Guardian process.

527186-023 Hewlett-Packard Company 7−89

shutdown(2) OSS System Calls Reference Manual

NAME
shutdown - Shuts down socket send and receive operations

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/socket.h>

int shutdown(
int socket,
int how
);

PARAMETERS
socket Specifies the file descriptor of the socket.

how Specifies the type of shutdown. The values are as follows:

SHUT_RD Disables further receive operations.

SHUT_RDWR
Disables further send and receive operations.

SHUT_WR Disables further send operations.

DESCRIPTION
The shutdown() function disables receive operations, send operations, or both on the specified
socket.

RETURN VALUES
Upon successful completion, the shutdown() function returns the value 0 (zero). Otherwise, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the shutdown() function sets errno to the correspond-
ing value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EINVAL] The value specified for the how parameter is not valid.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time may succeed.

7−90 Hewlett-Packard Company 527186-023

System Functions (s and S) shutdown(2)

[ENOMEM] Required memory resources were not available. A retry at a later time may
succeed.

[ENOTCONN] The socket is not connected.

[ENOTSOCK] The socket parameter does not specify a socket.

RELATED INFORMATION
Functions: getsockopt(2), read(2), recv(2), recvfrom(2), recvmsg(2), select(2), send(2),
sendmsg(2), sendto(2), setsockopt(2), socket(2), write(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno value [ENOSR].

The following are HP extensions to the XPG4 specification:

• The errno value [ECONNRESET] can be returned.

527186-023 Hewlett-Packard Company 7−91

sigaction(2) OSS System Calls Reference Manual

NAME
sigaction - Specifies the action to take upon delivery of a signal

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
[#include <spthread.h>]
#include <signal.h>

int sigaction(
int signal,
const struct sigaction *action,
struct sigaction *o_action);

PARAMETERS
signal Specifies the signal. The signal names are defined in the signal.h header file.

The range of valid signals depends on the requested action.

action Points to a sigaction structure that describes the action to be taken upon receipt
of the signal identified by the signal parameter.

o_action Points to a sigaction structure that returns the signal action data in effect before
the call was made. For the signal action in effect at the time of the sigaction()
call to be returned, the o_action parameter must not be a null pointer.

DESCRIPTION
The sigaction() function allows the calling process to change or examine the action to be taken
when a specific signal is delivered to the calling process.

Associated with every signal is a signal-dependent default action. The sigaction() function can
change this action by causing the receiving process to

• Ignore the delivery of a specific signal

• Restore the default action for a specific signal

• Invoke a signal-catching function (that is, "catch" the signal) in response to the delivery
of a specific signal

See the signal(4) reference page for the defined signal names and details about the cause and
default action of each defined signal.

Unless you are writing a Standard POSIX Threads application, omit the spthread.h header file.

Use From the Guardian Environment
The sigaction() function can be called from any G-series, H-series or J-Series native Guardian
process. If called from a TNS or accelerated Guardian process, the actions of this function are
undefined and errno is set to [ENOTOSS].

7−92 Hewlett-Packard Company 527186-023

System Functions (s and S) sigaction(2)

Specifying the Signal
The signal parameter specifies the signal. All values defined for signals in the signal.h header file
are valid if the corresponding action is to restore the default action. All signals can be caught or
ignored except the SIGKILL, SIGSTOP, and SIGABEND signals; these signals can neither be
caught nor ignored.

Specifying the Action
If the action parameter is not a null pointer, it points to a sigaction structure that describes the
action to be taken on receipt of the signal specified in the signal parameter.

If the o_action parameter is not a null pointer, it points to a sigaction structure in which the sig-
nal action data in effect at the time of the sigaction() call is returned.

If the action parameter is a null pointer, signal handling is unchanged; thus, the call can be used
to inquire about the current handling of a given signal.

If the previous action for signal was established by the signal() function (see the signal(3) refer-
ence page), the values of the fields returned in the structure pointed to by o_action are
unspecified and should not be depended upon. In particular, o_action->sa_handler is not neces-
sarily the same value passed to the signal() function. However, if a pointer to the same structure
is passed to a subsequent call to the sigaction() function using the action parameter, the signal is
handled in the same way as if the original call to signal() were repeated.

The sigaction structure is as follows:

struct sigaction {
sigset_t sa_mask;
void (*sa_handler)(int);
int sa_flags;

};

The action is ignored when action is set to the SIG_DFL value for a signal that cannot be caught
or ignored.

Specifying the Handler
The sa_handler field in the sigaction structure can have one of the following values, or it can
point to a function:

SIG_ABORT Requests that the process terminate abnormally when the signal is delivered.
This value is defined in the signal.h header file.

SIG_DEBUG Requests that the debugger be entered when the signal is delivered. This value is
defined in the signal.h header file.

SIG_DFL Requests default action to be taken when the signal is delivered; this value is
defined in the signal.h header file.

SIG_IGN Rquests that the signal have no effect on the receiving process; this value is
defined in the signal.h header file.

A pointer to a function requests that the signal be caught; that is, the signal causes the signal-
catching function to be called.

These actions are described in detail in the signal(4) reference page.

Blocking Signals
The sa_mask field in the sigaction structure specifies additional signals to be blocked from
delivery while the signal-catching function is executing. The system creates a new signal mask
from the existing process signal mask, the sa_mask field, and the delivered signal itself. All the
signals in the new signal mask are blocked from delivery while the signal-catching function is
executing or until a call is made to the sigprocmask(), pthread_sigmask() (for standard POSIX

527186-023 Hewlett-Packard Company 7−93

sigaction(2) OSS System Calls Reference Manual

threads), or sigsuspend() function. If and when the signal-catching function returns normally, the
original signal mask is restored, regardless of any modifications made by the sigprocmask() or
pthread_sigmask() function since the signal-catching function was invoked.

The SIGKILL, SIGSTOP, and SIGABEND signals cannot be blocked. If a program attempts to
block any of these signals, the system removes them from the signal mask without generating an
error. For example, if a call to sigaction() tries to block the SIGKILL signal and then a subse-
quent call returns the signal-handling information in the structure pointed to by the o_action
parameter, the returned mask is not the same mask that the original call passed in; the difference
is that the returned mask does not include the SIGKILL signal.

Specifying Options
If the sigaltstack() function is used to specify an alternate signal stack for a user signal handler,
and the alternate signal stack is registered and enabled, then all user signal handlers run on the
alternate signal stack.

Unless you are using the Standard POSIX Threads library, although the SA_ONSTACK flag has
no effect in the Guardian environment, to allow code portability, the SA_ONSTACK flag will be
recognized on systems running J06.10 or later RVUs or H06.21 or later RVUs, if the
SA_ONSTACK_COMPATIBILITY feature test macro is set. You should NOT use the
SA_ONSTACK flag and the SA_ONSTACK_COMPATIBILITY feature test macro in a
threaded application that uses the Standard POSIX Threads library. Use of these two options
with the Standard POSIX Threads library can result in undefined behavior in the SPT environ-
ment.

Unless you are using the Standard POSIX Threads library, the sa_flags field can have the
SA_NOCLDSTOP bit set to specify further control over the actions taken on delivery of a sig-
nal. If the signal parameter is SIGCHLD and a child process of the calling process stops, a
SIGCHLD signal is sent to the calling process unless SA_NOCLDSTOP is set for SIGCHLD.

Use From a Threaded Application
The thread-aware sigaction() function allows the calling thread to change or examine the action
to be taken on delivery of a specific signal. This call removes any previously established signal
handler for this signal for this thread. You must reestablish the previous signal handler if you
want to use it at a later time.

The thread-aware signal is always enabled in the POSIX User Thread Model library so that
externally generated signals (such as SIGINT, SIGQUIT, SIGALRM, and SIGCHLD) are
catchable by threads. When the thread library signal handler receives the signal, it will check to
see if the current thread can handle the signal. If the current thread can handle the signal, then the
thread library signal handler invokes the thread signal handler immediately. If the current thread
cannot handle the signal, the thread library signal handler finds a thread that can handle the sig-
nal, adds the signal to the queue for that thread, and returns. The thread signal handlers for these
queued signals are run either at thread dispatch or at the cancellation point

Use With Standard POSIX Threads
When using standard POSIX threads, specify the spthread.h header file. The signal.h header file
can be omitted.

A multi-threaded process can use the sigaction() function to establish thread-specific actions for
synchronous signals. Each thread can have its own signal handler routine.

When you use the standard POSIX threads version of sigaction():

• The sigaction() function only modifies behavior for individual threads.

7−94 Hewlett-Packard Company 527186-023

System Functions (s and S) sigaction(2)

• The sigaction() function only works for synchronous signals. Attempting to set a signal
action for an asynchronous signal is an error. This is true even in a single-threaded pro-
cess.

• The signal mask is manipulated using the following functions: sigemptyset(),
sigfillset(), sigaddset(), sigdelset(), and sigismember().

For additional information on using the sigaction() function in a threaded application that uses
the Standard POSIX Threads library, see Specifying Options, earlier.

NOTES
A threaded application that uses the Standard POSIX Threads library may use the
spt_sigaction(2) function instead of the sigaction() function, however, for portability reasons,
the use of sigaction() is recommended.

To use the spt_sigaction() function in a threaded application that uses the Standard POSIX
Threads library, see spt_sigaction(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion of the sigaction() function, the value 0 (zero) is returned. Other-
wise, the value -1 is returned and errno is set to indicate the error.

If the SA_ONSTACK flag and the SA_ONSTACK_COMPATIBILITY feature test macro are
set, although the thread-aware sigaction() function returns 0 (zero), the POSIX User Thread
Model library determines which stack is used to run the signal handler.

527186-023 Hewlett-Packard Company 7−95

sigaction(2) OSS System Calls Reference Manual

ERRORS
If any of the following conditions occurs, the sigaction() function sets errno to the correspond-
ing value and no new signal-catching function is installed:

[EFAULT] The action or o_action parameter points to a location outside of the allocated
address space of the process.

[EINVAL] One of the following conditions exists:

• The signal parameter is not a valid signal number.

• An attempt was made to ignore or supply a signal-catching function for
the SIGKILL, SIGSTOP, or SIGABEND signal.

[ENOTOSS] The calling process was not an OSS process or a native Guardian process. The
requested operation cannot be performed from the Guardian environment by a
TNS or accelerated Guardian process.

RELATED INFORMATION
Commands: kill(1).

Functions: _exit(2), exit(3), kill(2), pause(3), pthread_sigmask(2), setjmp(3), sigaddset(3),
sigdelset(3), sigemptyset(3), sigfillset(3), sigismember(3), signal(3), sigaltstack(2), sigproc-
mask(2), sigsuspend(2), spt_sigaction(2) umask(2), wait(2).

Files: signal(4).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The ordering of members within the sigaction structure might not match the ordering
used in signal.h header files in other environments or on other systems.

• The values returned in the fields of the structure pointed to by the o_action parameter
when sigaction() is called and the previous action for the specified signal was esta-
blished by the signal() function are unspecified in the POSIX.1 standard. These values
should therefore not be depended upon other than to pass the address returned in
o_action as the action parameter to another sigaction() function; the result is as if the
signal() function were repeated.

• The action is ignored when the action is set to the SIG_DFL value for a signal that can-
not be caught or ignored.

This function is an extension to the XPG4 Version 2 specification.

The following are HP extensions to the XPG4 Version 2 specification:

• HP has defined several new signals, including SIGABEND. See the signal(4) reference
page for a complete list.

• The [ENOTOSS] error value is an HP extension.

• If the SIGSTK signal is delivered while the alternate signal stack is active, the default
action of terminating the process occurs.

HP does not define members of the sigaction structure following sa_flags.

HP does not define the SA_SIGINFO symbolic constant.

7−96 Hewlett-Packard Company 527186-023

System Functions (s and S) sigaction(2)

HP does not support the Realtime Signals Extension. The errno value [ENOTSUP] is not
returned.

HP maintains only one alternate signal stack per process for unbound threads. If an alternate sig-
nal stack is registered, this alternate signal stack applies to all threads in the process. Note that
this alternate signal stack behavior does not apply to bound threads.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

This function does not conform to the async-signal safe requirement of the POSIX.1 standard.

527186-023 Hewlett-Packard Company 7−97

sigaltstack(2) OSS System Calls Reference Manual

NAME
sigaltstack - Sets and gets the signal alternate stack context

LIBRARY
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <signal.h>

int sigaltstack(
const stack_t *ss,
stack_t *oss);

PARAMETERS
ss Specifies the signal alternate stack context that is to be defined as a result of the

current call to the sigaltstack() function. If ss is a null pointer, no action is
taken, but the current alternate signal stack state is returned in the stack_t struc-
ture pointed to by oss.

oss Points to a stack_t structure that returns the signal alternate stack context in
effect before the call was made. If the parameter is not a null pointer, the alter-
nate signal stack context in effect at the time of the sigaltstack() call is returned.

DESCRIPTION
The sigaltstack() function allows a process to define or examine the state of an alternate stack
for signal handlers for the calling thread. Signals that have been explicitly declared to execute
on the alternate stack are delivered on the alternate stack.

When the sigaltstack() function is used in a threaded application that uses the POSIX User
Thread Model library, this function only allows the user thread to examine the state of an alter-
nate stack for signal handlers; it does not allow the user thread to define a new alternate stack. If
sigaltstack() is called to install a new alternate stack with this library, sigaltstack() returns the
value -1 and sets errno to [EINVAL].

Use From the Guardian Environment
If called from a TNS or accelerated Guardian process, the actions of this function are undefined
and errno is set to [ENOTOSS].

The sigaltstack() function can be called from H-series or J-Series native Guardian processes on
systems running J06.10 or later RVUs or H06.21 or later RVUs.

Specifying Options
If ss is not a null pointer, it points to a stack_t structure that specifies the alternate signal stack
that takes effect upon return from sigaltstack(). The ss_flags field specifies the new stack state. If
it is set to SS_DISABLE, the stack is disabled and ss_sp and ss_size are ignored. Otherwise, the
stack is enabled, and the ss_sp and ss_size fields specify the new address and size of the stack.

The sigaltstack() function only accepts a stack pointer obtained from the
STACK_ALLOCATE_() procedure.

If oss is not a null pointer, on successful completion, it points to a stack_t structure that specifies
the alternate signal stack that was in effect prior to the call to the sigaltstack() function. The
ss_sp and ss_size fields specify the address and size of that stack. The ss_flags field specifies the
stack’s state as one of the following values:

7−98 Hewlett-Packard Company 527186-023

System Functions (s and S) sigaltstack(2)

SS_ONSTACK
The process is currently executing on the alternate signal stack. Attempts to
modify the alternate signal stack while the process is executing on it fail. This
flag cannot be modified by processes.

SS_DISABLE The alternate signal stack is currently disabled.

The value SIGSTKSZ is a system default that specifies the number of bytes that are usually
required when manually allocating an alternate stack area. The value MINSIGSTKSZ is defined
to be the minimum stack size for a signal handler. In computing an alternate stack size, an appli-
cation should add the value MINSIGSTKSZ to its stack requirements to allow for the system
implementation overhead. The constants SS_ONSTACK, SS_DISABLE, SIGSTKSZ, and
MINSIGSTKSZ are defined in the signal.h header file.

After a successful call to one of the exec set of functions, no alternate signal stacks exist in the
new process image. After a successful call to the fork() function, the alternate signal stack
exists in the child process at the same address and with the same contents.

A signal handler only runs on the alternate signal stack if the thread that defined the signal
handler is not blocked when the signal is delivered. If the thread is blocked, the signal handler
runs on the user stack.

The SA_ONSTACK flag (see spt_sigaction(2)) has no effect in the Guardian environment.

NOTES
To ensure proper operation of the fork() function, you must allocate alternate signal stacks as
protected user stacks by setting the ST_COF (copy stack to child process upon fork()) option of
the STACK_ALLOCATE_() procedure.

The sigaltstack() requires the specified stack address and size describe exactly a user stack seg-
ment as created by the STACK_ALLOCATE_() procedure. If the specified stack address and
size do not describe a valid user stack segment as created by the STACK_ALLOCATE_() pro-
cedure, sigaltstack() returns the value -1 and sets errno to [EFAULT].

You should not use this function in a threaded application that uses the Standard POSIX Threads
(SPT) library. Use of this function with the SPT library may result in undefined behavior.

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

527186-023 Hewlett-Packard Company 7−99

sigaltstack(2) OSS System Calls Reference Manual

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

To call the sigaltstack() function with the POSIX User Thread Model library, you must specify
the ss parameter as a null pointer. The PUT library will automatically create an alternate signal
stack on behalf of the process. You can use sigaltstack() with the PUT library to obtain informa-
tion about the alternate signal stack.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion of the sigaltstack() function, the value 0 (zero) is returned. Other-
wise, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the sigaltstack() function sets errno to the correspond-
ing value and no action is taken:

[EFAULT] One of the following conditions exists:

• Either the ss parameter or the oss parameter references an invalid
memory address.

• The specified stack address and size do not describe a valid user stack
segment as created by the STACK_ALLOCATE_() procedure.

[EINVAL] One of the following conditions exists:

• The ss parameter is not a null pointer and the ss_flags field pointed to by
the ss parameter contains flags other than SS_DISABLE.

• The sigaltstack() function is being used in a threaded application that
uses the POSIX User Thread Model library and the ss parameter is not a
null pointer.

[ENOMEM] The size of the alternate stack area is less than MINSIGSTKSZ.

[EPERM] An attempt was made to modify an active stack.

RELATED INFORMATION
Commands: kill(1).

Functions: fork(2), kill(2), pause(3), pthread_sigmask(2), setjmp(3), sigaction(2),
sigaddset(3), sigdelset(3), sigemptyset(3), sigfillset(3), sigismember(3), signal(3), sigproc-
mask(2), sigsuspend(2), umask(2), wait(2).

Files: signal(4).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The ordering of fields within the stack_t structure might not match the ordering used in
signal.h header files in other environments or on other systems.

7−100 Hewlett-Packard Company 527186-023

System Functions (s and S) sigaltstack(2)

The following are HP extensions to the IEEE Std 1003.1-2004, POSIX System Application Pro-
gram Interface specification:

• HP has defined several new signals, including SIGABEND. See the signal(4) reference
page for a complete list.

• If the SIGSTK signal is delivered while the alternate signal stack is active, the default
action of terminating the process occurs.

527186-023 Hewlett-Packard Company 7−101

sigpending(2) OSS System Calls Reference Manual

NAME
sigpending - Examines pending signals

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <signal.h>

int sigpending(
sigset_t *set);

PARAMETERS
set Points to an object of type sigset_t that returns the set of signals that are blocked

from delivery and pending to the calling process.

DESCRIPTION
The sigpending() function stores the set of signals that are blocked from delivery and pending to
the calling process in the object pointed to by the set parameter.

Because signals can arrive asynchronously, no assumption should be made about the current set
of pending signals, based on the value returned by this function in set.

Use From a Threaded Application
The thread-aware sigpending() function retrieves the signals that have been sent to the calling
thread but have been blocked from delivery. These signals are pending to the calling thread
because the calling thread’s signal mask is preventing their delivery. The blocked signals are
stored in the structure pointed to by the set parameter.

Use From the Guardian Environment
If called from a TNS or accelerated Guardian process, the actions of this function are undefined
and errno is set to [ENOTOSS].

NOTES
To use the sigpending() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_sigpending(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

7−102 Hewlett-Packard Company 527186-023

System Functions (s and S) sigpending(2)

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the sigpending() function returns the value 0 (zero). Otherwise,
the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the sigpending() function sets errno to the
corresponding value:

[EFAULT] The set parameter points to a location outside the allocated address space of the
process.

[ENOTOSS] The calling process was not an OSS process or a native Guardian process. The
sigpending() function cannot be used in the Guardian environment by a TNS or
accelerated process.

RELATED INFORMATION
Functions: sigaddset(2), sigdelset(2), sigemptyset(3), sigfillset(2), sigismember(2), sigproc-
mask(2), spt_sigpending(2).

Files: signal(4).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

The following are HP extensions to the XPG4 Version 2 specification:

• The [EFAULT] and [ENOTOSS] errors can be returned.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 7−103

sigprocmask(2) OSS System Calls Reference Manual

NAME
sigprocmask - Changes or examines the signal mask

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <signal.h>

int sigprocmask(
int how,
sigset_t *set,
sigset_t *o_set);

PARAMETERS
how Indicates the manner in which the set of masked signals is changed; it has one of

the following values:

SIG_BLOCK The resulting set is the union of the current set and the signal set
pointed to by the set parameter.

SIG_UNBLOCK
The resulting set is the current set less the signals indicated in
the signal set pointed to by the set parameter.

SIG_SETMASK
The resulting set is the signal set pointed to by the set parameter.

set Specifies the signal set. If the set parameter is not a null pointer, it points to a set
of signals to be used to change the currently blocked set. If the set parameter is a
null pointer, the value of the how parameter is not significant and the process sig-
nal mask is unchanged; thus, the call can be used to inquire about currently
blocked signals.

o_set Returns the existing signal mask. If the o_set parameter is not a null pointer, the
signal mask in effect at the time of the call is stored in the variable pointed to by
the o_set parameter.

DESCRIPTION
The sigprocmask() function is used to change or examine the signal mask of the calling process.

Typical use is to

1. Call the sigprocmask(SIG_BLOCK) function to block signals during a critical section
of code.

2. Call the sigprocmask(SIG_SETMASK) function at the end of the critical section of
code to restore the mask to the previous value returned by the
sigprocmask(SIG_BLOCK) function.

If there are any unblocked signals pending after a call to the sigprocmask() function, at least one
of those signals will be delivered before the sigprocmask() function returns.

The sigprocmask() function does not allow the SIGKILL, SIGABEND, or SIGSTOP signals
to be blocked. If a program attempts to block any of these signals, the sigprocmask() function
gives no indication of the error.

Any signal that is generated by an event other than the kill() or raise() function causes process
termination if the signal is blocked. If possible, a saveabend file is created.

7−104 Hewlett-Packard Company 527186-023

System Functions (s and S) sigprocmask(2)

Use From the Guardian Environment
If called from a TNS or accelerated Guardian process, the actions of this function are undefined
and errno is set to [ENOTOSS].

EXAMPLES
The following example shows how to use sigprocmask(SIG_BLOCK) to add the signal SIG-
INT to the signal set named newset and save the old mask. Later, the
sigprocmask(SIG_SETMASK) function restores the mask to the previous value returned by the
sigprocmask(SIG_BLOCK) function.

#include <signal.h>

int return_value;
sigset_t newset, oldset;

sigemptyset(&newset);
sigaddset(&newset, SIGINT);
return_value = sigprocmask (SIG_BLOCK, &newset, &oldset);
. . .

return_value = sigprocmask (SIG_SETMASK, &oldset, NULL);

RETURN VALUES
Upon successful completion, the sigprocmask() function returns the value 0 (zero). If the sig-
procmask() function fails, the signal mask of the process is unchanged, the value -1 is returned,
and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the sigprocmask() function sets errno to the
corresponding value:

[EFAULT] The set or o_set parameter points to a location outside the allocated address
space of the process.

[EINVAL] The value of the how parameter is not equal to one of the defined values.

[ENOTOSS] The calling process was not an OSS process or a native Guardian process. The
sigprocmask() function cannot be used in the Guardian environment by a TNS
or accelerated Guardian process.

RELATED INFORMATION
Functions: kill(2), pthread_sigmask(2), sigaction(2), sigaddset(2), sigdelset(2), sigemp-
tyset(2), sigfillset(2), sigismember(2), sigpending(2), sigsuspend(2).

Files: signal(4).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• HP has defined several new signals, including SIGABEND. See the signal(4) reference
page for a complete list.

• This function can set errno to the value [ENOTOSS].

527186-023 Hewlett-Packard Company 7−105

sigsuspend(2) OSS System Calls Reference Manual

NAME
sigsuspend - Changes the set of blocked signals and waits for a signal

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <signal.h>

int sigsuspend(
sigset_t *signal_mask);

PARAMETERS
signal_mask Points to a set of signals to be blocked from delivery to the calling process.

DESCRIPTION
The sigsuspend() function replaces the signal mask of the process with the set of signals pointed
to by the signal_mask parameter, and then suspends execution of the process until delivery of a
signal whose action is either to execute a signal-catching function or to terminate the process.
The sigsuspend() function does not allow the SIGKILL, SIGABEND, or SIGSTOP signals to
be blocked. If a program attempts to block one of these signals, the sigsuspend() function gives
no indication of an error.

If delivery of a signal causes the process to terminate, the sigsuspend() function does not return.
If delivery of a signal causes a signal-catching function to execute, the sigsuspend() function
returns after the signal-catching function returns, with the signal mask restored to the set that
existed prior to the call to the sigsuspend() function.

The sigsuspend() function sets the signal mask and waits for an unblocked signal as one atomic
operation. This means that signals cannot occur between the operations of setting the mask and
waiting for a signal.

In normal use, a signal is blocked by calling the sigprocmask(SIG_BLOCK) function at the
beginning of a critical section of code. The process then determines whether there is work for it
to do. If no work is to be done, the process waits for work by calling the sigsuspend() function
with the mask previously returned by the sigprocmask() function.

Use From a Threaded Application
The thread-aware sigsuspend() function replaces the current signal mask of a thread with the
signal set specified by the signal_mask parameter and suspends processing for the thread until
the thread receives one of the following signals:

• SIGSTOP, SIGKILL, or SIGABEND.

• A signal that is not a member of signal_mask and has an action that either calls a signal-
catching function, ends the request, or terminates the process.

The thread-aware signal is always enabled in the POSIX User Thread (PUT) library so that exter-
nally generated signals (such as SIGINT, SIGQUIT, SIGALRM, and SIGCHLD) are catchable
by threads.

7−106 Hewlett-Packard Company 527186-023

System Functions (s and S) sigsuspend(2)

Use From the Guardian Environment
If called from a TNS or accelerated Guardian process, the actions of this function are undefined
and errno is set to [ENOTOSS].

NOTES
To use the sigsuspend() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_sigsuspend(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
If a signal is caught by the calling process and control is returned from the signal-catching func-
tion, the calling process resumes execution after the sigsuspend() function, which always returns
the value -1 and, after finishing normally, sets errno to [EINTR].

ERRORS
If any of the following conditions occur, the sigsuspend() function sets errno to the correspond-
ing value:

[EINTR] The sigsuspend() function was interrupted by a signal that was caught by the
calling process, and control was returned from the signal-catching function.

[ENOTOSS] The calling process was not an OSS process or a native Guardian process. This
function cannot be used in the Guardian environment by a TNS or accelerated
process.

If the signal_mask parameter points to an invalid location, the sigsuspend() function generates
an unspecified signal that cannot be blocked or ignored and sends the signal to the process.

527186-023 Hewlett-Packard Company 7−107

sigsuspend(2) OSS System Calls Reference Manual

RELATED INFORMATION
Functions: pause(3), sigaction(2), signal(3), sigprocmask(2), spt_sigsuspend(2).

Files: signal(4).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

The following are HP extensions to the XPG4 Version 2 specification:

• HP has defined several new signals, including SIGABEND. See the signal(4) reference
page for a complete list.

• The [ENOTOSS] errno value is an HP extension.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

This function does not conform to the async-signal safe requirement of the POSIX.1 standard.

7−108 Hewlett-Packard Company 527186-023

System Functions (s and S) sigwait(2)

NAME
sigwait - Causes the calling thread to wait for a signal

LIBRARY
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <signal.h>

int sigwait(
sigset_t *set

int *sig);

PARAMETERS
set Specifies the set of signals that the calling thread will wait for.

sig Receives the signal number cleared from the specified set of signal numbers.

DESCRIPTION
This function causes a thread to wait for a signal. It atomically chooses a pending signal from
the set of pending signals indicated by the set parameter, atomically clears that signal from the
system’s set of pending signals, and returns that signal number at the location specified by the sig
parameter. If no signal in set is pending at the time of the call, the thread is blocked until one or
more signals become pending. The signals defined by set should be unblocked during the call to
this function and are blocked when the thread returns from the call.

A thread must block the signals it waits for using the pthread_sigmask() function before calling
this function.

If more than one thread is using this function to wait for the same signal, only one of those
threads returns from this function with the signal number.

A call to the sigwait() function is a cancellation point.

The thread-aware signal is always enabled in the POSIX User Thread (PUT) library so that exter-
nally generated signals (such as SIGINT, SIGQUIT, SIGALRM, and SIGCHLD) are catchable
by threads.

NOTES
The sigwait() function is not supported for non-threaded applications.

To use the sigwait() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_sigwait(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

527186-023 Hewlett-Packard Company 7−109

sigwait(2) OSS System Calls Reference Manual

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

HP recommends that you do not specify threads to wait for process-level signals such as
SIGCONT, SIGTTIN, SIGTTOU, and SIGTSTP. If a thread uses a function such as thread-
aware sigwait() or thread-aware sigsuspend(), the thread breaks from the wait state only if the
corresponding signal is sent using the pthread_kill() function. The thread does not break from
the wait state for signals that are generated at the process level.

The SIGCHLD signal is delivered to the correct thread even though the SIGCHLD signal is
generated asynchronously.

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
On a successful call, the signal number is returned; otherwise, [EINVAL] is returned.

ERRORS
If the only signals passed are unsupported signals, the sigwait() function returns an errno value
of [EINVAL].

For the following signals, support by the sigwait() function is dependent on the RVU runiing on
the system:

• The SIGUNCP signal is supported on systems running H-series RVUs only. This signal
is not supported on systems running J-series RVUs.

• The following signals are supported on systems running H06.06 or later RVUs:

— SIGCHLD

— SIGCONT

— SIGTSTP

— SIGTTIN

— SIGTTOU

RELATED INFORMATION
Functions: pause(2), pthread_cancel(2), pthread_sigmask(2), sigpending(2), spt_sigwait(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

The HP implementation does not provide the sigwaitinfo() or sigtimedwait() functions.

7−110 Hewlett-Packard Company 527186-023

System Functions (s and S) sigwait(2)

527186-023 Hewlett-Packard Company 7−111

sockatmark(2) OSS System Calls Reference Manual

NAME
sockatmark - Determines whether a socket is at the out-of-band mark

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/socket.h>

int sockatmark(
int socket);

PARAMETERS
socket Specifies the file descriptor for the socket.

DESCRIPTION
The sockatmark() function determines whether the specified socket is at an out-of-band mark in
its receive queue data. Calls to the sockatmark() function between receive operations allow an
application to determine the position of out-of-band data within its received data.

A call to sockatmark() does not remove the out-of-band data mark from the data stream.

NOTES
A call to the sockatmark() function can be made instead of a call to the ioctl() function with a
request of SIOCATMARK.

RETURN VALUES
If the protocol has marked the data stream and all data preceeding the mark has been read, the
sockatmark() function returns the value 1. If no mark exists or if data precedes the mark in the
receive queue, the function call returns the value 0 (zero).

If the sockatmark() call fails, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the sockatmark() function sets errno to the
corresponding value:

[EBADF] The socket parameter is not a valid open file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTTY] The socket parameter does not refer to a socket.

7−112 Hewlett-Packard Company 527186-023

System Functions (s and S) sockatmark(2)

RELATED INFORMATION
Functions: recv(2), recvmsg(2), socket(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 specification.

527186-023 Hewlett-Packard Company 7−113

socket(2) OSS System Calls Reference Manual

NAME
socket - Creates an endpoint for communications

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

int socket(
int domain,
int type,
int protocol
);

PARAMETERS
domain Specifies the address family of the communications domain in which the socket

is to be created.

type Specifies the type of socket to be created.

protocol Specifies a particular protocol to be used with the created socket. Specifying a
protocol of 0 (zero) causes the socket() function to default to the typical proto-
col used for the requested socket type. If a nonzero value is specified for proto-
col, it must specify a protocol that is supported by the address family specified
by the domain parameter.

DESCRIPTION
The socket() function creates an unbound socket in a specified communications domain and
returns a file descriptor for the socket that can be used in later function calls that operate on sock-
ets.

The domain parameter specifies the address family used in the communications domain. The
address families supported are:

AF_INET IPv4 Internet addresses. The value PF_INET can also be used to specify this
address family.

AF_INET6 IPv6 Internet addresses. The value PF_INET6 can also be used to specify this
address family.

AF_UNIX UNIX pathnames. The values PF_UNIX, AF_LOCAL, and PF_LOCAL can
also be used to specify this address family.

The type parameter specifies the socket type, which determines the semantics of communications
over the socket. The socket types supported are:

SOCK_DGRAM
Provides datagrams, which are connectionless, unreliable messages of a fixed
maximum length.

SOCK_STREAM
Provides sequenced, reliable, two-way, connection-oriented byte streams with a
transmission mechanism for out-of-band data.

The documentation for specific address families specifies which socket types each family sup-
ports. The sys/socket.h header file contains definitions for socket domains, types, and protocols.

7−114 Hewlett-Packard Company 527186-023

System Functions (s and S) socket(2)

Socket-level options control socket operations. The getsockopt() and setsockopt() functions are
used to get and set these options, which are defined in the sys/socket.h file.

Use From the Guardian Environment
The socket() function is one of a set of functions that have these effects when the first of them is
called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.dtpa

Choosing the Transport-Provider Process
Each socket declared by a user process is supported by:

• An OSS transport agent process (one per processor)

• A domain-specific transport-provider process (one or more per node)

Each user process has a current transport-provider name for each domain that is used when creat-
ing a socket in that domain.

AF_INET or AFINET6 Sockets
The default AF_INET or AF_INET6 transport-provider name is $ZTC0, unless overridden by
an existing Guardian DEFINE =TCPIPˆPROCESSˆNAME. If =TCPIPˆPROCESSˆNAME exists,
it must be a MAP DEFINE with a FILE attribute string of the desired AF_INET or AF_INET6
transport-provider name.

Each user process can change its AF_INET or AF_INET6 transport-provider name with the
socket_transport_name_set() function and can retrieve its current AF_INET, AF_INET6, and
AF_UNIX transport-provider names with the socket_transport_name_get() function.

Changing the AF_INET or AF_INET6 transport-provider name is meaningful when a node is
configured with multiple TCP/IP processes as part of the AF_INET or AF_INET6 socket
environment.

AF_UNIX Sockets
If the domain is AF_UNIX, the AF_UNIX transport-provider name determines if the socket is an
AF_UNIX Release 1 socket, an AF_UNIX Release 2 socket in compatibility mode, or an
AF_UNIX Release 2 socket in portability mode:

$ZPLS For systems running AF_UNIX Release 1, $ZPLS is the only supported
AF_UNIX transport-provider name and this name cannot be changed.

For systems running AF_UNIX Release 2 software, if the transport-provider
name is $ZPLS, the socket is created as an AF_UNIX Release 2 socket in com-
patibility mode. Sockets in compatibility mode can communicate with each other
but cannot communicate with sockets created in portability mode. The default
AF_UNIX transport-provider name is $ZPLS,

527186-023 Hewlett-Packard Company 7−115

socket(2) OSS System Calls Reference Manual

$ZAFN2 This transport-provider name is only valid for systems running AF_UNIX
Release 2 software. If the AF_UNIX transport-provider name is $ZAFN2, the
socket is created as an AF_UNIX Release 2 socket in portability mode. Sockets
created in portability mode can communicate with each other but cannot com-
municate with sockets created in compatibility mode.

For systems running AF_UNIX Release 2 software, the default AF_UNIX transport-provider
name is $ZPLS, which results in sockets created in compatibility mode. You can set the
transport-provider name using either the socket_transport_name_set() function or the Guardian
DEFINE =_AFUNIX_PROCESS_NAME. This Guardian define must be a MAP DEFINE with a
FILE attribute string of the desired AF_UNIX transport-provider name.

For more information about AF_UNIX Release 2 sockets, portability mode, and compatibility
mode, see the Open System Services Programmer’s Guide.

Preventing Memory Conflicts
OSS socket applications use QIO shared memory to exchange data with the OSS transport agent.
QIO uses some areas of memory for internal message processing, and it is necessary to prevent
OSS socket applications from using overlapping memory ranges. Do either of these things to
prevent memory conflicts between your socket application and QIO:

• If possible, do not specify a flat segment address; instead allow the operating system to
allocate a starting region for you by specifying a null pointer as the second parameter in
the call to the shmat() function, as shown:

char *base_Ptr = shmat(shmid, (void*) 0, shmflag);

• If you do assign a base address, do not use any address in the range 0x20000000
through 0x41FFFFFF or any of these flat segment regions:

0x20000000 0x22000000 0x24000000 0x26000000
0x28000000 0x2A000000 0x2C000000 0x2E000000
0x30000000 0x32000000 0x34000000 0x36000000
0x38000000 0x3A000000 0x3C000000 0x3E000000
0x40000000 0x42000000 0x44000000 0x46000000
0x48000000 0x4A000000 0x4C000000 0x4E000000

On some processors, QIO allocates its shared memory region by default starting at 0x20000000,
so a QIO configuration of 544 megabytes uses the flat segment regions listed previously. If you
use a null pointer instead of specifying the base address, the operating system allocates flat seg-
ments for your application starting from the topmost region downward. As a result, OSS socket
applications can safely allocate flat segments in any of the upper regions of memory on that pro-
cessor.

If a memory conflict error still occurs, either you must change the memory allocation for your
application or your system administrator must reconfigure QIO.

For more information on the shmat() function, see the shmat(2) reference page. For more infor-
mation on memory addressing, see the Guardian Programmer’s Guide and the server description
manual appropriate for your system.

RETURN VALUES
Upon successful completion, the socket() function returns the file descriptor for the socket. Oth-
erwise, the value -1 is returned, and errno is set to indicate the error.

7−116 Hewlett-Packard Company 527186-023

System Functions (s and S) socket(2)

ERRORS
If any of these conditions occurs, the socket() function sets errno to the corresponding value:

[EACCES] The process does not have appropriate privileges to create the socket.

[EAFNOSUPPORT]
The specified address family is not supported.

[EDEFINEERR]
The Guardian DEFINE =TCPIPˆPROCESSˆNAME is invalid, and the DEFINE
was used in an attempt to set the transport-provider name.

[EMFILE] No more file descriptors are available for this process.

[ENFILE] One of these conditions exists:

• The maximum number of file descriptors of this file type (socket, pipe,
etc.) for this processor are already open.

• The limit for open file descriptors of this file type has not been exceeded,
but the maximum number of all file descriptors for this processor are
already open.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOENT] One of these conditions occurred:

• The transport-provider process terminated abnormally.

• The transport-provider process has not been started.

• A previous call to the socket_transport_name_set() function specified
a nonexistent transport-provider process.

• The system is running AF_UNIX Release 1 and the OSS sockets local
server process is not running.

• The system is running AF_UNIX Release 2 and processor in which the
calling process is running either:

— Does not have an OSS sockets local server 2 process that is run-
ning, or

— Does not have a transport-agent process that is running.

One of these configuration errors might have occurred:

— A requested transport provider process is not available.

— An initialization error occurred because of a QIO address
conflict.

— An initialization error occurred because of a parallel TCP/IP
address conflict.

The name of an unavailable transport-provider process can be obtained
by a call to the socket_transport_name_get() function. You can set the
transport-provider name using either the socket_transport_name_set()
function or the Guardian DEFINE =_AFUNIX_PROCESS_NAME. This
Guardian define must be a MAP DEFINE with a FILE attribute string of

527186-023 Hewlett-Packard Company 7−117

socket(2) OSS System Calls Reference Manual

the desired AF_UNIX transport-provider name.

[ENOMEM] There was insufficient memory available to complete the operation.

[EPROTONOSUPPORT]
The specified address family does not support the specified protocol.

[EPROTOTYPE]
The specified socket type is not supported by the protocol.

[ETANOTRUNNING]
The OSS transport agent for this processor is not running.

This error also can occur when the calling process has migrated to a new proces-
sor that does not have a transport agent to support sockets. The socket can only
be closed.

RELATED INFORMATION
Functions: accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), listen(2), recv(2),
recvfrom(2), recvmsg(2), send(2), sendmsg(2), sendto(2), setsockopt(2), shmat(2), shut-
down(2), socketpair(2), socket_transport_name_get(2), socket_transport_name_set(2).

STANDARDS CONFORMANCE
The HP implementation does not return the errno value [ENOSR].

The HP implementation does not support the SOCK_SEQPACKET socket type.

HP extensions to the XPG4 specification are:

• The errno values [EDEFINEERR], [ENOENT], and [ETANOTRUNNING] can be
returned.

7−118 Hewlett-Packard Company 527186-023

System Functions (s and S) socketpair(2)

NAME
socketpair - Creates a pair of connected sockets

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

int socketpair(
int domain,
int type,
int protocol,
int socket_vector[2]
);

PARAMETERS
domain Specifies the communications domain in which the sockets are created. This

parameter must be set to AF_UNIX.

type Specifies the type of sockets to create.

protocol Specifies the communications protocol that the socket pair will use. Specifying a
value of 0 (zero) for this parameter causes the socketpair() function to default to
the typical protocol used for the requested socket type.

socket_vector Specifies a 2-integer array used to hold the file descriptors of the socket pair
created with this function call.

DESCRIPTION
The socketpair() function creates an unbound pair of connected sockets in the domain specified
by the domain parameter, of the type specified by the type parameter, under the protocol option-
ally specified by the protocol parameter.

The two sockets created by the socketpair() function are identical. The file descriptors for the
socket pair are returned in socket_vector[0] and socket_vector[1].

The domain parameter specifies the address family used in the communications domain. The
socketpair() function supports only the AF_UNIX address family, which supports the use of
UNIX pathnames.

The type parameter specifies the socket type, which determines the communication semantics
that the socket pair will use. The socket types supported are:

SOCK_DGRAM
Provides datagrams, which are connectionless, unreliable messages of a fixed
maximum length.

SOCK_STREAM
Provides sequenced, reliable, two-way, connection-oriented byte streams with a
transmission mechanism for out-of-band data.

The documentation for specific address families specifies which socket types each family sup-
ports. The sys/socket.h header file contains definitions for socket domains, types, and protocols.

Socket-level options control socket operations. The getsockopt() and setsockopt() functions are
used to get and set these options, which are defined in the sys/socket.h file.

527186-023 Hewlett-Packard Company 7−119

socketpair(2) OSS System Calls Reference Manual

If the domain is AF_UNIX, the AF_UNIX transport-provider name determines if the socket is an
AF_UNIX Release 1 socket, an AF_UNIX Release 2 socket in compatibility mode, or an
AF_UNIX Release 2 socket in portability mode:

$ZPLS For systems running AF_UNIX Release 1, $ZPLS is the only supported
AF_UNIX transport-provider name and this name cannot be changed.

For systems running AF_UNIX Release 2 software, If the transport-provider
name is $ZPLS, the socket is created as an AF_UNIX Release 2 socket in com-
patibility mode. Sockets in compatibility mode can communicate with each other
but cannot communicate with sockets created in portability mode. The default
AF_UNIX transport-provider name is $ZPLS,

$ZAFN2 This transport-provider name is only valid for systems running AF_UNIX
Release 2 software. If the AF_UNIX transport-provider name is $ZAFN2, the
socket is created as an AF_UNIX Release 2 socket in portability mode. Sockets
created in portability mode can communicate with each other but cannot com-
municate with sockets created in compatibility mode.

For systems running AF_UNIX Release 2 software, the default AF_UNIX transport-provider
name is $ZPLS, which results in sockets created in compatibility mode. You can set the
transport-provider name using either the socket_transport_name_set() function or the Guardian
DEFINE =_AFUNIX_PROCESS_NAME. This Guardian define must be a MAP DEFINE with a
FILE attribute string of the desired AF_UNIX transport-provider name.

For more information about AF_UNIX Release 2 sockets, portability mode, and compatibility
mode, see the Open System Services Programmer’s Guide.

Use From the Guardian Environment
The socketpair() function is one of a set of functions that have these effects when the first of
them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

Preventing Memory Conflicts
OSS socket applications use QIO shared memory to exchange data with the OSS transport agent.
QIO uses some areas of memory for internal message processing, and it is necessary to prevent
OSS socket applications from using overlapping memory ranges. Do either of the following
things to prevent memory conflicts between your socket application and QIO:

• If possible, do not specify a flat segment address; instead allow the operating system to
allocate a starting region for you by specifying a null pointer as the second parameter in
the call to the shmat() function, as shown:

char *base_Ptr = shmat(shmid, (void*) 0, shmflag);

7−120 Hewlett-Packard Company 527186-023

System Functions (s and S) socketpair(2)

• If you do assign a base address, do not use any address in the range 0x20000000
through 0x41FFFFFF or any of these flat segment regions:

0x20000000 0x22000000 0x24000000 0x26000000
0x28000000 0x2A000000 0x2C000000 0x2E000000
0x30000000 0x32000000 0x34000000 0x36000000
0x38000000 0x3A000000 0x3C000000 0x3E000000
0x40000000 0x42000000 0x44000000 0x46000000
0x48000000 0x4A000000 0x4C000000 0x4E000000

On some processors, QIO allocates its shared memory region by default starting at 0x20000000,
so a QIO configuration of 544 megabytes uses the flat segment regions listed previously. If you
use a null pointer instead of specifying the base address, the operating system allocates flat seg-
ments for your application starting from the topmost region downward. As a result, OSS socket
applications can safely allocate flat segments in any of the upper regions of memory on that pro-
cessor.

If a memory conflict error still occurs, either you must change the memory allocation for your
application or your system administrator must reconfigure QIO.

For more information on the shmat() function, see the shmat(2) reference page. For more infor-
mation on memory addressing, see the Guardian Programmer’s Guide and the server description
manual appropriate for your system.

RETURN VALUES
Upon successful completion, the socketpair() function returns the value 0 (zero). Otherwise, the
value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the socketpair() function sets errno to the corresponding
value:

[EACCES] The process does not have appropriate privileges to create a socket.

[EAFNOSUPPORT]
The specified address family is not supported.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EMFILE] No more file descriptors are available for this process.

[ENFILE] One of these conditions exists:

• The maximum number of file descriptors of this file type (socket, pipe,
etc.) for this processor are already open.

• The limit for open file descriptors of this file type has not been exceeded,
but the maximum number of all file descriptors for this processor are
already open.

[ENOBUFS] There was not enough buffer space available to complete the call. A retry at a
later time might succeed.

[ENOENT] One of these conditions occurred:

• The transport-provider process terminated abnormally.

• The transport-provider process has not been started.

527186-023 Hewlett-Packard Company 7−121

socketpair(2) OSS System Calls Reference Manual

• A previous call to the socket_transport_name_set() function specified
a nonexistent transport-provider process.

• The system is running AF_UNIX Release 1 and the OSS sockets local
server process is not running.

• The system is running AF_UNIX Release 2 and processor in which the
calling process is running either:

— Does not have an OSS sockets local server 2 process that is run-
ning, or

— Does not have a transport-agent process that is running.

One of these configuration errors might have occurred:

— A requested transport provider process is not available.

— An initialization error occurred because of a QIO address
conflict.

— An initialization error occurred because of a parallel TCP/IP
address conflict.

The name of an unavailable transport-provider process can be obtained
by a call to the socket_transport_name_get() function. You can set the
transport-provider name using either the socket_transport_name_set()
function or the Guardian DEFINE =_AFUNIX_PROCESS_NAME. This
Guardian define must be a MAP DEFINE with a FILE attribute string of
the desired AF_UNIX transport-provider name.

[ENOMEM] There was insufficient memory available to complete the operation.

[EOPNOTSUPP]
The specified protocol does not permit the creation of socket pairs.

[EPROTONOSUPPORT]
The specified address family does not support the specified protocol.

[EPROTOTYPE]
The specified socket type is not supported by the protocol.

[ETANOTRUNNING]
The OSS transport agent for this processor is not running.

This error can also occur when the calling process has migrated to a new proces-
sor that does not have a transport agent to support sockets. The socket can only
be closed.

RELATED INFORMATION
Functions: accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), listen(2), recv(2),
recvfrom(2), recvmsg(2), send(2), sendmsg(2), sendto(2), setsockopt(2), shutdown(2),
socket(2), socket_transport_name_get(2), socket_transport_name_set(2).

STANDARDS CONFORMANCE
The HP implementation does not support the SOCK_SEQPACKET socket type.

The HP implementation does not return the errno value [ENOSR].

HP extensions to the XPG4 specification are:

7−122 Hewlett-Packard Company 527186-023

System Functions (s and S) socketpair(2)

• The errno values [ENOENT] and [ETANOTRUNNING] can be returned.

527186-023 Hewlett-Packard Company 7−123

socket_transport_name_get(2) OSS System Calls Reference Manual

NAME
socket_transport_name_get - Gets the name of the transport-provider process

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

int socket_transport_name_get(
int domain,
char *buffer,
int maxlen
);

PARAMETERS
domain Specifies the domain for which the transport-provider process name should be

obtained. The following values are valid:

AF_INET Specifies the Internet domain using IPv4 addresses

AF_INET6 Specifies the Internet domain using IPv6 addresses

AF_UNIX Specifies the local sockets domain

buffer Points to the buffer to contain the null-terminated transport-provider process
name.

maxlen Specifies the length in bytes of the buffer pointed to by the buffer parameter.
This value should be at least 9 so that the buffer is large enough to contain the
null terminator and an 8-character process name.

DESCRIPTION
The socket_transport_name_get() function returns the name of the transport-provider process
for the indicated domain as set by the most recent call to the socket_transport_name_set()
function, or it returns the default value if no calls to the socket_transport_name_set() function
have been made. The default transport-provider processes for each domain are as follows:

AF_INET or AF_INET6
The default transport-provider process is $ZTC0, unless overridden by an exist-
ing Guardian DEFINE =TCPIPˆPROCESSˆNAME.

AF_UNIX For systems running AF_UNIX Release 1 software, $ZPLS is the only supported
AF_UNIX transport-provider name. The default transport-provider name is
$ZPLS.

For systems running AF_UNIX Release 2 software:

The transport-provider name $ZAFN2 indicates that this is an AF_UNIX
Release 2 socket in portability mode.

The transport-provider name $ZPLS indicates that this is an AF_UNIX Release
2 socket in compatibility mode. The default transport-provider name is $ZPLS.

For more information about AF_UNIX Release 2, see the Open System Services Programmer’s
Guide.

7−124 Hewlett-Packard Company 527186-023

System Functions (s and S) socket_transport_name_get(2)

The value returned in the buffer pointed to by the buffer parameter is always an uppercase name.

NOTES
This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

Choosing the Transport-Provider Process
Each socket declared by a user process is supported by:

• An OSS transport agent process (one per processor)

• A domain-specific transport-provider process (one or more per node)

Each user process has a current transport-provider name for each domain that is used when creat-
ing a socket in that domain.

The default AF_INET or AF_INET6 transport-provider name is $ZTC0, unless overridden by
an existing Guardian DEFINE =TCPIPˆPROCESSˆNAME. If =TCPIPˆPROCESSˆNAME exists,
it must be a MAP DEFINE with a FILE attribute string of the desired AF_INET or AF_INET6
transport-provider name.

For systems running AF_UNIX Release 1 software, $ZPLS is the only supported AF_UNIX
transport-provider name and this name cannot be changed.

For systems running AF_UNIX Release 2 software:

• The default AF_UNIX transport-provider name is $ZPLS, unless it has been overridden
by the setting DEFINE =_AFUNIX_PROCESS_NAME to $ZAFN2. This define must
be a MAP DEFINE with a FILE attribute string of the desired AF_UNIX transport-
provider name.

• To create a socket in portability mode, choose transport-provider name $ZAFN2. Sock-
ets created in portability mode can communicate with each other but cannot communi-
cate with sockets created in compatibility mode.

• To create a socket in compatibility mode, choose transport-provider name $ZPLS. Sock-
ets created in compatibility mode can communicate with each other but cannot commun-
icate with sockets created in portability mode.

For more information about AF_UNIX Release 2, see the Open System Services Programmer’s
Guide.

Each user process can change its AF_INET, AF_INET6, or AF_UNIX transport-provider name
with the socket_transport_name_set() function and can retrieve its current AF_INET,
AF_INET6, and AF_UNIX transport-provider names with the socket_transport_name_get()
function. For systems running the AF_UNIX Release 2 software, you can change the transport-
provider name using either the socket_transport_name_set() function or the Guardian DEFINE
=_AFUNIX_PROCESS_NAME. This define must be a MAP DEFINE with a FILE attribute
string of the desired AF_UNIX transport-provider name.

For more information about AF_UNIX Release 2, see the Open System Services Programmer’s
Guide.

Changing the AF_INET or AF_INET6 transport-provider name is meaningful when a node is
configured with multiple TCP/IP processes as part of the AF_INET or AF_INET6 socket
environment.

The transport-provider name is a convention and does not guarantee use of a specific TCP/IP
stack. For example, on older systems, $ZTC0 provided only Internet Protocol version 4 address-
ing for an AF_INET stack and could be used to distinguish the stack to use for sockets that do
not use AF_INET6 features. On current systems, $ZTC0 might identify an AF_INET6 protocol

527186-023 Hewlett-Packard Company 7−125

socket_transport_name_get(2) OSS System Calls Reference Manual

stack; check with your TCP/IP administrator to determine your site’s naming conventions before
using this function to distinguish between stacks.

RETURN VALUES
Upon successful completion, the socket_transport_name_get() function returns the value 0
(zero). Otherwise, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the socket_transport_name_get() function sets errno
to the corresponding value:

[EDEFINEERR]
One of the following conditions occurred:

• The Guardian DEFINE =TCPIPˆPROCESSˆNAME is invalid.

• The Guardian DEFINE =_AFUNIX_PROCESS_NAME is invalid.

[EFAULT] The address specified for the buffer parameter is not valid.

[EINVAL] One of the following conditions occurred:

• The domain parameter does not specify a supported domain.

• The buffer specified by the buffer and maxlen parameters is too small to
hold the transport-provider process name.

RELATED INFORMATION
Functions: socket_transport_name_set(2), socket(2), socketpair(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 specification.

7−126 Hewlett-Packard Company 527186-023

System Functions (s and S) socket_transport_name_set(2)

NAME
socket_transport_name_set - Sets the name of the transport-provider process

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <sys/socket.h>

int socket_transport_name_set(
int domain,
char *buffer
);

PARAMETERS
domain Specifies the domain for which the transport-provider process name is being set.

The following values are valid:

AF_INET Specifies the Internet domain using IPv4 addresses

AF_INET6 Specifies the Internet domain using IPv6 addresses

AF_UNIX Specifies the local sockets domain

buffer Points to the buffer that contains the null-terminated transport-provider process
name. The buffer should be at most 9 characters long, to contain an 8-character
process name and a null terminator. The name can be specified in lowercase
letters; the name is always stored in uppercase characters.

DESCRIPTION
The socket_transport_name_set() function sets the name of the transport-provider process for
the domain specified by the domain parameter. A subsequent call to the
socket_transport_name_get() function can obtain the value set by this function.

Standard socket behavior does not require use of this function. A default transport-provider pro-
cess always exists for each domain that provides sockets, as follows:

AF_INET or AF_INET6
The default transport-provider process is $ZTC0, unless overridden by an exist-
ing Guardian DEFINE =TCPIPˆPROCESSˆNAME.

AF_UNIX For systems running AF_UNIX Release 1 software, $ZPLS is the only supported
AF_UNIX transport-provider name. The default transport-provider name is
$ZPLS.

For systems running AF_UNIX Release 2 software:

Choose transport-provider name $ZAFN2 to create an AF_UNIX Release 2
socket in portability mode. To set $ZAFN2 as the default transport-provider
name, you can use the Guardian DEFINE =_AFUNIX_PROCESS_NAME and
specify $ZAFN2. This Guardian define must be a MAP DEFINE with a FILE
attribute string of the desired AF_UNIX transport provider name.

Choose transport-provider name $ZPLS to create an AF_UNIX Release 2 socket
in compatibility mode. The default transport-provider name is $ZPLS.

527186-023 Hewlett-Packard Company 7−127

socket_transport_name_set(2) OSS System Calls Reference Manual

For more information about AF_UNIX Release 2, see the Open System Services Programmer’s
Guide.

NOTES
This function is equivalent to the socket_set_inet_name() function in the Guardian sockets
library.

This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

The process name specified in the socket_transport_name_set() function call is validated dur-
ing each call to the socket(), socketpair(), or socket_transport_name_get() function. Process
names are not validated during calls to the socket_transport_name_set() function.

Choosing the Transport-Provider Process
Each socket declared by a user process is supported by:

• An OSS transport agent process (one per processor)

• A domain-specific transport-provider process (one or more per node)

Each user process has a current transport-provider name for each domain that is used when creat-
ing a socket in that domain.

The default AF_INET or AF_INET6 transport-provider name is $ZTC0, unless overridden by
an existing Guardian DEFINE =TCPIPˆPROCESSˆNAME. If =TCPIPˆPROCESSˆNAME exists,
it must be a MAP DEFINE with a FILE attribute string of the desired AF_INET or AF_INET6
transport-provider name.

For systems running AF_UNIX Release 1 software, $ZPLS is the only supported AF_UNIX
transport-provider name and this name cannot be changed.

For systems running AF_UNIX Release 2 software:

• The default AF_UNIX transport-provider name is $ZPLS, unless it has been overridden
by the setting the Guardian DEFINE =_AFUNIX_PROCESS_NAME to $ZAFN2. This
define must be a MAP DEFINE with a FILE attribute string of the desired AF_UNIX
transport-provider name.

• To create a socket in portability mode, choose transport-provider name $ZAFN2. Sock-
ets created in portability mode can communicate with each other but cannot communi-
cate with sockets created in compatibility mode.

• To create a socket in compatibility mode, choose transport-provider name $ZPLS. Sock-
ets created in compatibility mode can communicate with each other but cannot commun-
icate with sockets created in portability mode.

For more information about AF_UNIX Release 2, see the Open System Services Programmer’s
Guide.

Each user process can change its AF_INET, AF_INET6, or AF_UNIX transport-provider name
with the socket_transport_name_set() function and can retrieve its current AF_INET,
AF_INET6, and AF_UNIX transport-provider names with the socket_transport_name_get()
function.

Changing the AF_INET or AF_INET6 transport-provider name is meaningful when a node is
configured with multiple TCP/IP processes as part of the AF_INET or AF_INET6 socket
environment or the Cluster I/O Protocols (CIP) networking environment. When using the CIP
networking environment, you must choose a transport provider that is a CIPSAM process. The
default transport-provider name is $ZTC0. The default program name is CIPSAM. For more

7−128 Hewlett-Packard Company 527186-023

System Functions (s and S) socket_transport_name_set(2)

information about the CIP networking environment, see the Cluster I/O Protocols (CIP)
Configuration and Management Manual.

RETURN VALUES
Upon successful completion, the socket_transport_name_set() function returns the value 0
(zero). Otherwise, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the socket_transport_name_set() function sets errno
to the corresponding value:

[EFAULT] The address specified for the buffer parameter is not valid.

[EINVAL] One of the following conditions occurred:

• The domain parameter does not specify a supported domain.

• The null-terminated process name pointed to by the buffer parameter has
zero length or is too large for a valid process name.

RELATED INFORMATION
Functions: socket_transport_name_get(2), socket(2), socketpair(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 specification.

527186-023 Hewlett-Packard Company 7−129

spt_accept(2) OSS System Calls Reference Manual

NAME
spt_accept - Initiates thread-aware accept() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <spthread.h>

int spt_accept(
int socket,
struct sockaddr *address,
size_t *address_len);

PARAMETERS
See the accept(2) reference page.

DESCRIPTION
This is a thread-aware version of the accept() function. The socket must be nonblocking for this
function to be thread aware.

This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

The following macro maps spt_accept() to accept() and has been defined in spthread.h:

#define accept(socket, address, address_len) \
spt_accept(socket, address, address_len)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the accept(2) reference page. The following also applies:

• The returned file descriptor is nonblocking.

• Value errno is never set to [EWOULDBLOCK].

• If the socket becomes invalid (is closed by another thread), -1 is returned with an errno
of [EBADF].

• If a signal is received via pthread_kill() and is not blocked, ignored, or handled, -1 is
returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−130 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_acceptx(2)

NAME
spt_acceptx - Accepts a new connection on a socket (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/socket.h>]
#include <spthread.h>

int spt_acceptx(
int socket,
struct sockaddr *address,
size_t *address_len
);

PARAMETERS
socket Specifies the file descriptor for a socket that was created with the socket() func-

tion, has been bound to an address with the bind() function, and has issued a
successful call to the listen() function.

address Specifies either a null pointer or a pointer to the sockaddr structure where the
address of the peer socket that requested the connection should be returned. The
length and format of the address depend on the address family of the socket.

For AF_INET sockets, a pointer to the address structure sockaddr_in must be
cast as a struct sockaddr. For AF_INET6 sockets, a pointer to the address
structure sockaddr_in6 must be cast as a struct sockaddr. For AF_UNIX sock-
ets, a pointer to the address structure sockaddr_un must be cast as a struct
sockaddr.

address_len Points to a size_t data item, which, on input, specifies the length of the sockaddr
structure pointed to by the address parameter, and, on output, specifies the length
of the address returned.

DESCRIPTION
The spt_acceptx() function is a thread-aware version of the accept() function.

The spt_acceptx() function extracts the first connection on the queue of pending connections,
creates a new socket with the same socket type, protocol, and address family as the specified
socket, and allocates a new file descriptor for that socket.

When the spt_acceptx() function is called using a value for the address parameter that is null,
successful completion of the call returns a socket file descriptor without modifying the value
pointed to by the address_len parameter. When the spt_acceptx() function is called using a
value for the address parameter that is not null, a successful call places the address of the peer
socket in the sockaddr structure pointed to by the address parameter, and places the length of
the peer socket’s address in the location pointed to by the address_len parameter.

If the length of the socket address is greater than the length of the supplied sockaddr structure,
the address is truncated when stored.

If the queue of pending connections is empty of connection requests and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the spt_acceptx() function blocks until a
connection is present. If the socket’s file descriptor is marked nonblocking (O_NONBLOCK is
set) and the queue of pending connections is empty, the spt_acceptx() function call fails and sets
errno to [EWOULDBLOCK].

527186-023 Hewlett-Packard Company 7−131

spt_acceptx(2) OSS System Calls Reference Manual

NOTES
The macro to map accept() to spt_acceptx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link accept() to spt_acceptx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

When a connection is available, a call to the select() function indicates that the file descriptor for
the original socket is ready for reading.

The accepted socket cannot itself accept more connections. The original socket remains open
and can accept more connections.

RETURN VALUES
Upon successful completion, the spt_acceptx() function returns the file descriptor of the
accepted socket. If the spt_acceptx() function call fails, the value -1 is returned and errno is set
to indicate the error.

If the socket becomes invalid (is closed by another thread), -1 is returned with an errno value of
[EBADF]. If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of the following conditions occurs, the spt_acceptx() function sets errno to the
corresponding value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNABORTED]
The connection was aborted.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

7−132 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_acceptx(2)

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] The function call was interrupted by a signal that was caught before a valid con-
nection arrived.

[EINVAL] The socket is not accepting connections.

[EMFILE] No more file descriptors are available for this process.

[ENFILE] The maximum number of file descriptors for this processor are already open.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTSOCK] The socket parameter does not specify a socket.

[EOPNOTSUPP]
The socket type of the specified socket does not support accepting connections.

[EWOULDBLOCK]
The socket’s file descriptor is marked nonblocking (O_NONBLOCK is set) and
no connections are present to be accepted.

RELATED INFORMATION
Functions: accept(2), bind(2), connect(2), fcntl(2), listen(2), socket(2), spt_accept(2),
pthread_kill(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

The XPG4 specification allows certain behaviors of accept() to be implementer-defined. For an
indication of the HP implementation behaviors, see the accept(2) reference page either online or
in the Open System Services System Calls Reference Manual.

527186-023 Hewlett-Packard Company 7−133

spt_alarm(2) OSS System Calls Reference Manual

NAME
spt_alarm - Schedules an alarm signal for delivery to a process (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

unsigned int spt_alarm(
nsigned int *seconds);

PARAMETERS
seconds Specifies the number of real-time seconds to wait before sending the SIGALRM

signal.

DESCRIPTION
The spt_alarm() function instructs the alarm clock of the calling thread to send the signal
SIGALRM to a process after the number of real-time seconds specified by seconds has elapsed.
If the value of seconds is 0 (zero), any previously set alarm is cancelled and no new alarm is
scheduled. Each call to spt_alarm() from a thread supersedes any previous calls from the same
thread. If the same thread calls the spt_alarm() function multiple times, the value of the
seconds parameter from the most recent call is used.

To enable thread-aware behavior for this function, you must export the
SPT_THREAD_AWARE_SIGNAL environmental variable to the value 1. By default,
SPT_THREAD_AWARE_SIGNAL is disabled. If you do not export
SPT_THREAD_AWARE_SIGNAL to 1, the spt_alarm() function behaves as a process-level
alarm (see the alarm(3) reference page).

In spthread.h, a mapping of alarm() to spt_alarm() has been defined:

#define alarm(seconds) spt_alarm(seconds)

For C applications, this mapping is available only when you define the correct preprocessor
before you include spthread.h:

#define SPT_THREAD_SIGNAL
#include <spthread.h>

For C++ applications, this mapping is available only when you define the correct preprocessor
before you include spthread.h:

#define SPT_THREAD_SIGNAL_PRAGMA
#include <spthread.h>

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

7−134 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_alarm(2)

RETURN VALUES
If a previous call to the spt_alarm(2) function has time remaining, this call to the spt_alarm(2)
function returns the number of seconds remaining. Otherwise this function returns a value of 0
(zero).

RELATED INFORMATION
Functions: alarm(3), pthread_kill(2), pthread_sigmask(2), spt_pause(2), spt_sigaction(2),
spt_signal(2), spt_sigsuspend(2), spt_sigwait(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−135

spt_awaitio(2) OSS System Calls Reference Manual

NAME
spt_awaitio - Awaits a tagged I/O file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

spt_error_t spt_awaitio(
const short filenum,
const long tag,
const long timelimit,
long *count_transferred,
long *error,
void *userdata);

PARAMETERS
filenum Specifies Guardian file number being waited on

tag Specifies tag being waited on

timelimit Specifies how many hundredths of a second to wait for a completed I/O:

-1 means wait forever

0 means immediate return

count_transferred
Specifies transfer count of completed I/O; set by callback when SPT_SUCCESS
is returned.

error Specifies Guardian error number for I/O; set by callback when SPT_SUCCESS
is returned or as described in ERRORS

userdata Specifies address of user data area; the referenced data may be modified by a
callback

DESCRIPTION
Awaits a tagged I/O on file number to complete, timeout, or be interrupted (see the
spt_interrupt(2) reference page under RETURN VALUES). The function never cancels I/O.
I/O completes only if SPT_SUCCESS is returned. Multiple threads should not await the same
tagged I/O on any given file number.

RETURN VALUES
SPT_SUCCESS

File number was waited on.

SPT_ERROR An error occurred. See ERRORS.

SPT_TIMEDOUT
Time limit has expired. See ERRORS.

SPT_INTERRUPTED
Wait was interrupted. See ERRORS.

7−136 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_awaitio(2)

ERRORS
16 filenum is not registered.

29 filenum < 0 (zero).

40 timelimit has expired.

[EINTR] Wait was interrupted via spt_interrupt(), spt_interruptTag(), or a signal was
received via pthread_kill() and is not blocked, ignored, or handled.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−137

SPT_CANCEL(2) OSS System Calls Reference Manual

NAME
SPT_CANCEL - Cancels the oldest incomplete operation on a Guardian file opened for nowait
I/O

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_CANCEL (
short filenum);

PARAMETERS
filenum specifies the Guardian file number of a Guardian file open instance whose oldest

incomplete operation you want to cancel

DESCRIPTION
The SPT_CANCEL() function is the thread-aware version of the Guardian CANCEL procedure.

The SPT_CANCEL() function is used to cancel the oldest incomplete operation on a Guardian
file opened for nowait I/O. The canceled operation might or might not have had effects. For disk
files, the file position might or might not be changed.

For programming information about the Guardian CANCEL procedure, see the Guardian
Programmer’s Guide.

Considerations
Queue files If an SPT_READUPDATELOCKX() function operation is canceled using the

SPT_CANCEL() function, the SPT_READUPDATELOCKX() call might
already have deleted a record from the queue file, which could result in the loss
of a record from the queue file. For audited queue files only, your application
can recover from a timeout error by calling the
SPT_ABORTTRANSACTION() function, when detecting Guardian file-
system error 40, to ensure that any dequeued records are reinserted into the file.

For nonaudited queue files, there is no recovery of a lost record. Thus, your
application should never call the Guardian AWAITIOX procedure with a time
limit greater than 0 (zero) if an SPT_READUPDATELOCKX() call is pending.
The SPT_ABORTTRANSACTION() recovery procedure does not work on
nonaudited queue files.

Messages The server process (that is, a process that was opened and to which the I/O
request was sent) receives a system message -38 (queued message cancellation)
that identifies the canceled I/O request, if it has requested receipt of such mes-
sages. If the server has already replied to the I/O request, message -38 is not
delivered. For details about system message -38, see the Guardian Procedure
Errors and Messages Manual.

RETURN VALUES
The SPT_CANCEL() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

7−138 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_CANCEL(2)

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CONTROL(2), SPT_FILE_CLOSE_(2), SPT_FILE_OPEN_(2),
SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEREADX(2), SPT_WRITEUPDATEUNLOCKX(2),
SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−139

spt_close(2) OSS System Calls Reference Manual

NAME
spt_close - Initiates thread-aware close() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_close(
int filedes);

PARAMETERS
See the close(2) reference page.

DESCRIPTION
This is a thread-aware version of the close() function. Use spt_close() instead of close() to
ensure proper operation of the various thread-aware IO functions.

For C applications, a macro to map close() to spt_close() is available when you use the #define
SPT_THREAD_AWARE preprocessor directive before including spthread.h or when you use
an equivalent compiler command option to compile the application.

For C++ applications, an alias to map close() to spt_close() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

RETURN VALUES
See the close(2) reference page.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−140 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_closex(2)

NAME
spt_closex - Closes a file descriptor (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <unistd.h>]
#include <spthread.h>

int spt_closex(
int filedes
);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), dup(), spt_dup2x(), spt_fcntlx(), open(), pipe(),
socket(), or socketpair() function.

DESCRIPTION
The spt_closex() function is a thread-aware version of the close() function. Use spt_closex()
instead of close() to ensure proper operation of the various thread-aware input/output functions.

The spt_closex() function closes the file descriptor specified by the filedes parameter.

All regions of the file associated with the filedes parameter that this process has previously
locked with the spt_fcntlx() function are unlocked. This behavior occurs even if the process still
has the file open by another file descriptor.

When the last file descriptor associated with an open file descriptor is closed:

• The open file descriptor is freed.

• The last modification time for the file is updated.

• All locks created by spt_fcntlx() for the file are released.

• If the link count of the file is 0 (zero), the space occupied by the file is freed, and the file
is no longer accessible.

• If the file is a socket, the socket is destroyed.

• If the file is a pipe or FIFO, any data remaining in the pipe or FIFO is discarded.

NOTES
For C applications, a macro to map close() to spt_closex() is available when you use the #define
SPT_THREAD_AWARE_NONBLOCK preprocessor directive before including spthread.h or
when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map close() to spt_closex() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
and errno is set to indicate the error.

527186-023 Hewlett-Packard Company 7−141

spt_closex(2) OSS System Calls Reference Manual

ERRORS
If any of these conditions occur, the spt_closex() function sets errno to the corresponding value:

[EBADF] The filedes parameter is not a valid open file descriptor.

[EIO] An input or output error occurred. The device that the file is stored on might be
in the down state, or both processors that provide access to the device might
have failed.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

For all other error conditions, errno is set to the appropriate Guardian file-
system error number. For more information about a specific Guardian file-
system error, see the Guardian Procedure Errors and Messages Manual.

RELATED INFORMATION
Functions: close(2), exec(2), fcntl(2), getsockopt(2), open(2), pipe(2), setsockopt(2), socket(2),
spt_close(2), spt_fcntlx(2), tdm_execve(2), tdm_execvep(2).

Files: signal(4).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

7−142 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_closez(2)

NAME
spt_closez - Initiates close() function for thread-aware functions

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_closez(
int filedes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the acceptx(),

creat(), dup(), dup2(), spt_dup2x(), spt_fcntlz(), open(), open64(), pipe(),
socket(), or socketpair() function.

DESCRIPTION
Use spt_closez() instead of close() or spt_closex() to ensure proper operation of the various
thread-aware I/O functions if spt_*z() function calls are used.

The spt_closez() function closes the file descriptor specified by the filedes parameter.

All regions of the file specified by the filedes parameter that this process has locked with the
spt_fcntlz() function are unlocked by the spt_closez() function. This behavior occurs even if
the process still has the file open using a different file descriptior.

When the last file descriptor associated with an open file descriptor is closed:

• The open file descriptor is freed.

• The last modification time for the file is updated.

• If the link count of the file is 0 (zero), the space occupied by the file is freed, and the file
is no longer accessible.

• If the file is a socket, the socket is destroyed.

• If the file is a pipe or FIFO, any data remaining in the pipe or FIFO is discarded.

NOTES
For file descriptors for non-regular files, the spt_closez() function behaves exactly the same as
spt_closex(). For file descriptors for regular files, spt_closez() first flushes dirty cache blocks by
calling spt_fsyncz(), which is a thread aware function that blocks only the calling thread during
its operation. If a thread calls spt_closez() to close a file that already has a file operation in pro-
gress by a different thread, this thread is blocked until the prior file operation is complete.

This function serializes file operations on an open file. If a thread calls spt_closez() to access a
file that already has a file operation in progress by a different thread, this thread is blocked until
the prior file operation is complete.

For C applications, a macro to map close() to spt_closez() is available when you use the #define
SPT_THREAD_AWARE_XNONBLOCK preprocessor directive before including spthread.h
or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map close() to spt_closez() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the

527186-023 Hewlett-Packard Company 7−143

spt_closez(2) OSS System Calls Reference Manual

following tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
and errno is set to indicate the error.

ERRORS
If any of these conditions occur, the spt_closez() function sets errno to the corresponding value:

[EBADF] The filedes parameter is not a valid open file descriptor.

[EIO] An input or output error occurred. The device that the file is stored on might be
in the down state, or both processors that provide access to the device might
have failed.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

For all other error conditions, errno is set to the appropriate Guardian file-
system error number. See the Guardian Procedure Errors and Messages
Manual for more information about a specific Guardian file-system error.

RELATED INFORMATION
See the close(2) reference page.

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

7−144 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_connect(2)

NAME
spt_connect - Initiates thread-aware connect() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <spthread.h>

int spt_connect(
int socket,
const struct sockaddr *address,
size_t address_len);

PARAMETERS
See the connect(2) reference page.

DESCRIPTION
This is a thread-aware version of the connect() function. The socket must be nonblocking for
this function to be thread-aware.

This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

The following macro maps spt_connect() to connect() and has been defined in spthread.h:

#define connect(socket, address, address_len)
spt_connect(socket, address, address_len)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the connect(2) reference page. The following also applies:

• Value errno is never set to [EINPROGRESS] or [EALREADY].

• If the socket becomes invalid (is closed by another thread), -1 is returned with an errno
of [EBADF].

• If a signal is received via pthread_kill() and is not blocked, ignored, or handled, -1 is
returned with an errno of [EINTR].

ERRORS
See the connect(2) reference page.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−145

spt_connectx(2) OSS System Calls Reference Manual

NAME
spt_connectx - Connects a socket (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/socket.h>]
#include <spthread.h>

int spt_connectx(
int socket,
const struct sockaddr *address,
size_t address_len
);

PARAMETERS
socket Specifies the file descriptor for the socket.

address Points to a sockaddr structure that contains the address of the peer socket. The
length and format of the address depend on the address family of the socket.

For AF_INET sockets, a pointer to the address structure sockaddr_in must be
cast as a struct sockaddr. For AF_INET6 sockets, a pointer to the address
structure sockaddr_in6 must be cast as a struct sockaddr. For AF_UNIX sock-
ets, a pointer to the address structure sockaddr_un must be cast as a struct
sockaddr.

address_len Specifies the length of the sockaddr structure pointed to by the address parame-
ter.

DESCRIPTION
The spt_connectx() function is a thread-aware version of the connect() function.

The spt_connectx() function requests that a connection be made on a socket. The
spt_connectx() function performs a different action for each of the following types of initiating
sockets:

• If the initiating socket is not connection-oriented (has the type SOCK_DGRAM), the
spt_connectx() function sets the peer address but no connection is made. The peer
address identifies the socket where all datagrams are sent by subsequent calls to the
spt_sendx() function, and limits the remote sender for subsequent spt_recvx() function
calls. Datagram sockets can use the spt_connectx() function multiple times to commun-
icate with different peers.

If the socket is a datagram socket and address is a null address for the protocol, the
address for the peer socket is reset.

• If the initiating socket is connection-oriented (has the type SOCK_STREAM), the
spt_connectx() function attempts to make a connection to the socket specified by the
address parameter. Sockets of type SOCK_STREAM can successfully connect only
once.

When a connection cannot be created immediately and O_NONBLOCK is not set for the file
descriptor of the socket, the spt_connectx() call blocks until one of the following conditions
occurs:

7−146 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_connectx(2)

• A connection is established.

• A timeout occurs.

• A signal is caught.

If a timeout occurs, the spt_connectx() call fails and errno is set to [ETIMEDOUT]; the connec-
tion is aborted.

If an spt_connectx() call is interrupted by a signal that is caught while the call is blocked wait-
ing to establish a connection, the spt_connectx() call fails and sets errno to [EINTR]; the con-
nection is not aborted and is later established asynchronously.

When a connection cannot be created immediately and O_NONBLOCK is set for the file
descriptor of the socket, the spt_connectx() call fails and sets errno to [EINPROGRESS]; the
connection is not aborted and is later established asynchronously. Subsequent calls to the
spt_connectx() function for the same socket before the connection is completed will fail and set
errno to [EALREADY].

NOTES
The macro to map connect() to spt_connectx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link connect() to spt_connectx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

When an asynchronous connection is complete, a call to the select() function indicates that the
file descriptor for the socket is ready for writing.

RETURN VALUES
Upon successful completion, the spt_connectx() function returns the value 0 (zero). Otherwise,
the value -1 is returned and errno is set to indicate the error.

If the socket becomes invalid (is closed by another thread), -1 is returned with an errno value of
[EBADF]. If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_connectx() function sets errno to the corresponding
value:

[EACCES] The socket is in the AF_UNIX domain and either search permission is denied for
a component of the pathname in the sockaddr structure, or write access to the
specified socket is denied.

527186-023 Hewlett-Packard Company 7−147

spt_connectx(2) OSS System Calls Reference Manual

[EADDRINUSE]
An attempt was made to establish a connection using addresses that are already
in use.

[EADDRNOTAVAIL]
The specified address is not available from this node.

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EALREADY] A connection request is already in progress for the specified socket.

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNREFUSED]
One of these conditions occured:

• The specified address is not listening for connections or rejected the
attempt to connect.

• The socket bound to the AF_UNIX address is not using the same tran-
sport provider as the socket. This condition can occur if the system is
running AF_UNIX Release 2 software and the socket bound to address
is not of the same mode as socket.

• For AF_UNIX Release 1 socket or an AF_UNIX Release 2 socket in
compatibility mode:

— The caller attempted to connect a socket that previously had
been called by the listen() function with a backlog parameter
less than or equal to 0 (zero), and

— There is no pending accept() call to that socket.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EHOSTUNREACH]
The destination host cannot be reached.

[EINPROGRESS]
The socket is marked nonblocking (O_NONBLOCK is set) and the requested
connection is not yet completed. The connection will be completed asynchro-
nously.

[EINTR] The attempt to connect was interrupted by delivery of a signal. The connection
will be completed asynchronously.

7−148 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_connectx(2)

[EINVAL] One of the following conditions exists:

• The size specified for the address_len parameter is not valid for an
address in the address family that is used by this connection.

• The sockaddr structure contains an invalid address family.

[EIO] The socket is in the AF_UNIX domain and an I/O error occurred during a read
or write to the file system.

[EISCONN] The specified socket is connection-oriented and is already connected.

[ELOOP] The socket is in the AF_UNIX domain and too many symbolic links were
encountered in translating the pathname in the sockaddr structure.

[ENAMETOOLONG]
The socket is in the AF_UNIX domain and one of the following conditions
exists:

• The pathname in the sockaddr structure exceeds PATH_MAX charac-
ters.

• A component of the pathname in the sockaddr structure exceeds
NAME_MAX characters.

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname in the sockaddr structure exceeds PATH_MAX
characters.

The pathconf() function can be called to obtain the applicable limits.

[ENETDOWN]
The local interface used to reach the destination is down.

[ENETUNREACH]
No route to the network or host is present.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOENT] The socket is in the AF_UNIX domain and one of the following conditions
exists:

• A component of the pathname specified in the sockaddr structure does
not name an existing file.

• The sockaddr structure specifies an empty string as a pathname.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTDIR] The socket is in the AF_UNIX domain and a component of the pathname
specified in the sockaddr structure is not a directory.

[ENOTSOCK] The socket parameter does not refer to a socket.

527186-023 Hewlett-Packard Company 7−149

spt_connectx(2) OSS System Calls Reference Manual

[EPROTOTYPE]
The specified address has a different type than that of the socket bound to the
specified peer address.

[ETIMEDOUT]
The attempt to connect timed out during connection establishment.

RELATED INFORMATION
Functions: accept(2), bind(2), connect(2), getsockname(2), select(2), send(2), sendmsg(2),
sendto(2), socket(2), spt_connect(2), spt_sendx(2), spt_sendmsgx(2), spt_sendtox(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

The XPG4 specification allows certain behaviors of connect() to be implementer-defined. For an
indication of the HP implementation behaviors, see the connect(2) reference page either online
or in the Open System Services System Calls Reference Manual.

7−150 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_CONTROL(2)

NAME
SPT_CONTROL - Performs device-dependent input/output operations

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_CONTROL (
short filenum,
short operation,
[short param],
[long tag]
);

PARAMETERS
filenum specifies the Guardian file number of a Guardian file open instance, identifying

the file on which the underlying CONTROL procedure performs an input or out-
put operation.

operation specifies a value from 1 through 27 that defines a type of operation to be per-
formed. For tables that list operation numbers and the possible param values for
each, see the description of the CONTROL procedure in the Guardian Pro-
cedure Calls Reference Manual.

param specifies a value that defines the operation to be performed. For tables that list
operation numbers and the possible param values for each, see the description of
the CONTROL procedure in the Guardian Procedure Calls Reference Manual.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_CONTROL() function is the thread-aware version of the Guardian CONTROL pro-
cedure. CONTROL is used to perform device-dependent input or output operations.

If the SPT_CONTROL() function is used on a file that is opened for nowait I/O, the function
must be completed with a call to the AWAITIO procedure.

The following considerations apply to use on disk files:

Writing EOF to an unstructured file
Writing EOF to an unstructured disk file sets the EOF pointer to the relative byte
address indicated by the setting of the next-record pointer and writes the new
EOF setting in the file label on disk. (File pointer action for CONTROL opera-
tion 2, write EOF.)

File is locked If a CONTROL operation is attempted for a file locked through a filenum other
than that specified in the call to SPT_CONTROL(), the call is rejected with a
"file is locked" error 73. If any record is locked in a file, a call to
SPT_CONTROL() to write EOF (operation 2) to that same file will be rejected
with a "file is locked" error 73.

527186-023 Hewlett-Packard Company 7−151

SPT_CONTROL(2) OSS System Calls Reference Manual

The following considerations apply to use on magnetic tapes:

When device is not ready
If a magnetic tape rewind is performed concurrently with application program
execution (that is, a rewind operation other than 6), any attempt to perform a
read, write, or control operation to the rewinding tape unit while rewind is taking
place results in an error indication. A subsequent call to the FILE_GETINFO_
or FILEINFO procedure shows that an error 100 occurred.

Wait for rewind to complete
If a magnetic tape rewind operation of 6 (wait for completion) is performed as a
nowait operation, the application waits at the call to the AWAITIO procedure for
the rewind to complete.

The following considerations apply to use for interprocess communication:

Nonstandard operation and param values
You can specify any value for the operation and param parameters. An
application-defined protocol should be established for interpreting nonstandard
parameter values.

Process not accepting system messages
If the object of the control operation is not accepting process CONTROL mes-
sages, the call to SPT_CONTROL() completes but a subsequent call to the
FILE_GETINFO_ or FILEINFO procedure shows that an error 7 occurred.

Process control You can obtain the process identifier of the caller to SPT_CONTROL() in a
subsequent call to the FILE_GETRECEIVEINFO_ (or LASTRECEIVE or
RECEIVEINFO) procedure.

RETURN VALUES
The SPT_CONTROL() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

When device handlers do not allow the operation, Guardian file-system error 2 is returned. For
information about Guardian file-system error numbers, see the Guardian Procedure Errors and
Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_FILE_CLOSE_(2), SPT_FILE_OPEN_(2),
SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEREADX(2), SPT_WRITEUPDATEUNLOCKX(2),
SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−152 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_dup2x(2)

NAME
spt_dup2x - Duplicates and controls an open file descriptor (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <unistd.h>]
#include <spthread.h>

int spt_dup2x(
int filedes,
int new);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), dup(), spt_dup2x(), spt_fcntlx(), open(), pipe(),
socket(), or socketpair() function.

new Specifies the open file descriptor that is returned by the spt_dup2x() function. If
this descriptor is already in use, it is first deallocated as if it had been closed.

DESCRIPTION
The spt_dup2x() function is a thread-aware version of the dup2() function.

The spt_dup2x() function returns a new file descriptor on the open file specified by the filedes
parameter. If new is less than 0 (zero) or greater than or equal to the maximum number of opens
permitted, spt_dup2x() returns -1 with errno set to [EBADF].

The new file descriptor:

• Is the value specified as the new parameter:

— If filedes is a valid file descriptor and is equal to new, spt_dup2x() returns new
without closing it.

— If filedes is not a valid file descriptor, spt_dup2x() returns -1 and does not close
new.

— The value returned is equal to the value of new upon successful completion, or it
is -1 upon failure.

• References the same open file descriptor

• Returns the same file pointer as the original file (that is, both file descriptors share one
file pointer if the object is a file)

• Returns the same access mode (read, write, or read/write)

• Returns the same file status flags (that is, both file descriptors share the same file status
flags)

• Clears the close-on-exec flag (FD_CLOEXEC bit) associated with the new file descrip-
tor so that the file remains open across calls to any function in the exec, tdm_exec, and
tdm_spawn sets of functions

527186-023 Hewlett-Packard Company 7−153

spt_dup2x(2) OSS System Calls Reference Manual

NOTES
The macro to map dup2() to spt_dup2x() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link dup2() to spt_dup2x() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

The spt_dup2x() function provides an alternative interface to the service provided by the
spt_fcntlx() function by using the F_DUPFD value of the request parameter. The call:

fid = spt_dup2x(file1, file2);

is equivalent to:

close(file2);
fid = spt_fcntlx(file1, F_DUPFD, file2);

RETURN VALUES
Upon successful completion, the spt_dup2x() function returns a new file descriptor. Otherwise,
the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occur, the spt_dup2x() function sets errno to the corresponding value:

[EBADF] One of these conditions exists:

• The filedes parameter is not a valid open file descriptor.

• The new parameter file descriptor is negative or greater than the max-
imum number of open file descriptors permitted.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation on an input/output process (such as a
terminal server process) that has failed or is in the down state.

7−154 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_dup2x(2)

• The processor for the disk process of the specified file failed during an
input or output operation, and the backup process took over.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: close(2), dup(2), dup2(2), exec(2), fcntl(2), open(2), read(2), spt_fcntlx(2),
spt_readx(2), spt_writex(2), tdm_execve(2), tdm_execvep(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−155

spt_fclose(2) OSS System Calls Reference Manual

NAME
spt_fclose - Initiates thread-aware fclose() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_fclose(FILE *stream);

PARAMETERS
See the fclose(3) reference page online or in the Open System Services Library Calls Reference
Manual.

DESCRIPTION
This is a thread-aware version of the fclose() function. Note that the file descriptor underlying
the stream must be nonblocking for this function to be thread-aware.

The following macro maps spt_fclose() to fclose() and has been defined in spthread.h:

#define fclose(stream) spt_fclose(stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the fclose(3) reference page. The following also applies:

• Value errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying the stream becomes invalid (is closed by another thread),
EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−156 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fclosex(2)

NAME
spt_fclosex - Closes a stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_fclosex (
FILE *stream
);

PARAMETERS
stream Specifies the output or update stream.

DESCRIPTION
The spt_fclosex() function is the thread-aware version of the fclose() function.

The spt_fclosex() function writes buffered data to the stream specified by the stream parameter
and then closes the associated file. It is automatically called for all open files when the exit()
function is invoked. Any unwritten buffered data for the stream is delivered to the host environ-
ment to be written to the file; any unread buffered data is discarded. The stream is disassociated
from the file. If the associated buffer was automatically allocated, it is deallocated. Any further
use of the stream specified by the stream parameter causes undefined behavior.

The spt_fclosex() function performs the close() function on the file descriptor associated with
the stream parameter. If the stream was writable and buffered data was not yet written to the file,
it marks the st_ctime and st_mtime fields of the underlying file for update. If the file is not
already at end-of-file (EOF), and is capable of seeking, the file pointer of the underlying open file
descriptor is adjusted so that the next operation on the open file descriptor deals with the byte
after the last one read from or written to the stream being closed.

NOTES
The macro to map fclose() to spt_fclosex() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fclose() to spt_fclosex() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
Upon successful completion, the spt_fclosex() function returns a value of 0 (zero). Otherwise,
EOF is returned, and errno is set to indicate the error.

If the file descriptor underlying stream becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

527186-023 Hewlett-Packard Company 7−157

spt_fclosex(2) OSS System Calls Reference Manual

ERRORS
If any of these conditions occur, the spt_fclosex() function sets errno to the value that
corresponds to the condition:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying the stream
parameter and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying the stream parameter is not valid.

[EFBIG] An attempt was made to write a file that exceeds the process’s file size limit or
the maximum file size.

[EINTR] The spt_fclosex() function was interrupted by a signal that was caught.

[EIO] The TOSTOP tty local mode causes a background process to get a SIGTTOU
signal if it attempts to write to the controlling terminal. The SIGTTOU signal, if
it is not caught or ignored, will cause the process to block in a stopped state. A
process in an orphaned process group is not allowed to become stopped, because
there is no unprivileged process to unblock it. This condition only applies to
operations on stdio streams associated with ttys.

[EIO] is also associated with driver errors.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

RELATED INFORMATION
Functions: close(2), exit(2), fclose(3), fflush(3), fopen(3), setbuf(3), spt_closex(2),
spt_fclose(2), spt_fflushx(2), spt_fopenx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−158 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fcntlx(2)

NAME
spt_fcntlx - Controls open file descriptors (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/types.h>]
[#include <unistd.h>]
[#include <fcntl.h>]
#include <spthread.h>

int spt_fcntlx (
int filedes,
int request
[, int argument1 | , struct flock *argument2]
);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), dup(), spt_dup2x(), spt_fcntlx(), open(), pipe(),
socket(), or socketpair() function

request Specifies the operation to be performed

argument1 Specifies a variable that depends on the value of the request parameter

argument2 Specifies a variable that depends on the value of the request parameter

DESCRIPTION
The spt_fcntlx() function is the thread-aware version of the fcntl() function.

The spt_fcntlx() function performs controlling operations on the open file specified by the filedes
parameter.

Values for the request parameter are:

F_DUPFD Returns a new file descriptor as listed:

• Returns the lowest-numbered available file descriptor that is greater than
or equal to the argument1 parameter

• References the same open file descriptor

• Returns the same file pointer as the original file (that is, both file descrip-
tors share one file pointer if the object is a file)

• Returns the same access mode (read, write, or read/write)

• Returns the same file status flags (that is, both file descriptors share the
same file status flags)

• Clears the close-on-exec flag (FD_CLOEXEC bit) associated with the
new file descriptor so that the file remains open across calls to any func-
tion in the exec, tdm_exec, or tdm_spawn sets of functions

The value F_DUPFD is invalid for an OSSTTY or Telserv terminal device. If
this value is used in a call that specifies such a device for the filedes parameter,
the call fails and errno is set to [EINVAL].

527186-023 Hewlett-Packard Company 7−159

spt_fcntlx(2) OSS System Calls Reference Manual

F_GETFD Gets the value of the file descriptor flags, defined in the fcntl.h header file, that
are associated with the value of the filedes parameter. File descriptor flags are
associated with a single file descriptor and do not affect other file descriptors that
refer to the same file. The argument1 parameter or argument2 parameter is
ignored.

The value F_GETFD is invalid for an OSSTTY or Telserv terminal device. If
this value is used in a call that specifies such a device for the filedes parameter,
the call fails and errno is set to [EINVAL].

F_SETFD Sets the value of the file descriptor flags, defined in the fcntl.h header file, that
are associated with the filedes parameter to the value of the argument1 parame-
ter.

If the FD_CLOEXEC flag in the argument1 parameter is 0 (zero), the file
remains open across calls to any function in the exec, tdm_exec, and
tdm_spawn sets of functions; otherwise, the file is closed on successful execu-
tion of the next function in an exec, tdm_exec, or tdm_spawn function set.
When the FD_CLOEXEC flag is set, no other flag can be set in the call.

The value F_SETFD is invalid for an OSSTTY or Telserv terminal device. If
this value is used in a call that specifies such a device for the filedes parameter,
the call fails and errno is set to [EINVAL].

F_GETFL Gets the file status flags and file access modes, defined in the fcntl.h header file,
for the file referred to by the filedes parameter.

You can use the mask O_ACCMODE on the return value to extract the file
access modes. File status flags and file access modes are associated with the file
descriptor and do not affect other file descriptors that refer to the same file with
different open file descriptors.

The argument1 or argument2 parameter is ignored.

The O_APPEND, O_NONBLOCK, and O_SYNC flags are not returned as set
if they were ignored in a previous call using F_SETFL.

F_SETFL Sets the file status flags O_APPEND, O_NONBLOCK, and O_SYNC for the
file to which the filedes parameter refers, from the corresponding bits in the argu-
ment1 parameter. Some flags are ignored, depending on the file type:

Table 7−1. Ignored File Status Flags (spt_fcntlx Function)

File type Ignored file status flags___

O_APPEND, O_NONBLOCK,
O_SYNC

Directory

FIFO, pipe O_APPEND, O_SYNC
Character special file O_APPEND, O_SYNC
Regular file O_NONBLOCK
Socket None; however, see O_ASYNC

note in text.

These file status flags are always accepted and ignored:

O_ACCMODE
O_CREAT
O_EXCL
O_TRUNC

7−160 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fcntlx(2)

The O_ASYNC flag is not supported for sockets. If the O_ASYNC flag is used
with F_SETFL, the fcntl() call fails, and errno is set to [EINVAL].

The file access mode is not changed when F_SETFL is used.

F_GETOWN Gets the process ID or process group ID currently receiving the SIGURG signal
for a socket. A process group ID is returned as a negative value. A positive
value indicates the process ID.

The value F_GETOWN is invalid for these calls:

• Guardian use of OSS sockets is not supported. If this value is used in a
call from the Guardian environment, the call fails, and errno is set to
[ENOTOSS].

• If this value is used in a call that specifies anything other than a socket
for the filedes parameter, the call fails, and errno is set to [EINVAL].

F_SETOWN Sets the process ID or process group ID to receive the SIGURG signal for a
socket. A process group ID is specified by supplying it as a negative value in the
argument1 parameter; otherwise, the argument1 parameter is interpreted as a
process ID.

The value F_SETOWN is invalid for these calls:

• Guardian use of OSS sockets is not supported. If this value is used in a
call from the Guardian environment, the call fails, and errno is set to
[ENOTOSS].

• If this value is used in a call that specifies anything other than a socket
for the filedes parameter, the call fails, and errno is set to [EINVAL].

These values listed for the request parameter are available for advisory record locking on regular
files. Advisory record locking is supported only for regular files. If attempted on other files, the
operation fails, and errno is set to [EINVAL].

F_GETLK Gets the first lock that blocks the lock description pointed to by the argument2
parameter. The information retrieved overwrites the information passed to the
fcntl() function in the flock structure. If no lock is found that would prevent this
lock from being created, the structure is left unchanged except for the lock type,
which is set to F_UNLCK.

F_SETLK Sets or clears a file segment lock according to the lock description pointed to by
the argument2 parameter. F_SETLK is used to establish shared locks
(F_RDLCK) or exclusive locks (F_WRLCK) and, additionally, to remove
either type of lock (F_UNLCK). If a shared (read) or exclusive (write) lock can-
not be set, the fcntl() function returns immediately with the value -1.

F_SETLKW Same as F_SETLK except that, if a shared or exclusive lock is blocked by other
locks, the process waits until it is unblocked. If a signal is received while fcntl()
is waiting for a region, the function is interrupted, -1 is returned, and errno is set
to [EINTR].

The O_NONBLOCK file status flag affects only operations against file descriptors derived from
the same open() function.

When a shared lock is set on a segment of a file, other processes can set shared locks on that seg-
ment or a portion of it. A shared lock prevents any other process from setting an exclusive lock
on any portion of the protected area. A request for a shared lock fails if the file descriptor is not

527186-023 Hewlett-Packard Company 7−161

spt_fcntlx(2) OSS System Calls Reference Manual

opened with read access.

An exclusive lock prevents any other process from setting a shared lock or an exclusive lock on
any portion of the protected area. A request for an exclusive lock fails if the file descriptor was
not opened with write access.

The flock structure describes the type (l_type field), starting offset (l_whence), relative offset
(l_start), size (l_len), and process ID (l_pid) of the segment of the file to be affected.

The value of l_whence is set to SEEK_SET, SEEK_CUR, or SEEK_END to indicate that the
relative offset of l_start bytes is measured from the start of the file, from the current position, or
from the end of the file, respectively. The value of l_len is the number of consecutive bytes to be
locked. The l_len value can be negative (where the definition of type off_t permits negative
values of l_len). The l_pid field is used only with F_GETLK to return the process ID of the pro-
cess holding a blocking lock. After a successful F_GETLK request, the value of l_whence
becomes SEEK_SET.

If l_len is positive, the area affected starts at l_start and ends at l_start + l_len - 1. If l_len is
negative, the area affected starts at l_start + l_len and ends at l_start - 1. Lock lengths can be
negative.

Locks can start and extend beyond the current end of a file, but they cannot be negative relative
to the beginning of the file. If l_len is set to 0 (zero), a lock can be set to always extend to the
largest possible value of the file offset for that file. If such a lock also has l_start set to 0 (zero)
and l_whence is set to SEEK_SET, the whole file is locked.

Changing or unlocking a portion from the middle of a larger locked segment leaves a smaller
segment at either end. Locking a segment that is already locked by the calling process causes the
old lock type to be removed and the new lock type to take effect. All locks associated with a file
for a given process are removed when a file descriptor for that file is closed by that process or
when the process holding that file descriptor terminates. Locks are not inherited by a child pro-
cess in a fork(), tdm_fork(), or tdm_spawn()-type function.

RETURN VALUES
Upon successful completion, the value returned by the spt_fcntlx() function depends on the
value of the request parameter, listed:

F_DUPFD Returns a new file descriptor.

F_GETFD Returns the value of the file descriptor flags. The return value is not negative.

F_GETFL Returns the value of file status flags and access modes. The return value is not
negative.

F_GETLK Returns the value 0 (zero).

F_GETOWN Returns the process ID or process group ID of the socket receiving a SIGURG
signal. A positive value is a process ID; a negative value is a process group ID.

F_SETFD Returns the value 0 (zero).

F_SETFL Returns the value 0 (zero).

F_SETLK Returns the value 0 (zero).

F_SETLKW Returns the value 0 (zero).

7−162 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fcntlx(2)

F_SETOWN Returns the value 0 (zero).

If the spt_fcntlx() function fails, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occur, the spt_fcntlx() function sets errno to the corresponding value:

[EAGAIN] The request parameter is F_SETLK, the type of lock (l_type) is shared
(F_RDLCK) or exclusive (F_WRLCK), and a segment of a file to be locked is
already exclusive-locked by another process.

The request parameter is F_SETLK, the type of lock is exclusive, and some por-
tion of a segment of a file to be locked is already shared-locked or exclusive-
locked by another process.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion (such as spt_writez()) is in progress on a regular file and a function that is
process-blocking for regular files (such as read(), spt_read(), or spt_readx())
attempts to begin an I/O operation on the same open file.

[EBADF] One of these conditions exists:

• The request parameter is F_SETLK or F_SETLKW, the type of lock is
shared (F_RDLCK), and filedes is not a valid file descriptor open for
reading.

• The type of lock is exclusive (F_WRLCK), and filedes is not a valid file
descriptor open for writing.

• The filedes parameter is not a valid open file descriptor.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The argument2 parameter is an invalid address.

[EINTR] The request parameter is F_SETLKW, and the spt_fcntlx() function was inter-
rupted by a signal that was caught.

[EINVAL] One of these conditions exists:

• The request parameter is F_DUPFD, and the argument1 parameter is
negative or greater than or equal to the maximum number of opens per-
mitted.

• The request parameter is F_GETLK, F_SETLK, or F_SETLKW, and
the data pointed to by argument2 is invalid, or filedes refers to a file that
does not support locking.

527186-023 Hewlett-Packard Company 7−163

spt_fcntlx(2) OSS System Calls Reference Manual

• The request parameter is F_GETOWN, and the filedes parameter does
not specify a socket.

• The request parameter is F_SETFD, and a flag in addition to
FD_CLOEXEC in the argument1 parameter is set. When the request
parameter is F_SETFD and FD_CLOEXEC is set, no other flag can be
set.

• The request parameter is F_SETFL, and any file status flag other than
O_NONBLOCK, O_APPEND, O_CREAT, O_EXCL, O_SYNC, or
O_TRUNC is set. (Values set in the O_ACCMODE mask are ignored.)

• The request parameter is F_SETOWN, and the filedes parameter does
not specify a socket.

• The call attempted to set an advisory record lock on a file that is not a
regular file.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[EMFILE] The request parameter is F_DUPFD and the maximum number of open file
descriptors permitted are currently open in the calling process, or no file descrip-
tors greater than or equal to argument1 are available.

[ENETDOWN]
The request parameter is F_SETLK, the filedes parameter specifies a file on a
remote node, and communication with the remote node has been lost.

[ENOLCK] The request parameter is F_SETLK or F_SETLKW, and satisfying the lock or
unlock request would cause the number of locked regions in the system to
exceed a system-imposed limit.

[ENOTOSS] The filedes parameter specifies a socket, and the calling process is running in the
Guardian environment. You cannnot use spt_fcntlx() function on an OSS socket
from the Guardian environment.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and the backup process took over.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure

7−164 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fcntlx(2)

Errors and Messages Manual.

RELATED INFORMATION
Functions: creat(2), close(2), dup(2), dup2(2), exec(2), fcntl(2), open(2), read(2), socket(2),
spt_dup2x(2), spt_readx(2), spt_writex(2), tdm_execve(2), tdm_execvep(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

The POSIX standard allows certain behaviors of fcntl() to be implementer-defined. For an indi-
cation of the HP implementation behaviors, see the fcntl(2) reference page either online or in the
Open System Services System Calls Reference Manual.

527186-023 Hewlett-Packard Company 7−165

spt_fcntlz(2) OSS System Calls Reference Manual

NAME
spt_fcntlz - Controls open file descriptors (thread-aware version)

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_fcntlz(
int filedes,
int request
[, int argument1 |
[, struct flock *argument2 |
, struct flock64 *argument2]]);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), creat64(), dup(), spt_dup2x(), spt_fcntlz(), open(),
open64(), pipe(), socket(), or socketpair() function.

request Specifies the operation to be performed.

argument1 Specifies a variable that depends on the value of the request parameter.

argument2 Specifies a variable that depends on the value of the request parameter.

DESCRIPTION
The spt_fcntlz() function is a thread aware version of the fcntl() function for file descriptors for
non-regular files and for regular files.

The spt_fcntlz() function performs controlling operations on the open file specified by the filedes
parameter.

Values for the request parameter are:

F_DUPFD Returns a new file descriptor as listed:

• Returns the lowest-numbered available file descriptor that is greater than
or equal to the argument1 parameter.

• References the same open file description as the original file descriptor.

• Returns the same file pointer as the original file (that is, both file descrip-
tors share one file pointer if the object is a file).

• Returns the same access mode (read, write, or read/write).

• Returns the same file status flags (that is, both file descriptors share the
same file status flags).

• Clears the close-on-exec flag (FD_CLOEXEC bit) associated with the
new file descriptor so that the file remains open across calls to any func-
tion in the exec, tdm_exec, or tdm_spawn sets of functions.

The value F_DUPFD is invalid for an OSSTTY or Telserv terminal device. If
this value is used in a call that specifies such a device for the filedes parameter,
the call fails and errno is set to [EINVAL].

7−166 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fcntlz(2)

F_GETFD Gets the value of the file descriptor flags, defined in the fcntl.h header file, that
are associated with the value of the filedes parameter. File descriptor flags are
associated with a single file descriptor and do not affect other file descriptors that
refer to the same file. The argument1 parameter or argument2 parameter is
ignored.

The value F_GETFD is invalid for an OSSTTY or Telserv terminal device. If
this value is used in a call that specifies such a device for the filedes parameter,
the call fails and errno is set to [EINVAL].

F_SETFD Sets the value of the file descriptor flags, defined in the fcntl.h header file, that
are associated with the filedes parameter to the value of the argument1 parame-
ter.

If the FD_CLOEXEC flag in the argument1 parameter is 0 (zero), the file
remains open across calls to any function in the exec, tdm_exec, and
tdm_spawn sets of functions; otherwise, the file is closed on successful execu-
tion of the next function in an exec, tdm_exec, or tdm_spawn function set.
When the FD_CLOEXEC flag is set, no other flag can be set in the call.

The value F_SETFD is invalid for an OSSTTY or Telserv terminal device. If
this value is used in a call that specifies such a device for the filedes parameter,
the call fails and errno is set to [EINVAL].

F_GETFL Gets the file status flags and file access modes, defined in the fcntl.h header file,
for the file referred to by the filedes parameter.

The file access modes can be extracted by using the mask O_ACCMODE on the
return value. File status flags and file access modes are associated with the file
descriptor and do not affect other file descriptors that refer to the same file with
different open file descriptors.

The argument1 or argument2 parameter is ignored.

The O_APPEND, O_NONBLOCK, and O_SYNC flags are not returned as set
if they were ignored in a previous call using F_SETFL.

F_SETFL Sets the file status flags O_APPEND, O_NONBLOCK, and O_SYNC for the
file to which the filedes parameter refers, from the corresponding bits in the argu-
ment1 parameter. Some flags are ignored, depending on the file type, as listed:

Table 7−2. Ignored File Status Flags

File type Ignored file status flags___

O_APPEND, O_NONBLOCK,
O_SYNC

Directory

FIFO, pipe O_APPEND, O_SYNC
Character special file O_APPEND, O_SYNC
Regular file O_NONBLOCK
Socket O_APPEND, O_SYNC

These file status flags are always accepted and ignored:

O_ACCMODE
O_CREAT
O_EXCL
O_TRUNC

527186-023 Hewlett-Packard Company 7−167

spt_fcntlz(2) OSS System Calls Reference Manual

The file access mode is not changed when F_SETFL is used.

F_GETOWN Gets the process ID or process group ID currently receiving the SIGURG signal
for a socket. A process group ID is returned as a negative value. A positive
value indicates the process ID.

The value F_GETOWN is invalid for these calls:

• Guardian use of OSS sockets is not supported. If this value is used in a
call from the Guardian environment, the call fails, and errno is set to
[ENOTOSS].

• If this value is used in a call that specifies anything other than a socket
for the filedes parameter, the call fails, and errno is set to [EINVAL].

F_SETOWN Sets the process ID or process group ID to receive the SIGURG signal for a
socket. A process group ID is specified by supplying it as a negative value in the
argument1 parameter; otherwise, the argument1 parameter is interpreted as a
process ID.

The value F_SETOWN is invalid for these calls:

• Guardian use of OSS sockets is not supported. If this value is used in a
call from the Guardian environment, the call fails, and errno is set to
[ENOTOSS].

• If this value is used in a call that specifies anything other than a socket
for the filedes parameter, the call fails, and errno is set to [EINVAL].

These values listed for the request parameter are available for advisory record locking on regular
files. Advisory record locking is supported only for regular files. If attempted on other files, the
operation fails, and errno is set to [EINVAL].

F_GETLK Gets the first lock that blocks the lock description pointed to by the argument2
parameter. The information retrieved overwrites the information passed to the
spt_fcntlz() function in the flock structure. If no lock is found that would
prevent this lock from being created, the structure is left unchanged except for
the lock type, which is set to F_UNLCK.

F_GETLK64 Similar to F_GETLK, except that it takes a pointer to a flock64 structure instead
of a pointer to a flock structure.

F_SETLK Sets or clears a file segment lock according to the lock description pointed to by
the argument2 parameter. F_SETLK is used to establish shared locks
(F_RDLCK) or exclusive locks (F_WRLCK) and, additionally, to remove
either type of lock (F_UNLCK). If a shared (read) or exclusive (write) lock can-
not be set, the spt_fcntlz() function returns immediately with the value -1.

F_SETLK64 Similar to F_SETLK, except that it takes a pointer to a flock64 structure instead
of a pointer to a flock structure.

F_SETLKW Same as F_SETLK except that, if a shared or exclusive lock is blocked by other
locks, the thread waits until it is unblocked. If a signal is received while
spt_fcntlz() is waiting for a region, the function is interrupted, -1 is returned,
and errno is set to [EINTR].

7−168 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fcntlz(2)

F_SETLKW64
Similar to F_SETLKW, except that it takes a pointer to a flock64 structure
instead of a pointer to a flock structure.

The O_NONBLOCK file status flag affects only operations against file descriptors derived from
the same open() function.

When a shared lock is set on a segment of a file, other processes can set shared locks on that seg-
ment or a portion of it. A shared lock prevents any other process from setting an exclusive lock
on any portion of the protected area. A request for a shared lock fails if the file descriptor is not
opened with read access.

An exclusive lock prevents any other process from setting a shared lock or an exclusive lock on
any portion of the protected area. A request for an exclusive lock fails if the file descriptor was
not opened with write access.

The flock and flock64 structures describe the type (l_type field), starting offset (l_whence), rela-
tive offset (l_start), size (l_len), and process ID (l_pid) of the segment of the file to be affected.

The value of l_whence is set to SEEK_SET, SEEK_CUR, or SEEK_END to indicate that the
relative offset of l_start bytes is measured from the start of the file, from the current position, or
from the end of the file, respectively. The value of l_len is the number of consecutive bytes to be
locked. The l_len value can be negative (where the definition of type off_t permits negative
values of l_len). The l_pid field is used only with F_GETLK or F_GETLK64 to return the pro-
cess ID of the process holding a blocking lock. After a successful F_GETLK or F_GETLK64
request, the value of l_whence becomes SEEK_SET.

If l_len is positive, the area affected starts at l_start and ends at l_start + l_len - 1. If l_len is
negative, the area affected starts at l_start + l_len and ends at l_start - 1. Lock lengths can be
negative.

Locks can start and extend beyond the current end of a file, but they cannot be negative relative
to the beginning of the file. If l_len is set to 0 (zero), a lock can be set to always extend to the
largest possible value of the file offset for that file. If such a lock also has l_start set to 0 (zero)
and l_whence is set to SEEK_SET, the whole file is locked.

Changing or unlocking a portion from the middle of a larger locked segment leaves a smaller
segment at either end. Locking a segment that is already locked by the calling process causes the
old lock type to be removed and the new lock type to take effect. All locks associated with a file
for a given process are removed when a file descriptor for that file is closed by that process or
when the process holding that file descriptor terminates. Locks are not inherited by a child pro-
cess in a function like fork(), tdm_fork(), or tdm_spawn().

NOTES
For file descriptors for non-regular files, the spt_fcntlz() function behaves exactly the same as
the spt_fcntlx() function. For regular files, if the spt_fcntlz() function needs to wait for
F_SETLKW or F_SETLKW64 requests, spt_fcntlz() blocks the thread that called the function
(instead of blocking the entire process).

This function serializes file operations on an open file. If a thread calls spt_fcntlz() to access a
file that already has a file operation in progress by a different thread, this thread is blocked until
the prior file operation is complete.

For C applications, a macro to map fcntl() to spt_fcntlz() is available when you use the #define
SPT_THREAD_AWARE_XNONBLOCK preprocessor directive before including spthread.h
or when you use an equivalent compiler command option to compile the application.

527186-023 Hewlett-Packard Company 7−169

spt_fcntlz(2) OSS System Calls Reference Manual

For C++ applications, an alias to map fcntl() to spt_fcntlz() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the value returned by the spt_fcntlz() function depends on the
value of the request parameter, listed:

F_DUPFD Returns a new file descriptor.

F_GETFD Returns the value of the file descriptor flags. The return value is not negative.

F_GETFL Returns the value of file status flags and access modes. The return value is not
negative.

F_GETLK Returns the value 0 (zero).

F_GETLK64 Returns the value 0 (zero).

F_GETOWN Returns the process ID or process group ID of the socket receiving a SIGURG
signal. A positive value is a process ID; a negative value is a process group ID.

F_SETFD Returns the value 0 (zero).

F_SETFL Returns the value 0 (zero).

F_SETLK Returns the value 0 (zero).

F_SETLK64 Returns the value 0 (zero).

F_SETLKW Returns the value 0 (zero).

F_SETLKW64
Returns the value 0 (zero).

F_SETOWN Returns the value 0 (zero).

If the spt_fcntlz() function fails, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the spt_fcntlz() function sets errno to the corresponding
value:

[EAGAIN] The request parameter is F_SETLK or F_SETLK64, the type of lock (l_type) is
shared (F_RDLCK) or exclusive (F_WRLCK), and a segment of a file to be
locked is already exclusive-locked by another process.

The request parameter is is F_SETLK or F_SETLK64, the type of lock is
exclusive, and some portion of a segment of a file to be locked is already

7−170 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fcntlz(2)

shared-locked or exclusive-locked by another process.

[EBADF] One of these conditions exists:

• The request parameter is F_SETLK, F_SETLK64, F_SETLKW,or
F_SETLKW64, the type of lock is shared (F_RDLCK), and filedes is
not a valid file descriptor open for reading.

• The type of lock is exclusive (F_WRLCK), and filedes is not a valid file
descriptor open for writing.

• The filedes parameter is not a valid open file descriptor.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The peer socket forcibly closed the connection.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The argument2 parameter is an invalid address.

[EINTR] The request parameter is F_SETLKW or F_SETLKW64, and the spt_fcntlz()
function was interrupted by a signal that was caught.

[EINVAL] One of these conditions exists:

• The request parameter is F_DUPFD, and the argument1 parameter is
negative or greater than or equal to the maximum number of open file
descriptors permitted.

• The request parameter is F_GETLK, F_GETLK64, F_SETLK,
F_SETLK64, F_SETLKW,or F_SETLKW64, and the data pointed to
by argument2 is invalid, or filedes refers to a file that does not support
locking.

• The request parameter is F_GETOWN, and the filedes parameter does
not specify a socket.

• The request parameter is F_SETFD, and a flag in addition to
FD_CLOEXEC in the argument1 parameter is set. When the request
parameter is F_SETFD and FD_CLOEXEC is set, no other flag can be
set.

• The request parameter is F_SETFL, and any file status flag other than
O_NONBLOCK, O_APPEND, O_CREAT, O_EXCL, O_SYNC, or
O_TRUNC is set. (Values set in the O_ACCMODE mask are ignored.)

• The request parameter is F_SETOWN, and the filedes parameter does
not specify a socket.

• The call attempted to set an advisory record lock on a file that is not a
regular file.

527186-023 Hewlett-Packard Company 7−171

spt_fcntlz(2) OSS System Calls Reference Manual

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[EMFILE] The request parameter is F_DUPFD and the maximum number of open file
descriptors permitted are currently open in the calling process, or no file descrip-
tors greater than or equal to argument1 are available.

[ENETDOWN]
The request parameter is F_SETLK or F_SETLK64, the filedes parameter
specifies a file on a remote node, and communication with the remote node has
been lost.

[ENOLCK] The request parameter is F_SETLK, F_SETLK64, F_SETLKW, or
F_SETLKW64, and satisfying the lock or unlock request would cause the
number of locked regions in the system to exceed a system-imposed limit.

[ENOTOSS] One of these conditions occurred:

• The filedes parameter specifies a socket, and the calling process is run-
ning in the Guardian environment. You cannot use the spt_fcntlz()
function on an OSS socket from the Guardian environment.

• The calling process is running in the Guardian environmennt and the
request parameter is F_SETLK, F_SETLK64, F_SETLKW, or
F_SETLKW64.

[EOVERFLOW]
The command argument is F_GETLK, F_SETLK, or F_SETLKW, and the
smallest offset (if l_len parameter is zero), or the highest offset (if the l_len
parameter is nonzero), of any byte in the requested segment cannot be
represented correctly in an object of type off_t.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that failed or is
in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and the backup process took over.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process for using the file descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

7−172 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fcntlz(2)

RELATED INFORMATION
Functions: creat(2), creat64(2), close(2), dup(2), dup2(2), exec(2), fcntl(2), open(2),
open64(2), read(2), socket(2), spt_dup2x(2), spt_readx(2), spt_readz(2), spt_writex(2),
spt_writez(2), tdm_execve(2), tdm_execvep(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

• The spt_fcntlz() function does not return the errno value [EDEADLK].

• The spt_fcntlz() function does not support the O_ASYNC flag.

The POSIX standards allow some features of the fcntl() function to be defined by the imple-
menter. For more information see the fcntl(2) reference page.

527186-023 Hewlett-Packard Company 7−173

spt_fd_read_ready(2) OSS System Calls Reference Manual

NAME
spt_fd_read_ready - Waits on read-ready file descriptor

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_fd_read_ready(
const int fd,
struct timeval *timeout);

PARAMETERS
fd Specifies an OSS file descriptor.

timeout On input, the maximum interval to wait for fd ready; if NULL, then no timeout
will occur. On output, the interval remaining.

DESCRIPTION
Waits on a file descriptor to be read-ready or have an exception pending.

RETURN VALUES
0 (zero) No error.

[EINTR] A signal was received via pthread_kill() and is not blocked, ignored, or han-
dled.

[EINVAL] Invalid function argument.

[EBADF] File descriptor not open for reading or closed while being waited on.

[ENOTSUP] Operation not supported on file descriptor.

[ETIMEDOUT]
The timeout has occurred.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−174 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fd_write_ready(2)

NAME
spt_fd_write_ready - Waits on write-ready file descriptor

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_fd_write_ready(
const int fd,
struct timeval *timeout);

PARAMETERS
fd Specifies an OSS file descriptor.

timeout On input, specifies the maximum interval to wait for fd ready.

If NULL, specifies that no timeout will occur.

On output, specifies the interval remaining.

DESCRIPTION
Wait on a file descriptor to be write-ready or have an exception pending.

RETURN VALUES
0 (zero) No error.

[EINTR] A signal was received via pthread_kill() and is not blocked, ignored, or han-
dled.

[EINVAL] Invalid function argument.

[EBADF] File descriptor was not open for writing or was closed while being waited on.

[ENOTSUP] Operation was not supported on file descriptor.

[ETIMEDOUT]
timeout has occurred.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−175

spt_fflush(2) OSS System Calls Reference Manual

NAME
spt_fflush - Initiates thread-aware fflush() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_fflush(
FILE *stream);

PARAMETERS
See the fflush(3) reference page either online or in the Guardian C Native Library Calls Refer-
ence Manual.

DESCRIPTION
This is a thread-aware version of the fflush(|) function. The file descriptor underlying the stream
must be nonblocking for this function to be thread-aware.

The following macro maps spt_fflush(2) to fflush(3) and has been defined in spthread.h:

#define fflush(stream) spt_fflush(stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the fflush(3) reference page. The following also applies:

• Value errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying stream becomes invalid (is closed by another thread),
EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−176 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fflushx(2)

NAME
spt_fflushx - Flushes a stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_fflushx(
FILE *stream
);

PARAMETERS
stream Specifies the output or update stream.

DESCRIPTION
The spt_fflushx() function is the thread-aware version of the fflush() function.

The spt_fflushx() function writes any buffered data for the stream specified by the stream param-
eter and leaves the stream open. If stream is a null pointer, the spt_fflushx() function performs
this flushing action on all streams for which the behavior was previously defined. The st_ctime
and st_mtime fields of the underlying file are marked for update.

NOTES
The macro to map fflush() to spt_fflushx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fflush() to spt_fflushx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
Upon successful completion, the spt_fflushx() function returns a value of 0 (zero). Otherwise,
EOF is returned, and errno is set to indicate the error.

If the file descriptor underlying stream becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_fflushx() function sets errno to the value that
corresponds to the condition.

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

[EBADF] The file descriptor underlying the stream parameter is not valid.

527186-023 Hewlett-Packard Company 7−177

spt_fflushx(2) OSS System Calls Reference Manual

[EFBIG] An attempt was made to write a file that exceeds the process’s file size limit or
the maximum file size.

[EINTR] The spt_fflushx() function was interrupted by a signal that was caught.

[EIO] The TOSTOP tty local mode causes a background process to get a SIGTTOU
signal if it attempts to write to the controlling terminal. The SIGTTOU signal, if
it is not caught or ignored, will cause the process to block in a stopped state. A
process in an orphaned process group is not allowed to become stopped, because
there is no unprivileged process to unblock it. This condition only applies to
operations on stdio streams associated with ttys.

[EIO] is also associated with driver errors.

[ENOSPC] No free space was remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the process.

RELATED INFORMATION
Functions: close(2), exit(2), fclose(3), fflush(3), fopen(3), setbuf(3), spt_fclosex(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−178 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fgetc(2)

NAME
spt_fgetc - Initiates thread-aware fgetc() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_fgetc(
FILE *stream);

PARAMETERS
See the fgetc(3) reference page either online or in the Guardian C Native Library Calls Refer-
ence Manual.

DESCRIPTION
Thread-aware fgetc(3). The file descriptor underlying the stream must be nonblocking for this
function to be thread aware.

The following macro maps spt_fgetc(|) to fgetc(|) and has been defined in spthread.h:

#define fgetc(stream) spt_fgetc(stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See fgetc(3) reference page. The following also applies:

• Value errno is never set to EAGAIN or EWOULDBLOCK.

• If the file descriptor underlying stream becomes invalid (is closed by another thread),
EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill(|) function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−179

spt_fgetcx(2) OSS System Calls Reference Manual

NAME
spt_fgetcx - Gets a character from a specified input stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_fgetcx (
FILE *stream
);

PARAMETERS
stream Points to the file structure of an open file.

DESCRIPTION
The spt_fgetcx() function is the thread-aware version of the fgetc() function.

The spt_fgetcx() function returns the next byte from the input specified by the stream parameter
and moves the file pointer, if defined, ahead one byte in stream.

NOTES
The macro to map fgetc() to spt_fgetcx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fgetc() to spt_fgetcx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
The spt_fgetcx() function returns a character if successful. It returns the integer constant EOF
at the end of the file or upon an error. The function sets errno when an error is encountered.

If the file descriptor underlying stream becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_fgetcx() function sets errno to the corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the underlying input stream and the process
would be delayed by the read operation.

[EBADF] The file descriptor underlying the input stream is not a valid file descriptor or is
not open for reading.

[EINTR] The read operation was interrupted by a signal that was caught and no data was
transferred.

7−180 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fgetcx(2)

[ENXIO] A request was made on a nonexistent device, or the request was outside the
capabilities of the device.

[EIO] The call is attempting to read from the process’s controlling terminal and either
the process is ignoring or blocking the SIGTTIN signal or the process group is
orphaned.

[ENOMEM] Insufficient memory is available for the operation.

Any error encountered during the underlying call to the spt_readx() function can cause this
function to return the corresponding errno value reported by the spt_readx() function. If your
application program encounters an errno value not listed on this reference page, see the
spt_readx(2) reference page either online or in the Open System Services System Calls Refer-
ence Manual the cause of that error.

RELATED INFORMATION
Functions: fgetc(3), fgetcx(3), getc(3), getchar(3), gets(3), getwc(3), putc(3), read(2),
spt_fgetc(2), spt_getcx(2), spt_getcharx(2), spt_getsx(2), spt_getwcx(2), spt_putcx(2),
spt_readx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−181

spt_fgets(2) OSS System Calls Reference Manual

NAME
spt_fgets - Initiates thread-aware fgets() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

char *spt_fgets(
char *string,
int n,
FILE *stream);

PARAMETERS
See the fgets(3) reference page either online or in the Guardian C Native Library Calls Refer-
ence Manual.

DESCRIPTION
This is a thread-aware version of the fgets() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread aware.

The following macro maps spt_fgets() to fgets() and has been defined in spthread.h:

#define fgets(string, n, stream) spt_fgets(string, n, stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the fgets(3) reference page. The following also applies:

• Value errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying stream becomes invalid (is closed by another thread),
NULL is returned with an errno of [EBADF].

• If a signal is received via pthread_kill(2) and is not blocked, ignored, or handled, NULL
is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−182 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fgetsx(2)

NAME
spt_fgetsx - Gets a string from a stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

char *spt_fgetsx (
char *string,
int n,
FILE *stream
);

PARAMETERS
string Points to a string to receive bytes.

n Specifies an upper bound on the number of bytes to read.

stream Points to the FILE structure of an open file.

DESCRIPTION
The spt_fgetsx() function is the thread-aware version of the fgets() function.

The spt_fgetsx() function reads bytes from the data pointed to by the stream parameter into the
array pointed to by the string parameter. Data is read until n-1 bytes have been read, until a new-
line character is read and transferred to string, or until an end-of-file EOF condition is encoun-
tered. The string is then terminated with a NULL character.

NOTES
The macro to map fgets() to spt_fgetsx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fgets() to spt_fgetsx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
If the end of the file is encountered and no characters have been read, no characters are
transferred to string and a null pointer is returned. If a read error occurs, a null pointer is
returned. Otherwise, string is returned.

If the file descriptor underlying stream becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_fgetsx() function sets errno to the corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the underlying input stream and the process
would be delayed by the read operation.

527186-023 Hewlett-Packard Company 7−183

spt_fgetsx(2) OSS System Calls Reference Manual

[EBADF] The file descriptor underlying the input stream is not a valid file descriptor or is
not open for reading.

[EINTR] The read operation was interrupted by a signal that was caught and no data was
transferred.

[EIO] The call is attempting to read from the process’s controlling terminal and either
the process is ignoring or blocking the SIGTTIN signal or the process group is
orphaned.

[ENOMEM] Insufficient memory is available for the operation.

[ENXIO] A request was made on a nonexistent device, or the request was outside the
capabilities of the device.

Any error encountered during the underlying call to the spt_readx() function can cause this
function to return the corresponding errno value reported by the spt_readx() function. If your
application program encounters an errno value not listed on this reference page, refer to the
spt_readx(2) reference page either online or in the Open System Services System Calls Refer-
ence Manual for the cause of that error.

RELATED INFORMATION
Functions: clearerr(3) , feof(3), ferror(3), fgets(3), fileno(3), fopen(3), fread(3), getc(3),
gets(3), getwc(3), puts(3), scanf(3), spt_fgetc(2), spt_getcx(2), spt_getcharx(2), spt_getsx(2),
spt_getwcx(2), spt_putsx(2), spt_readx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−184 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fgetwc(2)

NAME
spt_fgetwc - Initiates thread-aware fgetwc() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_fgetwc(
FILE *stream);

PARAMETERS
See the fgetwc(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware version of the fgetwc() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread aware.

The following macro maps spt_fgetwc() to fgetwc() and has been defined in spthread.h:

#define fgetwc(stream) spt_fgetwc(stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the fgetwc(3) reference page. The following also applies:

• Value errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying stream becomes invalid (is closed by another thread),
WEOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, WEOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−185

spt_fgetwcx(2) OSS System Calls Reference Manual

NAME
spt_fgetwcx - Gets a wide character from a a specified input stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <wchar.h>]
#include <spthread.h>

wint_t spt_fgetwcx (
FILE *stream
);

PARAMETERS
stream Specifies the input data.

DESCRIPTION
The spt_fgetwcx() function is the thread-aware version of the fgetwc() function.

The spt_fgetwcx() function gets the next wide character from the input stream specified by the
stream parameter.

NOTES
The macro to map fgetwc() to spt_fgetwcx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fgetwc() to spt_fgetwcx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
This function returns the wide character read or the constant WEOF (wide-character end-of-file)
at the end of the file or upon an error.

If the file descriptor underlying stream becomes invalid (is closed by another thread), WEOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, WEOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_getwcx() function sets errno to the corresponding
value:

[EBADF] The file descriptor underlying stream is no longer valid.

[EINTR] A signal was received that is not blocked, ignored, or handled.

RELATED INFORMATION
Functions: fgetwc(3), fopen(3), fread(3), getc(3), gets(3), getwc(3), getwchar(3), putwc(3),
scanf(3), spt_fgetwc(2), spt_freadx(2), spt_getcx(2), spt_getsx(2), spt_getwcx(2),
spt_getwcharx(2), spt_putwcx(2).

7−186 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fgetwcx(2)

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−187

SPT_FILE_CLOSE_(2) OSS System Calls Reference Manual

NAME
SPT_FILE_CLOSE_ - Closes an open Guardian file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_FILE_CLOSE_ (
short filenum,
[short tape_disposition]
);

PARAMETERS
filenum specifies the file number of a Guardian file open instance that identifies the file to

be closed.

tape_disposition
Indicates the tape control action to take:

0 Rewind and unload; do not wait for completion.

1 Rewind and unload, do not wait for completion.

2 Rewind and leave online; do not wait for completion.

3 Rewind and leave online; wait for completion.

4 Do not rewind; leave online.

Other input values result in no error if the file is a tape device; the control action
might be unpredictable. If this parameter is omitted, 0 (zero) is used.

DESCRIPTION
The SPT_FILE_CLOSE_ () function is the thread-aware version of the Guardian
FILE_CLOSE_ procedure.

The FILE_CLOSE_ procedure closes a Guardian file open instance. Closing a file open instance
terminates access to the file through that open instance. You can use SPT_FILE_CLOSE_() to
close files that were opened by SPT_FILE_OPEN_().

For programming information about the FILE_CLOSE_ procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

Considerations
Returning space allocation after closing a file

Closing a disk file causes the space that is used by the resident file control block
to be returned to the system main-memory pool if the disk file is not open con-
currently. A temporary disk file is purged if the file was not open concurrently.
Any space that is allocated to that file is made available for other files. With any
file closure, the space allocated to the access control block (ACB) is returned to
the system.

7−188 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_FILE_CLOSE_(2)

Closing a nowait file open
If an SPT_FILE_CLOSE_() call is executed for a nowait file that has pending
operations, any incomplete operations are canceled. There is no indication as to
whether the operation completed or not.

Labeled tape processing
If your system has labeled tape processing enabled, all tape actions (as specified
by tape_disposition) wait for completion.

Process close message
A process can receive a process close system message when it is closed by
another process. It can obtain the process handle of the closer by a subsequent
call to the Guardian FILE_GETRECEIVEINFO_ procedure. For detailed infor-
mation about system messages, see the Guardian Procedure Errors and Mes-
sages Manual.

This message is also received if the close is made by the backup process of a
process pair. Therefore, a process can expect two of these messages when being
closed by a process pair.

RETURN VALUES
The SPT_FILE_CLOSE_ () function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_OPEN_(2),
SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEREADX(2), SPT_WRITEUPDATEUNLOCKX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−189

spt_FileIOHandler_p(2) OSS System Calls Reference Manual

NAME
spt_FileIOHandler_p - Executes callback type required by spt_regFileIOHandler()

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

typedef void (*spt_FileIOHandler_p)(const short filenum,
const long tag, const long count_transferred,
const long error, void *userdata);

PARAMETERS
filenum Specifies Guardian file number whose IO has completed

tag Specifies tag of completed IO

count_transferred
Specifies transfer count of completed IO

error Specifies Guardian error number for completed IO

userdata Specifies address of user data area; set when the application called the
spt_awaitio() function

DESCRIPTION
Callback type required by the spt_regFileIOHandler() function. The callback is executed in the
context of the last running thread; it executes on the stack of the last running thread.

RETURN VALUES
None.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−190 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_FILE_OPEN_(2)

NAME
SPT_FILE_OPEN_ - Establishes a communication path between an application process and a
file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_FILE_OPEN_ (
{ const char *filename | const char *pathname },
short length,
short *filenum,
[short access],
[short exclusion],
[short nowait_depth],
[short sync_or_receive_depth],
[short options],
[short seq_block_buffer_id],
[short seq_block_buffer_len],
[short *primary_processhandle],
[long elections]
);

PARAMETERS
filename | pathname

filename specifies the Guardian filename of a Guardian file to be opened. The
value of filename must be a valid fully or partially qualified file name or DEFINE
name. If the name is partially qualified, it is resolved using the contents of the
=_DEFAULTS DEFINE.

pathname specifies the OSS filename or pathname of an OSS file to be opened.
The value of the pathname parameter is terminated by a null character. options
bit 10 must be set to 1 to open an OSS file.

filenum returns a Guardian file number that is used to identify the Guardian file open
instance in subsequent Guardian file-system calls. If the file cannot be opened, a
value of -1 is returned.

filenum is used as an input parameter only when you are attempting a backup
open. In that case, you must supply the primary_processhandle parameter or
else the input value of filenum is ignored. For a backup open, the value specified
for filenum must be the filenum value that was returned when the file was opened
by the primary process. If a backup open is successful, the input value of filenum
is returned unless options bit 3 is set, in which case a new file number is assigned
for the backup open. If the backup open is unsuccessful, -1 is returned.

access Specifies the desired access mode for the file to be opened. Valid values are:

0 Read-write

527186-023 Hewlett-Packard Company 7−191

SPT_FILE_OPEN_(2) OSS System Calls Reference Manual

1 Read only

2 Write only

3 Extend (supported only for tape)

The default is 0 (zero).

exclusion Specifies the desired mode of compatibility with other openers of the file. Valid
values are:

0 Shared

1 Exclusive

2 Process exclusive

3 Protected

The default is 0 (zero).

nowait_depth Specifies the number of nowait I/O operations that can be in progress for the file
concurrently with other processing. If this parameter is omitted or 0 (zero), only
waited I/O operations are permitted against the file. The maximum value is 1 for
disk files and $RECEIVE. The maximum value is 15 for other objects, except
for the Transaction Monitoring Facility (TMF) transaction pseudofile (TFILE),
which has a maximum of 1000. For details about the TFILE, see the TMF Appli-
cation Programmer’s Guide.

sync_or_receive_depth
The purpose of this parameter depends on the type of device being opened:

disk file Specifies the number of nonretryable (that is, write) requests
whose completion the Guardian file system must remember.
You must specify a value of 1 or greater to recover from a path
failure occurring during a write operation. This value also
implies the number of write operations that the primary process
in a process pair can perform to this file without intervening
checkpoints to its backup process. For disk files, this parameter
is called sync depth. The maximum value is 15.

If omitted, or if 0 (zero) is specified, internal checkpointing does
not occur. Disk path failures are not automatically retried by the
file system.

$RECEIVE file
Specifies the maximum number of incoming messages read by
the SPT_READUPDATEX() function that the application pro-
cess is allowed to queue before corresponding reply operations
must be performed. If omitted or 0 (zero),
SPT_READUPDATEX() and reply operations to $RECEIVE
are not permitted. For $RECEIVE, this parameter is called
receive depth, and the maximum number of queued incoming
messages is 4047.

7−192 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_FILE_OPEN_(2)

process pair Specifies whether an I/O operation is automatically redirected to
the backup process if the primary process or its processor
module fails. For processes, this parameter is called sync depth.
The process determines the maximum value. The value must be
at least 1 for an I/O operation to a remote process pair to recover
from a network failure. If this parameter is greater than or equal
to 1, the server is expected to save or be able to regenerate that
number of replies. If this parameter is 0 (zero), and if an I/O
operation cannot be performed to the primary process of a pro-
cess pair, an error indication is returned to the originator of the
message. On a subsequent I/O operation, the file system
redirects the request to the backup process.

For other device types, the meaning of this parameter depends on whether the
sync-ID mechanism is supported by the device being opened. If the device does
not support the sync-ID mechanism, 0 (zero) is used regardless of what you
specify (this is the most common case). If the device supports the sync-ID
mechanism, specifying a nonzero value causes the results of that number of
operations to be saved; in case of path failures, the operations are retried
automatically. The actual value being used can be obtained by a call to the
FILE_GETINFOLIST_ procedure.

options Specifies optional characteristics as a bit mask. The bits, when set to 1, indicate:

0 Unstructured access. For disk files, access is to occur as if the
file were unstructured, that is, without regard to record structures
and partitioning. (For unstructured files, setting this bit to 1
causes secondary partitions to be inaccessible.) This bit must be
0 (zero) for other devices.

1 Nowait open processing. Specifies that the processing of the
open proceeds in a nowait manner. Unless
SPT_FILE_OPEN_() returns an error, a nowait open must be
completed by a call to the Guardian AWAITIOX procedure.
This option cannot be specified for the TMF transaction
pseudofile (TFILE). This option does not determine the nowait
mode of I/O operations. The nowait_depth parameter, which
controls the nowait mode of I/O operations, must have a nonzero
value when you use this option.

2 No open time update. For disk files, the "time of last open" file
attribute is not updated by this open. This bit must be 0 (zero)
for other devices.

3 Any file number for backup open. When performing a backup
open, specifies that the system can use any file number for the
backup open. A value of 0 (zero) specifies that the backup open
is to have the same file number as the primary open. Guardian
file-system error 12 is returned if that file number is already in
use.

4 through 9 Reserved; specify 0 (zero).

527186-023 Hewlett-Packard Company 7−193

SPT_FILE_OPEN_(2) OSS System Calls Reference Manual

10 Open an OSS file by its OSS pathname. Specifies that the file to
be opened is identified by the pathname parameter.

11 Reserved; specify 0 (zero).

12 No transactions. For $RECEIVE, messages are not to include
transaction identifiers. This bit must be 0 (zero) if bit 15 is 1.

13 Internationalization locale support. For $RECEIVE, data mes-
sages include internationalization locale information. This bit
must be 0 (zero) if bit 15 is 1. For information about internation-
alization, see the Software Internationalization Guide.

14 Old-format system messages. For $RECEIVE, system messages
should be delivered in C-series format. If this bit is 0 (zero), D-
series format messages are delivered. For other device types,
this bit must be 0 (zero). See Interprocess Communication
Considerations in the DESCRIPTION subsection of this refer-
ence page.

15 No file-management system messages. For $RECEIVE,
specifies that the caller does not wish to receive process open,
process close, CONTROL, SETMODE, SETPARAM, RESET-
SYNC, and CONTROLBUF messages. If this bit is 0 (zero),
messages are delivered as normal; some messages are received
only with SPT_SETMODE(80). For other device types, this bit
must be 0 (zero).

When options is omitted, 0 (zero) is used for all bits.

seq_block_buffer_id
If present and not 0 (zero), identifies the buffer to be used for shared sequential
block buffering; all opens made through SPT_FILE_OPEN_() and using this
ID share the same buffer. You can supply any integer value for this parameter.

If seq_block_buffer_id is omitted or 0 (zero), and sequential block buffering is
requested, the buffer is not shared. In this case, the buffer resides in the
process’s process file segment (PFS) with the size given by
seq_block_buffer_len.

seq_block_buffer_len
Specifies whether sequential block buffering is being requested. If this parame-
ter is supplied with a value greater than 0 (zero), it indicates a request for
sequential block buffering and specifies the length in bytes of the sequential
block buffer. If this parameter is omitted or 0 (zero), sequential block buffering
is not requested. Sequential block buffering is only for disk files.

If this value is less than the data-block length that was given to this file or to any
associated alternate-key file, the larger value is used. Supplying a nonzero value
for this parameter causes a buffer to be allocated unless an existing buffer is to
be shared (see the seq_block_buffer_id parameter). If an existing buffer is to be
shared, but it is smaller than seq_block_buffer_len, sequential block buffering is
not provided and a warning value of 5 is returned.

7−194 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_FILE_OPEN_(2)

primary_processhandle
Indicates that the caller is requesting a backup open and specifies the process
handle of the primary process that already has the file open when its backup
attempts to open the file. If this parameter is supplied and not null (a null pro-
cess handle has -1 in each word), filenum must contain the filenum value that was
returned to the primary. If a null process handle is supplied, or the parameter is
omitted, a normal open is being requested. Use this option only when the
backup process is the caller. It is more common for the primary process to per-
form this operation by a call to the FILE_OPEN_CHKPT_ procedure.

elections Specifies the following options as a bit mask:

0 through 30 Reserved; specify 0 (zero).

31 Use 64-bit primary keys. For disk files only, bit 31 specifies that
64-bit primary-key values are used instead of 32-bit values for
unstructured, relative, or entry-sequenced files. Bit 31 is ignored
for key-sequenced files and nondisk devices.

You can use the elections parameter with both Format 1 and Format 2 Guardian
files. If this parameter is omitted, 0 (zero) is used for all bits.

DESCRIPTION
The SPT_FILE_OPEN_() function is the thread-aware version of the Guardian FILE_OPEN_
procedure.

The SPT_FILE_OPEN_() function establishes a communication path between an application
process and a file. When SPT_FILE_OPEN_() successfully completes, it returns a Guardian
file number to the caller. The file number identifies this access path to the file in subsequent
Guardian file-system calls.

General Considerations
File numbers File numbers are unique within a process. The lowest file number is 0 (zero) and

is reserved for $RECEIVE; the remaining file numbers start at 1. The lowest
available file number is always assigned, except in the case of backup opens.
When a file is closed, its file number becomes available for a subsequent file
open to use.

Maximum number of open files
The maximum number of files in the system that can be open at any given time
depends on the space available for control blocks: access control blocks
(ACBs), file control blocks (FCBs), and open control blocks (OCBs). The
amount of space available for control blocks is limited primarily by the physical
memory size of the system. The maximum amount of space for ACBs is deter-
mined by the size of the process file segment (PFS). See the description of the
pfs-size parameter for the PROCESS_CREATE_ procedure in the Guardian Pro-
cedure Calls Reference Manual.

Multiple opens by the same process
If a given file is opened more than once by the same process, a unique file
number is returned for each open. These file numbers provide logically separate
accesses to the same file; each file number has its own ACB, its own file posi-
tion, and its own last error value. If a nowait I/O operation haS begun and a
second nowait operation is started (using a second file number for the same file),
the I/O requests:

527186-023 Hewlett-Packard Company 7−195

SPT_FILE_OPEN_(2) OSS System Calls Reference Manual

• Are independent

• Might arrive in either order at the destination

• Might complete in either order

Multiple opens on a given file can create a deadlock. Locks are granted on an
open file (that is, file number) basis. Therefore, if a process opens the same file
multiple times, a lock of one file number excludes access to the file through other
file numbers. The process is suspended forever if the default locking mode is in
effect and a deadlock occurs.

Limit on number of concurrent opens
There is a limit on the total number of concurrent opens permitted on a file. This
determination includes opens by all processes. The specific limit for a file
depends on the file’s device type:

Disk files Cannot exceed 32,767 opens per disk.

Process Defined by the process (see the discussion of controlling openers
in the Guardian Programmer’s Guide).

$0 Unlimited opens.

$0.#ZSPI 128 concurrent opens permitted.

$OSP Ten times the number of subdevices (up to a maximum of 830
opens).

$RECEIVE One open per process is permitted.

Other Varies by subsystem.

Specifying a nowait_depth value greater than 0 (zero) causes all I/O operations
to be performed in a nowait manner. Nowait I/O operations must be completed
by a call to the AWAITIOX procedure.

Nowait I/O operations on different file numbers (even if for the same file) are
independent, might arrive in any order at the destination, and might be com-
pleted by AWAITIOX in any order.

Nowait opens If you open a file in a nowait manner (options bit 1 = 1) and if
SPT_FILE_OPEN_() returns no error (returns a value of 0 [zero]), the open
operation must be completed by a call to AWAITIOX.

If there is an error, no system message is sent to the object being opened and you
do not need to call AWAITIOX to complete the operation. If there is no error,
the filenum parameter returned by SPT_FILE_OPEN_() is valid; however, you
cannot initiate any I/O operation on the file until you complete the open by cal-
ling AWAITIOX.

If you specify the tag parameter in the call to AWAITIOX, a -30D is returned;
the values returned in the buffer and count parameters to AWAITIOX are
undefined. If an error returns from AWAITIOX, it is your responsibility to close
the file.

For the TMF transaction pseudofile, or for a waited file (nowait_depth = 0
[zero]), a request for a nowait open is rejected.

The Guardian file system implementation of a nowait open might use waited
calls in some cases. However, it is guaranteed that the open message is sent

7−196 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_FILE_OPEN_(2)

using nowait I/O to a process; the opener does not wait for the process being
opened to service the open message.

Direct and buffered I/O transfers
A file opened by SPT_FILE_OPEN_() uses direct I/O transfers by default;
SETMODE 72 is used to force the system to use an intermediate buffer in the
process file segment (PFS) for I/O transfers. This behavior is unlike the obsoles-
cent Guardian OPEN procedure call, which uses a PFS buffer for I/O transfers by
default.

Sequential block buffering
Sequential block buffering is only supported for disk files. If you are using
sequential block buffering, the file should usually be opened with protected or
exclusive access. You can use shared access, but it is somewhat slower than the
other access methods, and there might be concurrency problems. See the discus-
sion of "Sequential Block Buffering" in the Enscribe Programmer’s Guide.

Named processes
If you supply a process filename for a named process, it can represent any pro-
cess with the same name. System messages are normally sent to the current pri-
mary process. The exception is when a named process supplies its own name to
SPT_FILE_OPEN_(). In that case, the name refers to the backup process and
system messages are sent to the backup process.

A named process can be represented with or without a sequence number.
SPT_FILE_OPEN_() treats the two name forms differently:

• If you supply a process file name that includes a sequence number, the
process must have a matching sequence number or the open fails with
error 14. When retrying I/O on a process opened under such a name, the
file system does not attempt to send messages to a possible backup pro-
cess of the same name unless it has a matching sequence number. This
behavior ensures that the named process is a true backup of the primary
process.

• If you supply a process file name that does not include a sequence
number, any process with a matching name can be opened and can be
sent I/O retries. A newly created process that receives an I/O retry
intended for another process of the same name will usually reject it with
an error 60, but this behavior is under the control of the application.

Partitioned files
A separate FCB exists for each partition of a partitioned file. There is one ACB
per accessor (as for single-volume files), but this ACB requires more main
memory because it contains the information necessary to access all of the parti-
tions, including the location and partial-key value for each partition.

Disk file open security check
When a disk file open is attempted, the system performs a security check. The
accessor’s (that is, the caller’s) security level is checked against the file security
level for the requested access mode, as follows:

for read access read security level is checked.

for write access
write security level is checked.

527186-023 Hewlett-Packard Company 7−197

SPT_FILE_OPEN_(2) OSS System Calls Reference Manual

for read-write access
read and write security levels are checked.

A Guardian file has one of seven levels of security for each access mode. The
owner of the file can set the security level for each access mode by using SET-
MODE function 1 or by using the File Utility Program (FUP) SECURE com-
mand. The following table shows the seven levels of security:

Table 7−3. Levels of Guardian File Security

FUP Code Program Value Access Permitted__
- 7 Local super ID only
U 6 Owner (local or remote),

that is, any user with
owner’s ID

C 5 Member of owner’s group
(local or remote), that is,
any member of owner’s
community

N 4 Any user (local or remote)
O 2 Owner only (local)
G 1 Member of owner’s group

(local)
A 0 Any user (local)

For a given access mode, the accessor’s security level is checked against the file
security level. File access is allowed or not allowed as shown in the following
table. In this table, file security levels are indicated by FUP security codes. For
a given accessor security level, a Y indicates that access is allowed to a file with
the security level shown; an X indicates that access is not allowed.

Table 7−4. Allowed Guardian File Accesses

Accessor’s Security Level File Security Level
- U C N O G A__

Super ID user, local access Y Y Y Y Y Y Y
Super ID user, remote access X Y Y Y X X X

Owner or owner’s group manager,
remote access

X Y Y Y X X X

Member of owner’s group, remote
access

X X Y Y X X X

Any other user, remote access X X X Y X X X

Owner or owner’s group manager,
local access

X Y Y Y Y Y Y

Member of owner’s group, local
access

X X Y Y X Y Y

7−198 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_FILE_OPEN_(2)

Any other user, local access X X X Y X X Y

If the caller to SPT_FILE_OPEN_() fails the security check, the open fails with
an error 48. You can obtain the security level of a file by a call to the Guardian
FILE_GETINFOLIST[BYNAME]_ procedure, the FILEINFO procedure, or by
the File Utility Program (FUP) INFO command.

If you are using the Safeguard product, this security information might not apply.

Tape file open access mode
The file system does not enforce read-only or write-only access for unlabeled
tape, even though no error is returned if you specify one of these access modes
when opening a tape file.

File open exclusion and access mode checking
When a file open is attempted, the requested access and exclusion modes are
compared with those of any opens already granted for the file. If the attempted
open is in conflict with other opens, the open fails with error 12. For a table that
lists the possible current modes and requested modes, indicating whether an
open succeeds or fails, see the description of the FILE_OPEN_ procedure in the
Guardian Procedure Calls Reference Manual. For the Optical Storage Facility
only, the "process exclusive" exclusion mode is also supported. Process
exclusive is the same as exclusive for opens by other processes, but the same as
shared for opens by the same process.

Protected exclusion mode
Protected exclusion mode has meaning only for disk files. For other files, speci-
fying protected exclusion mode is equivalent to specifying shared exclusion
mode.

Disk File Considerations
Maximum number of concurrent nowait operations

The maximum number of concurrent nowait operations permitted for an open of
a disk file is 1. Attempting to open a disk file and specify a nowait_depth value
greater than 1 causes SPT_FILE_OPEN_() to fail with an error 28.

Unstructured files

File pointers after an open
After a disk file is opened, the current-record and next-record
pointers begin at a relative byte address (RBA) of 0, and the first
data transfer (unless positioning is performed) is from that loca-
tion. After a successful open, the pointers are:

current-record pointer = 0D
next-record pointer = 0D

Sharing the same EOF pointer
If a given disk file is opened more than once by the same pro-
cess, separate current-record and next-record pointers are pro-
vided for each open, but all opens share the same EOF pointer.

Structured files

Accessing structured files as unstructured files
The unstructured access option (options bit 0 = 1) permits a file
to be accessed as an unstructured file. You must maintain the
block format used by Enscribe if the file is be accessed again in

527186-023 Hewlett-Packard Company 7−199

SPT_FILE_OPEN_(2) OSS System Calls Reference Manual

its structured form. (HP reserves the right to change this block
format at any time.) For information about Enscribe block for-
mats, see the Enscribe Programmer’s Guide.

For a file opened using the unstructured access option, a data
transfer occurs to the position in the file specified by an RBA
(instead of to the position indicated by a key address field or
record number); the number of bytes transferred is that specified
in the file-system procedure call (instead of the number of bytes
indicated by the record format).

If a partitioned file, either structured or unstructured, is opened
using the unstructured access option, only the first partition is
opened. You must open the remaining partitions individually
with separate calls to SPT_FILE_OPEN_() (each call specify-
ing unstructured access).

Accessing audited structured files as unstructured files is not
allowed.

Current-state indicators after an open
After successful completion of an open, the current-state indicators have these
values:

• The current position is that of the first record in the file by primary key.

• The positioning mode is approximate.

• The comparison length is 0.

If the Guardian READ procedure is called immediately after
SPT_FILE_OPEN_() for a structured file, READ reads the first record in the
file; in a key-sequenced file, this is the first record by primary key. Subsequent
reads, without intervening positioning, read the file sequentially (in a relative or
entry-sequenced file) or by primary key (in a key-sequenced file) through the last
record in the file. When a key-sequenced file is opened, the Guardian KEYPO-
SITION procedure is usually called before any subsequent Guardian I/O pro-
cedure call (such as READ, READUPDATE, or WRITE) to establish a position
in the file.

Queue files If the READUPDATELOCK operation is to be used, the value of the
sync_or_receive_depth parameter must be 0 (zero). You can use a separate open
for operations with sync_or_receive_depth greater than 0 (zero).

You cannot use sequential block buffering.

64-bit primary keys
In order to access non-key-sequenced files bigger than 4 gigabytes, you must set
bit 31 of the SPT_FILE_OPEN_() elections parameter. Use of this parameter
allows the use of procedures using 32-bit primary keys (POSITION, KEYPOSI-
TION, REPOSITION, GETSYNCINFO, and SETSYNCINFO) and the 32-bit
key items of the FILE_GETINFOLIST_, FILEINFO, and FILERECINFO pro-
cedures.

7−200 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_FILE_OPEN_(2)

Considerations for Terminals
The terminal used as the operator console should not be opened with exclusive access. If it is,
console messages are not logged.

Interprocess Communication Considerations
Maximum concurrent nowait operations for an open of $RECEIVE

The maximum number of concurrent nowait operations permitted for an open of
$RECEIVE is 1. Attempting to open $RECEIVE and to specify a value greater
than 1 causes an error 28 to be returned.

When SPT_FILE_OPEN_() completes
When process A attempts to open process B, SPT_FILE_OPEN_() completes
as follows:

• If process B has already opened $RECEIVE with file-management sys-
tem messages disabled, the open call by process A completes immedi-
ately.

• If process B has opened $RECEIVE requesting file-management system
messages enabled, the open call completes when process B reads the
open message from process A by using READX, or if B uses READUP-
DATEX, the open call completes when process B replies to the open
message (by using REPLYX).

If process B has not yet opened $RECEIVE, the open by process A does
not complete until process B opens $RECEIVE. Specifically, the open
by process A completes as follows:

— When process B opens $RECEIVE with file-management sys-
tem messages disabled, a waited open by process A completes
immediately, but a nowait open by process A completes after the
first read of $RECEIVE by process B.

— When process B opens $RECEIVE with file-management sys-
tem messages enabled, the open call by process A completes
when process B reads the open message from A by using
READ[X], or if B uses READUPDATE[X], the open call com-
pletes when process B replies to the open message (by using
REPLY[X]).

Message formats
When $RECEIVE is opened by SPT_FILE_OPEN_(), system messages are
delivered to the caller in D-series format unless messages in C-series format are
requested by setting options bit 14 to 1. (No file-management system messages
are delivered to the caller if options bit 15 is set to 1 when opening $RECEIVE.)

Messages from high-PIN processes
Opening $RECEIVE with SPT_FILE_OPEN_() implies that the caller is capa-
ble of handling messages from processes with PINs greater than 255.

Opening $RECEIVE and being opened by a remote long-named process
A process that has a process name consisting of more than five characters will
fail with an error 20 if it attempts to open a process on a remote node and the
process it attempts to open:

• Used the SPT_FILE_OPEN_() procedure to open $RECEIVE and
requested that C-series format messages be delivered, or

527186-023 Hewlett-Packard Company 7−201

SPT_FILE_OPEN_(2) OSS System Calls Reference Manual

• Used the Guardian OPEN procedure to open $RECEIVE.

Notification of this failure is not sent to the process reading $RECEIVE.

Opening an unconverted (C-series format) process from a high-PIN process
A high-PIN process cannot open an unconverted process unless the unconverted
process has the HIGHREQUESTERS object-file attribute set. If a high-PIN pro-
cess attempts to open a low-PIN process that does not have this attribute set, the
high-PIN process receives file-system error 560.

System Message
When a process is opened by either SPT_FILE_OPEN_() or the Guardian OPEN procedure, it
receives a process open message (unless it specified when opening $RECEIVE that it wants no
messages). This message is in D-series format (message -103) or in C-series format (message
-30), depending on what the receiving process specified when it opened $RECEIVE. This mes-
sage is also received if the backup process of a process pair performs an open. Therefore, a pro-
cess can expect two of these messages when being opened by a process pair.

You can obtain he process handle of the opener by a subsequent call to
FILE_GETRECEIVEINFO_. For a description of the process open message see the Guardian
Procedure Errors and Messages Manual.

DEFINE Considerations
• The filename or pathname parameter can be a DEFINE name; SPT_FILE_OPEN_()

uses the file name given by the DEFINE as the name of the object to be opened. If you
specify a CLASS TAPE DEFINE without the DEVICE attribute, the system selects the
tape drive to be opened. A CLASS TAPE DEFINE has other effects when supplied to
SPT_FILE_OPEN_(). For more information about DEFINEs, see Appendix E of the
Guardian Procedure Calls Reference Manual.

• If a supplied DEFINE name is a valid name but no such DEFINE exists, the procedure
returns an error 198 (missing DEFINE).

• When performing a backup open of a file originally opened with a DEFINE, filename
must contain the same DEFINE name. The DEFINE must exist and must have the same
value as when the primary open was performed.

Safeguard Considerations
For information on files protected by Safeguard, see the Safeguard Reference Manual.

OSS Considerations
• To open an OSS file by its pathname, set options bit 10 to 1 and specify the pathname

parameter.

• You can open OSS files only with shared exclusion mode.

EXAMPLES
The open in the following example has the following defaults: waited I/O, exclusion mode
(shared), access mode (read/write), sync depth (0).

error = SPT_FILE_OPEN_ (filename, filenum);

RETURN VALUES
The SPT_FILE_OPEN_() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

This function can return any error number that the Guardian FILE_OPEN_ procedure call can
return. It can also return the following error number:

7−202 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_FILE_OPEN_(2)

12 Callback has already been registered for this filenum.

Some error numbers are warnings (that is, they indicate conditions that do not prevent the file
from being opened); check the value returned for the filenum parameter to determine whether the
file was opened successfully. Forexplanation of other error numbers returned, see the Guardian
Procedure Errors and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEREADX(2), SPT_WRITEUPDATEUNLOCKX(2),
SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−203

spt_fork(2) OSS System Calls Reference Manual

NAME
spt_fork - Initiates a thread-aware fork() operation

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

pid_t spt_fork(void);

PARAMETERS
None.

DESCRIPTION
This is a thread-aware version of the fork() function call that creates a new process from the
current thread.

The following macro maps the spt_fork() call to the fork() funciton and has been defined in the
spthread.h header file:

#define fork() spt_fork().

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
See the fork(2) reference page.

RELATED INFORMATION
Functions: fork(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−204 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fprintf(2)

NAME
spt_fprintf - Initiates thread-aware fprintf() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_fprintf(
FILE *stream,
const char *format,
...);

PARAMETERS
See the fprintf(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware version of the fprintf() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread aware.

The following macro maps spt_fprintf() to fprintf() and has been defined in spthread.h:

#define fprintf spt_fprintf

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the fprintf(3) reference page. The following also applies:

• Value errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying the stream becomes invalid (is closed by another thread),
-1 is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−205

spt_fprintfx(2) OSS System Calls Reference Manual

NAME
spt_fprintfx - Prints formatted output to an output stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_fprintfx (
FILE *stream,
const char *format
[, value] . . .
);

PARAMETERS
stream Points to a FILE structure specifying an open stream to which converted values

will be written.

format Specifies a character string combining literal characters with conversion
specifications.

value Specifies the data to be converted according to the format parameter.

DESCRIPTION
The spt_fprintfx() function is the thread-aware version of the fprintf() function.

The spt_fprintfx() function converts, formats, and writes its value parameters, under control of
the format parameter, to the output stream specified by its stream parameter.

The format parameter is a character string that contains two types of objects:

• Literal characters, which are copied to the output stream.

• Conversion specifications, each of which causes zero or more items to be fetched from
the value parameter list.

If not enough items for format are in the value parameter list, the results are unpredictable. If
more values remain after the entire format has been processed, they are ignored.

Conversion Specifications
Each conversion specification in the format parameter has the following syntax:

• A % (percent sign).

The spt_fprintfx() function can handle a format string that enables the system to process
elements of the parameter list in variable order. In such a case, the normal conversion
character % (percent sign) is replaced by %digit$, where digit is a decimal number in
the range from 1 to NL_ARGMAX. Conversion is then applied to the specified argu-
ment, rather than to the next unused argument. This feature provides for the definition of
format strings in an order appropriate to specific languages. When variable ordering is
used, the * (asterisk) specification for field width in precision is replaced by %digit$. If
the variable ordering feature is used, it must be specified for all conversions.

• Zero or more flags that modify the meaning of the conversion specification. The flag
characters and their meanings are:

7−206 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fprintfx(2)

- Left align the result of the conversion within the field.

+ Begin the result of a signed conversion with a sign (+ or -).

(space) Prefix a space character to the result if the first character of a signed
conversion is not a sign. If both the (space) and + flags appear, the
(space) flag is ignored.

Convert the value to an alternate form. For o conversion, it increases the
precision to force the first digit of the result to be a 0 (zero). For x and X
conversions, a nonzero result has 0x or 0X prefixed to it. For e, E, f, g,
and G conversions, the result always contains a radix character, even if
no digits follow it. For g and G conversions, trailing zeros are not
removed from the result. For c, C, d, i, s, S, and u conversions, the flag
has no effect.

0 Pad to field width using leading zeros (following any indication of sign
or base) for d, e, E, f, g, G, i, o, u, x, and X conversions; no space pad-
ding is performed. If the 0 and - (dash) flags both appear, the 0 flag will
be ignored. For d, i, o u, x, and X conversions, if a precision is specified,
the 0 flag is also ignored. For other conversions, the behavior is
undefined.

• An optional decimal digit string that specifies the minimum field width. If the converted
value has fewer characters than the field width, the field is padded on the left to the
length specified by the field width. If the left-adjustment flag is specified, the field is
padded on the right.

A field width can be indicated by an * (asterisk) instead of a digit string. In this case, an
integer (int) value parameter supplies the field width. The value parameter converted for
output is not fetched until the conversion letter is reached, so the parameters specifying
field width or precision must appear before the value (if any) to be converted. If the
corresponding parameter has a negative value, it is treated as a - (dash) left alignment
option followed by a positive field width. When variable ordering with the Ldigit$ for-
mat is used, the * (asterisk) specification for field width in precision is replaced by
*digit$.

• An optional precision. The precision is a . (dot) followed by a decimal digit string. If no
precision is given, it is treated as 0 (zero). The precision specifies:

— The minimum number of digits to appear for the d, u, o, x, or X conversions.

— The number of digits to appear after the radix character for the e, E, and f
conversions.

— The maximum number of significant digits for the g and G conversions.

— The maximum number of bytes to be printed from a string in the s or S conver-
sion.

A field precision can be indicated by an * (asterisk) instead of a digit string. In this case,
an integer (int) value parameter supplies the field precision. The value parameter con-
verted for output is not fetched until the conversion letter is reached, so the parameters
specifying field width or precision must appear before the value (if any) to be converted.
If the value of the corresponding parameter is negative, it is treated as if the precision
had not been specified. When variable ordering with the Ldigit$ format is used, the *
(asterisk) specification for field width in precision is replaced by *digit$.

527186-023 Hewlett-Packard Company 7−207

spt_fprintfx(2) OSS System Calls Reference Manual

• An optional h, l, ll, or L indicating the size of the argument corresponding to the follow-
ing integer or floating-point conversion specifier:

— An h followed by a d, i, o, u, x, or X conversion specifier indicates that the argu-
ment will be treated as a short int or unsigned short int.

— An h followed by an n conversion specifier indicates that the argument will be
treated as a pointer to a short int.

— An l followed by a d, i, o, u, x, or X conversion specifier indicates that the argu-
ment will be treated as a long int or unsigned long int.

— An l followed by an n conversion specifier indicates that the argument will be
treated as a pointer to a long int.

— An ll followed by a d, i, o, u, x, or X conversion specifier indicates that the argu-
ment will be treated as a long long int or unsigned long long int.

— An ll followed by an n conversion specifier indicates that the argument will be
treated as a pointer to a long long int.

— An L followed by a e, E, f, g, or G conversion specifier indicates that the argu-
ment will be treated as a long double.

— An L followed by a d, i, o, x, or X conversion specifier indicates that the argu-
ment will be treated as a long long, which is a 64-bit integer data type and an HP
extension.

• A character that indicates the type of conversion to be applied:

% Performs no conversion. Prints %.

d or i Accepts an integer (int) value and converts it to signed decimal notation.
The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting
a 0 (zero) value with a precision of 0 (zero) is a null string. Specifying a
field width with a 0 (zero) as a leading character causes the field width
value to be padded with leading zeros.

u Accepts an integer (int) value and converts it to unsigned decimal nota-
tion. The precision specifies the minimum number of digits to appear. If
the value being converted can be represented in fewer digits, it is
expanded with leading zeros. The default precision is 1. The result of
converting a 0 (zero) value with a precision of 0 (zero) is a null string.
Specifying a field width with a 0 (zero) as a leading character causes the
field width value to be padded with leading zeros.

o Accepts an integer (int) value and converts it to unsigned octal notation.
The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting a
0 (zero) value with a precision of 0 (zero) is a null string. Specifying a
field width with a 0 (zero) as a leading character causes the field width
value to be padded with leading zeros. An octal value for field width is
not implied.

7−208 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fprintfx(2)

x or X Accepts an integer (int) value and converts it to unsigned hexadecimal
notation. The letters abcdef are used for the x conversion and the letters
ABCDEF are used for the X conversion. The precision specifies the
minimum number of digits to appear. If the value being converted can
be represented in fewer digits, it is expanded with leading zeros. The
default precision is 1. The result of converting a 0 (zero) value with a
precision of 0 (zero) is a null string. Specifying a field width with a 0
(zero) as a leading character causes the field width value to be padded
with leading zeros.

f Accepts a float or double value and converts it to decimal notation in the
format [-]ddd.ddd. The number of digits after the radix character is
equal to the precision specification. If no precision is specified, six digits
are output. If the precision is 0 (zero), no radix character appears (unless
the # flag is specified). If a radix character is output, at least one digit is
output before it. The value is rounded to the appropriate number of
digits.

e or E Accepts a float or double value and converts it to the exponential form
[-]d.ddde+/-dd. One digit is before the radix character and the number of
digits after the readix character is equal to the precision specification. If
no precision is specified, six digits are output. If the precision is 0
(zero), no radix character appears (unless the # flag is specified). The E
conversion character produces a number with uppercase E instead of
lowercase e before the exponent. The exponent always contains at least
two digits. If the value is 0 (zero), the exponent is 0 (zero).

g or G Accepts a float or double value and converts it in the style of the e, E, or
f conversion characters, with the precision specifying the number of
significant digits. Trailing zeros are removed from the result. A radix
character appears only if it is followed by a digit (except that it always
appears if the # flag is specified). The style used depends on the value
converted. Style e (E, if G is the flag used) results only if the exponent
resulting from the conversion is less than -4, or if it is greater or equal to
the precision.

c Accepts and prints an integer (int) value converted to an unsigned char.

C Accepts a wchar_t value, converts it to an array of bytes containing a
multibyte character, and prints it. If a minimum field width is specified
and the multibyte character occupies fewer bytes than the specified
width, the multibyte character is padded with space characters to the
specified width.

s Accepts a pointer to an array of char type. Bytes from the array are
printed until a null character is encountered or the number of characters
indicated by the precision is reached. If no precision is specified, all
characters up to the first null character are printed. If the precision is not
specified or is greater than the size of the array, the array must be ter-
minated by a null byte. If the string pointer value has a value of 0 (zero)
or null, the results are undefined.

527186-023 Hewlett-Packard Company 7−209

spt_fprintfx(2) OSS System Calls Reference Manual

S Accepts a pointer to an array of wchar_t type. Wide characters from the
array are converted to an array of bytes containing multibyte characters
and the multibyte characters up to (but not including) the null character
are printed. If a precision is specified, no more than the number of bytes
specified by the precision are printed. If the precision is not specified or
is greater than the size of the array of bytes, the array of wide characters
must be terminated by a null wide character. If a minimum field width is
specified and the array of bytes occupy fewer bytes than the specified
width, the array is padded with space characters to the specified width.

p Accepts a pointer to void. The value of the pointer is converted to a
sequence of printable characters, the same as unsigned hexadecimal
integer (x).

n Accepts a pointer to an integer into which is written the number of char-
acters written to the output stream so far by this call. No argument is
converted.

If the result of a conversion is wider than the field width, the field is expanded to contain the con-
verted result. No truncation occurs. However, a small precision can cause truncation on the
right.

The e, E, f, and g formats represent the special floating-point values as follows:

Quiet NaN NaN

Signaling NaN NaN

+/-INF +Inf or -Inf

+/-0 +0.0 or -0.0 (zero)

The representation of the + (plus sign) depends on whether the + or (space) formatting flag is
specified.

The spt_fprintfx() function allows for the insertion of a language-dependent radix character in
the output string. The radix character is defined by langinfo data in the program’s locale
(category LC_NUMERIC). In the C locale, or in a locale where the radix character is not
defined, the radix character defaults to . (period).

The st_ctime and st_mtime fields of the file are marked for update between the successful exe-
cution of the spt_fprintfx() function and the next successful completion of a call to the
spt_fflushx() or spt_fclosex() functions on the same stream, or a call to the exit() or abort()
functions.

NOTES
The macro to map fprintf() to spt_fprintfx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fprint() to spt_fprintfx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

This function supports both IEEE Std 754-1985 floating-point and Tandem floating-point values
in the native environment. IEEE values can include NaN and infinity, and the sign of 0.0 (zero)

7−210 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fprintfx(2)

can be either positive or negative. For a description of the IEEE value classes, see the fp_class(3)
reference page.

Guardian functions are available to convert between floating-point formats. For a discussion of
floating-point conversions, see the Guardian Programmer’s Guide.

RETURN VALUES
Upon successful completion, this function returns the number of bytes in the output string. Oth-
erwise, a negative value is returned.

If the file descriptor underlying stream becomes invalid (is closed by another thread), -1 is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, -1 is returned with an errno value of [EINTR].

ERRORS
The spt_fprintfx() function fails if either:

• stream is unbuffered

• The buffer for stream needed to be flushed and the function call caused an underlying
spt_writex() or lseek() function to be invoked.

In addition, if the spt_fprintfx() function fails, errno is set to one of the following values:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for writ-
ing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EILSEQ] An invalid wide character was detected.

[EINTR] The read operation was interrupted by a signal that was caught, and no data was
transferred.

[EINVAL] There are insufficient arguments.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient storage space was available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

527186-023 Hewlett-Packard Company 7−211

spt_fprintfx(2) OSS System Calls Reference Manual

RELATED INFORMATION
Functions: fp_class(3), fprintf(3), isnan(3), toascii(3), printf(3), putc(3), scanf(3), sprintf(3),
spt_fprintf(2), spt_printfx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−212 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fputc(2)

NAME
spt_fputc - Thread-aware fputc() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_fputc(
int c,
FILE *stream);

PARAMETERS
See the fputc(3) man page either online or in the Open System Services Library Calls Reference
Manual.

DESCRIPTION
This is a thread-aware version of the fputc() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread aware.

The following macro maps spt_fputc() to fputc() and has been defined in spthread.h:

#define fputc(c, stream) spt_fputc(c, stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the fputc(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying the stream becomes invalid (is closed by another thread),
EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function that is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−213

spt_fputcx(2) OSS System Calls Reference Manual

NAME
spt_fputcx - Writes a byte to a specified output stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_fputcx (
int c,
FILE *stream
);

PARAMETERS
c Specifies the character to be written.

stream Points to the file structure of an open file.

DESCRIPTION
The spt_fputcx() function is the thread-aware version of the fputc() function.

The spt_fputcx() function writes the character c to the output specified by the stream parameter.
The character is written at the position at which the file pointer is currently pointing, if defined.

With the exception of stderr, output streams are, by default, buffered if they refer to files, or line
buffered if they refer to terminals. The standard error output stream, stderr, is unbuffered by
default, but using the freopen() function causes it to become buffered or line buffered. Use the
setbuf() function to change the stream-buffering strategy.

When an output stream is unbuffered, information is queued for writing on the destination file or
terminal as soon as it is written. When an output stream is buffered, many characters are saved
and written as a block. When an output stream is line-buffered, each line of output is queued for
writing on the destination terminal as soon as the line is completed (that is, as soon as a newline
character is written or terminal input is requested).

The st_ctime and st_mtime fields of the file are marked for update between the successful exe-
cution of the spt_fputcx() function, and the next successful completion of a call to the
spt_fflushx() or spt_fclosex() function on the same stream, or a call to the exit() or abort()
function.

NOTES
The macro to map fputc() to spt_fputcx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fputc() to spt_fputcx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

The spt_fputcx() function is never a macro.

The spt_fputcx() function runs more slowly than spt_putcx(), but takes less space per invoca-
tion.

7−214 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fputcx(2)

RETURN VALUES
The spt_fputcx() function, upon successful completion, returns the value written. If this func-
tion fails, it returns the constant EOF and sets errno.

If the file descriptor underlying stream becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via pthread_kill(2) and is not
blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
The spt_fputcx() function fails if:

• The stream parameter is not open for writing.

• The output file size cannot be increased.

• The stream is unbuffered.

• The buffer of the stream needs to be flushed and the function call causes an underlying
spt_writex() or lseek() to be invoked, and this underlying operation fails.

In addition, if any of these conditions occur, the spt_fputcx() function sets errno to the
corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying the output
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying the output stream is not a valid file descriptor open
for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EINTR] The write operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient memory storage space is available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

Any error encountered during the underlying call to the spt_writex() function can cause this
function to return the corresponding errno value reported by the spt_writex() function. If your
application program encounters an errno value not listed on this reference page, refer to the
spt_writex(2) reference page either online or in the Open System Services System Calls Refer-
ence Manual for information about the cause of that error.

527186-023 Hewlett-Packard Company 7−215

spt_fputcx(2) OSS System Calls Reference Manual

RELATED INFORMATION
Functions: ferror(3), fputc(3), getc(3), getwc(3), printf(3), putc(3), putchar(3), puts(3),
putwc(3), spt_getcx(2), spt_getwcx(2), spt_printfx(2), spt_putcx(2), spt_putcharx(2),
spt_putsx(2), spt_putwcx(2), spt_writex(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−216 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fputs(2)

NAME
spt_fputs - Initiates thread-aware fputs() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_fputs(
const char *string,
FILE *stream);

PARAMETERS
See the fputs(3) reference page either online or in the Open System Services Library Calls Refer-
ence Manual.

DESCRIPTION
This is a thread-aware version of the fputs() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread aware.

The following macro maps spt_fputs() to fputs() and has been defined in spthread.h:

#define fputs(string, stream) spt_fputs(string, stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the fputs(3) reference page. The following information also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying stream becomes invalid (is closed by another thread),
EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−217

spt_fputsx(2) OSS System Calls Reference Manual

NAME
spt_fputsx - Writes a string to a stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_fputsx (
const char *string,
FILE *stream
);

PARAMETERS
string Points to a string to be written to output.

stream Points to the FILE structure of an open file.

DESCRIPTION
The spt_fputsx() function is the thread-aware version of the fputs() function.

The spt_fputsx() function writes the null-terminated string pointed to by the string parameter to
the output stream specified by the stream parameter. The spt_fputsx() function does not append
a newline character or write the terminating null byte.

The st_ctime and st_mtime fields of the file are marked for update between the successful exe-
cution of the spt_fputsx() function, and the next successful completion of a call to the
spt_fflush() or spt_fclose() function on the same stream, or a call to the exit() or abort() func-
tion.

NOTES
The macro to map fputs() to spt_fputsx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fputs() to spt_fputsx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
Upon successful completion, the spt_fputsx() function returns the number of characters written.
This function can return EOF on an error.

If the file descriptor underlying stream becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
that is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
The spt_fputsx() function fails if either:

• The stream is unbuffered

• The buffer of the stream needs to be flushed and the function call causes an underlying
spt_writex() or lseek() to be invoked and this underlying operation fails with

7−218 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fputsx(2)

incomplete output.

In addition, if any of these conditions occur, the spt_fputsx() function sets errno to the
corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for writ-
ing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EINTR] The operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU, and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient storage space available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

RELATED INFORMATION
Functions: fputs(3), gets(3), getws(3), printf(3), putc(3), puts(3), putwc(3), putws(3),
spt_getsx(2), spt_getwsx(2), spt_fprintfx(2), spt_putcx(2), spt_putsx(2), spt_putwcx(2),
spt_putwx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−219

spt_fputwc(2) OSS System Calls Reference Manual

NAME
spt_fputwc - Thread-aware fputwc()

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

wint_t spt_fputwc(
wint_t c,
FILE *stream);

PARAMETERS
See fputwc(3) reference page either online or in the Open System Services Library Calls Refer-
ence Manual.

DESCRIPTION
This is a thread-aware version of the fputwc() function. The file descriptor underlying the
stream must be nonblocking for this function to be thread aware.

The following macro maps spt_fputwc() to fputwc() and has been defined in spthread.h:

#define fputwc(c, stream) spt_fputwc(c, stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the fputwc(3) reference page. The following information also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying the stream becomes invalid (is closed by another thread),
WEOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, WEOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−220 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fputwcx(2)

NAME
spt_fputwcx - Writes a wide character to a specified stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <wchar.h>]
#include <spthread.h>

wint_t spt_fputwcx (
wint_t c,
FILE *stream
);

PARAMETERS
c Specifies the wide character to be written.

stream Points to the output data.

DESCRIPTION
The spt_fputwcx() function is the thread-aware version of the fputwc() function.

The spt_fputwcx() function converts the wchar_t specified by the c parameter to its equivalent
multibyte character and then writes the multibyte character to the stream parameter.

The spt_fputwcx() function works the same as spt_putwcx().

With the exception of stderr, output streams are, by default, buffered if they refer to files, or line
buffered if they refer to terminals. The standard error output stream, stderr, is unbuffered by
default, but using the freopen() function causes it to become buffered or line buffered. Use the
setbuf() function to change the stream’s buffering strategy.

NOTES
The macro to map fputwc() to spt_fputwcx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fputwc() to spt_fputwcx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
Upon successful completion, this function returns the value written. If this function fails, it
returns the constant WEOF (wide-character end-of-file).

If the file descriptor underlying stream becomes invalid (is closed by another thread), WEOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, WEOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_fputwcx() function sets errno to the corresponding
value.

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

527186-023 Hewlett-Packard Company 7−221

spt_fputwcx(2) OSS System Calls Reference Manual

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for writ-
ing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EINTR] The operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned.

[ENOMEM] Insufficient storage space is available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

[EILSEQ] The wide character code specified by the c parameter does not correspond to a
valid character.

RELATED INFORMATION
Functions: fputc(3), fputwc(3), getc(3), getwc(3), printf(3), putc(3), puts(3), putwc(3),
putwchar(3), spt_fputwc(2), spt_fputcx(2), spt_getcx(2), spt_getwcx(2), spt_fprintfx(2),
spt_putcx(2), spt_putsx(2), spt_putwcx(2), spt_putwcharx(2), wctomb(3).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−222 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fread(2)

NAME
spt_fread - Initiates thread-aware fread() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

size_t spt_fread(
void *pointer,
size_t size,
size_t num_items,
FILE *stream);

PARAMETERS
See the fread(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware version of the fread() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread aware.

The following macro maps spt_fread() to fread() and has been defined in spthread.h:

#define fread(pointer, size, num_items, stream)
spt_fread(pointer, size, num_items, stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the fread(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying stream becomes invalid (is closed by another thread),
EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, 0 is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−223

spt_freadx(2) OSS System Calls Reference Manual

NAME
spt_freadx - Reads input from a stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

size_t spt_freadx (
void ∗∗pointer,
size_t size,
size_t num_items,
FILE ∗∗stream
);

PARAMETERS
pointer Points to an array.

size Specifies the size of the variable type of the array pointed to by the pointer
parameter.

num_items Specifies the number of items of data.

stream Specifies the input output stream.

DESCRIPTION
The spt_freadx() function is the thread-aware version of the fread() function.

The spt_freadx() function copies num_items of data of length size from the input stream into an
array beginning at the location pointed to by the pointer parameter.

The spt_freadx() function stops copying bytes if an end-of-file or error condition is encountered
while reading from the input specified by the stream parameter, or when the number of data items
specified by the num_items parameter have been copied. It leaves the file pointer of the stream
parameter, if defined, pointing to the byte following the last byte read, if there is one. The
fspt_readx() function does not change the contents of the stream parameter.

NOTES
The macro to map fread() to spt_freadx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fread() to spt_freadx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
Upon successful completion, the spt_freadx() function returns the number of items actually
transferred. If the num_items parameter is negative or 0 (zero), no characters are transferred, and
a value of 0 (zero) is returned. If a read error occurs, the error indicator for the stream is set, and
errno is set to indicate the error.

If the file descriptor underlying stream becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function

7−224 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_freadx(2)

and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
The spt_freadx() function fails if:

• The stream parameter is not open for reading.

• The stream is unbuffered.

• The stream’s buffer needed to be flushed and the function call caused an underlying
spt_writex() or lseek() to be invoked and this underlying operation fails.

In addition, if any of the following conditions occur, the spt_freadx() function sets errno to the
corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying the input
stream and the process would be delayed in the read operation.

[EBADF] The file descriptor underlying the input stream is not a valid file descriptor open
for reading.

[EINTR] The read operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned. This error may also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient memory storage space is available.

[ENOSPC] There was no free space remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to read from a pipe or FIFO that is not open for writing by
any process. A SIGPIPE signal will also be sent to the process.

Any error encountered during the underlying call to the spt_readx() function can cause this
function to return the corresponding errno value reported by the spt_readx() function. If your
application program encounters an errno value not listed above, refer to the spt_readx(2) refer-
ence page either online or in the Open System Services System Calls Reference Manual for infor-
mation about the cause of that error.

RELATED INFORMATION
Functions: fopen(3), fread(3), fwrite(3), getc(3), gets(3), printf(3), putc(3), puts(3), read(2),
scanf(3), spt_fwritex(2), spt_getcx(2), spt_getsx(2), spt_printfx(2), spt_putcx(2), spt_putsx(2),
spt_readx(2), spt_writex(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−225

spt_fstat64z(2) OSS System Calls Reference Manual

NAME
spt_fstat64z - Provides information about an open file (serializes I/O operations on an open file))

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>
#include <spthread.h>

int spt_fstat64z(
int filedes,
struct stat64 *buffer);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(),dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

buffer Points to a stat64 structure, into which information is placed about the file. The
stat64 structure is described in the sys/stat.h header file.

DESCRIPTION
The spt_fstat64z() function is a thread-aware version of the fstat64() function.

The spt_fstat64z() function obtains information about the open file associated with the filedes
parameter.

The file information is written to the area specified by the buffer parameter, which is a pointer to
a stat64 structure. For J06.11 and later J-series RVUs and H06.22 and later H-series RVUs, the
stat64 structure uses this definition from the sys/stat.h header file:

struct stat64 {
dev_t st_dev;
ino64_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:7;
unsigned int st_fileprivs:8; /* File privileges */
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
off64_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
mode_t st_basemode; /* Permissions with original group perms */
int64_t reserved[3];

};

For J06.10 and earlier J-series RVUs and H06.21 and earlier H-series RVUs, the stat64 structure
uses this definition from the sys/stat.h header file:

struct stat64 {
dev_t st_dev;
ino64_t st_ino;
mode_t st_mode;

7−226 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fstat64z(2)

nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:15;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
off64_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
mode_t st_basemode; /* Permissions with original group perms */
int64_t reserved[3];

};

The spt_fstat64z() function updates any time-related fields associated with the file before writ-
ing into the stat64 structure, unless it is a read-only fileset. Time-related fields are not updated
for read-only OSS filesets.

The fields in the stat64 structure have these meanings and content:

st_dev OSS device identifier for a fileset.

Values for local OSS objects are listed next. Values for local Guardian objects
are described in Use on Guardian Objects, and values for remote Guardian or
OSS objects are described in Use on Remote Objects, later in this reference
page.

For Contains

Regular file ID of device containing directory entry
Directory ID of device containing directory
Pipe or FIFO ID of special fileset for pipes
AF_INET or AF_INET6 socket ID of special fileset for sockets
AF_UNIX socket ID of device containing the fileset in which

the socket file was created
/dev/null ID of device containing directory entry
/dev/tty ID of device containing directory entry

st_ino File serial number (inode number). The file serial number and OSS device
identifier uniquely identify a regular OSS file within an OSS fileset.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 7−227

spt_fstat64z(2) OSS System Calls Reference Manual

For Contains

Regular file File serial number (unique)
Directory File serial number (unique)
Pipe or FIFO File serial number (unique)
AF_INET or AF_INET6 socket File serial number (not unique within the

HP NonStop node)
AF_UNIX socket File serial number of the socket file

(unique)
/dev/null File serial number (unique)
/dev/tty File serial number (unique)

The st_ino value for all node entries in /E (including the entry for the logical
link from the local node name to the root fileset on the local node) is the value
for the root fileset on the corresponding node. If normal conventions are fol-
lowed, this value is always 0 (zero), so entries in /E appear to be nonunique.
Values for objects on remote nodes are unique only among the values for objects
within the same fileset on that node.

st_mode File mode. These bits are ORed into the st_mode field:

S_IFMT File type. This field can contain one of these values:

S_IFCHR Character special file.

S_IFDIR Directory.

S_IFIFO Pipe or FIFO.

S_IFREG Regular file.

S_IFSOCK Socket.

For an AF_INET or AF_INET6 socket, the
user default permissions are returned for the per-
mission bits. The access flags are set to read
and write.

For an AF_UNIX socket, the user permissions
from the inode for the socket are returned for the
permission bits. The access flags are also
returned from the inode.

S_IRWXG Permissions for the owning group, or if the st_acl flag is set, per-
missions for the the class ACL entry.

S_IRWXO Other class

S_IRWXU Owner class

S_ISGID Set group ID on execution

S_ISUID Set user ID on execution

7−228 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fstat64z(2)

S_ISVTX Sticky bit; used only for directories (not ORed for files in /G, the
Guardian file system)

S_TRUST Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers when the
memory segment containing the buffers is not shared. This flag
applies only to loadfiles for a process, and only a user with
appropriate privileges (the super ID) can set it.

S_TRUSTSHARED
Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers regardless
of whether the memory segment containing the buffers is shared.
This flag applies only to loadfiles for a process, and only a user
with appropriate privileges (the super ID) can set it.

Values for Guardian objects are described in Use on Guardian Objects, later in
this reference page.

st_nlink Number of links.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Number of links to the file
Directory Number of links to the directory
FIFO Number of links to the file
Pipe -1
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket Number of links to the socket file
/dev/null Number of links to the file
/dev/tty Number of links to the file

st_acl If set to 1, indicates that the file has optional access control list (ACL) entries.
For compatibility with HP-UX, the member name st_aclv is provided as alias for
st_acl. For more information about ACLs, see the acl(5) reference page.

st_fileprivs File privileges. For information about file privileges see the setfilepriv(2) refer-
ence page.

st_uid User ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 7−229

spt_fstat64z(2) OSS System Calls Reference Manual

For Contains

Regular file User ID of the file owner
Directory User ID of the file owner
Pipe or FIFO User ID of the file owner
AF_INET or AF_INET6 socket User ID of the calling process
AF_UNIX socket User ID of the creator of the socket file
/dev/null User ID of the super ID
/dev/tty User ID of the super ID

st_gid Group ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Group ID of the file group
Directory Group ID of the file group
Pipe or FIFO Group ID of the file group
AF_INET or AF_INET6 socket Group ID of the calling process
AF_UNIX socket Group ID of the creator of the socket file
/dev/null Group ID of the super ID
/dev/tty Group ID of the super ID

st_basemode If the st_acl flag is set, contains the permissions for the file owner, owning
group, and others. If the st_acl flag is not set, st_basemode is 0 (zero).

st_rdev Remote device ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Undefined
Directory Undefined
Pipe or FIFO Undefined
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null Undefined
/dev/tty ID of the device

st_size File size.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

7−230 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fstat64z(2)

For Contains

Regular file Size of the file in bytes
Directory 4096
Pipe or FIFO 0 (zero)
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null 0 (zero)
/dev/tty 0 (zero)

st_atime Access time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last access
Directory Time of the last access
Pipe or FIFO Time of the last access
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_mtime Modification time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last data modification
Directory Time of the last modification
Pipe or FIFO Time of the last data modification
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

527186-023 Hewlett-Packard Company 7−231

spt_fstat64z(2) OSS System Calls Reference Manual

st_ctime Status change time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last file status change
Directory Time of the last file status change
Pipe or FIFO Time of the last file status change
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

Use on Guardian Objects
The st_dev and st_ino fields of the stat64 structure do not uniquely identify Guardian files (files
in /G).

The st_dev field is unique for /G, for each disk volume, and for each Telserv process (or other
process of subdevice type 30), because each of these is a separate fileset.

The S_ISGUARDIANOBJECT macro can indicate whether an object is a Guardian object
when the st_dev field is passed to the macro. The value of the macro is TRUE if the object is a
Guardian object and FALSE otherwise.

The st_ino field is a nonunique encoding of the Guardian filename.

The st_rdev field contains a unique minor device number for each entry in /G/ztnt/, representing
each Telserv process subdevice.

The st_size field of an EDIT file (file code 101) is the actual (physical) end of file, not the number
of bytes in the file. For directories, st_size is set to 4096.

When an OSS function is called for a Guardian EDIT file, the st_mtime field is set to the last
modification time. The st_atime field indicates the last time the file was opened, and the
st_ctime field is set equal to st_mtime. No other time-related fields are updated by OSS function
calls.

The st_ctime and st_atime fields for Guardian regular disk files (except for EDIT files) are
updated by OSS function calls, not by Guardian procedure calls.

The time fields for /G, /G/vol, and /G/vol/subvol always contain the current time.

The mapping between Guardian files and their corresponding file types described in the st_mode
field is listed next:

7−232 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fstat64z(2)

Guardian st_mode
Example in /G File Type File Type Permissions___

N/A Directory r-xr-xr-x/G
vol Disk volume Directory rwxrwxrwx
vol/subvol Subvolume Directory rwxrwxrwx
vol/subvol/fileid Disk file Regular file See following text
vol/#123 Temporary disk file Regular file See following text
ztnt Subtype 30 process Directory --x--x--x
ztnt/#pty0001 Subtype 30 process

with qualifier
Character special rw-rw-rw-

vol1/zyq00001 Subvolume Directory ---------

A Guardian file classified as a directory is always owned by the super ID.

Guardian permissions are mapped as follows:

• Guardian network or any user permission is mapped to OSS other permission.

• Guardian community or group user permission is mapped to OSS group permission.

• Guardian user or owner permission is mapped to OSS owner permission.

• Guardian super ID permission is OSS super ID permission.

• Guardian read permission is mapped to OSS read permission.

• Guardian write permission is mapped to OSS write permission.

• Guardian execute permission is mapped to OSS execute permission.

• Guardian purge permission is ignored.

Users are not allowed read access to Guardian processes.

OSS file permissions are divided into three groups (owner, group, and other) of three permission
bits each (read, write, and execute). The OSS permission bits do not distinguish between remote
and local users as Guardian security does; local and remote users are treated alike.

Use on Remote Objects
The content of the st_dev field of the stat64 structure is unique for each node in /E because each
node is a separate fileset. Values for directories within /E are the same as values for objects on
the local HP NonStop node.

The S_ISEXPANDOBJECT macro can indicate whether an object in the /E directory is on a
remote HP NonStop server node when the st_dev field is passed to the macro. The value of the
macro is TRUE if the object is on a remote HP NonStop node and FALSE otherwise.

NOTES
This function serializes file operations on an open file. If a thread calls spt_fstat64z() to access
a file that already has a file operation in progress by a different thread, this thread is blocked until
the prior file operation is complete.

For C applications, a macro to map fstat() to spt_fstat64z() is available when you use the
#define SPT_THREAD_AWARE_XNONBLOCK and the #define _FILE_OFFSET_BITS 64
preprocessor directives before including spthread.h or when you use equivalent compiler com-
mand options to compile the application.

527186-023 Hewlett-Packard Company 7−233

spt_fstat64z(2) OSS System Calls Reference Manual

For C++ applications, an alias to map fstat() to spt_fstat64z() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK and the #define
_FILE_OFFSET_BITS 64 preprocessor directives before including spthread.h or when you
use equivalent compiler command options to compile the application.

For C applications, a macro to map fstat64() to spt_fstat64z() is available when you use the
#define SPT_THREAD_AWARE_XNONBLOCK and the #define
_LARGEFILE64_SOURCE 1 preprocessor directives before including spthread.h or when
you use equivalent compiler command options to compile the application.

For C++ applications, an alias to map fstat64() to spt_fstat64z() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK and the #define
_LARGEFILE64_SOURCE 1 preprocessor directives before including spthread.h or when
you use equivalent compiler command options to compile the application.

A direct application call to spt_fstatz() is automatically mapped to spt_fstat64z() when you use
the #define _FILE_OFFSET_BITS 64 preprocessor directive before including spthread.h or
when you use an equivalent compiler command option to compile the application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the spt_fstat64z() function sets errno to the corresponding
value:

[EBADF] The filedes parameter is not a valid file descriptor.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFSBAD] The program attempted an operation involving a fileset with a corrupted fileset
catalog.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

7−234 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fstat64z(2)

[ENOROOT] The program attempted an operation while the root fileset was unavailable.

[ENXIO] An invalid device or address was specified during an input or output operation
on a special file. One of these events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation on an input/output process (such as a
terminal server process) that has failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), fstat(2), link(2), mknod(2), open(2), open64(2),
pipe(2), utime(2).

Miscellaneous Topics: acl(5).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−235

spt_fstatz(2) OSS System Calls Reference Manual

NAME
spt_fstatz - Provides information about an open file (serializes I/O operations on an open file)

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>
#include <spthread.h>

int spt_fstatz(
int filedes,
struct stat *buffer);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(),dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

buffer Points to a stat structure, into which information is placed about the file. The stat
structure is described in the sys/stat.h header file.

DESCRIPTION
The spt_fstatz() function is a thread-aware version of the fstat() function.

The spt_fstatz() function obtains information about the open file associated with the filedes
parameter.

The file information is written to the area specified by the buffer parameter, which is a pointer to
a stat structure. For J06.11 and later J-series RVUs and H06.22 and later H-series RVUs, the
stat structure uses this definition from the sys/stat.h header file:

struct stat {
dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:7;
unsigned int st_fileprivs:8; /* File privileges */
uid_t st_uid;
gid_t st_gid;

#if _FILE_OFFSET_BITS != 64 || _TANDEM_ARCH_ == 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

#if _FILE_OFFSET_BITS == 64 && _TANDEM_ARCH_ != 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
int64_t st_reserved[3];

};

7−236 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fstatz(2)

For J06.10 and earlier J-series RVUs and H06.21 and earlier H-series RVUs, the stat structure
uses this definition from the sys/stat.h header file:

struct stat {
dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:15;
uid_t st_uid;
gid_t st_gid;

#if _FILE_OFFSET_BITS != 64 || _TANDEM_ARCH_ == 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

#if _FILE_OFFSET_BITS == 64 && _TANDEM_ARCH_ != 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
int64_t st_reserved[3];

};

The spt_fstatz() function updates any time-related fields associated with the file before writing
into the stat structure, unless it is a read-only fileset. Time-related fields are not updated for
read-only OSS filesets.

The fields in the stat structure have these meanings and content:

st_dev OSS device identifier for a fileset.

Values for local OSS objects are listed next. Values for local Guardian objects
are described in Use on Guardian Objects, and values for remote Guardian or
OSS objects are described in Use on Remote Objects, later in this reference
page.

For Contains

Regular file ID of device containing directory entry
Directory ID of device containing directory
Pipe or FIFO ID of special fileset for pipes
AF_INET or AF_INET6 socket ID of special fileset for sockets
AF_UNIX socket ID of device containing the fileset in which

the socket file was created
/dev/null ID of device containing directory entry
/dev/tty ID of device containing directory entry

st_ino File serial number (inode number). The file serial number and OSS device
identifier uniquely identify a regular OSS file within an OSS fileset.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 7−237

spt_fstatz(2) OSS System Calls Reference Manual

For Contains

Regular file File serial number (unique)
Directory File serial number (unique)
Pipe or FIFO File serial number (unique)
AF_INET or AF_INET6 socket File serial number (not unique within the

HP NonStop node)
AF_UNIX socket File serial number of the socket file

(unique)
/dev/null File serial number (unique)
/dev/tty File serial number (unique)

The st_ino value for all node entries in /E (including the entry for the logical
link from the local node name to the root fileset on the local node) is the value
for the root fileset on the corresponding node. If normal conventions are fol-
lowed, this value is always 0 (zero), so entries in /E appear to be nonunique.
Values for objects on remote nodes are unique only among the values for objects
within the same fileset on that node.

st_mode File mode. These bits are ORed into the st_mode field:

S_IFMT File type. This field can contain one of these values:

S_IFCHR Character special file.

S_IFDIR Directory.

S_IFIFO Pipe or FIFO.

S_IFREG Regular file.

S_IFSOCK Socket.

For an AF_INET or AF_INET6 socket, the
user default permissions are returned for the per-
mission bits. The access flags are set to read
and write.

For an AF_UNIX socket, the user permissions
from the inode for the socket are returned for the
permission bits. The access flags are also
returned from the inode.

S_IRWXG Permissions for the owning group, or if the st_acl flag is set, per-
missions for the the class ACL entry.

S_IRWXO Other class

S_IRWXU Owner class

S_ISGID Set group ID on execution

S_ISUID Set user ID on execution

7−238 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fstatz(2)

S_ISVTX Sticky bit; used only for directories (not ORed for files in /G, the
Guardian file system)

S_TRUST Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers when the
memory segment containing the buffers is not shared. This flag
applies only to loadfiles for a process, and only a user with
appropriate privileges (the super ID) can set it.

S_TRUSTSHARED
Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers regardless
of whether the memory segment containing the buffers is shared.
This flag applies only to loadfiles for a process, and only a user
with appropriate privileges (the super ID) can set it.

Values for Guardian objects are described in Use on Guardian Objects, later in
this reference page.

st_nlink Number of links.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Number of links to the file
Directory Number of links to the directory
FIFO Number of links to the file
Pipe -1
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket Number of links to the socket file
/dev/null Number of links to the file
/dev/tty Number of links to the file

st_acl If set to 1, indicates that the file has optional access control list (ACL) entries.
For compatibility with HP-UX, the member name st_aclv is provided as alias for
st_acl. For more information about ACLs, see the acl(5) reference page.

st_fileprivs File privileges. For information about file privileges see the setfilepriv(2) refer-
ence page.

st_uid User ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 7−239

spt_fstatz(2) OSS System Calls Reference Manual

For Contains

Regular file User ID of the file owner
Directory User ID of the file owner
Pipe or FIFO User ID of the file owner
AF_INET or AF_INET6 socket User ID of the calling process
AF_UNIX socket User ID of the creator of the socket file
/dev/null User ID of the super ID
/dev/tty User ID of the super ID

st_gid Group ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Group ID of the file group
Directory Group ID of the file group
Pipe or FIFO Group ID of the file group
AF_INET or AF_INET6 socket Group ID of the calling process
AF_UNIX socket Group ID of the creator of the socket file
/dev/null Group ID of the super ID
/dev/tty Group ID of the super ID

st_basemode If the st_acl flag is set, contains the permissions for the file owner, owning
group, and others. If the st_acl flag is not set, st_basemode is 0 (zero).

st_rdev Remote device ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Undefined
Directory Undefined
Pipe or FIFO Undefined
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null Undefined
/dev/tty ID of the device

st_size File size.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

7−240 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fstatz(2)

For Contains

Regular file Size of the file in bytes
Directory 4096
Pipe or FIFO 0 (zero)
AF_INET or AF_INET6 socket 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null 0 (zero)
/dev/tty 0 (zero)

st_atime Access time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last access
Directory Time of the last access
Pipe or FIFO Time of the last access
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_mtime Modification time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last data modification
Directory Time of the last modification
Pipe or FIFO Time of the last data modification
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

527186-023 Hewlett-Packard Company 7−241

spt_fstatz(2) OSS System Calls Reference Manual

st_ctime Status change time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last file status change
Directory Time of the last file status change
Pipe or FIFO Time of the last file status change
AF_INET or AF_INET6 socket Value maintained in the socket data struc-

ture
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

Use on Guardian Objects
The st_dev and st_ino fields of the stat structure do not uniquely identify Guardian files (files in
/G).

The st_dev field is unique for /G, for each disk volume, and for each Telserv process (or other
process of subdevice type 30), because each of these is a separate fileset.

The S_ISGUARDIANOBJECT macro can indicate whether an object is a Guardian object
when the st_dev field is passed to the macro. The value of the macro is TRUE if the object is a
Guardian object and FALSE otherwise.

The st_ino field is a nonunique encoding of the Guardian filename.

The st_rdev field contains a unique minor device number for each entry in /G/ztnt/, representing
each Telserv process subdevice.

The st_size field of an EDIT file (file code 101) is the actual (physical) end of file, not the number
of bytes in the file. For directories, st_size is set to 4096.

When an OSS function is called for a Guardian EDIT file, the st_mtime field is set to the last
modification time. The st_atime field indicates the last time the file was opened, and the
st_ctime field is set equal to st_mtime. No other time-related fields are updated by OSS function
calls.

The st_ctime and st_atime fields for Guardian regular disk files (except for EDIT files) are
updated by OSS function calls, not by Guardian procedure calls.

The time fields for /G, /G/vol, and /G/vol/subvol always contain the current time.

The mapping between Guardian files and their corresponding file types described in the st_mode
field is listed next:

7−242 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fstatz(2)

Guardian st_mode
Example in /G File Type File Type Permissions___

N/A Directory r-xr-xr-x/G
vol Disk volume Directory rwxrwxrwx
vol/subvol Subvolume Directory rwxrwxrwx
vol/subvol/fileid Disk file Regular file See following text
vol/#123 Temporary disk file Regular file See following text
ztnt Subtype 30 process Directory --x--x--x
ztnt/#pty0001 Subtype 30 process

with qualifier
Character special rw-rw-rw-

vol1/zyq00001 Subvolume Directory ---------

A Guardian file classified as a directory is always owned by the super ID.

Guardian permissions are mapped as follows:

• Guardian network or any user permission is mapped to OSS other permission.

• Guardian community or group user permission is mapped to OSS group permission.

• Guardian user or owner permission is mapped to OSS owner permission.

• Guardian super ID permission is OSS super ID permission.

• Guardian read permission is mapped to OSS read permission.

• Guardian write permission is mapped to OSS write permission.

• Guardian execute permission is mapped to OSS execute permission.

• Guardian purge permission is ignored.

Users are not allowed read access to Guardian processes.

OSS file permissions are divided into three groups (owner, group, and other) of three permission
bits each (read, write, and execute). The OSS permission bits do not distinguish between remote
and local users as Guardian security does; local and remote users are treated alike.

Use on Remote Objects
The content of the st_dev field of the stat structure is unique for each node in /E because each
node is a separate fileset. Values for directories within /E are the same as values for objects on
the local HP NonStop node.

The S_ISEXPANDOBJECT macro can indicate whether an object in the /E directory is on a
remote HP NonStop server node when the st_dev field is passed to the macro. The value of the
macro is TRUE if the object is on a remote HP NonStop node and FALSE otherwise.

NOTES
This function serializes file operations on an open file. If a thread calls spt_fstatz() to access a
file that already has a file operation in progress by a different thread, this thread is blocked until
the prior file operation is complete.

For C applications, a macro to map fstat() to spt_fstatz() is available when you use the #define
SPT_THREAD_AWARE_XNONBLOCK preprocessor directive before including spthread.h
or when you use an equivalent compiler command option to compile the application.

527186-023 Hewlett-Packard Company 7−243

spt_fstatz(2) OSS System Calls Reference Manual

For C++ applications, an alias to map fstat() to spt_fstatz() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the spt_fstatz() function sets errno to the corresponding value:

[EBADF] The filedes parameter is not a valid file descriptor.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFSBAD] The program attempted an operation involving a fileset with a corrupted fileset
catalog.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOROOT] The program attempted an operation while the root fileset was unavailable.

[ENXIO] An invalid device or address was specified during an input or output operation
on a special file. One of these events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

7−244 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fstatz(2)

• The file size (in bytes) or the file inode number (serial number) cannot be
represented correctly in the structure pointed to by the buffer parameter.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation on an input/output process (such as a
terminal server process) that has failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), spt_fstatz64(2), link(2), mknod(2), open(2),
open64(2), pipe(2), utime(2).

Miscellaneous Topics: acl(5).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• For files other than regular disk files, the st_size field of the stat structure is set to 0
(zero). For directories, st_size is set to 4096.

• The S_IRWXU, S_IRWXG, S_IRWXO, S_IFMT, S_ISVTX, S_ISGID, and S_ISUID
bits are ORed into the st_mode field of the stat structure.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [EFAULT], [EFSBAD], [EIO], [EISGUARDIAN], [ENETDOWN],
[ENOROOT], [ENXIO], and [EWRONGID] can be returned by the spt_fstatz() func-
tion.

527186-023 Hewlett-Packard Company 7−245

spt_fsyncz(2) OSS System Calls Reference Manual

NAME
spt_fsyncz - Writes modified data and file attributes to permanent storage (thread-aware version)

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <unistd.h>
#include <spthread.h>

int spt_fsyncz(
int filedes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), ,dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

DESCRIPTION
The spt_fsyncz() function is a thread-aware version of the fsync() function.

The spt_fsyncz() function saves all modifications for the file open specified by the filedes param-
eter. On return from the spt_fsyncz() function, all updated data and file attributes have been
saved on permanent storage.

Use on Guardian Objects
The filedes parameter can specify any regular file in /G including Guardian EDIT files. Time
values are not saved for other file types in /G, such as terminal files.

NOTES
The spt_fsyncz() function offers an alternative to the O_SYNC file status flag. Using
spt_fsyncz() calls gives an application control over the performance tradeoffs involved in
guaranteeing data integrity. OSS file-system caching can be used for files that are protected only
by spt_fsyncz() function calls.

This is a thread-aware function: if this function must wait for an I/O operation to complete on an
open file, this function blocks the thread that called it (instead of the entire process), while it
waits for the I/O operation to complete.

This function serializes file operations on an open file. If a thread calls spt_fsyncz() to access a
file that already has a file operation in progress by a different thread, this thread is blocked until
the prior file operation is complete.

For C applications, a macro to map fsync() to spt_fsyncz() is available when you use the
#define SPT_THREAD_AWARE_XNONBLOCK preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map fsync() to spt_fsyncz() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

7−246 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fsyncz(2)

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the spt_fsyncz() function returns the value 0 (zero). Otherwise, it
returns the value -1, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the spt_fsyncz() function sets errno to the value that
corresponds to the condition:

[EBADF] The filedes parameter is not a valid file descriptor.

[EINTR] The spt_fsyncz() function was interrupted by a signal that was caught.

[EINVAL] The filedes parameter, although valid, does not refer to a file on which this opera-
tion is possible.

[EIO] An I/O error occurred during a write to the fileset.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENXIO] No such device or address. An invalid device or address was specified during an
input or output operation on a special file. One of these events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

527186-023 Hewlett-Packard Company 7−247

spt_fsyncz(2) OSS System Calls Reference Manual

RELATED INFORMATION
Functions: open(2), socket(2), stat(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [EISGUARDIAN], [ENETDOWN], [ENXIO], and [EWRONGID] can
be returned.

7−248 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_ftruncate64z(2)

NAME
spt_ftruncate64z - Changes file length (thread-aware version)

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <sys/types.h>
#include <spthread.h>

int spt_ftruncate64z(
int filedes,
off64_t length);

PARAMETERS
filedes Specifies the descriptor of a file that must be open for writing.

length Specifies the new length of the file in bytes.

DESCRIPTION
The spt_ftruncate64z() function is a thread-aware version of the ftruncate64() function.

The spt_ftruncate64z() function changes the length of a file to the size, in bytes, specified by the
length parameter.

If the new length is less than the previous length, the spt_ftruncate64z() function removes all
data beyond length bytes from the specified file. All file data between the new EOF and the pre-
vious EOF is discarded.

If the new length is greater than the previous length, zeros are added between the previous EOF
and the new EOF. If the new length would exceed the file size limit for the calling process, the
call to spt_ftruncate64z() fails, and errno is set to [EFBIG].

Full blocks are returned to the fileset so that they can be used again, and the file size is changed
to the value of the length parameter.

The spt_ftruncate64z() function has no effect on First-in, First out (FIFO) special files. This
function does not modify the seek pointer of the file. If spt_ftruncate64z() is called for a FIFO
file, the call fails, and errno is set to [EINVAL].

Upon successful completion, the spt_ftruncate64z() function marks the st_ctime and st_mtime
fields of the file for update. If the file is a regular file, the spt_ftruncate64z() function clears the
S_ISUID and S_ISGID attributes of the file.

NOTES
The spt_ftruncate64z() function offers an alternative to the O_SYNC file status flag. Using
spt_ftruncate64z() calls gives an application control over the performance tradeoffs involved in
guaranteeing data integrity. OSS file-system caching can be used for files that are protected only
by spt_ftruncate64z() function calls.

This function is thread-aware: if this function must wait for an I/O operation to complete on an
open file, this function blocks the thread that called it (instead of the entire process), while it
waits for the I/O operation to complete.

This function serializes file operations on an open file. If a thread calls spt_ftruncate64z() to
access a file that already has a file operation in progress by a different thread, this thread is
blocked until the prior file operation is complete.

527186-023 Hewlett-Packard Company 7−249

spt_ftruncate64z(2) OSS System Calls Reference Manual

For C applications, a macro to map ftruncate() to spt_ftruncate64z() is available when you use
the #define SPT_THREAD_AWARE_XNONBLOCK and the #define
_FILE_OFFSET_BITS 64 preprocessor directives before including spthread.h or when you
use equivalent compiler command options to compile the application.

For C++ applications, an alias to map ftruncate() to spt_ftruncate64z() is available when you
use the #define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK and the #define
_FILE_OFFSET_BITS 64 preprocessor directives before including spthread.h or when you
use equivalent compiler command options to compile the application.

For C applications, a macro to map ftruncate64() to spt_ftruncate64z() is available when you
use the #define SPT_THREAD_AWARE_XNONBLOCK and the #define
_LARGEFILE64_SOURCE 1 preprocessor directives before including spthread.h or when
you use equivalent compiler command options to compile the application.

For C++ applications, an alias to map ftruncate64() to spt_ftruncate64z() is available when
you use the #define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK and the #define
_LARGEFILE64_SOURCE 1 preprocessor directives before including spthread.h or when
you use equivalent compiler command options to compile the application.

A direct application call to spt_ftruncatez() is automatically mapped to spt_ftruncate64z()
when you use the #define _FILE_OFFSET_BITS 64 preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the spt_ftruncate64z() function sets errno to the correspond-
ing value:

[EBADF] The filedes parameter does not specify a valid file descriptor open for writing.

[EFBIG] The length parameter is greater than the minimum of 2 gigabytes minus 1 byte
and the maximum file size established during file open.

[EINTR] The function was interrupted by a signal before any data arrived.

[EINVAL] One of these conditions occurred:

• The file pointed to by the filedes parameter is not a regular file.

• The value specified for the length parameter was less than 0 (zero).

7−250 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_ftruncate64z(2)

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[EROFS] The file resides on a read-only fileset.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: chmod(2), fcntl(2), open(2), open64(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−251

spt_ftruncatez(2) OSS System Calls Reference Manual

NAME
spt_ftruncatez - Changes file length (thread-aware version)

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <sys/types.h>
#include <spthread.h>

int spt_ftruncatez(
int filedes,
off_t length);

PARAMETERS
filedes Specifies the descriptor of a file that must be open for writing.

length Specifies the new length of the file in bytes.

DESCRIPTION
The spt_ftruncatez() is a thread-aware version of the ftruncate() function.

The spt_ftruncatez() function changes the length of a file to the size, in bytes, specified by the
length parameter.

If the new length is less than the previous length, the spt_ftruncatez() function removes all data
beyond length bytes from the specified file. All file data between the new EOF and the previous
EOF is discarded.

If the new length is greater than the previous length, zeros are added between the previous EOF
and the new EOF.

Full blocks are returned to the fileset so that they can be used again, and the file size is changed
to the value of the length parameter.

The spt_ftruncatez() function has no effect on First-in, First-out (FIFO) special files. This func-
tion does not modify the seek pointer of the file. If spt_ftruncatez() is called for a FIFO file, the
call fails, and errno is set to [EINVAL].

Upon successful completion, the spt_ftruncatez() function marks the st_ctime and st_mtime
fields of the file for update. If the file is a regular file, the spt_ftruncatez() function clears the
S_ISUID and S_ISGID attributes of the file.

NOTES
The spt_ftruncatez() function offers an alternative to the O_SYNC file status flag. Using
spt_ftruncatez() calls gives an application control over the performance tradeoffs involved in
guaranteeing data integrity. OSS file-system caching can be used for files that are protected only
by spt_ftruncatez() function calls.

This function is thread-aware: if this function must wait for an I/O operation to complete on an
open file, this function blocks the thread that called it (instead of the entire process), while it
waits for the I/O operation to complete.

This function serializes file operations on an open file. If a thread calls spt_ftruncatez() to
access a file that already has a file operation in progress by a different thread, this thread is
blocked until the prior file operation is complete.

7−252 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_ftruncatez(2)

For C applications, a macro to map ftruncate() to spt_ftruncatez() is available when you use
the #define SPT_THREAD_AWARE_XNONBLOCK preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map ftruncate() to spt_ftruncatez() is available when you use
the #define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK preprocessor directive
before including spthread.h or when you use an equivalent compiler command option to com-
pile the application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the spt_ftruncatez() function sets errno to the corresponding
value:

[EBADF] The filedes parameter does not specify a valid file descriptor open for writing.

[EFBIG] The length parameter is greater than the minimum of 2 gigabytes minus 1 byte
and the maximum file size established during file open.

[EINTR] The function was interrupted by a signal before any data arrived.

[EINVAL] One of these conditions occurred:

• The file pointed to by the filedes parameter is not a regular file.

• The value specified for the length parameter was less than 0 (zero).

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

527186-023 Hewlett-Packard Company 7−253

spt_ftruncatez(2) OSS System Calls Reference Manual

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[EROFS] The file resides on a read-only fileset.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: chmod(2), fcntl(2), spt_ftruncatez64(2), open(2), open64(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [EISGUARDIAN], [ENETDOWN], and [EROFS] can be returned.

7−254 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fwrite(2)

NAME
spt_fwrite - Initiates thread-aware fwrite() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

ssize_t spt_fwrite(
const void *pointer,
size_t size,
size_t num_items,
FILE *stream);

PARAMETERS
See the fwrite(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware fwrite() function. The file descriptor underlying the stream must be non-
blocking for this function to be thread aware.

The following macro maps spt_fwrite() to fwrite() and has been defined in spthread.h:

#define fwrite(pointer, size, num_items, stream)
spt_fwrite(pointer, size, num_items, stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the fwrite(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying stream becomes invalid (is closed by another thread), 0 is
returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, 0 is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−255

spt_fwritex(2) OSS System Calls Reference Manual

NAME
spt_fwritex - Writes to an output stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

size_t spt_fwritex (
const void ∗∗pointer,
size_t size,
size_t num_items,
FILE ∗∗stream
);

PARAMETERS
pointer Points to an array.

size Specifies the size of the variable type of the array pointed to by the pointer
parameter.

num_items Specifies the number of items of data.

stream Specifies the output stream.

DESCRIPTION
The spt_fwritex() function is the thread-aware version of the fwrite() function.

The spt_fwritex() function appends num_items of data of length size from the array pointed to
by the pointer parameter to the output stream.

The spt_fwritex() function stops writing bytes if an error condition is encountered on the stream,
or when the number of items of data specified by the num_items parameter have been written.
The spt_fwritex() function does not change the contents of the array pointed to by the pointer
parameter.

NOTES
The macro to map fwrite() to spt_fwritex() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link fwrite() to spt_fwritex() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
Upon successful completion, the spt_fwritex() function returns the number of items actually
transferred. If the num_items parameter is negative or 0 (zero), no characters are transferred, and
a value of 0 (zero) is returned. If a write error occurs, the error indicator for the stream is set, and
errno is set to indicate the error.

If the file descriptor underlying stream becomes invalid (is closed by another thread), 0 (zero) is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, 0 (zero) is returned with an errno value of [EINTR].

7−256 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_fwritex(2)

ERRORS
The spt_fwritex() function fails if:

• The stream parameter is not open for writing.

• The output file size cannot be increased.

• The stream is unbuffered.

• The buffer of stream needs to be flushed and the function call causes an underlying
spt_writex() or lseek() to be invoked, and this underlying operation fails.

In addition, if any of these conditions occur, the spt_fwritex() function sets errno to the
corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying the output
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying the output stream is not a valid file descriptor open
for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EINTR] The write operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient memory storage space is available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

Any error encountered during the underlying call to the spt_writex() function can cause this
function to return the corresponding errno value reported by the spt_writex() function. If your
application program encounters an errno value not listed on this reference page, see the
spt_writex(2) reference page either online or in the Open System Services System Calls Refer-
ence Manual for information about the cause of that error.

RELATED INFORMATION
Functions: fopen(3), fread(3), fwrite(3), getc(3), gets(3), printf(3), putc(3), puts(3), read(2),
scanf(3), spt_freadx(2), spt_getcx(2), spt_getsx(2), spt_printfx(2), spt_putcx(2), spt_putsx(2),
spt_readx(2), spt_writex(2), write(2).

527186-023 Hewlett-Packard Company 7−257

spt_fwritex(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−258 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_generateTag(2)

NAME
spt_generateTag - Increments and returns a static long tag

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

long spt_generateTag(void);

PARAMETERS
None.

DESCRIPTION
Increments and returns a static long string appropriate for use as a tag. Note that this long string
will eventually wrap, thereby returning tags that may still be in use. For example, if a process
calls spt_generateTag() 100 times per second, every second, the wrap will occur on the 248th
day.

RETURN VALUES
This funciton returns a long tag.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−259

spt_getc(2) OSS System Calls Reference Manual

NAME
spt_getc - Initiates thread-aware getc() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_getc(
FILE *stream);

PARAMETERS
See the getc(3) reference page either online or in the Open System Services Library Calls Refer-
ence Manual.

DESCRIPTION
This is a thread-aware version of the getc() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread aware.

The following macro maps spt_fgetc() to fgetc() and has been defined in spthread.h:

#define getc(stream) spt_getc(stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the getc(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying stream becomes invalid (is closed by another thread),
EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−260 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_getchar(2)

NAME
spt_getchar - Executes thread-aware getchar() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_getchar(void);

PARAMETERS
See the getchar(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware version of the getchar() function. The file descriptor underlying standard
input must be nonblocking for this function to be thread aware.

The following macro maps spt_getchar() to getchar() and has been defined in spthread.h:

#define getchar() spt_getchar()

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the getchar(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying standard input becomes invalid (is closed by another
thread), EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill(2 function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−261

spt_getcharx(2) OSS System Calls Reference Manual

NAME
spt_getcharx - Gets a character from the standard input stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_getcharx (void);

PARAMETERS
None.

DESCRIPTION
The spt_getcharx() function is the thread-aware version of the getchar() function.

The spt_getcharx() function returns the next byte from the standard input stream and moves the
file pointer, if defined, ahead one byte.

NOTES
The macro to map getchar() to spt_getcharx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link getchar() to spt_getcharx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

The spt_getcharx() function might be a macro (depending on the compile-time definitions used
in the source). Consequently, you cannot use this interface where a function is necessary; for
example, a subroutine pointer cannot point to it. When a function is necessary, use the
spt_fgetcx() function instead.

RETURN VALUES
This function and macro returns a character if successful. It returns the integer constant EOF at
the end of the file or upon an error. The function sets errno when an error is encountered.

If the file descriptor underlying stdin becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_getcharx() function sets errno to the corresponding
value:

[EAGAIN] The O_NONBLOCK flag is set for the underlying input stream and the process
would be delayed by the read operation.

[EBADF] The file descriptor underlying the input stream is not a valid file descriptor or is
not open for reading.

7−262 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_getcharx(2)

[EINTR] The read operation was interrupted by a signal that was caught, and no data was
transferred.

[ENXIO] A request was made on a nonexistent device, or the request was outside the
capabilities of the device.

[EIO] The call is attempting to read from the process’s controlling terminal and either
the process is ignoring or blocking the SIGTTIN signal or the process group is
orphaned.

[ENOMEM] Insufficient memory is available for the operation.

Any error encountered during the underlying call to the spt_readx() function can cause this
function to return the corresponding errno value reported by the spt_readx() function. If your
application program encounters an errno value not listed on this reference page, see the
spt_readx(2) reference page either online or in the Open System Services System Calls Refer-
ence Manual for information about the cause of that error.

RELATED INFORMATION
Functions: fgetc(3), getc(3), getchar(3), gets(3), getwc(3), putc(3), read(2), spt_fgetcx(2),
spt_getcx(2), spt_getsx(2), spt_getwcx(2), spt_putcx(2), spt_readx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−263

spt_getcx(2) OSS System Calls Reference Manual

NAME
spt_getcx - Gets a character from a specified input stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_getcx (
FILE ∗∗stream
);

PARAMETERS
stream Points to the FILE structure of an open file.

DESCRIPTION
The spt_getcx() function is the thread-aware version of the getc() function.

The spt_getcx() function returns the next byte from the input specified by the stream parameter
and moves the file pointer, if defined, ahead one byte in stream.

NOTES
The macro to map getc() to spt_getcx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link getc() to spt_getcx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

The spt_getcx() function might be a macro (depending on the compile-time definitions used in
the source). Consequently, you cannot use this interface where a function is necessary; for
example, a subroutine pointer cannot point to it. In addition, spt_getcx() does not work correctly
with a stream parameter that has side effects. In particular, the following does not work:

spt_getcx(*f++)

When a function is necessary, use the spt_fgetcx() function instead.

RETURN VALUES
This function and macro:

• Returns a character if successful.

• Returns the integer constant EOF at the end of the file or upon an error.

• Sets errno when an error is encountered.

If the file descriptor underlying stream becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

7−264 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_getcx(2)

ERRORS
If any of these conditions occur, the spt_getcx() function sets errno to the corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the underlying input stream and the process
would be delayed by the read operation.

[EBADF] The file descriptor underlying the input stream is not a valid file descriptor or is
not open for reading.

[EINTR] The read operation was interrupted by a signal that was caught, and no data was
transferred.

[ENXIO] A request was made on a nonexistent device, or the request was outside the
capabilities of the device.

[EIO] The call is attempting to read from the process’s controlling terminal and either
the process is ignoring or blocking the SIGTTIN signal or the process group is
orphaned.

[ENOMEM] Insufficient memory is available for the operation.

Any error encountered during the underlying call to the spt_readx() function can cause this
function to return the corresponding errno value reported by the spt_readx() function. If your
application program encounters an errno value not listed on this reference page, see the
spt_readx(2) reference page either online or in the Open System Services System Calls Refer-
ence Manual for information about the cause of that error.

RELATED INFORMATION
Functions: fgetc(3), getchar(3), getc(3), gets(3), getwc(3), putc(3), read(2), spt_fgetcx(2),
spt_getcharx(2), spt_getsx(2), spt_getwcx(2), spt_putcx(2), spt_readx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−265

spt_gets(2) OSS System Calls Reference Manual

NAME
spt_gets - Initiates thread-aware gets() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_gets(
FILE *stream);

PARAMETERS
See the gets(3) reference page either online or in the Open System Services Library Calls Refer-
ence Manual.

DESCRIPTION
This is a thread-aware version of the gets(3) function. The file descriptor underlying standard
input must be nonblocking for this function to be thread aware.

The following macro maps spt_gets() to gets() and has been defined in spthread.h:

#define gets(string) spt_gets(string)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the gets(3) reference page. The following information also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying standard input becomes invalid (is closed by another
thread), NULL is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, NULL is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−266 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_getsx(2)

NAME
spt_getsx - Gets a string from the standard input stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

char ∗∗spt_getsx (
char ∗∗string
);

PARAMETERS
string Points to a string to receive bytes.

DESCRIPTION
The spt_getsx() function is the thread-aware version of the gets() function.

The spt_getsx() function reads bytes from the standard input stream, stdin, into the array pointed
to by the string parameter. Data is read until a newline character is read or an end-of-file condi-
tion is encountered. If reading is stopped due to a newline character, the newline character is
discarded and the string is terminated with a NULL character.

NOTES
The macro to map gets() to spt_getsx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link gets() to spt_getsx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

The spt_getsx() function does not check the input for a maximum size. Consequently, if more
bytes are entered than will fit in the space allocated for the string parameter, spt_getsx() will
write beyond the end of the allocated space, producing indeterminate results. To avoid this con-
dition, you should use spt_fgetsx() instead of spt_getsx().

RETURN VALUES
If the end of the file is encountered and no characters have been read, no characters are
transferred to string and a null pointer is returned. If a read error occurs, a null pointer is
returned. Otherwise, string is returned.

If the file descriptor underlying stdin becomes invalid (is closed by another thread), NULL is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, NULL is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_getsx() function sets errno to the corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the underlying input stream and the process
would be delayed by the read operation.

527186-023 Hewlett-Packard Company 7−267

spt_getsx(2) OSS System Calls Reference Manual

[EBADF] The file descriptor underlying the input stream is not a valid file descriptor or is
not open for reading.

[EINTR] The read operation was interrupted by a signal that was caught, and no data was
transferred.

[ENXIO] A request was made on a nonexistent device, or the request was outside the
capabilities of the device.

[EIO] The call is attempting to read from the process’s controlling terminal and either
the process is ignoring or blocking the SIGTTIN signal or the process group is
orphaned.

[ENOMEM] Insufficient memory is available for the operation.

Any error encountered during the underlying call to the spt_readx() function can cause this
function to return the corresponding errno value reported by the spt_readx() function. If your
application program encounters an errno value not listed on this reference page, see the
spt_readx(2) reference page either online or in the Open System Services System Calls Refer-
ence Manual for information about the cause of that error.

RELATED INFORMATION
Functions: clearerr(3) , feof(3), ferror(3), fgets(3), fileno(3), fopen(3), fread(3), getc(3),
gets(3), getwc(3), puts(3), scanf(3), spt_freadx(2), spt_getcx(2), spt_gets(2), spt_getwcx(2),
spt_putsx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−268 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_getTMFConcurrentTransactions(2)

NAME
spt_getTMFConcurrentTransactions - Gets the number of concurrent TMF transactions being
used

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_getTMFConcurrentTransactions (void);

PARAMETERS
None.

DESCRIPTION
This function gets the number of concurrent TMF transactions being used.

RETURN VALUES
Upon successful completion, this function returns as an integer value the number of transactions
being used.

RELATED INFORMATION
Functions: spt_setTMFConcurrentTransactions(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−269

spt_getw(2) OSS System Calls Reference Manual

NAME
spt_getw - Initiates thread-aware getw() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_getw(
FILE *stream);

PARAMETERS
See the getw(3) reference page either online or in the Open System Services Library Calls Refer-
ence Manual.

DESCRIPTION
This is a thread-aware version of the getw() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread aware.

The following macro maps spt_getw() to getw() and has been defined in spthread.h:

#define getw(stream) spt_getw(stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the getw(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying the stream becomes invalid (is closed by another thread),
EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−270 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_getwc(2)

NAME
spt_getwc - Initiates thread-aware getwc() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

wint_t spt_getwc(
FILE *stream);

PARAMETERS
See the getwc(3) reference page either online or in the Open System Services Library Calls
Refrence Manual.

DESCRIPTION
This is a thread-aware version of the getwc() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread aware.

The following macro maps spt_getwc() to etwc() and has been defined in spthread.h:

#define getwc(stream) spt_getwc(stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the getwc(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying stream becomes invalid (is closed by another thread),
EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−271

spt_getwchar(2) OSS System Calls Reference Manual

NAME
spt_getwchar - Initiates thread-aware getwchar() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

wint_t spt_getwchar(void);

PARAMETERS
See the getwchar(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware version of the getwchar(3) function. The file descriptor underlying stan-
dard input must be nonblocking for this function to be thread aware.

The following macro maps spt_getwchar() to getwchar() and has been defined in spthread.h:

#define getwchar() spt_getwchar()

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the getwchar(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying standard input becomes invalid (is closed by another
thread), WEOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, WEOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−272 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_getwcharx(2)

NAME
spt_getwcharx - Gets a wide character from the standard input stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <wchar.h>]
#include <spthread.h>

wint_t spt_getwcharx (void);

PARAMETERS
None.

DESCRIPTION
The spt_getwcharx() function is the thread-aware version of the getwchar() function.

The spt_getwcharx() function gets the next wide character from the standard input stream. It is
equivalent to spt_getwcx(stdin).

NOTES
The macro to map getwchar() to spt_getwcharx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link getwchar() to spt_getwcharx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
This function returns the wide character read or the constant WEOF (wide-character end-of-file)
at the end of the file or upon an error.

If the file descriptor underlying stdin becomes invalid (is closed by another thread), WEOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, WEOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_getwcharx() function sets errno to the corresponding
value:

[EBADF] The file descriptor underlying stdin is no longer valid.

[EINTR] A signal was received that is not blocked, ignored or handled.

RELATED INFORMATION
Functions: fgetwc(3), fopen(3), fread(3), getc(3), gets(3), getwc(3), getwchar(3), putwc(3),
scanf(3), spt_fgetwcx(2), spt_freadx(2), spt_fgetcx(2), spt_getsx(2), spt_getwcx(2),
spt_putwcx(2).

527186-023 Hewlett-Packard Company 7−273

spt_getwcharx(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−274 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_getwcx(2)

NAME
spt_getwcx - Gets a wide character from a specified input stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <wchar.h>]
#include <spthread.h>

wint_t spt_getwcx (
FILE *stream
);

PARAMETERS
stream Specifies the input data.

DESCRIPTION
The spt_getwcx() function is the thread-aware version of the getwc() function.

The spt_getwcx() function gets the next wide character from the input stream specified by the
stream parameter.

NOTES
The macro to map getwc() to spt_getwcx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link getwc() to spt_getwcx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
This function returns the wide character read or the constant WEOF (wide-character end-of-file)
at the end of the file or upon an error.

If the file descriptor underlying stream becomes invalid (is closed by another thread), WEOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, WEOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_getwcx() function sets errno to the corresponding
value:

[EBADF] The file descriptor underlying stream is no longer valid.

[EINTR] A signal was received that is not blocked, ignored, or handled.

RELATED INFORMATION
Functions: fgetwc(3), fopen(3), fread(3), getc(3), gets(3), getwc(3), getwchar(3), putwc(3),
scanf(3), spt_getcx(2), spt_getsx(2), spt_getwcharx(2), spt_putwcx(2).

527186-023 Hewlett-Packard Company 7−275

spt_getwcx(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−276 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_getwx(2)

NAME
spt_getwx - Gets a word from an input stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_getwx (
FILE *stream
);

PARAMETERS
stream Points to the file structure of an open file.

DESCRIPTION
The spt_getwx() function is the thread-aware version of the getw() function.

The spt_getwx() function returns the next word (int) from the input specified by the stream
parameter and increments the associated file pointer, if defined, to point to the next int.

The spt_getw() function returns the constant EOF at the end of the file or when an error occurs.
Since EOF is a valid integer value, you can use the feof() and ferror() functions to check the
success of spt_getwx(). The spt_getwx() function assumes no special alignment in the file.

NOTES
The macro to map getw() to spt_getwx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link getw() to spt_getwx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

Because of possible differences in int length and byte ordering from one machine architecture to
another, files written using the spt_putwx() function are machine dependent and might not be
readable using getw() on a different type of processor.

RETURN VALUES
The spt_getwx() function returns the integer constant EOF at the end of the file or upon an error.

If the file descriptor underlying stream becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_getwx() function sets errno to the corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the underlying stream and the process would
be delayed by the read operation.

527186-023 Hewlett-Packard Company 7−277

spt_getwx(2) OSS System Calls Reference Manual

[EBADF] The file descriptor underlying the stream is not a valid file descriptor or is not
open for reading.

[EINTR] The read operation was interrupted by a signal that was caught, and no data was
transferred.

[ENXIO] A request was made on a nonexistent device, or the request was outside the
capabilities of the device.

[EIO] The call is attempting to read from the process’s controlling terminal and either
the process is ignoring or blocking the SIGTTIN signal or the process group is
orphaned.

[ENOMEM] Insufficient memory is available for the operation.

RELATED INFORMATION
Functions: fgetc(3), getc(3), getchar(3), gets(3), getw(3), getwc(3), putc(3), spt_fgetcx(2),
spt_getcx(2), spt_getcharx(2), spt_getsx(2), spt_getwcx(2), spt_putcx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−278 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_INITRECEIVE(2)

NAME
spt_INITRECEIVE - Registers $RECEIVE filename

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

long spt_INITRECEIVE (
const short filenum,
const short receive_depth);

PARAMETERS
filenum Specifies Guardian file number whose IO has completed

receive_depth Specifies the maximum number of incoming messages as specified in the filenum
value is FILE_OPEN() call

DESCRIPTION
This function registers filenum as being managed by the $RECEIVE callback.

RETURN VALUES
This function returns Guardian error numbers, which include:

0 $RECEIVE was successfully registered.

29 $RECEIVE was already registered prior to this call.

29 FILE_COMPLETE_SET_() addition of $RECEIVE returned nonzero.

29 Value for filenum not 0.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−279

spt_INITRECEIVEL(2) OSS System Calls Reference Manual

NAME
spt_INITRECEIVEL - Registers $RECEIVE filename (larger message version)

LIBRARY
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

long spt_INITRECEIVEL (
const short filenum,
const short receive_depth);

PARAMETERS
filenum Specifies Guardian file number whose IO has completed

receive_depth Specifies the maximum number of incoming messages as specified in the filenum
value is FILE_OPEN() call

DESCRIPTION
This function is the same as the spt_INITRECEIVE() function, except:

• This function can handle the longer message lengths allowed by the
SPT_SERVERCLASS_SENDL_() function.

• The Guardian file-system error 4184 (EVERSION) can be returned.

See the spt_INITRECEIVE() reference page.

NOTES
This function is supported on systems running J06.07 and later J-series RVUs and H06.18 and
later H-series RVUs, and must be used instead of the spt_INITRECEIVE() function when the
messages are larger than 32 kilobytes. This function also can be used for shorter messages.

RETURN VALUES
See the spt_INITRECEIVE() reference page.

In addition, this function can return this Guardian file-system error:

4184 (EVERSION)
The function was called from a system that is running a J-series RVU earlier
than J06.07 or an H-series RVU earlier than H06.18.

RELATED INFORMATION
Functions: spt_INITRECEIVE(2), SPT_SERVERCLASS_SENDL_(3).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

7−280 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_interrupt(2)

NAME
spt_interrupt - Interrupts all threads awaiting input or output

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

spt_error_t spt_interrupt(
const short filenum,
const spt_error_t errorSPT);

PARAMETERS
filenum Specifies the Guardian file number for thev file whose awaiting I/O is to be inter-

rupted.

errorSPT Specifies SPT error returned to waiting file.

DESCRIPTION
Interrupts all threads awaiting IO on file number. Note the I/O is not cancelled by this function.
Interrupted threads will return from the spt_awaitio() function with a return value of error_SPT.
Additionally, the error parameter passed to the spt_awaitio() function will be set as shown in
the PARAMETERS section.

RETURN VALUES
SPT_SUCCESS

The file number awaiting I/O (if any) was interrupted.

SPT_ERROR Either the value specified for error_SPT is invalid or the value for filenum is less
than 0 (zero) or is not registered.

ERRORS
-1 - SPT_ERROR

40 - SPT_TIMEOUT

[EINTR] - SPT_INTERRUPTED

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−281

spt_interruptTag(2) OSS System Calls Reference Manual

NAME
spt_interruptTag - Interrupts thread awaiting tagged I/O

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

spt_error_t spt_interruptTag(
const short filenum,
const long tag,
const spt_error_t error_SPT);

PARAMETERS
filenum Specifies the Guardian file number for the file whose awaiting I/O is to be inter-

rupted

tag Specifies tag whose awaiting I/O is to be interrupted

error_SPT Specifies SPT error returned to awaiting IO

DESCRIPTION
Interrupts the thread awaiting the tagged I/O on file number. Note that the I/O is not cancelled by
this function. Interrupted threads will return from the spt_awaitio() function with a return value
of error_SPT. Additionally, the error parameter passed to spt_awaitio() will be set as shown in
the ERRORS section.

RETURN VALUES
SPT_SUCCESS

Awaiting IO was interrupted.

SPT_ERROR One of the following conditions exists:

• The value of filenum was less than 0 (zero), or no awaiting I/O was
found

• The value of filenum is not registered

• The value for error_SPT is invalid

ERRORS
-1 SPT_ERROR

40 SPT_TIMEDOUT

EINTR SPT_INTERRUPTED

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−282 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_LOCKFILE(2)

NAME
SPT_LOCKFILE - Excludes other users from accessing a Guardian disk file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_LOCKFILE (
short filenum,
[long tag]
);

PARAMETERS
filenum specifies the file number of a Guardian disk file open instance that identifies the

file to be locked

tag is for nowait input/output (I/O) only. The tag value you define uniquely
identifies the operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_LOCKFILE() function is the thread-aware version of the Guardian LOCKFILE pro-
cedure.

The SPT_LOCKFILE() function is used to exclude other users from accessing a file (and any
records within that file). The user is defined either as the opener of the file (identified by filenum)
if the file is not audited or as the transaction (identified by the TRANSID) if the file is audited. If
the file is currently unlocked or is locked by the current user when SPT_LOCKFILE() is called,
the file (and all its records) becomes locked, and the caller continues executing. If the file is
already locked by another user, the behavior of the system is specified by the locking mode. Two
locking modes are available:

Default The process requesting the lock is suspended. See the Considerations subsec-
tion of this reference page.

Alternate The lock request is rejected with Guardian file-system error 73. When the alter-
nate locking mode is in effect, the process requesting the lock is not suspended.
See the Considerations subsection of this reference page.

For programming information about the LOCKFILE procedure, see the Enscribe Programmer’s
Guide and the Guardian Programmer’s Guide.

Considerations
Record locking versus file locking

A call to SPT_LOCKFILE() is not equivalent to locking all records in a file;
that is, locking all records still allows insertion of new records, but file locking
does not. File locks and record locks are queued in the order in which they are
issued.

527186-023 Hewlett-Packard Company 7−283

SPT_LOCKFILE(2) OSS System Calls Reference Manual

Nowait and SPT_LOCKFILE()
If the SPT_LOCKFILE() function is used to initiate an operation with a file
opened for nowait I/O, it must complete with a corresponding call to the Guar-
dian AWAITIO procedure.

Locking modes

Default mode If the file is already locked by another user when
SPT_LOCKFILE() is called, the process requesting the lock is
suspended and queued in a locking queue behind other users try-
ing to access the file. When the file becomes unlocked, the user
at the head of the locking queue is granted access to the file. If
the user at the head of the locking queue is requesting a lock, the
user is granted the lock and resumes execution. If the user at the
head of the locking queue is requesting a read, the read opera-
tion continues to completion.

Alternate mode If the file is already locked by another user when the call to
SPT_LOCKFILE() is made, the lock request is rejected, and
the call to SPT_LOCKFILE() completes immediately with
Guardian file-system error 73 (file is locked). The alter-
nate locking mode is specified by calling the
SPT_SETMODE() procedure and specifying function 4.

Locks and open files (applies to nonaudited files only)
Locks are granted on a file open (that is, on a file number) basis. Therefore, if a
process has multiple opens of the same file, a lock of one file number excludes
access to the file through other file numbers.

Attempting to read a locked file in default locking mode
If the default locking mode is in effect when a call to SPT_READX() or
SPT_READUPDATEX() is made for a file that is locked by another user, the
caller of SPT_READX() or SPT_READUPDATEX() is suspended and queued
in the locking queue behind other users attempting to access the file.

For nonaudited files, a deadlock condition (a permanent suspension of your
application) occurs if SPT_READX() or SPT_READUPDATEX() is called by
the process that has a record locked with a file number other than that supplied in
the SPT_READX() or SPT_READUPDATEX() call. For an explanation of
multiple opens by the same process, see the SPT_FILE_OPEN_(2) reference
page either online or in the Open System Services System Calls Reference
Manual.

Accessing a locked file
If the file is locked by a user other than the caller at the time of the call, the call
is rejected with Guardian file-system error 73 (file is locked) when:

SPT_READX() or SPT_READUPDATEX() is called, and the alternate lock-
ing mode is in effect.

SPT_WRITEX(), WRITEUPDATE, or SPT_CONTROL() is called.

A count of the locks in effect is not maintained. Multiple locks can be unlocked with one call to
SPT_UNLOCKFILE().

7−284 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_LOCKFILE(2)

Use on OSS Objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The SPT_LOCKFILE() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEREADX(2), SPT_WRITEUPDATEUNLOCKX(2),
SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−285

SPT_LOCKREC(2) OSS System Calls Reference Manual

NAME
SPT_LOCKREC - Excludes other users from accessing a record in a Guardian disk file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_LOCKREC (
short filenum,
[long tag]
);

PARAMETERS
filenum specifies the file number of a Guardian disk file open instance that identifies the

file containing the record to be locked

tag is for nowait input/output (I/O) only. The tag value you define uniquely
identifies the operation associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_LOCKREC() function is the thread-aware version of the Guardian LOCKREC pro-
cedure.

The LOCKREC procedure excludes other users from accessing a record at the current position.
The user is defined either as the opener of the file (identified by filenum) if the file is not audited
or as the transaction (identified by the TRANSID) if the file is audited.

For key-sequenced, relative, and entry-sequenced files, the current position is the record with a
key value that matches exactly the current key value. For unstructured files, the current position
is the relative byte address (RBA) identified by the current-record pointer. If the record is
unlocked when SPT_LOCKREC() is called, the record becomes locked, and the caller contin-
ues executing.

You cannot use SPT_LOCKREC() with queue files.

If the file is already locked by another user, the behavior of the system is specified by the locking
mode. Two locking modes are available:

Default The process requesting the lock is suspended. See the Considerations subsec-
tion of this reference page.

Alternate The lock request is rejected with Guardian file-system error 73. When the alter-
nate locking mode is in effect, the process requesting the lock is not suspended.
See the Considerations subsection of this reference page.

For programming information about the LOCKREC procedure, see the Enscribe Programmer’s
Guide and the Guardian Programmer’s Guide.

7−286 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_LOCKREC(2)

Considerations
Record locking versus file locking

A call to SPT_LOCKFILE() is not equivalent to locking all records in a file;
that is, locking all records still allows insertion of new records, but file locking
does not. File locks and record locks are queued in the order in which they are
issued.

Nowait and SPT_LOCKREC()
If the SPT_LOCKREC() function is used to initiate an operation with a file
opened for nowait I/O, it must complete with a corresponding call to the Guar-
dian AWAITIO procedure.

Default locking mode
If the record is already locked by another user when SPT_LOCKREC() is
called, the process requesting the lock is suspended and queued in a locking
queue behind other users also requesting to lock or read the record.

When the record becomes unlocked, the user at the head of the locking queue is
granted access to the record. If the user at the head of the locking queue is
requesting a lock, it is granted the lock and resumes execution. If the user at the
head of the locking queue is requesting a read operation, the read operation con-
tinues to completion.

Alternate locking mode
If the record is already locked by another user when SPT_LOCKREC() is
called, the lock request is rejected, and the call to SPT_LOCKREC() completes
immediately with Guardian file-system error 73 (record is locked). The
alternate locking mode is specified by calling the SPT_SETMODE() procedure
and specifying function 4.

Attempting to read a locked record in default locking mode
If the default locking mode is in effect when SPT_READX() or
SPT_READUPDATEX() is called for a record that is locked by another user,
the caller to SPT_READX() or SPT_READUPDATEX() is suspended and
queued in the locking queue behind other users attempting to lock or read the
record. (Another user means another open filenum if the file is not audited, or
another TRANSID if the file is audited.)

For nonaudited files, a deadlock condition (a permanent suspension of your
application) occurs if SPT_READX() or SPT_READUPDATEX() is called by
the process that has a record locked with a file number other than that supplied in
the SPT_READX() or SPT_READUPDATEX() call. For an explanation of
multiple opens by the same process, see the SPT_FILE_OPEN_(2) reference
page either online or in the Open System Services System Calls Reference
Manual.

Selecting the locking mode with SPT_SETMODE()
The locking mode is specified by the calling SETMODE procedure with function
4.

A count of the locks in effect is not maintained. Multiple locks can be unlocked
with one call to SPT_UNLOCKFILE().

527186-023 Hewlett-Packard Company 7−287

SPT_LOCKREC(2) OSS System Calls Reference Manual

Structured files

Calling LOCKREC after positioning on a nonunique key
If the call to SPT_LOCKREC() immediately follows a call to
KEYPOSITION where a nonunique alternate key is specified,
the call to SPT_LOCKREC() fails. A subsequent call to the
Guardian FILE_GETINFO_ or FILEINFO procedure shows that
a Guardian file-system error 46 (invalid key) occurred.
However, if an intermediate call to SPT_READX() is per-
formed, the call to SPT_LOCKREC() is permitted because a
unique record is identified.

Current-state indicators after SPT_LOCKREC()
After a successful call to SPT_LOCKREC(), current-state indi-
cators are unchanged.

Unstructured files

Locking the relative byte address (RBA) in an unstructured file
Record positions in an unstructured file are represented by an
RBA, and the RBA can be locked with SPT_LOCKREC(). To
lock a position in an unstructured file, first call the Guardian
POSITION procedure with the desired RBA, and then call
SPT_LOCKREC(). This locks the RBA; any other process
attempting to access the file with exactly the same RBA
encounters a record is locked condition. You can access
that RBA by positioning to RBA-2. Depending on the process’s
locking mode, the call either fails with Guardian file-system
error 73 (record is locked) or is placed in the locking
queue.

Record pointers after a call to SPT_LOCKREC()
After a call to SPT_LOCKREC(), the current-record, next-
record, and end-of-file pointers remain unchanged.

Ways to avoid or resolve deadlocks
One way to avoid deadlock is to call function 4 of the
SPT_SETMODE() procedure to establish one of the alternate
locking modes. A common method of avoiding deadlock situa-
tions is to lock records in some predetermined order. Deadlocks
can be resolved if you lock records using a nowait open and call
the Guardian AWAITIO procedure with a timeout specified.

Use on OSS Objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The SPT_LOCKREC() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

7−288 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_LOCKREC(2)

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEREADX(2), SPT_WRITEUPDATEUNLOCKX(2),
SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−289

spt_lseek64z(2) OSS System Calls Reference Manual

NAME
spt_lseek64z - Sets file offset for read or write operation (serializes I/O operations on an open
file)

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>
#include <spthread.h>

off64_t spt_lseek64z(
int filedes,
off64_t offset,
int whence);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

offset Specifies a value, in bytes, that is used with the whence parameter to set the file
pointer. A negative value causes seeking in the reverse direction.

whence Specifies how to interpret the offset parameter in setting the file pointer associ-
ated with the filedes parameter. Values for the whence parameter are:

SEEK_CUR Sets the file pointer to its current location plus the value of the
offset parameter.

SEEK_END Sets the file pointer to the size of the file plus the value of the
offset parameter.

SEEK_SET Sets the file pointer to the value of the offset parameter.

DESCRIPTION
The spt_lseek64z() is a thread-aware version of the lseek64() function.

The spt_lseek64z() function sets the file offset for the open file specified by the filedes parame-
ter. The whence parameter determines how the offset is to be interpreted.

The spt_lseek64z() function allows the file offset to be set beyond the end of existing data in the
file. If data is later written at this point, subsequent reading of data in the gap returns bytes with
the value 0 (zero) until data is actually written into the gap.

The spt_lseek64z() function does not, by itself, extend the size of the file.

NOTES
The spt_lseekz() function offers an alternative to the O_SYNC file status flag. Using
spt_lseekz() calls gives an application control over the performance tradeoffs involved in
guaranteeing data integrity. OSS file-system caching can be used for files that are protected only
by spt_lseekz() function calls.

This function serializes file operations on an open file. If a thread calls spt_lseek64z() to access
a file that already has a file operation in progress by a different thread, this thread is blocked until
the prior file operation is complete.

7−290 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_lseek64z(2)

For C applications, a macro to map lseek() to spt_lseek64z() is available when you use the
#define SPT_THREAD_AWARE_XNONBLOCK and the #define _FILE_OFFSET_BITS 64
preprocessor directives before including spthread.h or when you use equivalent compiler com-
mand options to compile the application.

For C++ applications, an alias to map lseek() to spt_lseek64z() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK and the #define
_FILE_OFFSET_BITS 64 preprocessor directives before including spthread.h or when you
use equivalent compiler command options to compile the application.

For C applications, a macro to map lseek64() to spt_lseek64z() is available when you use the
#define SPT_THREAD_AWARE_XNONBLOCK and the #define
_LARGEFILE64_SOURCE 1 preprocessor directives before including spthread.h or when
you use equivalent compiler command options to compile the application.

For C++ applications, an alias to map lseek64() to spt_lseek64z() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK and the #define
_LARGEFILE64_SOURCE 1 preprocessor directives before including spthread.h or when
you use equivalent compiler command options to compile the application.

A direct application call to spt_lseekz() is automatically mapped to spt_lseek64z() when you
use the #define _LARGEFILE64_SOURCE 1 preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the resulting pointer location, measured in bytes from the beginning
of the file, is returned. For First-in, First-out (FIFO) files, pipes, and character special files, the
value 0 (zero) is returned. For character special files, errno is not set.

If the spt_lseek64z() function fails, the file offset remains unchanged, the value -1 cast to the
type off_t is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the file offset remains unchanged, and the spt_lseek64z() func-
tion sets errno to the corresponding value:

[EBADF] The filedes parameter is not an open file descriptor.

[EINVAL] One of these conditions exists:

• The whence parameter is an invalid value, or the resulting file offset
would be an invalid value (that is, a value less than 0 [zero]).

• The filedes parameter refers to a file (other than a pipe, FIFO, or direc-
tory) on which seeking cannot be performed.

527186-023 Hewlett-Packard Company 7−291

spt_lseek64z(2) OSS System Calls Reference Manual

[EISDIR] The filedes parameter refers to an OSS directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[EOVERFLOW]
The application attempted to set the file offset beyond the maximum file offset
supported for the file.

[ESPIPE] The filedes parameter refers to a pipe, FIFO, or socket.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and the backup process took over.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: fcntl(2), fseek(3), open(2), open64(2), read(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

7−292 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_lseekz(2)

NAME
spt_lseekz - Sets file offset for read or write operation (serializes I/O operations on an open file))

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>
#include <spthread.h>

off_t spt_lseekz(
int filedes,
off_t offset,
int whence);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

offset Specifies a value, in bytes, that is used with the whence parameter to set the file
pointer. A negative value causes seeking in the reverse direction.

whence Specifies how to interpret the offset parameter in setting the file pointer associ-
ated with the filedes parameter. Values for the whence parameter are:

SEEK_CUR Sets the file pointer to its current location plus the value of the
offset parameter.

SEEK_END Sets the file pointer to the size of the file plus the value of the
offset parameter.

SEEK_SET Sets the file pointer to the value of the offset parameter.

DESCRIPTION
The spt_lseekz() is a thread-aware version of the lseek() function.

The spt_lseekz() function sets the file offset for the open file specified by the filedes parameter.
The whence parameter determines how the offset is to be interpreted.

The spt_lseekz() function allows the file offset to be set beyond the end of existing data in the
file. If data is later written at this point, subsequent reading of data in the gap returns bytes with
the value 0 (zero) until data is actually written into the gap.

The spt_lseekz() function does not, by itself, extend the size of the file.

NOTES
The spt_lseekz() function offers an alternative to the O_SYNC file status flag. Using
spt_lseekz() calls gives an application control over the performance tradeoffs involved in
guaranteeing data integrity. OSS file-system caching can be used for files that are protected only
by spt_lseekz() function calls.

This function serializes file operations on an open file. If a thread calls spt_lseekz() to access a
file that already has a file operation in progress by a different thread, this thread is blocked until
the prior file operation is complete.

527186-023 Hewlett-Packard Company 7−293

spt_lseekz(2) OSS System Calls Reference Manual

For C applications, a macro to map lseek() to spt_lseekz() is available when you use the #define
SPT_THREAD_AWARE_XNONBLOCK preprocessor directive before including spthread.h
or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map lseek() to spt_lseekz() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the resulting pointer location, measured in bytes from the beginning
of the file, is returned. For First-in, First-out (FIFO) files, pipes, and character special files, the
value 0 (zero) is returned. For character special files, errno is not set.

If the spt_lseekz() function fails, the file offset remains unchanged, the value -1 cast to the type
off_t is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the file offset remains unchanged, and the spt_lseekz() func-
tion sets errno to the corresponding value:

[EBADF] The filedes parameter is not an open file descriptor.

[EINVAL] One of these conditions exists:

• The whence parameter is an invalid value, or the resulting file offset
would be an invalid value (that is, a value less than 0 [zero]).

• The filedes parameter refers to a file (other than a pipe, FIFO, or direc-
tory) on which seeking cannot be performed.

[EISDIR] The filedes parameter refers to an OSS directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[EOVERFLOW]
The application was compiled in a regular compilation environment or was com-
piled using the #define _LARGEFILE64_SOURCE 1 feature test macro (or an
equivalent compiler command option), and the application attempted to set the
pointer location at a position between 2 gigabytes minus 1 byte and the max-
imum file offset established when the file was opened.

7−294 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_lseekz(2)

[ESPIPE] The filedes parameter refers to a pipe, FIFO, or socket.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and the backup process took over.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: fcntl(2), fseek(3), spt_lseekz64(2), open(2), open64(2), read(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with this exception:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• If the spt_lseekz() function is called for a pipe or FIFO, the errno value [ESPIPE] is
returned.

• If the spt_lseekz() function is called for a character special file, no errno value is
returned.

• If the spt_lseekz() function is called for any other device on which seeking cannot be
performed, the operation fails, and errno is set to [EINVAL].

HP extensions to the XPG4 Version 2 specification are:

• The errno values [EINVAL], [EISDIR], [EISGUARDIAN], and [EWRONGID] can be
returned.

527186-023 Hewlett-Packard Company 7−295

spt_OSSFileIOHandler_p(2) OSS System Calls Reference Manual

NAME
spt_OSSFileIOHandler_p - Executes callback type required by the
spt_regOSSFileIOHandler(function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

typedef void (
*spt_OSSFileIOHandler_p)(const int filedes,
const int read,
const int write,
const int error);

PARAMETERS
filedes Specifies OSS file descriptor of interest

read Specifies file descriptor is read ready

write Specifies file descriptor is write ready

error Specifies file descriptor has an exception pending

DESCRIPTION
This function executes the callback type required by the spt_regOSSFileIOHandler() function.
This callback is executed in the context of the last running thread (on the stack of the last running
thread).

RETURN VALUES
None.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−296 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_pause(2)

NAME
spt_pause - Suspends a thread until a signal is received.

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_pause(void)

DESCRIPTION
This function suspends the calling thread until it receives a signal whose action is either to exe-
cute a signal-catching function or to terminate the process. The spt_pause() function does not
affect the action taken when the signal is received.

To catch externally-generated signals (such as SIGINT, SIGQUIT, SIGALRM, and SIGCHLD) at
the thread level, you must export the SPT_THREAD_AWARE_SIGNAL environmental variable
to the value 1. By default, SPT_THREAD_AWARE_SIGNAL is disabled.

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
When the received signal cause the calling process to terminate, the spt_pause() function does
not return a value. When the signal is caught by the calling thread and control is returned from
the signal- catching function, the calling thread resumes execution from the point of suspension,
the spt_pause() function returns the value -1, and spt_pause() function sets errno to the value
[EINTR].

ERRORS
If the following condition occurs, the spt_pause() function sets errno to this value:

[EINTR] The signal was caught by the calling thread and control was returned from the
signal-catching fucntion.

RELATED INFORMATION
Functions: pause(2), pthread_kill(2), pthread_sigmask(2), sigsuspend(2) spt_sigaction(2),
spt_signal(2), spt_sigsuspend(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−297

spt_printf(2) OSS System Calls Reference Manual

NAME
spt_printf - Initiates thread-aware printf() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_printf(
const char *format, ...);

PARAMETERS
See the printf(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware version of the printf() function. The file descriptor underlying standard
output must be nonblocking for this function to be thread aware.

The following macro maps spt_printf() to printf() and has been defined in spthread.h:

#define printf spt_printf

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the printf(3) reference page. The following also applies:

• THe value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying standard output becomes invalid (is closed by another
thread), -1 is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−298 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_printfx(2)

NAME
spt_printfx - Prints formatted output to the standard output stream (thread-aware function)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_printfx (
const char *format
[, value] . . .
);

PARAMETERS
format Specifies a character string combining literal characters with conversion

specifications.

value Specifies the data to be converted according to the format parameter.

DESCRIPTION
The spt_printfx() function is the thread-aware version of the printf() function.

The spt_printfx() function converts, formats, and writes its value parameters, under control of
the format parameter, to the standard output stream stdout.

The format parameter is a character string that contains two types of objects:

• Literal characters, which are copied to the output stream.

• Conversion specifications, each of which causes zero or more items to be fetched from
the value parameter list.

If not enough items for format are in the value parameter list, the results are unpredictable. If
more values remain after the entire format has been processed, they are ignored.

Conversion Specifications
Each conversion specification in the format parameter has the following syntax:

• A % (percent sign).

The spt_printfx() function can handle a format string that enables the system to process
elements of the parameter list in variable order. In such a case, the normal conversion
character % (percent sign) is replaced by %digit$, where digit is a decimal number in
the range from 1 to NL_ARGMAX. Conversion is then applied to the specified argu-
ment, rather than to the next unused argument. This feature provides for the definition of
format strings in an order appropriate to specific languages. When variable ordering is
used, the * (asterisk) specification for field width in precision is replaced by %digit$. If
the variable ordering feature is used, it must be specified for all conversions.

• Zero or more flags that modify the meaning of the conversion specification. The flag
characters and their meanings are:

- Left align the result of the conversion within the field.

527186-023 Hewlett-Packard Company 7−299

spt_printfx(2) OSS System Calls Reference Manual

+ Begin the result of a signed conversion with a sign (+ or -).

(space) Prefix a space character to the result if the first character of a signed
conversion is not a sign. If both the (space) and + flags appear, the
(space) flag is ignored.

Convert the value to an alternate form. For o conversion, it increases the
precision to force the first digit of the result to be a 0 (zero). For x and X
conversions, a nonzero result has 0x or 0X prefixed to it. For e, E, f, g,
and G conversions, the result always contains a radix character, even if
no digits follow it. For g and G conversions, trailing zeros are not
removed from the result. For c, C, d, i, s, S, and u conversions, the flag
has no effect.

0 Pad to field width using leading zeros (following any indication of sign
or base) for d, e, E, f, g,G, i, o, u, x, and X conversions; no space pad-
ding is performed. If the 0 and - (dash) flags both appear, the 0 flag will
be ignored. For d, i, o u, x, and X conversions, if a precision is specified,
the 0 flag is also ignored. For other conversions, the behavior is
undefined.

• An optional decimal digit string that specifies the minimum field width. If the converted
value has fewer characters than the field width, the field is padded on the left to the
length specified by the field width. If the left-adjustment flag is specified, the field is pad-
ded on the right.

A field width can be indicated by an * (asterisk) instead of a digit string. In this case, an
integer (int) value parameter supplies the field width. The value parameter converted for
output is not fetched until the conversion letter is reached, so the parameters specifying
field width or precision must appear before the value (if any) to be converted. If the
corresponding parameter has a negative value, it is treated as a - (dash) left alignment
option followed by a positive field width. When variable ordering with the Ldigit$ for-
mat is used, the * (asterisk) specification for field width in precision is replaced by
*digit$.

• An optional precision. The precision is a . (dot) followed by a decimal digit string. If no
precision is given, it is treated as 0 (zero). The precision specifies:

— The minimum number of digits to appear for the d, u, o, x, or X conversions.

— The number of digits to appear after the radix character for the e, E, and f
conversions.

— The maximum number of significant digits for the g and G conversions.

— The maximum number of bytes to be printed from a string in the s or S conver-
sion.

A field precision can be indicated by an * (asterisk) instead of a digit string. In this case,
an integer (int) value parameter supplies the field precision. The value parameter con-
verted for output is not fetched until the conversion letter is reached, so the parameters
specifying field width or precision must appear before the value (if any) to be converted.
If the value of the corresponding parameter is negative, it is treated as if the precision
had not been specified. When variable ordering with the Ldigit$ format is used, the *
(asterisk) specification for field width in precision is replaced by *digit$.

7−300 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_printfx(2)

• An optional h, l, ll, or L indicating the size of the argument corresponding to the follow-
ing integer or floating-point conversion specifier:

— An h followed by a d, i, o, u, x, or X conversion specifier indicates that the argu-
ment will be treated as a short int or unsigned short int.

— An h followed by an n conversion specifier indicates that the argument will be
treated as a pointer to a short int.

— An l followed by a d, i, o, u, x, or X conversion specifier indicates that the argu-
ment will be treated as a long int or unsigned long int.

— An l followed by an n conversion specifier indicates that the argument will be
treated as a pointer to a long int.

— An ll followed by a d, i, o, u, or x conversion code character indicates that the
receiving variable is treated as a long long int or unsigned long long int.

— An ll followed by an e, f, or g conversion code character indicates that the
receiving variable is treated as a double instead of a float.

— An L followed by a e, E, f, g, or G conversion specifier indicates that the argu-
ment will be treated as a long double.

— An L followed by a d, i, o, x, or X conversion specifier indicates that the argu-
ment will be treated as a long long, which is a 64-bit integer data type and an HP
extension.

• A character that indicates the type of conversion to be applied:

% Performs no conversion. Prints %.

d or i Accepts an integer (int) value and converts it to signed decimal notation.
The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting
a 0 (zero) value with a precision of 0 (zero) is a null string. Specifying a
field width with a 0 (zero) as a leading character causes the field width
value to be padded with leading zeros.

u Accepts an integer (int) value and converts it to unsigned decimal nota-
tion. The precision specifies the minimum number of digits to appear. If
the value being converted can be represented in fewer digits, it is
expanded with leading zeros. The default precision is 1. The result of
converting a 0 (zero) value with a precision of 0 (zero) is a null string.
Specifying a field width with a 0 (zero) as a leading character causes the
field width value to be padded with leading zeros.

o Accepts an integer (int) value and converts it to unsigned octal notation.
The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting
a 0 (zero) value with a precision of 0 (zero) is a null string. Specifying a
field width with a 0 (zero) as a leading character causes the field width
value to be padded with leading zeros. An octal value for field width is
not implied.

527186-023 Hewlett-Packard Company 7−301

spt_printfx(2) OSS System Calls Reference Manual

x or X Accepts an integer (int) value and converts it to unsigned hexadecimal
notation. The letters abcdef are used for the x conversion and the letters
ABCDEF are used for the X conversion. The precision specifies the
minimum number of digits to appear. If the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The
default precision is 1. The result of converting a 0 (zero) value with a
precision of 0 (zero) is a null string. Specifying a field width with a 0
(zero) as a leading character causes the field width value to be padded
with leading zeros.

f Accepts a float or double value and converts it to decimal notation in the
format [-]ddd.ddd. The number of digits after the radix character is
equal to the precision specification. If no precision is specified, six
digits are output. If the precision is 0 (zero), no radix character appears
(unless the # flag is specified). If a radix character is output, at least one
digit is output before it. The value is rounded to the appropriate number
of digits.

e or E Accepts a float or double value and converts it to the exponential form
[-]d.ddde+/-dd. One digit is before the radix character and the number of
digits after the readix character is equal to the precision specification. If
no precision is specified, six digits are output. If the precision is 0
(zero), no radix character appears (unless the # flag is specified). The E
conversion character produces a number with uppercase E instead of
lowercase e before the exponent. The exponent always contains at least
two digits. If the value is 0 (zero), the exponent is 0 (zero).

g or G Accepts a float or double value and converts it in the style of the e, E, or
f conversion characters, with the precision specifying the number of
significant digits. Trailing zeros are removed from the result. A radix
character appears only if it is followed by a digit (except that it always
appears if the # flag is specified). The style used depends on the value
converted. Style e (E, if G is the flag used) results only if the exponent
resulting from the conversion is less than -4, or if it is greater or equal to
the precision.

c Accepts and prints an integer (int) value converted to an unsigned char.

C Accepts a wchar_t value, converts it to an array of bytes containing a
multibyte character, and prints it. If a minimum field width is specified
and the multibyte character occupies fewer bytes than the specified
width, the multibyte character is padded with space characters to the
specified width.

s Accepts a pointer to an array of char type. Bytes from the array are
printed until a null character is encountered or the number of characters
indicated by the precision is reached. If no precision is specified, all
characters up to the first null character are printed. If the precision is not
specified or is greater than the size of the array, the array must be ter-
minated by a null byte. If the string pointer value has a value of 0 (zero)
or null, the results are undefined.

7−302 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_printfx(2)

S Accepts a pointer to an array of wchar_t type. Wide characters from the
array are converted to an array of bytes containing multibyte characters
and the multibyte characters up to (but not including) the null character
are printed. If a precision is specified, no more than the number of bytes
specified by the precision are printed. If the precision is not specified or
is greater than the size of the array of bytes, the array of wide characters
must be terminated by a null wide character. If a minimum field width is
specified and the array of bytes occupy fewer bytes than the specified
width, the array is padded with space characters to the specified width.

p Accepts a pointer to void. The value of the pointer is converted to a
sequence of printable characters, the same as unsigned hexadecimal
integer (x).

n Accepts a pointer to an integer into which is written the number of char-
acters written to the output stream so far by this call. No argument is
converted.

If the result of a conversion is wider than the field width, the field is expanded to contain the con-
verted result. No truncation occurs. However, a small precision can cause truncation on the
right.

The e, E, f, and g formats represent the special floating-point values as follows:

Quiet NaN NaN

Signaling NaN NaN

+/-INF +Inf or -Inf

+/-0 +0.0 or -0.0 (zero)

The representation of the + (plus sign) depends on whether the + or (space) formatting flag is
specified.

The spt_printfx() function allows for the insertion of a language-dependent radix character in
the output string. The radix character is defined by langinfo data in the program’s locale
(category LC_NUMERIC). In the C locale, or in a locale where the radix character is not
defined, the radix character defaults to . (period).

The st_ctime and st_mtime fields of the file are marked for update between the successful exe-
cution of the spt_printfx() function and the next successful completion of a call to the
spt_fflushx() or spt_fclosex() functions on the same stream, or a call to the exit() or abort()
functions.

NOTES
The macro to map printf() to spt_printfx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link printf() to spt_printfx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

This function supports both IEEE Std 754-1985 floating-point and Tandem floating-point values
in the native environment. IEEE values can include NaN and infinity, and the sign of 0.0 (zero)

527186-023 Hewlett-Packard Company 7−303

spt_printfx(2) OSS System Calls Reference Manual

can be either positive or negative. For a description of IEEE value classes, see the fp_class(3)
reference page.

Guardian functions are available to convert between floating-point formats. For a discussion of
floating-point conversions, see the Guardian Programmer’s Guide.

RETURN VALUES
Upon successful completion, this function returns the number of bytes in the output string. Oth-
erwise, a negative value is returned.

If the file descriptor underlying stream becomes invalid (is closed by another thread), -1 is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, -1 is returned with an errno value of [EINTR].

ERRORS
The spt_printfx() function fails if either:

• The standard output stream is unbuffered

• The buffer for the standard output stream needs to be flushed and the function call causes
an underlying spt_writex() or lseek() function to be invoked

In addition, if the spt_printfx() function fails, errno is set to one of the following values:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying the output
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying the output stream is not a valid file descriptor open
for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EILSEQ] An invalid wide character was detected.

[EINTR] The operation was interrupted by a signal that was caught, and no data was
transferred.

[EINVAL] There are insufficient arguments.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient storage space was available.

[ENOSPC] No free space was remaining on the device containing the file.

[EBADF] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

7−304 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_printfx(2)

RELATED INFORMATION
Functions: fp_class(3), fprintf(3), isnan(3), toascii(3), printf(3), putc(3), scanf(3), sprintf(3),
spt_putcx(2), spt_fprintfx(2), spt_printf(2), spt_sprintfx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−305

spt_putc(2) OSS System Calls Reference Manual

NAME
spt_putc - Initiates thread-aware putc() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_putc(
int c,
FILE *stream);

PARAMETERS
See the putc(3) reference page either online or in the Open System Services Library Calls Refer-
ence Manual.

DESCRIPTION
This is a thread-aware version of the putc() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread-aware.

The following macro maps spt_putc() to putc() and has been defined in spthread.h:

#define putc(c, stream) spt_putc(c, stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the putc(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying the stream becomes invalid (is closed by another thread),
EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−306 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_putchar(2)

NAME
spt_putchar - Initiates thread-aware putchar() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

extern int spt_putchar(
int c);

PARAMETERS
See the putchar(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware version of the putchar() function. The file descriptor underlying standard
output must be nonblocking for this function to be thread-aware.

The following macro maps spt_fputchar() to fptchar() and has been defined in spthread.h:

#define putchar(c) spt_putchar(c)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the putchar(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying standard output becomes invalid (is closed by another
thread), EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−307

spt_putcharx(2) OSS System Calls Reference Manual

NAME
spt_putcharx - Writes a byte to the standard output stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_putcharx (
int cO
);

PARAMETERS
c Specifies the character to be written.

DESCRIPTION
The spt_putcharx() function is the thread-aware version of the putchar() function.

The spt_putcharx() function writes the character c to the standard output stream. The character
is written at the position at which the file pointer is currently pointing, if defined.

With the exception of stderr, output streams are, by default, buffered if they refer to files, or line
buffered if they refer to terminals. The standard error output stream, stderr, is unbuffered by
default, but using the freopen() function causes it to become buffered or line buffered. Use the
setbuf() function to change the stream-buffering strategy.

When an output stream is unbuffered, information is queued for writing on the destination file or
terminal as soon as it is written. When an output stream is buffered, many characters are saved
and written as a block. When an output stream is line-buffered, each line of output is queued for
writing on the destination terminal as soon as the line is completed (that is, as soon as a newline
character is written or terminal input is requested).

The st_ctime and st_mtime fields of the file are marked for update between the successful exe-
cution of the spt_putcharx() function, and the next successful completion of a call to the
spt_fflushx() or spt_fclosex() function on the same stream, or a call to the exit() or abort()
function.

NOTES
The macro to map putchar() to spt_putcharx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link putchar() to spt_putcharx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

The spt_putcharx() function might be a macro (depending on the compile-time definitions used
in the source). Consequently, you cannot use this interface where a function is necessary; for
example, a subroutine pointer cannot point to it.

When a function is necessary, use the spt_fputcx() function instead.

7−308 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_putcharx(2)

RETURN VALUES
The spt_putcharx() function and macro, upon successful completion, return the value written.
If this function or macro fails, it returns the constant EOF. The function sets errno when an error
is encountered.

If the file descriptor underlying stdout becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
The spt_putcharx() function fails if:

• The standard output stream is not open for writing.

• The output file size cannot be increased.

•
The standard output stream is unbuffered.

• The buffer of the standard output stream needs to be flushed and the function call causes
an underlying spt_writex() or lseek() to be invoked and this underlying operation fails.

In addition, if any of these conditions occur, the spt_putcharx() function sets errno to the
corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying the output
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying the output stream is not a valid file descriptor open
for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EINTR] The write operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient memory storage space is available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

Any error encountered during the underlying call to the spt_writex() function can cause this
function to return the corresponding errno value reported by the spt_writex() function. If your
application program encounters an errno value not listed on this reference page, see the the
spt_writex(2) reference page either online or in the Open System Services System Calls Refer-
ence Manual for information about the cause of that error.

527186-023 Hewlett-Packard Company 7−309

spt_putcharx(2) OSS System Calls Reference Manual

RELATED INFORMATION
Functions: ferror(3), fputc(3), getc(3), getwc(3), printf(3), putc(3), putchar(3), puts(3),
putwc(3), spt_fputcx(2), spt_getcx(2), spt_getwcx(2), spt_printfx(2), spt_putcx(2),
spt_putsx(2), spt_putwcx(2), spt_writex(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−310 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_putcx(2)

NAME
spt_putcx - Writes a byte to a specified output stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_putcx (
int c,
FILE *stream
);

PARAMETERS
c Specifies the character to be written.

stream Points to the file structure of an open file.

DESCRIPTION
The spt_putcx() function is the thread-aware version of the putc() function.

The spt_putcx() function writes the character c to the output specified by the stream parameter.
The character is written at the position at which the file pointer is currently pointing, if defined.

With the exception of stderr, output streams are, by default, buffered if they refer to files, or line
buffered if they refer to terminals. The standard error output stream, stderr, is unbuffered by
default, but using the freopen() function causes it to become buffered or line buffered. Use the
setbuf() function to change the stream buffering strategy.

When an output stream is unbuffered, information is queued for writing on the destination file or
terminal as soon as it is written. When an output stream is buffered, many characters are saved
and written as a block. When an output stream is line-buffered, each line of output is queued for
writing on the destination terminal as soon as the line is completed (that is, as soon as a newline
character is written or terminal input is requested).

The st_ctime and st_mtime fields of the file are marked for update between the successful exe-
cution of the spt_putcx() function, and the next successful completion of a call to the
spt_fflushx() or spt_fclosex() function on the same stream, or a call to the exit() or abort()
function.

NOTES
The macro to map putc() to spt_putcx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link putc() to spt_putcx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

The spt_putcx() function runs faster than spt_fputcx(), but takes more space per invocation.

The spt_putcx() function might be a macro (depending on the compile-time definitions used in
the source). Consequently, you cannot use this interface where a function is necessary; for
example, a subroutine pointer cannot point to it. In addition, spt_putcx() does not work

527186-023 Hewlett-Packard Company 7−311

spt_putcx(2) OSS System Calls Reference Manual

correctly with a stream parameter that has side effects. In particular, the following does not
work:

spt_putcx(*f++)

When a function is necessary, use the spt_fputcx() function instead.

RETURN VALUES
The spt_putcx() function and macro, upon successful completion, returns the value written. If
this function or macro fails, it returns the constant EOF. The function sets errno when an error
is encountered.

If the file descriptor underlying stream becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill(2) func-
tion and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
The spt_putcx() function fails if:

• The stream parameter is not open for writing.

• The output file size cannot be increased.

• The stream is unbuffered.

• The buffer of the stream needs to be flushed and the function call causes an underlying
spt_writex() or lseek() to be invoked and this underlying operation fails.

In addition, if any of these conditions occur, the spt_putcx() function sets errno to the
corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying the output
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying the output stream is not a valid file descriptor open
for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EINTR] The write operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient memory storage space is available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

7−312 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_putcx(2)

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

Any error encountered during the underlying call to the spt_writex() function can cause this
function to return the corresponding errno value reported by the spt_writex() function. If your
application program encounters an errno value not listed on this reference page, see the
spt_writex(2) reference page either online or in the Open System Services System Calls Refer-
ence Manual for information about the cause of that error.

RELATED INFORMATION
Functions: ferror(3), fputc(3), getc(3), getwc(3), printf(3), putc(3), putchar(3), puts(3),
putwc(3), spt_fputcx(2), spt_getcx(2), spt_getwcx(2), spt_printfx(2), spt_putcharx(2),
spt_putwcx(2), spt_writex(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−313

spt_puts(2) OSS System Calls Reference Manual

NAME
spt_puts - Initiates thread-aware puts() function.

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_puts(
const char *string);

PARAMETERS
See the puts(3) reference page either online or in the Open System Services Library Calls Refer-
ence Manual.

DESCRIPTION
This is a thread-aware version of the puts() function. The file descriptor underlying standard
output must be nonblocking for this function to be thread-aware.

The following macro maps spt_puts() to puts() and has been defined in spthread.h:

#define puts(string) spt_puts(string)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the puts(3) reference page. The following information also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying standard output becomes invalid (is closed by another
thread), EOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, EOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−314 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_putsx(2)

NAME
spt_putsx - Writes a string to the standard output stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_putsx (
const char *string
);

PARAMETERS
string Points to a string to be written to output.

DESCRIPTION
The spt_putsx() function is the thread-aware version of the puts() function.

The spt_putsx() function writes the null-terminated string pointed to by the string parameter,
followed by a newline character, to the standard output stream, stdout. This function does not
write the terminating null byte.

The st_ctime and st_mtime fields of the file are marked for update between the successful exe-
cution of the spt_putsx() function, and the next successful completion of a call to the
spt_fflushx() or spt_fclosex() function on the same stream, or a call to the exit() or abort()
function.

NOTES
The macro to map puts() to spt_xputs() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link puts() to spt_putsx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
Upon successful completion, the spt_putsx() function returns the number of characters written.
This function can return EOF on an error.

If the file descriptor underlying stdout becomes invalid (is closed by another thread), EOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, EOF is returned with an errno value of [EINTR].

ERRORS
The spt_putsx() function fails if either:

• The standard output stream is unbuffered.

• The buffer for the standard output stream needs to be flushed and the function call caused
an underlying spt_writex() or lseek() to be invoked and this underlying operation fails
with incomplete output.

527186-023 Hewlett-Packard Company 7−315

spt_putsx(2) OSS System Calls Reference Manual

In addition, if any of these conditions occur, the spt_putsx() function sets errno to the
corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor of the underlying stream
and the process would be delayed in the write operation.

[EBADF] The file descriptor of the underlying stream is not a valid file descriptor open for
writing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EINTR] The operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU, and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient storage space available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

RELATED INFORMATION
Functions: fputs(3), gets(3), getws(3), printf(3), putc(3), puts(3), putwc(3), putws(3),
spt_fputsx(2), spt_getsx(2), spt_getwsx(2), spt_printfx(2), spt_putcx(2), spt_putwsx(2),
spt_writex(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−316 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_putw(2)

NAME
spt_putw - Initiates thread-aware putw() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_putw(
int c,
FILE *stream);

PARAMETERS
See the putw(3) reference page either online or in the Open System Services Library Calls Refer-
ence Manual.

DESCRIPTION
This is a thread-aware version of the putw() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread-aware.

The following macro maps spt_putw() to putw() and has been defined in spthread.h:

#define putw(c, stream) spt_putw(c, stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the putw(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying the stream becomes invalid (is closed by another thread),
a nonzero value is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, a nonzero value is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−317

spt_putwc(2) OSS System Calls Reference Manual

NAME
spt_putwc - Initiates thread-aware putwc() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

wint_t spt_putwc(
wint_t c,
FILE *stream);

PARAMETERS
See the putwc(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware version of the putwc() function. The file descriptor underlying the stream
must be nonblocking for this function to be thread-aware.

The following macro maps spt_putwc() to putwc() and has been defined in spthread.h:

#define putwc(c, stream) spt_putwc(c, stream)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the putwc(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying the stream becomes invalid (is closed by another thread),
WEOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, WEOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−318 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_putwchar(2)

NAME
spt_putwchar - Initiates thread-aware fputwchar() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

wint_t spt_putwchar(
wint_t c);

PARAMETERS
See the putwchar(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware version of the putwchar() function. The file descriptor underlying stan-
dard output must be non-locking for this function to be thread-aware.

The following macro maps spt_putwchar() to putwchar() and has been defined in spthread.h:

#define putwchar(c) spt_putwchar(c)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the putwchar(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying standard output becomes invalid (is closed by another
thread), WEOF is returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, WEOF is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−319

spt_putwcharx(2) OSS System Calls Reference Manual

NAME
spt_putwcharx - Writes a wide character to the standard output stream (thread-aware)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <wchar.h>]
#include <spthread.h>

wint_t spt_putwcharx (
wint_t c
);

PARAMETERS
c Specifies the wide character to be written.

DESCRIPTION
The spt_putwcharx() function is the thread-aware version of the putwchar() function.

The spt_putwcharx() function converts the wchar_t specified by the c parameter to its
equivalent multibyte character and then writes the multibyte character to the standard output.

With the exception of stderr, output streams are, by default, buffered if they refer to files, or line
buffered if they refer to terminals. The standard error output stream, stderr, is unbuffered by
default, but using the freopen() function causes it to become buffered or line buffered. Use the
setbuf() function to change the stream-buffering strategy.

NOTES
The macro to map putwchar() to spt_putwcharx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link putwchar() to spt_putwcharx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
Upon successful completion, this function returns the value written. If this function fails, it
returns the constant WEOF.

If the file descriptor underlying stdout becomes invalid (is closed by another thread), WEOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, WEOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_putwcharx() function sets errno to the corresponding
value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying the standard
output stream and the process would be delayed in the write operation.

7−320 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_putwcharx(2)

[EBADF] The file descriptor underlying the standard output stream is not a valid file
descriptor open for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EILSEQ] The wide character code specified by the c parameter does not correspond to a
valid character.

[EINTR] The operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned.

[ENOMEM] Insufficient storage space is available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

RELATED INFORMATION
Functions: fputwc(3), getc(3), getwc(3), printf(3), putc(3), puts(3), putwc(3), spt_fputwcx(2),
spt_getcx(2), spt_getwcx(2), spt_printfx(2), spt_putcx(2), spt_putsx(2), spt_putwcx(2),
wctomb(3).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−321

spt_putwcx(2) OSS System Calls Reference Manual

NAME
spt_putwcx - Writes a wide character to a specified stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <wchar.h>]
#include <spthread.h>

wint_t spt_putwcx (
wint_t c,
FILE *stream
);

PARAMETERS
c Specifies the wide character to be written.

stream Points to the output data.

DESCRIPTION
The spt_putwcx() function is the thread-aware version of the putwc() function.

The spt_putwcx() function converts the wchar_t specified by the c parameter to its equivalent
multibyte character and then writes the multibyte character to the stream parameter.

With the exception of stderr, output streams are, by default, buffered if they refer to files, or line
buffered if they refer to terminals. The standard error output stream, stderr, is unbuffered by
default, but using the freopen() function causes it to become buffered or line buffered. Use the
setbuf() function to change the stream-buffering strategy.

NOTES
The macro to map putwc() to spt_putwcx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link putwc() to spt_putwcx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
Upon successful completion, this function returns the value written. If this function fails, it
returns the constant WEOF.

If the file descriptor underlying stream becomes invalid (is closed by another thread), WEOF is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, WEOF is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_putwcx() function sets errno to the corresponding
value:

7−322 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_putwcx(2)

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for writ-
ing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EILSEQ] The wide character code specified by the c parameter does not correspond to a
valid character.

[EINTR] The operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned.

[ENOMEM] Insufficient storage space is available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

RELATED INFORMATION
Functions: fputwc(3), getc(3), getwc(3), printf(3), putc(3), puts(3), putwc(3), spt_fputwcx(2),
spt_getcx(2), spt_getwcx(2), spt_printfx(2), spt_putcx(2), spt_putsx(2), spt_putwcharx(2),
putwchar(3), wctomb(3).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−323

spt_putwx(2) OSS System Calls Reference Manual

NAME
spt_putwx - Writes a word to a stream (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdio.h>]
#include <spthread.h>

int spt_putwx (
int w,
FILE *stream
);

PARAMETERS
stream Points to the file structure of an open file.

w Specifies the word to be written.

DESCRIPTION
The spt_putwx() function is the thread-aware version of the putw() function.

The spt_putwx() function writes the word (int) specified by the w parameter to the output
specified by the stream parameter. The word is written at the position at which the file pointer, if
defined, is pointing. The size of a word is the size of an integer and varies from machine to
machine. The spt_putwx() function does not assume or cause special alignment of the data in
the file.

Because of possible differences in word length and byte ordering, files written using the
spt_putwx() function are machine dependent, and might not be readable using the spt_getwx()
function on a different processor.

With the exception of stderr, output streams are, by default, buffered if they refer to files, or line
buffered if they refer to terminals. The standard error output stream, stderr, is unbuffered by
default, but using the freopen() function causes it to become buffered or line buffered. Use the
setbuf() function to change the stream buffering strategy.

When an output stream is unbuffered, information is queued for writing on the destination file or
terminal as soon as it is written. When an output stream is buffered, many characters are saved
and written as a block. When an output stream is line-buffered, each line of output is queued for
writing on the destination terminal as soon as the line is completed (that is, as soon as a newline
character is written or terminal input is requested).

The st_ctime and st_mtime fields of the file are marked for update between the successful exe-
cution of the spt_putwx(), function, and the next successful completion of a call to the
spt_fflushx() or spt_fclosex() function on the same stream, or a call to the exit() or abort()
function.

NOTES
The macro to map putw() to spt_putwx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link putw() to spt_putwx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

7−324 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_putwx(2)

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

RETURN VALUES
The spt_putwx() function, upon successful completion, returns a value of 0 (zero). Otherwise, it
returns a nonzero value.

If the file descriptor underlying stream becomes invalid (is closed by another thread), a nonzero
value is returned with an errno value of [EBADF]. If a signal is received via the pthread_kill()
function and is not blocked, ignored, or handled, a nonzero value is returned with an errno value
of [EINTR].

ERRORS
The spt_putwx() function fails if either:

• The stream is unbuffered

• The buffer of the stream needs to be flushed and the function call causes an underlying
spt_writex() or lseek() to be invoked, and this underlying operation fails.

In addition, if any of the following conditions occur, the spt_putwx() function sets errno to the
corresponding value.

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for writ-
ing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EINTR] The write operation was interrupted by a signal that was caught, and no data was
transferred.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient storage space available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

RELATED INFORMATION
Functions: ferror(3), fputc(3), getc(3), getwc(3), printf(3), putc(3), putchar(3), puts(3),
putwc(3), spt_fputcx(2), spt_getcx(2), spt_getwcx(2), spt_printfx(2), spt_putcx(2),
spt_putcharx(2), spt_putsx(2), spt_putwcx(2).

527186-023 Hewlett-Packard Company 7−325

spt_putwx(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.puts(3),

7−326 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_read(2)

NAME
spt_read - Initiates thread-aware read() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

ssize_t spt_read(
int filedes,
void *buffer,
size_t nbytes);

PARAMETERS
See the read(2) reference page.

DESCRIPTION
This is a thread-aware version of the read(function. Note that file descriptor must be nonblock-
ing for this function to be thread-aware.

For C applications, a macro to map read() to spt_read() is available when you use the #define
SPT_THREAD_AWARE preprocessor directive before including spthread.h or when you use
an equivalent compiler command option to compile the application.

For C++ applications, an alias to map read() to spt_read() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

RETURN VALUES
See the read(2) reference page. The following also applies:

• The value of errno is never set to [EWOULDBLOCK] or [EAGAIN].

• If the file descriptor becomes invalid (for example, is closed by another thread), -1 is
returned with an errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−327

SPT_READLOCKX(2) OSS System Calls Reference Manual

NAME
SPT_READLOCKX - Sequentially locks and reads records in a Guardian disk file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_READLOCKX (
short filenum,
char *buffer,
unsigned short read_count,
[unsigned short *count_read],
[long tag]
);

PARAMETERS
filenum specifies the file number of a Guardian file open instance that identifies the file to

be read.

buffer specifies an array in the application process in which the information read from
the file is returned.

read_count specifies the number of bytes to be read.

count_read is for waited I/O only. This parameter returns a count of the number of bytes
returned from the file into buffer.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_READLOCKX() function is the thread-aware version of the Guardian READLOCKX
procedure.

The SPT_ READLOCKX() function sequentially locks and reads records in a Guardian disk
file, exactly like the combination of an SPT_LOCKREC() and SPT_READX() call.
SPT_READLOCKX() is intended for use with 32-bit extended addresses. Therefore, the data
buffer for SPT_READLOCKX() can be either in the caller’s stack segment or any extended
data segment.

For programming information about the READLOCKX procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

Considerations
Nowait I/O and SPT_READLOCKX()

If the SPT_READLOCKX() function is used to initiate an operation with a file
opened for nowait I/O, it must complete with a corresponding call to the Guar-
dian AWAITIOX procedure.

7−328 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_READLOCKX(2)

Use for key-sequenced, relative, and entry-sequenced files
For key-sequenced, relative, and entry-sequenced files, a subset of the file
(defined by the current access path, positioning mode, and comparison length) is
locked and read with successive calls to SPT_READLOCKX().

For key-sequenced, relative, and entry-sequenced files, the first call to
SPT_READLOCKX() after a positioning (or open) locks and then returns the
first record of the subset. Subsequent calls to SPT_READLOCKX() without
intermediate positioning locks returns successive records in the subset. After
each of the subset’s records are read, the position of the record just read becomes
the file’s current position. An attempt to read a record following the last record
in a subset returns an EOF indication.

Locking records in an unstructured file
You can use SPT_READLOCKX() to lock record positions, represented by a
relative byte address (RBA), in an unstructured file. When sequentially reading
an unstructured file with SPT_READLOCKX(), each call to
SPT_READLOCK[X() first locks the RBA stored in the current next-record
pointer and then returns record data beginning at that pointer for read_count
bytes. After a successful call to SPT_READLOCK[X(), the current-record
pointer is set to the previous next-record pointer, and the next-record pointer is
set to the previous next-record pointer plus read_count. This process repeats for
each subsequent call to SPT_READLOCKX().

Location of buffer and count_read
The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count_read cannot be in the user code space.

If the buffer and count_read is in a selectable extended data segment, the seg-
ment must be in use at the time of the call. Flat segments allocated by a process
are always accessible to the process.

Transfer size The size of the transfer is subject to current restrictions for the type of file.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the SPT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
the Guardian AWAITIOX procedure. This restriction also applies to
other processes that might be sharing the segment. It is the application’s
responsibility to ensure this.

• If you initiated the I/O with SPT_READLOCKX(), the I/O must be
completed with a call to the Guardian AWAITIOX procedure.

• A selectable extended data segment containing the buffer need not be in
use at the time of the call to AWAITIOX.

527186-023 Hewlett-Packard Company 7−329

SPT_READLOCKX(2) OSS System Calls Reference Manual

• You can cancel Nowait I/O initiated with SPT_READLOCKX() with a
call to SPT_CANCEL() or CANCELREQ. The I/O is canceled if the
file is closed before the I/O completes or if the Guardian AWAITIOX
procedure is called with a positive time limit and specific file number
and the request times out.

Use of buffers A file opened by SPT_FILE_OPEN_() uses direct I/O transfers by default; you
can use SPT_SETMODE(72) to force the system to use an intermediate buffer
in the process file segment (PFS) for I/O transfers.

Bounds checking
If the extended address of buffer is odd, bounds checking rounds the address to
the next lower word boundary and checks an extra byte as well. The odd address
is used for the transfer.

All considerations for the SPT_READX() function also apply to this function.

Use on OSS objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The SPT_READLOCKX() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEREADX(2), SPT_WRITEUPDATEUNLOCKX(2),
SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−330 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_READUPDATELOCKX(2)

NAME
SPT_READUPDATELOCKX - Allows random processing of records in a Guardian disk file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_READUPDATELOCKX (
short filenum,
char *buffer,
unsigned short read_count,
[unsigned short *count_read],
[long tag]
);

PARAMETERS
filenum specifies the file number of a Guardian file open instance that identifies the file to

be read.

buffer specifies an array in the application process in which the information read from
the file is returned.

read_count specifies the number of bytes to be read.

count_read is for waited I/O only. This parameter returns a count of the number of bytes
returned from the file into buffer.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_READUPDATELOCKX() function is the thread-aware version of the Guardian
READUPDATELOCKX procedure.

You use SPT_READUPDATELOCKX() function for random processing of records in a Guar-
dian disk file. This function first locks then reads the record from the current position in the file
in anticipation of a subsequent call to the SPT_WRITEUPDATEX() or
SPT_WRITEUPDATEUNLOCK() procedure. SPT_READUPDATELOCKX() is intended
for reading a record after calling the Guardian POSITION or KEYPOSITION procedure.

SPT_READUPDATELOCKX() locks and reads the record in the same manner as the combina-
tion of the Guardian LOCKREC and READUPDATEX procedures but requires less system pro-
cessing than the two separate calls would require.

For programming information about the READUPDATELOCKX procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

Considerations
Buffer use SPT_READUPDATELOCKX() is intended for use with 32-bit extended

addresses. Therefore, the data buffer for SPT_READUPDATELOCKX() can
be either in the caller’s stack segment or any extended data segment.

527186-023 Hewlett-Packard Company 7−331

SPT_READUPDATELOCKX(2) OSS System Calls Reference Manual

Nowait I/O and SPT_READUPDATELOCKX()
The SPT_READUPDATELOCKX() function must complete with a
corresponding call to the Guardian AWAITIOX procedure when used with a file
that is opened for nowait I/O.

Use on nondisk files
If SPT_READUPDATELOCKX() is performed on nondisk files, an error is
returned.

Random processing
For key-sequenced, relative, and entry-sequenced files, random processing
implies that a designated record must exist. Therefore, positioning for
SPT_READUPDATELOCKX() is always to the record described by the exact
value of the current key and current-key specifier. If such a record does not
exist, the call to SPT_READUPDATELOCKX() is rejected with Guardian
file-system error 11.

Queue files To use SPT_READUPDATELOCKX(), you must open a queue file with write
access and with a sync_or_receive_depth of 0 (zero).

Location of buffer and count_read
The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count_read cannot be in the user code space.

If the buffer and count_read is in a selectable extended data segment, the seg-
ment must be in use at the time of the call. Flat segments allocated by a process
are always accessible to the process.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the SPT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
the Guardian AWAITIOX procedure. This restriction also applies to
other processes that might be sharing the segment. It is the application’s
responsibility to ensure this.

• If you initiated the I/O with SPT_READUPDATELOCKX(), the I/O
must be completed with a call to the Guardian AWAITIOX procedure.

• A selectable extended data segment containing the buffer need not be in
use at the time of the call to AWAITIOX.

• You can cancel nowait I/O initiated with
SPT_READUPDATELOCKX() with a call to SPT_CANCEL() or
CANCELREQ. The I/O is canceled if the file is closed before the I/O
completes or if the Guardian AWAITIOX procedure is called with a
positive time limit and specific file number and the request times out.

7−332 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_READUPDATELOCKX(2)

Use of buffers A file opened by SPT_FILE_OPEN_() uses direct I/O transfers by default; you
can use SPT_SETMODE(72) to force the system to use an intermediate buffer
in the process file segment (PFS) for I/O transfers.

Bounds checking
If the extended address of buffer is odd, bounds checking rounds the address to
the next lower word boundary and checks an extra byte as well. The odd address
is used for the transfer.

All considerations for the SPT_LOCKREC() function also apply to this function. See also the
"Disk File Considerations" for the Guardian READUPDATE procedure.

Use on OSS objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The SPT_READUPDATELOCKX() function returns 0 (zero) upon successful completion.
Otherwise, this function returns a nonzero Guardian file-system error number that indicates the
outcome of the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATEX(2), SPT_READX(2), SPT_SETMODE(2), SPT_UNLOCKFILE(2),
SPT_UNLOCKREC(2), SPT_WRITEREADX(2), SPT_WRITEUPDATEUNLOCKX(2),
SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−333

SPT_READUPDATEX(2) OSS System Calls Reference Manual

NAME
SPT_READUPDATEX - Reads data from a Guardian disk or process file in anticipation of a
subsequent write to the file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_READUPDATEX (
short filenum,
char *buffer,
unsigned short read_count,
[unsigned short *count_read],
[long tag]
);

PARAMETERS
filenum specifies the file number of a Guardian file open instance that identifies the file to

be read.

buffer specifies an array in the application process in which the information read from
the file is returned.

read_count specifies the number of bytes to be read.

count_read is for waited I/O only. This parameter returns a count of the number of bytes
returned from the file into buffer.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_READUPDATEX() function is the thread-aware version of the Guardian READUP-
DATEX procedure.

This function reads data from a disk or process file in anticipation of a subsequent write to the
file. The values of the current-record and next-record pointers do not change. This function has
the following uses:

Disk files SPT_READUPDATEX() is used for random processing. Data is read from the
file at the position of the current-record pointer. A call to this function typically
follows a corresponding call to the Guardian POSITION or KEYPOSITION pro-
cedure.

Queue Files SPT_READUPDATEX() is not supported on queue files. An attempt to use
SPT_READUPDATEX() is rejected with Guardian file-system error 2.

Interprocess communication
SPT_READUPDATEX() reads a message from the $RECEIVE file that is
answered in a later call to the Guardian REPLYX procedure. Each message read
by SPT_READUPDATEX() must be replied to in a corresponding call to
REPLYX.

7−334 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_READUPDATEX(2)

For programming information about the READUPDATEX procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

Considerations
Buffer use SPT_READUPDATEX() is intended for use with 32-bit extended addresses.

Therefore, the data buffer for SPT_READUPDATEX() can be either in the
caller’s stack segment or any extended data segment.

Random processing and positioning
A call to SPT_READUPDATEX() returns the record from the current position
in the file. Because SPT_READUPDATEX() is designed for random process-
ing, it cannot be used for successive positioning through a subset of records as
the SPT_READX() function does. Rather, SPT_READUPDATEX() reads a
record after a call to the Guardian POSITION or KEYPOSITION procedure, in
anticipation of a subsequent update through a call to the Guardian WRITEUP-
DATEX procedure.

Calling SPT_READUPDATEX() after SPT_READX()
A call to SPT_READUPDATEX() after a call to SPT_READX(), without
intermediate positioning, returns the same record as the call to SPT_READX().

Waited SPT_READUPDATEX()
If a waited SPT_READUPDATEX() call is executed, the count_read parameter
indicates the number of bytes actually read.

Nowait I/O and SPT_READUPDATEX()
If a nowait SPT_READUPDATEX() call is executed, count_read has no mean-
ing and can be omitted. The count of the number of bytes read is obtained when
the I/O operation completes through the count_transferred parameter of the
Guardian AWAITIOX procedure. The SPT_READUPDATEX() function must
complete with a corresponding call to the Guardian AWAITIOX procedure when
used with a file that is opened for nowait I/O.

Default locking mode action
If the default locking mode is in effect when a call to SPT_READUPDATEX()
is made to a locked file or record, but the filenum of the locked file differs from
the filenum in the call, the caller of SPT_READUPDATEX() is suspended and
queued in the locking queue behind other processes attempting to access the file
or record.

Use on OSS objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The SPT_READUPDATEX() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

527186-023 Hewlett-Packard Company 7−335

SPT_READUPDATEX(2) OSS System Calls Reference Manual

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READX(2), SPT_SETMODE(2),
SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2), SPT_WRITEREADX(2),
SPT_WRITEUPDATEUNLOCKX(2), SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−336 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_readv(2)

NAME
spt_readv - Initiates thread-aware readv() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

ssize_t spt_readv(
int filedes,
struct iovec *iov,
int iov_count);

PARAMETERS
See the readv(2) reference page.

DESCRIPTION
This is a thread-aware version of the readv() function. The file descriptor must be nonblocking
for this function to be thread-aware.

For C applications, a macro to map readv() to spt_readv() is available when you use the
#define SPT_THREAD_AWARE preprocessor directive before including spthread.h or when
you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map readv() to spt_readv() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

RETURN VALUES
See the readv(2) reference page. The following also applies:

• The value of errno is never set to [EWOULDBLOCK] or [EAGAIN].

• If the file descriptor becomes invalid (is closed by another thread), -1 is returned with an
errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−337

spt_readvx(2) OSS System Calls Reference Manual

NAME
spt_readvx - Reads from a file into scattered buffers (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/types.h>]
[#include <sys/uio.h>]
#include <spthread.h>

int spt_readvx (
int filedes,
struct iovec *iov,
int iov_count
);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), dup(), spt_dup2x(), spt_fcntlx(), open(), pipe(),
socket(), or socketpair() function.

iov Points to an iovec structure that identifies the buffers into which the data is to be
placed.

iov_count Specifies the number of entries in the iovec structure pointed to by the iov
parameter.

DESCRIPTION
The spt_readvx() function is a thread-aware version of the readv() function.

The spt_readvx() function attempts to read data from the file associated with the filedes parame-
ter into a set of buffers. The spt_readvx() function performs the same action as the spt_readx()
function, but it scatters the input data into the buffers specified by the array of iovec structure
entries pointed to by the iov parameter.

On regular files and devices capable of seeking, the spt_readvx() function starts at a position in
the file given by the file pointer associated with the filedes parameter. Upon return from the
spt_readvx() function, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. For such devices,
the value of the file pointer after a call to the spt_readvx() function is always 0 (zero).

Upon successful completion, the spt_readvx() function returns the number of bytes actually read
and placed in the buffers.

No data transfer occurs past the current end-of-file (EOF). If the starting position is at or after the
end-of-file, 0 (zero) is returned.

If an spt_writex() or spt_writevx() call contains so much data that the file system needs to
resize a pipe or FIFO buffer, a read from that pipe or FIFO file can return up to 52 kilobytes of
data, regardless of the size of PIPE_BUF. If the buffer cannot be resized for the write operation,
a subsequent read from the pipe or FIFO file does not return more than 8192 bytes per call,
regardless of the setting of O_NONBLOCK.

When attempting to read from an empty pipe (or FIFO file):

• If no process has the pipe open for writing, the spt_readvx() function returns the value 0
(zero) to indicate EOF.

7−338 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_readvx(2)

• If some process has the pipe open for writing:

— If the O_NONBLOCK flag is not set, the spt_readvx() function blocks until
either some data is written or the pipe is closed by all processes that had opened
the pipe for writing.

— If the O_NONBLOCK flag is set, the spt_readvx() function returns the value -1
and sets errno to [EAGAIN].

When attempting to read from a socket and no data is currently available:

• If the O_NONBLOCK flag is not set, the spt_readvx() function blocks until data
becomes available.

• If the O_NONBLOCK flag is set, the spt_readvx() function returns the value -1 and
sets errno to [EAGAIN]. The O_NONBLOCK flag has no effect if data is available.

When attempting to read from a character special file that supports nonblocking reads, such as a
terminal, and no data is currently available:

• If the O_NONBLOCK flag is not set, the spt_readvx() function blocks until data
becomes available.

• If the O_NONBLOCK flag is set, the spt_readvx() function returns the value -1 and
sets errno to [EAGAIN]. The O_NONBLOCK flag has no effect if data is available.

If it is interrupted by a signal before it reads any data, the spt_readvx() function returns the
value -1 with errno set to [EINTR]. If it is interrupted by a signal after it has successfully read
some data, the spt_readvx() function returns the number of bytes read.

When reading from a device special file, the return of EOF has no effect on subsequent calls to
the spt_readvx() function. When modem disconnect is detected, an EOF is returned. The errno
variable is not set to [EIO].

Upon successful completion, the spt_readvx() function marks the st_atime field of the file for
update.

The iov_count parameter specifies the number of entries (buffers) in the iovec structure pointed
to by the iov parameter. Each iovec entry specifies the base address and length of an area in
memory where data should be placed. The spt_readvx() function always fills a buffer com-
pletely before proceeding to the next.

The iovec structure is defined in the sys/uio.h header file and contains entries with these
members:

caddr_t iov_base;
int iov_len;

Use on Guardian Objects
After a call to the fork(), tdm_fork(), or tdm_spawn() function, the initial position within a
Guardian EDIT file (a file in /G with file code 101) is the same for both parent and child
processes. However, the position is not shared; moving the current position from within one pro-
cess does not move it in the other process.

NOTES

527186-023 Hewlett-Packard Company 7−339

spt_readvx(2) OSS System Calls Reference Manual

For C applications, a macro to map readv() to spt_readvx() is available when you use the
#define SPT_THREAD_AWARE_NONBLOCK preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map readv() to spt_readvx() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

RETURN VALUES
Upon successful completion, the spt_readvx() function returns the number of bytes actually read
and placed into the buffers. The function guarantees to read the number of bytes requested only if
the descriptor references a regular file that has at least that number of bytes left before EOF.

If a regular file does not contain enough bytes to satisfy the read or if the read otherwise fails, the
value -1 is returned, errno is set to indicate the error, and the contents of the buffers are indeter-
minate.

If the file descriptor becomes invalid (is closed by another thread), -1 is returned with an errno
value of [EBADF]. If a signal is received via the pthread_kill() function and is not blocked,
ignored, or handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_readvx() function sets errno to the corresponding
value:

[EAGAIN] One of these conditions occurred:

• The O_NONBLOCK flag is set for the file descriptor, and the process
would be delayed in the read operation.

• The O_NONBLOCK flag is set for the file descriptor, and no data was
available.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion (such as spt_writez()) is in progress on a regular file and a function that is
process-blocking for regular files (such as read(), spt_read(), or spt_readx())
attempts to begin an I/O operation on the same open file.

[EBADF] The filedes parameter is not a valid file descriptor open for reading.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The iov_base member of the iovec structure points to a location outside of the
allocated address space of the process.

[EFILEBAD] An attempt was made to read from a Guardian EDIT file (a file in /G with file
code 101) with a corrupted internal structure.

7−340 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_readvx(2)

[EINTR] An spt_readvx() operation was interrupted by a signal before any data arrived.

[EINVAL] One of these conditions occurred:

• The sum of the iov_len values in the iov array was negative or
overflowed a data item of type ssize_t.

• The value of the iov_count parameter was less than or equal to 0 (zero)
or greater than IOV_MAX.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[EISDIR] An spt_readvx() operation was attempted against a directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote node, but communication with
the remote node has been lost.

[ENOTCONN] The socket is no longer connected to a peer socket.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWRONGID] One of these conditions occurred:

• The process attempted an input or output operation through an operating
system input/output process (such as a terminal server process) that has
failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for use of the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: creat(2), dup(2), fcntl(2), ioctl(2), lseek(2), open(2), opendir(3), pipe(2), readv(2),
socket(2). socketpair(2), spt_fcntlx(2), spt_readv(2).

527186-023 Hewlett-Packard Company 7−341

spt_readvx(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with these exceptions:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

• When a signal arrives during a call to the spt_readvx() function, instead of returning an
EINTR error to the application, the spt_readvx() retries the I/O operation, except in this
case: If the fork() function is called by a signal handler that is running on a thread per-
forming an spt_readvx() call, the spt_readvx() call in the child process returns an
EINTR error to the application.

7−342 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_readvz(2)

NAME
spt_readvz - Reads from a file into scattered buffers (thread-aware version)

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>
#include <spthread.h>

int spt_readvz(
int filedes,
struct iovec *iov,
int iov_count);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), creat64(), dup(), spt_dup2x(), spt_fcntlz(), open(),
open64(), pipe(), socket(), or socketpair() function.

iov Points to an iovec structure that identifies the buffers into which the data is to be
placed.

iov_count Specifies the number of entries in the iovec structure pointed to by the iov
parameter.

DESCRIPTION
The spt_readvz() function is a thread-aware version of the readv() function.

The spt_readvz() function attempts to read data from the file associated with the filedes parame-
ter into a set of buffers. The spt_readvz() function performs the same action as the spt_readz()
function, but it scatters the input data into the buffers specified by the array of iovec structure
entries pointed to by the iov parameter.

On regular files and devices capable of seeking, the spt_readvz() function starts at a position in
the file given by the file pointer associated with the filedes parameter. Upon return from the
spt_readvz() function, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. For such devices,
the value of the file pointer after a call to the spt_readvz() function is always 0 (zero).

Upon successful completion, the spt_readvz() function returns the number of bytes actually read
and placed in the buffers.

No data transfer occurs past the current end-of-file (EOF). If the starting position is at or after the
end-of-file, 0 (zero) is returned.

If an spt_writez() or spt_writevz() call contains so much data that the file system needs to
resize a pipe or FIFO buffer, a read from that pipe or FIFO file can return up to 52 kilobytes of
data, regardless of the size of PIPE_BUF. If the buffer cannot be resized for the write operation,
a subsequent read from the pipe or FIFO file does not return more than 8192 bytes per call,
regardless of the setting of O_NONBLOCK.

When attempting to read from an empty pipe (or FIFO file):

• If no process has the pipe open for writing, the spt_readvz() function returns the value 0
(zero) to indicate EOF.

• If some process has the pipe open for writing:

527186-023 Hewlett-Packard Company 7−343

spt_readvz(2) OSS System Calls Reference Manual

— If the O_NONBLOCK flag is not set, the spt_readvz() function blocks until
either some data is written or the pipe is closed by all processes that had opened
the pipe for writing.

— If the O_NONBLOCK flag is set, the spt_readvz() function returns the value -1
and sets errno to [EAGAIN].

When attempting to read from a socket and no data is currently available:

• If the O_NONBLOCK flag is not set, the spt_readvz() function blocks until data
becomes available or an error occurs.

• If the O_NONBLOCK flag is set, the spt_readvz() function returns the value -1 and
sets errno to [EWOULDBLOCK].

When attempting to read from a character special file that supports nonblocking reads, such as a
terminal, and no data is currently available:

• If the O_NONBLOCK flag is not set, the spt_readvz() function blocks until data
becomes available or an error occurs.

• If the O_NONBLOCK flag is set, the spt_readvz() function returns the value -1 and
sets errno to [EAGAIN].

If it is interrupted by a signal before it reads any data, the spt_readvz() function returns the
value -1 with errno set to [EINTR]. If it is interrupted by a signal after it has successfully read
some data, the spt_readvz() function returns the number of bytes read.

When reading from a device special file, the return of EOF has no effect on subsequent calls to
the spt_readvz() function. When modem disconnect is detected, an EOF is returned. The errno
variable is not set to [EIO].

Upon successful completion, the spt_readvz() function marks the st_atime field of the file for
update.

The iov_count parameter specifies the number of entries (buffers) in the iovec structure pointed
to by the iov parameter. Each iovec entry specifies the base address and length of an area in
memory where data should be placed. The spt_readvz() function always fills a buffer com-
pletely before proceeding to the next.

The iovec structure is defined in the sys/uio.h header file and contains entries with these
members:

caddr_t iov_base;
int iov_len;

Use on Guardian Objects
After a call to the fork(), tdm_fork(), or tdm_spawn() function, the initial position within a
Guardian EDIT file (a file in /G with file code 101) is the same for both parent and child
processes. However, the position is not shared; moving the current position from within one pro-
cess does not move it in the other process.

NOTES
For file descriptors for non-regular files, the spt_readvz() function behaves exactly the same as
spt_readvx(). For file descriptors for regular files, this is a thread-aware function: if this func-
tion must wait for an I/O operation to complete on an open file, this function blocks the thread
that called it (instead of the entire process), while it waits for the I/O operation to complete.

This function serializes file operations on an open file. If a thread calls spt_readvz() to access a
file that already has a file operation in progress by a different thread, this thread is blocked until

7−344 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_readvz(2)

the prior file operation is complete.

For C applications, a macro to map readv() to spt_readvz() is available when you use the
#define SPT_THREAD_AWARE_XNONBLOCK preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map readv() to spt_readvz() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the spt_readvz() function returns the number of bytes actually read
and placed into the buffers. The function guarantees to read the number of bytes requested only if
the descriptor references a regular file that has at least that number of bytes left before EOF.

If the read otherwise fails, the value -1 is returned, errno is set to indicate the error, and the con-
tents of the buffers are indeterminate.

ERRORS
If any of these conditions occurs, the spt_readvz() function sets errno to the corresponding
value:

[EAGAIN] One of these conditions occurred:

• The O_NONBLOCK flag is set for the file descriptor, and the process
would be delayed in the read operation.

• The O_NONBLOCK flag is set for the file descriptor, and no data was
available.

[EBADF] The filedes parameter is not a valid file descriptor open for reading.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The iov_base memeber of the iovec structure points to a location outside of the
allocated address space of the process.

527186-023 Hewlett-Packard Company 7−345

spt_readvz(2) OSS System Calls Reference Manual

[EFILEBAD] An attempt was made to read from a Guardian EDIT file (a file in /G with file
code 101) with a corrupted internal structure.

[EINTR] A spt_readvz() operation was interrupted by a signal before any data arrived.

[EINVAL] One of these conditions occurred:

• The sum of the iov_len values in the iov array was negative or
overflowed a data item of type ssize_t.

• The value of the iov_count parameter was less than or equal to 0 (zero)
or greater than IOV_MAX.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[EISDIR] A spt_readvz() operation was attempted against a directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOTCONN] The socket is no longer connected to a peer socket.

[EOVERFLOW]
The file is a regular file, the value of nbyte is greater than 0 (zero), the starting
position is before the End-of-File (EOF), and the starting position is greater than
or equal to the file offset maximum established when the file described by filedes
was opened.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWOULDBLOCK]
The process attempted an operation on a socket for which O_NONBLOCK is
set, there is no data, and no error has occurred.

[EWRONGID] One of these conditions occurred:

• The process attempted an input or output operation through an operating
system input/output process (such as a terminal server process) that has
failed or is in the down state.

7−346 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_readvz(2)

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for use of the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: creat(2), dup(2), fcntl(2), ioctl(2), lseek(2), open(2), opendir(3), pipe(2), socket(2),
socketpair(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with these exceptions:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

• When a signal arrives during a call to the spt_readvz() function, instead of returning an
EINTR error to the application, the spt_readvz() retries the I/O operation, except in this
case: If the fork() function is called by a signal handler that is running on a thread per-
forming an spt_readvz() call, the spt_readvz() call in the child process returns an
EINTR error to the application.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [ECONNRESET], [EFAULT], [EFILEBAD], [EINVAL], [EISDIR],
[EISGUARDIAN], [ENETDOWN], [ENOTCONN], [ETIMEDOUT], and [EWRON-
GID] can be returned.

527186-023 Hewlett-Packard Company 7−347

SPT_READX(2) OSS System Calls Reference Manual

NAME
SPT_READX - Returns data from an open Guardian file to the application process data area

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_READX (
short filenum,
char *buffer,
unsigned short read_count,
[unsigned short *count_read],
[long tag]
);

PARAMETERS
filenum specifies the file number of a Guardian file open instance that identifies the file to

be read.

buffer specifies an array in the application process in which the information read from
the file is returned.

read_count specifies the number of bytes to be read.

count_read is for waited I/O only. This parameter returns a count of the number of bytes
returned from the file into buffer.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_READX() function is the thread-aware version of the Guardian READX procedure.

The SPT_READX() function returns data from an open Guardian file to the application
process’s data area. The SPT_READX() function sequentially reads a disk file. For key-
sequenced, relative, and entry-sequenced files, the SPT_READX() function reads a subset of
records in the file. (A subset of records is defined by an access path, positioning mode, and com-
parison length.)

For programming information about the Guardian READX file-system procedure, see the Guar-
dian Programmer’s Guide, the Enscribe Programmer’s Guide, and the manuals for your specific
data communications interface.

General Considerations
Buffer use SPT_READX() is intended for use with 32-bit extended addresses. Therefore,

the data buffer for SPT_READX() can be either in the caller’s stack segment or
any extended data segment.

Waited SPT_READX()
If a waited SPT_READX() call is executed, the count_read parameter indicates
the number of bytes actually read.

7−348 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_READX(2)

Nowait SPT_READX()
If a nowait SPT_READX() call is executed, count_read has no meaning and
can be omitted. The count of the number of bytes read is obtained through the
count-transferred parameter of the Guardian AWAITIOX procedure when the
I/O operation completes.

The SPT_READX() function must complete with a call to the Guardian
AWAITIOX procedure when it is used with a file that is opened for nowait I/O.

It is possible to initiate concurrent nowait read operations that share the same
data buffer. To do this successfully with files opened by SPT_FILE_OPEN_(),
you must use SPT_SETMODE() function 72 to cause the system to use an
intermediate buffer in the process file segment (PFS) for I/O transfers.

SPT_READX() call when default locking mode is in effect
If the default locking mode is in effect when a call to SPT_READX() is made to
a locked file, but the filenum of the locked file differs from the filenum in the call,
the caller of SPT_READX() is suspended and queued in the locking queue
behind other processes attempting to lock or read the file or record.

A deadlock condition occurs if a call to SPT_READX() is made by a process
having multiple opens on the same file and the filenum used to lock the file
differs from the filenum supplied to SPT_READX().

Read call when alternate locking mode is in effect
If the alternate locking mode is in effect when SPT_READX() is called, and the
file or record is locked through a Guardian file number other than that supplied in
the call, the call is rejected with Guardian file-system error 73 (file is
locked).

Locking mode for read
The locking mode is specified by SPT_SETMODE() function 4. If you
encounter Guardian file-system error 73 (file is locked), you do not need to
call SPT_SETMODE() for every call to SPT_READX(). SPT_SETMODE())
stays in effect indefinitely (for example, until another SPT_SETMODE() call is
performed or the file is closed), and no additional overhead is involved.

Location of buffer and count_read
The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count_read cannot be in the user code space.

If the buffer and count_read are in a selectable extended data segment, the seg-
ment must be in use at the time of the call. Flat segments allocated by a process
are always accessible to the process.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the SPT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
the Guardian AWAITIOX procedure. This restriction also applies to
other processes that might be sharing the segment. It is the application’s
responsibility to ensure this.

527186-023 Hewlett-Packard Company 7−349

SPT_READX(2) OSS System Calls Reference Manual

• If the I/O has been initiated with SPT_READX(), the I/O must be com-
pleted with a call to the Guardian AWAITIOX procedure.

• A selectable extended data segment containing the buffer need not be in
use at the time of the call to AWAITIOX.

• You can cancel nowait I/O initiated with SPT_READX() with a call to
SPT_CANCEL() or CANCELREQ. The I/O is canceled if the file is
closed before the I/O completes or if the Guardian AWAITIOX pro-
cedure is called with a positive time limit and specific file number and
the request times out.

Use of buffers A file opened by SPT_FILE_OPEN_() uses direct I/O transfers by default; you
can use SPT_SETMODE(72) to force the system to use an intermediate buffer
in the process file segment (PFS) for I/O transfers.

Bounds checking
If the extended address of buffer is odd, bounds checking rounds the address to
the next lower word boundary and checks an extra byte as well. The odd address
is used for the transfer.

Queue files You can use SPT_READX() to perform a nondestructive read of a queue file
record. If the Guardian KEYPOSITIONX procedure is used to position to the
beginning of the file, the first SPT_READX() call performed returns a record
with a length of 8 bytes and contents of all zeros. Subsequent SPT_READX()
calls return data from records written to the file.

Disk File Considerations
Large data transfers for unstructured files using default mode

For all read procedures, using default mode allows I/O sizes for unstructured
files to be as large as 56 kilobytes (57,344), if the unstructured buffer size is 4
KB (4096). Default mode here refers to the mode of the file if
SPT_SETMODE() function 141 is not invoked.

For an unstructured file with an unstructured buffer size other than 4 KB, DP2
automatically adjusts the unstructured buffer size to 4 KB, if possible,
when an I/O larger than 4KB is attempted. However, this adjustment is not pos-
sible for files that have extents with an odd number of pages; in such cases an
I/O over 4 KB is not possible. The switch to a different unstructured buffer size
will have a transient performance impact, so HP recommends that you set the
size 4 KB initially, which is the default. Transfer sizes over 4 KB are not sup-
ported in default mode for unstructured access to structured files.

Large data transfers using SPT_SETMODE(141)
For SPT_READX() only, large data transfers (more than 4096 bytes) can be
done for unstructured access to structured or unstructured files, regardless of
unstructured buffer size, by using SPT_SETMODE() function 141. When you
use SPT_SETMODE(141) to enable large data transfers, you can specify up to
56K (57344) bytes for the read_count parameter. For an explanation of function
141, see the Guardian SETMODE procedure description in the Guardian Pro-
cedure Calls Reference Manual.

7−350 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_READX(2)

Structured files

A subset of records for sequential SPT_READX() calls
The subset of records read by a series of calls to
SPT_READX() is specified through calls to the Guardian POSI-
TION or KEYPOSITION procedures.

Reading of an approximate subset of records
If an approximate subset is being read, the first record returned is
the one whose key field, as indicated by the current key
specifier, contains a value equal to or greater than the current
key. Subsequent reading of the subset returns successive
records until the last record in the file is read (an EOF indication
is then returned).

Reading of a generic subset of records
If a generic subset is being read, the first record returned is the
one whose key field, as designated by the current-key specifier,
contains a value equal to the current key for comparison-length
bytes. Subsequent reading of the file returns successive records
whose key matches the current key (for comparison-length
bytes). When the current key no longer matches, an EOF indica-
tion returns.

For relative and entry-sequenced files, a generic subset of the
primary key is equivalent to an exact subset.

Reading of an exact subset of records
If an exact subset is being read, the only records returned are
those whose key field, as designated by the current-key specifier,
contains a value of exactly the comparison length bytes (see the
Guardian KEYPOSITION procedure in the Guardian Procedure
Calls Reference Manual) and is equal to the key. When the
current key no longer matches, an EOF indication returns. The
exact subset for a key field having a unique value is at most one
record.

Indicators after PT_READX() call
After a successful SPT_READX() call, the current-state indica-
tors have these values:

• Current position is the record just read.

• Positioning mode is unchanged.

• Comparison length is unchanged.

• Current primary-key value is set to the value of the
primary-key field in the record.

Unstructured files

Data transfer Data transfer begins from an unstructured disk file at the position
indicated by the next-record pointer. The READ[X] procedure
reads records sequentially on the basis of a beginning relative
byte address (RBA) and the length of the records read.

527186-023 Hewlett-Packard Company 7−351

SPT_READX(2) OSS System Calls Reference Manual

Odd unstructured
If the unstructured file is created with the odd unstructured attri-
bute (also known as ODDUNSTR) set, the number of bytes read
is exactly the number of bytes specified with read_count. If the
odd unstructured attribute is not set when the file is created, the
value of read_count is rounded up to an even number before the
SPT_READX() operation is executed.

You set the odd unstructured attribute with the Guardian
FILE_CREATE_, FILE_CREATELIST_, or CREATE pro-
cedure, or with the File Utility Program (FUP) SET and
CREATE commands.

read_count Unstructured files are transparently blocked. The BUFFERSIZE
file attribute value, if not set by the user, defaults to 4096 bytes.
The BUFFERSIZE attribute value (which is set by specifying
SPT_SETMODE() function 93) does not constrain the allow-
able read_count in any way. However, there is a performance
penalty if the SPT_READX() call does not start on a BUFFER-
SIZE boundary and does not have a read_count that is an
integral multiple of the BUFFERSIZE. The DP2 disk process
executes your requested I/O in (possibly multiple) units of BUF-
FERSIZE blocks starting on a block boundary.

count_read for unstructured reads
After a successful call to SPT_READX() for an unstructured
file, the value returned in count_read is the minimum of
read_count or the EOF pointer minus the next-record pointer.

Pointers after an SPT_READX() call
After a successful SPT_READX() call to an unstructured file,
the file pointers are:

• Current-record pointer is old next-record pointer.

• Next-record pointer is old next-record pointer plus
count_read.

RETURN VALUES
The SPT_READX() function returns 0 (zero) upon successful completion. Otherwise, this func-
tion returns a nonzero Guardian file-system error number that indicates the outcome of the opera-
tion.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_SETMODE(2),
SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2), SPT_WRITEREADX(2),
SPT_WRITEUPDATEUNLOCKX(2), SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

7−352 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_READX(2)

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−353

spt_readx(2) OSS System Calls Reference Manual

NAME
spt_readx - Reads from a file (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/types.h>]
[#include <unistd.h>]
#include <spthread.h>

ssize_t spt_readx (
int filedes,
void *buffer,
size_t nbytes
);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), dup(), spt_dup2x(), spt_fcntlx(), open(), pipe(),
socket(), or socketpair() function.

buffer Points to the buffer to receive data read.

nbytes Specifies the number of bytes to read from the file associated with the filedes
parameter.

If the value of nbytes is 0 (zero), the spt_readx() function returns 0 (zero).
There are no other results.

If the value of nbytes is greater than SSIZE_MAX, the read() function returns
-1 and sets errno to [EINVAL].

DESCRIPTION
The spt_readx() function is a thread-aware version of the read() function.

The spt_readx() function attempts to read nbytes bytes of data from the file associated with the
filedes parameter into the buffer pointed to by the buffer parameter.

On regular files and devices capable of seeking, the spt_readx() function starts at a position in
the file given by the file pointer associated with the filedes parameter. Upon return from the
spt_readx() function, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. For such devices,
the value of the file pointer after a call to the spt_readx() function is always 0 (zero).

Upon successful completion, the spt_readx() function returns the number of bytes actually read
and placed in the buffer. This number is never greater than the value of the nbytes parameter.

The value returned can be less than nbytes if the number of bytes left in the file is less than
nbytes, if the spt_readx() request was interrupted by a signal, or if the file is a pipe, FIFO file, or
special file and has fewer than nbytes bytes immediately available for reading. For example, an
spt_readx() from a file associated with a terminal might return one typed line of data.

No data transfer occurs past the current end-of-file (EOF). If the starting position is at or after the
end-of-file, 0 (zero) is returned.

If an spt_writex() or spt_writevx() call contains so much data that the file system needs to
resize a pipe or FIFO buffer, a read from that pipe or FIFO file can return up to 52 kilobytes of
data, regardless of the size of PIPE_BUF. If the buffer cannot be resized for the write operation,
a read from the pipe or FIFO file does not return more than 8192 bytes per call, regardless of the

7−354 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_readx(2)

setting of O_NONBLOCK.

When attempting to read from an empty pipe (or FIFO file):

• If no process has the pipe open for writing, the spt_readx() function returns the value 0
(zero) to indicate EOF.

• If some process has the pipe open for writing:

— If the O_NONBLOCK flag is not set, the spt_readx() function blocks until
either some data is written or the pipe is closed by all processes that had opened
the pipe for writing.

— If the O_NONBLOCK flag is set, the spt_readx() function returns the value -1
and sets errno to [EAGAIN].

When attempting to read from a socket and no data is currently available:

• If the O_NONBLOCK flag is not set, the spt_readx() function blocks until data
becomes available.

• If the O_NONBLOCK flag is set, the spt_readx() function returns the value -1 and sets
errno to [EAGAIN]. The O_NONBLOCK flag has no effect if data is available.

When attempting to read from a character special file that supports nonblocking reads, such as a
terminal, and no data is currently available:

• If the O_NONBLOCK flag is not set, the spt_readx() function blocks until data
becomes available.

• If the O_NONBLOCK flag is set, the spt_readx() function returns the value -1 and sets
errno to [EAGAIN]. The O_NONBLOCK flag has no effect if data is available.

If it is interrupted by a signal before it reads any data, the read() function returns the value -1
with errno set to [EINTR]. If it is interrupted by a signal after it has successfully read some
data, the read() function returns the number of bytes read.

The spt_readx() function returns the number of bytes with the value 0 (zero) for any unwritten
portion of a regular file before the EOF indication.

When reading from a device special file, the return of EOF has no effect on subsequent calls to
the spt_readx() function. When modem disconnect is detected, an EOF indication is returned.
The errno variable is not set to [EIO].

Upon successful completion, the spt_readx() function marks the st_atime field of the file for
update.

Use on Guardian Objects
After a call to the fork(), tdm_fork(), or tdm_spawn() function, the initial position within a
Guardian EDIT file (a file in /G with file code 101) is the same for both parent and child
processes. However, the position is not shared. Moving the current position from within one
process does not move it in the other process.

NOTES
For C applications, a macro to map read() to spt_readx() is available when you use the #define
SPT_THREAD_AWARE_NONBLOCK preprocessor directive before including spthread.h or
when you use an equivalent compiler command option to compile the application.

527186-023 Hewlett-Packard Company 7−355

spt_readx(2) OSS System Calls Reference Manual

For C++ applications, an alias to map read() to spt_readx() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

RETURN VALUES
Upon successful completion, the spt_readx() function returns the number of bytes actually read
and placed into the buffer. The function guarantees to read the number of bytes requested only if
the descriptor references a regular file that has at least that number of bytes left before EOF indi-
cation.

If a regular file does not contain enough bytes to satisfy the read, or if the read otherwise fails,
the value -1 is returned, errno is set to indicate the error, and the contents of the buffer pointed to
by the buffer parameter are indeterminate.

If the file descriptor becomes invalid (is closed by another thread), -1 is returned with an errno
value of [EBADF]. If a signal is received via the pthread_kill() function and is not blocked,
ignored, or handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_readx() function sets errno to the corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor, and the process would be
delayed in the read operation.

The O_NONBLOCK flag is set, and no data was available.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion (such as spt_writez()) is in progress on a regular file and a function that is
process-blocking for regular files (such as read(), spt_read(), or spt_readx())
attempts to begin an I/O operation on the same open file.

[EBADF] The filedes parameter is not a valid file descriptor open for reading.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFILEBAD] An attempt was made to read from a Guardian EDIT file (a file in /G with file
code 101) with a corrupted internal structure.

[EINTR] An spt_readx() operation was interrupted by a signal before any data arrived.

[EINVAL] The value of the nbytes parameter is greater than SSIZE_MAX.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

7−356 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_readx(2)

• A physical I/O error occurred. Data might have been lost during a
transfer.

[EISDIR] An spt_readx() operation was attempted against a directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote node, but communication with
the remote node has been lost.

[ENOTCONN] The socket is no longer connected to a peer socket.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: creat(2), dup(2), fcntl(2), ioctl(2), lseek(2), open(2), opendir(3), pipe(2), read(2),
socket(2), spt_fcntlx(2), spt_read(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with these exceptions:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

• When a signal arrives during a call to the spt_readx() function, instead of returning an
EINTR error to the application, the spt_readx() retries the I/O operation, except in this
case: If the fork() function is called by a signal handler that is running on a thread per-
forming an spt_readx() call, the spt_readx() call in the child process returns an EINTR
error to the application.

527186-023 Hewlett-Packard Company 7−357

spt_readz(2) OSS System Calls Reference Manual

NAME
spt_readz - Reads from a file (thread-aware version)

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>
#include <spthread.h>

ssize_t spt_readz(
int filedes,
void *buffer,
size_t nbytes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), creat64(), dup(), spt_dup2x(), spt_fcntlz(), open(),
open64(), pipe(), socket(), or socketpair() function.

buffer Points to the buffer to receive data read.

nbytes Specifies the number of bytes to read from the file associated with the filedes
parameter.

If the value of nbytes is 0 (zero), the spt_readz() function returns 0 (zero).
There are no other results.

If the value of nbytes is greater than SSIZE_MAX, the spt_readz() function
returns -1 and sets errno to [EINVAL].

DESCRIPTION
The spt_readz() function is a thread-aware version of the read() function for regular files and
for special files.

The spt_readz() function attempts to read nbytes bytes of data from the file associated with the
filedes parameter into the buffer pointed to by the buffer parameter.

On regular files and devices capable of seeking, the spt_readz() function starts at a position in
the file given by the file pointer associated with the filedes parameter. Upon return from the
spt_readz() function, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. For such devices,
the value of the file pointer after a call to the spt_readz() function is always 0 (zero).

Upon successful completion, the spt_readz() function returns the number of bytes actually read
and placed in the buffer. This number is never greater than the value of the nbytes parameter.

The value returned can be less than nbytes if the number of bytes left in the file is less than
nbytes, if the spt_readz() request was interrupted by a signal, or if the file is a pipe, FIFO file,
socket, or special file and has fewer than nbytes bytes immediately available for reading. For
example, a spt_readz() from a file associated with a terminal might return one typed line of data.

No data transfer occurs past the current end-of-file (EOF). If the starting position is at or after the
end-of-file, 0 (zero) is returned.

If an spt_writez() or spt_writevz() call contains so much data that the file system needs to
resize a pipe or FIFO buffer, a read from that pipe or FIFO file can return up to 52 kilobytes of
data, regardless of the size of PIPE_BUF. If the buffer cannot be resized for the write operation,
a read from the pipe or FIFO file does not return more than 8192 bytes per call, regardless of the
setting of O_NONBLOCK.

7−358 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_readz(2)

When attempting to read from an empty pipe (or FIFO file):

• If no process has the pipe open for writing, the spt_readz() function returns the value 0
(zero) to indicate EOF.

• If some process has the pipe open for writing:

— If the O_NONBLOCK flag is not set, the spt_readz() function blocks until
either some data is written or the pipe is closed by all processes that had opened
the pipe for writing.

— If the O_NONBLOCK flag is set, the spt_readz() function returns the value -1
and sets errno to [EAGAIN].

When attempting to read from a socket and no data is currently available:

• If the O_NONBLOCK flag is not set, the spt_readz() function blocks until data
becomes available or an error occurs.

• If the O_NONBLOCK flag is set, the spt_readz() function returns the value -1 and sets
errno to [EWOULDBLOCK].

When attempting to read from a character special file that supports nonblocking reads, such as a
terminal, and no data is currently available:

• If the O_NONBLOCK flag is not set, the spt_readz() function blocks until data
becomes available or an error occurs.

• If the O_NONBLOCK flag is set, the spt_readz() function returns the value -1 and sets
errno to [EAGAIN].

If it is interrupted by a signal before it reads any data, the spt_readz() function returns the value
-1 with errno set to [EINTR]. If it is interrupted by a signal after it has successfully read some
data, the spt_readz() function returns the number of bytes read.

The spt_readz() function returns the number of bytes with the value 0 (zero) for any unwritten
portion of a regular file prior to EOF.

When reading from a device special file, the return of EOF has no effect on subsequent calls to
the spt_readz() function. When modem disconnect is detected, an EOF is returned. The errno
variable is not set to [EIO].

Upon successful completion, the spt_readz() function marks the st_atime field of the file for
update.

Use on Guardian Objects
After a call to the fork(), tdm_fork(), or tdm_spawn() function, the initial position within a
Guardian EDIT file (a file in /G with file code 101) is the same for both parent and child
processes. However, the position is not shared. Moving the current position from within one
process does not move it in the other process.

NOTES
For file descriptors for special files, the spt_readz() function behaves exactly the same as
spt_readx(). For file descriptors for regular files, this is a thread-aware function: if this function
must wait for an I/O operation to complete on an open file, this function blocks the thread that
called it (instead of the entire process), while it waits for the I/O operation to complete.

This function serializes file operations on an open file. If a thread calls spt_readz() to access a
file that already has a file operation in progress by a different thread, this thread is blocked until
the prior file operation is complete.

527186-023 Hewlett-Packard Company 7−359

spt_readz(2) OSS System Calls Reference Manual

For C applications, a macro to map read() to spt_readz() is available when you use the #define
SPT_THREAD_AWARE_XNONBLOCK preprocessor directive before including spthread.h
or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map read() to spt_readz() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the spt_readz() function returns the number of bytes actually read
and placed into the buffer. The function guarantees to read the number of bytes requested only if
the descriptor references a regular file that has at least that number of bytes left before EOF.

If the read otherwise fails, the value -1 is returned, errno is set to indicate the error, and the con-
tents of the buffer pointed to by the buffer parameter are indeterminate.

ERRORS
If any of these conditions occurs, the spt_readz() function sets errno to the corresponding
value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor, and the process would be
delayed in the read operation.

The O_NONBLOCK flag is set, and no data was available.

[EBADF] The filedes parameter is not a valid file descriptor open for reading.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFILEBAD] An attempt was made to read from a Guardian EDIT file (a file in /G with file
code 101) with a corrupted internal structure.

[EINTR] A spt_readz() operation was interrupted by a signal before any data arrived.

7−360 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_readz(2)

[EINVAL] The value of the nbytes parameter is greater than SSIZE_MAX.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
read from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

• A physical I/O error occurred. Data might have been lost during a
transfer.

[EISDIR] A spt_readz() operation was attempted against a directory.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOTCONN] The socket is no longer connected to a peer socket.

[EOVERFLOW]
The file is a regular file, the value of nbyte is greater than 0 (zero), the starting
position is before the End-of-File (EOF), and the starting position is greater than
or equal to the file offset maximum established when the file described by filedes
was opened.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWOULDBLOCK]
The process attempted an operation on a socket for which O_NONBLOCK is
set, there is no data, and no error has occurred.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

527186-023 Hewlett-Packard Company 7−361

spt_readz(2) OSS System Calls Reference Manual

RELATED INFORMATION
Functions: creat(2), creat64(2), dup(2), fcntl(2), ioctl(2), lseek(2), lseek64(2), open(2),
open64(2), opendir(3), pipe(2), socket(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with these exceptions:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

• When a signal arrives during a call to the spt_readz() function, instead of returning an
EINTR error to the application, the spt_readz() retries the I/O operation, except in this
case: If the fork() function is called by a signal handler that is running on a thread per-
forming an spt_readz() call, the spt_readz() call in the child process returns an EINTR
error to the application.

The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• The value of the file pointer returned for a device that is incapable of seeking is always 0
(zero).

• When reading from a device special file, the return of EOF has no effect on subsequent
calls to the spt_readz() function.

• Specifying a value for the nbytes parameter that is greater than SSIZE_MAX causes the
spt_readz() function to return -1 and set errno to [EINVAL].

• errno can be set to [EIO] if a physical I/O error occurs.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [ECONNRESET], [EFAULT], [EFILEBAD], [EINVAL], [EISDIR],
[EISGUARDIAN], [ENETDOWN], [ENOTCONN], [ETIMEDOUT], and [EWRON-
GID] can be returned.

7−362 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_RECEIVEREAD(2)

NAME
spt_RECEIVEREAD - Initiates thread-aware function for reading $RECEIVE

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

long spt_RECEIVEREAD(
const short filenum,
char *buffer,
const short read_count,
long *count_read,
const long timelimit,
short *receive_info ,
short *dialog_info);

PARAMETERS
filenum Specifies the Guardian file number for $RECEIVE (always 0)

buffer Specifies the data buffer

read_count Specifies the number of bytes to read

count_read Specifies the number of bytes read

timelimit Specifies a FILE_COMPLETE-style time limit

receive_info Specifies a FILE_GETRECEIVEINFO-style $RECEIVE info structure; NULL
may be passed if this information is not needed; must not be NULL if filenum’s
receive_depth is greater than 0 (zero).

dialog_info Specifies a FILE_GETRECEIVEINFO-style of dialog information (a short int
used by context-sensitive Pathway servers); NULL can be passed if this informa-
tion is not needed; NULL must be passed if receive_info is NULL.

DESCRIPTION
This thread-aware function is specifically for reading $RECEIVE. spt_RECEIVEREAD() is
slightly patterned after a combination of the READUPDATEX procedure and the
FILE_GETRECEIVEINFO procedure, although its parameters do not match either of its modeled
procedures. A side effect of calling spt_RECEIVEREAD)*O puts the calling thread into a
transaction (via a call to the SPT_TMF_SetTxHandle() function), if the received message was
transactional. The calling thread may be blocked to honor the filenum value’s receive depth.
This allows any number of threads to simultaneously call spt_RECEIVEREAD(). Blocked
threads will be unblocked as other threads complete their calls to the spt_REPLYX() function.

NOTES
Processing of the spt_RECEIVEREAD() function cannot be interrupted by specifying
spt_interrupt(SPT_INTERRUPTED). The spt_RECEIVEREAD() function responds to the
attempt by retrying the input or output.

To interrupt the spt_RECEIVEREAD() function, use one of the following function calls:

• spt_wakeup(0, -1, 0, error) where error is any error number that can be recognized as a
return value for the spt_RECEIVEREAD() function.

527186-023 Hewlett-Packard Company 7−363

spt_RECEIVEREAD(2) OSS System Calls Reference Manual

• spt_interrupt(0, SPT_ERROR).

• spt_interrupt(0, SPT_TIMEDOUT).

Using any of these calls also cancels the input/output operation.

RETURN VALUES
This function returns Guardian file-system error numbers including:

16 filenum is not registered.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−364 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_RECEIVEREADL(2)

NAME
spt_RECEIVEREADL - Initiates thread-aware function for reading $RECEIVE (larger mes-
sage version)

LIBRARY
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

long spt_RECEIVEREADL(
const short filenum,
char *buffer,
const long read_count,
long *count_read,
const long timelimit,
short *receive_info ,

PARAMETERS
filenum Specifies the Guardian file number for $RECEIVE (always 0)

buffer Specifies the data buffer

read_count Specifies the number of bytes to read

count_read Specifies the number of bytes read

timelimit Specifies a FILE_COMPLETEL_-style time limit

receive_info Specifies a FILE_GETRECEIVEINFOL_-style $RECEIVE info structure;
NULL may be passed if this information is not needed; must not be NULL if
filenum’s receive_depth is greater than 0 (zero).

DESCRIPTION
This function is the same as the spt_RECEIVEREAD() function, except that:

• This function can handle the longer message lengths allowed by the
SPT_SERVERCLASS_SENDL_() function.

• The read_count parameter is type const long.

• The dialog_info parameter is not included in the spt_RECEIVEREADL() function.

• The Guardian file-system error 4184 (EVERSION) can be returned.

See the spt_RECEIVEREAD(2) reference page.

NOTES
This function is supported on systems running J06.07 and later J-series RVUs and H06.18 and
later H-series RVUs, and must be used instead of the spt_RECEIVEREAD() function when the
messages are larger than 32 kilobytes. This function also can be used for shorter messages.

RETURN VALUES
See the spt_RECEIVEREAD(2) reference page.

In addition, this function can return this Guardian file-system error:

4184 (EVERSION)
The function was called from a system that is running a J-series RVU earlier
than J06.07 or an H-series RVU earlier than H06.18.

527186-023 Hewlett-Packard Company 7−365

spt_RECEIVEREADL(2) OSS System Calls Reference Manual

RELATED INFORMATION
Functions: spt_RECEIVEREAD(2), SPT_SERVERCLASS_SENDL_(3).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

7−366 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_recv(2)

NAME
spt_recv - Initiates thread-aware recv() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <spthread.h>

ssize_t spt_recv(
int socket,
void *buffer,
size_t length,
int flags);

PARAMETERS
See the recv(2) reference page.

DESCRIPTION
This is a thread-aware version of the recv() function. The socket must be nonblocking for this
function to be thread-aware.

This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

The following macro maps spt_recv() to recv() and has been defined in spthread.h:

#define recv(socket, buffer, length, flags)
spt_recv(socket, buffer, length, flags)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the recv(2) reference page. The following also applies:

• The value of errno is never set to [EWOULDBLOCK].

• If the socket becomes invalid (is closed by another thread), -1 is returned with an errno
of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−367

spt_recvfrom(2) OSS System Calls Reference Manual

NAME
spt_recvfrom - Initiates thread-aware recvfrom() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <spthread.h>

ssize_t spt_recvfrom(
int socket,
void *buffer,
size_t length,
int flags,
struct sockaddr *address,
size_t *address_len);

PARAMETERS
See the recvfrom(2) reference page.

DESCRIPTION
This is a thread-aware version of the recvfrom() function. The socket must be nonblocking for
this function to be thread-aware.

This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

The following macro maps spt_recvfrom() to recvfrom() and has been defined in spthread.h:

#define recvfrom(socket, buffer, length, flags, address, address_len)\
spt_recvfrom(socket, buffer, length, flags, address, address_len)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the recvfrom(2) reference page. The following also applies:

• The value of errno is never set to [EWOULDBLOCK].

• If the socket becomes invalid (is closed by another thread), -1 is returned with an errno
of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno of [EINTR].

ERRORS
See the recvfrom(2) reference page.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−368 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_recvfromx(2)

NAME
spt_recvfromx - Receives a message from a socket (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/socket.h>]
#include <spthread.h>

ssize_t spt_recvfromx(
int socket,
void *buffer,
size_t length,
int flags,
struct sockaddr *address,
size_t *address_len
);

PARAMETERS
socket Specifies the file descriptor of the socket.

buffer Points to the buffer where the message should be written.

length Specifies the length in bytes of the buffer pointed to by the buffer parameter.

flags Is a value that controls message reception. The value of the flags parameter is
formed by bitwise ORing zero or more of the following values:

MSG_OOB Requests out-of-band data.

MSG_PEEK Peeks at an incoming message. The data is treated as unread and
the next call to the spt_recvfromx() function (or similar func-
tion) will still return this data.

address Specifies either a null pointer or a pointer to a sockaddr structure in which the
sending address is to be stored. The length and format of the address depend on
the address family of the socket.

For AF_INET sockets, a pointer to the address structure sockaddr_in must be
cast as a struct sockaddr. For AF_INET6 sockets, a pointer to the address
structure sockaddr_in6 must be cast as a struct sockaddr. For AF_UNIX sock-
ets, a pointer to the address structure sockaddr_un must be cast as a struct
sockaddr.

address_len Points to a size_t data item, which, on input, specifies the length of the sockaddr
structure that is pointed to by the address parameter, and, on return, specifies the
length of the address stored.

DESCRIPTION
The spt_recvfromx() function is a thread-aware version of the recvfrom() function.

The spt_recvfromx() function receives messages from a connection-oriented or connectionless
socket. spt_recvfromx() is normally used with connectionless sockets because it includes
parameters that permit a calling program to retrieve the source address of received data.

For message-based sockets (sockets of type SOCK_DGRAM), the entire message must be read
in one call. If a message is too long to fit in the supplied buffer and MSG_PEEK is not set in the
flags parameter, the excess bytes are discarded.

527186-023 Hewlett-Packard Company 7−369

spt_recvfromx(2) OSS System Calls Reference Manual

For stream-based sockets (sockets of type SOCK_STREAM), message boundaries are ignored.
For such sockets, data is returned as soon as it becomes available; no data is discarded.

If no messages are available at the socket and the socket’s file descriptor is blocking
(O_NONBLOCK is not set), the spt_recvfromx() function blocks until a message arrives. If no
messages are available at the socket and the socket’s file descriptor is marked nonblocking
(O_NONBLOCK is set), the spt_recvfromx() function fails and sets errno to [EWOULD-
BLOCK].

If the address parameter is not a null pointer, the source address of the received message is stored
in the sockaddr structure pointed to by the address parameter, and the length of this address is
stored in the object pointed to by the address_len parameter.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the address is truncated when stored.

NOTES
The macro to map recvfrom() to spt_recvfromx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link recvfrom() to spt_recvfromx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

When data is available, a call to the select() function indicates that the file descriptor for the
socket is ready for reading.

RETURN VALUES
Upon successful completion, the spt_recvfromx() function returns the length of the received
message in bytes. If no data is available and the peer socket has performed an orderly shutdown,
then 0 (zero) is returned.

If the spt_recvfromx() function call fails, the value -1 is returned and errno is set to indicate the
error.

If the socket becomes invalid (is closed by another thread), -1 is returned with an errno value of
[EBADF]. If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occurs, the spt_recvfromx() function sets errno to the corresponding
value:

7−370 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_recvfromx(2)

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] A signal interrupted the function before any data was available.

[EINVAL] The MSG_OOB value is specified in the flags parameter and no out-of-band
data is available.

[EIO] An input or output error occurred.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTCONN] A receive operation was attempted on a connection-oriented socket that is not
connected.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[ETIMEDOUT]
A transmission timed out on an active connection.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), read(2), recv(2), recvfrom(2), recvmsg(2), select(2), send(2), sendmsg(2),
sendto(2), shutdown(2), sockatmark(2), socket(2), spt_recvx(2), spt_recvfrom(2),
spt_recvmsgx(2), spt_sendtox(2), spt_sendx(2), spt_sendmsgx(2), spt_writex(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−371

spt_recvmsg(2) OSS System Calls Reference Manual

NAME
spt_recvmsg - Initiates thread-aware recvmsg(2) function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <spthread.h>

ssize_t spt_recvmsg(
int socket,
struct msghdr *message,
int flags);

PARAMETERS
See the recvmsg(2) reference page.

DESCRIPTION
This is a thread-aware version of the recvmsg() function. The socket must be nonblocking for
this function to be thread-aware.

This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

The following macro maps spt_recvmsg() to recvmsg() and has been defined in spthread.h:

#define recvmsg(socket, message, flags)\
spt_recvmsg(socket, message, flags)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

See the recvmsg(2) reference page.

RETURN VALUES
See the recvmsg(2) reference page. The following information also applies:

• The value of errno is never set to [EWOULDBLOCK].

• If the socket becomes invalid (is closed by another thread), -1 is returned with an errno
value of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
See the recvmsg(2) reference page.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−372 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_recvmsgx(2)

NAME
spt_recvmsgx - Receives a message from a socket using a message structure (thread-aware ver-
sion)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/socket.h>]
#include <spthread.h>

ssize_t spt_recvmsgx(
int socket,
struct msghdr *message,
int flags
);

PARAMETERS
socket Specifies the file descriptor of the socket.

message Points to a msghdr structure containing both the buffer to store the source
address and the buffers for the incoming message. The length and format of the
address depend on the address family for the socket. The msg_flags member of
the structure is ignored on input but might contain meaningful values on output.
For:

AF_INET sockets
A pointer in msghdr to the address structure sockaddr_in must
be cast as a struct sockaddr.

AF_INET6 sockets
A pointer to the address structure sockaddr_in6 must be cast as
a struct sockaddr.

AF_UNIX sockets
A pointer to the address structure sockaddr_un must be cast as a
struct sockaddr.

flags Is a value that controls message reception. The value of the flags parameter is
formed by bitwise ORing zero or more of the following values:

MSG_OOB Requests out-of-band data.

MSG_PEEK Peeks at an incoming message. The data is treated as unread,
and the next call to the spt_recvmsgx() function (or a similar
function) will still return this data.

DESCRIPTION
The spt_recvmsgx() function is a thread-aware version of the recvmsg() function.

The spt_recvmsgx() function receives messages from a connection-oriented or connectionless
socket using the msghdr structure. The spt_recvmsgx() function is normally used with connec-
tionless sockets because it includes parameters that permit a calling program to retrieve the
source address of the received data.

For message-based sockets (sockets of type SOCK_DGRAM), the entire message must be read
in one call. If a message is too long to fit in the supplied buffer and MSG_PEEK is not set in the
flags parameter, the excess bytes are discarded, and MSG_TRUNC is set in the msg_flags field

527186-023 Hewlett-Packard Company 7−373

spt_recvmsgx(2) OSS System Calls Reference Manual

of the msghdr structure.

For stream-based sockets (sockets of type SOCK_STREAM), message boundaries are ignored.
For such sockets, data is returned as soon as it becomes available; no data is discarded.

If no messages are available at the socket and the socket’s file descriptor is blocking
(O_NONBLOCK is not set), the spt_recvmsgx() function blocks until a message arrives. If no
messages are available at the socket and the socket’s file descriptor is marked nonblocking
(O_NONBLOCK is set), the spt_msgx() function fails and sets errno to [EWOULDBLOCK].

In the msghdr structure, the msg_name and msg_namelen members specify the source address
if the socket is unconnected. If the socket is connected, the msg_name and msg_namelen
members are ignored. The msg_name member can be a null pointer if no names are desired or
required. The msg_iov and msg_iovlen members describe the scatter and gather locations.

Upon successful completion of the spt_recvmsgx() call, the value of the msg_flags member of
the msghdr structure is the bitwise OR of zero or more of the following values:

MSG_CTRUNC
Control data was truncated.

MSG_OOB Out-of-band data was received.

MSG_TRUNC
Normal data was truncated.

In the msghdr structure, the msg_control and msg_controllen members specify the ancillary
data buffer that only sockets in the AF_UNIX domain can use to receive file descriptors passed
from another process on the same node. The msg_control member can be a null pointer if ancil-
lary data is not desired or required. If the msg_control member is nonnull, on input the
msg_controllen member contains the size of the ancillary data buffer and on output it contains
the size of the received ancillary data. If, on output, the msg_controllen member is nonzero, the
ancillary data buffer contains a cmsghdr structure followed by 1 to 16 file descriptors.

If spt_recvmsgx() is called with an ancillary data buffer and MSG_PEEK is set, the
msg_controllen member is valid, but the ancillary data is not meaningful (no file descriptors are
received). Ancillary data is not discarded but remains available for the next call to
spt_recvmsgx() where MSG_PEEK is set.

If spt_recvmsgx() is called with an ancillary data buffer that is too small to hold the available
file descriptors, MSG_CTRUNC is set, and the excess file descriptors are discarded.

If spt_recvmsgx() is called with an ancillary data buffer and one or more of the received file
descriptors are unusable (perhaps because of a device error), no error is indicated until the file
descriptor is used.

NOTES
The macro to map recvmsg() to spt_recvmsgx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link recvmsg() to spt_recvmsgx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the

7−374 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_recvmsgx(2)

following tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

When data is available, a call to the select() function indicates that the file descriptor for the
socket is ready for reading.

RETURN VALUES
Upon successful completion, the spt_recvmsgx() function returns the length of the received
message in bytes. If no data is available and the peer socket has performed an orderly shutdown,
0 (zero) is returned.

If the spt_recvmsgx() function call fails, the value -1 is returned, and errno is set to indicate the
error.

If the socket becomes invalid (is closed by another thread), -1 is returned with an errno value of
[EBADF]. If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_recvmsgx() function sets errno to the corresponding
value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] A signal interrupted the function before any data was available.

[EINVAL] One of these conditions occurred:

• The MSG_OOB value is specified in the flags parameter, and no out-of-
band data is available.

• The sum of the values specified for the msg_iovlen field of the msghdr
structure is too large for a data item of type ssize_t.

• The socket belongs to the AF_INET or AF_INET6 domain, and the
function call requested msg_control data.

• The socket belongs to the AF_UNIX domain, and the size of
msg_controllen is less than the size of the cmsghdr structure plus one
file descriptor.

527186-023 Hewlett-Packard Company 7−375

spt_recvmsgx(2) OSS System Calls Reference Manual

[EIO] An input or output error occurred.

[EMFILE] The socket is in the AF_UNIX domain, and processing the cmsghdr structure
would cause the receiving process to exceed OPEN_MAX.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTCONN] A receive operation was attempted on a connection-oriented socket that is not
connected.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
A specified value for the flags parameter is not supported for this socket type.

[ETIMEDOUT]
A transmission timed out on an active connection.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set), and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), recv(2), recvfrom(2), recvmsg(2), select(2), send(2), sendmsg(2),
sendto(2), shutdown(2), sockatmark(2), socket(2), socketpair(2), spt_recvx(2),
spt_recvfromx(2), spt_recvmsg(2), spt_sendtox(2), spt_sendx(2), spt_sendmsgx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−376 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_recvx(2)

NAME
spt_recvx - Receives a message from a connected socket (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/socket.h>]
#include <spthread.h>

ssize_t spt_recvx(
int socket,
void *buffer,
size_t length,
int flags
);

PARAMETERS
socket Specifies the file descriptor of the socket.

buffer Points to the buffer where the message should be written.

length Specifies the length in bytes of the buffer pointed to by the buffer parameter.

flags Is a value that controls message reception. The value of the flags parameter is
formed by bitwise ORing zero or more of the following values:

MSG_OOB Requests out-of-band data.

MSG_PEEK Peeks at an incoming message. The data is treated as unread and
the next call to the spt_recvx() function (or similar function)
will still return this data.

DESCRIPTION
The spt_recvx() function is a thread-aware version of the recv() function.

The spt_recvx() function receives messages from a connected socket.

For message-based sockets (sockets of type SOCK_DGRAM), the entire message must be read
in one call. If a message is too long to fit in the supplied buffer and MSG_PEEK is not set in the
flags parameter, the excess bytes are discarded.

For stream-based sockets (sockets of type SOCK_STREAM), message boundaries are ignored.
For such sockets, data is returned as soon as it becomes available; no data is discarded.

If no messages are available at the socket and the socket’s file descriptor is blocking
(O_NONBLOCK is not set), the spt_recvx() function blocks until a message arrives. If no mes-
sages are available at the socket and the socket’s file descriptor is marked nonblocking
(O_NONBLOCK is set), the spt_recvx() function fails and sets errno to [EWOULDBLOCK].

NOTES
The macro to map recv() to spt_recvx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link recv() to spt_recvx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

527186-023 Hewlett-Packard Company 7−377

spt_recvx(2) OSS System Calls Reference Manual

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

When data is available, a call to the select() function indicates that the file descriptor for the
socket is ready for reading.

Calling the spt_recvx() function with a flags parameter of 0 (zero) is identical to calling the
spt_readx() function.

RETURN VALUES
Upon successful completion, the spt_recvx() function returns the length of the received message
in bytes. If no data is available and the peer socket has performed an orderly shutdown, then 0
(zero) is returned.

If the spt_recvx() function call fails, the value -1 is returned and errno is set to indicate the
error.

If the socket becomes invalid (is closed by another thread), -1 is returned with an errno value of
[EBADF]. If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_recvx() function sets errno to the corresponding value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EFAULT] A user-supplied memory buffer cannot be accessed or written.

[EINTR] A signal interrupted the function before any data was available.

[EINVAL] The MSG_OOB value is specified in the flags parameter and no out-of-band
data is available.

[EIO] An input or output error occurred.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

7−378 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_recvx(2)

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTCONN] A receive operation was attempted on a connection-oriented socket that is not
connected.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[ETIMEDOUT]
A transmission timed out on an active connection.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), read(2), recv(2), recvfrom(2), recvmsg(2), select(2), send(2), sendmsg(2),
sendto(2), shutdown(2), sockatmark(2), socket(2), spt_readx(2), spt_recv(2),
spt_recvfromx(2), spt_recvmsgx(2), spt_sendtox(2), spt_sendx(2), spt_sendmsgx(2),
spt_writex(2), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−379

spt_regFile(2) OSS System Calls Reference Manual

NAME
spt_regFile - Registers the file number

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

spt_error_t spt_regFile(
const short filenum);

PARAMETERS
filenum Specifies the Guardian file number of the file being registered

DESCRIPTION
Registers the file number as one that the user will manage through the default callback.

RETURN VALUES
See the spt_regFileIOHandler(2) reference page.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−380 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_regFileIOHandler(2)

NAME
spt_regFileIOHandler - Registers the file number

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

spt_error_t spt_regFileIOHandler(
const short filenum,
const spt_FileIOHandler_p functionPtr);

PARAMETERS
filenum Specifies the Guardian file number for the file being registered

functionPtr Specifies user-supplied callback. This function must not block its invoking
thread; for example, it should not call the spt_awaitio() function

DESCRIPTION
This function registers the file number as one that the user will manage through a user-supplied
callback. This callback is invoked immediately after each I/O on filenum completes.

RETURN VALUES
SPT_SUCCESS

THe Guardian file number was successfully registered.

SPT_ERROR The value specified for filenum was less than 0 (zero).

SPT_ERROR filenum was already registered prior to this call.

SPT_ERROR The FILE_COMPLETE_SET_ procedure addition of filenum returned a nonzero
value.

SPT_ERROR functionPtr is NULL.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−381

spt_regOSSFileIOHandler(2) OSS System Calls Reference Manual

NAME
spt_regOSSFileIOHandler - Registers the file descriptor to manage through a callback function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

spt_error_t spt_regOSSFileIOHandler(
const int filedes,
const spt_OSSFileIOHandler_p functionPtr);

PARAMETERS
filedes Specifies the OSS file descriptor being registered

functionPtr Specifies the user-supplied callback function; this function must not block

DESCRIPTION
This function registers the file descriptor as one that the user will manage through a user-supplied
callback.

RETURN VALUES
SPT_SUCCESS

Value for file descriptor was registered.

SPT_ERROR The specified filedes was less than 0 (zero).

SPT_ERROR filedes was already registered prior to this call.

SPT_ERROR functionPtr is NULL.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−382 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_regPathsendFile(2)

NAME
spt_regPathsendFile - Registers the Pathsend file number

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

spt_error_t spt_regPathsendFile(
const short fileno);

PARAMETERS
fileno Contains the scsend-op-num value obtained during the first nowaited

SERVERCLASS_SEND_, SERVERCLASS_DIALOG_BEGIN_, or
SERVERCLASS_DIALOG_SEND_ procedure call.

DESCRIPTION
This function is used to register the Pathsend file number. This function should be called
immediately after the first call to a SERVERCLASS_SEND_,
SERVERCLASS_DIALOG_BEGIN_, or SERVERCLASS_DIALOG_SEND_ procedure call.

RETURN VALUES
SPT_SUCCESS

The Pathsend file number was successfully registered.

SPT_ERROR The specified Pathsend file number is already registered.

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−383

spt_regPathsendTagHandler(2) OSS System Calls Reference Manual

NAME
spt_regPathsendTagHandler - Registers the user-supplied Pathsend tag

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

spt_error_t spt_regPathsendTagHandler(
const long tag,
spt_FileIOHandler_p callback,
void * userdata);

PARAMETERS
tag Specifies the Pathsend tag that should be registered.

callback Specifies a user-supplied callback function. This function should not block its
invoking thread. The callback function should have the following prototype:

callback(const short filenum,
/* Guardian file number

being waited on */
const long tag,

/* tag being waited on or
-1 for all tags */

const long completionCount,
/* byte transfer count

of completed IO */
const long fserror,

/* Guardian error number for IO */
void * userdata

/* for communication between
I/O initiator and callback. */

);

userdata Specifies data to be communicated between the I/O initiator and the callback
function.

DESCRIPTION
This function registers the Pathsend tag as a tag that the user will manage through a user-supplied
callback function. The callback function is invoked when a Pathsend operation that uses the tag
completes.

RETURN VALUES
SPT_SUCCESS

The specified tag was registered.

SPT_ERROR Another Pathsend handler has already registered the tag.

RELATED INFORMATION
Functions: spt_unregPathsendTagHandler(2),
SPT_SERVERCLASS_DIALOG_ABORT_(2),
SPT_SERVERCLASS_DIALOG_BEGIN_(2), SPT_SERVERCLASS_DIALOG_END_(2),
SPT_SERVERCLASS_DIALOG_SEND_(2), SPT_SERVERCLASS_SEND_INFO_(2),
SPT_SERVERCLASS_SEND_(2).

7−384 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_regPathsendTagHandler(2)

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−385

spt_regTimerHandler(2) OSS System Calls Reference Manual

NAME
spt_regTimerHandler - Registers a user-supplied timer callback function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

spt_error_t spt_regTimerHandler(
const spt_TimerHandler_p functionPtr);

PARAMETERS
functionPtr Specifies the user-supplied callback function; this function must not block I/O

DESCRIPTION
This function registers a user-supplied timer callback function.

RETURN VALUES
SPT_SUCCESS

The callback function was successfully registered.

SPT_ERROR functionPtr is NULL.

SPT_ERROR The specified callback function is already registered.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−386 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_REPLYX(2)

NAME
spt_REPLYX - Initiates thread-aware REPLYX procedure call

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

long spt_REPLYX(
const char *buffer,
const short write_count,
short *count_written,
const short msg_tag,
const short error_return);

PARAMETERS
buffer Specifies data buffer

write_count Specifies the number of bytes to write

count_written Specifies the number of bytes written; might be NULL

msg_tag Specifies required tag identifying message to reply to and is ignored if the
corresponding Guardian file number receive depth is 1

error_return Specifies a Guardian file-system error to return to sender

DESCRIPTION
This is a thread-aware version of the REPLYX procedure call; this function clears the thread’s
transaction context if appropriate.

RETURN VALUES
This function returns a Guardian file-system error number.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−387

spt_REPLYXL(2) OSS System Calls Reference Manual

NAME
spt_REPLYXL - Initiates thread-aware REPLYXL procedure call (larger message version)

LIBRARY
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

long spt_REPLYXL(
const char *buffer,
const long write_count,
long *count_written,
const short msg_tag,
const short error_return);

PARAMETERS
buffer Specifies data buffer

write_count Specifies the number of bytes to write

count_written Specifies the number of bytes written; might be NULL

msg_tag Specifies required tag identifying message to reply to and is ignored if the
corresponding Guardian file number receive depth is 1

error_return Specifies a Guardian file-system error to return to sender

DESCRIPTION
This function is the same as the spt_REPLYX() function, except:

• This function can handle the longer message lengths allowed by the
SPT_SERVERCLASS_SENDL_() function.

• The write_count parameter is type const long.

• The count_written parameter is type long.

• The Guardian file-system error 4184 (EVERSION) can be returned.

See the spt_REPLYX(2) reference page.

NOTES
This function is supported on systems running J06.07 and later J-series RVUs and H06.18 and
later H-series RVUs, and must be used instead of the spt_REPLYX() function when the mes-
sages are larger than 32 kilobytes long. This function also can be used for shorter messages.

RETURN VALUES
See the spt_REPLYX(2) reference page.

In addition, this function can return this Guardian file-system error:

4184 (EVERSION)
The function was called from a system that is running a J-series RVU earlier
than to J06.07 or an H-series RVU earlier than H06.18.

7−388 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_REPLYXL(2)

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

527186-023 Hewlett-Packard Company 7−389

spt_select(2) OSS System Calls Reference Manual

NAME
spt_select - Initiates thread-aware select() function for mulitple file descriptors

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_select(
int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *errorfds,
struct timeval *timeout);

PARAMETERS
See the select(2) reference page.

DESCRIPTION
This is a thread-aware version of the select() function that is used to check the status of multiple
file descriptors. To check the status of a single file descriptor, use the spt_select_single_np()
function, which provides better performance.

In spthread.h, a mapping of select() to spt_select() has been defined:

#define select(nfds, readfds, writefds, errorfds, timeout)\
spt_select(nfds, readfds, writefds, errorfds, timeout)

For C applications that do not use the nonblocking feature, this mapping is available only when
the correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE
#include <spthread.h>

For C applications that use the nonblocking feature, this mapping is available only when the
correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_NONBLOCK
#include <spthread.h>

For C++ applications that do not use the nonblocking feature, this mapping is available only
when the correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_PRAGMA
#include <spthread.h>

For C++ applications that use the nonblocking feature, this mapping is available only when the
correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK
#include <spthread.h>

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

7−390 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_select(2)

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

To use a combination of the spt_select() and the spt_select_single_np() functions in a single
source file, you must explicitly call these functions.

RETURN VALUES
See the select(2) reference page. The following information also applies:

• If the file descriptor becomes invalid (is closed by another thread), -1 is returned with an
errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

RELATED INFORMATION
Functions: select(2), spt_select_single_np(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−391

spt_select_single_np(2) OSS System Calls Reference Manual

NAME
spt_select_single_np - Initiates thread-aware select() function for a single file descriptor

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_select_single_np(
int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *errorfds,
struct timeval *timeout);

PARAMETERS
See the select(2) reference page.

DESCRIPTION
This is a thread-aware version of the select() function used to check the status of a single file
descriptor. To improve application performance, use the spt_select_single_np() function instead
of the spt_select() function. For multiple file desciptors, use the spt_select() function.

In spthread.h, a mapping of select() to spt_select_single_np() has been defined:

#define select(nfds, readfds, writefds, errorfds, timeout)\
spt_select_single_np(nfds, readfds, writefds, errorfds, timeout)

For C applications that do not use the nonblocking feature, this mapping is available only when
the correct two preprocessors have been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE
#define SPT_SELECT_SINGLE
#include <spthread.h>

For C applications that use the nonblocking feature, this mapping is available only when the
correct two preprocessors have been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_NONBLOCK
#define SPT_SELECT_SINGLE
#include <spthread.h>

For C++ applications that do not use the nonblocking feature, this mapping is available only
when the correct two preprocessors have been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_PRAGMA
#define SPT_SELECT_SINGLE
#include <spthread.h>

For C++ applications that use the nonblocking feature, this mapping is available only when the
correct two preprocessors have been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK
#define SPT_SELECT_SINGLE
#include <spthread.h>

7−392 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_select_single_np(2)

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

To use a combination of the spt_select() and the spt_select_single_np() functions in a single
source file, you must explicitly call these functions.

RETURN VALUES
See the select(2) reference page. The following information also applies:

• If the file descriptor becomes invalid (is closed by another thread), -1 is returned with an
errno of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

RELATED INFORMATION
Functions: select(2), spt_select(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−393

spt_send(2) OSS System Calls Reference Manual

NAME
spt_send - Initiates thread-aware send() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <spthread.h>

ssize_t spt_send(
int socket,
const void *buffer,
size_t length,
int flags);

PARAMETERS
See the send(2) reference page.

DESCRIPTION
This is a thread-aware version of the send() function. The socket must be nonblocking for this
function to be thread-aware.

This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

The following macro maps spt_send() to send() and has been defined in spthread.h:

#define send(socket, buffer, length, flags)\
spt_send(socket, buffer, length, flags)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

For more description and notes, see the send(2) reference page.

RETURN VALUES
See the send(2) reference page. The following also applies:

• The value of errno is never set to [EWOULDBLOCK].

• If the socket becomes invalid (is closed by another thread), -1 is returned with an errno
of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
See the send(2) reference page.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−394 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sendmsg(2)

NAME
spt_sendmsg - Initiates thread-aware sendmsg() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <spthread.h>

ssize_t spt_sendmsg(
int socket,
const struct msghdr *message,
int flags);

PARAMETERS
See the sendmsg(2) reference page.

DESCRIPTION
This is a thread-aware version of the sendmsg() function. The socket must be nonblocking for
this function to be thread-aware.

This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

The following macro maps spt_sendmsg() to sendmsg() and has been defined in spthread.h:

#define sendmsg(socket, message, flags)\
spt_sendmsg(socket, message, flags)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

For more description and notes the sendmsg(2) reference page.

RETURN VALUES
See the sendmsg(2) reference page. The following also applies:

• The value of errno is never set to [EWOULDBLOCK].

• If the socket becomes invalid (is closed by another thread), -1 is returned with an errno
of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
See the sendmsg(2) reference page.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−395

spt_sendmsgx(2) OSS System Calls Reference Manual

NAME
spt_sendmsgx - Sends a message on a socket using a message structure (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/socket.h>]
#include <spthread.h>

ssize_t spt_sendmsgx(
int socket,
const struct msghdr *message,
int flags
);

PARAMETERS
socket Specifies the file descriptor of the socket.

message Points to a msghdr structure containing both the destination address for the out-
going message and the buffers for the outgoing message. The length and format
of the address depend on the address family for the socket. The msg_flags
member of the structure is ignored. For:

AF_INET sockets
A pointer in msghdr to the address structure sockaddr_in must
be cast as a struct sockaddr.

AF_INET6 sockets
A pointer to the address structure sockaddr_in6 must be cast as
a struct sockaddr.

AF_UNIX sockets
A pointer to the address structure sockaddr_un must be cast as a
struct sockaddr.

flags Is a value that controls message transmission. The value of the flags parameter
is formed by bitwise ORing zero or more of these values:

MSG_DONTROUTE
Sends without using routing tables. (Not recommended; use
only for debugging.)

MSG_OOB Sends out-of-band data on sockets that support out-of-band com-
munications.

DESCRIPTION
The spt_sendmsgx() function is a thread-aware version of the sendmsg() function.

The spt_sendmsgx() function sends a message through a connection-oriented or connectionless
socket. If the socket is connectionless, the message is sent to the address specified in the
msghdr structure. If the socket is connection-oriented, the destination address in the msghdr
structure is ignored.

Successful completion of a call to spt_sendmsgx() does not imply successful delivery of the
message. A return value of -1 indicates only locally detected errors.

7−396 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sendmsgx(2)

If the sending socket has no space to hold the message to be transmitted and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the spt_sendmsgx() function blocks until
space is available. If the sending socket has no space to hold the message to be transmitted and
the socket’s file descriptor is marked nonblocking (O_NONBLOCK is set), the spt_sendmsgx()
function fails and sets errno to [EWOULDBLOCK].

In the msghdr structure, the msg_control and msg_controllen members specify the ancillary
data buffer that only sockets in the AF_UNIX domain can use to pass file descriptors to another
process on the same node. The msg_control member can be a null pointer if ancillary data is not
desired or required. If the msg_control member is nonnull, it points to an ancillary data buffer
consisting of a cmsghdr structure followed by 1 to 16 file descriptors. The msg_controllen
member specifies the size of the ancillary data buffer.

If spt_sendmsgx() is called with an ancillary data buffer, the members of the cmsghdr structure
must be set as follows:

• The cmsg_level member must be set to SOL_SOCKET.

• The cmsg_type member must be set to SCM_RIGHTS.

• The value of the cmsg_len member must be equal to the value of the msg_controllen
member of the msghdr structure.

NOTES
The macro to map sendmsg() to spt_sendmsgx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link sendmsg() to spt_sendmsgx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

When data can be sent, a call to the select() function indicates that the file descriptor for the
socket is ready for writing.

RETURN VALUES
Upon successful completion, the spt_sendmsgx() function returns the number of normal bytes
sent. Ancillary data, if present, is not counted in the total number of bytes sent.

If the spt_sendmsgx() function call fails, the value -1 is returned, and errno is set to indicate the
error.

If the socket becomes invalid (is closed by another thread), -1 is returned with an errno value of
[EBADF]. If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

527186-023 Hewlett-Packard Company 7−397

spt_sendmsgx(2) OSS System Calls Reference Manual

ERRORS
If any of these conditions occur, the spt_sendmsgx() function sets errno to the corresponding
value:

[EACCES] The socket is in the AF_UNIX domain and either search permission is denied for
a component of the pathname in the msghdr structure or write access to the
specified socket is denied.

[EAFNOSUPPORT]
You cannot use addresses in the specified address family with this socket.

[EBADF] One of these conditions exists:

• The socket parameter is not a valid file descriptor.

• The socket is in the AF_UNIX domain, and one or more of the file
descriptors being passed is invalid.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EDESTADDRREQ]
The socket is not connection-oriented, no peer address is set, and no destination
address is specified.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EINTR] A signal interrupted the function before any data was transmitted.

[EINVAL] One of these conditions occurred:

• The socket is in the AF_UNIX domain, and the msg_control member
contains either more than 16 file descriptors or fewer than 1 file descrip-
tor.

• The socket is in the AF_UNIX domain, and an attempt was made to
send more than one cmsghdr structure.

• The socket is in the AF_UNIX domain, and the value of the cmsg_len
member is not equal to the value of the msg_controllen member.

• The socket is in the AF_UNIX domain, and the cmsg_type member is
not equal to SCM_RIGHTS.

• The sum of the values specified for the msg_iovlen member of the
msghdr structure is too large for a data item of type ssize_t.

7−398 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sendmsgx(2)

[EIO] The socket is in the AF_UNIX domain, and the transport agent failed to inherit
the file descriptors being passed, or an input or output error occurred.

[ELOOP] The socket is in the AF_UNIX domain, and too many symbolic links were
encountered in translating the pathname specified by the msghdr structure.

[EMSGSIZE] The message is too large to be sent all at once, as required by the socket.

[ENAMETOOLONG]
The socket is in the AF_UNIX domain, and one of these conditions exists:

• The pathname in the msghdr structure exceeds PATH_MAX characters.

• A component of the pathname in the msghdr structure exceeds
NAME_MAX characters.

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname in the msghdr structure exceeds PATH_MAX
characters.

You can call the pathconf() function to obtain the applicable limits.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOENT] The socket is in the AF_UNIX domain, and one of these conditions occurred:

• A component of the pathname in the msghdr structure does not name an
existing file.

• The msghdr structure specifies an empty string as a pathname.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOPROTOOPT]
The socket is in the AF_UNIX domain, and the cmsg_level member is not equal
to SOL_SOCKET.

[ENOTCONN] The socket is connection-oriented but is not connected.

[ENOTDIR] The socket is in the AF_UNIX domain, and the pathname specified by the
msghdr structure contains a component that is not a directory.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[EPERM] The address included in the message parameter is bound to a socket whose mode
is different than the mode of the socket specified by the socket parameter.

[EPIPE] One of these conditions occurred:

• An attempt was made to send a message on a socket that is shut down
for writing.

527186-023 Hewlett-Packard Company 7−399

spt_sendmsgx(2) OSS System Calls Reference Manual

• An attempt was made to send a message on a connection-oriented
socket, and the peer socket is closed or shut down for reading. The SIG-
PIPE signal is also sent to the calling process.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set), and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), getsockopt(2), recv(2), recvfrom(2), recvmsg(2), select(2), send(2),
sendto(2), sendmsg(2), setsockopt(2), shutdown(2), sockatmark(2), socket(2), socketpair(2),
spt_recvx(2), spt_recfromx(2), spt_recvmsgx(2), spt_send(2), spt_sendx(2), spt_sendtox(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−400 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sendto(2)

NAME
spt_sendto - Initiates thread-aware sendto() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#define _XOPEN_SOURCE_EXTENDED 1
#include <spthread.h>

ssize_t spt_sendto(
int socket,
const void *buffer,
size_t length,
int flags,
const struct sockaddr *dest_addr,
size_t dest_len);

PARAMETERS
See the sendto(2) reference page.

DESCRIPTION
This is a thread-aware version of the sendto() function. The socket must be nonblocking for this
function to be thread-aware.

This function requires that the feature-test macro _XOPEN_SOURCE_EXTENDED be specified
when you compile the module.

The following macro maps spt_sendto() to sendto() and has been defined in spthread.h:

#define sendto(socket, buffer, length, flags, dest_addr, dest_len) \
spt_sendto(socket, buffer, length, flags, dest_addr, dest_len)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

For more description and notes, see the sendto(2) reference page.

RETURN VALUES
See the sendto(2) reference page. The following information also applies:

• The value of errno is never set to [EWOULDBLOCK].

• If the socket becomes invalid (is closed by another thread), -1 is returned with an errno
value of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
See the sendto(2) reference page.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

527186-023 Hewlett-Packard Company 7−401

spt_sendto(2) OSS System Calls Reference Manual

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−402 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sendtox(2)

NAME
spt_sendtox - Sends a message on a socket (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/socket.h>]
#include <spthread.h>

ssize_t spt_sendtox(
int socket,
const void *message,
size_t length,
int flags,
const struct sockaddr *dest_addr,
size_t dest_len
);

PARAMETERS
socket Specifies the file descriptor of the socket.

message Points to the buffer containing the message to be sent.

length Specifies the length in bytes of the message to be sent.

flags Is a value that controls message transmission. The value of the flags parameter
is formed by bitwise ORing zero or more of the following values:

MSG_DONTROUTE
Sends without using routing tables. (Not recommended; use for
debugging only.)

MSG_OOB Sends out-of-band data on sockets that support out-of-band com-
munications.

dest_addr Points to a sockaddr structure that contains the destination address. The length
and format of the address depends on the address family of the socket. For:

AF_INET sockets
A pointer to the address structure sockaddr_in must be cast as a
struct sockaddr.

AF_INET6 sockets
A pointer to the address structure sockaddr_in6 must be cast as
a struct sockaddr.

AF_UNIX sockets
A pointer to the address structure sockaddr_un must be cast as a
struct sockaddr.

dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr
parameter.

527186-023 Hewlett-Packard Company 7−403

spt_sendtox(2) OSS System Calls Reference Manual

DESCRIPTION
The spt_sendtox() function is a thread-aware version of the sendto() function.

The spt_sendtox() function sends a message through a connection-oriented or connectionless
socket. If the socket is connectionless, the message is sent to the address specified in the
sockaddr structure pointed to by the dest_addr parameter. If the socket is connection-oriented,
the dest_addr parameter is ignored.

Successful completion of a call to spt_sendtox() does not imply successful delivery of the mes-
sage. A return value of -1 indicates only locally detected errors.

If the sending socket has no space to hold the message to be transmitted and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the spt_sendtox() function blocks until
space is available. If the sending socket has no space to hold the message to be transmitted and
the socket’s file descriptor is marked nonblocking (O_NONBLOCK is set), the spt_sendtox()
function fails and sets errno to [EWOULDBLOCK].

NOTES
The macro to map sendto() to spt_sendtox() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link sendto() to spt_sendtox() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

When data can be sent, a call to the select() function indicates that the file descriptor for the
socket is ready for writing.

RETURN VALUES
Upon successful completion, the spt_sendtox() function returns the number of bytes sent. Oth-
erwise, the value -1 is returned and errno is set to indicate the error.

If the socket becomes invalid (is closed by another thread), -1 is returned with an errno value of
[EBADF]. If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_sendtox() function sets errno to the corresponding
value:

7−404 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sendtox(2)

[EACCES] The socket is in the AF_UNIX domain and either search permission is denied for
a component of the pathname in the sockaddr structure, or write access to the
specified socket is denied.

[EAFNOSUPPORT]
You cannot use addresses in the specified address family with this socket.

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EDESTADDRREQ]
The socket is not connection-oriented and does not have its peer address set, and
no destination address was specified.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EHOSTUNREACH]
The destination host cannot be reached.

[EINTR] A signal interrupted the function before any data was transmitted.

[EIO] The socket is in the AF_UNIX domain and an input or output error occurred.

[EINVAL] The dest_len parameter is not a valid length for the address family.

[ELOOP] The socket is in the AF_UNIX domain and too many symbolic links were
encountered in translating the pathname in the sockaddr structure.

[EMSGSIZE] The message is too large to be sent all at once, as required by the socket.

[ENAMETOOLONG]
The socket is in the AF_UNIX domain and one of the following conditions
exists:

• The pathname in the sockaddr structure exceeds PATH_MAX charac-
ters.

• A component of the pathname in the sockaddr structure exceeds
NAME_MAX characters.

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname in the sockaddr structure exceeds PATH_MAX
characters.

You can call the pathconf() function to obtain the applicable limits.

[ENETDOWN]
The local interface used to reach the destination is down.

527186-023 Hewlett-Packard Company 7−405

spt_sendtox(2) OSS System Calls Reference Manual

[ENETUNREACH]
No route to the network or host is present.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOENT] The socket is in the AF_UNIX domain and one of the following conditions
exists:

• A component of the pathname specified in the sockaddr structure does
not name an existing file.

• The sockaddr structure specifies an empty string as a pathname.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTCONN] The socket is connection-oriented but is not connected.

[ENOTDIR] The socket is in the AF_UNIX domain and the pathname in the sockaddr struc-
ture contains a component that is not a directory.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[EPERM] The file name specified by the dest_addr parameter is bound to a socket whose
mode is different than the mode of the socket specified by the socket parameter.

[EPIPE] One of the following conditions occurred:

•
An attempt was made to send a message on a socket that is shut down
for writing.

• An attempt was made to send a message on a connection-oriented
socket, and the peer socket is closed or shut down for reading. The SIG-
PIPE signal is also sent to the calling process.

[EWOULDBLOCK]
The socket file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: fcntl(2), getsockopt(2), recv(2), recvfrom(2), recvmsg(2), select(2), send(2),
sendmsg(2), sendto(2), setsockopt(2), shutdown(2), sockatmark(2), socket(2), spt_recvx(2),
spt_recvfromx(2), spt_recvmsgx(2), spt_sendto(2), spt_sendx(2), spt_sendmsgx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−406 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sendx(2)

NAME
spt_sendx - Sends a message on a connected socket (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/socket.h>]
#include <spthread.h>

ssize_t spt_sendx(
int socket,
const void *buffer,
size_t length,
int flags
);

PARAMETERS
socket Specifies the file descriptor of the socket.

buffer Points to the buffer containing the message to send.

length Specifies the length in bytes of the message to send.

flags Is a value that controls message transmission. The value of the flags parameter
is formed by bitwise ORing zero or more of the following values:

MSG_DONTROUTE
Sends without using routing tables. (Not recommended, use for
debugging only.)

MSG_OOB Sends out-of-band data on sockets that support out-of-band com-
munications.

DESCRIPTION
The spt_sendx() function is a thread-aware version of the send() function.

The spt_sendx() function begins transmission of a message to a peer socket. The spt_sendx()
function sends a message only when the socket is connected.

The length of the message to be sent is specified by the length parameter. If the message is too
long to pass through the underlying protocol, the spt_sendx() function fails and does not
transmit the message.

Successful completion of a call to spt_sendx() does not imply successful delivery of the mes-
sage. A return value of -1 indicates only locally detected errors.

If the sending socket has no space to hold the message to be transmitted and the socket’s file
descriptor is blocking (O_NONBLOCK is not set), the spt_sendx() function blocks until space
is available. If the sending socket has no space to hold the message to be transmitted and the
socket’s file descriptor is marked nonblocking (O_NONBLOCK is set), the spt_sendx() func-
tion fails and sets errno to [EWOULDBLOCK].

NOTES
The macro to map send() to spt_sendx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

527186-023 Hewlett-Packard Company 7−407

spt_sendx(2) OSS System Calls Reference Manual

The alias to link send() to spt_sendx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

When data can be sent, a call to the select() function indicates that the file descriptor for the
socket is ready for writing.

Calling the spt_sendx() function with a flags parameter of 0 (zero) is identical to calling the
spt_writex() function.

RETURN VALUES
Upon successful completion, the spt_sendx() function returns the number of bytes sent. Other-
wise, the value -1 is returned and errno is set to indicate the error.

If the socket becomes invalid (is closed by another thread), -1 is returned with an errno value of
[EBADF]. If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_sendx() function sets errno to the corresponding value:

[EBADF] The socket parameter is not a valid file descriptor.

[ECONNRESET]
One of the following conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The socket can only be closed.

[EDESTADDRREQ]
The socket is not connection-oriented and no peer address is set.

[EFAULT] A user-supplied memory buffer cannot be accessed.

[EINTR] A signal interrupted the function before any data was transmitted.

[EIO] An input or output error occurred.

[EMSGSIZE] The message is too large to be sent all at once, as required by the socket.

7−408 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sendx(2)

[ENETDOWN]
The local interface used to reach the destination is down.

[ENETUNREACH]
No route to the network or host is present.

[ENOBUFS] Not enough buffer space was available to complete the call. A retry at a later
time might succeed.

[ENOMEM] Required memory resources were not available. A retry at a later time might
succeed.

[ENOTCONN] The socket either is not connected or has not had the peer socket previously
specified.

[ENOTSOCK] The socket parameter does not refer to a socket.

[EOPNOTSUPP]
The specified value for the flags parameter is not supported for this socket type
or protocol.

[EPIPE] One of the following conditions occurred:

• An attempt was made to send a message on a socket that is shut down
for writing.

• An attempt was made to send a message on a connection-oriented socket
and the peer socket is closed or shut down for reading. The SIGPIPE
signal is also sent to the calling process.

[EWOULDBLOCK]
The socket’s file descriptor is marked nonblocking (O_NONBLOCK is set) and
the operation would block.

RELATED INFORMATION
Functions: connect(2), fcntl(2), getsockopt(2), recv(2), recvfrom(2), recvmsg(2), select(2),
send(2), sendmsg(2), sendto(2), setsockopt(2), sockatmark(2), shutdown(2), socket(2),
spt_recvx(2), spt_recvfromx(2), spt_recvmsgx(2), spt_send(2), spt_sendtox(2),
spt_sendmsgx(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−409

SPT_SETMODE(2) OSS System Calls Reference Manual

NAME
SPT_SETMODE - Sets device-dependent Guardian file-system functions

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_ SETMODE (
short filenum,
short function,
[short param1],
[short param2],
[short *last_params]
);

PARAMETERS
filenum Specifies the Guardian file number of a Guardian file open instance, identifying

the file to receive the requested function.

function Specifies the number of a device-dependent function. For a description of valid
values, see the table of SETMODE functions in the Guardian Procedure Calls
Reference Manual.

param1 Provides the first value or pattern of set bits that defines the specific function set-
ting to be used. For a description of valid values, see the table of SETMODE
functions in the Guardian Procedure Calls Reference Manual.

param2 Provides the second value or pattern of set bits that defines the specific function
setting to be used. For a description of valid values, see the table of SETMODE
functions in the Guardian Procedure Calls Reference Manual.

last_params Returns the previous settings of param1 and param2 associated with the current
function.

DESCRIPTION
The SPT_SETMODE() function is the thread-aware version of the Guardian SETMODE pro-
cedure.

The SPT_SETMODE() function is used to set device-dependent Guardian file-system functions.
A call to the SPT_SETMODE() function is rejected with an error indication if incomplete
nowait operations are pending on the specified file.

For programming information about the Guardian SETMODE file-system procedure, see the
Guardian Programmer’s Guide and the manual for the data communication protocol you are
using.

Considerations
Default settings

The SPT_SETMODE() settings designated as default in the Guardian Pro-
cedure Calls Reference Manual are the values that apply when a file is opened
(not if a particular function value is omitted when SPT_SETMODE() is called).

7−410 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_SETMODE(2)

Waited SPT_SETMODE() use
The SPT_SETMODE() function is used on a file as a waited operation even if
filenum has been opened for nowait operations. Use the Guardian SETMO-
DENOWAIT procedure for nowait operations.

Use for Telserv processes
No SPT_SETMODE() calls on Telserv are allowed before doing an
SPT_CONTROL() function 11.

Ownership and security of a disk file
"Set disk file security" and "set disk file owner" are rejected unless the requester
is the owner of the file or the super ID.

Interprocess Communication Considerations
Nonstandard parameter values

You can specify any value for the function, param1, and param2 parameters.
Establish an application-defined protocol for interpreting nonstandard parameter
values.

User-defined functions
Use of function code numbers 100 to 109 avoids any potential conflict with
SPT_SETMODE() function codes defined by HP.

Incorrect use of last_params
Guardian file-system error 2 is returned when the last_params parameter is sup-
plied but the target process does not correctly return values for this parameter.

Process message
Issuing an SPT_SETMODE() call to a file representing another process causes
a system message -33 (process SETMODE) to be sent to that process.

You can identify the process that called SPT_SETMODE() in a subsequent call
to the Guardian FILE_GETRECEIVEINFO_ (or LASTRECEIVE or
RECEIVEINFO) procedure. For a list of all system messages sent to processes,
see the Guardian Procedure Errors and Messages Manual.

RETURN VALUES
The SPT_SETMODE() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2), SPT_WRITEREADX(2),
SPT_WRITEUPDATEUNLOCKX(2), SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

527186-023 Hewlett-Packard Company 7−411

SPT_SETMODE(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−412 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_setOSSFileIOHandler(2)

NAME
spt_setOSSFileIOHandler - Sets interest in file descriptor

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

extern spt_error_t spt_setOSSFileIOHandler(
const int filedes,
const int read,
const int write,
const int error);

PARAMETERS
filedes Specifies the OSS file descriptor for the file of interest

read Nonzero indicates interest in read ready

write Nonzero indicates interest in write ready

error Nonzero indicates interest in exception pending

DESCRIPTION
This function sets interest in an OSS file descriptor.

RETURN VALUES
SPT_SUCCESS

This value is returned for any of the following conditions:

• The filedes interest was successfully set

• The filedes was not registered prior to this call

• The specified filedes is invalid

• The specified filedes is not supported

SPT_ERROR The specified filedes was less than 0 (zero).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−413

spt_setTMFConcurrentTransactions(2) OSS System Calls Reference Manual

NAME
spt_setTMFConcurrentTransactions - Sets the number of concurrent TMF transactions

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_setTMFConcurrentTransactions (
short max_trans);

PARAMETERS
max_trans Specifies the maximum number of concurrent transactions desired.

DESCRIPTION
This function sets the maximum number of concurrent TMF transactions.

RETURN VALUES
This function returns 0 (zero) upon successful completion of the call. If an error occurs, this
function can return the following value:

EINVAL Unable to change the maximum number of concurrent transactions because TMF
is already processing transactions.

RELATED INFORMATION
Functions: spt_getTMFConcurrentTransactions(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−414 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sigaction(2)

NAME
spt_sigaction - Specifies the action to take upon delivery of a signal (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_sigaction(
int sig,
const sigaction_t *act,
sigaction_t *o_action);

PARAMETERS
sig Specifies the signal number.

act Points to a sigaction_t structure that describes the new action to be taken on
delivery the signal identified by the sig parameter.

o_action Points to a sigaction_t structure that returns the signal action previously associ-
ated with the signal.

DESCRIPTION
The spt_sigaction() function allows the calling thread to change or examine the action to be
taken on delivery of a specific signal. This call removes any previously established signal
handler for this signal for this thread. You must reestablish the previous signal handler if you
want to use it at a later time.

To catch externally generated signals (such as SIGINT, SIGQUIT, SIGALRM, and SIGCHLD) at
the thread level, you must export the SPT_THREAD_AWARE_SIGNAL environmental variable
to the value 1. By default, SPT_THREAD_AWARE_SIGNAL is disabled. If you export
SPT_THREAD_AWARE_SIGNAL to 1, the signal handler registered for that thread will be exe-
cuted immediately within the scope of the internal generic handler for pthreads. However, the
thread itself executes only when it is scheduled. Consequently, you cannot use thread-specific
functions like pthread_self() inside thread-specific signal handler functions.

You should not use the SA_ONSTACK flag and the SA_ONSTACK_COMPATIBILITY
feature test macro in a threaded application that uses the Standard POSIX Threads library. Use
of these two options can result in undefined behavior in the SPT environment.

Every signal has an associated default action. The spt_signal() function can change this action
by specifying that the receiving thread:

• Ignore the delivery of a specific signal.

• Restore the default action for a specific signal.

• Invoke a signal-catching function in response to the delivery of a specific signal.

For the defined signal names and details about the cause and default action of each defined sig-
nal, see the signal(4) reference page

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

527186-023 Hewlett-Packard Company 7−415

spt_sigaction(2) OSS System Calls Reference Manual

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the spt_sigaction() function returns the value 0 (zero). Otherwise,
the value -1 is returned, no new signal handler is installed, and errno is set to indicate the error.

ERRORS
If one of these conditions occurs, the spt_sigaction() function sets errno to [EINVAL]:

[EINVAL] One of the following conditions exists:

• The sig parameter is not a valid signal number.

• An attempt was made to ignore or supply a signal-catching function for
the SIGKILL, SIGSTOP, or SIGABEND signal.

• The signal is not supported in pthreads.

RELATED INFORMATION
Functions: pthread_kill(2), pthread_sigmask(2), sigaction(2), spt_pause(2), spt_signal(2),
spt_sigsuspend(2).

STANDARDS CONFORMANCE
The spthread.h header file is an HP extension and an HP exception to the IEEE Std 1003.1c-
1995, POSIX System Application Program Interface.

7−416 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_signal(2)

NAME
spt_signal - Installs a new signal handler

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

void *spt_signal(int sig, void (*handler)(int))

PARAMETERS
sig Specifies the signal number.

handler User-specified signal function that acts a signal handler.

DESCRIPTION
The spt_signal() function allows the calling thread to change the action to be taken when a
specific signal is delivered to the thread calling this function.

To catch externally generated signals (such as SIGINT, SIGQUIT, SIGALRM, and SIGCHLD) at
the thread level, you must export the SPT_THREAD_AWARE_SIGNAL environmental variable
to the value 1. By default, SPT_THREAD_AWARE_SIGNAL is disabled. If you export
SPT_THREAD_AWARE_SIGNAL to 1, the signal handler registered for that thread will be exe-
cuted immediately within the scope of the internal generic handler for pthreads. However, the
thread itself executes only when it is scheduled. Consequently, you cannot use thread-specific
functions like pthread_self() inside thread-specific signal handler functions.

Every signal has an associated default action. The spt_signal() function can change this action
by specifying that the receiving thread:

• Ignore the delivery of a specific signal.

• Restore the default action for a specific signal.

• Invoke a signal-catching function in response to the delivery of a specific signal.

If you use the spt_signal() function to invoke a signal-catching function, the action associated
with the signal is restored to the default action each time the signal is delivered. This behavior is
different from the behavior of the spt_sigaction() function, which does not restore the default
signal action after execution.

In spthread.h, a mapping of signal() to spt_signal() has been defined:

#define signal(sig_handler) spt_signal((sig),(handler))

For C applications, this mapping is available only when you define the correct preprocessor
before you include spthread.h:

#define SPT_THREAD_SIGNAL
#include <spthread.h>

For C++ applications, this mapping is available only when you define the correct preprocessor
before you include spthread.h:

#define SPT_THREAD_SIGNAL_PRAGMA
#include <spthread.h>

527186-023 Hewlett-Packard Company 7−417

spt_signal(2) OSS System Calls Reference Manual

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion the spt_signal() function returns the value of the previous signal
action. Otherwise, the value SIG_ERR is retuned and errno is set indicate the error.

NOTE: SIG_ERR is not a valid value for a signal-catching function.

ERRORS
If any of these conditions occur, errno is set to the corresponding value:

[EINVAL] The value of the sig argument is not a valid signal number, or an attempt was
made to ignore or supply a signal-catching function for the SIGKILL, SIGSTOP,
or SIGABEND signal.

RELATED INFORMATION
Functions: pthread_kill(2), pthread_sigmask(2), signal(3), spt_pause(2), spt_sigaction(2),
spt_sigsuspend(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−418 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sigpending(2)

NAME
spt_sigpending - Examines signals that are blocked and pending

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_sigpending(sigset_t *set);

PARAMETERS
set Specifies the set of signals that are blocked and pending.

DESCRIPTION
The spt_sigpending(2) function retrieves the signals that have been sent to the calling thread but
have been blocked from delivery. These signals are pending to the calling thread, the calling
thread’s signal mask is preventing their delivery. The blocked signals are stored in the structure
pointed to by the set parameter. Because signals can arrive asynchronously, do not make
assumptions about the current set of pending signals based on the value returned by this function
in set.

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the spt_sigpending(2) function returns a value of 0 (zero). Other-
wise -1 is returned and errno is set to indicate the error.

ERRORS
If this conditions occurs, the spt_sigpending(2) function sets errno to the corresponding value:

[EFAULT] The set argument points to an invalid address.

RELATED INFORMATION
Functions: pthread_kill(2), pthread_sigmask(2), sigpending(2), spt_pause(2),
spt_sigaction(2), spt_signal(2), spt_sigsuspend(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−419

spt_sigsuspend(2) OSS System Calls Reference Manual

NAME
spt_sigsuspend - Changes the set of blocked signals and waits for a signal

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_sigsuspend(const sigset_t *sset);

PARAMETERS
sset Specifies the set of signals to be blocked from delivery to the calling thread.

DESCRIPTION
The spt_sigsuspend() function replaces the current signal mask of a thread with the signal set
specified by the sset parameter and suspends processing for the thread until the thread receives
one of the following signals:

• SIGSTOP, SIGKILL, or SIGABEND.

• A signal that is not a member of sset and has an action that:

— Calls a signal-catching function.

— Ends the request.

— Terminates the process.

NOTE: The signal mask specifies a set of signals to be blocked. A function does not receive or
respond to signals that are specified in the signal mask. However, the signals SIGSTOP, SIG-
KILL, and SIGABEND cannot be blocked or ignored, even if they are specified in the signal
mask.

If an incoming unblocked signal has an action to terminate, the spt_sigsuspend() function never
returns a value. If a signal-catching function handles an incoming signal, the spt_sigsuspend()
function returns only after the signal-catching function returns. In this case, the signal mask of
the thread is restored to whatever it was before the spt_sigsuspend() function was called.

To catch externally generated signals (such as SIGINT, SIGQUIT, SIGALRM, and SIGCHLD) at
the thread level, you must export the SPT_THREAD_AWARE_SIGNAL environmental variable
to the value 1. By default, SPT_THREAD_AWARE_SIGNAL is disabled.

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

7−420 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sigsuspend(2)

RETURN VALUES
When the signal is caught by the calling thread and control is returned from the signal-catching
function, the calling thread resumes execution from the point of suspension. The
spt_sigsuspend(2) function always returns -1 and sets errno to the value [EINTR].

ERRORS
The spt_sigsuspend(2) function alway sets errno to the following value:

[EINTR] The signal is caught by the calling thread and control is returned from the
signal-catching function.

RELATED INFORMATION
Functions: pthread_kill(2), pthread_sigmask(2), sigsuspend(2), spt_pause(2),
spt_sigaction(2), spt_signal(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−421

spt_sigwait(2) OSS System Calls Reference Manual

NAME
spt_sigwait - Causes the calling thread to wait for a signal

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_sigwait(
sigset_t *set

int *sig);

PARAMETERS
set Specifies the set of signals that the calling thread will wait for.

sig Receives the signal number cleared from the specified set of signal numbers.

DESCRIPTION
This function causes a thread to wait for a signal. It atomically chooses a pending signal from
the set of pending signals indicated by the set parameter, atomically clears that signal from the
system’s set of pending signals, and returns that signal number at the location specified by the sig
parameter. If no signal in set is pending at the time of the call, the thread is blocked until one or
more signals become pending. The signals defined by set should be unblocked during the call to
this function and are blocked when the thread returns from the call, unless another thread is
currently waiting for one of those signals.

A thread must block the signals it waits for using the pthread_sigmask() function before calling
this function.

If more than one thread is using this function to wait for the same signal, only one of those
threads returns from this function with the signal number.

A call to the spt_sigwait() function is a cancellation point.

To catch externally generated signals (such as SIGINT, SIGQUIT, SIGALRM, and SIGCHLD) at
the thread level, you must export the SPT_THREAD_AWARE_SIGNAL environmental variable
to the value 1. By default, SPT_THREAD_AWARE_SIGNAL is disabled.

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

HP recommends that you do not specify threads to wait for process-level signals like SIGCONT,
SGTTIN, SIGTTOU, and SIGSTP. If a thread uses a function like spt_sigwait() or
spt_sigsuspend(), the thread breaks from the wait state only if the corresponding signal is sent
using the pthread_kill() function. The thread does not break from the wait state for signals that
are generated externally at the process level.

The SIGCHLD signal is delivered to the correct thread even though the SIGCHILD signal is gen-

7−422 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_sigwait(2)

erated asynchronously.

RETURN VALUES
On a successful call, the signal number is returned. Otherwise the error [EINVAL] is returned.

ERRORS
If the only signals passed are unsupported signals, the spt_sigwait() function returns the error
[EINVAL]. For some signals, support by the spt_sigwait() function depends on the RVU run-
ning on the system:

• The SIGUNCP signal is supported on systems running H-series RVUs only.

• For H06.06 and later H-series RVUs, and G06.29 and later G-series RVUs only, these
signals are supported:

— SIGCONT

— SIGTTIN

— SIGTTOU

— SIGCHLD

— SIGTSTP

RELATED INFORMATION
Functions: pause(2), pthread_cancel(2), pthread_sigmask(2), sigpending(2).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

Interfaces documented on this reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The HP implementation does not provide the spt_sigwaitinfo() or sigtimedwait() functions.

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−423

spt_sleep(2) OSS System Calls Reference Manual

NAME
spt_sleep - Suspends execution of the thread for a specified time interval

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

unsigned int spt_sleep(
unsigned int seconds);

PARAMETERS
seconds Specifies the number of seconds for which the thread is to be suspended.

DESCRIPTION
The spt_sleep() function suspends a thread for a specified number of seconds. A certain amount
of delay can be expected in the processing of the spt_sleep() call because of other processor-
intensive or input/output-intensive threads. If an unblocked signal is received during the suspen-
sion period, spt_sleep() returns control immediately and returns the sleep time remaining.

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
This function can return the following values:

0 (zero) The thread was suspended for the full time specified.

seconds Indicates the number of seconds remaining in the specified suspension time.

RELATED INFORMATION
Functions: spt_usleep(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−424 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_system(2)

NAME
spt_system - Initiates thread-aware system() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_system(
const char *command);

PARAMETERS
See the system(3) reference page.

DESCRIPTION
This is a thread-aware version of the system() function. All threads in the process are tem-
porarily blocked while the child process, which performs the system() call, is created.

In spthread.h, a mapping of system() to spt_system() has been defined:

#define system(command) spt_system(command)

For C applications that do not use the nonblocking feature, this mapping is available only when
the correct preprocessor has been defined before including spthread.h as follows:

#define SPT_THREAD_AWARE
#include <spthread.h>

For C applications that use the nonblocking feature, this mapping is available only when the
correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_NONBLOCK
#include <spthread.h>

For C++ applications that do not use the nonblocking feature, this mapping is available only
when the correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_PRAGMA
#include <spthread.h>

For C++ applications that use the nonblocking feature, this mapping is available only when the
correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK
#include <spthread.h>

RETURN VALUES
See the system(3) reference page. Also, if a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, -1 is returned with an errno value of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−425

spt_TimerHandler_p(2) OSS System Calls Reference Manual

NAME
spt_TimerHandler_p - Executes callback type required by spt_regTimerHandler() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

typedef long (*spt_TimerHandler_p)(void);

PARAMETERS
None.

DESCRIPTION
This function executes a callback type required by the spt_regTimerHandler() function. The
callback is executed in the context of the last running thread. This means that the callback exe-
cutes on the stack of the last running thread.

RETURN VALUES
0 Callback has readied a thread to run, and will be invoked again as soon as possi-

ble.

-1 Callback has not readied a thread, but will be invoked again as soon as possible.

>0 (zero) Callback has not readied a thread. Return value is the hundredths of a second
until callback should be invoked again.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−426 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_TMF_GetTxHandle(2)

NAME
SPT_TMF_GetTxHandle - Gets the current TMF transaction handle

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

short SPT_TMF_GetTxHandle(
SPT_TMF_TxHandle_t *tx_handle);

PARAMETERS
tx_handle Receives the current active TMF transaction handle.

DESCRIPTION
This function retrieves the current active transaction handle of the thread.

RETURN VALUES
This function returns an integer value indicating the result of the call. Possible return values are:

0 (zero) Successful completion of the call. The current active transaction handle is
returned in tx_handle.

22 A bounds error occurred.

29 There are missing parameters.

75 There is no current transaction.

RELATED INFORMATION
Functions: SPT_TMF_SetTxHandle(2), SPT_TMF_Init(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−427

SPT_TMF_Init(2) OSS System Calls Reference Manual

NAME
SPT_TMF_Init - Initializes the tfile for concurrent transaction management

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

short SPT_TMF_Init(void);

PARAMETERS
None.

DESCRIPTION
This function opens the tfile for concurrent transaction management.

RETURN VALUES
SPT_SUCCESS

The TMF file is initialized for concurrent transaction management.

error Contains the error value returned by the underlying call to the Guardian OPEN
procedure. See the Guardian Procedure Errors and Messages Manual for more
information on the specific value returned.

RELATED INFORMATION
Functions: SPT_TMF_GetTxHandle(2), SPT_TMF_SetTxHandle(2),
spt_getTMFConcurrentTransactions(2), spt_setTMFConcurrentTransactions(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the IEEE Std 1003.1c-1995, POSIX System Application Program Interface.

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−428 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_TMF_RESUME(2)

NAME
SPT_TMF_RESUME - Resumes a previously suspended transaction associated with the current
thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

short SPT_TMF_RESUME(
long long *txid

);

PARAMETERS
Input

txid Specifies the transactional identifier returned by SPT_TMF_SUSPEND() or
TMF_GET_TX_ID.

DESCRIPTION
This function resumes a previously suspended transaction associated with the current thread.

RETURN VALUES
A status word is returned. The value is one of the following:

0 (zero) The SPT_TMF_RESUME() operation completed successfully.

Nonzero values
The Guardian file-system error with this error number occurred.

RELATED INFORMATION
Functions: SPT_TMF_SUSPEND(2).

527186-023 Hewlett-Packard Company 7−429

SPT_TMF_SetAndValidateTxHandle(2) OSS System Calls Reference Manual

NAME
SPT_TMF_SetAndValidateTxHandle - Sets the current TMF transaction handle to be associ-
ated with the current thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

short SPT_TMF_SetAndValidateTxHandle(
SPT_TMF_TxHandle_t *tx_handle);

PARAMETERS
tx_handle Specifies the transaction handle of the current TMF transaction.

DESCRIPTION
This function sets the specified transaction handle as the current active transaction for the thread.
In addition, it validates the transaction. If the transaction is not valid, the transaction is aborted.

RETURN VALUES
This function returns an integer value indicating the result of the call. Possible return values are:

0 (zero) The SPT_TMF_SetAndValidateTxHandle() operation completed successfully;
the transaction handle was successfully set and validated.

Nonzero values
The Guardian file-system error with this error number occurred.

7−430 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_TMF_SetTxHandle(2)

NAME
SPT_TMF_SetTxHandle - Sets the TMF transaction handle

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

short SPT_TMF_SetTxHandle(
SPT_TMF_TxHandle_t *tx_handle);

PARAMETERS
tx_handle Specifies the transaction handle of the current TMF transaction.

DESCRIPTION
This function sets the specified transaction handle as the current active transaction for the thread.

RETURN VALUES
This function returns an integer value indicating the result of the call. Possible return values are:

0 (zero) Indicates the transaction handle was successfully set.

22 Indicates that a bounds error occurred.

29 Indicates missing parameters.

75 Indicates that there is no current transaction.

78 Indicates an invalid transaction identifier or that a transaction has not started on
this Expand node.

715 Indicates an invalid transaction handle.

RELATED INFORMATION
Functions: SPT_TMF_GetTxHandle(2), SPT_TMF_Init(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file ispthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−431

SPT_TMF_SUSPEND(2) OSS System Calls Reference Manual

NAME
SPT_TMF_SUSPEND - Suspends a transaction associated with the current thread

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

short SPT_TMF_SUSPEND(
long long *txid

);

PARAMETERS
Output

txid Returns a transactional identifier that can be used for a subsequent
SPT_TMF_RESUME() call.

DESCRIPTION
This function suspends a transaction associated with the current thread.

RETURN VALUES
A status word is returned. The value is one of the following:

0 (zero) The SPT_TMF_SUSPEND() operation completed successfully.

Nonzero values
The Guardian file-system error with this error number occurred.

RELATED INFORMATION
Functions: SPT_TMF_RESUME(3).

7−432 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_UNLOCKFILE(2)

NAME
SPT_UNLOCKFILE - Unlocks a disk file and any records in that file currently locked by the
user

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_UNLOCKFILE (
short filenum,
[long tag]
);

PARAMETERS
filenum specifies the Guardian file number of a Guardian file open instance for the file

that you want unlocked.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_UNLOCKFILE() function is the thread-aware version of the Guardian UNLOCK-
FILE procedure.

The SPT_UNLOCKFILE() function unlocks a disk file and any records in that file currently
locked by the user. The user is defined either as the opener of the file (identified by the filenum
value used) if the file is not audited, or by the transaction (identified by the TRANSID) if the file
is audited. Unlocking a file allows other processes to access the file. This call has no affect on
an audited file if the current transaction has modified that file.

For programming information about the Guardian UNLOCKFILE file-system procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

Considerations
Nowait and SPT_UNLOCKFILE()

The SPT_UNLOCKFILE() function must complete with a corresponding call
to the Guardian AWAITIOX procedure when used with a file that is opened for
nowait I/O.

Locking queue If any users are queued in the locking queue for the file, the process at the head
of the locking queue is granted access and is removed from the queue (the next
read or lock request moves to the head of the queue). If the next user in the lock-
ing queue is waiting to:

• lock the file or lock a record in the file, the user is granted the lock
(which excludes other users from accessing the file) and resumes pro-
cessing.

527186-023 Hewlett-Packard Company 7−433

SPT_UNLOCKFILE(2) OSS System Calls Reference Manual

• read the file, its read is processed.

Transaction Management Facility (TMF) and SPT_UNLOCKFILE()
If the current transaction modifies a file audited by TMF, locks on the file are
released only when TMF ends or aborts the transaction. In other words, a locked
audited file that the current transaction modified is unlocked during
SPT_ENDTRANSACTION() or SPT_ABORTTRANSACTION() processing
for that file. You can use the SPT_UNLOCKFILE() function to unlock an
unmodified audited record.

Use on OSS Objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The SPT_UNLOCKFILE() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKREC(2), SPT_WRITEREADX(2),
SPT_WRITEUPDATEUNLOCKX(2), SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−434 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_UNLOCKREC(2)

NAME
SPT_UNLOCKREC - Unlocks a Guardian file record currently locked by the user

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_UNLOCKREC (
short filenum,
[long tag]
);

PARAMETERS
filenum specifies the Guardian file number of a Guardian file open instance for the file

containing the record you want unlocked.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_UNLOCKREC() function is the thread-aware version of the Guardian UNLOCKREC
procedure.

The SPT_UNLOCKREC() function unlocks a record in the specified file currently locked by
the user. The user is defined either as the opener of the file (identified by the filenum value used)
if the file is not audited, or by the transaction (identified by the TRANSID) if the file is audited.

This call unlocks the record at the current position in the file, allowing other users to access that
record. This call has no affect on a record of an audited file if the current transaction has
modified that record.

For programming information about the Guardian UNLOCKREC file-system procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

Considerations
File opened nowait and SPT_UNLOCKREC()

The SPT_UNLOCKREC() function must complete with a corresponding call to
the Guardian AWAITIOX procedure when used with a file that is opened for
nowait I/O.

Locking queue If any users are queued in the locking queue for the record, the user at the head
of the locking queue is granted access and is removed from the queue (the next
read or lock request moves to the head of the queue).

If the user granted access is waiting to lock the record, the user is granted the
lock (which excludes other process from accessing the record) and resumes pro-
cessing. If the user granted access is waiting to read the record, its read is pro-
cessed.

527186-023 Hewlett-Packard Company 7−435

SPT_UNLOCKREC(2) OSS System Calls Reference Manual

Calling SPT_UNLOCKREC() after KEYPOSITION
If the call to SPT_UNLOCKREC() immediately follows a call to KEYPOSI-
TION where a nonunique alternate key is specified, the SPT_UNLOCKREC()
call fails. A subsequent call to FILE_GETINFO_ or FILEINFO shows that
Guardian file-system error 46 (invalid key) occurred. However, if an inter-
mediate call to SPT_READX() or SPT_READLOCKX() is performed, the call
to SPT_UNLOCKREC() is permitted.

Unlocking several records
If several records need to be unlocked, you can call the SPT_UNLOCKREC()
function to unlock all records currently locked by the user (rather than unlocking
the records through individual calls to SPT_UNLOCKREC()).

Current-state indicators after SPT_UNLOCKREC()
For key-sequenced, relative, and entry-sequenced files, the current-state indica-
tors after an UNLOCKREC remain unchanged.

File pointers after SPT_UNLOCKREC()
For unstructured files, the current-record pointer and the next-record pointer
remain unchanged.

Transaction Management Facility (TMF) and SPT_UNLOCKREC()
If the current transaction modifies a record in file audited by TMF, locks on the
record are released only when TMF ends or aborts the transaction. In other
words, a locked record in an audited file that the current transaction modified is
unlocked during SPT_ENDTRANSACTION() or
SPT_ABORTTRANSACTION() processing for that file. You can use the
SPT_UNLOCKREC() function to unlock an unmodified audited record.

Use on OSS Objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The SPT_UNLOCKREC() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_WRITEREADX(2),
SPT_WRITEUPDATEUNLOCKX(2), SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

7−436 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_UNLOCKREC(2)

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−437

spt_unregFile(2) OSS System Calls Reference Manual

NAME
spt_unregFile - Unregisters a Guardian file number as one that the user manages

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

extern spt_error_t spt_unregFile(
const short filenum);

PARAMETERS
filenum Specifies the Guardian file number being unregistered

DESCRIPTION
This function unregisters a Guardian file number as one that the user manages. Any threads wait-
ing on file number I/O will awaken with SPT_ERROR and Guardian file-system error 16.

RETURN VALUES
SPT_SUCCESS

The specified filenum was successfully unregistered.

SPT_ERROR One of the following conditions exists:

The value specified for filenum s less than 0 (zero)

• The specified filenum was not registered prior to this call

• The FILE_COMPLETE_SET_ procedure removal of filenum returned a
nonzero value.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−438 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_unregOSSFileIOHandler(2)

NAME
spt_unregOSSFileIOHandler - Unregisters an OSS file descriptor

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

extern spt_error_t spt_unregOSSFileIOHandler(
const int filedes);

PARAMETERS
filedes Specifies the OSS file descriptor being unregistered

DESCRIPTION
This function unregisters an OSS file descriptor as one that the user manages.

RETURN VALUES
SPT_SUCCESS

The specified filedes was successfully unregistered.

SPT_ERROR The specified filedes is less than 0 (zero) or was not registered prior to this call.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−439

spt_unregPathsendTagHandler(2) OSS System Calls Reference Manual

NAME
spt_unregPathsendTagHandler - Unregisters the user-supplied Pathsend tag

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

spt_error_t spt_unregPathsendTagHandler (
const long tag);

PARAMETERS
tag Specifies the Pathsend tag to be unregistered.

DESCRIPTION
This function unregisters the specified Pathsend tag as a tag that user manages.

RETURN VALUES
SPT_SUCCESS

The specified tag was unregistered.

SPT_ERROR The specified tag was never registered.

RELATED INFORMATION
Functions: spt_regPathsendTagHandler(2), SPT_SERVERCLASS_DIALOG_ABORT_(2),
SPT_SERVERCLASS_DIALOG_BEGIN_(2), SPT_SERVERCLASS_DIALOG_END_(2),
SPT_SERVERCLASS_DIALOG_SEND_(2), SPT_SERVERCLASS_SEND_INFO_(2),
SPT_SERVERCLASS_SEND_(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−440 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_usleep(2)

NAME
spt_usleep - Suspends execution of the thread for a specified number of microseconds

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_usleep(
unsigned int useconds);

PARAMETERS
useconds Specifies the number of microseconds for which the thread is to be suspended.

The value specified must be less than or equal to 1000000.

DESCRIPTION
The spt_usleep() function suspends a thread for a specified number of microseconds. A certain
amount of delay can be expected in the processing of the spt_usleep() call because of other
processor-intensive or input/output-intensive threads.

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
The spt_usleep() function returns the value 0 (zero) when the call completes successfully. Oth-
erwise, spt_usleep() returns -1 and sets errno.

ERRORS
If the following condition occurs, spt_usleep() sets errno to the corresponding value:

[EINTR] A pthread_kill() function call received a signal that is not blocked, ignored, or
handled.

[EINVAL] The value specified for the useconds parameter was greater than 1000000.

RELATED INFORMATION
Functions: spt_sleep(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−441

spt_vfprintf(2) OSS System Calls Reference Manual

NAME
spt_vfprintf - Initiates thread-aware vfprintf() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_vfprintf(
FILE *stream,
const char *format,
va_list printarg);

PARAMETERS
See the vfprintf(3) reference page either online or in the Open System Services Library Calls
Reference Manual.

DESCRIPTION
This is a thread-aware version of the vfprintf() function. The file descriptor underlying the
stream must be nonblocking for this function to be thread-aware.

The following macro maps spt_vfprintf() to vfprintf() and has been defined in spthread.h:

#define vfprintf(stream, format, printarg) \
spt_vfprintf((stream), (format), (printarg))

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See vfprintf(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying stream becomes invalid (is closed by another thread), -1
is returned with an errno value of [EBADF].

• If a signal is received via he *Lpthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−442 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_vfprintfx(2)

NAME
spt_vfprintfx - Formats a variable number of parameters for output (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdarg.h>]
[#include <stdio.h>]
#include <spthread.h>

int spt_vfprintfx (
FILE *stream,
const char *format,
va_list printarg
);

PARAMETERS
stream Specifies the output stream.

format Specifies a character string that contains two types of objects:

• Plain characters, which are copied to the output stream.

• Conversion specifications, each of which causes zero or more items to be
fetched from the stdarg parameter lists.

printarg Specifies the parameters to be printed.

DESCRIPTION
The spt_vfprintfx() function is the thread-aware version of the vfprintf() function.

The spt_vfprintfx() function formats and writes stdarg parameter lists.

This function is the same as the spt_fprintfx() function, except that it is not called with a vari-
able number of parameters. Instead, it is called with a parameter list pointer as defined by stdarg.

NOTES
The macro to map vfprintf() to spt_vfprintfx() is available in C applications when
SPT_THREAD_AWARE_NONBLOCK has been defined in the following manner before
including spthread.h:

#define SPT_THREAD_AWARE_NONBLOCK

The alias to link vfprintf() to spt_vfprintfx() is available in C++ applications when
SPT_THREAD_AWARE_PRAGMA_NONBLOCK has been defined in the following manner
before including spthread.h:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK

EXAMPLES
The following example demonstrates how you can use the spt_vfprintfx() function to write an
error routine:

#include <stdarg.h>
#include <stdio.h>
#define SPT_THREAD_AWARE_NONBLOCK
#include <spthread.h>

void error(char *funct, char *fmt, ...)

527186-023 Hewlett-Packard Company 7−443

spt_vfprintfx(2) OSS System Calls Reference Manual

{
va_list args;
/*
** Display the name of the function that called error
*/
spt_fprintfx(stderr, "ERROR in %s: ", funct);
/*
** Display the remainder of the message
*/
va_start(args, fmt);
spt_vfprintfx(stderr, fmt, args);
va_end(args);
abort();

}

RETURN VALUES
Upon successful completion, this function returns the number of bytes in the output string. Oth-
erwise, a negative value is returned.

If the file descriptor underlying stream becomes invalid (is closed by another thread), -1 is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, -1 is returned with an errno value of [EINTR].

ERRORS
The spt_vfprintfx() function fails if stream is unbuffered, or if stream’s buffer needed to be
flushed and the function call caused an underlying spt_writex() or lseek() function to be
invoked. In addition, if the spt_vfprintfx() function fails, errno is set to one of these values:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for writ-
ing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

[EILSEQ] An invalid wide character was detected.

[EINTR] The operation was interrupted by a signal that was caught, and no data was
transferred.

[EINVAL] There are insufficient arguments.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient storage space was available.

[ENOSPC] No free space was remaining on the device containing the file.

7−444 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_vfprintfx(2)

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

RELATED INFORMATION
Functions: fprintf(3), printf(3), sprintf(3), spt_fprintx(2), spt_printfx(2), spt_sprintfx(2),
spt_vfprintf(2), spt_vsprintfx(2), vprintf(3), vsprintf(3).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−445

spt_vprintf(2) OSS System Calls Reference Manual

NAME
spt_vprintf - Initiates thread-aware vprintf() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

int spt_vprintf(
const char *format,
va_list printarg);

PARAMETERS
See the vprintf(3) reference page either online or in the Open System Services Library Calls
Reference manual.

DESCRIPTION
This is a thread-aware version of the vprintf() function. The file descriptor underlying standard
output must be nonblocking for this function to be thread-aware.

The following macro maps spt_vprintf() to vprintf() and has been defined in spthread.h:

#define vprintf(format, printarg) spt_vprintf(format, printarg)

This macro is available only when SPT_THREAD_AWARE has been defined before including
spthread.h, as follows:

#define SPT_THREAD_AWARE

RETURN VALUES
See the vprintf(3) reference page. The following also applies:

• The value of errno is never set to [EAGAIN] or [EWOULDBLOCK].

• If the file descriptor underlying stdout becomes invalid (is closed by another thread), -1
is returned with an errno value of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−446 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_vprintfx(2)

NAME
spt_vprintfx - Formats a variable number of parameters for output (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <stdarg.h>]
[#include <stdio.h>]
#include <spthread.h>

int spt_vprintfx (
const char *format,
va_list printarg
);

PARAMETERS
format Specifies a character string that contains two types of objects:

• Plain characters, which are copied to the output stream.

• Conversion specifications, each of which causes zero or more items to be
fetched from the stdarg parameter lists.

printarg Specifies the parameters to be printed.

DESCRIPTION
The spt_vprintfx() function is the thread-aware version of the vprintf() function.

The spt_vprintfx() function formats and writes stdarg parameter lists.

This function is the same as the spt_printfx() function, except that it is not called with a vari-
able number of parameters. Instead, it is called with a parameter list pointer as defined by stdarg.

RETURN VALUES
Upon successful completion, this function returns the number of bytes in the output string. Oth-
erwise, a negative value is returned.

If the file descriptor underlying stdout becomes invalid (is closed by another thread), -1 is
returned with an errno value of [EBADF]. If a signal is received via the pthread_kill() function
and is not blocked, ignored, or handled, -1 is returned with an errno value of [EINTR].

ERRORS
The spt_vprintfx() function fails if the standard output stream is unbuffered, or if the buffer
needed to be flushed and the function call caused an underlying spt_writex() or lseek() function
to be invoked. In addition, if the spt_vprintfx() function fails, errno is set to one of these
values:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying the output
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying the output stream is not a valid file descriptor open
for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process’s file size limit or
the maximum file size.

527186-023 Hewlett-Packard Company 7−447

spt_vprintfx(2) OSS System Calls Reference Manual

[EILSEQ] An invalid wide character was detected.

[EINTR] The operation was interrupted by a signal that was caught, and no data was
transferred.

[EINVAL] There are insufficient arguments.

[EIO] The implementation supports job control; the process is a member of a back-
ground process group attempting to write to its controlling terminal; TOSTOP is
set; the process is neither ignoring nor blocking SIGTTOU; and the process
group of the process is orphaned. This error might also be returned under
implementation-defined conditions.

[ENOMEM] Insufficient storage space was available.

[ENOSPC] No free space was remaining on the device containing the file.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

RELATED INFORMATION
Functions: fprintf(3), printf(3), sprintf(3), spt_fprintfx(2), spt_printfx(2), spt_vprintf(2),
vfprintf(3), vprintf(3), vsprintf(3).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−448 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_waitpid(2)

NAME
spt_waitpid - Initiates thread-aware waitpid() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

pid_t spt_waitpid(
pid_t pid,
int *stat_loc,
int options);

PARAMETERS
See the waitpid(2) reference page.

DESCRIPTION
This is a thread-aware version of the waitpid() function. The socket must be nonblocking for
this function to be thread-aware.

In spthread.h, a mapping of waitpid() to spt_waitpid() has been defined:

#define waitpid(pid, stat_loc, options) \
spt_waitpid(pid, stat_loc, options)

For C applications that do not use the nonblocking feature, this mapping is available only when
the correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE
#include <spthread.h>

For C applications that use the nonblocking feature, this mapping is available only when the
correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_NONBLOCK
#include <spthread.h>

For C++ applications that do not use the nonblocking feature, this mapping is available only
when the correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_PRAGMA
#include <spthread.h>

For C++ applications that use the nonblocking feature, this mapping is available only when the
correct preprocessor has been defined before including spthread.h, as follows:

#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK
#include <spthread.h>

NOTES
To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

527186-023 Hewlett-Packard Company 7−449

spt_waitpid(2) OSS System Calls Reference Manual

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
See the waitpid(2) reference page. Also, if a signal is received via the pthread_kill(2) function
and is not blocked, ignored, or handled, -1 is returned with an errno value of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−450 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_wakeup(2)

NAME
spt_wakeup - Wakes up a thread awaiting tagged I/O

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

extern spt_error_t spt_wakeup(
const short filenum,
const long tag,
const long count_transferred,
const long error);

PARAMETERS
filenum Specifies the Guardian file number being waited on

tag Specifies the tag that is being awaited; the value -1 indicates all tags

count_transferred
Specifies byte transfer count of completed I/O

error Specifies Guardian error number for IO

DESCRIPTION
This function wakes up a thread awaiting the tagged I/O on the file with the specified Guardian
file number. The awakened thread returns from its call to the spt_awaitio() function with a
return value of SPT_SUCCESS.

RETURN VALUES
SPT_SUCCESS

One of the following conditions exists:

• tag was not -1 and waiting I/O was awakened. Note that only one await-
ing I/O was awakened.

• tag was -1 and awaiting I/O (if any) was awakened.

SPT_ERROR One of the following conditions exists:

The value specified for filenum was less than 0 (zero).

• tag was not -1 and no awaiting IO was found.

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−451

spt_write(2) OSS System Calls Reference Manual

NAME
spt_write - Initiates thread-aware write() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

ssize_t spt_write(
int filedes,
void *buffer,
size_t nbytes);

PARAMETERS
See the write(2) reference page.

DESCRIPTION
This is a thread-aware version of the write() function. The file descriptor must be nonblocking
for this function to be thread-aware.

For C applications, a macro to map write() to spt_write() is available when you use the #define
SPT_THREAD_AWARE preprocessor directive before including spthread.h or when you use
an equivalent compiler command option to compile the application.

For C++ applications, an alias to map write() to spt_write() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

RETURN VALUES
See the write(2) reference page. The following also applies:

• The value of errno is never set to [EWOULDBLOCK] or [EAGAIN].

• If the file descriptor becomes invalid (is closed by another thread), -1 is returned with an
errno value of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification. Interfaces documented on this
reference page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−452 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_WRITEREADX(2)

NAME
SPT_WRITEREADX - Writes data to a Guardian file from an array and waits for data to be
read back from the file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_WRITEREADX (
short filenum,
char *buffer,
unsigned short write_count,
unsigned short read_count,
[unsigned short *count_read],
[long tag]
);

PARAMETERS
filenum specifies the file number of a Guardian file open instance that identifies the file to

be read.

buffer specifies an array in the application process in which the information to be writ-
ten to the file is stored before the call. On return, buffer contains the information
read from the file.

write_count specifies the number of bytes to be written.

read_count specifies the number of bytes to be read.

count_read is for waited I/O only. This parameter returns a count of the number of bytes
returned from the file into buffer.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_WRITEREADX() function is the thread-aware version of the Guardian
WRITEREADX procedure.

The SPT_WRITEREADX() function writes data to a file from an array in the application pro-
cess, then waits for data to be transferred back from the file. The data from the read portion
returns in the same array used for the write portion.

If the file is opened for nowait I/O, you must not modify the buffer before the I/O completes with
a call to the Guardian AWAITIOX procedure. This condition also applies to other processes that
might be sharing the segment. The application must ensure that the buffer used in the call to the
SPT_WRITEREADX() function is not reused before the I/O completes with a call to
AWAITIOX.

For programming information about the WRITEREADX procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

527186-023 Hewlett-Packard Company 7−453

SPT_WRITEREADX(2) OSS System Calls Reference Manual

Considerations
Buffer use SPT_WRITEREADX() is intended for use with 32-bit extended addresses.

Therefore, the data buffer for SPT_WRITEREADX() can be either in the
caller’s stack segment or any extended data segment.

Terminals A special hardware feature is incorporated in the asynchronous multiplexer con-
troller that ensures the system is ready to read from the terminal as soon as the
write is completed.

Interprocess communication
The SPT_WRITEREADX() function is used to originate a message to another
process that was previously opened, then waits for a reply from that process.

Waited I/O read operation
If a waited I/O SPT_WRITEREADX() call is executed, the count_read param-
eter indicates the number of bytes actually read.

Nowait I/O read operation
If a nowait I/O SPT_WRITEREADX() call is executed, count_read has no
meaning and can be omitted. The count of the number of bytes read is obtained
when the I/O operation completes through the count-transferred parameter of the
Guardian AWAITIOX procedure.

The SPT_WRITEREADX() function must complete with a corresponding call
to the Guardian AWAITIOX procedure when used with a file that is opened for
nowait I/O.

Do not change the contents of the data buffer between the initiation and comple-
tion of a nowait SPT_WRITEREADX() operation. A retry can copy the data
again from the user buffer and cause the wrong data to be written. Avoid sharing
a buffer between a SPT_WRITEREADX() and another I/O operation because
the contents of the data buffer might change before the write is completed.

Carriage return/line feed sequence after the write
No carriage return and line feed sequence is sent to the terminal after the write
part of the operation.

Location of buffer and count_read
The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count_read cannot be in the user code space.

If the buffer and count_read are in a selectable extended data segment, the seg-
ment must be in use at the time of the call. Flat segments allocated by a process
are always accessible to the process.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the SPT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
the Guardian AWAITIOX procedure. This restriction also applies to
other processes that might share the segment. It is the application’s
responsibility to ensure this.

7−454 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_WRITEREADX(2)

• If you initiated the I/O with SPT_WRITEREADX(), the I/O must be
completed with a call to the Guardian AWAITIOX procedure.

• A selectable extended data segment containing the buffer need not be in
use at the time of the call to AWAITIOX.

• You can call SPT_CANCEL() or CANCELREQ to cancel nowait I/O
initiated with SPT_WRITEREADX(). The I/O is canceled if the file is
closed before the I/O completes or if you call the Guardian AWAITIOX
procedure with a positive time limit and specific file number and the
request times out.

Bounds checking
If the extended address of buffer is odd, bounds checking rounds the address to
the next lower word boundary and also checks an extra byte. The odd address is
used for the transfer.

RETURN VALUES
The SPT_WRITEREADX() function returns 0 (zero) upon successful completion. Otherwise,
this function returns a nonzero Guardian file-system error number that indicates the outcome of
the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEUPDATEUNLOCKX(2), SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−455

SPT_WRITEUPDATEUNLOCKX(2) OSS System Calls Reference Manual

NAME
SPT_WRITEUPDATEUNLOCKX - Performs random processing of records in a disk file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_WRITEUPDATEUNLOCKX (
short filenum,
char *buffer,
unsigned short write_count,
[unsigned short *count_written],
[long tag]
);

PARAMETERS
filenum specifies the file number of a Guardian file open instance that identifies the file to

be written.

buffer specifies an array in the application process in which the information to be writ-
ten to the file is stored before the call.

write_count specifies the number of bytes to be written.

count_written returns a count of the number of bytes written to the file from buffer.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_WRITEUPDATEUNLOCKX() function is the thread-aware version of the Guardian
WRITEUPDATEUNLOCKX procedure.

The SPT_WRITEUPDATEUNLOCKX() function performs random processing of records in a
Guardian disk file. SPT_WRITEUPDATEUNLOCKX() has two purposes:

• To alter, then unlock, the contents of the record at the current position

• To delete the record at the current position in a key-sequenced or relative file

A call to SPT_WRITEUPDATEUNLOCKX() is equivalent to a call to
SPT_WRITEUPDATEX() followed by a call to SPT_UNLOCKREC(). However, the
SPT_WRITEUPDATEUNLOCKX() function requires less system processing than do the
separate calls to SPT_WRITEUPDATEX() and SPT_UNLOCKREC().

For programming information about the WRITEUPDATEUNLOCKX procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

7−456 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_WRITEUPDATEUNLOCKX(2)

Considerations
Buffer use SPT_WRITEUPDATEUNLOCKX() is intended for use with 32-bit extended

addresses. Therefore, the data buffer for SPT_WRITEUPDATEUNLOCKX()
can be either in the caller’s stack segment or any extended data segment.

Nowait I/O and SPT_WRITEUPDATEUNLOCKX()
The SPT_WRITEUPDATEUNLOCKX() function must complete with a
corresponding call to the Guardian AWAITIOX procedure when used with a file
that is opened for nowait I/O.

For files audited by the Transaction Management Facility (TMF), You must call
the AWAITIOX procedure to complete the
SPT_WRITEUPDATEUNLOCKX() operation before
SPT_ENDTRANSACTION() or SPT_ABORTTRANSACTION() is called.

Do not change the contents of the data buffer between the initiation and comple-
tion of a nowait write operation. A retry can copy the data again from the user
buffer and cause the wrong data to be written. Avoid sharing a buffer between a
write and another I/O operation because this creates the contents of the write
buffer might change before the write is completed.

Random processing and SPT_WRITEUPDATEUNLOCKX()
For key-sequenced, relative, and entry-sequenced files, random processing
implies that a designated record must exist. Positioning for
SPT_WRITEUPDATEUNLOCKX() is always to the record described by the
exact value of the current key and current-key specifier. If such a record does
not exist, the call to SPT_WRITEUPDATEUNLOCKX() is rejected with
Guardian file-system error 11 (record does not exist).

Unstructured files (pointers unchanged)
For unstructured files, data is written in the position indicated by the current-
record pointer. A call to SPT_WRITEUPDATEUNLOCKX() for an unstruc-
tured file typically follows a call to the Guardian POSITION procedure or
SPT_READUPDATEX(). The current-record and next-record pointers are not
changed by a call to SPT_WRITEUPDATEUNLOCKX().

How SPT_WRITEUPDATEUNLOCKX() works
The record unlocking performed by SPT_WRITEUPDATEUNLOCKX() func-
tions in the same manner as SPT_UNLOCKREC().

Record does not exist
Positioning for SPT_WRITEUPDATEUNLOCKX() is always to the record
described by the exact value of the current key and current-key specifier. There-
fore, if such a record does not exist, the call to
SPT_WRITEUPDATEUNLOCKX() is rejected with Guardian file-system
error 11.

Invalid write operations to queue files
DP2 rejects SPT_WRITEUPDATEUNLOCKX() operations with a Guardian
file-system error 2.

Location of buffer and count_written
The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count_written cannot be in the user code space.

If the buffer and count_written are in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a pro-
cess are always accessible to the process.

527186-023 Hewlett-Packard Company 7−457

SPT_WRITEUPDATEUNLOCKX(2) OSS System Calls Reference Manual

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the SPT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
the Guardian AWAITIOX procedure. This restriction also applies to
other processes that might be sharing the segment. It is the application’s
responsibility to ensure this.

• If you initiated the I/O with SPT_WRITEUPDATEUNLOCKX(), the
I/O must be completed with a call to the Guardian AWAITIOX pro-
cedure.

• A selectable extended data segment containing the buffer need not be in
use at the time of the call to AWAITIOX.

• Nowait I/O initiated with SPT_WRITEUPDATEUNLOCKX() can be
canceled with a call to SPT_CANCEL() or CANCELREQ. The I/O is
canceled if the file is closed before the I/O completes or if the Guardian
AWAITIOX procedure is called with a positive time limit and specific
file number and the request times out.

Bounds checking
If the extended address of buffer is odd, bounds checking rounds the address to
the next lower word boundary and also checks an extra byte. The odd address is
used for the transfer.

All considerations for SPT_WRITEUPDATEX() also apply to this call.

Use on OSS Objects
This procedure operates only on Guardian objects. If an OSS file is specified, Guardian file-
system error 2 occurs.

RETURN VALUES
The SPT_WRITEUPDATEUNLOCKX() function returns 0 (zero) upon successful completion.
Otherwise, this function returns a nonzero Guardian file-system error number that indicates the
outcome of the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEREADX(2), SPT_WRITEUPDATEX(2), SPT_WRITEX(2).

7−458 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_WRITEUPDATEUNLOCKX(2)

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

527186-023 Hewlett-Packard Company 7−459

SPT_WRITEUPDATEX(2) OSS System Calls Reference Manual

NAME
SPT_WRITEUPDATEX - Transfers data from an array in the application program to a Guar-
dian file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_WRITEUPDATEX (
short filenum,
char *buffer,
unsigned short write_count,
[unsigned short *count_written],
[long tag]
);

PARAMETERS
filenum specifies the file number of a Guardian file open instance that identifies the file to

be written.

buffer specifies an array in the application process in which the information to be writ-
ten to the file is stored before the call.

write_count specifies the number of bytes to be written.

count_written returns a count of the number of bytes written to the file from buffer.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_WRITEUPDATEX() function is the thread-aware version of the Guardian WRI-
TEUPDATEX procedure.

The SPT_WRITEUPDATEX() function performs random processing of records in a Guardian
disk file. SPT_WRITEUPDATEX() has two purposes:

• To alter the contents of the record at the current position

• To delete the record at the current position in a key-sequenced or relative file

Data from the application process’s array is written in the position indicated by the setting of the
current-record pointer. A call to this procedure typically follows a corresponding call to the
SPT_READX() or SPT_READUPDATEX() function. The current-record and next-record
pointers are not affected by the SPT_WRITEUPDATEX() procedure.

For magnetic tapes, SPT_WRITEUPDATEX() is used to replace a record in an already written
tape. The tape is backspaced one record; the data from the application process’s array is written
in that area.

For programming information about the WRITEUPDATEX procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

7−460 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_WRITEUPDATEX(2)

Considerations
Buffer use SPT_WRITEUPDATEX() is intended for use with 32-bit extended addresses.

Therefore, the data buffer for SPT_WRITEUPDATEX() can be either in the
caller’s stack segment or any extended data segment.

I/O counts with unstructured files
Unstructured files are transparently blocked using one of the four valid block
sizes (512, 1024, 2048, or 4096 bytes; 4096 is the default). This transparent
block size, known as BUFFERSIZE, is the transfer size used against an unstruc-
tured file. While BUFFERSIZE does not change the maximum unstructured
transfer (4096 bytes), multiple I/O operations might be performed to satisfy a
user’s request depending on the BUFFERSIZE chosen. For example, if BUF-
FERSIZE is 512 bytes, and a request is made to write 4096 bytes, at least eight
transfers, each 512 bytes long, will be made. More than eight transfers happen,
in this case, if the requested transfer does not start on a BUFFERSIZE boundary.

DP2 performance with unstructured files is best when requested transfers begin
on BUFFERSIZE boundaries and are integral multiples of BUFFERSIZE.

Because the maximum blocksize for DP2 structured files is also 4096 bytes, this
is also the maximum structured transfer size for DP2.

Deleting locked records
Deleting a locked record implicitly unlocks that record unless the file is audited,
in which case the lock is not removed until the transaction terminates.

Waited SPT_WRITEUPDATEX() calls
If a waited SPT_WRITEUPDATEX() call is executed, the count_written
parameter indicates the number of bytes actually written.

Nowait SPT_WRITEUPDATEX() calls
If a nowait SPT_WRITEUPDATEX() call is executed, count_written has no
meaning and can be omitted. The count of the number of bytes written is
obtained through the count-transferred parameter of the Guardian AWAITIOX
procedure when the I/O completes.

The SPT_WRITEUPDATEX() procedure must finish with a corresponding call
to the Guardian AWAITIOX procedure when used with a file that is opened for
nowait I/O. For files audited by the Transaction Management Facility (TMF),
the AWAITIOX procedure must be called before the
SPT_ENDTRANSACTION() or SPT_ABORTTRANSACTION() function is
called.

Do not change the contents of the data buffer between the initiation and comple-
tion of a nowait write operation. A retry can copy the data again from the user
buffer and cause the wrong data to be written. Avoid sharing a buffer between a
write and another I/O operation because the contents of the write buffer might
change before the write is completed.

Invalid write operations to queue files
Attempts to perform SPT_WRITEUPDATEX() operations are rejected with a
Guardian file-system error 2.

Disk File Considerations
Large data transfers

To enable large data transfers (more than 4096 bytes), you can use
SPT_SETMODE() function 141. See the description of SETMODE functions
in the Guardian Procedure Calls Reference Manual.

527186-023 Hewlett-Packard Company 7−461

SPT_WRITEUPDATEX(2) OSS System Calls Reference Manual

Random processing and SPT_WRITEUPDATEX()
For key-sequenced, relative, and entry-sequenced files, random processing
implies that a designated record must exist. Positioning for
SPT_WRITEUPDATEX() is always to the record described by the exact value
of the current key and current-key specifier. If such a record does not exist, the
call to SPT_WRITEUPDATEX() is rejected with Guardian file-system error 11
(record does not exist).

File is locked
If a call to SPT_WRITEUPDATEX() is made and the file is locked through a
file number other than that supplied in the call, the call is rejected with Guardian
file-system error 73 (file is locked).

When the just-read record is updated
A call to SPT_WRITEUPDATEX() following a call to SPT_READX(),
without intermediate positioning, updates the record just read.

Unstructured files

Transferring disk file data
If the SPT_WRITEUPDATEX() call is to an unstructured disk
file, data is transferred to the record location specified by the
current-record pointer.

File pointers after a successful call
After a successful SPT_WRITEUPDATEX() call to an
unstructured file, the current-record and next-record pointers are
unchanged.

Number of bytes written
If the unstructured file is created with the odd unstructured attri-
bute (also known as ODDUNSTR) set, the number of bytes writ-
ten is exactly the number specified in write_count. If the odd
unstructured attribute is not set when the file is created, the
value of write_count is rounded up to an even value before the
SPT_WRITEUPDATEX() call is executed.

You set the odd unstructured attribute with the Guardian
FILE_CREATE_, FILE_CREATELIST_, or CREATE pro-
cedure, or with the File Utility Program (FUP) SET and
CREATE commands.

Structured files

Calling SPT_WRITEUPDATEX() after KEYPOSITION
If the call to SPT_WRITEUPDATEX() immediately follows a
call to the Guardian KEYPOSITION procedure in which a
nonunique alternate key is specified as the access path, the
SPT_WRITEUPDATEX() call fails. A subsequent call to the
Guardian FILE_GETINFO_ or FILEINFO procedure shows that
Guardian file-system error 46 (invalid key) occurred. How-
ever, if an intermediate call to SPT_READX() or
SPT_READLOCKX() is performed, the call to
SPT_WRITEUPDATEX() is permitted because a unique
record is identified.

7−462 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_WRITEUPDATEX(2)

Specifying write_count for entry-sequenced files
For entry-sequenced files, the value of write_count must match
exactly the write_count value specified when the record was ori-
ginally inserted into the file.

Changing the primary-key of a key-sequenced record
An update to a record in a key-sequenced file cannot alter the
value of the primary-key field. To change the primary-key field,
you must delete the old record (SPT_WRITEUPDATEX() with
write_count = 0 [zero]) and insert a new record with the key
field changed (SPT_WRITEX()).

Current-state indicators after SPT_WRITEUPDATEX()
After a successful SPT_WRITEUPDATEX() call, the current-
state indicators remain unchanged.

The buffer and count transferred can be in the user stack or in an extended data
segment. The buffer and count transferred cannot be in the user code space.

If the buffer or count transferred is in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a pro-
cess are always accessible to the process.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot deallocate or
reduce the size of the extended data segment before the I/O completes
with a call to the Guardian AWAITIOX procedure or is canceled by a
call to the SPT_CANCEL() function or the Guardian CANCELREQ
procedure.

• You must not modify the buffer before the I/O completes with a call to
AWAITIOX. This also applies to other processes that might be sharing
the segment. It is the application’s responsibility to ensure this.

• If you initiated the I/O with SPT_WRITEUPDATEX(), the I/O must be
completed with a call to the Guardian AWAITIOX procedure.

• The extended segment containing the buffer need not be in use at the
time of the call to AWAITIOX.

• Nowait I/O initiated with SPT_WRITEUPDATEX() can be canceled
with a call to the SPT_CANCEL() function or the Guardian CANCEL-
REQ procedure. The I/O is canceled if the file is closed before the I/O
completes or AWAITIOX is called with a positive time limit and specific
file number and the request times out.

Bounds checking
If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte as well. The odd
address is used for the transfer.

527186-023 Hewlett-Packard Company 7−463

SPT_WRITEUPDATEX(2) OSS System Calls Reference Manual

Magnetic Tape Considerations
Supported equipment

SPT_WRITEUPDATEX() is permitted only on the 3202 Controller for the
5103 or 5104 Tape Drives. This function is not supported on any other
controller/tape drive combination. SPT_WRITEUPDATEX() is specifically
not permitted on the following controller/tape drive pairs:

• 3206 Controller and the 5106 Tri-Density Tape Drive

• 3207 Controller and the 5103 & 5104 Tape Drives

• 3208 Controller and the 5130 & 5131 Tape Drives

Specifying the correct number of bytes written
When SPT_WRITEUPDATEX() is used with magnetic tape, the number of
bytes to be written must fit exactly; otherwise, information on the tape can be
lost. However, no error indication is given.

Limitation of SPT_WRITEUPDATEX() to the same record
Five is the maximum number of times a SPT_WRITEUPDATEX() call can be
executed to the same record on tape.

RETURN VALUES
The SPT_WRITEUPDATEX() function returns 0 (zero) upon successful completion. Other-
wise, this function returns a nonzero Guardian file-system error number that indicates the out-
come of the operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEREADX(2), SPT_WRITEUPDATEUNLOCKX(2), SPT_WRITEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−464 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writev(2)

NAME
spt_writev - Initiate thread-aware writev() function

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <spthread.h>

ssize_t spt_writev(
int filedes,
struct iovec *iov,
int iov_count);

PARAMETERS
See the writev(2) reference page.

DESCRIPTION
This is a thread-aware version of the writev() function. The file descriptor must be nonblocking
for this function to be thread-aware.

For C applications, a macro to map write() to spt_writev() is available when you use the
#define SPT_THREAD_AWARE preprocessor directive before including spthread.h or when
you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map write() to spt_writev() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

RETURN VALUES
See the writev(2) reference page. The following also applies:

• The value of errno is never set to [EWOULDBLOCK] or [EAGAIN].

• If the file descriptor becomes invalid (is closed by another thread), -1 is returned with an
errno value of [EBADF].

• If a signal is received via the pthread_kill() function and is not blocked, ignored, or
handled, -1 is returned with an errno value of [EINTR].

STANDARDS CONFORMANCE
HP extensions to the XPG4 Version 2 specification are:

• The errno values [ECONNRESET], [EFAULT], [EGUARDIANLOCKED], [EINVAL],
[ENETDOWN], [ENOTCONN], [ETIMEDOUT], and [EWRONGID] can be returned.

527186-023 Hewlett-Packard Company 7−465

spt_writevx(2) OSS System Calls Reference Manual

NAME
spt_writevx - Writes to a file from scattered buffers (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/types.h>]
[#include <sys/uio.h>]
#include <spthread.h>

int spt_writevx (
int filedes,
struct iovec *iov,
int iov_count
);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), dup(), spt_dup2x(), spt_fcntlx(), open(), pipe(),
socket(), or socketpair() function.

iov Points to an iovec structure that identifies the buffers containing the data to be
written.

iov_count Specifies the number of iovec structure entries (buffers) pointed to by the iov
parameter.

DESCRIPTION
The spt_writevx() function is a thread-aware version of the writev() function.

The spt_writevx() function attempts to write data to the file associated with the filedes parame-
ter from the set of buffers pointed to by the iov parameter.

The spt_writevx() function performs the same action as the spt_writex() function, but gathers
the output data from the iov_count buffers specified by the iovec structure buffers pointed to by
the iov parameter.

The iovec structure is defined in the sys/uoi.h header file and contains entries with these
members:

caddr_t iov_base;
int iov_len;

The iov_base and iov_len members of each iovec structure entry specify the base address and
length of an area in memory from which data should be written. The spt_writevx() function
always writes a complete buffer before proceeding to the next.

With regular files and devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. If this incremented file pointer is greater than the
length of the file, the length of the file is set to this file offset. Upon return from the
spt_writevx() function, the file pointer is incremented by the number of bytes actually written.

With devices incapable of seeking, writing always takes place starting at the current position.
For such devices, the value of the file pointer after a call to the spt_writevx() function is always
0 (zero).

Fewer bytes than requested if the device does not have enough space to satisfy the request. In
this case, the number of bytes written is returned. For example, suppose a file has space for 20
more bytes of data before reaching a limit. A write request of 512 bytes returns a value of 20.

7−466 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writevx(2)

The limit can be either the end of the physical medium or the value that has been set by the
ulimit() function. The next write of a nonzero number of bytes gives a failure return (except as
noted later).

Upon successful completion, the spt_writevx() function returns the number of bytes actually
written to the file associated with filedes.

If the O_APPEND status flag of the file is set, the file offset is set to the end of the file before
each write operation.

If the O_SYNC status flag of the file is set and filedes refers to a regular file, a successful
spt_writevx() call does not return until the data is delivered to the underlying hardware (as
described in the open(2) reference page).

The O_NONBLOCK flag is effective only on pipes, FIFOs, sockets, and terminal device files
(Telserv or OSSTTY processes).

Write requests to a pipe or FIFO file are handled the same way as write requests to a regular file
with these exceptions:

• No file offset is associated with a pipe; therfore, each spt_writevx() request appends to
the end of the pipe.

• If the size of the spt_writevx() request is less than or equal to the value of the
PIPE_BUF system variable, the spt_writevx() function is guaranteed to be atomic. The
data is not interleaved with data from other processes doing writes on the same pipe.

• If the size of the spt_writevx() request is greater than the value of the PIPE_BUF sys-
tem variable, the file system attempts to resize the pipe buffer from 2 * PIPE_BUF to
65,536 bytes. If the resizing is successful, the file system performs atomic writes of up to
32,768 bytes and can transfer up to 52 kilobytes of data from the pipe buffer on subse-
quent spt_readx() or spt_readvx() calls by the client.

If the file system cannot resize the buffer, it continues to use the existing buffer. A
second attempt at resizing occurs after approximately a minute.

Writes of greater than PIPE_BUF bytes can have data interleaved, on arbitrary boun-
daries, with writes by other processes, whether or not the O_NONBLOCK flag is set.

• If the O_NONBLOCK flag is not set, an spt_writevx() request to a full pipe causes the
process to block until enough space becomes available to handle the entire request.

• If the O_NONBLOCK flag is set, spt_writevx() requests are handled differently:

— The spt_writevx() function does block the process.

— spt_writevx() requests for PIPE_BUF or fewer bytes either succeed completely
and return the number of bytes written, or return the value -1 and set errno to
[EAGAIN].

— An spt_writevx() request for greater than PIPE_BUF bytes either transfers
what it can and returns the number of bytes written, or transfers no data and
returns the value -1 with errno set to [EAGAIN]. Also, if a request is greater
than PIPE_BUF bytes and all data previously written to the pipe has been read,
writev() transfers at least PIPE_BUF bytes.

When you attempt to write to a file descriptor (other than a pipe or a FIFO file) for a special char-
acter device (a terminal) that supports nonblocking writes and cannot accept data immediately:

• If the O_NONBLOCK flag is clear, the spt_writevx() function blocks until the data can
be accepted.

527186-023 Hewlett-Packard Company 7−467

spt_writevx(2) OSS System Calls Reference Manual

• If the O_NONBLOCK flag is set, the spt_writevx() function returns the value -1 and
errno is set to [EAGAIN].

When you attempt to write to a socket with no space available for data:

• If the O_NONBLOCK flag is not set, the spt_writevx() function blocks until space
becomes available.

• If the O_NONBLOCK flag is set, the spt_writevx() function returns the value -1 and
sets errno to [EAGAIN]. The O_NONBLOCK flag has no effect if space is available.

Upon successful completion, the spt_writevx() function marks the st_ctime and st_mtime fields
of the file for update and clears the set-user-ID and set-group-ID attributes if the file is a regular
file.

The spt_fcntlx() function provides more information about record locks.

If it is interrupted by a signal before it writes any data, the spt_writevx() function returns the
value -1 with errno set to [EINTR]. If it is interrupted by a signal after it has successfully written
some data, the spt_writevx() function returns the number of bytes that it has written.

Use on Guardian Objects
Attempting to write to a Guardian file (that is, a file in /G) that is locked causes the
spt_writevx() function to return -1 and set errno to [EGUARDIANLOCKED].

NOTES
For C applications, a macro to map writev() to spt_writevx() is available when you use the
#define SPT_THREAD_AWARE_NONBLOCK preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map writev() to spt_writevx() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

RETURN VALUES
Upon successful completion, the spt_writevx() function returns the number of bytes that were
actually written. Otherwise, the value -1 is returned, and errno is set to indicate the error.

If the file descriptor becomes invalid (is closed by another thread), -1 is returned with an errno
value of [EBADF]. If a signal is received via the pthread_kill() function and is not blocked,
ignored, or handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_writevx() function sets errno to the corresponding
value:

[EAGAIN] One of these conditions occurred:

• An attempt was made to write to a file descriptor that cannot accept data,
and the O_NONBLOCK flag is set.

• A write to a pipe (FIFO file) of PIPE_BUF bytes or less is requested,
O_NONBLOCK is set, and not enough free space is available.

• The O_NONBLOCK flag is set on this file, and the process would be
delayed in the write operation.

7−468 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writevx(2)

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion (such as spt_writez()) is in progress on a regular file and a function that is
process-blocking for regular files (such as read(), spt_read(), or spt_readx())
attempts to begin an I/O operation on the same open file.

[EBADF] The filedes parameter is not a valid file descriptor open for writing.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] Part of the iov parameter points to a location outside of the allocated address
space of the process.

[EFBIG] An attempt was made to write a file that exceeds the maximum file size.

[EGUARDIANLOCKED]
An spt_writevx() operation was attempted to a file in the Guardian file system
(that is, a file in /G) that is locked.

[EINTR] An spt_writevx() operation was interrupted by a signal before any data was
written.

[EINVAL] One of these conditions occurred:

• The file position pointer associated with the file specified by the filedes
parameter was negative.

• The value of the iov_count parameter was less than or equal to 0 (zero),
or greater than IOV_MAX.

• One of the iov_len values in the iov array was negative or overflowed a
data item of type ssize_t.

• The sum of the iov_len values in the iov array overflowed an integer.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

527186-023 Hewlett-Packard Company 7−469

spt_writevx(2) OSS System Calls Reference Manual

[ENETDOWN]
The filedes parameter specifies a file on a remote node, but communication with
the remote node has been lost.

[ENOSPC] No free space is left on the fileset containing the file.

[ENOTCONN] An attempt was made to write to a socket that is not connected to a peer socket.

[ENXIO] One of these conditions occurred:

• The device associated with the file descriptor specified by the filedes
parameter is a block special device or character special file, and the file
pointer is out of range.

• No existing device is associated with the file descriptor specified by the
filedes parameter.

[EPIPE] One of these conditions occurred:

• An attempt was made to write to a pipe or FIFO file that is not open for
reading by any process. A SIGPIPE signal is sent if the process is run-
ning in the OSS environment.

• An attempt was made to write to a pipe that has only one end open.

• An attempt was made to write to a socket that is shut down or closed.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWRONGID] One of these conditions occurred:

• The process attempted an input or output operation through an operating
system input/output process (such as a terminal server process) that has
failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and the backup process took over.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for use of the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: creat(2), fcntl(2), lseek(2), open(2), pipe(2), socket(2), spt_fcntlx(2), spt_write(2),
spt_writev(2), spt_writex(2), ulimit(3), writev(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with these exceptions:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

7−470 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writevx(2)

• When a signal arrives during a call to the spt_writevx() function, instead of returning an
EINTR error to the application, the spt_writevx() retries the I/O operation, except in this
case: If the fork() function is called by a signal handler that is running on a thread per-
forming an spt_writevx() call, the spt_writevx() call in the child process returns an
EINTR error to the application.

527186-023 Hewlett-Packard Company 7−471

spt_writevz(2) OSS System Calls Reference Manual

NAME
spt_writevz - Writes to a file from scattered buffers (thread-aware version)

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>
#include <spthread.h>

int spt_writevz(
int filedes,
struct iovec *iov,
int iov_count);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), creat64(), dup(), spt_dup2x(), spt_fcntlz(), open(),
open64(), pipe(), socket(), or socketpair() function.

iov Points to a iovec structure that identifies the buffers containing the data to be
written.

iov_count Specifies the number of iovec structure entries (buffers) pointed to by the iov
parameter.

DESCRIPTION
The spt_writevz() function is a thread-aware version of the writev() function.

The spt_writevz() function attempts to write data to the file associated with the filedes parameter
from the set of buffers pointed to by the iov parameter.

The spt_writevz() function performs the same action as the spt_writez() function, but gathers
the output data from the iov_count buffers specified by the iovec structure buffers pointed to by
the iov parameter.

The iovec structure is defined in the sys/uoi.h header file and contains entries with these
members:

caddr_t iov_base;
int iov_len;

The iov_base and iov_len members of each iovec structure entry specify the base address and
length of an area in memory from which data should be written. The spt_writevz() function
always writes a complete buffer before proceeding to the next.

With regular files and devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. If this incremented file pointer is greater than the
length of the file, the length of the file is set to this file offset. Upon return from the
spt_writevz() function, the file pointer is incremented by the number of bytes actually written.

With devices incapable of seeking, writing always takes place starting at the current position.
For such devices, the value of the file pointer after a call to the spt_writevz() function is always
0 (zero).

Fewer bytes than requested can be written if there is not enough room to satisfy the request. In
this case, the number of bytes written is returned. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write request of 512 bytes returns a value of 20.
The limit reached can be either the end of the physical medium or the value that has been set by
the ulimit() function. The next write of a nonzero number of bytes gives a failure return (except

7−472 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writevz(2)

as noted later).

Upon successful completion, the spt_writevz() function returns the number of bytes actually
written to the file associated with filedes.

If the O_APPEND status flag of the file is set, the file offset is set to the end of the file prior to
each write.

Write requests to a pipe or FIFO file are handled the same as writes to a regular file with these
exceptions:

• No file offset is associated with a pipe; therfore, each spt_writevz() request appends to
the end of the pipe.

• If the size of the spt_writevz() request is less than or equal to the value of the
PIPE_BUF system variable, the spt_writevz() function is guaranteed to be atomic. The
data is not interleaved with data from other processes doing writes on the same pipe.

• If the size of the spt_writevz() request is greater than the value of the PIPE_BUF sys-
tem variable, the file system attempts to resize the pipe buffer from 2 * PIPE_BUF to
65,536 bytes. If the resizing is successful, the file system performs atomic writes of up to
32,768 bytes and can transfer up to 52 kilobytes of data from the pipe buffer on subse-
quent spt_readz() or spt_readvz() calls by the client.

If the file system cannot resize the buffer, it continues to use the existing buffer. A
second attempt at resizing occurs after approximately a minute elapses.

Writes of greater than PIPE_BUF bytes can have data interleaved, on arbitrary boun-
daries, with writes by other processes, whether or not the O_NONBLOCK flag is set.

• If the O_NONBLOCK flag is not set, a spt_writevz() request to a full pipe causes the
process to block until enough space becomes available to handle the entire request.

• If the O_NONBLOCK flag is set, spt_writevz() requests are handled differently in
these ways:

— The spt_writevz() function does block the process.

— spt_writevz() requests for PIPE_BUF or fewer bytes either succeed completely
and return the number of bytes written, or return the value -1 and set errno to
[EAGAIN].

— A spt_writevz() request for greater than PIPE_BUF bytes either transfers what
it can and returns the number of bytes written, or transfers no data and returns the
value -1 with errno set to [EAGAIN]. Also, if a request is greater than
PIPE_BUF bytes and all data previously written to the pipe has been read,
spt_writevz() transfers at least PIPE_BUF bytes.

When attempting to write to a file descriptor for a special character device (a terminal) that can-
not accept data immediately:

• If the O_NONBLOCK flag is clear, the spt_writevz() function blocks until the data can
be accepted or an error occurs.

• If the O_NONBLOCK flag is set, the spt_writevz() function returns the value -1 and
errno is set to [EAGAIN].

527186-023 Hewlett-Packard Company 7−473

spt_writevz(2) OSS System Calls Reference Manual

When attempting to write to a socket with no space available for data:

• If the O_NONBLOCK flag is not set, the spt_writevz() function blocks until space
becomes available or an error occurs.

• If the O_NONBLOCK flag is set, the spt_writevz() function returns the value -1 and
sets errno to [EWOULDBLOCK].

Upon successful completion, the spt_writevz() function marks the st_ctime and st_mtime fields
of the file for update and clears the set-user-ID and set-group-ID attributes if the file is a regular
file.

The fcntl() function provides more information about record locks.

If it is interrupted by a signal before it writes any data, the spt_writevz() function returns the
value -1 with errno set to [EINTR]. If it is interrupted by a signal after it has successfully written
some data, the spt_writevz() function returns the number of bytes that it has written.

Use on Guardian Objects
Attempting to write to a Guardian file (that is, a file in /G) that is locked causes the
spt_writevz() function to return -1 and set errno to [EGUARDIANLOCKED].

NOTES
For file descriptors for non-regular files, the spt_writevz() function behaves exactly the same as
spt_writevx(). For file descriptors for regular files, this is a thread-aware function: if this func-
tion must wait for an I/O operation to complete on an open file, this function blocks the thread
that called it (instead of the entire process), while it waits for the I/O operation to complete.

This function serializes file operations on an open file. If a thread calls spt_writevz() to access a
file that already has a file operation in progress by a different thread, this thread is blocked until
the prior file operation is complete.

For C applications, a macro to map writev() to spt_writevz() is available when you use the
#define SPT_THREAD_AWARE_XNONBLOCK preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map writev() to spt_writevz() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the spt_writevz() function returns the number of bytes that were
actually written. Otherwise, the value -1 is returned, and errno is set to indicate the error.

7−474 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writevz(2)

ERRORS
If any of these conditions occurs, the spt_writevz() function sets errno to the corresponding
value:

[EAGAIN] One of these conditions occurred:

• An attempt was made to write to a file descriptor that cannot accept data,
and the O_NONBLOCK flag is set.

• A write to a pipe (FIFO file) of PIPE_BUF bytes or less is requested,
O_NONBLOCK is set, and not enough free space is available.

• The O_NONBLOCK flag is set on this file, and the process would be
delayed in the write operation.

[EBADF] The filedes parameter is not a valid file descriptor open for writing.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] Part of the iov parameter points to a location outside of the allocated address
space of the process.

[EFBIG] The application is attempting to write at or beyond the file offset maximum esta-
blished when the file was opened.

[EGUARDIANLOCKED]
A spt_writevz() operation was attempted to a file in the Guardian file system
(that is, a file in /G) that is locked.

[EINTR] A spt_writevz() operation was interrupted by a signal before any data was writ-
ten.

[EINVAL] One of these conditions occurred:

• The file position pointer associated with the file specified by the filedes
parameter was negative.

• The value of the iov_count parameter was less than or equal to 0 (zero),
or greater than IOV_MAX.

• One of the iov_len values in the iov array was negative or overflowed a
data item of type ssize_t.

• The sum of the iov_len values in the iov array overflowed an integer.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

527186-023 Hewlett-Packard Company 7−475

spt_writevz(2) OSS System Calls Reference Manual

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOSPC] No free space is left on the fileset containing the file.

[ENOTCONN] An attempt was made to write to a socket that is not connected to a peer socket.

[ENXIO] One of these conditions occurred:

• The device associated with the file descriptor specified by the filedes
parameter is a block special device or character special file, and the file
pointer is out of range.

• No existing device is associated with the file descriptor specified by the
filedes parameter.

[EPIPE] One of these conditions occurred:

• An attempt was made to write to a pipe or FIFO file that is not open for
reading by any process. A SIGPIPE signal is sent if the process is run-
ning in the OSS environment.

• An attempt was made to write to a pipe that has only one end open.

• An attempt was made to write to a socket that is shut down or closed.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWOULDBLOCK]
The process attempted an operation on a socket for which O_NONBLOCK is
set, there is no space available, and no error has occurred.

[EWRONGID] One of these conditions occurred:

• The process attempted an input or output operation through an operating
system input/output process (such as a terminal server process) that has
failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor but the new
processor lacks a resource or system process needed for use of the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific

7−476 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writevz(2)

Guardian file-system error.

RELATED INFORMATION
Functions: creat(2), creat64(2), fcntl(2), lseek(2), lseek64(2), open(2), open64(2), pipe(2),
socket(2), spt_fcntlx(2), spt_write(2), spt_writev(2), spt_writex(2), ulimit(3), writev(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with these exceptions:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

• When a signal arrives during a call to the spt_writevz() function, instead of returning an
EINTR error to the application, the spt_writevz() retries the I/O operation, except in this
case: If the fork() function is called by a signal handler that is running on a thread per-
forming an spt_writevz() call, the spt_writevz() call in the child process returns an
EINTR error to the application.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [ECONNRESET], [EFAULT], [EGUARDIANLOCKED], [EINVAL],
[ENETDOWN], [ENOTCONN], [ETIMEDOUT], and [EWRONGID] can be returned.

527186-023 Hewlett-Packard Company 7−477

SPT_WRITEX(2) OSS System Calls Reference Manual

NAME
SPT_WRITEX - Writes data from an array in the application program to an open Guardian file

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <cextdecs.h>]
#include <spthread.h>

short SPT_WRITEX (
short filenum,
char *buffer,
unsigned short write_count,

[unsigned short *count_written],
[long tag]
);

PARAMETERS
filenum specifies the file number of a Guardian file open instance that identifies the file to

be written.

buffer specifies an array in the application process in which the information to be writ-
ten to the file is stored before the call.

write_count specifies the number of bytes to be written.

count_written returns a count of the number of bytes written to the file from buffer.

tag is for nowait I/O only. The tag value you define uniquely identifies the operation
associated with this call.

This parameter is supported only for program compatibility; if you provide it, it
is ignored.

DESCRIPTION
The SPT_WRITEX() function is the thread-aware version of the Guardian WRITEX procedure.

This function writes data from an array in the application program to an open Guardian file.

For programming information about the WRITEX procedure, see the Enscribe Programmer’s
Guide and the Guardian Programmer’s Guide.

Considerations
Buffer use SPT_WRITEX() is intended for use with 32-bit extended addresses. Therefore,

the data buffer for SPT_WRITE() can be either in the caller’s stack segment or
any extended data segment.

Waited I/O and SPT_WRITEX() calls
If a waited SPT_WRITEX() call is executed, the count_written parameter indi-
cates the number of bytes actually written.

Nowait I/O and SPT_WRITEX() calls
If a nowait SPT_WRITE () call is executed, count_written has no meaning and
can be omitted. The count of the number of bytes written is obtained when the
I/O operation completes through the count-transferred parameter of the Guar-
dian AWAITIOX procedure.

The SPT_WRITEX() function must complete with a corresponding call to the
Guardian AWAITIOX procedure when used with a file that is opened for nowait

7−478 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_WRITEX(2)

I/O.

Do not change the contents of the data buffer between the initiation and comple-
tion of a nowait write operation. A retry can copy the data again from the user
buffer and cause the wrong data to be written. Avoid sharing a buffer between a
write and another I/O operation because the contents of the write buffer might
change before the write is completed.

Disk File Considerations
Large data transfers for unstructured files using default mode

Default mode allows I/O sizes for unstructured files to be as large as 56KB
(57,344), excepting writes to audited files, if the unstructured buffer size (or
block size) is 4KB (4096). Default mode refers to the mode of the file if
SPT_SETMODE() function 141 is not invoked.

For an unstructured file with an unstructured buffer size other than 4KB, DP2
automatically adjusts the unstructured buffer size to 4KB, if possible, when an
I/O larger than 4KB is attempted. However, this adjustment is not possible for
files that have extents with an odd number of pages; in such cases, an I/O over
4KB is not possible. The switch to a different unstructured buffer size will have
a transient performance impact, so HP recommends that the size be initially set
to 4KB, which is the default. Transfer sizes over 4KB are not supported in
default mode for unstructured access to structured files.

Large data transfers using SPT_SETMODE(141)
You can use SPT_SETMODE() function 141 to enable large data transfers
(more than 4096 bytes) for files opened with unstructured access, regardless of
unstructured buffer size. When you use SPT_SETMODE(141) to enable large
data transfers, you can to specify up to 56K (57344) bytes for the write_count
parameter. See the description of SETMODE functions in the Guardian Pro-
cedure Calls Reference Manual.

File is locked
If you call SPT_WRITEX() is made and the file is locked through a file number
other than that supplied in the call, the call is rejected with Guardian file-system
error 73 (file is locked).

Inserting a new record into a file
The SPT_WRITEX() function inserts a new record into a file in the position
designated by the file’s primary key:

Key-sequenced files
The record is inserted in the position indicated by the value in its
primary-key field.

Queue files The record is inserted into a file at a unique location. The disk
process sets the timestamp field in the key, which causes the
record to be positioned after the other existing records that have
the same high-order user key.

If the file is audited, the record is available for read operations
when the transaction associated with the write operation com-
mits. If the transaction aborts, the record is never available to
read operations. If the file is not audited, the record is available
as soon as the write operation finishes successfully. Unlike
other key-sequenced files, a write operation to a queue file will
never encounter a Guardian file-system error 10 (duplicate

527186-023 Hewlett-Packard Company 7−479

SPT_WRITEX(2) OSS System Calls Reference Manual

record) because all queue file records have unique keys gen-
erated for them.

Relative files After an open or an explicit positioning by its primary key, the
record is inserted in the designated position.

Subsequent SPT_WRITEX() calls without intermediate posi-
tioning insert records in successive record positions. If -2 is
specified in a preceding positioning, the record is inserted in an
available record position in the file.

If -1 is specified in a preceding positioning, the record is inserted
following the last position used in the file. An existing record
does not have to be in that position at the time of the
SPT_WRITEX() call.

Entry-sequenced files
The record is inserted following the last record currently exist-
ing in the file.

Unstructured files
The record is inserted at the position indicated by the current
value of the next-record pointer.

If a record is to be inserted into a key-sequenced or relative file and the record
already exists, the SPT_WRITEX() call fails, and a subsequent call to the
Guardian FILE_GETINFO_ or FILEINFO procedure shows that Guardian file-
system error 10 occurred.

Structured files

Inserting records into relative or entry-sequenced files
If the record is inserted into a relative or entry-sequenced file,
the file must be positioned currently through its primary key.
Otherwise, the SPT_WRITEX() call fails, and a subsequent
call to the Guardian FILE_GETINFO_ or FILEINFO procedure
shows that Guardian file-system error 46 (invalid key)
occurred.

Current-state indicators after an SPT_WRITEX() call
After a successful SPT_WRITEX() call, the current-state indi-
cators for positioning mode and comparison length remain
unchanged.

For key-sequenced files, the current position and the current
primary-key value remain unchanged.

For relative and entry-sequenced files, the current position is that
of the record just inserted and the current primary-key value is
set to the value of the record’s primary key.

Duplicate record found on insertion request
When you attempt to insert a record into a key-sequenced file, if
a duplicate record is found, the SPT_WRITEX() function
returns Guardian file-system error 10 (record already
exists) or error 71 (duplicate record). If the operation is
part of a TMF transaction, the record is locked for the duration
of the transaction.

7−480 Hewlett-Packard Company 527186-023

System Functions (s and S) SPT_WRITEX(2)

Unstructured files

DP2 BUFFERSIZE rules
DP2 unstructured files are transparently blocked using one of the
four valid DP2 blocksizes (512, 1024, 2048, or 4096 bytes; 4096
is the default). This transparent blocksize, known as BUFFER-
SIZE, is the transfer size used against an unstructured file.
While BUFFERSIZE does not change the maximum unstruc-
tured transfer (4096 bytes), multiple I/Os can be performed to
satisfy a user request depending on the BUFFERSIZE chosen.
For example, if BUFFERSIZE is 512 bytes, and a request is
made to write 4096 bytes, at least eight transfers, each 512 bytes
long, will be made. More than eight transfers happen, in this
case, if the requested transfer does not start on a BUFFERSIZE
boundary.

DP2 performance with unstructured files is best when requested
transfers begin on BUFFERSIZE boundaries and are integral
multiples of BUFFERSIZE.

If the SPT_WRITEX() call is to an unstructured disk file, data
is transferred to the record location specified by the next-record
pointer. The next-record pointer is updated to point to the record
following the record written.

Number of bytes written
If an unstructured file is created with the odd unstructured attri-
bute (also known as ODDUNSTR) set, the number of bytes writ-
ten is exactly the number specified in write_count. If the odd
unstructured attribute is not set when the file is created, the
value of write_count is rounded up to an even value before the
SPT_WRITEX() is executed.

You set the odd unstructured attribute with the Guardian
FILE_CREATE_, FILE_CREATELIST_, or CREATE pro-
cedure, or with the File Utility Program (FUP) SET and
CREATE commands.

File pointers after an SPT_WRITEX() call
After a successful SPT_WRITEX() call to an unstructured file,
the file pointers have these values:

• Current-record pointer is the next-record pointer.

• Next-record pointer is the next-record pointer plus the
count written.

• End-of-file (EOF) pointer is the maximum of the EOF
pointer or the next-record pointer.

Use on files opened for nowait I/O

• If the buffer is in an extended data segment, you cannot
deallocate or reduce the size of the extended data seg-
ment before the I/O completes with a call to the Guar-
dian AWAITIOX procedure or is canceled by a call to
the SPT_CANCEL() function or the Guardian CAN-
CELREQ procedure.

527186-023 Hewlett-Packard Company 7−481

SPT_WRITEX(2) OSS System Calls Reference Manual

• You must not modify the buffer before the I/O completes
with a call to the Guardian AWAITIOX procedure. This
restriction also applies to other processes that might be
sharing the segment. It is the application’s responsibil-
ity to ensure this.

• If you initiated the I/O with SPT_WRITE(), the I/O
must be completed with a call to the Guardian
AWAITIOX procedure.

• A selectable extended data segment containing the
buffer need not be in use at the time of the call to
AWAITIOX.

• You can cancel nowait I/O that was initiated with
SPT_WRITEX() with a call to SPT_CANCEL() or
CANCELREQ. The I/O is canceled if the file is closed
before the I/O completes or if the Guardian AWAITIOX
procedure is called with a positive time limit and
specific file number and the request times out.

Interprocess Communication Consideration
Indication that the destination process is running

If the SPT_WRITEX() call is to another process, successful completion of the
SPT_WRITEX() call (or a Guardian AWAITIOX procedure call if nowait) indi-
cates that the destination process is running.

RETURN VALUES
The SPT_WRITEX() function returns 0 (zero) upon successful completion. Otherwise, this
function returns a nonzero Guardian file-system error number that indicates the outcome of the
operation.

For information about Guardian file-system error numbers, see the Guardian Procedure Errors
and Messages Manual.

ERRORS
None. This function does not set the errno variable.

RELATED INFORMATION
Functions: SPT_CANCEL(2), SPT_CONTROL(2), SPT_FILE_CLOSE_(2),
SPT_FILE_OPEN_(2), SPT_LOCKFILE(2), SPT_LOCKREC(2), SPT_READLOCKX(2),
SPT_READUPDATELOCKX(2), SPT_READUPDATEX(2), SPT_READX(2),
SPT_SETMODE(2), SPT_UNLOCKFILE(2), SPT_UNLOCKREC(2),
SPT_WRITEREADX(2), SPT_WRITEUPDATEUNLOCKX(2),
SPT_WRITEUPDATEX(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to the following industry standards:

• IEEE Std 1003.1c-1995, POSIX System Application Program Interface

The use of the header file spthread.h is an HP exception to the POSIX standard.

7−482 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writex(2)

NAME
spt_writex - Writes to a file (thread-aware version)

LIBRARY
G-series native OSS processes: /G/system/sysnn/zsptsrl
H-series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
[#include <sys/types.h>]
[#include <unistd.h>]
#include <spthread.h>

ssize_t spt_writex (
int filedes,
void *buffer,
size_t nbytes
);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), dup(), spt_dup2x(), spt_fcntlx(), open(), pipe(),
socket(), or socketpair() function.

buffer Identifies the buffer containing the data to be written.

nbytes Specifies the number of bytes to write.

DESCRIPTION
The spt_writex() function is the thread-aware version of the write() function.

The spt_writex() function attempts to write nbytes of data to the file associated with the filedes
parameter from the buffer pointed to by the buffer parameter.

For all regular and non-regular files, if the value of the nbytes parameter is 0 (zero) and the value
of filedes is a valid file descriptor, the spt_writex() function returns 0 (zero).

The appropriate file time fields are updated unless nbytes is 0 (zero).

With regular files and devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. If this incremented file pointer is greater than the
length of the file, the length of the file is set to this file offset. Upon return from the spt_writex()
function, the file pointer is incremented by the number of bytes actually written.

With devices incapable of seeking, writing always takes place starting at the current position.
For such devices, the value of the file pointer after a call to the spt_writex() function is always 0
(zero).

Fewer bytes than requested can be written if the device does not have enough space to satisfy the
request. In this case, the number of bytes written is returned. For example, a file has space for 20
bytes more data before reaching a limit. A write request of 512 bytes returns a value of 20. The
limit can be either the end of the physical medium or the value that has been set by the ulimit()
function. The next write of a nonzero number of bytes gives a failure return (except as noted
later).

Upon successful completion, the spt_writex() function returns the number of bytes actually writ-
ten to the file associated with filedes. This number is never greater than the value of nbytes.

If the O_APPEND flag of the file status is set, the file offset is set to the end of the file before
each write operation.

If the O_SYNC flag of the file status is set and filedes refers to a regular file, a successful
spt_writex() call does not return until the data is delivered to the underlying hardware (as

527186-023 Hewlett-Packard Company 7−483

spt_writex(2) OSS System Calls Reference Manual

described in the open(2) reference page).

The O_NONBLOCK flag is effective only on pipes, FIFOs, sockets, and terminal device files
(Telserv and OSSTTY processes).

Write requests to a pipe or a FIFO file are handled the same way as write requests to a regular file
with these exceptions:

• No file offset is associated with a pipe; therfore, each spt_writex() request appends to
the end of the pipe.

• If the size of the spt_writex() request is less than or equal to the value of the PIPE_BUF
system variable, the spt_writex() function is guaranteed to be atomic. The data is not
interleaved with data from other processes doing writes on the same pipe.

• If the size of the spt_writex() request is greater than the value of the PIPE_BUF system
variable, the file system attempts to resize the pipe buffer from 2 * PIPE_BUF to 65,536
bytes. If the resizing is successful, the file system performs atomic writes of up to 32,768
bytes and can transfer up to 52 kilobytes of data from the pipe buffer on subsequent
spt_readx() or spt_readvx() calls by the client.

If the file system cannot resize the buffer, it continues to use the existing buffer. A
second attempt at resizing occurs after approximately a minute.

Writes of greater than PIPE_BUF bytes can have data interleaved, on arbitrary boun-
daries, with writes by other processes, whether or not the O_NONBLOCK flag is set.

• If the O_NONBLOCK flag is not set, a spt_writex() request to a full pipe causes the
process to block until enough space becomes available to handle the entire request.

• If the O_NONBLOCK flag is set, spt_writex() requests are handled differently:

— The spt_writex() function does block the process.

— spt_writex() requests for PIPE_BUF or fewer bytes either succeed completely
and return the value of the nbytes parameter, or return the value -1 and set errno
to [EAGAIN].

— A spt_writex() request for greater than PIPE_BUF bytes either transfers what it
can and returns the number of bytes written, or transfers no data and returns the
value -1 with errno set to [EAGAIN]. Also, if a request is greater than
PIPE_BUF bytes and all data previously written to the pipe has been read,
spt_writex() transfers at least PIPE_BUF bytes.

When you attempt to write to a file descriptor (other than a pipe or a FIFO file) for a special char-
acter device (a terminal) that supports nonblocking writes and cannot accept data immediately:

• If the O_NONBLOCK flag is clear, the spt_writex() function blocks until the data can
be accepted.

• If the O_NONBLOCK flag is set, the spt_writex() function returns the value -1 and
errno is set to [EAGAIN].

When you attempt to write to a socket with no space available for data:

• If the O_NONBLOCK flag is not set, the spt_writex() function blocks until space
becomes available.

• If the O_NONBLOCK flag is set, the spt_writex() function returns the value -1 and sets
errno to [EAGAIN]. The O_NONBLOCK flag has no effect if space is available.

7−484 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writex(2)

Upon successful completion, the spt_writex() function marks the st_ctime and st_mtime fields
of the file for update and clears the set-user-ID and set-group-ID attributes if the file is a regular
file.

The spt_fcntlx() function provides more information about record locks.

If it is interrupted by a signal before it writes any data, the spt_writex() function returns the
value -1 with errno set to [EINTR]. If it is interrupted by a signal after it has successfully written
some data, the spt_writex() function returns the number of bytes that it has written.

Use on Guardian Objects
Attempting to write to a Guardian file (that is, a file in /G) that is locked causes the spt_writex()
function to return -1 and set errno to [EGUARDIANLOCKED].

NOTES
For C applications, a macro to map write() to spt_writex() is available when you use the
#define SPT_THREAD_AWARE_NONBLOCK preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map write() to spt_writex() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_NONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

RETURN VALUES
Upon successful completion, the spt_writex() function returns the number of bytes that were
actually written. Otherwise, the value -1 is returned, and errno is set to indicate the error.

If the file descriptor becomes invalid (is closed by another thread), -1 is returned with an errno
value of [EBADF]. If a signal is received via the pthread_kill() function and is not blocked,
ignored, or handled, -1 is returned with an errno value of [EINTR].

ERRORS
If any of these conditions occur, the spt_writex() function sets errno to the corresponding value:

[EAGAIN] One of these conditions exists:

• An attempt was made to write to a file descriptor that cannot accept data,
and the O_NONBLOCK flag is set.

• A write to a pipe (FIFO file) of PIPE_BUF bytes or less is requested,
O_NONBLOCK is set, and fewer than nbytes of free space are avail-
able.

• The O_NONBLOCK flag is set on this file, and the process would be
delayed in the write operation.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion (such as spt_writez()) is in progress on a regular file and a function that is
process-blocking for regular files (such as read(), spt_read(), or spt_readx())
attempts to begin an I/O operation on the same open file.

[EBADF] The filedes parameter does not specify a valid file descriptor open for writing.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

527186-023 Hewlett-Packard Company 7−485

spt_writex(2) OSS System Calls Reference Manual

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFBIG] An attempt was made to write a file that exceeds the maximum file size.

[EGUARDIANLOCKED]
An spt_writex() operation was attempted on a file in the Guardian file system
(that is, a file in /G) that is locked.

[EINTR] An spt_writex() operation was interrupted by a signal before any data was writ-
ten.

[EINVAL] One of these conditions occurred:

• The file position pointer associated with the file specified by the filedes
parameter was negative.

• The value of the nbytes parameter is greater than SSIZE_MAX.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

• A physical I/O error occurred. Data might have been lost during a
transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote node, but communication with
the remote node has been lost.

[ENOSPC] No free space is left on the fileset containing the file.

[ENOTCONN] An attempt was made to write to a socket that is not connected to a peer socket.

[ENXIO] One of these conditions occurred:

• The device associated with the file descriptor specified by the filedes
parameter is a block special device or character special file, and the file
pointer is out of range.

• No existing device is associated with the file descriptor specified by the
filedes parameter.

[EPIPE] One of these conditions occurred:

• An attempt was made to write to a pipe or FIFO file that is not open for
reading by any process. A SIGPIPE signal is sent if the process is run-
ning in the OSS environment.

7−486 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writex(2)

• An attempt was made to write to a pipe that has only one end open.

• An attempt was made to write to a socket that is shut down or closed.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and the backup process took over.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Functions: creat(2), fcntl(2), lseek(2), open(2), pipe(2), socket(2), spt_fcntlx(2), spt_write(2),
ulimit(3), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with these exceptions:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

• When a signal arrives during a call to the spt_writex() function, instead of returning an
EINTR error to the application, the spt_writex() retries the I/O operation, except in this
case: If the fork() function is called by a signal handler that is running on a thread per-
forming an spt_writex() call, the spt_writex() call in the child process returns an
EINTR error to the application.

The POSIX standard allows certain behaviors of write() to be implementer-defined. For an indi-
cation of the HP implementation behaviors, see the write(2) reference page either online or in
the Open System Services System Calls Reference Manual.

527186-023 Hewlett-Packard Company 7−487

spt_writez(2) OSS System Calls Reference Manual

NAME
spt_writez - Writes to a file (thread-aware version)

LIBRARY
H-series and J series OSS processes: /G/system/zdllnnn/zsptdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>
#include <spthread.h>

ssize_t spt_writez(
int filedes,
void *buffer,
size_t nbytes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the

spt_acceptx(), creat(), creat64(), dup(), spt_dup2x(), spt_fcntlx(), open(),
open64(), pipe(), socket(), or socketpair() function.

buffer Identifies the buffer containing the data to be written.

nbytes Specifies the number of bytes to write.

DESCRIPTION
The spt_writez() function is a thread-aware version of the write() function.

The spt_writez() function attempts to write nbytes of data to the file associated with the filedes
parameter from the buffer pointed to by the buffer parameter.

For all regular and non-regular files, if the value of the nbytes parameter is 0 (zero) and the value
of filedes is a valid file descriptor, the spt_writez() function returns 0 (zero).

The appropriate file time fields are updated unless nbytes is 0 (zero).

With regular files and devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. If this incremented file pointer is greater than the
length of the file, the length of the file is set to this file offset. Upon return from the spt_writez()
function, the file pointer is incremented by the number of bytes actually written.

With devices incapable of seeking, writing always takes place starting at the current position.
For such devices, the value of the file pointer after a call to the spt_writez() function is always 0
(zero).

Fewer bytes than requested can be written if there is not enough room to satisfy the request. In
this case, the number of bytes written is returned. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write request of 512 bytes returns a value of 20.
The limit reached can be either the end of the physical medium or the value that has been set by
the ulimit() function. The next write of a nonzero number of bytes gives a failure return (except
as noted later).

Upon successful completion, the spt_writez() function returns the number of bytes actually writ-
ten to the file associated with filedes. This number is never greater than the value of nbytes.

If the O_APPEND flag of the file status is set, the file offset is set to the end of the file prior to
each write.

Write requests to a pipe or a FIFO file are handled the same as writes to a regular file with these
exceptions:

7−488 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writez(2)

• No file offset is associated with a pipe; therfore, each spt_writez() request appends to
the end of the pipe.

• If the size of the spt_writez() request is less than or equal to the value of the PIPE_BUF
system variable, thespt_writez() function is guaranteed to be atomic. The data is not
interleaved with data from other processes doing writes on the same pipe.

• If the size of the spt_writez() request is greater than the value of the PIPE_BUF system
variable, the file system attempts to resize the pipe buffer from 2 * PIPE_BUF to 65,536
bytes. If the resizing is successful, the file system performs atomic writes of up to 32,768
bytes and can transfer up to 52 kilobytes of data from the pipe buffer on subsequent
spt_readz() or spt_readvz() calls by the client.

If the file system cannot resize the buffer, it continues to use the existing buffer. A
second attempt at resizing occurs after approximately a minute elapses.

Writes of greater than PIPE_BUF bytes can have data interleaved, on arbitrary boun-
daries, with writes by other processes, whether or not the O_NONBLOCK flag is set.

• If the O_NONBLOCK flag is not set, a spt_writez() request to a full pipe causes the
process to block until enough space becomes available to handle the entire request.

• If the O_NONBLOCK flag is set, spt_writez() requests are handled differently in these
ways:

— The spt_writez() function does block the process.

— spt_writez() requests for PIPE_BUF or fewer bytes either succeed completely
and return the value of the nbytes parameter, or return the value -1 and set errno
to [EAGAIN].

— A spt_writez() request for greater than PIPE_BUF bytes either transfers what it
can and returns the number of bytes written, or transfers no data and returns the
value -1 with errno set to [EAGAIN]. Also, if a request is greater than
PIPE_BUF bytes and all data previously written to the pipe has been read,
spt_writez() transfers at least PIPE_BUF bytes.

When attempting to write to a file descriptor for a special character device (a terminal) that can-
not accept data immediately:

• If the O_NONBLOCK flag is clear, the spt_writez() function blocks until the data can
be accepted or an error occurs.

• If the O_NONBLOCK flag is set, the spt_writez() function returns the value -1 and
errno is set to [EAGAIN].

When attempting to write to a socket and with no space available for data:

• If the O_NONBLOCK flag is not set, the spt_writez() function blocks until space
becomes available or an error occurs.

• If the O_NONBLOCK flag is set, the spt_writez() function returns the value -1 and sets
errno to [EWOULDBLOCK].

Upon successful completion, the spt_writez() function marks the st_ctime and st_mtime fields
of the file for update and clears the set-user-ID and set-group-ID attributes if the file is a regular
file.

527186-023 Hewlett-Packard Company 7−489

spt_writez(2) OSS System Calls Reference Manual

The spt_fcntlz() function provides more information about record locks.

If it is interrupted by a signal before it writes any data, the spt_writez() function returns the
value -1 with errno set to [EINTR]. If it is interrupted by a signal after it has successfully written
some data, the spt_writez() function returns the number of bytes that it has written.

Use on Guardian Objects
Attempting to write to a Guardian file (that is, a file in /G) that is locked causes the spt_writez()
function to return -1 and set errno to [EGUARDIANLOCKED].

NOTES
For file descriptors for non-regular files, the spt_writez() function behaves exactly the same as
spt_writex(). For file descriptors for regular files, this is a thread-aware function: if this function
must wait for an I/O operation to complete on an open file, this function blocks the thread that
called it (instead of the entire process), while it waits for the I/O operation to complete.

This function serializes file operations on an open file. If a thread calls spt_writez() to access a
file that already has a file operation in progress by a different thread, this thread is blocked until
the prior file operation is complete.

For C applications, a macro to map write() to spt_writez() is available when you use the
#define SPT_THREAD_AWARE_XNONBLOCK preprocessor directive before including
spthread.h or when you use an equivalent compiler command option to compile the application.

For C++ applications, an alias to map write() to spt_writez() is available when you use the
#define SPT_THREAD_AWARE_PRAGMA_XNONBLOCK preprocessor directive before
including spthread.h or when you use an equivalent compiler command option to compile the
application.

To use this function in a threaded application that uses the Standard POSIX Threads library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks:

• Include the spthread.h header file in the application.

• Compile the application using the _SPT_MODEL_ feature test macro or equivalent
compiler command option in addition to any other feature test macros in use.

• Link the application to the zsptdll library (/G/system/zdllnnn/zsptdll).

RETURN VALUES
Upon successful completion, the spt_writez() function returns the number of bytes that were
actually written. Otherwise, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the spt_writez() function sets errno to the corresponding
value:

[EAGAIN] One of these conditions exists:

• An attempt was made to write to a file descriptor that cannot accept data,
and the O_NONBLOCK flag is set.

• A write to a pipe (FIFO file) of PIPE_BUF bytes or less is requested,
O_NONBLOCK is set, and fewer than nbytes of free space are avail-
able.

• The O_NONBLOCK flag is set on this file, and the process would be
delayed in the write operation.

7−490 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writez(2)

[EBADF] The filedes parameter does not specify a valid file descriptor open for writing.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFBIG] The application is attempting to write at or beyond the file offset maximum esta-
blished when the file was opened.

[EGUARDIANLOCKED]
A spt_writez() operation was attempted to a file in the Guardian file system
(that is, a file in /G) that is locked.

[EINTR] A spt_writez() operation was interrupted by a signal before any data was writ-
ten.

[EINVAL] One of these conditions occurred:

• The file position pointer associated with the file specified by the filedes
parameter was negative.

• The value of the nbytes parameter is greater than SSIZE_MAX.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

• A physical I/O error occurred. Data might have been lost during a
transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOSPC] No free space is left on the fileset containing the file.

[ENOTCONN] An attempt was made to write to a socket that is not connected to a peer socket.

[ENXIO] One of these conditions occurred:

• The device associated with the file descriptor specified by the filedes
parameter is a block special device or character special file, and the file
pointer is out of range.

527186-023 Hewlett-Packard Company 7−491

spt_writez(2) OSS System Calls Reference Manual

• No existing device is associated with the file descriptor specified by the
filedes parameter.

[EPIPE] One of these conditions occurred:

• An attempt was made to write to a pipe or FIFO file that is not open for
reading by any process. A SIGPIPE signal is sent if the process is run-
ning in the OSS environment.

• An attempt was made to write to a pipe that has only one end open.

• An attempt was made to write to a socket that is shut down or closed.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWOULDBLOCK]
The process attempted an operation on a socket for which O_NONBLOCK is
set, there is no space available, and no error has occurred.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: creat(2), creat64(2), fcntl(2), lseek(2), lseek64(2), open(2), open64(2), pipe(2),
socket(2), spt_fcntlx(2), spt_write(2), ulimit(3), write(2).

STANDARDS CONFORMANCE
This function is an extension to the UNIX 98 specification. Interfaces documented on this refer-
ence page conform to IEEE Std 1003.1c-1995, POSIX System Application Program Interface,
with these exceptions:

• The use of the header file spthread.h is an HP exception to the POSIX standard.

• When a signal arrives during a call to the spt_writez() function, instead of returning an
EINTR error to the application, the spt_writez() retries the I/O operation, except in this
case: If the fork() function is called by a signal handler that is running on a thread per-
forming an spt_writez() call, the spt_writez() call in the child process returns an
EINTR error to the application.

7−492 Hewlett-Packard Company 527186-023

System Functions (s and S) spt_writez(2)

The POSIX standard allows certain behaviors of the write() function to be defined by the ven-
dor. For more information, see the write(2) reference page.

527186-023 Hewlett-Packard Company 7−493

stat(2) OSS System Calls Reference Manual

NAME
stat - Provides information about a file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>

int stat(
const char *path,
struct stat *buffer);

PARAMETERS
path Points to the pathname identifying the file.

buffer Points to a stat structure, into which information is placed about the file. The
stat structure is described in the sys/stat.h header file.

DESCRIPTION
The stat() function obtains information about the file whose name is pointed to by the path
parameter. Read, write, or execute permission for the named file is not required, but all direc-
tories listed in the pathname leading to the file must be searchable.

The file information is written to the area specified by the buffer parameter, which is a pointer to
a stat structure. For J06.11 and later J-series RVUs and H06.22 and later H-series RVUs, the
stat structure uses this definition from the sys/stat.h header file:

struct stat {
dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:7;
unsigned int st_fileprivs:8; /* File privileges */
uid_t st_uid;
gid_t st_gid;

#if _FILE_OFFSET_BITS != 64 || _TANDEM_ARCH_ == 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

#if _FILE_OFFSET_BITS == 64 && _TANDEM_ARCH_ != 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
int64_t st_reserved[3];

};

7−494 Hewlett-Packard Company 527186-023

System Functions (s and S) stat(2)

For J06.10 and earlier J-series RVUs and H06.21 and earlier H-series RVUs, the stat structure
uses this definition from the sys/stat.h header file:

struct stat {
dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:15;
uid_t st_uid;
gid_t st_gid;

#if _FILE_OFFSET_BITS != 64 || _TANDEM_ARCH_ == 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

#if _FILE_OFFSET_BITS == 64 && _TANDEM_ARCH_ != 0
mode_t st_basemode; /* Permissions with original group perms */

#endif
int64_t st_reserved[3];

};

For a regular file, the stat() function sets the st_size field of the stat structure to the length of the
file and sets the st_mode field to indicate the file type. For a symbolic link, the stat() function
returns information about the file at the end of the link; no information about the link is returned.
(For information about the link, use the lstat() function.)

The stat() function updates any time-related fields associated with the file before writing into the
stat structure, unless it is a read-only fileset. Time-related fields are not updated for read-only
OSS filesets.

The fields in the stat structure have these meanings and content:

st_dev OSS device identifier for a fileset.

Values for local OSS objects are listed next. Values for local Guardian objects
are described in Use on Guardian Objects, and values for remote Guardian or
OSS objects are described in Use on Remote Objects, later in this reference
page.

For Contains

Regular file ID of device containing directory entry
Directory ID of device containing directory
FIFO ID of special fileset for pipes
AF_UNIX socket ID of device containing the fileset in which

the socket file was created
/dev/null ID of device containing directory entry

527186-023 Hewlett-Packard Company 7−495

stat(2) OSS System Calls Reference Manual

/dev/tty ID of device containing directory entry

st_ino File serial number (inode number). The file serial number and OSS device
identifier uniquely identify a regular OSS file within an OSS fileset.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file File serial number (unique)
Directory File serial number (unique)
FIFO File serial number (unique)
AF_UNIX socket File serial number of the socket file

(unique)
/dev/null File serial number (unique)
/dev/tty File serial number (unique)

The st_ino value for all node entries in /E (including the entry for the logical
link from the local node name to the root fileset on the local node) is the value
for the root fileset on the corresponding node. If normal conventions are fol-
lowed, this value is always 0 (zero), so entries in /E appear to be nonunique.
Values for objects on remote nodes are unique only among the values for objects
within the same fileset on that node.

st_mode File mode. These bits are ORed into the st_mode field:

S_IFMT File type. This field can contain one of these values:

S_IFCHR Character special file.

S_IFDIR Directory.

S_IFIFO FIFO.

S_IFREG Regular file.

S_IFSOCK Socket.

For an AF_UNIX socket, the user permissions
from the inode for the socket are returned for the
permission bits. The access flags are also
returned from the inode.

S_IRWXG Permissions for the owning group, or if the st_acl flag is set, per-
missions for the the class ACL entry.

S_IRWXO Other class

S_IRWXU Owner class

S_ISGID Set group ID on execution

S_ISUID Set user ID on execution

7−496 Hewlett-Packard Company 527186-023

System Functions (s and S) stat(2)

S_ISVTX Sticky bit; used only for directories (not ORed for files in /G, the
Guardian file system)

S_TRUST Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers when the
memory segment containing the buffers is not shared. This flag
applies only to loadfiles for a process and only a user with
appropriate privileges (the super ID) can set it.

S_TRUSTSHARED
Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers regardless
of whether the memory segment containing the buffers is shared.
This flag applies only to loadfiles for a process and only a user
with appropriate privileges (the super ID) can set it.

Values for Guardian objects are described in Use on Guardian Objects, later in
this reference page.

st_nlink Number of links.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Number of links to the file
Directory Number of links to the directory
FIFO Number of links to the file
AF_UNIX socket Number of links to the socket file
/dev/null Number of links to the file
/dev/tty Number of links to the file

st_acl If set to 1, indicates that the file has optional access control list (ACL) entries.
For compatibility with HP-UX, the member name st_aclv is provided as alias for
st_acl. For more information about ACLs, see the acl(5) reference page.

st_fileprivs File privileges. For information about file privileges see the setfilepriv(2) refer-
ence page.

st_uid User ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 7−497

stat(2) OSS System Calls Reference Manual

For Contains

Regular file User ID of the file owner
Directory User ID of the file owner
FIFO User ID of the file owner
AF_UNIX socket User ID of the creator of the socket file
/dev/null User ID of the super ID
/dev/tty User ID of the super ID

st_gid Group ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Group ID of the file group
Directory Group ID of the file group
FIFO Group ID of the file group
AF_UNIX socket Group ID of the creator of the socket file
/dev/null Group ID of the super ID
/dev/tty Group ID of the super ID

st_basemode If the st_acl flag is set, contains the permissions for the file owner, owning
group, and others. If the st_acl flag is not set, st_basemode is 0 (zero).

st_rdev Remote device ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Undefined
Directory Undefined
FIFO Undefined
AF_UNIX socket 0 (zero)
/dev/null Undefined
/dev/tty ID of the device

st_size File size.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

7−498 Hewlett-Packard Company 527186-023

System Functions (s and S) stat(2)

For Contains

Regular file Size of the file in bytes
Directory 4096
FIFO 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null 0 (zero)
/dev/tty 0 (zero)

st_atime Access time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last access
Directory Time of the last access
FIFO Time of the last access
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_mtime Modification time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last data modification
Directory Time of the last modification
FIFO Time of the last data modification
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_ctime Status change time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 7−499

stat(2) OSS System Calls Reference Manual

For Contains

Regular file Time of the last file status change
Directory Time of the last file status change
FIFO Time of the last file status change
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

Use on Guardian Objects
The st_dev and st_ino fields of the stat structure do not uniquely identify Guardian files (files in
/G).

The st_dev field is unique for /G, for each disk volume and for each Telserv process (or other
process of subdevice type 30), because each of these is a separate fileset.

The S_ISGUARDIANOBJECT macro can indicate whether an object is a Guardian object
when the st_dev field is passed to the macro. The value of the macro is TRUE if the object is a
Guardian object and FALSE otherwise.

The st_ino field is a nonunique encoding of the Guardian filename.

The st_rdev field contains a unique minor device number for each ptyn entry in /G/ztnt/,
representing each Telserv process subdevice.

The st_size field of an EDIT file (file code 101) is the actual (physical) end of file, not the number
of bytes in the file. For directories, st_size is set to 4096.

When an OSS function is called for a Guardian EDIT file, the st_mtime field is set to the last
modification time. The st_atime field indicates the last time the file was opened, and the
st_ctime field is set equal to st_mtime. No other time-related fields are updated by OSS function
calls.

The st_ctime and st_atime fields for Guardian regular disk files (except for EDIT files) are
updated by OSS function calls, not by Guardian procedure calls.

The time fields for /G, /G/vol, and /G/vol/subvol always contain the current time.

When the path parameter points to the name of a Guardian process that is not a process of sub-
type 30, the stat() function call fails. The value -1 is returned, and errno is set to [ENOENT].

The stat() function always returns access modes of "d---------" when the path parameter points to
a Guardian subvolume that has a reserved name beginning with ZYQ. The other access modes
reported for files in /G vary according to the file type.

The next table shows the mapping between Guardian files and their corresponding file types
described in the st_mode field.

7−500 Hewlett-Packard Company 527186-023

System Functions (s and S) stat(2)

Guardian st_mode
Example in /G File Type File Type Permissions___

N/A Directory r-xr-xr-x/G
vol Disk volume Directory rwxrwxrwx
vol/subvol Subvolume Directory rwxrwxrwx
vol/subvol/fileid Disk file Regular file See following text
vol/#123 Temporary disk file Regular file See following text
ztnt Subtype 30 process Directory --x--x--x
ztnt/#pty0001 Subtype 30 process

with qualifier
Character special rw-rw-rw-

vol1/zyq00001 Subvolume Directory ---------

A Guardian file classified as a directory is always owned by the super ID.

Guardian permissions are mapped as follows:

• Guardian network or any user permission is mapped to OSS other permission.

• Guardian community or group user permission is mapped to OSS group permission.

• Guardian user or owner permission is mapped to OSS owner permission.

• Guardian super ID permission is mapped to OSS super ID permission.

• Guardian read permission is mapped to OSS read permission.

• Guardian write permission is mapped to OSS write permission.

• Guardian execute permission is mapped to OSS execute permission.

• Guardian purge permission is ignored.

Users are not allowed read access to Guardian processes.

OSS file permissions are divided into three groups (owner, group, and other) of three permission
bits each (read, write, and execute). The OSS permission bits do not distinguish between remote
and local users as Guardian security does; local and remote users are treated alike.

Use on Remote Objects
The content of the st_dev field of the stat structure is unique for each node in /E because each of
these is a separate fileset. Values for directories within /E are the same as described for objects
on the local HP NonStop node.

The S_ISEXPANDOBJECT macro can indicate whether an object in the /E directory is on a
remote HP NonStop node when the st_dev field is passed to the macro. The value of the macro
is TRUE if the object is on a remote HP NonStop node and FALSE otherwise.

Use From the Guardian Environment
The stat() function belongs to a set of functions that have these effects when the first of them is
called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. You cannot close these
file numbers by calling the Guardian FILE_CLOSE_ procedure.

527186-023 Hewlett-Packard Company 7−501

stat(2) OSS System Calls Reference Manual

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
For J06.08 and earlier J-series RVUs, H06.19 and earlier H-series RVUs, or G-series RVUs, the
OSS Network File System (NFS) cannot access OSS objects that have OSS ACLs that contain
optional ACL entries.

For J06.09 and later J-series RVUs and H06.20 and later H-series RVUs, access by the OSS Net-
work File System (NFS) to OSS objects that have OSS ACLs that contain optional ACL entries
can be allowed, depending upon the NFSPERMMAP attribute value for the fileset that contains
the object. For more information about NFS and ACLs, see the acl(5) reference page.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the stat() function sets errno to the corresponding value:

[EACCES] Search permission is denied for a component of the pathname pointed to by the
path parameter.

[EFAULT] Either the buffer parameter or the path parameter points to a location outside of
the allocated address space of the process.

[EFSBAD] The program attempted an operation involving a fileset with a corrupted fileset
catalog.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of these conditions exists:

7−502 Hewlett-Packard Company 527186-023

System Functions (s and S) stat(2)

• The file specified by the path parameter does not exist.

• The path parameter points to an empty string.

• The specified pathname cannot be mapped to a valid Guardian filename.

• The specified pathname points to the name of a Guardian process that is
not of subtype 30.

• The path parameter specifies a file on a remote HP NonStop node, but
communication with the remote node has been lost.

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node, and communication
with the remote name server has been lost.

[ENOTDIR] A component of the pathname specified by the path parameter is not a directory.

[ENOTSUP] The path parameter refers to a file on a logical disk volume administered
through the Storage Management Foundation (SMF).

[ENXIO] An invalid device or address was specified during an input or output operation
on a special file. One of these events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EOVERFLOW]
The file size (in bytes) or the file inode number (serial number) cannot be
represented correctly in the structure pointed to by the buffer parameter.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), link(2), lstat(2), lstat64(2), mknod(2), open(2),
open64(2), pipe(2), setfilepriv(2), utime(2).

Miscellaneous Topics: acl(5).

527186-023 Hewlett-Packard Company 7−503

stat(2) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• For files other than regular disk files or symbolic links, the st_size field of the stat struc-
ture is set to 0 (zero). For directories, st_size is set to 4096.

• The S_IRWXU, S_IRWXG, S_IRWXO, S_IFMT, S_ISVTX, S_ISGID, and S_ISUID
bits are ORed into the st_mode field of the stat structure.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [EFAULT], [EFSBAD], [ENOROOT], [ENOTSUP], [ENXIO], and
[EOSSNOTRUNNING] can be returned by the stat() function.

7−504 Hewlett-Packard Company 527186-023

System Functions (s and S) stat64(2)

NAME
stat64 - Provides information about a file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series and J-series native Guardian processes: implicit libraries
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>

int stat64(
const char *path,
struct stat64 *buffer);

PARAMETERS
path Points to the pathname identifying the file.

buffer Points to a stat64 structure, into which information is placed about the file. The
stat64 structure is described in the sys/stat.h header file.

DESCRIPTION
The stat64() function is similar to the stat() function except that, in addition to supporting
smaller files, the stat64() function supports files larger than approximately 2 gigabytes.

An application can explicitly call this function when you compile the application using the
#define _LARGEFILE64_SOURCE 1 feature test macro or an equivalent compiler command
option.

An application call to stat() is automatically mapped to this function you compile the application
using the #define _FILE_OFFSET_BITS 64 feature test macro or an equivalent compiler com-
mand option.

The stat64() function obtains information about the file whose name is pointed to by the path
parameter. Read, write, or execute permission for the named file is not required, but all direc-
tories listed in the pathname leading to the file must be searchable.

527186-023 Hewlett-Packard Company 7−505

stat64(2) OSS System Calls Reference Manual

The file information is written to the area specified by the buffer parameter, which is a pointer to
a stat64 structure. For J06.11 and later J-series RVUs and H06.22 and later H-series RVUs, the
stat64 structure uses this definition from the sys/stat.h header file:

struct stat64 {
dev_t st_dev;
ino64_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:7;
unsigned int st_fileprivs:8; /* File privileges */
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
off64_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
mode_t st_basemode; /* Permissions with original group perms */
int64_t reserved[3];

};

For J06.10 and earlier J-series RVUs and H06.21 and earlier H-series RVUs, the stat64 structure
uses this definition from the sys/stat.h header file:

struct stat64 {
dev_t st_dev;
ino64_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
unsigned int st_acl:1;
unsigned int __filler_1:15;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
off64_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
mode_t st_basemode; /* Permissions with original group perms */
int64_t reserved[3];

};

For a regular file, the stat64() function sets the st_size field of the stat64 structure to the length
of the file and sets the st_mode field to indicate the file type. For a symbolic link, the stat64()
function returns information about the file at the end of the link; no information about the link is
returned. (For information about the link, use the lstat64() function.)

The stat64() function updates any time-related fields associated with the file before writing into
the stat64 structure, unless it is a read-only fileset. Time-related fields are not updated for read-
only OSS filesets.

The fields in the stat64 structure have these meanings and content:

7−506 Hewlett-Packard Company 527186-023

System Functions (s and S) stat64(2)

st_dev OSS device identifier for a fileset.

Values for local OSS objects are listed next. Values for local Guardian objects
are described in Use on Guardian Objects, and values for remote Guardian or
OSS objects are described in Use on Remote Objects, later in this reference
page.

For Contains

Regular file ID of device containing directory entry
Directory ID of device containing directory
FIFO ID of special fileset for pipes
AF_UNIX socket ID of device containing the fileset in which

the socket file was created
/dev/null ID of device containing directory entry
/dev/tty ID of device containing directory entry

st_ino File serial number (inode number). The file serial number and OSS device
identifier uniquely identify a regular OSS file within an OSS fileset.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file File serial number (unique)
Directory File serial number (unique)
FIFO File serial number (unique)
AF_UNIX socket File serial number of the socket file

(unique)
/dev/null File serial number (unique)
/dev/tty File serial number (unique)

The st_ino value for all node entries in /E (including the entry for the logical
link from the local node name to the root fileset on the local node) is the value
for the root fileset on the corresponding node. If normal conventions are fol-
lowed, this value is always 0 (zero), so entries in /E appear to be nonunique.
Values for objects on remote nodes are unique only among the values for objects
within the same fileset on that node.

st_mode File mode. These bits are ORed into the st_mode field:

S_IFMT File type. This field can contain one of these values:

S_IFCHR Character special file.

S_IFDIR Directory.

S_IFIFO FIFO.

S_IFREG Regular file.

S_IFSOCK Socket.

For an AF_UNIX socket, the user permissions
from the inode for the socket are returned for the
permission bits. The access flags are also

527186-023 Hewlett-Packard Company 7−507

stat64(2) OSS System Calls Reference Manual

returned from the inode.

S_IRWXG Permissions for the owning group, or if the st_acl flag is set, per-
missions for the the class ACL entry.

S_IRWXO Other class

S_IRWXU Owner class

S_ISGID Set group ID on execution

S_ISUID Set user ID on execution

S_ISVTX Sticky bit; used only for directories (not ORed for files in /G, the
Guardian file system)

S_TRUST Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers when the
memory segment containing the buffers is not shared. This flag
applies only to loadfiles for a process and only a user with
appropriate privileges (the super ID) can set it.

S_TRUSTSHARED
Indicates that the file does not contain code for an uncooperative
process or code to examine or modify I/O buffers. This flag
suppresses operating system protection of the buffers regardless
of whether the memory segment containing the buffers is shared.
This flag applies only to loadfiles for a process and only a user
with appropriate privileges (the super ID) can set it.

Values for Guardian objects are described in Use on Guardian Objects, later in
this reference page.

st_nlink Number of links.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Number of links to the file
Directory Number of links to the directory
FIFO Number of links to the file
AF_UNIX socket Number of links to the socket file
/dev/null Number of links to the file
/dev/tty Number of links to the file

st_acl If set to 1, indicates that the file has optional access control list (ACL) entries.
For compatibility with HP-UX, the member name st_aclv is provided as alias for
st_acl. For more information about ACLs, see the acl(5) reference page.

st_fileprivs File privileges. For information about file privileges see the setfilepriv(2) refer-
ence page.

7−508 Hewlett-Packard Company 527186-023

System Functions (s and S) stat64(2)

st_uid User ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file User ID of the file owner
Directory User ID of the file owner
FIFO User ID of the file owner
AF_UNIX socket User ID of the creator of the socket file
/dev/null User ID of the super ID
/dev/tty User ID of the super ID

st_gid Group ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Group ID of the file group
Directory Group ID of the file group
FIFO Group ID of the file group
AF_UNIX socket Group ID of the creator of the socket file
/dev/null Group ID of the super ID
/dev/tty Group ID of the super ID

st_basemode If the st_acl flag is set, contains the permissions for the file owner, owning
group, and others. If the st_acl flag is not set, st_basemode is 0 (zero).

st_rdev Remote device ID.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Undefined
Directory Undefined
FIFO Undefined
AF_UNIX socket 0 (zero)
/dev/null Undefined
/dev/tty ID of the device

st_size File size.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

527186-023 Hewlett-Packard Company 7−509

stat64(2) OSS System Calls Reference Manual

For Contains

Regular file Size of the file in bytes
Directory 4096
FIFO 0 (zero)
AF_UNIX socket 0 (zero)
/dev/null 0 (zero)
/dev/tty 0 (zero)

st_atime Access time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last access
Directory Time of the last access
FIFO Time of the last access
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_mtime Modification time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

For Contains

Regular file Time of the last data modification
Directory Time of the last modification
FIFO Time of the last data modification
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

st_ctime Status change time.

Values for OSS objects are listed next. Values for Guardian objects are
described in Use on Guardian Objects, later in this reference page.

7−510 Hewlett-Packard Company 527186-023

System Functions (s and S) stat64(2)

For Contains

Regular file Time of the last file status change
Directory Time of the last file status change
FIFO Time of the last file status change
AF_UNIX socket Value retrieved from the inode
/dev/null Current time
/dev/tty Composite value of the times of all openers

of the file

For the /E entry of the local node, the value is the time of the most recent mount-
ing of the root fileset.

Use on Guardian Objects
The st_dev and st_ino fields of the stat64 structure do not uniquely identify Guardian files (files
in /G).

The st_dev field is unique for /G, for each disk volume and for each Telserv process (or other
process of subdevice type 30), because each of these is a separate fileset.

The S_ISGUARDIANOBJECT macro can indicate whether an object is a Guardian object
when the st_dev field is passed to the macro. The value of the macro is TRUE if the object is a
Guardian object and FALSE otherwise.

The st_ino field is a nonunique encoding of the Guardian filename.

The st_rdev field contains a unique minor device number for each ptyn entry in /G/ztnt/,
representing each Telserv process subdevice.

The st_size field of an EDIT file (file code 101) is the actual (physical) end of file, not the number
of bytes in the file. For directories, st_size is set to 4096.

When an OSS function is called for a Guardian EDIT file, the st_mtime field is set to the last
modification time. The st_atime field indicates the last time the file was opened, and the
st_ctime field is set equal to st_mtime. No other time-related fields are updated by OSS function
calls.

The st_ctime and st_atime fields for Guardian regular disk files (except for EDIT files) are
updated by OSS function calls, not by Guardian procedure calls.

The time fields for /G, /G/vol, and /G/vol/subvol always contain the current time.

When the path parameter points to the name of a Guardian process that is not a process of sub-
type 30, the stat64() function call fails. The value -1 is returned, and errno is set to [ENOENT].

The stat64() function always returns access modes of "d---------" when the path parameter points
to a Guardian subvolume that has a reserved name beginning with ZYQ. The other access modes
reported for files in /G vary according to the file type.

The next table shows the mapping between Guardian files and their corresponding file types
described in the st_mode field.

527186-023 Hewlett-Packard Company 7−511

stat64(2) OSS System Calls Reference Manual

Guardian st_mode
Example in /G File Type File Type Permissions___

N/A Directory r-xr-xr-x/G
vol Disk volume Directory rwxrwxrwx
vol/subvol Subvolume Directory rwxrwxrwx
vol/subvol/fileid Disk file Regular file See following text
vol/#123 Temporary disk file Regular file See following text
ztnt Subtype 30 process Directory --x--x--x
ztnt/#pty0001 Subtype 30 process

with qualifier
Character special rw-rw-rw-

vol1/zyq00001 Subvolume Directory ---------

A Guardian file classified as a directory is always owned by the super ID.

Guardian permissions are mapped as follows:

• Guardian network or any user permission is mapped to OSS other permission.

• Guardian community or group user permission is mapped to OSS group permission.

• Guardian user or owner permission is mapped to OSS owner permission.

• Guardian super ID permission is mapped to OSS super ID permission.

• Guardian read permission is mapped to OSS read permission.

• Guardian write permission is mapped to OSS write permission.

• Guardian execute permission is mapped to OSS execute permission.

• Guardian purge permission is ignored.

Users are not allowed read access to Guardian processes.

OSS file permissions are divided into three groups (owner, group, and other) of three permission
bits each (read, write, and execute). The OSS permission bits do not distinguish between remote
and local users as Guardian security does; local and remote users are treated alike.

Use on Remote Objects
The content of the st_dev field of the stat64 structure is unique for each node in /E because each
of these is a separate fileset. Values for directories within /E are the same as described for
objects on the local HP NonStop node.

The S_ISEXPANDOBJECT macro can indicate whether an object in the /E directory is on a
remote HP NonStop node when the st_dev field is passed to the macro. The value of the macro
is TRUE if the object is on a remote HP NonStop node and FALSE otherwise.

Use From the Guardian Environment
The stat64() function belongs to a set of functions that have these effects when the first of them
is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. You cannot close these
file numbers by calling the Guardian FILE_CLOSE_ procedure.

7−512 Hewlett-Packard Company 527186-023

System Functions (s and S) stat64(2)

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
For J06.08 and earlier J-series RVUs, H06.19 and earlier H-series RVUs, or G-series RVUs, the
OSS Network File System (NFS) cannot access OSS objects that have OSS ACLs that contain
optional ACL entries.

For J06.09 and later J-series RVUs and H06.20 and later H-series RVUs, access by the OSS Net-
work File System (NFS) to OSS objects that have OSS ACLs that contain optional ACL entries
can be allowed, depending upon the NFSPERMMAP attribute value for the fileset that contains
the object. For more information about NFS and ACLs, see the acl(5) reference page.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the stat64() function sets errno to the corresponding value:

[EACCES] Search permission is denied for a component of the pathname pointed to by the
path parameter.

[EFAULT] Either the buffer parameter or the path parameter points to a location outside of
the allocated address space of the process.

[EFSBAD] The program attempted an operation involving a fileset with a corrupted fileset
catalog.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of these conditions exists:

• The file specified by the path parameter does not exist.

527186-023 Hewlett-Packard Company 7−513

stat64(2) OSS System Calls Reference Manual

• The path parameter points to an empty string.

• The specified pathname cannot be mapped to a valid Guardian filename.

• The specified pathname points to the name of a Guardian process that is
not of subtype 30.

• The path parameter specifies a file on a remote HP NonStop node, but
communication with the remote node has been lost.

[ENOROOT] One of these conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node, and communication
with the remote name server has been lost.

[ENOTDIR] A component of the pathname specified by the path parameter is not a directory.

[ENOTSUP] The path parameter refers to a file on a logical disk volume administered
through the Storage Management Foundation (SMF).

[ENXIO] An invalid device or address was specified during an input or output operation
on a special file. One of these events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server process until the fileset has been repaired and
remounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
For more information about a specific Guardian file-system error, see the Guardian Procedure
Errors and Messages Manual.

RELATED INFORMATION
Commands: getacl(1), setacl(1).

Functions: acl(2), chmod(2), chown(2), link(2), lstat(2), lstat64(2), mknod(2), open(2),
open64(2), pipe(2), utime(2).

Miscellaneous Topics: acl(5).

STANDARDS CONFORMANCE
This function is an HP extension to the XPG4 Version 2 specification.

7−514 Hewlett-Packard Company 527186-023

System Functions (s and S) statvfs(2)

NAME
statvfs - Gets fileset information using a pathname

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/statvfs.h>

int statvfs(
const char *path,
struct statvfs *buffer);

PARAMETERS
path Is a pathname that specifies any file within a mounted fileset.

buffer Points to a statvfs structure that is to hold the returned information for the
statvfs() call.

DESCRIPTION
The statvfs() function returns descriptive information about a mounted fileset. The information is
returned in a statvfs structure, which has the following definition from the sys/statvfs.h header
file:

typedef struct statvfs {
u_long f_bsize;
u_long f_frsize;
fsblkcnt_t f_blocks;
fsblkcnt_t f_bfree;
fsblkcnt_t f_bavail;
fsfilcnt_t f_files;
fsfilcnt_t f_ffree;
fsfilcnt_t f_favail;
u_long f_fsid;
char f_basetype[FSTYPSZ];
u_long f_flag;
u_long f_namemax;
char f_fstr[32];
fsblkcnt_t f_bminavail;
fsblkcnt_t f_bmaxavail;
u_long f_filler[5];

} statvfs_t;

The fields in this structure have the following meanings and content:

f_bsize Fileset block size.

527186-023 Hewlett-Packard Company 7−515

statvfs(2) OSS System Calls Reference Manual

For Contains

Regular file 4096
Directory 4096
FIFO 4096
AF_UNIX socket 4096
/dev/null 4096
Object in /G 4096
/G 4096
/G/ztnt/#ptynn 4096
/E 4096

f_frsize Fundamental file system block size.

For Contains

Regular file 4096
Directory 4096
FIFO 4096
AF_UNIX socket 4096
/dev/null 4096
Object in /G 4096
/G 4096
/G/ztnt/#ptynn 4096
/E 4096

f_blocks Total number of blocks in fileset, in units of f_frsize.

For Contains

Regular file Number of blocks on all volumes ever used
in the fileset.

Directory Number of blocks on all volumes ever used
in the fileset.

FIFO Number of blocks on all volumes ever used
in the fileset.

AF_UNIX socket Number of blocks on all volumes ever used
in the fileset.

/dev/null Number of blocks on all volumes ever used
in the fileset.

Object in /G Number of blocks on the volume contain-
ing the object.

/G 0
/G/ztnt/#ptynn 0
/E 0

7−516 Hewlett-Packard Company 527186-023

System Functions (s and S) statvfs(2)

f_bfree Total number of free blocks in fileset.

For Contains

Regular file Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Directory Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

FIFO Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

AF_UNIX socket Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

/dev/null Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Object in /G Number of free blocks in the volume con-
taining the object.

/G 0
/G/ztnt/#ptynn 0
/E 0

f_bavail Number of free blocks available to a process without appropriate privileges.

For Contains

Regular file Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Directory Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

FIFO Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

AF_UNIX socket Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

/dev/null Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Object in /G Number of free blocks in the volume con-
taining the object.

/G 0
/G/ztnt/#ptynn 0

527186-023 Hewlett-Packard Company 7−517

statvfs(2) OSS System Calls Reference Manual

/E 0

f_files Total number of file serial numbers (inode numbers) in the fileset.

For Contains

Regular file Number of inode numbers in the fileset.
Directory Number of inode numbers in the fileset.
FIFO Number of inode numbers in the fileset.
AF_UNIX socket Number of inode numbers in the fileset.
/dev/null Number of inode numbers in the fileset.
Object in /G The value of ULONG_MAX.
/G 0
/G/ztnt/#ptynn 0
/E 0

f_ffree Total number of free file serial numbers (inode numbers) in the fileset.

For Contains

Regular file Number of free inode numbers in the
fileset.

Directory Number of free inode numbers in the
fileset.

FIFO Number of free inode numbers in the
fileset.

AF_UNIX socket Number of free inode numbers in the
fileset.

/dev/null Number of free inode numbers in the
fileset.

Object in /G The value of ULONG_MAX.
/G 0
/G/ztnt/#ptynn 0
/E 0

f_favail Number of file serial numbers (inode numbers) available to a process without
appropriate privileges.

For Contains

Regular file Number of free inode numbers in the
fileset.

Directory Number of free inode numbers in the
fileset.

FIFO Number of free inode numbers in the
fileset.

AF_UNIX socket Number of free inode numbers in the
fileset.

7−518 Hewlett-Packard Company 527186-023

System Functions (s and S) statvfs(2)

/dev/null Number of free inode numbers in the
fileset.

Object in /G The value of ULONG_MAX.
/G 0
/G/ztnt/#ptynn 0
/E 0

f_fsid Fileset identifier.

For Contains

Regular file Lower 32 bits of the st_dev field in the stat
structure.

Directory Lower 32 bits of the st_dev field in the stat
structure.

FIFO Lower 32 bits of the st_dev field in the stat
structure.

AF_UNIX socket Lower 32 bits of the st_dev field in the stat
structure.

/dev/null Lower 32 bits of the st_dev field in the stat
structure.

Object in /G Lower 32 bits of the st_dev field in the stat
structure.

/G Lower 32 bits of the st_dev field in the stat
structure.

/G/ztnt/#ptynn Lower 32 bits of the st_dev field in the stat
structure.

/E Lower 32 bits of the st_dev field in the stat
structure.

f_basetype Type of file system.

For Contains

Regular file OSS
Directory OSS
FIFO OSS
AF_UNIX socket OSS
/dev/null OSS
Object in /G GUARDIAN
/G GUARDIAN
/G/ztnt/#ptynn GUARDIAN
/E EXPAND

527186-023 Hewlett-Packard Company 7−519

statvfs(2) OSS System Calls Reference Manual

f_flag Bit mask indicating type of fileset access allowed.

For Contains

Regular file 4 if fileset is read/write, 5 if fileset is read-
only.

Directory 4 if fileset is read/write, 5 if fileset is read-
only.

FIFO 4 if fileset is read/write, 5 if fileset is read-
only.

AF_UNIX socket 4 if fileset is read/write, 5 if fileset is read-
only.

/dev/null 4 if fileset is read/write, 5 if fileset is read-
only.

Object in /G 2
/G 3
/G/ztnt/#ptynn 2
/E 3

You can test the content of the f_flag field with the following symbolic values:

ST_NOSUID This bit flag is set if the fileset does not allow the setuid bit to be
set for its member files.

ST_NOTRUNC
This bit flag is set if the fileset does not truncate filenames.

ST_RDONLY This bit flag is set if the fileset is mounted for read-only access.

f_namemax Maximum number of character bytes in a filename within the fileset.

For Contains

Regular file 248
Directory 248
FIFO 248
AF_UNIX socket 248
/dev/null 248
Object in /G 8
/G 7
/G/ztnt/#ptynn 7
/E 7

f_fstr Fileset pathname prefix string.

7−520 Hewlett-Packard Company 527186-023

System Functions (s and S) statvfs(2)

For Contains

Regular file /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

Directory /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

FIFO /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

AF_UNIX socket /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

/dev/null /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

Object in /G /E/nodename/G/volume, identifying the
disk volume containing the specified file.

/G /E/nodename/G
/G/ztnt/#ptynn /E/nodename/G
/E /E

f_bminavail Number of blocks free on the disk volume with the least space remaining.

For Contains

Regular file Number of blocks.
Directory Number of blocks.
FIFO Number of blocks.
AF_UNIX socket Number of blocks.
/dev/null Number of blocks.
Object in /G Number of blocks.
/G 0
/G/ztnt/#ptynn 0
/E 0

f_bmaxavail Number of blocks free on the disk volume with the most space remaining.

527186-023 Hewlett-Packard Company 7−521

statvfs(2) OSS System Calls Reference Manual

For Contains

Regular file Number of blocks.
Directory Number of blocks.
FIFO Number of blocks.
AF_UNIX socket Number of blocks.
/dev/null Number of blocks.
Object in /G Number of blocks.
/G 0
/G/ztnt/#ptynn 0
/E 0

Use From the Guardian Environment
The statvfs() function is one of a set of functions that have the following effects when the first of
them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. You cannot close these
file numbers by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
This function provides compatibility with the System V Interface Definition, Revision 3.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the statvfs() function returns the value 0 (zero). Otherwise, it
returns the value -1 and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the statvfs() function sets errno to the corresponding value:

[EACCES] Search permission is denied for a component of the path prefix of the path
parameter.

[EFAULT] The buffer or path parameter points to a location outside of the allocated address
space of the process.

[EINTR] The function was interrupted by a signal before any data arrived.

[EIO] One of the following conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

7−522 Hewlett-Packard Company 527186-023

System Functions (s and S) statvfs(2)

• A physical I/O error has occurred. The device holding the file might be
in the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[ELOOP] Too many symbolic links were encountered in translating the path parameter.

[ENAMETOOLONG]
One of these names is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

You can call the pathconf() function to obtain the applicable limits.

[ENOENT] The file referred to by the path parameter does not exist.

[ENOTDIR] A component of the path prefix of the path parameter is not a directory.

[EOVERFLOW]
One of the values returned cannot be represented correctly in the structure
pointed to by the buffer parameter.

RELATED INFORMATION
Functions: fstat(2), fstatvfs(2), lstat(2), stat(2), statvfs64(2).

527186-023 Hewlett-Packard Company 7−523

statvfs64(2) OSS System Calls Reference Manual

NAME
statvfs64 - Gets fileset information using a pathname

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/statvfs.h>

int statvfs64(
const char *path,
struct statvfs64 *buffer);

PARAMETERS
path Is a pathname that specifies any file within a mounted fileset.

buffer Points to a statvfs64 structure that is to hold the returned information for the
statvfs64() call.

DESCRIPTION
The statvfs64() function is similar to the statvfs() function except that, in addition to supporting
smaller files, the statvfs64() function supports files larger than approximately 2 gigabytes.

An application can explicitly call this function when you compile the application using the
#define _LARGEFILE64_SOURCE 1 feature test macro or an equivalent compiler command
option.

An application call to creat() is automatically mapped to this function when you compile the
application using the #define _FILE_OFFSET_BITS 64 feature test macro or an equivalent
compiler command option.

The statvfs64() function returns descriptive information about a mounted fileset. The informa-
tion is returned in a statvfs64 structure, which has the following definition from the sys/statvfs.h
header file:

typedef struct statvfs64 {
unsigned long f_bsize;
unsigned long f_frsize;
unsigned long long f_blocks;
unsigned long long f_bfree;
unsigned long long f_bavail;
unsigned long long f_files;
unsigned long long f_ffree;
unsigned long long f_favail;
unsigned long f_fsid;
char f_basetype[FSTYPSZ];
unsigned long f_flag;
unsigned long f_namemax;
char f_fstr[32];
unsigned long f_bminavail;
unsigned long f_bmaxavail;
unsigned long f_filler[5];

} statvfs64_t;

7−524 Hewlett-Packard Company 527186-023

System Functions (s and S) statvfs64(2)

The fields in this structure have the following meanings and content:

f_bsize Fileset block size.

For Contains

Regular file 4096
Directory 4096
FIFO 4096
AF_UNIX socket 4096
/dev/null 4096
Object in /G 4096
/G 4096
/G/ztnt/#ptynn 4096
/E 4096

f_frsize Fundamental file system block size.

For Contains

Regular file 4096
Directory 4096
FIFO 4096
AF_UNIX socket 4096
/dev/null 4096
Object in /G 4096
/G 4096
/G/ztnt/#ptynn 4096
/E 4096

f_blocks Total number of blocks in fileset, in units of f_frsize.

For Contains

Regular file Number of blocks on all volumes ever used
in the fileset.

Directory Number of blocks on all volumes ever used
in the fileset.

FIFO Number of blocks on all volumes ever used
in the fileset.

AF_UNIX socket Number of blocks on all volumes ever used
in the fileset.

/dev/null Number of blocks on all volumes ever used
in the fileset.

Object in /G Number of blocks on the volume contain-
ing the object.

/G 0
/G/ztnt/#ptynn 0

527186-023 Hewlett-Packard Company 7−525

statvfs64(2) OSS System Calls Reference Manual

/E 0

f_bfree Total number of free blocks in fileset.

For Contains

Regular file Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Directory Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

FIFO Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

AF_UNIX socket Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

/dev/null Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Object in /G Number of free blocks in the volume con-
taining the object.

/G 0
/G/ztnt/#ptynn 0
/E 0

f_bavail Number of free blocks available to a process without appropriate privileges.

For Contains

Regular file Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Directory Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

FIFO Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

AF_UNIX socket Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

/dev/null Number of free blocks on all volumes
currently in the storage-pool file for the
fileset.

Object in /G Number of free blocks in the volume con-
taining the object.

/G 0

7−526 Hewlett-Packard Company 527186-023

System Functions (s and S) statvfs64(2)

/G/ztnt/#ptynn 0
/E 0

f_files Total number of file serial numbers (inode numbers) in the fileset.

For Contains

Regular file Number of inode numbers in the fileset.
Directory Number of inode numbers in the fileset.
FIFO Number of inode numbers in the fileset.
AF_UNIX socket Number of inode numbers in the fileset.
/dev/null Number of inode numbers in the fileset.
Object in /G The value of ULONG_MAX.
/G 0
/G/ztnt/#ptynn 0
/E 0

f_ffree Total number of free file serial numbers (inode numbers) in the fileset.

For Contains

Regular file Number of free inode numbers in the
fileset.

Directory Number of free inode numbers in the
fileset.

FIFO Number of free inode numbers in the
fileset.

AF_UNIX socket Number of free inode numbers in the
fileset.

/dev/null Number of free inode numbers in the
fileset.

Object in /G The value of ULONG_MAX.
/G 0
/G/ztnt/#ptynn 0
/E 0

f_favail Number of file serial numbers (inode numbers) available to a process without
appropriate privileges.

For Contains

Regular file Number of free inode numbers in the
fileset.

Directory Number of free inode numbers in the
fileset.

FIFO Number of free inode numbers in the
fileset.

AF_UNIX socket Number of free inode numbers in the
fileset.

527186-023 Hewlett-Packard Company 7−527

statvfs64(2) OSS System Calls Reference Manual

/dev/null Number of free inode numbers in the
fileset.

Object in /G The value of ULONG_MAX.
/G 0
/G/ztnt/#ptynn 0
/E 0

f_fsid Fileset identifier.

For Contains

Regular file Lower 32 bits of the st_dev field in the stat
structure.

Directory Lower 32 bits of the st_dev field in the stat
structure.

FIFO Lower 32 bits of the st_dev field in the stat
structure.

AF_UNIX socket Lower 32 bits of the st_dev field in the stat
structure.

/dev/null Lower 32 bits of the st_dev field in the stat
structure.

Object in /G Lower 32 bits of the st_dev field in the stat
structure.

/G Lower 32 bits of the st_dev field in the stat
structure.

/G/ztnt/#ptynn Lower 32 bits of the st_dev field in the stat
structure.

/E Lower 32 bits of the st_dev field in the stat
structure.

f_basetype Type of file system.

For Contains

Regular file OSS
Directory OSS
FIFO OSS
AF_UNIX socket OSS
/dev/null OSS
Object in /G GUARDIAN
/G GUARDIAN
/G/ztnt/#ptynn GUARDIAN
/E EXPAND

7−528 Hewlett-Packard Company 527186-023

System Functions (s and S) statvfs64(2)

f_flag Bit mask indicating type of fileset access allowed.

For Contains

Regular file 4 if fileset is read/write, 5 if fileset is read-
only.

Directory 4 if fileset is read/write, 5 if fileset is read-
only.

FIFO 4 if fileset is read/write, 5 if fileset is read-
only.

AF_UNIX socket 4 if fileset is read/write, 5 if fileset is read-
only.

/dev/null 4 if fileset is read/write, 5 if fileset is read-
only.

Object in /G 2
/G 3
/G/ztnt/#ptynn 2
/E 3

You can test the content of the f_flag field with the following symbolic values:

ST_NOSUID This bit flag is set if the fileset does not allow the setuid bit to be
set for its member files.

ST_NOTRUNC
This bit flag is set if the fileset does not truncate filenames.

ST_RDONLY This bit flag is set if the fileset is mounted for read-only access.

f_namemax Maximum number of character bytes in a filename within the fileset.

For Contains

Regular file 248
Directory 248
FIFO 248
AF_UNIX socket 248
/dev/null 248
Object in /G 8
/G 7
/G/ztnt/#ptynn 7
/E 7

f_fstr Fileset pathname prefix string.

527186-023 Hewlett-Packard Company 7−529

statvfs64(2) OSS System Calls Reference Manual

For Contains

Regular file /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

Directory /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

FIFO /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

AF_UNIX socket /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

/dev/null /E/nodename/G/volume/ZXnnnnnn n,
identifying the catalog file and version for
the specified file.

Object in /G /E/nodename/G/volume, identifying the
disk volume containing the specified file.

/G /E/nodename/G
/G/ztnt/#ptynn /E/nodename/G
/E /E

f_bminavail Number of blocks free on the disk volume with the least space remaining.

For Contains

Regular file Number of blocks.
Directory Number of blocks.
FIFO Number of blocks.
AF_UNIX socket Number of blocks.
/dev/null Number of blocks.
Object in /G Number of blocks.
/G 0
/G/ztnt/#ptynn 0
/E 0

f_bmaxavail Number of blocks free on the disk volume with the most space remaining.

7−530 Hewlett-Packard Company 527186-023

System Functions (s and S) statvfs64(2)

For Contains

Regular file Number of blocks.
Directory Number of blocks.
FIFO Number of blocks.
AF_UNIX socket Number of blocks.
/dev/null Number of blocks.
Object in /G Number of blocks.
/G 0
/G/ztnt/#ptynn 0
/E 0

Use From the Guardian Environment
The statvfs64() function is one of a set of functions that have the following effects when the first
of them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. You cannot close these
file numbers by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
This function provides compatibility with the System V Interface Definition, Revision 3.

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the statvfs64() function returns the value 0 (zero). Otherwise, it
returns the value -1 and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the statvfs64() function sets errno to the corresponding value:

[EACCES] Search permission is denied for a component of the path prefix of the path
parameter.

[EFAULT] The buffer or path parameter points to a location outside of the allocated address
space of the process.

[EINTR] The function was interrupted by a signal before any data arrived.

[EIO] One of the following conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

527186-023 Hewlett-Packard Company 7−531

statvfs64(2) OSS System Calls Reference Manual

• A physical I/O error has occurred. The device holding the file might be
in the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[ELOOP] Too many symbolic links were encountered in translating the path parameter.

[ENAMETOOLONG]
One of these names is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

You can call the pathconf() function to obtain the applicable limits.

[ENOENT] The file referred to by the path parameter does not exist.

[ENOTDIR] A component of the path prefix of the path parameter is not a directory.

RELATED INFORMATION
Functions: fstat(2), fstat64(2), fstatvfs(2), fstatvfs64(2), lstat(2), lstat64(2), stat(2), stat64(2).

STANDARDS CONFORMANCE
This function is an HP extension to the XPG4 Version 2 specification.

7−532 Hewlett-Packard Company 527186-023

System Functions (s and S) symlink(2)

NAME
symlink - Creates a symbolic link to a file

LIBRARY
G-series native Guardian processes: system library
G-series native OSS processes: system library
H-series native Guardian processes: implicit libraries
H-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int symlink(
const char *path1,
const char *path2);

PARAMETERS
path1 Specifies the file for which the symbolic link must be created. The file named by

the path1 parameter does not need to exist when the link is created. The path1
parameter can refer to a symbolic link.

path2 Names the symbolic link to be created. An error is returned if the symbolic link
named by the path2 parameter already exists.

DESCRIPTION
The symlink() function creates a symbolic link with the name specified by the path2 parameter,
which refers to the file named by the path1 parameter.

Like a hard link (described in the link(2) reference page), a symbolic link allows a file to have
multiple names. The presence of a hard link guarantees the existence of a file, even after the ori-
ginal name has been removed; a symbolic link provides no such guarantee. Unlike hard links, a
symbolic link can cross fileset boundaries.

When a component of a pathname refers to a symbolic link rather than a directory, the pathname
contained in the symbolic link is resolved. If the pathname in the symbolic link starts with a
slash (/) character, the symbolic link pathname is resolved relative to the root directory of the
process. If the pathname in the symbolic link does not start with a slash (/) character, the sym-
bolic link pathname is resolved relative to the directory that contains the symbolic link.

If the symbolic link is not the last component of the original pathname, the remaining com-
ponents of the original pathname are appended to the contents of the link and pathname resolu-
tion continues.

The symbolic link pathname may or may not be traversed, depending on which function is being
performed. Most functions traverse the link.

The functions that refer only to the symbolic link itself, rather than to the object to which the link
refers, are as follows:

link() An error is returned if a symbolic link is named by the path2 parameter.

lstat() If the file specified is a symbolic link, the status of the link itself is returned.

mknod() An error is returned if a symbolic link is named as the path parameter.

open() An error is returned when O_CREAT and O_EXCL are both specified and the
path parameter specifies an existing symbolic link.

527186-023 Hewlett-Packard Company 7−533

symlink(2) OSS System Calls Reference Manual

readlink() This function applies only to symbolic links.

remove() A symbolic link can be removed by invoking the remove() function.

rename() If the file to be renamed is a symbolic link, the symbolic link is renamed. If the
new name refers to an existing symbolic link, the symbolic link is destroyed.

rmdir() An error is returned if a symbolic link is named as the path parameter.

unlink() A symbolic link can be removed by invoking unlink().

Execute (search) permission for the directories within a symbolic link are required to traverse the
resolved pathname. Normal permission checks are made on each component of the symbolic link
pathname during its resolution.

Use on Guardian Objects
The symlink() function can be used to create a symbolic link between an OSS fileset and an
object in the Guardian file system (/G). Symbolic links cannot be created in /G.

Use From the Guardian Environment
The symlink() function can be used by a Guardian process when the process has been compiled
using the #define _XOPEN_SOURCE_EXTENDED 1 feature-test macro or an equivalent com-
piler command option.

The symlink() function is one of a set of functions that have the following effects when the first
of them is called from the Guardian environment:

• Two Guardian file-system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
An absolute pathname that includes a symbolic link for an OSS file on a remote HP NonStop
node is expanded relative to the root fileset of the remote node. For example, if path1 is specified
as /usr/bin and path2 is specified as link, then a reference to /E/node1/link is expanded to
/E/node1/usr/bin and identifies the /usr/bin directory on the HP NonStop node named NODE1.

RETURN VALUES
Upon successful completion, the symlink() function returns the value 0 (zero). Otherwise, the
value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the symlink() function sets errno to the corresponding
value:

[EACCES] One of the following conditions exists:

• The requested operation requires writing in a directory with a mode that
denies write permission.

7−534 Hewlett-Packard Company 527186-023

System Functions (s and S) symlink(2)

• Search permission is denied on a component of path2.

[EEXIST] The path specified by the path2 parameter already exists.

[EFAULT] Either the path1 or the path2 parameter points outside the process’s allocated
address space.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EIO] An input/output error occurred during a read from or write to the fileset.

[ELOOP] Too many symbolic links were found in translating path2.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path1 or path2 parameter

• A component of the pathname pointed to by the path1 or path2 parame-
ter

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname pointed to by the path2 parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of the following conditions exists:

• A named directory does not exist.

• A specified pathname is an empty string.

• A specified pathname cannot be mapped to a valid Guardian filename.

• The path1 or path2 parameter specifies a file on a remote HP NonStop
node but communication with the remote node has been lost.

[ENOROOT] One of the following conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node and communication
with the remote name server has been lost.

[ENOSPC] The directory in which the entry for the symbolic link is being placed cannot be
extended because there is no space left on the fileset containing the directory, or
the new symbolic link cannot be created because there is no space left on the
fileset that contains the link.

[ENOTDIR] A component of path2 is not a directory.

[ENOTSUP] The fileset pointed to by the path1 parameter cannot support symbolic links.
This error is returned for files in /G and for files in D3x-series filesets.

527186-023 Hewlett-Packard Company 7−535

symlink(2) OSS System Calls Reference Manual

[ENXIO] The fileset containing the client’s working directory or effective root directory is
not mounted.

[EOSSNOTRUNNING]
The program attempted an operation on an object in the OSS environment while
a required system process was not running.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EROFS] The requested operation requires writing in a directory on a read-only fileset.

RELATED INFORMATION
Functions: link(2), lstat(2), mknod(2), readlink(2), remove(3), rename(2), rmdir(2), stat(2),
unlink(2).

Commands: ln(1).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [ENOROOT], [ENOTSUP], [ENXIO], and
[EOSSNOTRUNNING] can be returned.

7−536 Hewlett-Packard Company 527186-023

Section 8. System Functions (t)

This section contains reference pages for Open System Services (OSS) system function
calls with names that begin with t. These reference pages reside in the cat2 directory and
are sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 8−1

tdm_execve(2) OSS System Calls Reference Manual

NAME
tdm_execve - Executes a file with HP extensions

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <tdmext.h>

[extern char **environ;]

int tdm_execve(
const char ∗∗path,
char ∗∗ const argv[],
char ∗∗ const envp[],
const struct process_extension ∗∗pe_parms,
struct process_extension_results ∗∗pr_results);

PARAMETERS
**environ Points to an array of character pointers to environment strings. The environment

strings define the OSS environment for the calling process. The environ array is
terminated by a null pointer.

path Points to a null-terminated string containing a pathname that identifies the new
process image file. The pathname is absolute if it starts with a slash (/) character.
Otherwise, the pathname is relative and is resolved by prefixing the current
working directory.

argv[] Specifies an array of character pointers to null-terminated strings containing
arguments to be passed to the main function of the new program. argv[0] should
point to the null-terminated string containing the filename of the new process
image. The last member of this array must be a null pointer.

envp[] Specifies an array of character pointers to null-terminated strings that describe
the environment for the new process.

pe_parms Points to the input structure containing Guardian process attributes to be
assigned to the new process. The structure must be defined locally to match the
definition in the tdmext.h header file. The local structure must be initialized
before its first use. Initialization can be done by using the #define
DEFAULT_PROCESS_EXTENSION, as defined in the tdmext.h header file.
The initialized values can then be modified as appropriate for the call. When
this parameter contains a null pointer, the tdm_execve() function assumes
default Guardian attributes.

pr_results Points to the output structure containing optional process identification and error
information. In case of error, this structure provides additional information
including the PROCESS_LAUNCH_ procedure error and error detail. The struc-
ture must be defined locally to match the definition in the tdmext.h header file.
The local structure must be initialized before its first use. Initialization can be
done using the #define DEFAULT_PROCESS_EXTENSION_RESULTS, as
defined in the tdmext.h header file.

See the process_extension_results(5) reference page for information about the
content of the structure. The tdmext.h header file is not kept current when new
error codes are defined for process creation functions. The list of _TPC_ macros

8−2 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execve(2)

described in that reference page is not complete; for a current description of error
macros and error codes, see the Guardian header file
$SYSTEM.ZSPIDEF.ZGRDC or the summary of process-creation errors in the
Guardian Procedure Calls Reference Manual (see the table entitled "Summary
of Process Creation Errors").

DESCRIPTION
The tdm_execve() function replaces the current process image with a new process image. The
new image is constructed from a regular executable file, called a new process image file. The
new process image file is formatted as an executable text or binary file in one of the formats
recognized by the tdm_execve() function.

The tdm_execve() function is similar to the tdm_execvep() function. The main difference is the
way the pathname for the process image file is resolved. tdm_execve() always resolves relative
pathnames by using the current working directory; see Identifying the Process Image File, later
in this reference page. tdm_execvep() sometimes uses the PATH environment variable to
resolve pathnames.

A successful tdm_execve() function call does not return, because the calling process image is
overlaid by the new process image.

When a program is executed as a result of a tdm_execve() call, it is entered as a function call:

int main(
int argc,
char ∗∗argv[],
char ∗∗envp);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and the envp parameter is a pointer to a character array
listing the environment variables. The argv[] array is terminated by a null pointer. The null
pointer is not counted in argc.

The arguments specified by a program using the tdm_execve() function are passed on to the new
process image in the corresponding arguments to the main() function.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined, and errno is set to
[ENOTOSS].

Identifying the Process Image File
The tdm_execve() function uses the path parameter to identify the process image file. This
parameter points to the absolute pathname if the pathname starts with a slash (/) character. Other-
wise, the pathname is relative and is resolved by prefixing the current working directory.

Passing the Arguments
The argv[] parameter is an array of character pointers to null-terminated strings. The last
member of this array is a null pointer. These strings constitute the argument list available to the
new process image. The value in argv[0] should point to a filename that is associated with the
process being started by the tdm_execve() function.

Specifying the Environment
The envp[] parameter is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The environment array is terminated with
a null pointer.

The number of bytes available for the new process’s combined argument and environment lists
has a system-imposed limit. This limit, which includes the pointers and the null terminators on
the strings, is available by calling the sysconf(_SC_ARG_MAX) function.

527186-023 Hewlett-Packard Company 8−3

tdm_execve(2) OSS System Calls Reference Manual

Executing a Binary File
If the file specified as the new process image file is a binary executable file, the tdm_execve()
function loads the file directly.

Executing a Text File
If the file specified as the new process image file is not a binary executable file, the
tdm_execve() function examines the file to determine whether it is an executable text file. It
checks for a header line in this format:

#! interpreter_name [optional_string]

The #! notation identifies the file as an executable text file. The new process image filename is
constructed from the process image filename in the interpreter_name string, treating it like the
path parameter. The Guardian input and output structures pointed to by the pe_parms and
pr_results parameters apply to the command interpreter as they would to any process file.

The arguments passed to the new process are modified as listed:

• argv[0] is set to the name of the command interpreter.

• If the optional_string portion is present, argv[1] is set to optional_string.

• The next element of argv[] is set to the original value of path.

• The remaining elements of argv[] are set to the original elements of argv[], starting with
argv[1]. The original argv[0] is discarded.

The S_ISUID and S_ISGID mode bits of an executable text file are honored. Those bits are
ignored for the interpreter_name command interpreter.

When the File Is Invalid
If the process image file is not a valid executable object, or if the text file does not contain the
header line, the tdm_execve() function returns and sets errno to [ENOEXEC].

Open Files
File descriptors open in the calling process image remain open in the new process image, except
for those:

• Whose close-on-exec flag FD_CLOEXEC is set (see the fcntl(2) reference page)

• Opened using a Guardian function or procedure call

For a G-series TNS process image or an accelerated process image only, if the process file seg-
ment (PFS) of the new process image is smaller than the process file segment of the calling pro-
cess image and if the calling process image has a large number of file descriptors open, the sys-
tem might not be able to propagate all the open file descriptors to the new process image. When
this situation occurs, the function call fails, and errno is set to the value of [EMFILE].

For those file descriptors that remain open, all attributes of the open file descriptor, including file
locks, remain unchanged. All directory streams are closed.

Open Pipes and FIFOs
A pipe or FIFO associated with an open file descriptor in the calling process remains connected
in the new process. If the new process runs in a different processor than the calling process, the
processor that runs the new process must also be running an OSS pipe server process.

If no OSS pipe server process is running in the new processor, the new process cannot use the
pipe or FIFO; calls specifying the file descriptor for the pipe or FIFO fail with errno set to
[EWRONGID]. The new process can only close the invalid file descriptor.

8−4 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execve(2)

Existing Sockets
A socket associated with an open file descriptor in the calling process remains connected in the
new process when the new process runs in the same processor as the calling process.

When the new process runs in a different processor than the calling process, the processor that
runs the new process must also be running a socket transport agent process. If no socket tran-
sport agent process is running in the new processor, the new process cannot use the socket; calls
specifying the file descriptor for the socket fail with errno set to [EWRONGID]. The new pro-
cess can only close the invalid file descriptor.

Shared Memory
Any attached shared memory segments are detached from the new process by a successful call to
the tdm_execve() function. See the shmat(2) reference page for additional information about
shared memory segment use.

Semaphores
Semaphore set IDs attached to a calling process are also attached to the new process if the new
process executes in the same processor as the calling process. The new process also inherits the
adjust-on-exit (semadj) values of the calling process if both processes are in the same processor.

A semaphore set cannot be shared when a semadj value exists for the calling process and the
new process is created in a different processor. When that condition exists, a call to the
tdm_execve() function fails, and errno is set to [EHLDSEM].

See the semget(2) reference page for additional information about semaphore use.

Signals
Signals set to:

• The default action (SIG_DFL) in the calling process image are set to the default action
in the new process image.

• Be ignored (SIG_IGN) by the calling process image are set to be ignored by the new
process image.

• Cause abnormal termination (SIG_ABORT) in the calling process image are set to that
action in the new process image.

• Cause entry into the debugger (SIG_DEBUG) in the calling process image are set to that
action in the new process image.

• Be caught by the calling process image are set to the default action in the new process
image.

See the signal(4) reference page either online or in the Open System Services System Calls Refer-
ence Manual.

User ID and Group ID
If the set-user-ID mode bit (S_ISUID) of the new process image file is set (see the chmod(2)
reference page), the effective user ID of the new process image is set to the user ID of the owner
of the new process image file. Similarly, if the set-group-ID mode bit (S_ISGID) of the new pro-
cess image file is set, the effective group ID of the new process image is set to the group ID of the
new process image file. The real user ID, real group ID, and supplementary group IDs of the new
process image remain the same as those of the calling process image. The effective user ID and
effective group ID of the new process image are saved (as the saved-set user ID and the saved-set
group ID) for use by the setuid() function.

527186-023 Hewlett-Packard Company 8−5

tdm_execve(2) OSS System Calls Reference Manual

OSS Attributes
These OSS attributes of the calling process image are unchanged after successful completion of
the tdm_execve() function:

• OSS process ID (PID)

• Parent OSS process ID

• Process group ID

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• The time left until an alarm clock signal is posted (see the alarm(3) reference page)

• Current working directory

• Root directory

• File mode creation mask (see the umask(2) reference page)

• Process signal mask (see the sigprocmask(2) reference page)

• Pending signals (see the sigpending(2) reference page)

• The tms_utime, tms_stime, tms_cutime, and tms_cstime fields of the tms structure

• File size limit (see the ulimit(2) reference page)

Upon successful completion, the tdm_execve() function marks the st_atime field of the file for
update.

The POSIX.1 standard does not specify the effect on the st_atime field when the tdm_execve()
function call fails but does find the file. Neither does the HP implementation guarantee the out-
come. Under these circumstances, this field should not be used for further processing.

Default Guardian Attributes
If the pe_parms parameter contains a null pointer, the newly created OSS process retains all
these default Guardian attributes of the process that calls the tdm_execve() function:

• Priority

• Processor on which the process executes

• Home terminal

• Job ID

• DEFINE mode switch

• Process access ID (PAID), unless the S_ISUID mode bit of the new process image file is
set

8−6 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execve(2)

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Login, remote login, and saveabend flags

• File creation mask

If the pe_parms parameter contains a null pointer, the default Guardian attributes of the new pro-
cess that differ from those of the calling process are:

• The program file is the file specified in the tdm_execve() call.

• The library file is specified in the program file.

• The process name for the new process is system-generated if the RUNNAMED option is
set in the program file. Otherwise the process is unnamed.

• The size of the data segment of the new process is set in the program file.

• The remote login flag (PCBREMID) is set to zero (off) if the program file has its
S_ISUID mode bit set. Otherwise, the remote login flag is set the same as for the caller.

• The size of the extended data segment of the new process is set in the program file.

• The DEFINEs inherited by the new process depend on the setting of DEFINE mode in
the caller. If DEFINE mode in the caller is ON, all the caller’s DEFINEs are inherited. If
DEFINE mode is OFF, no DEFINEs are inherited.

• The new process does not inherit the extended swap file (if any) of the calling process.
For a G-series TNS process or an accelerated process, the extended data segment is
managed by the Kernel Managed Storage Facility (KMSF) unless an extended swap file
is specified in the pe_extswap_file_name field of the process_extension structure
described elsewhere in this reference page.

• The process identification number (PIN) of the new process is unrelated to that of the
calling process. Usually, the PIN of the new process is unrestricted. However, the PIN
can be restricted to the range 0 through 254 under the following conditions:

— The HIGHPIN flag is not set in, or is absent from, the program file or any library
file.

— _TPC_HIGHPIN_OFF is specified in the pe_create_options field of the
process_extension structure, described elsewhere in this reference page.

— The restriction is inherited. See _TPC_IGNORE_FORCEPIN_ATTR in the
pe_create_options field of the process_extension structure, described else-
where in this reference page, for more information about controlling inheritance.

527186-023 Hewlett-Packard Company 8−7

tdm_execve(2) OSS System Calls Reference Manual

• The creator access ID (CAID) is set to the process access ID (PAID) of the calling pro-
cess.

• The PAID depends on whether the S_ISUID mode bit of the process image file is set. If
that bit is set, the PAID is based on the file owner ID. If not, the PAID is the same as for
the caller. (The S_ISUID mode bit of the image file has no effect on the security group
list.)

• The MOM field for the new process depends on whether the calling process is named. If
it is named, the MOM field of the new process is set to the caller’s ANCESTOR field.
Otherwise, the MOM field of the new process is set to the caller’s MOM field.

• System debugger selection for the new process is based on INSPECT mode.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Setting Guardian Attributes
The input structure pointed to by the pe_parms parameter permits the setting of Guardian attri-
butes for the new process.

First, the input structure must be initialized to the default values (see Default Guardian Attri-
butes, earlier in this reference page) using the #define DEFAULT_PROCESS_EXTENSION.
After the structure is initialized, the values can be set using literals that are defined in the
tdmext.h header file.

If any optional parameter specified in the structure pointed to by pe_parms is not passed, the new
process assumes the corresponding default value.

The input structure is defined in the tdmext.h header file. This structure contains fields that can
vary from release version update (RVU) to RVU, including reserved and filler fields.

8−8 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execve(2)

In the current RVU, these fields are meaningful:

#if defined (__LP64) | | defined (_PROCEX32_64BIT)

typedef struct process_extension {
short pe_ver;
short pe_len;
int pe_pfs_size;
long long pe_mainstack_max;
long long pe_heap_max;
long long pe_space_guarantee;
char _ptr64 *pe_library_name;
char _ptr64 *pe_swap_file_name;
char _ptr64 *pe_extswap_file_name;
char _ptr64 *pe_process_name;
char _ptr64 *pe_hometerm;
char _ptr64 *pe_defines;
short pe_defines_len;
short pe_priority;
short pe_cpu;
short pe_memory_pages;
short pe_jobid;
short pe_name_options;
short pe_create_options;
short pe_debug_options;
short pe_OSS_options;
char filler_1[6];

} process_extension_def;

#else /* !defined (__LP64) && !defined (_PROCEX32_64BIT) */

typedef struct process_extension {
long pe_len;
char *pe_library_name;
char *pe_swap_file_name;
char *pe_extswap_file_name;
short pe_priority;
short pe_cpu;
short pe_name_options;
char filler_1[2];
char *pe_process_name;
char *pe_hometerm;
short pe_memory_pages;
short pe_jobid;
short pe_create_options;
char filler_2[2];
char *pe_defines;
short pe_defines_len;
short pe_debug_options;
long pe_pfs_size;
short pe_OSS_options;
char filler_3[2];
long pe_mainstack_max;
long pe_heap_max;
long pe_space_guarantee;

} process_extension_def;

527186-023 Hewlett-Packard Company 8−9

tdm_execve(2) OSS System Calls Reference Manual

#endif /* !defined (__LP64) && !defined (_PROCEX32_64BIT) */

When an application is compiled in 64-bit compile mode or compiled using the #define
_PROCEX32_64BIT 1 feature test macro or an equivalent compiler command option, the appli-
cation will use the version of the process_extension structure that contains 64-bit data types.
The _PROCEX32_64BIT flag is only required if a 32-bit process must specify larger 64-bit
values for pe_mainstack_max, pe_heap_max, and pe_space_guaranter. These larger data
types are optional when creating a 64-bit process.

Note: The input structure supports two versions: one that contains 64-bit data types and
one that contains 32-bit data types. Because the order in which the fields appear in
this structure varies significantly based on the version in use, the field definitions
below are defined alphabetically instead of sequentially.

The input structure passes this information:

pe_cpu Specifies the processor on which the new process will execute. The OSS process
ID (PID) of the process remains unchanged. This field is used to distribute sys-
tem load.

pe_create_options
Specifies process creation options as:

_TPC_BOTH_DEFINES
Propagates the current DEFINEs and the DEFINEs indicated in
the input structure.

_TPC_ENABLE_DEFINES
Enables DEFINEs when set if
_TPC_OVERRIDE_DEFMODE is also set. Disables
DEFINEs when not set.

_TPC_HIGHPIN_OFF
Restricts the new process to a PIN in the range 0 through 254.
This restriction is rarely useful for an OSS process; it allows
obsolescent Guardian interfaces to interact with the process.

By default, this restriction is inherited by any child or successor
process. The default can be overridden by using the
_TPC_IGNORE_FORCEPIN_ATTR field.

_TPC_IGNORE_FORCEPIN_ATTR
Ignores the _TPC_HIGHPIN_OFF restriction specified for or
inherited by the caller or parent process. When
_TPC_IGNORE_FORCEPIN_ATTR is specified, the result-
ing process has a restricted PIN only if _TPC_HIGHPIN_OFF
is also specified or if the object file for the program or a user
library lacks the HIGHPIN attribute.

_TPC_OVERRIDE_DEFMODE
Specifies that the DEFINE mode of the new process is to be set
according to the _TPC_ENABLE_DEFINES option rather than
to the caller’s current DEFINE mode.

_TPC_PROCESS_DEFINES_ONLY
Propagates only the current set of DEFINEs.

8−10 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execve(2)

_TPC_SUPPLIED_DEFINES_ONLY
Propagates only the DEFINEs indicated by the pe_defines field.

pe_debug_options
Provides control over the selection between the default and symbolic debuggers
and over the creation of the saveabend file. A saveabend file can be examined by
using the symbolic debugger to determine the cause of the abnormal termination.
In addition, you can use this option to force the new process to enter the default
debugger before executing. Possible options are:

_TPC_CODEFILE_INSPECT_SAVEABEND
Uses the saveabend and INSPECT mode flags in the program
file.

_TPC_DEBUG_NOSAVE
Uses the default debugger but does not create a saveabend file.

_TPC_DEBUG_SAVEABEND
Uses the default debugger and creates a saveabend file.

_TPC_ENTER_DEBUG
Starts the new process in the default debugging utility.

_TPC_INSPECT_NOSAVE
Uses the symbolic debugger but does not create a saveabend file.

_TPC_INSPECT_SAVEABEND
Uses the symbolic debugger and creates a saveabend file.

pe_defines Points to a specified saved set of DEFINEs created by using the Guardian
DEFINESAVE procedure. These DEFINEs are propagated to the new process if
either _TPC_SUPPLIED_DEFINES_ONLY or _TPC_BOTH_DEFINES is
specified in the pe_create_options field.

Note: This string is not null-terminated.

pe_defines_len
Specifies the length of the string in the pe_defines field.

pe_extswap_file_name
Points to a null-terminated string specifying the name of a disk file in the Guar-
dian file system to be used as the swap file for the extended data segment. For
example, if the Guardian filename is $A.B.D, the name used is /G/a/b/d.

This file cannot have the same name as that of a file used in a preceding call to
the tdm_fork() function.

This field is used only for G-series TNS or accelerated new process image files.
If a value is specified for this field for native object files, the specified value is
checked for validity but otherwise ignored.

By default, the new process uses KMSF to manage its extended swap segment.
HP recommends using the default.

pe_heap_max Specifies the maximum size of the heap in bytes for the new process if it is a
native process.

See the C/C++ Programmer’s Guide description of the HEAP pragma for gui-
dance on the use of nonzero values for this field.

527186-023 Hewlett-Packard Company 8−11

tdm_execve(2) OSS System Calls Reference Manual

If a value is specified for this field for G-series TNS or accelerated object files,
the specified value is ignored.

pe_hometerm Points to the null-terminated name in the Guardian file system for the home ter-
minal. For example, if the Guardian name is $ztnt.#xyz, the name used is
/G/ztnt/#xyz.

pe_jobid Specifies the job ID of the new process.

pe_len Specifies the size of the structure in bytes. This value is set by #define
DEFAULT_PROCESS_EXTENSION and should not be changed.

pe_library_name
Points to the name of the user library to be bound to the new process. The string
that is pointed to is null-terminated and in OSS name format. If the pointer
points to a zero-length string (a NULL character), the new process runs with no
user library. An equivalent call to the Guardian PROCESS_LAUNCH_ pro-
cedure does this by setting the library filename length to -1.

This field is used only for G-series TNS or accelerated new process image files.
If a value is specified for this field for native object files, the specified value is
ignored.

pe_mainstack_max
Specifies the maximum size of the main stack in bytes for the new process.

If the calling process specifies a value, the value must be less than 32 MB. If the
calling process does not specify a value or specifies a 0 (zero) value, the value
specified in the object file of the new process is used. If no value is specified in
the object file, the default value of 1 MB (for TNS/R systems) or 2 MB (for
TNS/E systems) is used.

pe_memory_pages
Specifies the size of the data stack in 2 KB units. This field is used only for G-
series TNS or accelerated new process image files. If a value is specified for this
field for native object files, the specified value is checked for validity but other-
wise ignored.

pe_name_options
Specifies process naming as:

_TPC_GENERATE_NAME
The system generates the name.

_TPC_NAME_SUPPLIED
The process name is indicated by the pe_process_name field.

_TPC_NO_NAME
The new process is unnamed.

pe_OSS_options
Specifies OSS options. No special action on signals is the default and only
current OSS option.

8−12 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execve(2)

pe_pfs_size Specifies the size of the PFS for the new process (this field is ignored).

pe_priority Specifies the priority of the new process.

pe_process_name
Points to the null-terminated Guardian process name if
_TPC_NAME_SUPPLIED is specified in the pe_name_options field. For
example, if the Guardian process name is $DELM, the name used is /G/delm.

pe_space_guarantee
Specifies the minimum available swap space to guarantee for the new process.

If the calling process specifies a value, the value must be less than or equal to a
multiple of the page size of the processor in which the new process will run.
Values less than a multiple of the page size are rounded up to the next multiple
of the page size. If the calling process does not specify a value or specifies a 0
(zero) value, the value specified in the native object file of the new process is
used. If no value is specified in the native object file, the default value of 0
(zero) is used, and enough swap space is guaranteed to launch the process.

If the new process requires a guarantee of available swap space and the system
cannot guarantee the required amount, the function call fails, and errno is set to
the value of [EAGAIN].

If a value is specified for this field for G-series TNS or accelerated object files,
the specified value is used for the main stack of the new process.

pe_swap_file_name
Points to a null-terminated string specifying the name of a file in the Guardian
file system to be used as the swap file for the stack segment. For example, if the
Guardian filename is $A.B.C, the name used is /G/a/b/c.

This file cannot have the same name as that of a file used in a preceding call to
the tdm_fork() function.

This field is not used in the current RVU of Open System Services. It exists for
compatibility with older RVUs. Any specified value is checked for validity but
otherwise ignored.

pe_ver Specifies the version of the process_extension structure. This value is set by
#define DEFAULT_PROCESS_EXTENSION and should not be changed.

The MOM and ANCESTOR fields in the new process differ from those of a process created in
the Guardian environment if the new process is named (the pe_name_options field is set to
_TPC_NAME_SUPPLIED or _TPC_GENERATE_NAME). If the calling process is
unnamed, then the ANCESTOR field for the new process is set to the caller’s MOM field, and the
MOM field of the new process is null. If the calling process is named, the ANCESTOR field of
the new process is set to the ANCESTOR field of the calling process, and the MOM field of the
new process is null.

The MOM and ANCESTOR fields for the new process are the same as for a process created in
the Guardian environment if the new process is unnamed (the pe_name_options field is set to
_TPC_NO_NAME). If the caller is unnamed, the MOM field for the new process is set to the
MOM field of the caller. If the caller is named, the MOM field for the new process is set to the
ANCESTOR field of the calling process.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

527186-023 Hewlett-Packard Company 8−13

tdm_execve(2) OSS System Calls Reference Manual

Output Structure Information
If the pr_results parameter does not contain a null pointer, it points to an output structure defined
in the tdmext.h header file. This structure can contain fields that vary from RVU to RVU,
including reserved and filler fields.

First, the output structure must be initialized by using the #define
DEFAULT_PROCESS_EXTENSION_RESULTS. This initialization sets the value of the
pr_len field to the correct value for the current RVU. The value of the pr_len field should not be
modified after being set by #define DEFAULT_PROCESS_EXTENSION_RESULTS.

The process_extension_results output structure is described in the
process_extension_results(5) reference page.

RETURN VALUES
If the tdm_execve() function returns to the calling process image, an error has occurred; the
return value is -1, and errno is set to indicate the error. If the pr_results parameter does not con-
tain a null pointer, the structure it points to returns additional error information, including the
PROCESS_LAUNCH_ error and error detail.

ERRORS
If any of the following conditions occurs, the tdm_execve() function sets errno to the
corresponding value, file descriptors marked close-on-exec are not closed, signals set to be
caught are not set to the default action, and none of these are changed:

• The argv[] array of pointers

• The envp[] array of pointers

• The elements pointed to by these arrays

• The value of the global variable environ

• The pointers contained within the global variable environ

• The elements pointed to by environ pointers

• The effective user ID of the current process

• The effective group ID of the current process

[E2BIG] The number of bytes used by the new process image’s argument list and environ-
ment list is greater than the system-imposed limit. The limit can be obtained by
calling the sysconf(_SC_ARG_MAX) function.

[EACCES] One of these conditions exists:

• Search permission is denied for the directory components of the path-
name prefix to the process image file.

• The new process image file, any library file, or script file denies execu-
tion permission.

• The new process image file is not a regular file.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

8−14 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execve(2)

[EFAULT] An address for a parameter in the process_extension structure pointed to by
pe_parms is out of allowable bounds. The Guardian PROCESS_LAUNCH_
error and error detail information is returned in the structure pointed to by the
pr_results parameter, unless pr_results contains a null pointer.

[EHLDSEM] The process tried to create a new process in a different processor while having at
least one semadj value.

[EINVAL] One of these conditions exists:

• An invalid parameter value was supplied in the process_extension
structure pointed to by pe_parms. The Guardian PROCESS_LAUNCH_
error and error detail information is returned in the structure pointed to
by the pr_results parameter, unless pr_results contains a null pointer.

• The new process image file is a binary executable file with invalid attri-
butes.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error, or data has been lost during an input or out-
put transfer. This value is used for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

For systems running J06.07 and later J-series RVUs or H06.18 or later H-series
RVUs, this error can also occur when the OSS file system is out of memory and
one or more open files cannot be propagated from the parent process to the child
process. In this case, if you are running a program from the shell with the shell
reporting any errors, you might see an error like this:

/bin/-sh: /bin/ps: tdm_execve(): failed with unexpected error pr_errno=(4005)
pr_TPCerror=(110) pr_TPCdetail=(36)

where:

• pr_errno is the [EIO] error

• pr_TPCerror is the Guardian PROCESS_LAUNCH_ or
PROCESS_CREATE_ error.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[EMFILE] The maximum number of files are open. The process attempted to open more
than the maximum number of file descriptors allowed for the process. The pro-
cess file segment (PFS) of the new process might be smaller than that of the cal-
ling process.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname pointed to by the path parameter

The pathconf() function can be called to obtain the applicable limits.

527186-023 Hewlett-Packard Company 8−15

tdm_execve(2) OSS System Calls Reference Manual

[ENOCPU] The selected processor does not exist, or the selected processor is down or other-
wise unavailable for process creation.

[ENODEV] The system cannot find the file system containing the process image file.

[ENOENT] One of these conditions exists:

• One or more components of the new process image file’s pathname do
not exist.

• The path parameter points to an empty string.

[ENOEXEC] The new process image file has the appropriate access permissions and is in the
OSS name space, but it is neither in the correct binary executable format nor a
valid executable text file.

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

[ENOTDIR] A component of the path prefix of the new process image file is not a directory.

[ENOTOSS] The calling process is not an OSS process. The tdm_execve() function cannot
be called from the Guardian environment.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[ETXTBSY] The new process image file is a pure procedure (shared text) file that is currently
open for writing by some process.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

RELATED INFORMATION
Commands: eld(1), ld(1), nld(1).

Functions: alarm(3), chmod(2), exec(2), _exit(2), exit(3), fcntl(2), fork(2), getenv(3),
putenv(3), semget(2), shmat(2), sigaction(2), system(3), tdm_execvep(2), tdm_fork(2),
tdm_spawn(2), tdm_spawnp(2), times(3), ulimit(2), umask(2).

Files: signal(4).

Miscellaneous: environ(5), process_extension_results(5).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

8−16 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execvep(2)

NAME
tdm_execvep - Executes a file with HP extensions

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <tdmext.h>

[extern char **environ;]

int tdm_execvep(
const char ∗∗file,
char ∗∗ const argv[],
char ∗∗ const envp[],
const struct process_extension ∗∗pe_parms,
struct process_extension_results ∗∗pr_results);

PARAMETERS
**environ Points to an array of character pointers to environment strings. The environment

strings define the OSS environment for the calling process. The environ array is
terminated by a null pointer.

file Points to a pathname that identifies the new process image file. If the pathname
starts with a slash (/) character, it is the absolute pathname. If this pathname does
not start with a slash but does contain a slash, the pathname resolves relative to
the current working directory. Otherwise, the pathname contains no slash, and
the system searches the directories listed in the PATH environment variable for
the file and prefixes the directory in which the file is found.

argv[] Specifies an array of character pointers to null-terminated strings containing
arguments to be passed to the main function of the new program. argv[0] should
point to the null-terminated string containing the filename of the new process
image. The last member of this array must be a null pointer.

envp[] Specifies an array of character pointers to null-terminated strings that describe
the environment for the new process.

pe_parms Points to the input structure containing Guardian process attributes to be
assigned to the new process. The structure must be defined locally to match the
definition in the tdmext.h header file. The local structure must be initialized
before its first use. Initialization can be done using the #define
DEFAULT_PROCESS_EXTENSION, as defined in the tdmext.h header file.
The initialized values can then be modified as appropriate for the call. When
this parameter contains a null pointer, the tdm_execvep() function assumes
default Guardian attributes.

pr_results Points to the output structure containing optional process identification and error
information. In case of error, this structure provides additional information,
including the PROCESS_LAUNCH_ procedure error and error detail. The struc-
ture must be defined locally to match the definition in the tdmext.h header file.
The local structure must be initialized before its first use. Initialization can be
done using the #define DEFAULT_PROCESS_EXTENSION_RESULTS, as
defined in the tdmext.h header file.

See the process_extension_results(5) reference page for information about the

527186-023 Hewlett-Packard Company 8−17

tdm_execvep(2) OSS System Calls Reference Manual

content of the structure. The tdmext.h header file is not kept current when new
error codes are defined for process creation functions. The list of _TPC_ macros
described in that reference page is not complete; for a current description of error
macros and error codes, see the Guardian header file
$SYSTEM.ZSPIDEF.ZGRDC or the summary of process-creation errors in the
Guardian Procedure Calls Reference Manual (see the table entitled "Summary
of Process Creation Errors").

DESCRIPTION
The tdm_execvep() function replaces the current process image with a new process image. The
new image is constructed from a regular executable file, called a new process image file. The
new process image file is formatted as an executable text or binary file in one of the formats
recognized by the tdm_execvep() function.

The tdm_execvep() function is similar to the tdm_execve() function. The main difference is in
the way the pathname for the process image file is resolved. tdm_execve() always resolves rela-
tive pathnames by prefixing the current working directory. tdm_execvep() sometimes uses the
PATH environment variable; see Identifying the Process Image File, later in this reference
page.

A successful tdm_execvep() function call does not return, because the calling process image is
overlaid by the new process image.

When a program is executed as a result of a tdm_execvep() call, it is entered as a function call:

int main(
int argc,
char ∗∗argv[],
char ∗∗envp);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and the envp parameter is a pointer to a character array
listing the environment variables. The argv[] array is terminated by a null pointer. The null
pointer is not counted in argc.

The arguments specified by a program using the tdm_execvep() function are passed on to the
new process image in the corresponding arguments to the main() function.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined, and errno is set to
[ENOTOSS].

Identifying the Process Image File
The tdm_execvep() function uses the file parameter to identify the process image file. If the
pathname specified as the file parameter starts with a slash (/) character, it is the absolute path-
name. If the pathname does not start with a slash but contains a slash, the pathname is resolved
relative to the current working directory. Otherwise, the pathname does not contain a slash, and
the system searches the directories listed in the PATH environment variable for the file and
prefixes the directory in which the file is found.

Passing the Arguments
The argv[] parameter is an array of character pointers to null-terminated strings. The last
member of this array is a null pointer. These strings constitute the argument list available to the
new process image. The value in argv[0] should point to a filename that is associated with the
process being started by the tdm_execvep() function.

8−18 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execvep(2)

Specifying the Environment
The envp[] parameter is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The environment array is terminated with
a null pointer.

The number of bytes available for the new process’s combined argument and environment lists
has a system-imposed limit. This limit, which includes the pointers and the null terminators on
the strings, is available by calling the sysconf(_SC_ARG_MAX) function.

Executing a Binary File
If the file specified as the new process image file is a binary executable file, the tdm_execvep()
function loads the file directly.

Executing a Text File
If the file specified as the new process image file is not a binary executable file, the
tdm_execvep() function examines the file to determine whether it is an executable text file. It
checks for a header line in this format:

#! interpreter_name [optional_string]

The #! notation identifies the file as an executable text file. The new process image filename is
constructed from the process image filename in the interpreter_name string, treating it like the
file parameter. The Guardian input and output structures pointed to by the pe_parms and
pr_results parameters apply to the command interpreter as they would to any process file.

The arguments passed to the new process are modified as listed:

• argv[0] is set to the name of the command interpreter.

• If the optional_string portion is present, argv[1] is set to optional_string.

• The next element of argv[] is set to the original value of file.

• The remaining elements of argv[] are set to the original elements of argv[], starting with
argv[1]. The original argv[0] is discarded.

The S_ISUID and S_ISGID mode bits of an executable text file are honored. Those bits are
ignored for the interpreter_name command interpreter.

When the File Is Invalid
If the process image file is not a valid executable object, or if the text file does not contain the
header line, the tdm_execvep() function invokes the interpreter_name command interpreter as
the new process image and passes these arguments to it:

• argv[0] is set to the string sh.

• argv[1] is set to the original value of the file parameter.

• The remaining elements of argv[] are set to the original elements of argv[], starting with
argv[1].

• The original argv[0] is discarded.

527186-023 Hewlett-Packard Company 8−19

tdm_execvep(2) OSS System Calls Reference Manual

Open Files
File descriptors open in the calling process image remain open in the new process image, except
for those:

• Whose close-on-exec flag FD_CLOEXEC is set (see the fcntl(2) reference page)

• Opened using a Guardian function or procedure call

For a G-series TNS process image or an accelerated processs image only, if the process file seg-
ment (PFS) of the new process image is smaller than the process file segment of the calling pro-
cess image and if the calling process image has a large number of file descriptors open, the sys-
tem might not be able to propagate all the open file descriptors to the new process image. When
this situation occurs, the function call fails, and errno is set to the value of [EMFILE].

For those file descriptors that remain open, all attributes of the open file descriptor, including file
locks, remain unchanged. All directory streams are closed.

Open Pipes and FIFOs
A pipe or FIFO associated with an open file descriptor in the calling process remains connected
in the new process. If the new process runs in a different processor than the calling process, the
processor that runs the new process must also be running an OSS pipe server process.

If no OSS pipe server process is running in the new processor, the new process cannot use the
pipe or FIFO; calls specifying the file descriptor for the pipe or FIFO fail with errno set to
[EWRONGID]. The new process can only close the invalid file descriptor.

Existing Sockets
A socket associated with an open file descriptor in the calling process remains connected in the
new process when the new process runs in the same processor as the calling process.

When the new process runs in a different processor than the calling process, the processor that
runs the new process must also be running a socket transport agent process. If no socket tran-
sport agent process is running in the new processor, the new process cannot use the socket; calls
specifying the file descriptor for the socket fail with errno set to [EWRONGID]. The new pro-
cess can only close the invalid file descriptor.

Shared Memory
Any attached shared memory segments are detached from the new process by a successful call to
the tdm_execvep() function. See the shmat(2) reference page for additional information about
shared memory segment use.

Semaphores
Semaphore set IDs attached to the calling process are also attached to the new process if the new
process executes in the same processor as the calling process. The new process also inherits the
adjust-on-exit (semadj) values of the calling process if both processes are in the same processor.

A semaphore set cannot be shared when a semadj value exists for the calling process and the
new process is created in a different processor. When that condition exists, a call to the
tdm_execvep() function fails and errno is set to [EHLDSEM].

See the semget(2) reference page for additional information about semaphore use.

Signals
Signals set to:

• The default action (SIG_DFL) in the calling process image are set to the default action
in the new process image.

8−20 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execvep(2)

• Be ignored (SIG_IGN) by the calling process image are set to be ignored by the new
process image.

• Cause abnormal termination (SIG_ABORT) in the calling process image are set to that
action in the new process image.

• Cause entry into the debugger (SIG_DEBUG) in the calling process image are set to that
action in the new process image.

• Be caught by the calling process image are set to the default action in the new process
image.

See the signal(4) reference page either online or in the Open System Services System Calls Refer-
ence Manual.

User ID and Group ID
If the set-user-ID mode bit (S_ISUID) of the new process image file is set (see the chmod(2)
reference page), the effective user ID of the new process image is set to the user ID of the owner
of the new process image file. Similarly, if the set-group-ID mode bit (S_ISGID) of the new pro-
cess image file is set, the effective group ID of the new process image is set to the group ID of the
new process image file. The real user ID, real group ID, and supplementary group IDs of the new
process image remain the same as those of the calling process image. The effective user ID and
effective group ID of the new process image are saved (as the saved-set user ID and the saved-set
group ID) for use by the setuid() function.

OSS Attributes
These OSS attributes of the calling process image are unchanged after successful completion of
the tdm_execvep() function:

• OSS process ID (PID)

• Parent OSS process ID

• Process group ID

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• The time left until an alarm clock signal is posted (see the alarm(3) reference page)

• Current working directory

• Root directory

• File mode creation mask (see the umask(2) reference page)

• Process signal mask (see the sigprocmask(2) reference page)

• Pending signals (see the sigpending(2) reference page)

• The tms_utime, tms_stime, tms_cutime, and tms_cstime fields of the tms structure

527186-023 Hewlett-Packard Company 8−21

tdm_execvep(2) OSS System Calls Reference Manual

• File size limit (see the ulimit(2) reference page)

Upon successful completion, the tdm_execvep() function marks the st_atime field of the file for
update.

The POSIX.1 standard does not specify the effect on the st_atime field when the tdm_execvep()
function call fails but does find the file. Neither does the HP implementation guarantee the out-
come. Under these circumstances, this field should not be used for further processing.

Default Guardian Attributes
If the pe_parms parameter contains a null pointer, the newly created OSS process retains all
these default Guardian attributes of the process that calls the tdm_execvep() function:

• Priority

• Processor on which the process executes

• Home terminal

• Job ID

• DEFINE mode switch

• Process access ID (PAID), unless the S_ISUID mode bit of the new process image file is
set

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Login, remote login, and saveabend flags

• File creation mask

If the pe_parms parameter contains a null pointer, the default Guardian attributes of the new pro-
cess that differ from those of the calling process are:

• No segments created or shared using Guardian system procedures such as
SEGMENT_ALLOCATE_ are inherited.

• The program file is the file specified in the tdm_execvep() call.

• The library file is specified in the program file.

• The child process does not inherit the parent process extended swap file (if any). For a
G-series TNS process or an accelerated process, the extended data segment is managed
by the Kernel Managed Storage Facility (KMSF) unless an extended swap file is
specified in the pe_extswap_file_name field of the process_extension structure
described elsewhere in this reference page.

8−22 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execvep(2)

• The process name for the new process is system-generated if the RUNNAMED option is
set in the program file. Otherwise the process is unnamed.

• The size of the data segment of the new process is set in the program file.

• The remote login flag (PCBREMID) is set to zero (off) if the program file has its
S_ISUID mode bit set. Otherwise, the remote login flag is set the same as for the caller.

• The size of the extended data segment of the new process is set in the program file.

• The DEFINEs inherited by the new process depend on the setting of DEFINE mode in
the caller. If DEFINE mode in the caller is ON, all the caller’s DEFINEs are inherited.
If DEFINE mode is OFF, no DEFINEs are inherited.

• The process identification number (PIN) of the new process is unrelated to that of the
calling process. Usually, the PIN of the new process is unrestricted. However, the PIN
can be restricted to the range 0 through 254 under the following conditions:

— The HIGHPIN flag is not set in, or is absent from, the program file or any library
file.

— _TPC_HIGHPIN_OFF is specified in the pe_create_options field of the
process_extension structure.

— The restriction is inherited. See the description of
_TPC_IGNORE_FORCEPIN_ATTR in the pe_create_options field of the
process_extension structure for more information about controlling inheritance.

• The creator access ID (CAID) is set to the process access ID (PAID) of the calling pro-
cess.

• The PAID depends on whether the S_ISUID mode bit of the process image file is set. If
that bit is set, the PAID is based on the file owner ID. If not, the PAID is the same as for
the caller. (The S_ISUID mode bit of the image file has no effect on the security group
list.)

• The MOM field for the new process depends on whether the calling process is named. If
it is named, the MOM field of the new process is set to the caller’s ANCESTOR field.
Otherwise, the MOM field of the new process is set to the caller’s MOM field.

• System debugger selection for the new process is based on INSPECT mode.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Setting Guardian Attributes
The input structure pointed to by the pe_parms parameter permits the setting of Guardian attri-
butes for the new process.

First, the input structure must be initialized to the default values (see Default Guardian Attri-
butes, earlier in this reference page) using the #define DEFAULT_PROCESS_EXTENSION.
After the data structure is initialized, the values can be set using literals that are defined in the
tdmext.h header file.

If any optional parameter specified in the structure pointed to by pe_parms is not passed, the new
process assumes the corresponding default value.

527186-023 Hewlett-Packard Company 8−23

tdm_execvep(2) OSS System Calls Reference Manual

The input structure is defined in the tdmext.h header file. This structure can contain fields that
vary from release version update (RVU) to RVU, including reserved and filler fields.

In the current release version update (RVU), these fields are meaningful:

#if defined (__LP64) | | defined (_PROCEX32_64BIT)

typedef struct process_extension {
short pe_ver;
short pe_len;
int pe_pfs_size;
long long pe_mainstack_max;
long long pe_heap_max;
long long pe_space_guarantee;
char _ptr64 *pe_library_name;
char _ptr64 *pe_swap_file_name;
char _ptr64 *pe_extswap_file_name;
char _ptr64 *pe_process_name;
char _ptr64 *pe_hometerm;
char _ptr64 *pe_defines;
short pe_defines_len;
short pe_priority;
short pe_cpu;
short pe_memory_pages;
short pe_jobid;
short pe_name_options;
short pe_create_options;
short pe_debug_options;
short pe_OSS_options;
char filler_1[6];

} process_extension_def;

#else /* !defined (__LP64) && !defined (_PROCEX32_64BIT) */

typedef struct process_extension {
long pe_len;
char *pe_library_name;
char *pe_swap_file_name;
char *pe_extswap_file_name;
short pe_priority;
short pe_cpu;
short pe_name_options;
char filler_1[2];
char *pe_process_name;
char *pe_hometerm;
short pe_memory_pages;
short pe_jobid;
short pe_create_options;
char filler_2[2];
char *pe_defines;
short pe_defines_len;
short pe_debug_options;
long pe_pfs_size;
short pe_OSS_options;
char filler_3[2];
long pe_mainstack_max;

8−24 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execvep(2)

long pe_heap_max;
long pe_space_guarantee;

} process_extension_def;

#endif /* !defined (__LP64) && !defined (_PROCEX32_64BIT) */

When an application is compiled in 64-bit compile mode or compiled using the #define
_PROCEX32_64BIT 1 feature test macro or an equivalent compiler command option, the appli-
cation will use the version of the process_extension structure that contains 64-bit data types.
The _PROCEX32_64BIT flag is only required if a 32-bit process must specify larger 64-bit
values for pe_mainstack_max, pe_heap_max, and pe_space_guaranter. These larger data
types are optional when creating a 64-bit process.

Note: The input structure supports two versions: one that contains 64-bit data types and
one that contains 32-bit data types. Because the order in which the fields appear in
this structure varies significantly based on the version in use, the field definitions
below are defined alphabetically instead of sequentially.

The input structure passes this information:

pe_cpu Specifies the processor on which the new process will execute. The OSS process
ID (PID) of the process remains unchanged. This field is used to distribute sys-
tem load.

pe_create_options
Specifies process creation options as:

_TPC_BOTH_DEFINES
Propagates the current DEFINEs and the DEFINEs indicated in
the input structure.

_TPC_ENABLE_DEFINES
Enables DEFINEs when set if
_TPC_OVERRIDE_DEFMODE is also set. Disables
DEFINEs when not set.

_TPC_HIGHPIN_OFF
Restricts the new process to a PIN in the range 0 through 254.
This restriction is rarely useful for an OSS process; it allows
obsolescent Guardian interfaces to interact with the process.

By default, this restriction is inherited by any child or successor
process. The default can be overridden by using the
_TPC_IGNORE_FORCEPIN_ATTR field.

_TPC_IGNORE_FORCEPIN_ATTR
Ignores the _TPC_HIGHPIN_OFF restriction specified for or
inherited by the caller or parent process. When
_TPC_IGNORE_FORCEPIN_ATTR is specified, the result-
ing process has a restricted PIN only if _TPC_HIGHPIN_OFF
is also specified or if the object file for the program or a user
library lacks the HIGHPIN attribute.

_TPC_OVERRIDE_DEFMODE
Specifies that the DEFINE mode of the new process is to be set
according to the _TPC_ENABLE_DEFINES option rather than
to the caller’s current DEFINE mode.

527186-023 Hewlett-Packard Company 8−25

tdm_execvep(2) OSS System Calls Reference Manual

_TPC_PROCESS_DEFINES_ONLY
Propagates only the current set of DEFINEs.

_TPC_SUPPLIED_DEFINES_ONLY
Propagates only the DEFINEs indicated by the pe_defines field.

pe_debug_options
Provides control over the selection between the default and symbolic debuggers
and over the creation of the saveabend file. A saveabend file can be examined by
using the symbolic debugger to determine the cause of the abnormal termination.
In addition, you can use this option to force the new process to enter the default
debugger before executing. Possible options are:

_TPC_CODEFILE_INSPECT_SAVEABEND
Uses the saveabend and INSPECT mode flags in the program
file.

_TPC_DEBUG_NOSAVE
Uses the default debugger but does not create a saveabend file.

_TPC_DEBUG_SAVEABEND
Uses the default debugger and creates a saveabend file.

_TPC_ENTER_DEBUG
Starts the new process in the default debugging utility.

_TPC_INSPECT_NOSAVE
Uses the symbolic debugger but does not create a saveabend file.

_TPC_INSPECT_SAVEABEND
Uses the symbolic debugger and creates a saveabend file.

pe_defines Points to a specified saved set of DEFINEs created by using the Guardian
DEFINESAVE procedure. These DEFINEs are propagated to the new process if
either _TPC_SUPPLIED_DEFINES_ONLY or _TPC_BOTH_DEFINES is
specified in the pe_create_options field.

Note: This string is not null-terminated.

pe_defines_len
Specifies the length of the string in the pe_defines field.

pe_extswap_file_name
Points to a null-terminated string specifying the name of a disk file in the Guar-
dian file system to be used as the swap file for the extended data segment. For
example, if the Guardian filename is $A.B.D, the name used is /G/a/b/d.

This file cannot have the same name as that of a file used in a preceding call to
the tdm_fork() function.

This field is used only for G-series TNS or accelerated new process image files.
If a value is specified for this field for native object files, the specified value is
checked for validity but otherwise ignored.

By default, the new process uses KMSF to manage its extended swap segment.
HP recommends using the default.

8−26 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execvep(2)

pe_heap_max Specifies the maximum size of the heap in bytes for the new process if it is a
native process.

See the C/C++ Programmer’s Guide description of the HEAP pragma for gui-
dance on the use of nonzero values for this field.

If a value is specified for this field for G-series TNS or accelerated object files,
the specified value is ignored.

pe_hometerm Points to the null-terminated name in the Guardian file system for the home ter-
minal. For example, if the Guardian name is $ztnt.#xyz, the name used is
/G/ztnt/#xyz.

pe_jobid Specifies the job ID of the new process.

pe_len Specifies the size of the structure in bytes. This value is set by #define
DEFAULT_PROCESS_EXTENSION and should not be changed.

pe_library_name
Points to the name of the user library to be bound to the new process. The string
that is pointed to is null-terminated and in OSS name format. If the pointer
points to a zero-length string (a NULL character), the new process runs with no
user library. An equivalent call to the Guardian PROCESS_LAUNCH_ pro-
cedure does this by setting the library filename length to -1.

This field is used only for G-series TNS or accelerated new process image files.
If a value is specified for this field for native object files, the specified value is
ignored.

pe_mainstack_max
Specifies the maximum size of the main stack in bytes for the new process.

If the calling process specifies a value, the value must be less than 32 MB. If the
calling process does not specify a value or specifies a 0 (zero) value, the value
specified in the object file of the new process is used. If no value is specified in
the object file, the default value of 1 MB (for TNS/R systems) or 2 MB (for
TNS/E systems) is used.

pe_memory_pages
Specifies the size of the data stack in 2 KB units. This field is used only for G-
series TNS or accelerated new process image files. If a value is specified for this
field for native object files, the specified value is checked for validity but other-
wise ignored.

pe_name_options
Specifies process naming as:

_TPC_GENERATE_NAME
The system generates the name.

_TPC_NAME_SUPPLIED
The process name is indicated by the pe_process_name field.

_TPC_NO_NAME
The new process is unnamed.

527186-023 Hewlett-Packard Company 8−27

tdm_execvep(2) OSS System Calls Reference Manual

pe_OSS_options
Specifies OSS options. No special action on signals is the default and only
current OSS option.

pe_pfs_size Specifies the size of the PFS for the new process (this field is ignored).

pe_priority Specifies the priority of the new process.

pe_process_name
Points to the null-terminated Guardian process name if
_TPC_NAME_SUPPLIED is specified in the pe_name_options field. For
example, if the Guardian process name is $DELM, the name used is /G/delm.

pe_space_guarantee
Specifies the minimum available swap space to guarantee for the new process.

If the calling process specifies a value, the value must be less than or equal to a
multiple of the page size of the processor in which the new process will run.
Values less than a multiple of the page size are rounded up to the next multiple
of the page size. If the calling process does not specify a value or specifies a 0
(zero) value, the value specified in the native object file of the new process is
used. If no value is specified in the native object file, the default value of 0
(zero) is used, and enough swap space is guaranteed to launch the process.

If the new process requires a guarantee of available swap space and the system
cannot guarantee the required amount, the function call fails, and errno is set to
the value of [EAGAIN].

If a value is specified for this field for G-series TNS or accelerated object files,
the specified value is used for the main stack of the new process.

pe_swap_file_name
Points to a null-terminated string specifying the name of a file in the Guardian
file system to be used as the swap file for the stack segment. For example, if the
Guardian filename is $A.B.C, the name used is /G/a/b/c.

This file cannot have the same name as that of a file used in a preceding call to
the tdm_fork() function.

This field is not used in the current RVU of Open System Services. It exists for
compatibility with older RVUs. Any specified value is checked for validity but
otherwise ignored.

pe_ver Specifies the version of the process_extension structure. This value is set by
#define DEFAULT_PROCESS_EXTENSION and should not be changed.

The MOM and ANCESTOR fields in the new process differ from those of a process created in
the Guardian environment if the new process is named (the pe_name_options field is set to
_TPC_NAME_SUPPLIED or _TPC_GENERATE_NAME). If the calling process is
unnamed, the ANCESTOR field for the new process is set to the caller’s MOM field, and the
MOM field of the new process is null. If the calling process is named, the ANCESTOR field of
the new process is set to the ANCESTOR field of the calling process, and the MOM field of the
new process is null.

The MOM and ANCESTOR fields for the new process are the same as for a process created in
the Guardian environment if the new process is unnamed (the pe_name_options field is set to
_TPC_NO_NAME). If the caller is unnamed, the MOM field for the new process is set to the
MOM field of the caller. If the caller is named, the MOM field for the new process is set to the
ANCESTOR field of the calling process.

8−28 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execvep(2)

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Output Structure Information
If the pr_results parameter does not contain a null pointer, it points to an output structure defined
in the tdmext.h header file. This structure can contain fields that vary from RVU to RVU,
including reserved and filler fields.

First, the output structure must be initialized by using the #define
DEFAULT_PROCESS_EXTENSION_RESULTS. This initialization sets the value of the
pr_len field to the correct value for the current RVU. The value of the pr_len field should not be
modified after being set by #define DEFAULT_PROCESS_EXTENSION_RESULTS.

The process_extension_results output structure is described in the
process_extension_results(5) reference page.

RETURN VALUES
If the tdm_execvep() function returns to the calling process image, an error has occurred; the
return value is -1, and errno is set to indicate the error. If the pr_results parameter does not con-
tain a null pointer, the structure it points to returns additional error information, including the
PROCESS_LAUNCH_ error and error detail.

ERRORS
If any of the following conditions occurs, the tdm_execvep() function sets errno to the
corresponding value, file descriptors marked close-on-exec are not closed, signals set to be
caught are not set to the default action, and none of these are changed:

• The argv[] array of pointers

• The envp[] array of pointers

• The elements pointed to by these arrays

• The value of the global variable environ

• The pointers contained within the global variable environ

• The elements pointed to by environ pointers

• The effective user ID of the current process

• The effective group ID of the current process

[E2BIG] The number of bytes used by the new process image’s argument list and environ-
ment list is greater than the system-imposed limit. The limit can be obtained by
calling the sysconf(_SC_ARG_MAX) function.

[EACCES] One of these conditions exists:

• Search permission is denied for the directory components of the path-
name prefix to the process image file.

• The new process image file, any library file, or script file denies execu-
tion permission.

• The new process image file is not a regular file.

527186-023 Hewlett-Packard Company 8−29

tdm_execvep(2) OSS System Calls Reference Manual

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

[EFAULT] An address for a parameter in the process_extension structure pointed to by
pe_parms is out of allowable bounds. The Guardian PROCESS_LAUNCH_
error and error detail information is returned in the structure pointed to by the
pr_results parameter, unless pr_results contains a null pointer.

[EHLDSEM] The process tried to create a new process in a different processor while having at
least one semadj value.

[EINVAL] One of these conditions exists:

• An invalid parameter value was supplied in the process_extension
structure pointed to by pe_parms. The Guardian PROCESS_LAUNCH_
error and error detail information is returned in the structure pointed to
by the pr_results parameter, unless pr_results contains a null pointer.

• The new process image file is a binary executable file with invalid attri-
butes.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error or data has been lost during an input or output
transfer. This value is used only for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

For systems running J06.07 and later J-series RVUs or H06.18 or later H-series
RVUs, this error can also occur when the OSS file system is out of memory and
one or more open files cannot be propagated from the parent process to the child
process. In this case, if you are running a program from the shell with the shell
reporting any errors, you might see an error like this:

/bin/-sh: /bin/ps: tdm_execve(): failed with unexpected error pr_errno=(4005)
pr_TPCerror=(110) pr_TPCdetail=(36)

where:

• pr_errno is the [EIO] error

• pr_TPCerror is the Guardian PROCESS_LAUNCH_ or
PROCESS_CREATE_ error.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[EMFILE] The maximum number of files are open. The process attempted to open more
than the maximum number of file descriptors allowed for the process. The pro-
cess file segment (PFS) of the new process might be smaller than that of the cal-
ling process.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the file parameter

• A component of the pathname pointed to by the file parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the value specified by the file parameter

The pathconf() function can be called to obtain the applicable limits.

8−30 Hewlett-Packard Company 527186-023

System Functions (t) tdm_execvep(2)

[ENOCPU] The selected processor does not exist, or the selected processor is down or other-
wise unavailable for process creation.

[ENODEV] The system cannot find the file system containing the process image file.

[ENOENT] One of these conditions exists:

• One or more components of the new process image file’s pathname do
not exist.

• The file parameter points to an empty string.

[ENOEXEC] The command interpreter could not be invoked following failure to execute the
process image file identified by the file parameter.

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

[ENOTDIR] A component of the path prefix of the new process image file is not a directory.

[ENOTOSS] The calling process is not an OSS process. The tdm_execvep() function cannot
be used from the Guardian environment.

[EPERM] One of the following conditions exist:

• The calling process does not have appropriate privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[ETXTBSY] The new process image file is a pure procedure (shared text) file that is currently
open for writing by some process.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

RELATED INFORMATION
Commands: eld(1), ld(1), nld(1).

Functions: alarm(3), chmod(2), exec(2), _exit(2), exit(3), fcntl(2), fork(2), getenv(3),
putenv(3), semget(2), shmat(2), sigaction(2), system(3), tdm_execve(2), tdm_fork(2),
tdm_spawn(2), tdm_spawnp(2), times(3), ulimit(2), umask(2).

Files: signal(4).

Miscellaneous: environ(5), process_extension_results(5).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

527186-023 Hewlett-Packard Company 8−31

tdm_fork(2) OSS System Calls Reference Manual

NAME
tdm_fork - Creates a new process with HP extensions

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <tdmext.h>

pid_t tdm_fork(
const struct process_extension *pe_parms,
struct process_extension_results *pr_results);

PARAMETERS
pe_parms Points to the input structure containing Guardian process attributes to be

assigned to the child process. The structure is defined in the tdmext.h header
file.

When this parameter contains a null pointer, the tdm_fork() function assumes
default Guardian attributes. Otherwise, the structure must be defined locally and
initialized before its first use. Initialization is done using the #define
DEFAULT_PROCESS_EXTENSION, as defined in the tdmext.h header file.
The initialized values can then be modified as appropriate for the call.

pr_results Points to the output structure containing optional process identification and error
information. On successful return, this information includes the Guardian pro-
cess handle and OSS process ID (PID) of the process. If the call is not successful,
the OSS error number and Guardian PROCESS_LAUNCH_ procedure error and
error detail are returned in this structure. The structure is defined in the
tdmext.h header file.

The structure must be defined locally and initialized before its first use. Initiali-
zation is done using the #define
DEFAULT_PROCESS_EXTENSION_RESULTS, as defined in the tdmext.h
header file.

See the process_extension_results(5) reference page for information about the
content of the structure. The tdmext.h header file is not kept current when new
error codes are defined for process creation functions. The list of _TPC_ macros
described in that reference page is not complete; for a current description of error
macros and error codes, see the Guardian header file
$SYSTEM.ZSPIDEF.ZGRDC or the summary of process-creation errors in the
Guardian Procedure Calls Reference Manual (see the table entitled "Summary
of Process Creation Errors").

DESCRIPTION
The tdm_fork() function creates a child OSS process. The created process is referred to as the
child and the caller as the parent. The child process executes the same program file as the parent.
The child process retains many of its parent’s OSS process attributes and obtains system-derived
values for others. For Guardian process attributes, the child process can retain default values or
can have values specified in the tdm_fork() call.

8−32 Hewlett-Packard Company 527186-023

System Functions (t) tdm_fork(2)

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined and errno is set to
[ENOTOSS].

OSS Attributes
The child process inherits the following OSS attributes from the parent process:

• Environment

• Close-on-exec flags

• Signal-handling settings

• Saved-set-user-ID mode bit

• Saved-set-group-ID mode bit

• Process group ID

• Current directory

• Root directory

• File mode creation mask

• File size limit (see the ulimit(2) reference page)

• Attached semaphore set IDs

• Attached shared memory segments

The OSS attributes of the child process differ from those of the parent process in the following
ways:

• The child process has a unique OSS process ID (PID) and does not match any active pro-
cess group ID.

• The parent process ID of the child process matches the OSS process ID of the parent.

• The child process has its own copy of the parent process’s file descriptors. However,
each of the child’s file descriptors shares a common file pointer with the corresponding
file descriptor of the parent process.

• The child process does not inherit any file open created by a Guardian function or pro-
cedure call.

• The child process does not inherit file locks.

• The child process’s tms_utime, tms_stime, tms_cutime, and tms_cstime values are set
to 0 (zero).

• Any pending alarms are cleared in the child process.

• Any signals pending for the parent process are not inherited by the child process.

• Any adjust-on-exit (semadj) values of the parent process are not inherited by the child
process.

527186-023 Hewlett-Packard Company 8−33

tdm_fork(2) OSS System Calls Reference Manual

• The child process shares directory streams with the parent. They share the same block of
directory entries. When reading an entry, the buffer pointer is advanced by one entry.
From the perspective of either process, an entry might be skipped.

If both processes call the readdir() function for a shared stream, the results are
undefined. After such a call by both functions, another call to the readdir() function by
either process has undefined results.

Default Guardian Attributes
If the pe_parms parameter contains a null pointer, then the child process inherits all the follow-
ing default Guardian attributes from the parent process:

• Program file

• Any library file

• The size and contents of any instance data segments for native libraries

• Priority (the child process inherits the parent’s current priority)

• Processor on which the process executes

• Home terminal

• For G-series TNS processes and accelerated processes, the size and contents of the data
segment

• For G-series TNS processes and accelerated processes, the size and contents of the
extended data segment

The assignment of the data segment size is different from the assignment made when
creating a child process with Guardian procedures.

• For native processes, the contents of the stack segment from its origin to the currently
in-use location; the rest of the child process stack is 0 (zero)

• For native processes, the size and contents of the globals-heap segment

• Job ID

• DEFINE mode

• Creator access ID (CAID)

• Process access ID (PAID)

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a child
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a child
process with Guardian procedures.

8−34 Hewlett-Packard Company 527186-023

System Functions (t) tdm_fork(2)

• Login, remote login, and saveabend flags

• File creation mask

• System debugger selection (based on Inspect mode and OSS read access rights on the
program file)

If the pe_parms parameter contains a null pointer, then the default Guardian attributes of the
child process differ from those of the parent process in the following ways:

• Segments created or shared using Guardian procedures such as
SEGMENT_ALLOCATE_ are not inherited.

• The child process does not inherit the parent process extended swap file (if any). For a
G-series TNS process or an accelerated process, the extended data segment is managed
by the Kernel Managed Storage Facility (KMSF) unless an extended swap file is
specified in the pe_extswap_file_name field of the process_extension structure
described elsewhere in this reference page.

• The child’s process name is system-generated if the RUNNAMED option is set in the
program file. Otherwise, the process is unnamed.

• The DEFINEs inheritance for the child is based on the parent’s DEFINE mode.

• The process identification number (PIN) of the child process is unrelated to that of the
parent process. Usually, the PIN of the child process is unrestricted. However, the PIN
can be restricted to the range 0 through 254 under the following conditions:

— The HIGHPIN flag is not set in, or is absent from, the program file or any library
file.

— _TPC_HIGHPIN_OFF is specified in the pe_create_options field of the
process_extension structure, described elsewhere in this reference page.

— The restriction is inherited. See _TPC_IGNORE_FORCEPIN_ATTR in the
pe_create_options field of the process_extension structure, described else-
where in this reference page, for more information about controlling inheritance.

• The MOM field for the child process is set to 0 (zero).

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Setting Guardian Attributes
The input structure pointed to by the pe_parms parameter permits the setting of Guardian attri-
butes for the child process.

First, the input structure must be initialized to the default values (see Default Guardian Attri-
butes, earlier in this reference page) using the #define DEFAULT_PROCESS_EXTENSION.
After the data structure is initialized, the values can be set using literals that are defined in the
tdmext.h header file.

If any optional parameter specified in the structure pointed to by pe_parms is not passed, the
child process assumes the corresponding default value.

The input structure is defined in the tdmext.h header file. This structure can contain fields that
vary from release to release, including reserved and filler fields.

527186-023 Hewlett-Packard Company 8−35

tdm_fork(2) OSS System Calls Reference Manual

The following fields are meaningful:

#if defined (__LP64) | | defined (_PROCEX32_64BIT)

typedef struct process_extension {
short pe_ver;
short pe_len;
int pe_pfs_size;
long long pe_mainstack_max;
long long pe_heap_max;
long long pe_space_guarantee;
char _ptr64 *pe_library_name;
char _ptr64 *pe_swap_file_name;
char _ptr64 *pe_extswap_file_name;
char _ptr64 *pe_process_name;
char _ptr64 *pe_hometerm;
char _ptr64 *pe_defines;
short pe_defines_len;
short pe_priority;
short pe_cpu;
short pe_memory_pages;
short pe_jobid;
short pe_name_options;
short pe_create_options;
short pe_debug_options;
short pe_OSS_options;
char filler_1[6];

} process_extension_def;

#else /* !defined (__LP64) && !defined (_PROCEX32_64BIT) */

typedef struct process_extension {
long pe_len;
char *pe_library_name;
char *pe_swap_file_name;
char *pe_extswap_file_name;
short pe_priority;
short pe_cpu;
short pe_name_options;
char filler_1[2];
char *pe_process_name;
char *pe_hometerm;
short pe_memory_pages;
short pe_jobid;
short pe_create_options;
char filler_2[2];
char *pe_defines;
short pe_defines_len;
short pe_debug_options;
long pe_pfs_size;
short pe_OSS_options;
char filler_3[2];
long pe_mainstack_max;
long pe_heap_max;
long pe_space_guarantee;

} process_extension_def;

8−36 Hewlett-Packard Company 527186-023

System Functions (t) tdm_fork(2)

#endif /* !defined (__LP64) && !defined (_PROCEX32_64BIT) */

When an application is compiled in 64-bit compile mode or compiled using the #define
_PROCEX32_64BIT 1 feature test macro or an equivalent compiler command option, the appli-
cation will use the version of the process_extension structure that contains 64-bit data types.
The _PROCEX32_64BIT flag is only required if a 32-bit process must specify larger 64-bit
values for pe_mainstack_max, pe_heap_max, and pe_space_guaranter. These larger data
types are optional when creating a 64-bit process.

Note: The input structure supports two versions: one that contains 64-bit data types and
one that contains 32-bit data types. Because the order in which the fields appear in
this structure varies significantly based on the version in use, the field definitions
below are defined alphabetically instead of sequentially.

The input structure passes this information:

pe_cpu Specifies the processor on which the new process will execute. However, -1
(default value) is the only valid value accepted, which means create the child
process on the same CPU as that of the parent.

pe_create_options
Specifies process creation options as:

_TPC_BOTH_DEFINES
Propagates the current DEFINEs and the DEFINEs indicated in
the input structure.

_TPC_ENABLE_DEFINES
Enables DEFINEs when set if
_TPC_OVERRIDE_DEFMODE is also set. Disables
DEFINEs when not set.

_TPC_HIGHPIN_OFF
Restricts the new process to a PIN in the range 0 through 254.
This restriction is rarely useful for an OSS process; it allows
obsolescent Guardian interfaces to interact with the process.

By default, this restriction is inherited by any child or successor
process. The default can be overridden by using the
_TPC_IGNORE_FORCEPIN_ATTR field.

_TPC_IGNORE_FORCEPIN_ATTR
Ignores the _TPC_HIGHPIN_OFF restriction specified for or
inherited by the caller or parent process. When
_TPC_IGNORE_FORCEPIN_ATTR is specified, the result-
ing process has a restricted PIN only if _TPC_HIGHPIN_OFF
is also specified or if the object file for the program or a user
library lacks the HIGHPIN attribute.

_TPC_OVERRIDE_DEFMODE
Specifies that the DEFINE mode of the new process is to be set
according to the _TPC_ENABLE_DEFINES option rather than
to the caller’s current DEFINE mode.

_TPC_PROCESS_DEFINES_ONLY
Propagates only the current set of DEFINEs.

527186-023 Hewlett-Packard Company 8−37

tdm_fork(2) OSS System Calls Reference Manual

_TPC_SUPPLIED_DEFINES_ONLY
Propagates only the DEFINEs indicated by the pe_defines field.

pe_debug_options
Provides control over the selection between the default and symbolic debuggers
and over the creation of the saveabend file. A saveabend file can be examined by
using the symbolic debugger to determine the cause of the abnormal termination.
In addition, you can use this option to force the new process to enter the default
debugger before executing. Possible options are:

_TPC_CODEFILE_INSPECT_SAVEABEND
Uses the saveabend and INSPECT mode flags in the program
file.

_TPC_DEBUG_NOSAVE
Uses the default debugger but does not create a saveabend file.

_TPC_DEBUG_SAVEABEND
Uses the default debugger and creates a saveabend file.

_TPC_ENTER_DEBUG
Starts the new process in the default debugging utility.

_TPC_INSPECT_NOSAVE
Uses the symbolic debugger but does not create a saveabend file.

_TPC_INSPECT_SAVEABEND
Uses the symbolic debugger and creates a saveabend file.

pe_defines Points to a specified saved set of DEFINEs created by using the Guardian
DEFINESAVE procedure. These DEFINEs are propagated to the new process if
either _TPC_SUPPLIED_DEFINES_ONLY or _TPC_BOTH_DEFINES is
specified in the pe_create_options field.

Note: This string is not null-terminated.

pe_defines_len
Specifies the length of the string in the pe_defines field.

pe_extswap_file_name
Points to a null-terminated string specifying the name of a disk file in the Guar-
dian file system to be used as the swap file for the extended data segment. For
example, if the Guardian filename is $A.B.D, the name used is /G/a/b/d.

This file cannot have the same name as that of a file used in a preceding call to
the tdm_fork() function.

This field is used only for G-series TNS or accelerated new process image files.
If a value is specified for this field for native object files, the specified value is
checked for validity but otherwise ignored.

By default, the new process uses KMSF to manage its extended swap segment.
HP recommends using the default.

pe_heap_max Specifies the maximum size of the heap in bytes for the new process if it is a
native process.

See the C/C++ Programmer’s Guide description of the HEAP pragma for gui-
dance on the use of nonzero values for this field.

8−38 Hewlett-Packard Company 527186-023

System Functions (t) tdm_fork(2)

If a value is specified for this field for G-series TNS or accelerated object files,
the specified value is ignored.

pe_hometerm Points to the null-terminated name in the Guardian file system for the home ter-
minal. For example, if the Guardian name is $ztnt.#xyz, the name used is
/G/ztnt/#xyz.

pe_jobid Specifies the job ID of the new process.

pe_len Specifies the size of the structure in bytes. This value is set by #define
DEFAULT_PROCESS_EXTENSION and should not be changed.

pe_library_name
Points to the name of the user library to be bound to the new process. The string
that is pointed to is null-terminated and in OSS name format. If the pointer
points to a zero-length string (a NULL character), the new process runs with no
user library. An equivalent call to the Guardian PROCESS_LAUNCH_ pro-
cedure does this by setting the library filename length to -1.

This field is used only for G-series TNS or accelerated new process image files.
If a value is specified for this field for native object files, the specified value is
ignored.

pe_mainstack_max
Specifies the maximum size of the main stack in bytes for the new process.

If the calling process specifies a value, the value must be less than 32 MB. If the
calling process does not specify a value or specifies a 0 (zero) value, the value
specified in the object file of the new process is used. If no value is specified in
the object file, the default value of 1 MB (for TNS/R systems) or 2 MB (for
TNS/E systems) is used.

pe_memory_pages
Specifies the size of the data stack in 2 KB units. This field is used only for G-
series TNS or accelerated new process image files. If a value is specified for this
field for native object files, the specified value is checked for validity but other-
wise ignored.

pe_name_options
Specifies process naming as:

_TPC_GENERATE_NAME
The system generates the name.

_TPC_NAME_SUPPLIED
The process name is indicated by the pe_process_name field.

_TPC_NO_NAME
The new process is unnamed.

pe_OSS_options
Specifies OSS options. No special action on signals is the default and only
current OSS option.

527186-023 Hewlett-Packard Company 8−39

tdm_fork(2) OSS System Calls Reference Manual

pe_pfs_size Specifies the size of the PFS for the new process (this field is ignored).

pe_priority Specifies the priority of the new process.

pe_process_name
Points to the null-terminated Guardian process name if
_TPC_NAME_SUPPLIED is specified in the pe_name_options field. For
example, if the Guardian process name is $DELM, the name used is /G/delm.

pe_space_guarantee
Specifies the minimum available swap space to guarantee for the new process.

If the calling process specifies a value, the value must be less than or equal to a
multiple of the page size of the processor in which the new process will run.
Values less than a multiple of the page size are rounded up to the next multiple
of the page size. If the calling process does not specify a value or specifies a 0
(zero) value, the value specified in the native object file of the new process is
used. If no value is specified in the native object file, the default value of 0
(zero) is used, and enough swap space is guaranteed to launch the process.

If the new process requires a guarantee of available swap space and the system
cannot guarantee the required amount, the function call fails, and errno is set to
the value of [EAGAIN].

If a value is specified for this field for G-series TNS or accelerated object files,
the specified value is used for the main stack of the new process.

pe_swap_file_name
Points to a null-terminated string specifying the name of a file in the Guardian
file system to be used as the swap file for the stack segment. For example, if the
Guardian filename is $A.B.C, the name used is /G/a/b/c.

This file cannot have the same name as that of a file used in a preceding call to
the tdm_fork() function.

This field is not used in the current RVU of Open System Services. It exists for
compatibility with older RVUs. Any specified value is checked for validity but
otherwise ignored.

pe_ver Specifies the version of the process_extension structure. This value is set by
#define DEFAULT_PROCESS_EXTENSION and should not be changed.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Output Structure Information
If the pr_results parameter does not contain a null pointer, it points to an output structure defined
in the tdmext.h header file. This structure can contain fields that vary from release to release,
including reserved and filler fields.

First, the output structure must be initialized using the #define
DEFAULT_PROCESS_EXTENSION_RESULTS. This initialization sets the value of the
pr_len field to the correct value for the current release. The value of the pr_len field should not
be modified after being set by #define DEFAULT_PROCESS_EXTENSION_RESULTS.

The process_extension_results output structure is described in the
process_extension_results(5) reference page.

8−40 Hewlett-Packard Company 527186-023

System Functions (t) tdm_fork(2)

Shared Memory
Any attached shared memory segments are attached to both the child process and the parent pro-
cess when both processes execute in the same processor. Any attached shared memory segments
are detached from the child process by a successful call to the tdm_fork() function when the
child process executes in a different processor than that used by the parent. Refer to the
shmat(2) reference page for additional information about shared memory segment use.

Semaphores
Semaphore set IDs attached to a parent process are also attached to the child process if the child
process executes in the same processor as the parent.

A semaphore set cannot be shared when a semadj value exists for the parent process and the
child process is created in a different processor. When that condition exists, a call to the
tdm_fork() function fails and errno is set to [EHLDSEM].

Refer to the semget(2) reference page for additional information about semaphore use.

Open Files
File descriptors open in the parent process remain open in the child process, except for those
opened using a Guardian function or procedure call. For those file descriptors that remain open,
all attributes of the open file descriptor, including file locks, remain unchanged.

Open Pipes and FIFOs
A pipe or FIFO associated with an open file descriptor in the parent process remains connected in
the child process. If the child process runs in a different processor than the parent process, the
processor that runs the child process must also be running an OSS pipe server process.

If no OSS pipe server process is running in the new processor, the child process cannot use the
pipe or FIFO; calls specifying the file descriptor for the pipe or FIFO fail with errno set to
[EWRONGID]. The child process can only close the invalid file descriptor.

Existing Sockets
A socket associated with an open file descriptor in the parent process remains connected in the
child process. If the child process runs in a different processor than the parent process, the pro-
cessor that runs the child process must also be running a socket transport agent process.

If no socket transport agent process is running in the new processor, the child process cannot use
the socket; calls specifying the file descriptor for the socket fail with errno set to [EWRONGID].
The child process can only close the invalid file descriptor.

Sharing Guardian Files
After a successful call to the tdm_fork() function, the initial position within an open EDIT file
(file code 101) in the Guardian file system (a file in /G) that was opened by a call to the OSS
open() function is the same for both the parent and child processes. However, the position is not
shared; that is, changing the position used by one process does not change the position used by
the other process.

Floating-Point Data
If the parent process uses IEEE floating-point data, the child process inherits all the floating-point
register contents of the parent process and any computation that was started before the
tdm_fork() function call finishes in the child process. The contents of the status and control
register also are inherited.

RETURN VALUES
Upon successful completion, the tdm_fork() function returns the value 0 (zero) to the child pro-
cess and returns the OSS process ID of the child process to the parent process. If the pr_results
parameter does not contain a null pointer, it returns the Guardian process handle of the child pro-
cess in addition to the OSS process ID.

527186-023 Hewlett-Packard Company 8−41

tdm_fork(2) OSS System Calls Reference Manual

If the tdm_fork() function fails, the value -1 is returned to the parent process, no child process is
created, and errno is set to indicate the error. If pr_results does not contain a null pointer, it
returns additional error information including the PROCESS_LAUNCH_ procedure error and
error detail.

ERRORS
If any of the following conditions occurs, the tdm_fork() function sets errno to the correspond-
ing value:

[EACCES] Open for execute access on the code file or any library file was denied.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

[EFAULT] An address for a parameter in the process_extension structture pointed to by
pe_parms is out of allowable bounds. The Guardian PROCESS_LAUNCH_
procedure error and error detail information is returned in the structure pointed to
by the pr_results parameter, unless pr_results contains a null pointer.

[EHLDSEM] The process tried to create a child process in a different processor while having
at least one semadj value.

[EINVAL] An invalid parameter value was supplied in the process_extension structure
pointed to by pe_parms. The Guardian PROCESS_LAUNCH_ error and error
detail information is returned in the structure pointed to by the pr_results param-
eter, unless pr_results contains a null pointer.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error or data has been lost during an input or output
transfer. This value is used only for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the child process.

[ENOTOSS] The parent process is not an OSS process. The tdm_fork() function cannot be
used from the Guardian environment.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

RELATED INFORMATION
Functions: exec(2), _exit(2), fork(2), raise(3), semget(2), semop(2), shmat(2), sigaction(2),
tdm_execve(2), tdm_execvep(2), tdm_spawn(2), tdm_spawnp(2), times(3), ulimit(2),
umask(2), wait(2).

Miscellaneous: process_extension_results(5).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

8−42 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawn(2)

NAME
tdm_spawn - Executes a new process with HP extensions

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <spawn.h>
#include <tdmext.h>

[extern char **environ;]

pid_t tdm_spawn(
const char ∗∗path,
const int fd_count,
const int fd_map[],
const struct inheritance ∗∗inherit,
char ∗∗ const argv[],
char ∗∗ const envp[],
const struct process_extension ∗∗pe_parms,
struct process_extension_results ∗∗pr_results);

PARAMETERS
**environ Points to an array of character pointers to environment strings. The environment

strings define the OSS environment for the parent process. The environ array is
terminated by a null pointer.

path Points to a null-terminated string containing a pathname that identifies the new
process image file. The pathname is absolute if it starts with a slash (/) charac-
ter. Otherwise, the pathname is relative and is resolved by prefixing the current
working directory.

fd_count Specifies the number of file descriptors designated by the fd_map[] parameter.
All file descriptors higher than fd_count are closed in the new process. This
parameter can take values from 0 (zero) through POSIX_OPEN_MAX.

fd_map[] Maps file descriptors from the parent process to the new process. File descrip-
tors identified with the value SPAWN_FDCLOSED are closed in the new pro-
cess.

If this parameter is a null pointer, all open OSS file descriptors of the parent pro-
cess (except for files opened by Guardian function or procedure calls and those
with the FD_CLOEXEC attribute flag set) are inherited by the new process.
Such inherited file descriptors behave here as they do for the tdm_execve()
function.

inherit Points to a structure that allows the process group ID and signal mask of the new
process to be specified in addition to a list of signals that the new process will
take default action on. The structure is defined in the spawn.h header file.

argv[] Specifies an array of character pointers to null-terminated strings containing
arguments to be passed to the main function of the new program. argv[0] should
point to the null-terminated string containing the filename of the new process
image. The last member of this array must be a null pointer.

527186-023 Hewlett-Packard Company 8−43

tdm_spawn(2) OSS System Calls Reference Manual

envp[] Specifies an array of character pointers to null-terminated strings that describe
the environment for the new process.

pe_parms Points to the input structure containing Guardian process attributes to be
assigned to the new process. The structure is defined in the tdmext.h header file.

When this parameter contains a null pointer, the tdm_spawn() function assumes
default Guardian attributes. Otherwise, the structure must be defined locally and
initialized before its first use. Initialization is done using the #define
DEFAULT_PROCESS_EXTENSION, as defined in the tdmext.h header file.
The initialized values can then be modified as appropriate for the call.

pr_results Points to the output structure containing optional process identification and error
information. In case of error, this structure provides additional information,
including the PROCESS_LAUNCH_ procedure error and error detail. The struc-
ture is defined in the tdmext.h header file.

The structure must be defined locally and initialized before its first use. Initiali-
zation is done by using the #define
DEFAULT_PROCESS_EXTENSION_RESULTS, as defined in the tdmext.h
header file.

See the process_extension_results(5) reference page for information about the
content of the structure. The tdmext.h header file is not kept current when new
error codes are defined for process creation functions. The list of _TPC_ macros
described in that reference page is not complete; for a current description of error
macros and error codes, see the Guardian header file
$SYSTEM.ZSPIDEF.ZGRDC or the summary of process-creation errors in the
Guardian Procedure Calls Reference Manual (see the table entitled "Summary
of Process Creation Errors").

DESCRIPTION
The tdm_spawn() function creates a new process image. The new image is constructed from a
regular executable file, called a new process image file. The new process image file is formatted
as an executable text or binary file in one of the formats recognized by the tdm_spawn() func-
tion.

The tdm_spawn() function is similar to the tdm_spawnp() function. The main difference is the
way the pathname for the process image file is resolved. tdm_spawn() always resolves relative
pathnames by prefixing the current working directory; see Identifying the Process Image File,
later in this reference page. tdm_spawnp() sometimes uses the PATH environment variable to
resolve pathnames.

The tdm_spawn() function provides a different way to create a new process than the way pro-
vided by the tdm_fork() and tdm_execve() functions. tdm_spawn() provides a more efficient
way to create a new process to execute a new program file. However, tdm_spawn() does not
provide all the function provided by tdm_fork() and tdm_execve().

When a program is executed as a result of a tdm_spawn() call, it is entered as a function call:

int main(
int argc,
char ∗∗argv[],
char ∗∗envp);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and the envp parameter is a pointer to a character array
listing the environment variables. The argv[] array is terminated by a null pointer. The null
pointer is not counted in argc.

8−44 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawn(2)

The arguments specified by a program using the tdm_spawn() function are passed on to the new
process image in the corresponding arguments to the main() function.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined, and errno is set to
[ENOTOSS].

Identifying the Process Image File
The tdm_spawn() function uses the path parameter to identify the process image file. This
parameter points to the absolute pathname if the pathname starts with a slash (/) character. Oth-
erwise, the pathname is relative and is resolved by prefixing the current working directory.

Passing the Arguments
The argv[] parameter is an array of character pointers to null-terminated strings. The last
member of this array is a null pointer. These strings constitute the argument list available to the
new process image. The value in argv[0] should point to a filename that is associated with the
process being started by the tdm_spawn() function.

Specifying the Environment
The envp[] parameter is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The environment array is terminated with
a null pointer.

The number of bytes available for the new process’s combined argument and environment lists
has a system-imposed limit. This limit, which includes the pointers and the null terminators on
the strings, is available by calling the sysconf(_SC_ARG_MAX) function.

Executing a Binary File
If the file specified as the new process image file is a binary executable file, the tdm_spawn()
function loads the file directly.

Executing a Text File
If the file specified as the new process image file is not a binary executable file, the
tdm_spawn() function examines the file to determine whether it is an executable text file. It
checks for a header line in this format:

#! interpreter_name [optional_string]

The #! notation identifies the file as an executable text file. The new process image filename is
constructed from the process image filename in the interpreter_name string, treating it like the
path parameter. The Guardian input and output structures pointed to by the pe_parms and
pr_results parameters apply to the command interpreter as they would to any process file.

The arguments passed to the new process are modified as listed:

• argv[0] is set to the name of the command interpreter.

• If the optional_string portion is present, argv[1] is set to optional_string.

• The next element of argv[] is set to the original value of path.

• The remaining elements of argv[] are set to the original elements of argv[], starting with
argv[1]. The original argv[0] is discarded.

The S_ISUID and S_ISGID mode bits of an executable text file are ignored.

527186-023 Hewlett-Packard Company 8−45

tdm_spawn(2) OSS System Calls Reference Manual

When the File Is Invalid
If the process image file is not a valid executable object, or if the text file does not contain the
header line, the tdm_spawn() function returns and sets errno to [ENOEXEC].

Open Files
The fd_count and fd_map[] parameters determine which file descriptors that were open in the
calling process remain open in the new process.

fd_count specifies the number of file descriptors to be designated by the fd_map[] parameter.

fd_map[] specifies how file descriptors in the parent process map to file descriptors in the new
process. That is, the file descriptor in fd_map[0] is copied to file descriptor 0 (zero) in the new
process, the file descriptor in fd_map[1] is copied to file descriptor 1 in the new process, and so
on. If fd_map[] has a null value, the fd_count parameter is ignored and all open file descriptors
in the parent (except for files opened by Guardian function or procedure calls and those with the
FD_CLOEXEC attribute flag set) are inherited without mapping by the new process. Such
inherited file descriptors behave here as they do for the tdm_execve() function.

If fd_map[] does not have a null value, file descriptors from fd_count to OPEN_MAX are closed
in the new process, as are entries in fd_map[] that are identified with the value
SPAWN_FDCLOSED.

If a file descriptor specified in fd_map[] is invalid, the function call fails. (Any file descriptor
created by a Guardian function or procedure call is invalid.) The errno variable is set to
[EBADF].

For a G-series TNS process image or an accelerated process image only, if the process file seg-
ment (PFS) of the new process image is smaller than the process file segment of the calling pro-
cess image and if the calling process image has a large number of file descriptors open, then the
system might not be able to propagate all the open file descriptors to the new process image.
When this situation occurs, the function call fails, and errno is set to the value of [EMFILE].

Open Pipes and FIFOs
A pipe or FIFO associated with an open file descriptor in the parent process remains connected in
the child process. If the child process runs in a different processor than the parent process, the
processor that runs the child process must also be running an OSS pipe server process.

If no OSS pipe server process is running in the new processor, the child process cannot use the
pipe or FIFO; calls specifying the file descriptor for the pipe or FIFO fail with errno set to
[EWRONGID]. The child process can only close the invalid file descriptor.

Existing Sockets
A socket associated with an open file descriptor in the calling process remains connected in the
new process when the new process runs in the same processor as the calling process.

When the new process runs in a different processor than the calling process, the processor that
runs the new process must also be running a socket transport agent process. If no socket tran-
sport agent process is running in the new processor, the new process cannot use the socket; calls
specifying the file descriptor for the socket fail with errno set to [EWRONGID]. The new pro-
cess can only close the invalid file descriptor.

Sharing Guardian Files
After a successful call to the tdm_spawn() function, the initial position within an open EDIT file
(file code 101) in the Guardian file system (a file in /G) that was opened by a call to the OSS
open() function is the same for both the parent and child processes. However, the position is not
shared; that is, changing the position used by one process does not change the position used by
the other process.

8−46 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawn(2)

Shared Memory
Any attached shared memory segments are detached from the child process by a successful call
to the tdm_spawn() function. See the shmat(2) reference page for additional information about
shared memory segment use.

Semaphores
Semaphore set IDs attached to a parent process are also attached to the child process if the child
process executes in the same processor as the parent.

A semaphore set cannot be shared when a semadj value exists for the parent process and the
child process is created in a different processor. When that condition exists, a call to the
tdm_spawn() function fails and errno is set to [EHLDSEM].

See the semget(2) reference page for additional information about semaphore use.

Signals
The setting of signaling attributes in the new process depends on the information provided in the
inheritance structure (pointed to by the inherit parameter).

This default signal information applies to the child process unless modified by the information in
the inheritance structure:

• Signals set to the default action (SIG_DFL) in the parent process are set to the default
action in the child process.

• Signals set to be ignored (SIG_IGN) by the parent process are set to be ignored by the
child process.

• Signals that cause abnormal termination (SIG_ABORT) in the calling process image are
set to that action in the new process image.

• Signals that cause entry into the debugger (SIG_DEBUG) in the calling process image
are set to that action in the new process image.

• Signals set to be caught by the parent process are set to the default action in the child
process (see the signal(4) reference page).

• The signal mask in the child process is inherited from the parent process.

• Signals pending in the parent process are disregarded by the child process.

The inheritance structure can modify the default signal information as listed:

• If the SPAWN_SETSIGMASK bit is set in
inherit->flags, then inherit->sigmask contains the signal mask for the child process.

• If the SPAWN_SETSIGDEF bit is set in
inherit->flags, then inherit->sigdefault specifies the signal set that is forced to the
default action in the child process. Additional signals that are set to the default action in
the parent process, or for which the parent process has a signal-catching function
installed, are also set to the default action in the child process.

Process Group
By default, the child process is a member of the same process group as the parent. However, the
new process can be designated a member of some other process group by setting the
SPAWN_SETPGROUP bit in inherit->flags. The inherit->pgroup field specifies the process
group number, or it contains the SPAWN_NEWPGROUP symbolic constant if the new process
is to be the leader of a new process group.

527186-023 Hewlett-Packard Company 8−47

tdm_spawn(2) OSS System Calls Reference Manual

User ID and Group ID
If the set-user-ID mode bit (S_ISUID) of the new process image file is set (see the chmod(2)
reference page), the effective user ID of the new process image is set to the user ID of the owner
of the new process image file. Similarly, if the set-group-ID mode bit (S_ISGID) of the new pro-
cess image file is set, the effective group ID of the new process image is set to the group ID of the
new process image file. The real user ID, real group ID, and supplementary group IDs of the new
process image remain the same as those of the calling process image. The effective user ID and
effective group ID of the new process image are saved (as the saved-set user ID and the saved-set
group ID) for use by the setuid() function.

OSS Attributes
These OSS attributes of the calling process image are unchanged after successful completion of
the tdm_spawn() function:

• Real user ID

• Real group ID

• Session membership

• Current working directory

• Root directory

• File mode creation mask (see the umask(2) reference page)

• File size limit (see the ulimit(2) reference page)

The OSS attributes of the child process differ from those of the parent process in these ways:

• The child process has a unique OSS process ID (PID) and does not match any active pro-
cess group ID.

• The parent process ID of the child process matches the OSS process ID of the parent.

• The child process has its own copy of a subset of the parent process’s file descriptors.
See Open Files, earlier in this reference page. However, each of the child’s file descrip-
tors shares a common file pointer with the corresponding file descriptor of the parent pro-
cess.

• The child process does not inherit file opens created by Guardian function or procedure
calls.

• The child process does not inherit file locks.

• The child process’s tms_utime, tms_stime, tms_cutime, and tms_cstime values are set
to 0 (zero).

• Any pending alarms are cleared in the child process.

• Any adjust-on-exit (semadj) values of the parent process are not inherited by the child
process.

• Any signals pending for the parent process are not inherited by the child process.

• The signal mask of the child process is that of the parent process unless modified by the
inherit->sigmask field. See Signals, earlier in this reference page.

8−48 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawn(2)

• The set of signals for which default action is set and the set of signals to be ignored are
the same in the child process as in the parent process unless modified by
inherit->sigdefault. See Signals, earlier.

• The child process does not share directory streams with the parent. All open directory
streams are closed for the child process.

Default Guardian Attributes
If the pe_parms parameter contains a null pointer, the newly created OSS process retains all of
these default Guardian attributes of the process that calls the tdm_spawn() function:

• Priority

• Processor on which the process executes

• Home terminal

• Job ID

• DEFINE mode switch

• Creator access ID (CAID)

• Process access ID (PAID), unless the S_ISUID mode bit of the new process image file is
set

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Login, remote login, and saveabend flags

• File creation mask

If the pe_parms parameter contains a null pointer, the default Guardian attributes of the new pro-
cess that differ from those of the calling process are:

• Segments created or shared using Guardian procedures such as
SEGMENT_ALLOCATE_ are not inherited.

• The program file is the file specified in the tdm_spawn() call.

• The library file is specified in the program file.

• The child process does not inherit the parent process extended swap file (if any). For a
G-series TNS process or an accelerated process, the extended data segment is managed
by the Kernel Managed Storage Facility (KMSF) unless an extended swap file is
specified in the pe_extwap_file_name field of the process_extension structure
described elsewhere in this reference page.

527186-023 Hewlett-Packard Company 8−49

tdm_spawn(2) OSS System Calls Reference Manual

• The process name for the new process is system-generated if the RUNNAMED option is
set in the program file. Otherwise, the process is unnamed.

• The size of the data segment of the new process is set in the program file.

• The remote login flag (PCBREMID) is set to zero (off) if the program file has its
S_ISUID mode bit set. Otherwise, the remote login flag is set the same as for the caller.

• The size of the extended data segment of the new process is set in the program file.

• The DEFINEs inherited by the new process depend on the setting of DEFINE mode in
the caller. If DEFINE mode in the caller is ON, all the caller’s DEFINEs are inherited. If
DEFINE mode is OFF, no DEFINEs are inherited.

• The process identification number (PIN) of the child process is unrelated to that of the
parent process. Usually, the PIN of the child process is unrestricted. However, the PIN
can be restricted to the range 0 through 254 under the following conditions:

— The HIGHPIN flag is not set in, or is absent from, the program file or any library
file.

— _TPC_HIGHPIN_OFF is specified in the pe_create_options field of the
process_extension structure, described following.

— The restriction is inherited. See _TPC_IGNORE_FORCEPIN_ATTR in the
pe_create_options field of the process_extension structure, described follow-
ing, for more information about controlling inheritance.

• The process access ID (PAID) depends on whether the S_ISUID mode bit of the process
image file is set. If that bit is set, the PAID is based on the file owner ID. If not, the PAID
is the same as for the caller. (The S_ISUID mode bit of the image file has no effect on
the security group list.)

• For unnamed processes, the MOM field of the child process is NULL. For named
processes, the ancestor field identifies the parent.

• System debugger selection for the new process is based on the INSPECT mode of the
program file.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Setting Guardian Attributes
The input structure pointed to by the pe_parms parameter permits the setting of Guardian attri-
butes for the new process.

First, the input structure must be initialized to the default values (see Default Guardian Attri-
butes, earlier in this reference page) using the #define DEFAULT_PROCESS_EXTENSION.
After the structure is initialized, the values can be set using literals that are defined in the
tdmext.h header file.

If any optional parameter specified in the structure pointed to by pe_parms is not passed, the new
process assumes the corresponding default value.

The input structure is defined in the tdmext.h header file. This structure can contain fields that
vary from release version update (RVU) to RVU, including reserved and filler fields.

8−50 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawn(2)

In the current RVU, these fields are meaningful:

#if defined (__LP64) | | defined (_PROCEX32_64BIT)

typedef struct process_extension {
short pe_ver;
short pe_len;
int pe_pfs_size;
long long pe_mainstack_max;
long long pe_heap_max;
long long pe_space_guarantee;
char _ptr64 *pe_library_name;
char _ptr64 *pe_swap_file_name;
char _ptr64 *pe_extswap_file_name;
char _ptr64 *pe_process_name;
char _ptr64 *pe_hometerm;
char _ptr64 *pe_defines;
short pe_defines_len;
short pe_priority;
short pe_cpu;
short pe_memory_pages;
short pe_jobid;
short pe_name_options;
short pe_create_options;
short pe_debug_options;
short pe_OSS_options;
char filler_1[6];

} process_extension_def;

#else /* !defined (__LP64) && !defined (_PROCEX32_64BIT) */

typedef struct process_extension {
long pe_len;
char *pe_library_name;
char *pe_swap_file_name;
char *pe_extswap_file_name;
short pe_priority;
short pe_cpu;
short pe_name_options;
char filler_1[2];
char *pe_process_name;
char *pe_hometerm;
short pe_memory_pages;
short pe_jobid;
short pe_create_options;
char filler_2[2];
char *pe_defines;
short pe_defines_len;
short pe_debug_options;
long pe_pfs_size;
short pe_OSS_options;
char filler_3[2];
long pe_mainstack_max;
long pe_heap_max;
long pe_space_guarantee;

} process_extension_def;

527186-023 Hewlett-Packard Company 8−51

tdm_spawn(2) OSS System Calls Reference Manual

#endif /* !defined (__LP64) && !defined (_PROCEX32_64BIT) */

When an application is compiled in 64-bit compile mode or compiled using the #define
_PROCEX32_64BIT 1 feature test macro or an equivalent compiler command option, the appli-
cation will use the version of the process_extension structure that contains 64-bit data types.
The _PROCEX32_64BIT flag is only required if a 32-bit process must specify larger 64-bit
values for pe_mainstack_max, pe_heap_max, and pe_space_guaranter. These larger data
types are optional when creating a 64-bit process.

Note: The input structure supports two versions: one that contains 64-bit data types and
one that contains 32-bit data types. Because the order in which the fields appear in
this structure varies significantly based on the version in use, the field definitions
below are defined alphabetically instead of sequentially.

The input structure passes this information:

pe_cpu Specifies the processor on which the new process will execute. The OSS process
ID (PID) of the process remains unchanged. This field is used to distribute sys-
tem load.

pe_create_options
Specifies process creation options as:

_TPC_BOTH_DEFINES
Propagates the current DEFINEs and the DEFINEs indicated in
the input structure.

_TPC_ENABLE_DEFINES
Enables DEFINEs when set if
_TPC_OVERRIDE_DEFMODE is also set. Disables
DEFINEs when not set.

_TPC_HIGHPIN_OFF
Restricts the new process to a PIN in the range 0 through 254.
This restriction is rarely useful for an OSS process; it allows
obsolescent Guardian interfaces to interact with the process.

By default, this restriction is inherited by any child or successor
process. The default can be overridden by using the
_TPC_IGNORE_FORCEPIN_ATTR field.

_TPC_IGNORE_FORCEPIN_ATTR
Ignores the _TPC_HIGHPIN_OFF restriction specified for or
inherited by the caller or parent process. When
_TPC_IGNORE_FORCEPIN_ATTR is specified, the result-
ing process has a restricted PIN only if _TPC_HIGHPIN_OFF
is also specified or if the object file for the program or a user
library lacks the HIGHPIN attribute.

_TPC_OVERRIDE_DEFMODE
Specifies that the DEFINE mode of the new process is to be set
according to the _TPC_ENABLE_DEFINES option rather than
to the caller’s current DEFINE mode.

_TPC_PROCESS_DEFINES_ONLY
Propagates only the current set of DEFINEs.

8−52 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawn(2)

_TPC_SUPPLIED_DEFINES_ONLY
Propagates only the DEFINEs indicated by the pe_defines field.

pe_debug_options
Provides control over the selection between the default and symbolic debuggers
and over the creation of the saveabend file. A saveabend file can be examined by
using the symbolic debugger to determine the cause of the abnormal termination.
In addition, you can use this option to force the new process to enter the default
debugger before executing. Possible options are:

_TPC_CODEFILE_INSPECT_SAVEABEND
Uses the saveabend and INSPECT mode flags in the program
file.

_TPC_DEBUG_NOSAVE
Uses the default debugger but does not create a saveabend file.

_TPC_DEBUG_SAVEABEND
Uses the default debugger and creates a saveabend file.

_TPC_ENTER_DEBUG
Starts the new process in the default debugging utility.

_TPC_INSPECT_NOSAVE
Uses the symbolic debugger but does not create a saveabend file.

_TPC_INSPECT_SAVEABEND
Uses the symbolic debugger and creates a saveabend file.

pe_defines Points to a specified saved set of DEFINEs created by using the Guardian
DEFINESAVE procedure. These DEFINEs are propagated to the new process if
either _TPC_SUPPLIED_DEFINES_ONLY or _TPC_BOTH_DEFINES is
specified in the pe_create_options field.

Note: This string is not null-terminated.

pe_defines_len
Specifies the length of the string in the pe_defines field.

pe_extswap_file_name
Points to a null-terminated string specifying the name of a disk file in the Guar-
dian file system to be used as the swap file for the extended data segment. For
example, if the Guardian filename is $A.B.D, the name used is /G/a/b/d.

This file cannot have the same name as that of a file used in a preceding call to
the tdm_fork() function.

This field is used only for G-series TNS or accelerated new process image files.
If a value is specified for this field for native object files, the specified value is
checked for validity but otherwise ignored.

By default, the new process uses KMSF to manage its extended swap segment.
HP recommends using the default.

pe_heap_max Specifies the maximum size of the heap in bytes for the new process if it is a
native process.

See the C/C++ Programmer’s Guide description of the HEAP pragma for gui-
dance on the use of nonzero values for this field.

527186-023 Hewlett-Packard Company 8−53

tdm_spawn(2) OSS System Calls Reference Manual

If a value is specified for this field for G-series TNS or accelerated object files,
the specified value is ignored.

pe_hometerm Points to the null-terminated name in the Guardian file system for the home ter-
minal. For example, if the Guardian name is $ztnt.#xyz, the name used is
/G/ztnt/#xyz.

pe_jobid Specifies the job ID of the new process.

pe_len Specifies the size of the structure in bytes. This value is set by #define
DEFAULT_PROCESS_EXTENSION and should not be changed.

pe_library_name
Points to the name of the user library to be bound to the new process. The string
that is pointed to is null-terminated and in OSS name format. If the pointer
points to a zero-length string (a NULL character), the new process runs with no
user library. An equivalent call to the Guardian PROCESS_LAUNCH_ pro-
cedure does this by setting the library filename length to -1.

This field is used only for G-series TNS or accelerated new process image files.
If a value is specified for this field for native object files, the specified value is
ignored.

pe_mainstack_max
Specifies the maximum size of the main stack in bytes for the new process.

If the calling process specifies a value, the value must be less than 32 MB. If the
calling process does not specify a value or specifies a 0 (zero) value, the value
specified in the object file of the new process is used. If no value is specified in
the object file, the default value of 1 MB (for TNS/R systems) or 2 MB (for
TNS/E systems) is used.

pe_memory_pages
Specifies the size of the data stack in 2 KB units. This field is used only for G-
series TNS or accelerated new process image files. If a value is specified for this
field for native object files, the specified value is checked for validity but other-
wise ignored.

pe_name_options
Specifies process naming as:

_TPC_GENERATE_NAME
The system generates the name.

_TPC_NAME_SUPPLIED
The process name is indicated by the pe_process_name field.

_TPC_NO_NAME
The new process is unnamed.

pe_OSS_options
Specifies OSS options. No special action on signals is the default and only
current OSS option.

8−54 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawn(2)

pe_pfs_size Specifies the size of the PFS for the new process (this field is ignored).

pe_priority Specifies the priority of the new process.

pe_process_name
Points to the null-terminated Guardian process name if
_TPC_NAME_SUPPLIED is specified in the pe_name_options field. For
example, if the Guardian process name is $DELM, the name used is /G/delm.

pe_space_guarantee
Specifies the minimum available swap space to guarantee for the new process.

If the calling process specifies a value, the value must be less than or equal to a
multiple of the page size of the processor in which the new process will run.
Values less than a multiple of the page size are rounded up to the next multiple
of the page size. If the calling process does not specify a value or specifies a 0
(zero) value, the value specified in the native object file of the new process is
used. If no value is specified in the native object file, the default value of 0
(zero) is used, and enough swap space is guaranteed to launch the process.

If the new process requires a guarantee of available swap space and the system
cannot guarantee the required amount, the function call fails, and errno is set to
the value of [EAGAIN].

If a value is specified for this field for G-series TNS or accelerated object files,
the specified value is used for the main stack of the new process.

pe_swap_file_name
Points to a null-terminated string specifying the name of a file in the Guardian
file system to be used as the swap file for the stack segment. For example, if the
Guardian filename is $A.B.C, the name used is /G/a/b/c.

This file cannot have the same name as that of a file used in a preceding call to
the tdm_fork() function.

This field is not used in the current RVU of Open System Services. It exists for
compatibility with older RVUs. Any specified value is checked for validity but
otherwise ignored.

pe_ver Specifies the version of the process_extension structure. This value is set by
#define DEFAULT_PROCESS_EXTENSION and should not be changed.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Output Structure Information
If the pr_results parameter does not contain a null pointer, it points to an output structure defined
in the tdmext.h header file. This structure can contain fields that vary from RVU to RVU,
including reserved and filler fields.

First, the output structure must be initialized by using the #define
DEFAULT_PROCESS_EXTENSION_RESULTS. This initialization sets the value of the
pr_len field to the correct value for the current RVU. The value of the pr_len field should not be
modified after being set by #define DEFAULT_PROCESS_EXTENSION_RESULTS.

The process_extension_results output structure is described in the
process_extension_results(5) reference page.

527186-023 Hewlett-Packard Company 8−55

tdm_spawn(2) OSS System Calls Reference Manual

EXAMPLES
This example uses the tdm_spawn() function to perform I/O redirection in a new process:

if ((NewStdOut = open ("newout", ...)) != -1)
/* process the error */

fd_map[0] = 0;
fd_map[1] = NewStdOut;
fd_map[2] = 2;
fd_count = 3;
tdm_spawn(..., fd_count, fd_map, ...);
close(NewStdOut);

This example creates a new process under a different user ID:

save = getuid();
setuid(newid);
tdm_spawn(...);
setuid(save);

RETURN VALUES
Upon successful completion, the tdm_spawn() function returns the OSS process ID of the child
process to the parent process. If the pr_results parameter does not contain a null pointer, it
returns the Guardian process handle of the new process in addition to the OSS process ID.

If the tdm_spawn() function fails, the value -1 is returned to the parent process, no child process
is created, and errno is set to indicate the error. If the pr_results parameter does not contain a
null pointer, the structure it points to returns additional error information, including the
PROCESS_LAUNCH_ error and error detail.

ERRORS
If any of the following conditions occurs, the tdm_spawn() function sets errno to the
corresponding value, file descriptors marked close-on-exec are not closed, signals set to be
caught are not set to the default action, and none of these are changed:

• The argv[] array of pointers

• The envp[] array of pointers

• The elements pointed to by these arrays

• The value of the global variable environ

• The pointers contained within the global variable environ

• The elements pointed to by environ pointers

• The effective user ID of the current process

• The effective group ID of the current process

[E2BIG] The number of bytes used by the new process image’s argument list and environ-
ment list is greater than the system-imposed limit. The limit can be obtained by
calling the sysconf(_SC_ARG_MAX) function.

[EACCES] One of these conditions exists:

• Search permission is denied for the directory components of the path-
name prefix to the process image file.

8−56 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawn(2)

• The new process image file, any library file, or script file denies execu-
tion permission.

• Create access on the extended swap file on a disk under Safeguard pro-
tection is denied.

This error occurs only for G-series TNS or accelerated new process
image files.

• The new process image file is not a regular file.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

[EBADF] A file descriptor pointed to by the fd_map[] parameter is invalid.

[EFAULT] An address for a parameter in the process_extension structure pointed to by
pe_parms is out of allowable bounds. The Guardian PROCESS_LAUNCH_
error and error detail information is returned in the structure pointed to by the
pr_results parameter, unless pr_results contains a null pointer.

[EHLDSEM] The process tried to create a child process in a different processor while having
at least one semadj value.

[EINVAL] One of these conditions exists:

• An invalid parameter value was supplied in the process_extension
structure pointed to by pe_parms. The Guardian PROCESS_LAUNCH_
error and error detail information is returned in the structure pointed to
by the pr_results parameter, unless pr_results contains a null pointer.

• The new process image file is a binary executable file with invalid attri-
butes.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error or data has been lost during an input or output
transfer. This value is used only for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

For systems running J06.07 and later J-series RVUs or H06.18 or later H-series
RVUs, this error can also occur when the OSS file system is out of memory and
one or more open files cannot be propagated from the parent process to the child
process. In this case, if you are running a program from the shell with the shell
reporting any errors, you might see an error like this:

/bin/-sh: /bin/ps: tdm_execve(): failed with unexpected error pr_errno=(4005)
pr_TPCerror=(110) pr_TPCdetail=(36)

where:

• pr_errno is the [EIO] error

• pr_TPCerror is the Guardian PROCESS_LAUNCH_ or
PROCESS_CREATE_ error.

527186-023 Hewlett-Packard Company 8−57

tdm_spawn(2) OSS System Calls Reference Manual

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[EMFILE] The maximum number of files are open. The process attempted to open more
than the maximum number of file descriptors allowed for the process. One of
these conditions might exist:

• The maximum value for fd_count has been exceeded.

• The process file segment (PFS) of the child process is smaller than that
of the parent process.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the pathname pointed to by the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOCPU] The selected processor does not exist, or the selected processor is down or other-
wise unavailable for process creation.

[ENODEV] The system cannot find the fileset containing the process image file.

[ENOENT] One of these conditions exists:

• One or more components of the new process image file’s pathname do
not exist.

• The path parameter points to an empty string.

[ENOEXEC] The new process image file has the appropriate access permissions and is in the
OSS name space, but it is neither in the correct binary executable format nor a
valid executable text file.

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

[ENOTDIR] A component of the path prefix of the new process image file is not a directory.

[ENOTOSS] The calling process is not an OSS process. The tdm_spawn() function cannot
be used from the Guardian environment.

[EPERM] One of the following conditions exist:

• The value of the inherit->pgroup field does not match any process group
ID in the same session as the calling process.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

8−58 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawn(2)

[ETXTBSY] The new process image file is a pure procedure (shared text) file that is currently
open for writing by some process.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

The structure pointed to by the pr_results parameter might contain additional Guardian
PROCESS_LAUNCH_ procedure error and error detail information if any of these errors occur:
[EACCES], [EAGAIN], [EFAULT], [EINVAL], [EIO], [ENOCPU], and [ENOEXEC].

RELATED INFORMATION
Commands: eld(1), ld(1), nld(1).

Functions: alarm(3), chmod(2), exec(2), _exit(2), exit(3), fcntl(2), fork(2), getenv(3),
putenv(3), semget(2), shmat(2), sigaction(2), system(3), tdm_execve(2), tdm_execvep(2),
tdm_fork(2), tdm_spawnp(2), times(3), ulimit(2), umask(2).

Files: signal(4).

Miscellaneous: environ(5), process_extension_results(5).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

527186-023 Hewlett-Packard Company 8−59

tdm_spawnp(2) OSS System Calls Reference Manual

NAME
tdm_spawnp - Executes a new process with HP extensions

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossksrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zosskdll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yosskdll

SYNOPSIS
#include <spawn.h>
#include <tdmext.h>

[extern char **environ;]

pid_t tdm_spawnp(
const char ∗∗file,
const int fd_count,
const int fd_map[],
const struct inheritance ∗∗inherit,
char ∗∗ const argv[],
char ∗∗ const envp[],
const struct process_extension ∗∗pe_parms,
struct process_extension_results ∗∗pr_results);

PARAMETERS
**environ Points to an array of character pointers to environment strings. The environment

strings define the OSS environment for the parent process. The environ array is
terminated by a null pointer.

file Points to a pathname that identifies the new process image file. If the pathname:

• Starts with a slash (/) character; it is the absolute pathname.

• Does not start with a slash but does contain a slash; the pathname
resolves relative to the current working directory.

• Contains no slash, the system searches the directories listed in the PATH
environment variable for the file and prefixes the directory in which the
file is found.

fd_count Specifies the number of file descriptors designated by the fd_map[] parameter.
All file descriptors higher than fd_count are closed in the child process. This
parameter can take values from 0 (zero) through POSIX_OPEN_MAX.

fd_map[] Maps file descriptors from the parent process to the child process. File descrip-
tors identified with the value SPAWN_FDCLOSED are closed in the child pro-
cess.

If this parameter is a null pointer, all open OSS file descriptors of the parent pro-
cess (except for files opened by Guardian function or procedure calls and those
with the FD_CLOEXEC attribute flag set) are inherited by the child process.
Such inherited file descriptors behave here as they do for the tdm_execvep()
function.

8−60 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawnp(2)

inherit Points to a structure that allows the process group ID and signal mask of the new
process to be specified in addition to a list of signals that the child process will
take default action on. The structure is defined in the spawn.h header file.

argv[] Specifies an array of character pointers to null-terminated strings containing
arguments to be passed to the main function of the new program. argv[0] should
point to the null-terminated string containing the filename of the new process
image. The last member of this array must be a null pointer.

envp[] Specifies an array of character pointers to null-terminated strings that describe
the environment for the new process.

pe_parms Points to the input structure containing Guardian process attributes to be
assigned to the new process. The structure is defined in the tdmext.h header file.

When this parameter contains a null pointer, the tdm_spawnp() function
assumes default Guardian attributes. Otherwise, the structure must be defined
locally and initialized before its first use. Initialization is done using the #define
DEFAULT_PROCESS_EXTENSION, as defined in the tdmext.h header file.
The initialized values can then be modified as appropriate for the call.

pr_results Points to the output structure containing optional process identification and error
information. In case of error, this structure provides additional information,
including the PROCESS_LAUNCH_ procedure error and error detail. The struc-
ture is defined in the tdmext.h header file.

The structure must be defined locally and initialized before its first use. Initiali-
zation is done by using the #define
DEFAULT_PROCESS_EXTENSION_RESULTS, as defined in the tdmext.h
header file.

See the process_extension_results(5) reference page for information about the
content of the structure. The tdmext.h header file is not kept current when new
error codes are defined for process creation functions. The list of _TPC_ macros
described in that reference page is not complete; for a current description of error
macros and error codes, see the Guardian header file
$SYSTEM.ZSPIDEF.ZGRDC or the summary of process-creation errors in the
Guardian Procedure Calls Reference Manual (see the table entitled "Summary
of Process Creation Errors").

DESCRIPTION
The tdm_spawnp() function creates a new process image. The new image is constructed from a
regular executable file, called a new process image file. The new process image file is formatted
as an executable text or binary file in one of the formats recognized by the tdm_spawnp() func-
tion.

The tdm_spawnp() function is similar to the tdm_spawn() function. The main difference is the
way the pathname for the process image file is resolved. tdm_spawn() always resolves relative
pathnames by prefixing the current working directory. tdm_spawnp() sometimes uses the
PATH environment variable to resolve pathnames; see Identifying the Process Image File, later
in this reference page.

The tdm_spawnp() function provides a different way to create a new process than the way pro-
vided by the tdm_fork() and tdm_execvep() functions. tdm_spawnp() provides a more
efficient way to create a new process to execute a new program file. However, tdm_spawnp()
does not provide all the function provided by tdm_fork() and tdm_execvep().

527186-023 Hewlett-Packard Company 8−61

tdm_spawnp(2) OSS System Calls Reference Manual

When a program is executed as a result of a tdm_spawnp() call, it is entered as a function call:

int main(
int argc,
char ∗∗argv[],
char ∗∗envp);

Here, the argc parameter is the argument count, the argv[] parameter is an array of character
pointers to the arguments themselves, and the envp parameter is a pointer to a character array
listing the environment variables. The argv[] array is terminated by a null pointer. The null
pointer is not counted in argc.

The arguments specified by a program using the tdm_spawnp() function are passed on to the
new process image in the corresponding arguments to the main() function.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined, and errno is set to
[ENOTOSS].

Identifying the Process Image File
The tdm_spawnp() function uses the file parameter to identify the process image file. If the
pathname pointed to by the file parameter starts with a slash (/) character, it is the absolute path-
name. If the pathname does not start with a slash but contains a slash, the pathname is resolved
relative to the current working directory. Otherwise, the pathname does not contain a slash; the
system searches the directories listed in the PATH environment variable for the file and prefixes
the directory in which the file is found.

Passing the Arguments
The argv[] parameter is an array of character pointers to null-terminated strings. The last
member of this array is a null pointer. These strings constitute the argument list available to the
new process image. The value in argv[0] should point to a filename that is associated with the
process being started by the tdm_spawnp() function.

Specifying the Environment
The envp[] parameter is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The environment array is terminated with
a null pointer.

The number of bytes available for the new process’s combined argument and environment lists
has a system-imposed limit. This limit, which includes the pointers and the null terminators on
the strings, is available by calling the sysconf(_SC_ARG_MAX) function.

Executing a Binary File
If the file specified as the new process image file is a binary executable file, the tdm_spawnp()
function loads the file directly.

Executing a Text File
If the file specified as the new process image file is not a binary executable file, the
tdm_spawnp() function examines the file to determine whether it is an executable text file. It
checks for a header line in this format:

#! interpreter_name [optional_string]

The #! notation identifies the file as an executable text file. The new process image filename is
constructed from the process image filename in the interpreter_name string, treating it like the
file parameter. The Guardian input and output structures pointed to by the pe_parms and
pr_results parameters apply to the command interpreter as they would to any process file.

The arguments passed to the new process are modified as listed:

8−62 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawnp(2)

• argv[0] is set to the name of the command interpreter.

• If the optional_string portion is present, argv[1] is set to optional_string.

• The next element of argv[] is set to the original value of file.

• The remaining elements of argv[] are set to the original elements of argv[], starting with
argv[1]. The original argv[0] is discarded.

The S_ISUID and S_ISGID mode bits of an executable text file are ignored.

When the File Is Invalid
If the process image file is not a valid executable object, and it is a regular text file that does not
contain the header line, the tdm_spawnp() function invokes the interpreter_name command
interpreter as the new process image and passes these arguments to it:

• argv[0] is set to the string "sh".

• argv[1] is set to the original value of the file parameter.

• The remaining elements of argv[] are set to the original elements of argv[] starting with
argv[1].

• The original argv[0] is discarded.

Open Files
The fd_count and fd_map[] parameters determine which file descriptors that were open in the
calling process remain open in the child process.

fd_count specifies the number of file descriptors to be designated by the fd_map[] parameter.

fd_map[] specifies how file descriptors in the parent process map to file descriptors in the child
process. That is, the file descriptor in fd_map[0] is copied to file descriptor 0 (zero) in the child
process, the file descriptor in fd_map[1] is copied to file descriptor 1 in the child process, and so
on. If fd_map[] has a null value, the fd_count parameter is ignored and all open file descriptors
in the parent (except for files opened by Guardian function or procedure calls and those with the
FD_CLOEXEC attribute flag set) are inherited without mapping by the child process. Such
inherited file descriptors behave here as they do for the tdm_execvep() function.

If fd_map[] does not have a null value, file descriptors from fd_count to OPEN_MAX are closed
in the child process, as are entries in fd_map[] that are identified with the value
SPAWN_FDCLOSED.

If a file descriptor specified in fd_map[] is invalid, the function call fails. (Any file descriptor
created by a Guardian function or procedure call is invalid.) The errno variable is set to
[EBADF].

For a G-series TNS process image or an accelerated process image, if the process file segment
(PFS) of the new process image is smaller than the process file segment of the calling process
image and if the calling process image has a large number of file descriptors open, then the sys-
tem might not be able to propagate all the open file descriptors to the new process image. When
this situation occurs, the function call fails, and errno is set to the value of [EMFILE].

Open Pipes and FIFOs
A pipe or FIFO associated with an open file descriptor in the parent process remains connected in
the child process. If the child process runs in a different processor than the parent process, the
processor that runs the child process must also be running an OSS pipe server process.

If no OSS pipe server process is running in the new processor, the child process cannot use the
pipe or FIFO; calls specifying the file descriptor for the pipe or FIFO fail with errno set to
[EWRONGID]. The child process can only close the invalid file descriptor.

527186-023 Hewlett-Packard Company 8−63

tdm_spawnp(2) OSS System Calls Reference Manual

Existing Sockets
A socket associated with an open file descriptor in the calling process remains connected in the
new process when the new process runs in the same processor as the calling process.

When the new process runs in a different processor than the calling process, the processor that
runs the new process must also be running a socket transport agent process. If no socket tran-
sport agent process is running in the new processor, the new process cannot use the socket; calls
specifying the file descriptor for the socket fail with errno set to [EWRONGID]. The new pro-
cess can only close the invalid file descriptor.

Sharing Guardian Files
After a successful call to the tdm_spawnp() function, the initial position within an open EDIT
file (file code 101) in the Guardian file system (a file in /G) that was opened by a call to the OSS
open() function is the same for both the parent and child processes. However, the position is not
shared; that is, changing the position used by one process does not change the position used by
the other process.

Shared Memory
Any attached shared memory segments are detached from the child process by a successful call
to the tdm_spawnp() function. See the shmat(2) reference page for additional information
about shared memory segment use.

Semaphores
Semaphore set IDs attached to a parent process are also attached to the child process if the child
process executes in the same processor as the parent.

A semaphore set cannot be shared when a semadj value exists for the parent process and the
child process is created in a different processor. When that condition exists, a call to the
tdm_spawnp() function fails and errno is set to [EHLDSEM].

See the semget(2) reference page for additional information about semaphore use.

Signals
The setting of signaling attributes in the new process depends on the information provided in the
inheritance structure (pointed to by the inherit parameter).

This default signal information applies to the child process unless modified by the information in
the inheritance structure:

• Signals set to the default action (SIG_DFL) in the parent process are set to the default
action in the child process.

• Signals set to be ignored (SIG_IGN) by the parent process are set to be ignored by the
child process.

• Signals that cause abnormal termination (SIG_ABORT) in the calling process image are
set to that action in the new process image.

• Signals that cause entry into the debugger (SIG_DEBUG) in the calling process image
are set to that action in the new process image.

• Signals set to be caught by the parent process are set to the default action in the child
process (see the signal(4) reference page).

• The signal mask in the child process is inherited from the parent process.

8−64 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawnp(2)

• Signals pending in the parent process are disregarded by the child process.

The inheritance structure can modify the default signal information as follows:

• If the SPAWN_SETSIGMASK bit is set in
inherit->flags, inherit->sigmask contains the signal mask for the child process.

• If the SPAWN_SETSIGDEF bit is set in
inherit->flags, inherit->sigdefault specifies the signal set that is forced to the default
action in the child process. Additional signals that are set to the default action in the
parent process, or for which the parent process has a signal-catching function installed,
are also set to the default action in the child process.

Process Group
By default, the child process is a member of the same process group as the parent. However, the
new process can be designated a member of some other process group by setting the
SPAWN_SETPGROUP bit in inherit->flags. The inherit->pgroup field specifies the process
group number, or it contains the SPAWN_NEWPGROUP symbolic constant if the new process
is to be the leader of a new process group.

User ID and Group ID
If the set-user-ID mode bit (S_ISUID) of the new process image file is set (see the chmod(2)
reference page), the effective user ID of the new process image is set to the user ID of the owner
of the new process image file. Similarly, if the set-group-ID mode bit (S_ISGID) of the new pro-
cess image file is set, the effective group ID of the new process image is set to the group ID of the
new process image file. The real user ID, real group ID, and supplementary group IDs of the new
process image remain the same as those of the calling process image. The effective user ID and
effective group ID of the new process image are saved (as the saved-set user ID and the saved-set
group ID) for use by the setuid() function.

OSS Attributes
These OSS attributes of the calling process image are unchanged after successful completion of
the tdm_spawnp() function:

• Real user ID

• Real group ID

• Session membership

• Current working directory

• Root directory

• File mode creation mask (see the umask(2) reference page)

• File size limit (see the ulimit(2) reference page)

The OSS attributes of the child process differ from those of the parent process in these ways:

• The child process has a unique OSS process ID (PID) and does not match any active pro-
cess group ID.

• The parent process ID of the child process matches the OSS process ID of the parent.

527186-023 Hewlett-Packard Company 8−65

tdm_spawnp(2) OSS System Calls Reference Manual

• The child process has its own copy of a subset of the parent process’s file descriptors.
See Open Files, earlier in this reference page. However, each of the child’s file descrip-
tors shares a common file pointer with the corresponding file descriptor of the parent pro-
cess.

• The child process does not inherit file opens created by Guardian function or procedure
calls.

• The child process does not inherit file locks.

• The child process’s tms_utime, tms_stime, tms_cutime, and tms_cstime values are set
to 0 (zero).

• Any pending alarms are cleared in the child process.

• Any adjust-on-exit (semadj) values of the parent process are not inherited by the child
process.

• Any signals pending for the parent process are not inherited by the child process.

• The signal mask of the child process is that of the parent process unless modified by the
inherit->sigmask field. See Signals, earlier in this reference page.

• The set of signals for which default action is set and the set of signals to be ignored are
the same in the child process as in the parent process unless modified by
inherit->sigdefault. See Signals, earlier.

• The child process does not share directory streams with the parent. All open directory
streams are closed for the child process.

Default Guardian Attributes
If the pe_parms parameter contains a null pointer, the newly created OSS process retains all of
these default Guardian attributes of the process that calls the tdm_spawnp() function:

• Priority

• Processor on which the process executes

• Home terminal

• Job ID

• DEFINE mode switch

• Creator access ID (CAID)

• Process access ID (PAID), unless the S_ISUID mode bit of the new process image file is
set

• Security group list

• Job ancestor or GMOM

• Unread system message index (PCBMCNT)

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

8−66 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawnp(2)

• Outstanding incoming and outgoing message limits

This attribute assignment is different from the assignment made when creating a new
process with Guardian procedures.

• Login, remote login, and saveabend flags

• File creation mask

If the pe_parms parameter contains a null pointer, the default Guardian attributes of the new pro-
cess that differ from those of the calling process are as follows:

• Segments created or shared using Guardian procedures such as
SEGMENT_ALLOCATE_ are not inherited.

• The program file is the file specified in the tdm_spawnp() call.

• The library file is specified in the program file.

• The child process does not inherit the parent process extended swap file (if any). For a
G-series TNS process or an accelerated process, the extended data segment is managed
by the Kernel Managed Storage Facility (KMSF) unless an extended swap file is
specified in the pe_extwap_file_name field of the process_extension structure
described elsewhere in this reference page.

• The process name for the new process is system-generated if the RUNNAMED option is
set in the program file. Otherwise, the process is unnamed.

• The size of the data segment of the new process is set in the program file.

• The remote login flag (PCBREMID) is set to zero (off) if the program file has its
S_ISUID mode bit set. Otherwise, the remote login flag is set the same as for the caller.

• The size of the extended data segment of the new process is set in the program file.

• The DEFINEs inherited by the new process depend on the setting of DEFINE mode in
the caller. If DEFINE mode in the caller is ON, all the caller’s DEFINEs are inherited.
If DEFINE mode is OFF, no DEFINEs are inherited.

• The process identification number (PIN) of the child process is unrelated to that of the
parent process. Usually, the PIN of the child process is unrestricted. However, the PIN
can be restricted to the range 0 through 254 under the following conditions:

— The HIGHPIN flag is not set in, or is absent from, the program file or any library
file.

— _TPC_HIGHPIN_OFF is specified in the pe_create_options field of the
process_extension structure, described elsewhere in this reference page.

— The restriction is inherited. See _TPC_IGNORE_FORCEPIN_ATTR in the
pe_create_options field of the process_extension structure, described else-
where in this reference page, for more information about controlling inheritance.

• The process access ID (PAID) depends on whether the S_ISUID mode bit of the process
image file is set. If that bit is set, the PAID is based on the file owner ID. If not, the PAID
is the same as for the caller. (The S_ISUID mode bit of the image file has no effect on
the security group list.)

527186-023 Hewlett-Packard Company 8−67

tdm_spawnp(2) OSS System Calls Reference Manual

• For unnamed processes, the MOM field of the child process is NULL. For named
processes, the ancestor field identifies the parent.

• System debugger selection for the new process is based on the INSPECT mode flag in
the program file.

• Code breakpoints and memory breakpoints are not inherited.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Setting Guardian Attributes
The input structure pointed to by the pe_parms parameter permits the setting of Guardian attri-
butes for the new process.

First, the input structure must be initialized to the default values (see Default Guardian Attri-
butes, earlier in this reference page) using the #define DEFAULT_PROCESS_EXTENSION.
After the structure is initialized, the values can be set using literals that are defined in the
tdmext.h header file.

If any optional parameter specified in the structure pointed to by pe_parms is not passed, the new
process assumes the corresponding default value.

The input structure is defined in the tdmext.h header file. This structure can contain fields that
vary from release version update (RVU) to RVU, including reserved and filler fields.

In the current RVU, these fields are meaningful:

#if defined (__LP64) | | defined (_PROCEX32_64BIT)

typedef struct process_extension {
short pe_ver;
short pe_len;
int pe_pfs_size;
long long pe_mainstack_max;
long long pe_heap_max;
long long pe_space_guarantee;
char _ptr64 *pe_library_name;
char _ptr64 *pe_swap_file_name;
char _ptr64 *pe_extswap_file_name;
char _ptr64 *pe_process_name;
char _ptr64 *pe_hometerm;
char _ptr64 *pe_defines;
short pe_defines_len;
short pe_priority;
short pe_cpu;
short pe_memory_pages;
short pe_jobid;
short pe_name_options;
short pe_create_options;
short pe_debug_options;
short pe_OSS_options;
char filler_1[6];

} process_extension_def;

#else /* !defined (__LP64) && !defined (_PROCEX32_64BIT) */

typedef struct process_extension {
long pe_len;
char *pe_library_name;

8−68 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawnp(2)

char *pe_swap_file_name;
char *pe_extswap_file_name;
short pe_priority;
short pe_cpu;
short pe_name_options;
char filler_1[2];
char *pe_process_name;
char *pe_hometerm;
short pe_memory_pages;
short pe_jobid;
short pe_create_options;
char filler_2[2];
char *pe_defines;
short pe_defines_len;
short pe_debug_options;
long pe_pfs_size;
short pe_OSS_options;
char filler_3[2];
long pe_mainstack_max;
long pe_heap_max;
long pe_space_guarantee;

} process_extension_def;

#endif /* !defined (__LP64) && !defined (_PROCEX32_64BIT) */

When an application is compiled in 64-bit compile mode or compiled using the #define
_PROCEX32_64BIT 1 feature test macro or an equivalent compiler command option, the appli-
cation will use the version of the process_extension structure that contains 64-bit data types.
The _PROCEX32_64BIT flag is only required if a 32-bit process must specify larger 64-bit
values for pe_mainstack_max, pe_heap_max, and pe_space_guaranter. These larger data
types are optional when creating a 64-bit process.

Note: The input structure supports two versions: one that contains 64-bit data types and
one that contains 32-bit data types. Because the order in which the fields appear in
this structure varies significantly based on the version in use, the field definitions
below are defined alphabetically instead of sequentially.

The input structure passes this information:

pe_cpu Specifies the processor on which the new process will execute. The OSS process
ID (PID) of the process remains unchanged. This field is used to distribute sys-
tem load.

pe_create_options
Specifies process creation options as:

_TPC_BOTH_DEFINES
Propagates the current DEFINEs and the DEFINEs indicated in
the input structure.

_TPC_ENABLE_DEFINES
Enables DEFINEs when set if
_TPC_OVERRIDE_DEFMODE is also set. Disables
DEFINEs when not set.

527186-023 Hewlett-Packard Company 8−69

tdm_spawnp(2) OSS System Calls Reference Manual

_TPC_HIGHPIN_OFF
Restricts the new process to a PIN in the range 0 through 254.
This restriction is rarely useful for an OSS process; it allows
obsolescent Guardian interfaces to interact with the process.

By default, this restriction is inherited by any child or successor
process. The default can be overridden by using the
_TPC_IGNORE_FORCEPIN_ATTR field.

_TPC_IGNORE_FORCEPIN_ATTR
Ignores the _TPC_HIGHPIN_OFF restriction specified for or
inherited by the caller or parent process. When
_TPC_IGNORE_FORCEPIN_ATTR is specified, the result-
ing process has a restricted PIN only if _TPC_HIGHPIN_OFF
is also specified or if the object file for the program or a user
library lacks the HIGHPIN attribute.

_TPC_OVERRIDE_DEFMODE
Specifies that the DEFINE mode of the new process is to be set
according to the _TPC_ENABLE_DEFINES option rather than
to the caller’s current DEFINE mode.

_TPC_PROCESS_DEFINES_ONLY
Propagates only the current set of DEFINEs.

_TPC_SUPPLIED_DEFINES_ONLY
Propagates only the DEFINEs indicated by the pe_defines field.

pe_debug_options
Provides control over the selection between the default and symbolic debuggers
and over the creation of the saveabend file. A saveabend file can be examined by
using the symbolic debugger to determine the cause of the abnormal termination.
In addition, you can use this option to force the new process to enter the default
debugger before executing. Possible options are:

_TPC_CODEFILE_INSPECT_SAVEABEND
Uses the saveabend and INSPECT mode flags in the program
file.

_TPC_DEBUG_NOSAVE
Uses the default debugger but does not create a saveabend file.

_TPC_DEBUG_SAVEABEND
Uses the default debugger and creates a saveabend file.

_TPC_ENTER_DEBUG
Starts the new process in the default debugging utility.

_TPC_INSPECT_NOSAVE
Uses the symbolic debugger but does not create a saveabend file.

_TPC_INSPECT_SAVEABEND
Uses the symbolic debugger and creates a saveabend file.

8−70 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawnp(2)

pe_defines Points to a specified saved set of DEFINEs created by using the Guardian
DEFINESAVE procedure. These DEFINEs are propagated to the new process if
either _TPC_SUPPLIED_DEFINES_ONLY or _TPC_BOTH_DEFINES is
specified in the pe_create_options field.

Note: This string is not null-terminated.

pe_defines_len
Specifies the length of the string in the pe_defines field.

pe_extswap_file_name
Points to a null-terminated string specifying the name of a disk file in the Guar-
dian file system to be used as the swap file for the extended data segment. For
example, if the Guardian filename is $A.B.D, the name used is /G/a/b/d.

This file cannot have the same name as that of a file used in a preceding call to
the tdm_fork() function.

This field is used only for G-series TNS or accelerated new process image files.
If a value is specified for this field for native object files, the specified value is
checked for validity but otherwise ignored.

By default, the new process uses KMSF to manage its extended swap segment.
HP recommends using the default.

pe_heap_max Specifies the maximum size of the heap in bytes for the new process if it is a
native process.

See the C/C++ Programmer’s Guide description of the HEAP pragma for gui-
dance on the use of nonzero values for this field.

If a value is specified for this field for G-series TNS or accelerated object files,
the specified value is ignored.

pe_hometerm Points to the null-terminated name in the Guardian file system for the home ter-
minal. For example, if the Guardian name is $ztnt.#xyz, the name used is
/G/ztnt/#xyz.

pe_jobid Specifies the job ID of the new process.

pe_len Specifies the size of the structure in bytes. This value is set by #define
DEFAULT_PROCESS_EXTENSION and should not be changed.

pe_library_name
Points to the name of the user library to be bound to the new process. The string
that is pointed to is null-terminated and in OSS name format. If the pointer
points to a zero-length string (a NULL character), the new process runs with no
user library. An equivalent call to the Guardian PROCESS_LAUNCH_ pro-
cedure does this by setting the library filename length to -1.

This field is used only for G-series TNS or accelerated new process image files.
If a value is specified for this field for native object files, the specified value is
ignored.

pe_mainstack_max
Specifies the maximum size of the main stack in bytes for the new process.

If the calling process specifies a value, the value must be less than 32 MB. If the
calling process does not specify a value or specifies a 0 (zero) value, the value
specified in the object file of the new process is used. If no value is specified in
the object file, the default value of 1 MB (for TNS/R systems) or 2 MB (for

527186-023 Hewlett-Packard Company 8−71

tdm_spawnp(2) OSS System Calls Reference Manual

TNS/E systems) is used.

pe_memory_pages
Specifies the size of the data stack in 2 KB units. This field is used only for G-
series TNS or accelerated new process image files. If a value is specified for this
field for native object files, the specified value is checked for validity but other-
wise ignored.

pe_name_options
Specifies process naming as:

_TPC_GENERATE_NAME
The system generates the name.

_TPC_NAME_SUPPLIED
The process name is indicated by the pe_process_name field.

_TPC_NO_NAME
The new process is unnamed.

pe_OSS_options
Specifies OSS options. No special action on signals is the default and only
current OSS option.

pe_pfs_size Specifies the size of the PFS for the new process (this field is ignored).

pe_priority Specifies the priority of the new process.

pe_process_name
Points to the null-terminated Guardian process name if
_TPC_NAME_SUPPLIED is specified in the pe_name_options field. For
example, if the Guardian process name is $DELM, the name used is /G/delm.

pe_space_guarantee
Specifies the minimum available swap space to guarantee for the new process.

If the calling process specifies a value, the value must be less than or equal to a
multiple of the page size of the processor in which the new process will run.
Values less than a multiple of the page size are rounded up to the next multiple
of the page size. If the calling process does not specify a value or specifies a 0
(zero) value, the value specified in the native object file of the new process is
used. If no value is specified in the native object file, the default value of 0
(zero) is used, and enough swap space is guaranteed to launch the process.

If the new process requires a guarantee of available swap space and the system
cannot guarantee the required amount, the function call fails, and errno is set to
the value of [EAGAIN].

If a value is specified for this field for G-series TNS or accelerated object files,
the specified value is used for the main stack of the new process.

pe_swap_file_name
Points to a null-terminated string specifying the name of a file in the Guardian
file system to be used as the swap file for the stack segment. For example, if the
Guardian filename is $A.B.C, the name used is /G/a/b/c.

This file cannot have the same name as that of a file used in a preceding call to
the tdm_fork() function.

This field is not used in the current RVU of Open System Services. It exists for

8−72 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawnp(2)

compatibility with older RVUs. Any specified value is checked for validity but
otherwise ignored.

pe_ver Specifies the version of the process_extension structure. This value is set by
#define DEFAULT_PROCESS_EXTENSION and should not be changed.

For detailed information about Guardian process attributes, see the PROCESS_LAUNCH_ pro-
cedure in the Guardian Procedure Calls Reference Manual.

Output Structure Information
If the pr_results parameter does not contain a null pointer, it points to an output structure defined
in the tdmext.h header file. This structure can contain fields that vary from RVU to RVU,
including reserved and filler fields.

First, the output structure must be initialized by using the #define
DEFAULT_PROCESS_EXTENSION_RESULTS. This initialization sets the value of the
pr_len field to the correct value for the current RVU. The value of the pr_len field should not be
modified after being set by #define DEFAULT_PROCESS_EXTENSION_RESULTS.

The process_extension_results output structure is described in the
process_extension_results(5) reference page.

EXAMPLES
This example uses the tdm_spawnp() function to perform I/O redirection in a new process:

if ((NewStdOut = open ("newout", ...)) != -1)
/* process the error */

fd_map[0] = 0;
fd_map[1] = NewStdOut;
fd_map[2] = 2;
fd_count = 3;
tdm_spawnp(..., fd_count, fd_map, ...);
close(NewStdOut);

This example creates a new process under a different user ID:

save = getuid();
setuid(newid);
tdm_spawnp(...);
setuid(save);

RETURN VALUES
Upon successful completion, the tdm_spawnp() function returns the OSS process ID of the child
process to the parent process. If the pr_results parameter does not contain a null pointer, it
returns the Guardian process handle of the new process in addition to the OSS process ID.

If the tdm_spawnp() function fails, the value -1 is returned to the parent process, no child pro-
cess is created, and errno is set to indicate the error. If the pr_results parameter does not contain
a null pointer, the structure it points to returns additional error information including the
PROCESS_LAUNCH_ error and error detail.

527186-023 Hewlett-Packard Company 8−73

tdm_spawnp(2) OSS System Calls Reference Manual

ERRORS
If any of the following conditions occurs, the tdm_spawnp() function sets errno to the
corresponding value, file descriptors marked close-on-exec are not closed, signals set to be
caught are not set to the default action, and none of these are changed:

• The argv[] array of pointers

• The envp[] array of pointers

• The elements pointed to by these arrays

• The value of the global variable environ

• The pointers contained within the global variable environ

• The elements pointed to by environ pointers

• The effective user ID of the current process

• The effective group ID of the current process

[E2BIG] The number of bytes used by the new process image’s argument list and environ-
ment list is greater than the system-imposed limit. The limit can be obtained by
calling the sysconf(_SC_ARG_MAX) function.

[EACCES] One of these conditions exists:

• Search permission is denied for the directory components of the path-
name prefix to the process image file.

• The new process image file, any library file, or script file denies execu-
tion permission.

• Create access on the extended swap file on a disk under Safeguard pro-
tection is denied.

This error occurs only for G-series TNS or accelerated new process
image files.

• The new process image file is not a regular file.

[EAGAIN] System resources such as disk space, process control block (PCB) space, MAP-
POOL space, stack space, or PFS space are temporarily inadequate.

[EBADF] A file descriptor pointed to by the fd_map[] parameter is invalid.

[EFAULT] An address for a parameter in the process_extension structure pointed to by
pe_parms is out of allowable bounds. The Guardian PROCESS_LAUNCH_
error and error detail information is returned in the structure pointed to by the
pr_results parameter, unless pr_results contains a null pointer.

[EHLDSEM] The process tried to create a child process in a different processor while having
at least one semadj value.

[EINVAL] One of these conditions exists:

• An invalid parameter value was supplied in the process_extension
structure pointed to by pe_parms. The Guardian PROCESS_LAUNCH_
error and error detail information is returned in the structure pointed to
by the pr_results parameter, unless pr_results contains a null pointer.

8−74 Hewlett-Packard Company 527186-023

System Functions (t) tdm_spawnp(2)

• The new process image file is a binary executable file with invalid attri-
butes.

[EIO] Some physical input or output error has occurred. Either a file cannot be opened
because of an input or output error or data has been lost during an input or output
transfer. This value is used only for errors on the object file of a loaded program
or library, or during data transfer with a Guardian environment home terminal.

For systems running J06.07 and later J-series RVUs or H06.18 or later H-series
RVUs, this error can also occur when the OSS file system is out of memory and
one or more open files cannot be propagated from the parent process to the child
process. In this case, if you are running a program from the shell with the shell
reporting any errors, you might see an error like this:

/bin/-sh: /bin/ps: tdm_execve(): failed with unexpected error pr_errno=(4005)
pr_TPCerror=(110) pr_TPCdetail=(36)

where:

• pr_errno is the [EIO] error

• pr_TPCerror is the Guardian PROCESS_LAUNCH_ or
PROCESS_CREATE_ error.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[EMFILE] The maximum number of files are open. The process attempted to open more
than the maximum number of file descriptors allowed for the process. One of
these conditions might exist:

• The maximum value for fd_count has been exceeded.

• The process file segment (PFS) of the child process is smaller than that
of the parent process.

[ENAMETOOLONG]
One of these is too long:

• The pathname pointed to by the file parameter

• A component of the pathname pointed to by the file parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the value specified by the file parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOCPU] The selected processor does not exist, or the selected processor is down or other-
wise unavailable for process creation.

[ENODEV] The system cannot find the fileset containing the process image file.

[ENOENT] One of these conditions exists:

• One or more components of the new process image file’s pathname do
not exist.

527186-023 Hewlett-Packard Company 8−75

tdm_spawnp(2) OSS System Calls Reference Manual

• The file parameter points to an empty string.

[ENOEXEC] The command interpreter could not be invoked following failure to execute the
process image file identified by the file parameter.

[ENOMEM] Required resources are not available. Subsequent calls to the same function will
not succeed for the same reason.

Possible causes of this error include insufficient primary memory (stack, globals,
or heap) for the new process.

[ENOTDIR] A component of the path prefix of the new process image file is not a directory.

[ENOTOSS] The calling process is not an OSS process. The tdm_spawnp() function cannot
be used from the Guardian environment.

[EPERM] One of the following conditions exist:

• The value of the inherit->pgroup field does not match any process group
ID in the same session as the calling process.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[ETXTBSY] The new process image file is a pure procedure (shared text) file that is currently
open for writing by some process.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to
HP.

The structure pointed to by the pr_results parameter might contain additional Guardian
PROCESS_LAUNCH_ procedure error and error detail information if any of these errors occur:
[EACCES], [EAGAIN], [EFAULT], [EINVAL], [EIO], [ENOCPU], and [ENOEXEC].

RELATED INFORMATION
Commands: eld(1), ld(1), nld(1).

Functions: alarm(3), chmod(2), exec(2), _exit(2), exit(3), fcntl(2), fork(2), getenv(3),
putenv(3), semget(2), shmat(2), sigaction(2), system(3), tdm_execve(2), tdm_execvep(2),
tdm_fork(2), tdm_spawn(2), times(3), ulimit(2), umask(2).

Files: signal(4).

Miscellaneous: environ(5), process_extension_results(5).

STANDARDS CONFORMANCE
This function is an extension to the XPG4 Version 2 specification.

8−76 Hewlett-Packard Company 527186-023

Section 9. System Functions (u)

This section contains reference pages for Open System Services (OSS) system function
calls with names that begin with u. These reference pages reside in the cat2 directory
and are sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 9−1

ulimit(2) OSS System Calls Reference Manual

NAME
ulimit - Sets and gets file size limits

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <ulimit.h>

long int ulimit(
int cmd [,
. . .

/* long int blk_size
*/

]);

In this instance, the ellipsis (. . .) indicates that the function is variable. An additional,
optional parameter can be specified.

PARAMETERS
cmd Specifies the operation to be performed. The following values are valid:

UL_GETFSIZE
Returns the size limit, in 512-byte blocks, of files opened by the
process for writing in the OSS environment. (Files of any size
can be read in the OSS environment.)

UL_SETFSIZE
Sets the size limit, in 512-byte blocks, of files opened by the pro-
cess for writing in the OSS environment to the value specified as
the second parameter of the call. (Files of any size can be read in
the OSS environment.)

This is a restricted operation. Any process can reduce the size
limit for its files, but only a process with appropriate privileges
can increase the size limit for its files.

blk_size Specifies the number of 512-byte blocks to be permitted in a file written by the
process. This parameter is required when the cmd parameter has the value of
UL_SETFSIZE. This parameter can be omitted in all other calls.

This parameter must be declared as a long int data type.

DESCRIPTION
The ulimit() function provides control over selected process limits. Limits set by calls to the
ulimit() function are inherited by a child process. Limits set by calls to the ulimit() function are
enforced only if the file open was created by the OSS open() or creat() function call.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the ulimit() function returns the value of the requested limit. If
ulimit() fails, the value -1 is returned, and errno is set to indicate the error.

9−2 Hewlett-Packard Company 527186-023

System Functions (u) ulimit(2)

ERRORS
If any of the following conditions occurs, the ulimit() function sets errno to the value that
corresponds to the condition.

[EINVAL] One of the following conditions exists:

• The value specified for the cmd parameter is not valid.

• The value specified for the second parameter is too large.

[EPERM] The process does not have the appropriate privileges to perform the requested
operation.

RELATED INFORMATION
Functions: creat(2), open(2), write(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The error [EINVAL] is returned when the second parameter is too large.

527186-023 Hewlett-Packard Company 9−3

umask(2) OSS System Calls Reference Manual

NAME
umask - Sets and gets the value of the file mode creation mask

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/stat.h>

mode_t umask(
mode_t cmask);

PARAMETERS
cmask Specifies the value of the file mode creation mask.

DESCRIPTION
The umask() function sets the file mode creation mask of the process to the value of the cmask
parameter and returns the previous value of the mask. The cmask parameter is constructed by
logically ORing file permission bits defined in the sys/stat.h header file.

Whenever a file is created (by the creat(), mkdir(), mkfifo(), mknod(), or open() function), all
file permission bits set in the file mode creation mask are cleared in the mode of the created file.
This clearing allows users to restrict the default access to their files.

The mask is inherited by child processes.

Use on Guardian Objects
The file mode creation mask of the process is not used when accessing a file in /G (the Guardian
file system). If an open causes file creation, the file is given access permissions compatible with
the standard security permissions for the Guardian creator access ID (CAID) of the calling pro-
cess.

During access to a Guardian file, all Guardian environment access permissions are checked. This
includes checks by Guardian standard security mechanisms and by the Safeguard product for
Guardian disk file and process access.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the previous value of the file mode creation mask is returned.

RELATED INFORMATION
Commands: chmod(1), mkdir(1), sh(1), umask(1).

Functions: chmod(2), mkdir(2), mkfifo(3), mknod(2), open(2), stat(2).

9−4 Hewlett-Packard Company 527186-023

System Functions (u) uname(2)

NAME
uname - Gets information identifying the current system

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/utsname.h>

int uname(
struct utsname *name);

PARAMETERS
name Points to the utsname structure, where information about the current system is

stored.

DESCRIPTION
The uname() function stores information identifying the current system in the structure pointed
to by the name parameter.

The uname() function uses the utsname structure, which is defined in the sys/utsname.h file as
follows:

struct utsname {
char sysname [32];
char nodename[32];
char release [8];
char version [8];
char machine [16];

};

The uname() function returns null-terminated character strings describing the current system.

The sysname[] array indicates the operating system. For example, the HP implementation uses
the value "NONSTOP_KERNEL" on G-series release version updates (RVUs) through at least
G06.25.

The nodename[] array contains the name that the system is known by on an Expand communi-
cations network; for example, "boston".

The release[] array identifies the release version (RV); for example, "H06" might appear for an
H-series release version update.

The version[] array contains the version update number of the RVU. For example, "25" appears
for the G06.25 RVU.

The machine[] array indicates the processor hardware type being used; for example, "NSR-N"
or "NSR-T" might be used for a NonStop S-series server, while "NSE-A" might be used for a
NonStop Integrity NS-series server.

Because the format and content of the utsname structure can change from release to release, it is
not advisable to make programmatic choices based on the layout of the fields in this structure.

527186-023 Hewlett-Packard Company 9−5

uname(2) OSS System Calls Reference Manual

RETURN VALUES
Upon successful completion, a nonnegative value is returned. If the function call is unsuccessful,
one of the following might happen:

• The value -1 is returned and errno is set to indicate the error.

• A Guardian trap is set.

ERRORS
If the following condition occurs, the uname() function sets errno to the corresponding value:

[EFAULT] The name parameter points outside of the process address space.

RELATED INFORMATION
Commands: uname(1).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The error [EFAULT] can be returned.

9−6 Hewlett-Packard Company 527186-023

System Functions (u) unlink(2)

NAME
unlink - Removes a directory entry from the OSS environment

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <unistd.h>

int unlink(
const char *path);

PARAMETERS
path Specifies the directory entry to be removed.

DESCRIPTION
The unlink() function removes the directory entry specified by the path parameter and decre-
ments the link count of the file referenced by the link.

When all links to a file are removed and no process has the file open, all resources associated
with the file are reclaimed and the file is no longer accessible. If one or more processes have the
file open when the last link is removed, the link is removed before the unlink() function returns
but the removal of the file contents is postponed until all open references to the file are removed.
If the path parameter names a symbolic link, the symbolic link itself is removed.

The path parameter must not name a directory.

The calling process requires both execute (search) and write access permission for the directory
containing the file being unlinked. Write permission for an OSS file is not required.

Upon successful completion, the unlink() function marks for update the st_ctime and st_mtime
fields of the directory that contained the entry that was removed. If the file’s link count is not 0
(zero) or if the file is open, the st_ctime field of the file is also marked for update.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

Executable files that have the PRIVSOARFOPEN privilege and that are started by a member of
the Safeguard SECURITY-OSS-ADMINISTRATOR (SOA) group have the appropriate privilege
to use this function on any file in a restricted-access fileset. However, Network File System
(NFS) clients are not granted SOA group privileges, even if these clients are accessing the sys-
tem with a user ID that is a member of the SOA security group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

Use From the Guardian Environment
The unlink() function belongs to a set of functions that have the following effects when the first
of them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

527186-023 Hewlett-Packard Company 9−7

unlink(2) OSS System Calls Reference Manual

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
the named file is not changed, and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the function sets errno to the corresponding value and
the named file is not unlinked:

[EACCES] One of the following conditions is true:

• Search permission is denied for a component of the pathname prefix, or
write permission is denied on the directory containing the link to be
removed.

• The S_ISVTX flag is set on the directory containing the existing file
referred to by the path parameter. However, the calling process is not
any of the following:

— The file owner

— The directory owner

— A process with appropriate privileges

[EBUSY] The named file is one of the following:

• The /dev/tty file

• The /dev/null file

[EFAULT] The path parameter is an invalid address.

[EFSBAD] The fileset catalog for one of the filesets involved in the operation is corrupt.

[EGUARDIANOPEN]
One of the following conditions exists:

• The named file is a Guardian file open in the Guardian environment.

• The named file is a Guardian EDIT file (file code 101), and it is open in
the OSS environment.

[EINVAL] The named file is a structured file in /G (the Guardian file system). Such files
cannot be removed by the unlink() function.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

9−8 Hewlett-Packard Company 527186-023

System Functions (u) unlink(2)

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of the following conditions exists:

• The named file does not exist.

• The path parameter points to an empty string.

• The path parameter specifies a file on a remote HP NonStop node but
communication with the remote node has been lost.

[ENOROOT] One of the following conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node and communication
with the remote name server has been lost.

[ENOTDIR] A component of the pathname prefix is not a directory.

[ENOTSUP] The path parameter specifies a Guardian file on an SMF logical volume and one
of the following conditions exists:

• The local system is running an RVU prior to J06.15 or H06.26.

• The path parameter specifies a file in /E and the remote system is run-
ning an RVU prior to J06.15 or H06.26.

[ENXIO] The fileset containing the client’s current working directory or root directory is
not mounted.

[EOSSNOTRUNNING]
The OSS monitor process is not running.

[EPERM] One of the following conditions exists:

• The named file is a directory.

• The named file is a Guardian file (in /G), but it is not a regular file.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

527186-023 Hewlett-Packard Company 9−9

unlink(2) OSS System Calls Reference Manual

[EROFS] The entry to be unlinked is part of a read-only fileset.

[ETXTBSY] One of the following conditions exists:

• The entry to be unlinked is the last directory entry to a file that is already
busy.

• The named file is a NonStop SQL/MP object file that is currently execut-
ing.

RELATED INFORMATION
Commands: rm(1).

Functions: close(2), link(2), open(2), rmdir(2).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The calling process requires both execute (search) and write access permission for the
directory containing the file being unlinked.

• The unlink() function is not supported for directories.

The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [EGUARDIANOPEN], [EINVAL],
[ENOROOT], [ENOTSUP], [ENXIO], and [EOSSNOTRUNNING] can be returned.

9−10 Hewlett-Packard Company 527186-023

System Functions (u) utime(2)

NAME
utime - Sets file access and modification times

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <utime.h>

int utime(
const char *path,
struct utimbuf *times);

PARAMETERS
path Points to the pathname for the file. If the final component of the path parameter

names a symbolic link, the link is traversed and pathname resolution continues.

times Points to a utimbuf structure containing time values for the file.

DESCRIPTION
The utime() function sets the access and modification times of the file pointed to by the path
parameter to the value of the times parameter. It allows time specifications that are accurate to
the nearest second.

The times parameter is a pointer to a utimbuf structure, which is defined in the utime.h header
file. The actime field in this structure represents the date and time of last access, and the mod-
time field represents the date and time of last modification. The times in the utimbuf structure
are measured in seconds since the Epoch, which is 00:00:00, January 1, 1970, Coordinated
Universal Time (UTC).

If the times parameter is a null pointer, the access and modification times of the file are set to the
current time. The effective user ID of the process either must be the same as the owner of the
file, must have write access to the file, or must have appropriate privileges in order to use the call
in this manner.

If the times parameter is not a null pointer, the access and modification times are set to the values
contained in the designated structure. Only the owner of the file or a process with appropriate
privileges can use the call this way.

Upon successful completion, the utime() function marks the time of the last file status change,
st_ctime, for update.

Accessing Files in Restricted-Access Filesets
When accessing a file in a restricted-access fileset, the super ID (255,255 in the Guardian
environment, 65535 in the OSS environment) is restricted by the same file permissions and
owner privileges as any other user ID: It has no special privileges unless the executable file
started by the super ID has the PRIVSETID file privilege. In this case, the process started by the
super ID can switch to another ID and then access files in restricted-access filesets as that ID.

Executable files that have the PRIVSOARFOPEN privilege and that are started by a member of
the Safeguard SECURITY-OSS-ADMINISTRATOR (SOA) group have the appropriate privilege
to use this function on any file in a restricted-access fileset. However, Network File System
(NFS) clients are not granted SOA group privileges, even if these clients are accessing the sys-
tem with a user ID that is a member of the SOA security group.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

527186-023 Hewlett-Packard Company 9−11

utime(2) OSS System Calls Reference Manual

Use on Guardian Objects
The utime() function is supported for Guardian files (that is, files within /G) that are unstructured
Enscribe files. If the utime() function is called for a Guardian file that has a small file label, the
label is expanded to include the st_atime and st_ctime fields and to mark them for update.

The utime() function cannot be used on a file in /G that is opened for execution. A call for such
a file fails and errno is set to [ETXTBSY].

Use From the Guardian Environment
The file access time is not updated by I/O operations that are performed on a file that was opened
in the Guardian environment (that is, by the FILE_OPEN_ or OPEN Guardian procedures).

The utime() function is one of a set of functions that have the following effects when the first of
them is called from the Guardian environment:

• Two Guardian file system file numbers (not necessarily the next two available) are allo-
cated for the root directory and the current working directory. These file numbers cannot
be closed by calling the Guardian FILE_CLOSE_ procedure.

• The current working directory is assigned from the VOLUME attribute of the Guardian
environment =_DEFAULTS DEFINE.

• The use of static memory by the process increases slightly.

These effects occur only when the first of the set of functions is called. The effects are not cumu-
lative.

NOTES
On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

RETURN VALUES
Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1 is returned,
errno is set to indicate the error, and the file times are not changed.

ERRORS
If any of the following conditions occurs, the utime() function sets errno to the corresponding
value:

[EACCES] One of the following conditions exists:

• Search permission is denied by a component of the pathname prefix.

• The times parameter is a null pointer, the effective user ID neither is the
owner of the file nor has appropriate privileges, and write access is
denied.

[EFAULT] Either the path parameter or the times parameter is an invalid address.

[EFSBAD] The fileset catalog is corrupted for the fileset involved in the requested operation.

[EINVAL] The function was called for a file in /G that is not a regular disk file.

[EIO] An input or output error occurred. The device holding the file might be in the
down state, or both processors that provide access to the device might have
failed.

9−12 Hewlett-Packard Company 527186-023

System Functions (u) utime(2)

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG]
One of the following is too long:

• The pathname pointed to by the path parameter

• A component of the pathname pointed to by the path parameter

• The intermediate result of pathname resolution when a symbolic link is
part of the path parameter

The pathconf() function can be called to obtain the applicable limits.

[ENOENT] One of the following conditions exists:

• The named file does not exist.

• The path parameter points to an empty string.

• The path parameter specifies a file on a remote HP NonStop node but
communication with the remote node has been lost.

[ENOROOT] One of the following conditions exists:

• The root fileset of the local node (fileset 0) is not in the STARTED state.

• The current root fileset for the specified file is unavailable. The OSS
name server for the fileset might have failed.

• The specified file is on a remote HP NonStop node and communication
with the remote name server has been lost.

[ENOTDIR] A component of the pathname prefix is not a directory.

[ENOTSUP] The path parameter specifies a Guardian file on an SMF logical volume and one
of the following conditions exists:

• The local system is running an RVU prior to J06.15 or H06.26.

• The path parameter specifies a file in /E and the remote system is run-
ning an RVU prior to J06.15 or H06.26.

[ENXIO] A request was made of a nonexistent device, or the request was outside the capa-
bilities of the device.

[EOSSNOTRUNNING]
The OSS monitor process is not running.

[EPERM] One of the following conditions exist:

• The times parameter is not a null pointer, and the calling process has
write access to the file but neither owns the file nor has appropriate
privileges.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

527186-023 Hewlett-Packard Company 9−13

utime(2) OSS System Calls Reference Manual

[EROFS] The fileset that contains the file is mounted read-only.

[ETXTBSY] The path parameter specifies a file in the Guardian file system (/G) that is opened
for execution.

RELATED INFORMATION
Functions: stat(2).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EFAULT], [EFSBAD], [EINVAL], [ENOROOT], [ENOTSUP],
[ENXIO], [EOSSNOTRUNNING], and [ETXTBSY] can be returned.

9−14 Hewlett-Packard Company 527186-023

Section 10. System Functions (w)

This section contains reference pages for Open System Services (OSS) system function
calls with names that begin with w. These reference pages reside in the cat2 directory
and are sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 10−1

wait(2) OSS System Calls Reference Manual

NAME
wait - Waits for any child process to terminate

LIBRARY
G-series native OSS processes: system library
H-series OSS processes: implicit libraries

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/wait.h>

pid_t wait(
int ∗∗status_location);

PARAMETERS
status_location Points to a location that receives the child process termination status, as defined

in the sys/wait.h header file.

DESCRIPTION
The wait() function usually suspends the calling process until one of the following occurs:

• A child process initiates its own normal termination. That is, a child process calls the
_exit() or exit() function or the Guardian STOP or PROCESS_STOP_ procedure on
itself.

• A child process receives a signal that terminates the process. For example, some other
process terminates the child process by calling the kill() function or the Guardian STOP
or PROCESS_STOP_ procedure against the child process.

• A child process terminates abnormally. The calling process receives a SIGABEND sig-
nal indicating that this process or another process has called the Guardian ABEND or
PROCESS_STOP_ procedure specifying abnormal termination of the child process, or
the child process has abnormally terminated for some other reason.

• The parent process catches a signal and invokes its own signal-catching function.

See the Guardian Procedure Calls Reference Manual for details on the Guardian ABEND,
STOP, and PROCESS_STOP_ procedures.

The wait() function returns without waiting if a child process that has not been waited for has
already terminated prior to the call.

The effect of the wait() function can be modified by the setting of the SIGCHLD signal. See the
sigaction(2) reference page for details.

Use With POSIX Threads
If Release Version Update (RVU) G06.21, or later, of T1248 POSIX threads is installed on the
system, the T1248 version of wait() is functionally equivalent to OSS wait(), with the additional
attribute of thread awareness. As such, it blocks only the thread calling it, without blocking any
other threads. To call the T1248 wait() function, include the linking flag -l spt when compiling
thread-aware applications. If more than one thread is waiting on child processes, use the
spt_waitpid() function.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined and errno is set to
[ENOTOSS].

10−2 Hewlett-Packard Company 527186-023

System Functions (w) wait(2)

Status Information
If the wait() function returns because the status of a child process is available, it returns the OSS
process ID of the child process. In this case, if the status_location parameter is not a null pointer,
information is stored in the location pointed to by status_location.

The value stored at the location pointed to by status_location is 0 (zero) if and only if the status
returned is from a terminated child process that either returned 0 (zero) from the main() function
or passed 0 (zero) as the status parameter to the _exit() or exit() function.

Regardless of its value, this status information can be interpreted using the following macros,
which are defined in the sys/wait.h header file and evaluate to integer expressions:

WCOMPLETION(∗∗status_location)
Evaluates to the 16-bit Guardian completion code issued on process termination.

WEXITSTATUS(∗∗status_location)
If the value of WIFEXITED(∗∗status_location) is nonzero, evaluates to one of
the following:

• The lower 8 bits of the status parameter that the child process passed to
the _exit() or exit() function

• The lower 8 bits of the completion code for a process that terminated
itself by calling the Guardian STOP or PROCESS_STOP_ procedure

• The lower 8 bits of the value that the child process returned from the
main() function

WIFABENDED(∗∗status_location)
Evaluates to a nonzero value if the child process terminated abnormally. A
SIGABEND signal was received.

WIFEXITED(∗∗status_location)
Evaluates to a nonzero value if status was returned for a child process that ter-
minated normally whether the termination was due to the _exit() function, the
exit() function, the Guardian STOP procedure, or the Guardian
PROCESS_STOP_ procedure.

WIFSAVEABEND(∗∗status_location)
Evaluates to a nonzero value if the terminated process created a saveabend file.

WIFSIGNALED(∗∗status_location)
Evaluates to a nonzero value if status was returned for a child process that ter-
minated due to the receipt of a signal that was not caught. Such a signal occurs,
for example, when another process terminates the child process by calling the
kill() function, the Guardian STOP procedure, or the Guardian
PROCESS_STOP_ procedure, or when the process abnormally terminates.

WIFSTOPPED(∗∗status_location)
Evaluates to a nonzero value if status was returned for a child process that is
currently stopped.

This macro is normally only useful with the waitpid() function.

527186-023 Hewlett-Packard Company 10−3

wait(2) OSS System Calls Reference Manual

WSTOPSIG(∗∗status_location)
If the value of WIFSTOPPED(∗∗status_location) is nonzero, evaluates to the
number of the signal that caused the child process to stop.

This macro is normally only useful with the waitpid() function.

WTERMSIG(∗∗status_location)
If the value of WIFSIGNALED(∗∗status_location) is nonzero, evaluates to the
number of the signal that caused the termination of the child process.

See the Guardian Procedure Calls Reference Manual for details on the Guardian STOP and
PROCESS_STOP_ procedures and on Guardian completion codes.

If the information stored at the location pointed to by the status_location parameter was stored
there by a call to the waitpid() function that specified the WUNTRACED option, exactly one of
the WIFEXITED, WIFSIGNALED, and WIFSTOPPED macros evaluates to a nonzero value.
If the information stored at the location pointed to by status_location was stored there by a call to
the wait() function, exactly one of the WIFEXITED and WIFSIGNALED macros evaluates to
a nonzero value.

Normal Self Termination
When a process terminates itself, information is returned to the parent process in the location
pointed to by the status_location parameter. A process terminates itself in one of the following
ways:

• Returning from its main() function. The return value is placed in ∗∗status_location.

• Calling the _exit() or exit() function. The exit status is placed in ∗∗status_location.

• Calling the Guardian STOP or PROCESS_STOP_ procedure with parameters set for
self-termination. The completion code is placed in ∗∗status_location.

The parent process can use the WIFEXITED macro to detect a child process that terminates
itself; WIFEXITED evaluates to a nonzero value. The WEXITSTATUS macro evaluates to the
lower 8 bits of the return value, exit status, or completion code. The WCOMPLETION macro
evaluates to the full 16-bit completion code or to 16 bits of the 32-bit exit status code.

See the Guardian Procedure Calls Reference Manual for details on the Guardian STOP and
PROCESS_STOP_ procedures and on Guardian completion codes.

Termination by Another
The child process can be terminated by another process in one of the following ways:

• Another process calls the kill() function with the OSS process ID of the child process.

• Another process calls the Guardian STOP procedure with the Guardian process ID of the
child process or calls the Guardian PROCESS_STOP_ procedure with the Guardian pro-
cess handle of the child process.

In either case, the SIGKILL signal is delivered. The parent process can use the WIFSIG-
NALED macro to detect when a signal causes the child process to terminate; WIFSIGNALED
evaluates to a nonzero value. The WTERMSIG macro evaluates to the number of the signal
that caused the termination. The WCOMPLETION macro evaluates to the completion code.

See the Guardian Procedure Calls Reference Manual for details on the Guardian STOP and
PROCESS_STOP_ procedures and on Guardian completion codes.

10−4 Hewlett-Packard Company 527186-023

System Functions (w) wait(2)

Abnormal Termination
Abnormal termination can occur for several reasons, including the following:

• The child process calls the Guardian ABEND procedure, or it calls the Guardian
PROCESS_STOP_ procedure with the parameters set for abnormal termination.

• The processor in which the process was running fails.

• Some critical system resource is exhausted.

• One of the functions in the exec, tdm_exec, or tdm_spawn set of functions fails after the
caller of that function has already been overlaid by the child process, and there is no
caller to which it can return the error.

• Two traps occur inside an area where a Guardian trap handler is installed by the Guar-
dian SETTRAP procedure.

In all cases of abnormal termination, the SIGABEND signal is delivered. Like the SIGKILL
signal, SIGABEND can neither be caught nor ignored. Its default action is to terminate the pro-
cess.

The WIFSIGNALED macro evaluates to a nonzero value and the SIGABEND signal is indi-
cated by the WTERMSIG macro. Alternatively, the parent process can use the WIFABENDED
macro to determine whether the child process terminated abnormally. The parent process can
use the WCOMPLETION macro to read the completion code.

See the Guardian Procedure Calls Reference Manual for details on the Guardian ABEND,
STOP, and PROCESS_STOP_ procedures and on Guardian completion codes.

Saveabend File Creation
Whenever process termination is caused by signal delivery (that is, when the WIFSIGNALED
macro evaluates to a nonzero value), it is possible that the terminating process creates a
saveabend file.

A saveabend file is created for the process if the saveabend bit is set for the process in the pro-
cess control block (PCB). This bit is set in any of the following ways:

• The compiler, linker, or Binder sets the saveabend bit in the code file header.

• The tdm_fork(), tdm_execve(), tdm_execvep(), tdm_spawn(), or tdm_spawnp()
function sets the pe_debug_options field of the process_extensions_def structure.

• The shell command that executes the process sets the saveabend bit.

If a saveabend file is created, the core dump (CD) bit is set in the information returned in the
location pointed to by the status_location parameter. The parent process can use the
WIFSAVEABEND macro to detect the creation of a saveabend file;
WIFSAVEABEND evaluates to a nonzero value when the CD bit is set.

If a processor failure occurs, status about the terminated child processes in the failed processor is
returned to the parent process in the location pointed to by the status_location parameter. In this
case, no saveabend file is possible. WIFSAVEABEND evaluates to zero.

NOTES
If a parent process terminates without waiting for all of its child processes to terminate, the
remaining child processes are assigned a parent process ID of 1.

Suspending a process is not always the same as stopping it. A process is only stopped when a
job-control signal stops it.

527186-023 Hewlett-Packard Company 10−5

wait(2) OSS System Calls Reference Manual

RETURN VALUES
If the wait() function returns because the status of a child process is available, the OSS process
ID of the child is returned to the calling process. If a signal is received via pthread_kill(2) that
is not blocked,ignored, or handled, -1 is returned with an errno of EINTR.

Upon any error, the value -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occurs, the wait() function sets errno to the corresponding
value:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EFAULT] The buffer pointed to by the status_location parameter failed bounds checking.

[EINTR] The function was terminated by receipt of a signal. The information pointed to
by the status_location parameter is not meaningful when this error occurs and
should not be used in further processing.

[ENOTOSS] The calling process was not an OSS process. The wait() function cannot be
used in the Guardian environment.

RELATED INFORMATION
Functions: exec(2), _exit(2), exit(3), fork(2), spt_waitpid(2), pause(3), sigaction(2),
tdm_execve(2), tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2), waitpid(2).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The POSIX.1 standard states that when status information for two or more child
processes is available, the order in which the information is returned by the wait() func-
tion is unspecified. HP’s implementation also does not provide this information in a
specified sequence. The sequence should therefore not be depended upon for further
processing.

• In addition to the status information mandated by the POSIX.1 standard, the HP imple-
mentation also returns status information for processes that terminate as a result of Guar-
dian procedure calls. In addition, status is returned for processes that terminate abnor-
mally as a result of a situation that is unique to NonStop server architecture, such as
failure of the child process’s processor while the parent process continues to execute.

• The POSIX.1 standard indicates that the value in the location pointed to by the
status_location parameter is undefined when errno returns the value [EINTR]. HP’s
implementation also does not return meaningful information, and the value should not be
used for further processing.

This function does not conform to the async-signal safe requirement of the POSIX.1 standard.

10−6 Hewlett-Packard Company 527186-023

System Functions (w) waitpid(2)

NAME
waitpid - Waits for a specific child process to stop or terminate

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <sys/wait.h>

pid_t waitpid(
pid_t process_id,
int ∗∗status_location,
int options);

PARAMETERS
process_id Specifies the child process.

status_location Points to a location that receives the child process termination (or stop) status, as
defined in the sys/wait.h header file.

options Modifies the behavior of the function.

DESCRIPTION
The waitpid() function usually suspends the calling process until one of the following occurs:

• The specified child process initiates its own normal termination. That is, the child pro-
cess calls the _exit() or exit() function or the Guardian STOP or PROCESS_STOP_ pro-
cedure on itself.

• The child process receives a signal that terminates the process. For example, some other
process terminates the child process by calling the kill() function or the Guardian STOP
or PROCESS_STOP_ procedure against the child process.

• The child process terminates abnormally. The calling process receives a SIGABEND
signal indicating that this process or another process has called the Guardian ABEND or
PROCESS_STOP_ procedure specifying abnormal termination of the child process, or
the child process has abnormally terminated for some other reason.

• The child process was stopped (that is, suspended) by a job-control signal and the WUN-
TRACED option was set in this call to waitpid().

• The parent process catches a signal and invokes its own signal-catching function.

See the Guardian Procedure Calls Reference Manual for details on the Guardian ABEND,
STOP, and PROCESS_STOP_ procedures.

The waitpid() function returns without waiting if a child process that has not been waited for has
already stopped or terminated prior to the call.

The POSIX.1 standard states that when status information for two or more child processes is
available, the order in which the information is returned by the waitpid() function is unspecified.
HP’s implementation also does not provide this information in a reliable sequence. The
sequence should therefore not be depended upon for further processing.

527186-023 Hewlett-Packard Company 10−7

waitpid(2) OSS System Calls Reference Manual

The effect of the waitpid() function can be modified by the setting of the SIGCHLD signal. See
the sigaction(2) reference page for details.

The waitpid() function behaves identically to the wait() function if the process_id parameter
has the value -1 and the options parameter has the value 0 (zero). Otherwise, its behavior is
modified by the values of the process_id and options parameters.

Use From the Guardian Environment
If called from a Guardian process, the actions of this function are undefined and errno is set to
[ENOTOSS].

Specifying the Child Process
The waitpid() function allows the calling process to gather status from a specific set of child
processes. The waitpid() function returns the status of a child process from this set. The
process_id parameter specifies the set according to the following rules:

• If process_id is equal to -1, status is requested for any child process. In this respect, the
waitpid() function is equivalent to the wait() function.

• If process_id is greater than 0 (zero), it specifies the OSS process ID (PID) of a single
child process for which status is requested.

• If process_id is equal to 0 (zero), status is requested for any child process whose process
group ID is equal to that of the calling process.

• If process_id is less than -1, status is requested for any child process whose process
group ID is equal to the absolute value of process_id.

Options
The options parameter modifies the behavior of the waitpid() function. This parameter is con-
structed from the bitwise-inclusive OR of the following flag values:

WNOHANG Prevents the calling process from being suspended even if there are child
processes to wait for. In this case, 0 (zero) is returned, indicating that there are
no child processes that have stopped or terminated.

WUNTRACED
Returns information when child processes of the current process are stopped
because they received a SIGTTIN, SIGTTOU, SIGSTOP, or SIGTSTP signal.

Status Information
If the waitpid() function returns because the status of a child process is available, it returns the
OSS process ID of the child process. In this case, if the status_location parameter is not a null
pointer, information is stored in the location pointed to by status_location.

The value stored at the location pointed to by status_location is 0 (zero) if and only if the status
returned is from a terminated child process that either returned 0 (zero) from the main() function
or passed 0 (zero) as the status parameter to the _exit() or exit() function.

Regardless of its value, this status information can be interpreted using the following macros,
which are defined in the sys/wait.h header file and evaluate to integer expressions:

WCOMPLETION(∗∗status_location)
Evaluates to the 16-bit Guardian completion code issued on process termination.

10−8 Hewlett-Packard Company 527186-023

System Functions (w) waitpid(2)

WEXITSTATUS(∗∗status_location)
If the value of WIFEXITED(∗∗status_location) is nonzero, evaluates to one of
the following:

• The lower 8 bits of the status parameter that the child process passed to
the _exit() or exit() function

• The lower 8 bits of the completion code for a process that terminated
itself by calling the Guardian STOP or PROCESS_STOP_ procedure

• The lower 8 bits of the value that the child process returned from the
main() function

WIFABENDED(∗∗status_location)
Evaluates to a nonzero value if the child process terminated abnormally. A
SIGABEND signal was received.

WIFEXITED(∗∗status_location)
Evaluates to a nonzero value if status was returned for a child process that ter-
minated normally whether the termination was due to the _exit() function, the
exit() function, the Guardian STOP procedure, or the Guardian
PROCESS_STOP_ procedure.

WIFSAVEABEND(∗∗status_location)
Evaluates to a nonzero value if the terminated process created a saveabend file.

WIFSIGNALED(∗∗status_location)
Evaluates to a nonzero value if status was returned for a child process that ter-
minated due to the receipt of a signal that was not caught. Such a signal occurs,
for example, when another process terminates the child process by calling the
kill() function, the Guardian STOP procedure, or the Guardian
PROCESS_STOP_ procedure, or when the process abnormally terminates.

WIFSTOPPED(∗∗status_location)
Evaluates to a nonzero value if status was returned for a child process that is
currently stopped.

This macro returns a nonzero value only when the WUNTRACED option was
set in the call to waitpid() and the stopped process was not previously reported.

WSTOPSIG(∗∗status_location)
If the value of WIFSTOPPED(∗∗status_location) is nonzero, evaluates to the
number of the signal that caused the child process to stop.

WTERMSIG(∗∗status_location)
If the value of WIFSIGNALED(∗∗status_location) is nonzero, evaluates to the
number of the signal that caused the termination of the child process.

See the Guardian Procedure Calls Reference Manual for details on the Guardian STOP and
PROCESS_STOP_ procedures and on Guardian completion codes.

If the information stored at the location pointed to by the status_location parameter was stored
there by a call to the waitpid() function that specified the WUNTRACED option, exactly one of
the WIFEXITED, WIFSIGNALED, and WIFSTOPPED macros evaluates to a nonzero value.
If the information stored at the location pointed to by status_location was stored there by a call to
waitpid() that did not specify the WUNTRACED option or by a call to the wait() function,
exactly one of the WIFEXITED and WIFSIGNALED macros evaluates to a nonzero value.

527186-023 Hewlett-Packard Company 10−9

waitpid(2) OSS System Calls Reference Manual

Normal Self Termination
When a process terminates itself, information is returned to the parent process in the location
pointed to by the status_location parameter. A process terminates itself in one of the following
ways:

• Returning from its main() function. The return value is placed in ∗∗status_location.

• Calling the _exit() or exit() function. The exit status is placed in ∗∗status_location.

• Calling the Guardian STOP or PROCESS_STOP_ procedure with parameters set for
self-termination. The completion code is placed in ∗∗status_location.

The parent process can use the WIFEXITED macro to detect a child process that terminates
itself; WIFEXITED evaluates to a nonzero value. The WEXITSTATUS macro evaluates to the
lower 8 bits of the return value, exit status, or completion code. The WCOMPLETION macro
evaluates to the full 16-bit completion code or to 16 bits of the 32-bit exit status code.

See the Guardian Procedure Calls Reference Manual for details on the Guardian STOP and
PROCESS_STOP_ procedures and on Guardian completion codes.

Termination by Another
The child process can be terminated by another process in one of the following ways:

• Another process calls the kill() function with the OSS process ID of the child process.

• Another process calls the Guardian STOP procedure with the Guardian process ID of the
child process or calls the Guardian PROCESS_STOP_ procedure with the Guardian pro-
cess handle of the child process.

In either case, the SIGKILL signal is delivered. The parent process can use the WIFSIG-
NALED macro to detect when a signal causes the child process to terminate; WIFSIGNALED
evaluates to a nonzero value. The WTERMSIG macro evaluates to the number of the signal
that caused the termination. The WCOMPLETION macro evaluates to the completion code.

See the Guardian Procedure Calls Reference Manual for details on the Guardian STOP and
PROCESS_STOP_ procedures and on Guardian completion codes.

Abnormal Termination
Abnormal termination can occur for several reasons, including the following:

• The child process calls the Guardian ABEND procedure, or it calls the Guardian
PROCESS_STOP_ procedure with the parameters set for abnormal termination.

• The processor in which the process was running fails.

• Some critical system resource is exhausted.

• One of the functions in the exec, tdm_exec, or tdm_spawn set of functions fails after the
caller of that function has already been overlaid by the child process, and there is no
caller to which it can return the error.

• Two traps occur inside an area where a Guardian trap handler is installed by the Guar-
dian SETTRAP procedure.

In all cases of abnormal termination, the SIGABEND signal is delivered. Like the SIGKILL
signal, SIGABEND can neither be caught nor ignored. Its default action is to terminate the pro-
cess.

The WIFSIGNALED macro evaluates to a nonzero value and the SIGABEND signal is indi-
cated by the WTERMSIG macro. Alternatively, the parent process can use the WIFABENDED

10−10 Hewlett-Packard Company 527186-023

System Functions (w) waitpid(2)

macro to determine whether the child process terminated abnormally. The parent process can
use the WCOMPLETION macro to read the completion code.

See the Guardian Procedure Calls Reference Manual for details on the Guardian ABEND,
STOP, and PROCESS_STOP_ procedures and on Guardian completion codes.

Process Stopped
If the WUNTRACED option is set in the waitpid() call, the call returns when the child process
is temporarily suspended because it received a SIGTTIN, SIGTTOU, SIGSTOP, or
SIGTSTOP signal.

The WIFSTOPPED macro evaluates to a nonzero value. The WSTOPSIG macro evaluates to
the number of the signal that caused the process to stop.

Saveabend File Creation
Whenever process termination is caused by signal delivery (that is, when the WIFSIGNALED
macro evaluates to a nonzero value), it is possible that the terminating process creates a
saveabend file.

A saveabend file is created for the process if the saveabend bit is set for the process in the pro-
cess control block (PCB). This bit is set in any of the following ways:

• The compiler, linker, or Binder sets the saveabend bit in the code file header.

• The tdm_fork(), tdm_execve(), tdm_execvep(), tdm_spawn(), or tdm_spawnp()
function sets the pe_debug_options field of the process_extensions_def structure.

• The shell command that executes the process sets the saveabend bit.

If a saveabend file is created, the core dump (CD) bit is set in the information returned in the
location pointed to by the status_location parameter. The parent process can use the
WIFSAVEABEND macro to detect the creation of a saveabend file;
WIFSAVEABEND evaluates to a nonzero value when the CD bit is set.

If a processor failure occurs, status about the terminated child processes in the failed processor is
returned to the parent process in the location pointed to by the status_location parameter. In this
case, no saveabend file is possible. WIFSAVEABEND evaluates to zero.

NOTES
If a parent process terminates without waiting for all of its child processes to terminate, the
remaining child processes are assigned a parent process ID of 1.

Suspending a process is not always the same as stopping it. A process is only stopped when a
job-control signal stops it.

To use the waitpid() functionality in a threaded application that uses the Standard POSIX
Threads library, see spt_waitpid(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit threaded applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function

527186-023 Hewlett-Packard Company 10−11

waitpid(2) OSS System Calls Reference Manual

thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
If the waitpid() function returns because the status of a child process is available, the OSS pro-
cess ID of the child is returned to the calling process. If the function returns because a signal was
caught by the calling process, the value -1 is returned and errno is set to [EINTR]. Upon any
error, the value -1 is returned and errno is set to indicate the error.

If the WNOHANG value of the options parameter was specified and there are no stopped or
exited child processes, the waitpid() function returns the value 0 (zero).

ERRORS
If any of the following conditions occurs, the waitpid() function sets errno to the corresponding
value:

[ECHILD] The process or process group ID specified by the process_id parameter either
does not exist or is not a child process of the calling process.

[EFAULT] The buffer pointed to by the status_location parameter failed bounds checking.

[EINTR] The function was terminated by receipt of a signal. The information pointed to
by the status_location parameter is not meaningful when this error occurs and
should not be used in further processing.

This error is also returned if the waitpid() function is thread-aware and a signal
received from the pthread_kill() function is not blocked, ignored, or handled.

[EINVAL] The value of the options parameter is invalid.

[ENOTOSS] The calling process was not an OSS process. The waitpid() function cannot be
used in the Guardian environment.

RELATED INFORMATION
Functions: exec(2), _exit(2), exit(3), fork(2), pause(3), sigaction(2), spt_waitpid(2),
tdm_execve(2), tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2), wait(2).

STANDARDS CONFORMANCE
The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The POSIX.1 standard states that when status information for two or more child
processes is available, the order in which the information is returned by the waitpid()
function is unspecified. HP’s implementation also does not provide this information in a
specified sequence. The sequence should therefore not be depended upon for further
processing.

10−12 Hewlett-Packard Company 527186-023

System Functions (w) waitpid(2)

• In addition to the status information mandated by the POSIX.1 standard, the HP imple-
mentation also returns status information for processes that terminate as a result of Guar-
dian procedure calls. In addition, status is returned for processes that terminate abnor-
mally as a result of a situation that is unique to HP NonStop server architecture, such as
failure of the child process’s processor while the parent process continues to execute.

• The POSIX.1 standard indicates that the value in the location pointed to by the
status_location parameter is undefined when errno returns the value [EINTR]. HP’s
implementation also does not return meaningful information, and the value should not be
used for further processing.

This function is an extension to the XPG4 Version 2 specification.

The use of this function with the POSIX User Thread Model library conforms to the following
industry standards:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

This function does not conform to the async-signal safe requirement of the POSIX.1 standard.

527186-023 Hewlett-Packard Company 10−13

write(2) OSS System Calls Reference Manual

NAME
write - Writes to a file

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

ssize_t write(
int filedes,
void *buffer,
size_t nbytes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

buffer Identifies the buffer containing the data to be written.

nbytes Specifies the number of bytes to write.

DESCRIPTION
The write() function attempts to write nbytes of data to the file associated with the filedes
parameter from the buffer pointed to by the buffer parameter.

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, write) or write64_() may be
called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, write64_() must be called.

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to
write64_().

For all regular and non-regular files, if the value of the nbytes parameter is 0 (zero) and the value
of filedes is a valid file descriptor, the write() function returns 0 (zero).

The appropriate file time fields are updated unless nbytes is 0 (zero).

With regular files and devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. If this incremented file pointer is greater than the
length of the file, the length of the file is set to this file offset. Upon return from the write() func-
tion, the file pointer is incremented by the number of bytes actually written.

With devices incapable of seeking, writing always takes place starting at the current position.
For such devices, the value of the file pointer after a call to the write() function is always 0
(zero).

Fewer bytes than requested can be written if there is not enough room to satisfy the request. In
this case, the number of bytes written is returned. For example, suppose there is space for 20

10−14 Hewlett-Packard Company 527186-023

System Functions (w) write(2)

bytes more in a file before reaching a limit. A write request of 512 bytes returns a value of 20.
The limit reached can be either the end of the physical medium or the value that has been set by
the ulimit() function. The next write of a nonzero number of bytes gives a failure return (except
as noted later).

Upon successful completion, the write() function returns the number of bytes actually written to
the file associated with filedes. This number is never greater than the value of nbytes.

If the O_APPEND flag of the file status is set, the file offset is set to the end of the file prior to
each write.

Write requests to a pipe or a FIFO file are handled the same as writes to a regular file with these
exceptions:

• No file offset is associated with a pipe; therfore, each write() request appends to the end
of the pipe.

• If the size of the write() request is less than or equal to the value of the PIPE_BUF sys-
tem variable, the write() function is guaranteed to be atomic. The data is not interleaved
with data from other processes doing writes on the same pipe.

• If the size of the write() request is greater than the value of the PIPE_BUF system vari-
able, the file system attempts to resize the pipe buffer from 2 * PIPE_BUF to 65,536
bytes. If the resizing is successful, the file system performs atomic writes of up to 32,768
bytes and can transfer up to 52 kilobytes of data from the pipe buffer on subsequent
read() or readv() calls by the client.

If the file system cannot resize the buffer, it continues to use the existing buffer. A
second attempt at resizing occurs after approximately a minute elapses.

Writes of greater than PIPE_BUF bytes can have data interleaved, on arbitrary boun-
daries, with writes by other processes, whether or not the O_NONBLOCK flag is set.

• If the O_NONBLOCK flag is not set, a write() request to a full pipe causes the process
to block until enough space becomes available to handle the entire request.

• If the O_NONBLOCK flag is set, write() requests are handled differently in these ways:

— The write() function does block the process.

— write() requests for PIPE_BUF or fewer bytes either succeed completely and
return the value of the nbytes parameter, or return the value -1 and set errno to
[EAGAIN].

— A write() request for greater than PIPE_BUF bytes either transfers what it can
and returns the number of bytes written, or transfers no data and returns the value
-1 with errno set to [EAGAIN]. Also, if a request is greater than PIPE_BUF
bytes and all data previously written to the pipe has been read, write() transfers
at least PIPE_BUF bytes.

When attempting to write to a file descriptor for a special character device (a terminal) that can-
not accept data immediately:

• If the O_NONBLOCK flag is clear, the write() function blocks until the data can be
accepted or an error occurs.

• If the O_NONBLOCK flag is set, the write() function returns the value -1 and errno is
set to [EAGAIN].

527186-023 Hewlett-Packard Company 10−15

write(2) OSS System Calls Reference Manual

When attempting to write to a socket and with no space available for data:

• If the O_NONBLOCK flag is not set, the write() function blocks until space becomes
available or an error occurs.

• If the O_NONBLOCK flag is set, the write() function returns the value -1 and sets
errno to [EWOULDBLOCK].

Upon successful completion, the write() function marks the st_ctime and st_mtime fields of the
file for update and clears the set-user-ID and set-group-ID attributes if the file is a regular file.

The fcntl() function provides more information about record locks.

If the write() function is interrupted by a signal before it writes any data, it returns the value -1
with errno set to [EINTR]. If the write() function is interrupted by a signal after it has success-
fully written some data, it returns the number of bytes that it has written.

Use on Guardian Objects
Attempting to write to a Guardian file (that is, a file in /G) that is locked causes the write() func-
tion to return -1 and set errno to [EGUARDIANLOCKED].

Use From a Threaded Application
The thread-aware write() function behaves exactly the same as spt_writez() in the Standard
POSIX Threads library. For file descriptors for regular files, if this thread-aware write() function
must wait for an I/O operation to complete on an open file, this function blocks the thread
(instead of the entire process) that called it, while it waits for the I/O operation to complete.

NOTES
To use the write() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_writez(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running J06.10 or later RVUs or H06.21 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, perform the same
tasks (described above) used to enable the function on systems running H06.21/J06.10 or later
RVUs.

To use this function in a 64-bit threaded application that uses the POSIX User Thread Model
library on systems running H06.24 or later RVUs or J06.13 or later RVUs, you must perform all
of the following tasks:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

10−16 Hewlett-Packard Company 527186-023

System Functions (w) write(2)

RETURN VALUES
Upon successful completion, the write() function returns the number of bytes that were actually
written. Otherwise, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the write() function sets errno to the corresponding value:

[EAGAIN] One of these conditions exists:

• An attempt was made to write to a file descriptor that cannot accept data,
and the O_NONBLOCK flag is set.

• A write to a pipe (FIFO file) of PIPE_BUF bytes or less is requested,
O_NONBLOCK is set, and fewer than nbytes of free space are avail-
able.

• The O_NONBLOCK flag is set on this file, and the process would be
delayed in the write operation.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion is in progress on a regular file and a function that is process-blocking for
regular files attempts to begin an I/O operation on the same open file.

If the write() function is thread-aware, the [EALREADY] value is not returned.

[EBADF] The filedes parameter does not specify a valid file descriptor open for writing.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFBIG] The application is attempting to write at or beyond the file offset maximum esta-
blished when the file was opened.

[EGUARDIANLOCKED]
A write() operation was attempted to a file in the Guardian file system (that is, a
file in /G) that is locked.

[EINTR] A write() operation was interrupted by a signal before any data was written.

[EINVAL] One of these conditions occurred:

• The file position pointer associated with the file specified by the filedes
parameter was negative.

• The value of the nbytes parameter is greater than SSIZE_MAX.

527186-023 Hewlett-Packard Company 10−17

write(2) OSS System Calls Reference Manual

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

• A physical I/O error occurred. Data might have been lost during a
transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOSPC] No free space is left on the fileset containing the file.

[ENOTCONN] An attempt was made to write to a socket that is not connected to a peer socket.

[ENXIO] One of these conditions occurred:

• The device associated with the file descriptor specified by the filedes
parameter is a block special device or character special file, and the file
pointer is out of range.

• No existing device is associated with the file descriptor specified by the
filedes parameter.

[EPIPE] One of these conditions occurred:

• An attempt was made to write to a pipe or FIFO file that is not open for
reading by any process. A SIGPIPE signal is sent if the process is run-
ning in the OSS environment.

• An attempt was made to write to a pipe that has only one end open.

• An attempt was made to write to a socket that is shut down or closed.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWOULDBLOCK]
The process attempted an operation on a socket for which O_NONBLOCK is
set, there is no space available, and no error has occurred.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

10−18 Hewlett-Packard Company 527186-023

System Functions (w) write(2)

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: creat(2), creat64(2), fcntl(2), lseek(2), lseek64(2), open(2), open64(2), pipe(2),
socket(2), spt_writez(2), ulimit(3).

STANDARDS CONFORMANCE
The HP implementation does not generate the SIGXFSZ signal.

The POSIX standards leave some features to the implementing vendor to define. These features
are affected in the HP implementation:

• Calls to the write() function with the nbytes parameter equal to 0 are supported for all
regular and nonregular files.

• After reading from a device that is incapable of seeking, the value of the file pointer is
always 0 (zero).

• Specifying a value for the nbytes parameter that is greater than SSIZE_MAX causes the
write() function to return -1 and set errno to [EINVAL].

• errno can be set to [EIO] if a physical I/O error occurs.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [ECONNRESET], [EFAULT], [EGUARDIANLOCKED], [EINVAL],
[ENETDOWN], [ENOTCONN], [ETIMEDOUT], and [EWRONGID] can be returned.

• For systems running J06.07 and later J-series RVUs or H06.18 and later H-series RVUs,
the errno value [ENOMEM] can be returned when there is not enough system memory
available to complete the operation.

The use of this function with the POSIX User Thread Model library conforms to industry stan-
dards as follows:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

• When a signal arrives during a call to a thread-aware write() function, the thread-aware
write() retries the I/O operation instead of returning the errno value [EINTR] with the
following exception. If the thread-aware fork() function is called by a signal handler
that is running on a thread performing a thread-aware write() call, the thread-aware
write() call in the child process returns [EINTR] to the application.

527186-023 Hewlett-Packard Company 10−19

write64_(2) OSS System Calls Reference Manual

NAME
write64_ - Writes to a file

LIBRARY
G-series native OSS processes: system library
H-series and J-series OSS processes: implicit libraries
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h> /* optional except for POSIX.1 */
#include <unistd.h>

long long write64_(
int filedes,
void _ptr64 *buffer,
unsigned long long nbytes);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

buffer Identifies the buffer containing the data to be written.

nbytes Specifies the number of bytes to write.

DESCRIPTION
The write64_() function attempts to write nbytes of data to the file associated with the filedes
parameter from the buffer pointed to by the buffer parameter.

To pass a 32-bit pointer from a 32-bit Guardian or OSS client, write() or write64_() may be
called.

To pass a 64-bit pointer from a 32-bit Guardian or OSS client, write64_() must be called.

32-bit Guardian and 64-bit OSS clients can pass 32-bit pointers and 64-bit pointers to
write64_().

For all regular and non-regular files, if the value of the nbytes parameter is 0 (zero) and the value
of filedes is a valid file descriptor, the write64_() function returns 0 (zero).

The appropriate file time fields are updated unless nbytes is 0 (zero).

With regular files and devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. If this incremented file pointer is greater than the
length of the file, the length of the file is set to this file offset. Upon return from the write64_()
function, the file pointer is incremented by the number of bytes actually written.

With devices incapable of seeking, writing always takes place starting at the current position.
For such devices, the value of the file pointer after a call to the write64_() function is always 0
(zero).

Fewer bytes than requested can be written if there is not enough room to satisfy the request. In
this case, the number of bytes written is returned. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write request of 512 bytes returns a value of 20.
The limit reached can be either the end of the physical medium or the value that has been set by
the ulimit() function. The next write of a nonzero number of bytes gives a failure return (except
as noted later).

10−20 Hewlett-Packard Company 527186-023

System Functions (w) write64_(2)

Upon successful completion, the write64_() function returns the number of bytes actually writ-
ten to the file associated with filedes. This number is never greater than the value of nbytes.

If the O_APPEND flag of the file status is set, the file offset is set to the end of the file prior to
each write.

Write requests to a pipe or a FIFO file are handled the same as writes to a regular file with these
exceptions:

• No file offset is associated with a pipe; therfore, each write64_() request appends to the
end of the pipe.

• If the size of the write64_() request is less than or equal to the value of the PIPE_BUF
system variable, the write64_() function is guaranteed to be atomic. The data is not
interleaved with data from other processes doing writes on the same pipe.

• If the size of the write64_() request is greater than the value of the PIPE_BUF system
variable, the file system attempts to resize the pipe buffer from 2 * PIPE_BUF to 65,536
bytes. If the resizing is successful, the file system performs atomic writes of up to 32,768
bytes and can transfer up to 52 kilobytes of data from the pipe buffer on subsequent
read(), read64_(), or readv() calls by the client.

If the file system cannot resize the buffer, it continues to use the existing buffer. A
second attempt at resizing occurs after approximately a minute elapses.

Writes of greater than PIPE_BUF bytes can have data interleaved, on arbitrary boun-
daries, with writes by other processes, whether or not the O_NONBLOCK flag is set.

• If the O_NONBLOCK flag is not set, a write64_() request to a full pipe causes the pro-
cess to block until enough space becomes available to handle the entire request.

• If the O_NONBLOCK flag is set, write64_() requests are handled differently in these
ways:

— The write64_() function does block the process.

— write64_() requests for PIPE_BUF or fewer bytes either succeed completely
and return the value of the nbytes parameter, or return the value -1 and set errno
to [EAGAIN].

— A write64_() request for greater than PIPE_BUF bytes either transfers what it
can and returns the number of bytes written, or transfers no data and returns the
value -1 with errno set to [EAGAIN]. Also, if a request is greater than
PIPE_BUF bytes and all data previously written to the pipe has been read,
write64_() transfers at least PIPE_BUF bytes.

When attempting to write to a file descriptor for a special character device (a terminal) that can-
not accept data immediately:

• If the O_NONBLOCK flag is clear, the write64_() function blocks until the data can be
accepted or an error occurs.

• If the O_NONBLOCK flag is set, the write64_() function returns the value -1 and
errno is set to [EAGAIN].

527186-023 Hewlett-Packard Company 10−21

write64_(2) OSS System Calls Reference Manual

When attempting to write to a socket and with no space available for data:

• If the O_NONBLOCK flag is not set, the write64_() function blocks until space
becomes available or an error occurs.

• If the O_NONBLOCK flag is set, the write64_() function returns the value -1 and sets
errno to [EWOULDBLOCK].

Upon successful completion, the write64_() function marks the st_ctime and st_mtime fields of
the file for update and clears the set-user-ID and set-group-ID attributes if the file is a regular file.

The fcntl() function provides more information about record locks.

If the write64_() function is interrupted by a signal before it writes any data, it returns the value
-1 with errno set to [EINTR]. If the write64_() function is interrupted by a signal after it has
successfully written some data, it returns the number of bytes that it has written.

Use on Guardian Objects
Attempting to write to a Guardian file (that is, a file in /G) that is locked causes the write64_()
function to return -1 and set errno to [EGUARDIANLOCKED].

NOTES
For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the write64_() function returns the number of bytes that were actu-
ally written. Otherwise, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the write64_() function sets errno to the corresponding value:

[EAGAIN] One of these conditions exists:

• An attempt was made to write to a file descriptor that cannot accept data,
and the O_NONBLOCK flag is set.

• A write to a pipe (FIFO file) of PIPE_BUF bytes or less is requested,
O_NONBLOCK is set, and fewer than nbytes of free space are avail-
able.

• The O_NONBLOCK flag is set on this file, and the process would be
delayed in the write operation.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion (such as spt_writez())is in progress on a regular file and a function that is
process-blocking for regular files (such as read(), spt_read(), or spt_readx())
attempts to begin an I/O operation on the same open file.

[EBADF] The filedes parameter does not specify a valid file descriptor open for writing.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

10−22 Hewlett-Packard Company 527186-023

System Functions (w) write64_(2)

[EFAULT] The buffer parameter points to a location outside of the allocated address space
of the process.

[EFBIG] The application is attempting to write at or beyond the file offset maximum esta-
blished when the file was opened.

[EGUARDIANLOCKED]
A write64_() operation was attempted to a file in the Guardian file system (that
is, a file in /G) that is locked.

[EINTR] A write64_() operation was interrupted by a signal before any data was written.

[EINVAL] One of these conditions occurred:

• The file position pointer associated with the file specified by the filedes
parameter was negative.

• The value of the nbytes parameter is greater than SSIZE_MAX.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

• A physical I/O error occurred. Data might have been lost during a
transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOSPC] No free space is left on the fileset containing the file.

[ENOTCONN] An attempt was made to write to a socket that is not connected to a peer socket.

[ENXIO] One of these conditions occurred:

• The device associated with the file descriptor specified by the filedes
parameter is a block special device or character special file, and the file
pointer is out of range.

• No existing device is associated with the file descriptor specified by the
filedes parameter.

[EPIPE] One of these conditions occurred:

• An attempt was made to write to a pipe or FIFO file that is not open for
reading by any process. A SIGPIPE signal is sent if the process is run-
ning in the OSS environment.

527186-023 Hewlett-Packard Company 10−23

write64_(2) OSS System Calls Reference Manual

• An attempt was made to write to a pipe that has only one end open.

• An attempt was made to write to a socket that is shut down or closed.

[ETIMEDOUT]
Data transmission on the socket timed out.

[EWOULDBLOCK]
The process attempted an operation on a socket for which O_NONBLOCK is
set, there is no space available, and no error has occurred.

[EWRONGID] One of these conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: creat(2), creat64(2), fcntl(2), lseek(2), lseek64(2), open(2), open64(2), pipe(2),
read(2), read64_(2), socket(2), ulimit(3), write(2).

STANDARDS CONFORMANCE
This API is an HP extension and is not standards conformant.

10−24 Hewlett-Packard Company 527186-023

System Functions (w) writev(2)

NAME
writev - Writes to a file from scattered buffers

LIBRARY
G-series native OSS processes: /G/system/sysnn/zossesrl
32-bit H-series and J-series OSS processes: /G/system/zdllnnn/zossedll
64-bit H-series and J-series OSS processes: /G/system/zdllnnn/yossedll
32-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/zputdll
64-bit H-series and J-series OSS processes that use the POSIX User Thread Model library:
/G/system/zdllnnn/yputdll

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>

int writev(
int filedes,
struct iovec *iov,
int iov_count);

PARAMETERS
filedes Specifies an open file descriptor obtained from a successful call to the accept(),

creat(), creat64(), dup(), dup2(), fcntl(), open(), open64(), pipe(), socket(),
or socketpair() function.

When the function is thread-aware, specifies an open file descriptor obtained
from a successful call to the creat(), creat64(), dup(), open(), open64(),
pipe(), socket(), or socketpair() function, or the thread-aware accept(),
dup2(), or fcntl() function.

iov Points to a iovec structure that identifies the buffers containing the data to be
written.

iov_count Specifies the number of iovec structure entries (buffers) pointed to by the iov
parameter.

DESCRIPTION
The writev() function attempts to write data to the file associated with the filedes parameter from
the set of buffers pointed to by the iov parameter.

The writev() function performs the same action as the write() function, but gathers the output
data from the iov_count buffers specified by the iovec structure buffers pointed to by the iov
parameter.

The iovec structure is defined in the sys/uoi.h header file and contains entries with these
members:

caddr_t iov_base;
int iov_len;

The iov_base and iov_len members of each iovec structure entry specify the base address and
length of an area in memory from which data should be written. The writev() function always
writes a complete buffer before proceeding to the next.

With regular files and devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. If this incremented file pointer is greater than the
length of the file, the length of the file is set to this file offset. Upon return from the writev()
function, the file pointer is incremented by the number of bytes actually written.

527186-023 Hewlett-Packard Company 10−25

writev(2) OSS System Calls Reference Manual

With devices incapable of seeking, writing always takes place starting at the current position.
For such devices, the value of the file pointer after a call to the writev() function is always 0
(zero).

Fewer bytes than requested can be written if there is not enough room to satisfy the request. In
this case, the number of bytes written is returned. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write request of 512 bytes returns a value of 20.
The limit reached can be either the end of the physical medium or the value that has been set by
the ulimit() function. The next write of a nonzero number of bytes gives a failure return (except
as noted later).

Upon successful completion, the writev() function returns the number of bytes actually written
to the file associated with filedes.

If the O_APPEND status flag of the file is set, the file offset is set to the end of the file prior to
each write.

Write requests to a pipe or FIFO file are handled the same as writes to a regular file with these
exceptions:

• No file offset is associated with a pipe; therfore, each writev() request appends to the
end of the pipe.

• If the size of the writev() request is less than or equal to the value of the PIPE_BUF
system variable, the writev() function is guaranteed to be atomic. The data is not inter-
leaved with data from other processes doing writes on the same pipe.

• If the size of the writev() request is greater than the value of the PIPE_BUF system
variable, the file system attempts to resize the pipe buffer from 2 * PIPE_BUF to 65,536
bytes. If the resizing is successful, the file system performs atomic writes of up to 32,768
bytes and can transfer up to 52 kilobytes of data from the pipe buffer on subsequent
read() or readv() calls by the client.

If the file system cannot resize the buffer, it continues to use the existing buffer. A
second attempt at resizing occurs after approximately a minute elapses.

Writes of greater than PIPE_BUF bytes can have data interleaved, on arbitrary boun-
daries, with writes by other processes, whether or not the O_NONBLOCK flag is set.

• If the O_NONBLOCK flag is not set, a writev() request to a full pipe causes the process
to block until enough space becomes available to handle the entire request.

• If the O_NONBLOCK flag is set, writev() requests are handled differently in these
ways:

— The writev() function does block the process.

— The writev() requests for PIPE_BUF or fewer bytes either succeed completely
and return the number of bytes written, or return the value -1 and set errno to
[EAGAIN].

— A writev() request for greater than PIPE_BUF bytes either transfers what it can
and returns the number of bytes written, or transfers no data and returns the value
-1 with errno set to [EAGAIN]. Also, if a request is greater than PIPE_BUF
bytes and all data previously written to the pipe has been read, writev() transfers
at least PIPE_BUF bytes.

When attempting to write to a file descriptor for a special character device (a terminal) that can-
not accept data immediately:

10−26 Hewlett-Packard Company 527186-023

System Functions (w) writev(2)

• If the O_NONBLOCK flag is clear, the writev() function blocks until the data can be
accepted or an error occurs.

• If the O_NONBLOCK flag is set, the writev() function returns the value -1 and errno is
set to [EAGAIN].

When attempting to write to a socket with no space available for data:

• If the O_NONBLOCK flag is not set, the writev() function blocks until space becomes
available or an error occurs.

• If the O_NONBLOCK flag is set, the writev() function returns the value -1 and sets
errno to [EWOULDBLOCK].

Upon successful completion, the writev() function marks the st_ctime and st_mtime fields of
the file for update and clears the set-user-ID and set-group-ID attributes if the file is a regular file.

The fcntl() function provides more information about record locks.

If it is interrupted by a signal before it writes any data, the writev() function returns the value -1
with errno set to [EINTR]. If it is interrupted by a signal after it has successfully written some
data, the writev() function returns the number of bytes that it has written.

Use on Guardian Objects
Attempting to write to a Guardian file (that is, a file in /G) that is locked causes the writev()
function to return -1 and set errno to [EGUARDIANLOCKED].

Use From a Threaded Application
The thread-aware writev() function behaves exactly the same as spt_writevz() in the Standard
POSIX Threads library. For file descriptors for regular files, if this thread-aware writev() func-
tion must wait for an I/O operation to complete on an open file, this function blocks the thread
(instead of the entire process) that called it, while it waits for the I/O operation to complete.

NOTES
To use the writev() functionality in a threaded application that uses the Standard POSIX Threads
library, see spt_writevz(2).

To use this function in a threaded application that uses the POSIX User Thread Model library on
systems running H06.21 or later RVUs or J06.10 or later RVUs, you must perform all of the fol-
lowing tasks to make the function thread-aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

• Link the application to the zputdll library (/G/system/zdllnnn/zputdll).

On systems running H06.24 or later H-series RVUs or J06.13 or later J-series RVUs, you can use
this function with 32-bit or 64-bit OSS applications.

To use this function in a 32-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, perform the same tasks (described above) used to make the function
thread-aware in a multi-threaded application on systems running H06.21/J06.10 or later RVUs.

To use this function in a 64-bit threaded application on systems running H06.24 or later RVUs or
J06.13 or later RVUs, you must perform all of the following tasks to make the function thread-
aware in a multi-threaded application:

• Compile the application using the _PUT_MODEL_ feature test macro or equivalent
compiler command option.

527186-023 Hewlett-Packard Company 10−27

writev(2) OSS System Calls Reference Manual

• Compile the application using the -Wlp64 compiler command option.

• Link the application to the yputdll library (/G/system/zdllnnn/yputdll).

For detailed information about writing multi-threaded and 64-bit applications for the Open Sys-
tem Services environment, see the Open System Services Programmer’s Guide.

RETURN VALUES
Upon successful completion, the writev() function returns the number of bytes that were actually
written. Otherwise, the value -1 is returned, and errno is set to indicate the error.

ERRORS
If any of these conditions occurs, the writev() function sets errno to the corresponding value:

[EAGAIN] One of these conditions occurred:

• An attempt was made to write to a file descriptor that cannot accept data,
and the O_NONBLOCK flag is set.

• A write to a pipe (FIFO file) of PIPE_BUF bytes or less is requested,
O_NONBLOCK is set, and not enough free space is available.

• The O_NONBLOCK flag is set on this file, and the process would be
delayed in the write operation.

[EALREADY] Operation already in progress. An I/O operation started by a thread-aware func-
tion is in progress on a regular file and a function that is process-blocking for
regular files attempts to begin an I/O operation on the same open file.

If the writev() function is thread-aware, the [EALREADY] value is not returned.

[EBADF] The filedes parameter is not a valid file descriptor open for writing.

[ECONNRESET]
One of these conditions occurred:

• The transport-provider process for this socket is no longer available.

• The TCP/IP subsystem for this socket is no longer available.

• The connection was forcibly closed by the peer socket.

The file descriptor specified by the filedes parameter can only be closed.

[EFAULT] Part of the iov parameter points to a location outside of the allocated address
space of the process.

[EFBIG] The application is attempting to write at or beyond the file offset maximum esta-
blished when the file was opened.

[EGUARDIANLOCKED]
A writev() operation was attempted to a file in the Guardian file system (that is,
a file in /G) that is locked.

[EINTR] A writev() operation was interrupted by a signal before any data was written.

[EINVAL] One of these conditions occurred:

• The file position pointer associated with the file specified by the filedes
parameter was negative.

10−28 Hewlett-Packard Company 527186-023

System Functions (w) writev(2)

• The value of the iov_count parameter was less than or equal to 0 (zero),
or greater than IOV_MAX.

• One of the iov_len values in the iov array was negative or overflowed a
data item of type ssize_t.

• The sum of the iov_len values in the iov array overflowed an integer.

[EIO] One of these conditions occurred:

• The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP flag is set, the process is
neither ignoring nor blocking the SIGTTOU signal, and the process
group of the process is orphaned.

• A physical I/O error occurred. The device holding the file might be in
the down state, or both processors that provide access to the device
might have failed. Data might have been lost during a transfer.

[EISGUARDIAN]
The value used for the filedes parameter is appropriate only in the Guardian
environment.

[ENETDOWN]
The filedes parameter specifies a file on a remote HP NonStop node, but com-
munication with the remote node has been lost.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOSPC] No free space is left on the fileset containing the file.

[ENOTCONN] An attempt was made to write to a socket that is not connected to a peer socket.

[ENXIO] One of these conditions occurred:

• The device associated with the file descriptor specified by the filedes
parameter is a block special device or character special file, and the file
pointer is out of range.

• No existing device is associated with the file descriptor specified by the
filedes parameter.

[EPIPE] One of these conditions occurred:

• An attempt was made to write to a pipe or FIFO file that is not open for
reading by any process. A SIGPIPE signal is sent if the process is run-
ning in the OSS environment.

• An attempt was made to write to a pipe that has only one end open.

• An attempt was made to write to a socket that is shut down or closed.

[ETIMEDOUT]
Data transmission on the socket timed out.

527186-023 Hewlett-Packard Company 10−29

writev(2) OSS System Calls Reference Manual

[EWOULDBLOCK]
The process attempted an operation on a socket for which O_NONBLOCK is
set, there is no space available, and no error has occurred.

[EWRONGID] One of these conditions occurred:

• The process attempted an input or output operation through an operating
system input/output process (such as a terminal server process) that has
failed or is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation, and takeover by the backup process occurred.

• The open file descriptor has migrated to a new processor but the new
processor lacks a resource or system process needed for use of the file
descriptor.

The file descriptor specified by the filedes parameter can only be closed.

For all other error conditions, errno is set to the appropriate Guardian file-system error number.
See the Guardian Procedure Errors and Messages Manual for more information about a specific
Guardian file-system error.

RELATED INFORMATION
Functions: creat(2), creat64(2), fcntl(2), lseek(2), lseek64(2), open(2), open64(2), pipe(2),
socket(2), spt_writevz(2), ulimit(3).

STANDARDS CONFORMANCE
The HP implementation does not generate the SIGXFSZ signal.

HP extensions to the XPG4 Version 2 specification are:

• The errno values [ECONNRESET], [EFAULT], [EGUARDIANLOCKED], [EINVAL],
[ENETDOWN], [ENOTCONN], [ETIMEDOUT], and [EWRONGID] can be returned.

• For systems running J06.07 and later J-series RVUs or H06.18 and later H-series RVUs,
the errno value [ENOMEM] can be returned when there is not enough system memory
available to complete the operation.

The use of this function with the POSIX User Thread Model library conforms to industry stan-
dards as follows:

• IEEE Std 1003.1-2004, POSIX System Application Program Interface

• When a signal arrives during a call to a thread-aware writev() function, the thread-aware
writev() retries the I/O operation instead of returning the errno value [EINTR] with the
following exception. If the thread-aware fork() function is called by a signal handler
that is running on a thread performing a thread-aware writev() call, the thread-aware
writev() call in the child process returns [EINTR] to the application.

10−30 Hewlett-Packard Company 527186-023

Section 11. Files

This section contains reference pages for some Open System Services (OSS) header files
and special files. These reference pages reside in the cat4 and cat7 directories and are
sorted alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 11−1

ar(4) OSS System Calls Reference Manual

NAME
ar - Describes the archive (library) file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The ar archive command combines several files into one. Archives are used mainly as libraries
to be searched by the Binder utility for TNS or accelerated programs and by the nld utility for
TSN/R native programs.

A file produced by the ar command has a magic number at the start, followed by the constituent
files, each preceded by a file header. The magic number and header layout are described in the
ar.h header file.

Each file begins on an even boundary. A newline character is inserted between files if necessary;
nevertheless, the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable files, the
archive itself is printable.

The header is made up of six fixed-length ASCII fields, followed by a 2-character trailer. The
fields are as follows:

ar_name Object name (16 characters)

ar_date File’s last modification time (12 characters); for example, UTC seconds since the
Epoch

ar_uid User ID (6 characters)

ar_gid Group ID (6 characters)

ar_mode File’s mode (8 characters)

ar_size File’s size (10 characters)

All numeric fields are in decimal, except for the file mode, which is in octal.

The 2-byte trailer is the string

`\n

Only the ar_name field provides for overflows. If any filename is more than 16 characters in
length or contains an embedded space, the string

#1/

followed by the ASCII length of the filename, is written in the ar_name field. The file size
(stored in the archive header) is incremented by the length of the filename. The filename is then
written immediately following the archive header.

RELATED INFORMATION
Commands: ar(1), nm(1).

11−2 Hewlett-Packard Company 527186-023

Files core(4)

NAME
core, saveabend - Is a file containing a memory image

DESCRIPTION
In the OSS implementation, the equivalent of a core file is a saveabend file. A saveabend file is a
type of process snapshot file and can be used with a system debugger when necessary.

A saveabend file is created whenever a process terminates abnormally and it is possible to create
a saveabend file. The location of a saveabend file is displayed on the home terminal of the ter-
minated process.

A saveabend file is created according to the following naming convention:

ZZSAnnnn

where nnnn is a numeric increment.

The saveabend file contains data-area and file-status information at the time of the failure. Use a
symbolic debugger program to examine the saveabend file. Refer to the appropriate manual for
the symbolic debugger for information on saveabend files and how to examine them.

NOTES
There is no core.h header file.

Saveabend files are sometimes referred to as Guardian save or SAVEABEND files.

RELATED INFORMATION
Commands: c89(1), gtacl(1), osh(1), run(1), runv(1), sh(1).

Functions: sigaction(2), tdm_execve(2), tdm_execvep(2), tdm_spawn(2), tdm_spawnp(2).

Files: signal(4).

527186-023 Hewlett-Packard Company 11−3

cpio(4) OSS System Calls Reference Manual

NAME
cpio - Describes the extended cpio archive file format

SYNOPSIS
#include <cpio.h>

DESCRIPTION
The byte-oriented cpio archive file format is a series of entries, each entry made up of a header
that describes the file and the name of the file, followed by the contents of the file.

The format of the cpio header is described below.

Table 11−1. cpio Archive File Header Format

Header Field
Name

Length (in
octets)

ContentsInterpretation
__

Identifies the archive as transportable by
containing the value 070707

c_magic 6 Octal number

ID of the device containing the filec_dev 6 Octal number
File serial numberc_ino 6 Octal number
File type and access permissionc_mode 6 Octal number
User ID of the ownerc_uid 6 Octal number
Group ID of the ownerc_gid 6 Octal number
Number of links referencing the file at
the time the archive was created

c_nlink 6 Octal number

Not usedc_rdev 6 Octal number
Latest modification time of the file at
the time the archive was created

c_mtime 11 Octal number

Length of the pathname, including the
terminating null character

c_namesize 6 Octal number

c_filesize Byte length of the file data11 Octal number

11−4 Hewlett-Packard Company 527186-023

Files cpio(4)

The archive entry for the name of a file has the following format:

Table 11−2. cpio Archive File Filename Entry Format

Field Name Length (in octets) Interpretation__

c_name c_namesize Pathname string

The c_name field contains the pathname of the file as a string with the length given by the
c_namesize field in the file header. This string length includes the null character that terminates
the name. If the filename is found on a medium that would create an invalid pathname, the pax
utility skips the file and displays an error message to the standard error file.

Following the header and the pathname string, the cpio archive file data has the following form:

Table 11−3. cpio Archive File Data Format

Field Name Length (in octets) Interpretation___

c_filedata c_filesize Data

If the c_filesize field of the header has the value 0 (zero), then the file is empty.

A header denoting the filename TRAILER!!! indicates the end of the archive; what follows this
header is undefined.

Only regular files contain data that can be restored. FIFO special files, directories, and the trailer
are archived with the c_filesize field of the header equal to 0 (zero); these objects are restored
with the pax utility as directories and FIFOs.

527186-023 Hewlett-Packard Company 11−5

cpio(4) OSS System Calls Reference Manual

The cpio.h header file contains the following macro definitions:

Table 11−4. cpio.h Header File Macros

Macro Value (in octal) Interpretation__

C_IRUSR 0000400 Read by owner
C_IWUSR 0000200 Write by owner
C_IXUSR 0000100 Execute by owner
C_IRGRP 0000040 Read by group
C_IWGRP 0000020 Write by group
C_IXGRP 0000010 Execute by group
C_IROTH 0000004 Read by others
C_IWOTH 0000002 Write by others
C_IXOTH 0000001 Execute by others
C_ISUID 0004000 Set user ID
C_ISGID 0002000 Set group ID
C_ISVTX 0001000 Reserved
C_ISDIR 0040000 Directory
C_ISFIFO 0010000 FIFO
C_ISREG 0100000 Regular file
C_ISBLK 0060000 Block special file
C_ISCHR 0020000 Character special file
C_ISCTG 0110000 Reserved
C_ISLNK 0120000 Reserved
C_ISSOCK 0140000 Reserved
MAGIC 070707 Magic number value

RELATED INFORMATION
Commands: pax(1), pinstall(1).

11−6 Hewlett-Packard Company 527186-023

Files dir(4)

NAME
dir - Describes the format of directories

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

DESCRIPTION
A directory is a file that contains directory entries. The fact that a file is a directory is indicated
by a bit in the flag word of the inode entry for the file.

Users cannot write a directory. Users can read directory entries by making calls to the readdir()
function after opening the directory file by calling the opendir() function.

Directory entries are returned in directory entry structures, which are of variable length. Each
directory entry has a dirent structure at the beginning, containing its inode number, the length of
the entry, and the length of the filename contained in the entry. These structure components are
followed by the filename, padded to a 4-byte boundary with null bytes. All names are guaranteed
null-terminated. The maximum permitted length of a name in a directory can be obtained by cal-
ling the pathconf() function.

By convention, the first two entries in each directory are for . (dot) and . . (dot-dot). The . (dot)
entry is for the directory itself. The . . (dot-dot) entry is for the parent directory. The meaning of
. . (dot-dot) is modified for the / (root) directory of the OSS file system, where . . (dot-dot) has the
same meaning as . (dot).

Guardian directories (that is, directories within the /G file system) behave the same as OSS direc-
tories, with the following exceptions:

• The mkdir() function successfully creates a directory within /G only when all of the fol-
lowing are true:

— The directory is exactly three directories under the root (for example,
/G/vol/subvol).

— The filenames in the directory pathname use correct Guardian naming syntax
(otherwise, errno is set to [EINVAL]).

— The directory corresponds to a Guardian subvolume.

• The mkdir() function succeeds on a directory that is an existing Guardian subvolume
(for example, /G/vol/subvol) only when the Guardian subvolume is empty. If the Guar-
dian subvolume is not empty, the mkdir() function fails and errno is set to the value
[EEXIST].

RELATED INFORMATION
Functions: chdir(2), closedir(3), mkdir(2), opendir(3), readdir(3), rewinddir(3), rmdir(2).

527186-023 Hewlett-Packard Company 11−7

float(4) OSS System Calls Reference Manual

NAME
float - Specifies the system limits for floating-point operations

SYNOPSIS
#include <float.h>

DESCRIPTION
The float.h header file defines symbolic names. These symbolic names represent floating-point
values for the two possible floating-point formats that a program can use. The floating-point for-
mat is chosen at compilation time.

See the float.h header file for the actual values of these limits in the HP implementation.

The values shown in the following table depend on whether the process is using Tandem-format
floating-point data (using the -WTandem_float c89 compiler flag or equivalent) or is using IEEE
floating-point data (using the -WIEEE_float c89 compiler flag or equivalent).

11−8 Hewlett-Packard Company 527186-023

Files float(4)

Table 11−5. Values for Floating-Point Constants

Symbolic Constant Tandem-Format Value IEEE-Format Value__

DBL_DIG 16 15
DBL_EPSILON 5.551115123125782720e-

17
2.2204460492503131E-16

DBL_MANT_DIG 55 53
DBL_MAX 1.15792089237316192e77 1.7976931348623157E+308
DBL_MAX_EXP 256 1024
DBL_MAX_10_EXP 77 308
DBL_MIN 1.7272337110188889e-77 2.2250738585072014E-308
DBL_MIN_EXP -254 -1021
DBL_MIN_10_EXP -77 -307
FLT_EPSILON 2.3841858e-17 1.19209290E-07F
FLT_MANT_DIG 23 24
FLT_MAX 1.1579208e77F 3.40282347E+38F
FLT_MAX_EXP 256 128
FLT_MAX_10_EXP 77 38
FLT_MIN 1.7272337e-77F 1.17549435E-38F
FLT_MIN_EXP -254 -125
FLT_MIN_10_EXP -77 37
LDBL_DIG 16 15
LDBL_EPSILON 5.551115123125782720e-

17
2.2204460492503131E-16

LDBL_MANT_DIG 55 53
LDBL_MAX 1.15792089237316192e77 1.7976931348623157E+308
LDBL_MAX_EXP 256 1024
LDBL_MAX_10_EXP 77 308
LDBL_MIN 1.7272337110188889e-77 2.2250738585072014E-308
LDBL_MIN_EXP -254 -1021
LDBL_MIN_10_EXP -77 -307__

RELATED INFORMATION
Files: limits(4).

STANDARDS CONFORMANCE
This file conforms to the XPG4 version 2 specification when used for IEEE floating-point data.

Remember the following rules when using any special floating-point mode:

• Do not assume that functions such as printf() or tanh() behave correctly if you call
them after setting a nondefault mode (such as rounding toward zero). Unless a function
is documented as tolerating such settings, you should restore the default operating mode
before calling the function.

• The exception bits of the status register stay set until they are explicitly cleared.

527186-023 Hewlett-Packard Company 11−9

limits(4) OSS System Calls Reference Manual

NAME
limits - Specifies the system limits

SYNOPSIS
#include <limits.h>

DESCRIPTION
The limits.h header file defines symbolic names. These symbolic names represent:

• Implementation-dependent constants whose values set limits on system resources used
by applications in the OSS environment. These values are all at least as large as
minimum acceptable values set by the POSIX.1, POSIX.2, XPG4, and IEEE Std 1003.1-
2004 standards. See Implementation-Dependent Constants, later in this reference
page.

• POSIX.1, POSIX.2 and IEEE Std 1003.1-2004 standard minimum acceptable values.
See POSIX-Defined Minimum Values, later.

• Floating-point values for the two possible floating-point formats that a program can use.
The floating-point format is chosen at compilation time.

See the limits.h header file for the actual values of these limits in the HP implementation.

Some of the implementation-dependent constants have values that can increase at run time.
These runtime values can be determined at run time using the sysconf() function.

Other limiting values are available only at run time for one of the following reasons:

• The limit is pathname-dependent.

• The limit differs between compile time and run time.

These values are not specified in the limits.h header file. For completeness, they are listed under
Values Unknown at Compile Time, later in this reference page.

An application can use the fpathconf(), pathconf(), and sysconf() functions to determine the
actual value of any limit at run time.

Implementation-Dependent Constants
The following values are defined in the limits.h header file. Some of these values are minimum
values that can increase at run time. Such values are indicated as "runtime-increasable."

BC_BASE_MAX
Maximum obase value allowed by the bc utility. This is a runtime-increasable
value. Use the sysconf() function to obtain the runtime value.

BC_DIM_MAX
Maximum number of elements permitted in an array by the bc utility. This is a
runtime-increasable value. Use the sysconf() function to obtain the runtime
value.

BC_SCALE_MAX
Maximum scale value allowed by the bc utility. This is a runtime-increasable
value. Use the sysconf() function to obtain the runtime value.

BC_STRING_MAX
Maximum length of a string constant accepted the bc utility. This is a runtime-
increasable value. Use the sysconf() function to obtain the runtime value.

11−10 Hewlett-Packard Company 527186-023

Files limits(4)

CHAR_BIT Number of bits in an object of type char. This value is always 8.

CHARCLASS_NAME_MAX
Maximum number of bytes in a character class name. This value is always 255.

CHAR_MAX Maximum value for a signed char. In the HP implementation, the type char is
not considered a signed integer; CHAR_MAX is therefore treated like
UCHAR_MAX.

CHAR_MIN Minimum value for a signed char. In the HP implementation, the type char is
not considered a signed integer; CHAR_MIN is therefore 0 (zero).

COLL_WEIGHTS_MAX
Maximum number of weights that can be assigned to an entry of the
LC_COLLATE order keyword in the locale definition file. This is a runtime-
increasable value. Use the sysconf() function to obtain the runtime value.

EXPR_NEST_MAX
Maximum number of expressions that can be nested within parentheses by the
expr utility. This is a runtime-increasable value. Use the sysconf() function to
obtain the runtime value.

INT_BIT Number of bits in an object of type int. In the HP implementation, this value is
32.

INT_MAX Maximum value for an object of type int. This value depends on the size of an
integer, which, in the HP implementation, is 32 bits.

INT_MIN Minimum value for an object of type int. This value depends on the size of an
integer, which, in the HP implementation, is 32 bits.

LINE_MAX Unless otherwise noted, the maximum length, in bytes, of the input line to a util-
ity (from either the standard input file or another file), when the utility is
described as processing text files. The length includes room for the trailing new-
line character. This is a runtime-increasable value. Use the sysconf() function
to obtain the runtime value.

LLONG_BIT Number of bits in an object of type long long int. This symbolic constant is
specific to the HP implementation.

LLONG_MAX
Maximum value for an object of type long long int. This symbolic constant is
specific to the HP implementation.

LLONG_MIN Minimum value for an object of type long long int. This symbolic constant is
specific to the HP implementation.

LOGIN_NAME_MAX
Maximum length of a user or alias name in calls by the getlogin_r() function.

This define is supported for systems running H06.21 or later H-series RVUs or
J06.10 or later J-series RVUs only.

LONG_BIT Number of bits in an object of type long int.

527186-023 Hewlett-Packard Company 11−11

limits(4) OSS System Calls Reference Manual

LONG_MAX Maximum value for an object of type long int.

LONG_MIN Minimum value for an object of type long int.

MB_LEN_MAX
Maximum number of bytes in a character for any supported locale.

NL_ARGMAX
Maximum value of the digit parameter in calls to the printf() and scanf() func-
tions.

NL_MSGMAX
Maximum message number.

NL_NMAX Maximum number of bytes in an N-to-1 collation mapping.

NL_SETMAX Maximum number of filesets per catalog.

NL_TEXTMAX
Maximum number of bytes in a message string.

PATH_MAX Maximum number of bytes in a pathname including the terminating null charac-
ter.

PIPE_BUF Maximum number of bytes that is guaranteed to be transferred as a unit when
writing to a pipe.

RE_DUP_MAX
Maximum number of repeated occurrences of a regular expression permitted
when using the m,n interval notation. This is a runtime-increasable value. Use
the sysconf() function to obtain the runtime value.

SCHAR_MAX
Maximum value for an object of type signed char.

SCHAR_MIN Minimum value for an object of type signed char.

SHRT_MAX Maximum value for an object of type short.

SHRT_MIN Minimum value for an object of type short.

TZNAME_MAX
Maximum number of bytes supported for the name of a time zone (not of the TZ
variable).

UCHAR_MAX
Maximum value for an object of type unsigned char.

UINT_MAX Maximum value for an object of type unsigned int. This value depends on the
size of an integer, which, in the HP implementation, is 32 bits.

ULLONG_MAX
Maximum value for an object of type unsigned long long int. This symbolic
constant is specific to the HP implementation.

ULONG_MAX
Maximum value for an object of type unsigned long int.

11−12 Hewlett-Packard Company 527186-023

Files limits(4)

USHRT_MAX
Maximum value for an object of type unsigned short int.

WORD_BIT Number of bits in a word of type int.

POSIX-Defined Runtime Invariant Values (Possibly Indeterminate)
The symbolic constants in the following list are defined in the limits.h header file if the applica-
tion has been compiled using the _PUT_MODEL_ feature test macro or equivalent compiler
command option. These symbolic names represent the maximum value for certain features. The
indetermination of these values might depend on the amount of available memory space on a
specific instance of a specific implementation. The actual value supported by a specific instance
is provided by the sysconf() function.

These constants are supported for systems running H06.21 or later H-series RVUs or J06.10 or
later J-series RVUs only.

PTHREAD_DESTRUCTOR_ITERATIONS
Maximum number of attempts made to destroy a thread’s thread-specific data
values on thread exit.

PTHREAD_KEYS_MAX
Maximum number of data keys that can be created by a process.

PTHREAD_STACK_MIN
Maximum size in bytes of thread stack storage.

PTHREAD_THREADS_MAX
Maximum number of threads that can be created per process.

POSIX-Defined Minimum Values
The symbolic constants in the following list are defined in the limits.h header file with values
specified by the POSIX.1, POSIX.2, POSIX.12 draft, or IEEE Std 1003.1-2004 standards. These
symbolic names represent the most restrictive value for certain features. A portable application
must not require a larger value for correct operation. The HP implementation defines some of the
related symbolic constants to be less restrictive.

These values are the same in all POSIX-compliant implementations.

_POSIX_ARG_MAX
Maximum length in bytes of argument data to a function in the exec and
tdm_exec sets of functions, including environment data.

_POSIX_CHILD_MAX
Maximum number of simultaneous processes per real user ID.

_POSIX_FD_SETSIZE
Maximum number of file descriptors that the process can use with the select()
function.

_POSIX_HIWAT
Maximum number of bytes that a process can buffer on a socket for a send or
receive action.

_POSIX_LINK_MAX
Maximum number of links to a single file.

527186-023 Hewlett-Packard Company 11−13

limits(4) OSS System Calls Reference Manual

_POSIX_MAX_CANON
Maximum number of bytes in a terminal canonical input queue.

_POSIX_MAX_INPUT
Maximum number of bytes allowed in a terminal input queue.

_POSIX_NAME_MAX
Maximum number of bytes in a filename excluding the terminating null.

_POSIX_NGROUPS_MAX
Maximum number of simultaneous supplementary group IDs per process.

_POSIX_OPEN_MAX
Maximum number of files that a process can have open at a time.

_POSIX_PATH_MAX
Maximum number of bytes in a pathname including the terminating null.

_POSIX_PIPE_BUF
Maximum number of bytes that is guaranteed to be atomic when writing to a
pipe.

_POSIX_QLIMIT
Maximum number of connections that the process can queue on a single socket.

_POSIX_SSIZE_MAX
Maximum value that can be stored in an object of type ssize_t.

_POSIX_STREAM_MAX
Maximum number of streams that one process can have open at one time.

_POSIX_THREAD_DESTRUCTOR_ITERATIONS
Minimum number of attempts made to destroy a thread’s thread-specific data
values on thread exit.

This define is supported for systems running H06.21 or later H-series RVUs or
J06.10 or later J-series RVUs only and requires that the application has been
compiled using the _PUT_MODEL_ feature test macro or equivalent compiler
command option.

_POSIX_THREAD_KEYS_MAX
Maximum number of data keys per process.

This define is supported for systems running H06.21 or later H-series RVUs or
J06.10 or later J-series RVUs only and requires that the application has been
compiled using the _PUT_MODEL_ feature test macro or equivalent compiler
command option.

_POSIX_THREAD_THREADS_MAX
Maximum number of threads per process.

This define is supported for systems running H06.21 or later H-series RVUs or
J06.10 or later J-series RVUs only and requires that the application has been
compiled using the _PUT_MODEL_ feature test macro or equivalent compiler
command option.

11−14 Hewlett-Packard Company 527186-023

Files limits(4)

_POSIX_TZNAME_MAX
Maximum number of bytes supported for the name of a time zone (not of the TZ
variable).

_POSIX2_BC_BASE_MAX
Maximum obase values allowed by the bc utility.

_POSIX2_BC_DIM_MAX
Maximum number of elements permitted in an array by the bc utility.

_POSIX2_BC_SCALE_MAX
Maximum scale value allowed by the bc utility.

_POSIX2_BC_STRING_MAX
Maximum length of a string constant accepted by the bc utility.

_POSIX2_COLL_WEIGHTS_MAX
Maximum number of weights that can be assigned to an entry of the
LC_COLLATE order keyword in the locale definition file.

_POSIX2_EXPR_NEST_MAX
Maximum number of expressions that can be nested within parentheses by the
expr utility.

_POSIX2_LINE_MAX
Unless otherwise noted, the maximum length, in bytes, of the input line to a util-
ity (from either the standard input file or another file), when the utility is
described as processing text files. The length includes room for the trailing new-
line character.

_POSIX2_RE_DUP_MAX
Maximum number of repeated occurrences of a regular expression permitted
when using the interval notation m,n.

Values Unknown at Compile Time
The following values are unknown at compile time and are therefore not defined in the limits.h
header file:

ARG_MAX Maximum length in bytes of argument data to a function in the exec, tdm_exec,
and tdm_spawn sets of functions. Use the sysconf() function to obtain this
value at run time.

CHILD_MAX Maximum number of simultaneous processes per real user ID. Use the sysconf()
function to obtain this value at run time.

IOV_MAX Maximum number of iovec structures that a process can use at a given time for
scatter or gather operations. Use the sysconf() function to obtain this value at
run time.

LINK_MAX Maximum value of a file’s link count. Use the pathconf() function to obtain this
value at run time.

MAX_CANON
Maximum number of bytes in a terminal canonical input line. Use the path-
conf() function to obtain this value at run time.

527186-023 Hewlett-Packard Company 11−15

limits(4) OSS System Calls Reference Manual

MAX_INPUT Minimum number of bytes for which space is available in a terminal input
queue; therefore, the maximum number of bytes a portable application can
require to be entered as input before it reads them. Use the pathconf() function
to obtain this value at run time.

NAME_MAX Maximum number of bytes in a filename (excluding the terminating null). Use
the pathconf() function to obtain this value at run time.

NL_LANGMAX
Maximum number of bytes in a LANG name. Use the pathconf() function to
obtain this value at run time.

OPEN_MAX Maximum number of files that one process can have open at any one time. Use
the sysconf() function to obtain this value at run time.

SOCK_MAXBUF
Maximum number of bytes in a buffer to be used with a socket. Use the sys-
conf() function to obtain this value at run time.

STREAM_MAX
The number of streams that one process can have open at one time. Use the sys-
conf() function to obtain this value at run time.

Floating-Point Values
The values shown in the following table depend on whether the process is using HP floating-
point data (using the -WTandem_float C compiler flag or equivalent) or is using IEEE floating-
point data (using the -WIEEE_float C compiler flag or equivalent).

Table 11−6. Values for Floating-Point Constants

Symbolic Constant Tandem-Format Value IEEE-Format Value___

DBL_DIG 16 15
DBL_MAX 1.15792089237316192e77 1.7976931348623157E+308
FLT_MAX 1.1579208e77F 3.40282347E+38F

RELATED INFORMATION
Functions: fpathconf(3), pathconf(3), sysconf(3).

Files: float(4).

STANDARDS CONFORMANCE
The HP implementation does not define ATEXIT_MAX, NZERO, PAGE_SIZE, PAGESIZE,
or PASS_MAX.

The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• The following symbolic constants are assigned values that define limits above the max-
imum or below the minimum required by the XPG4 Version 2, POSIX.1, POSIX.2, and
IEEE Std 1003.1-2004 standards:

The XPG4 version 2 specification indicates that the floating-point symbolic constants
DBL_DIG, DBL_MAX, and FLT_MAX are to be withdrawn from the specification.

11−16 Hewlett-Packard Company 527186-023

Files limits(4)

Table 11−7. Values for Symbolic Constants

Symbolic Constant POSIX-Defined Value OSS Value__

CHARCLASS_NAME_MAX 14 255
CHAR_MAX SCHAR_MAX (127) or

UCHAR_MAX (255)
UCHAR_MAX (255)

CHAR_MIN SCHAR_MIN (127) or 0
(zero)

0 (zero)

COLL_WEIGHTS_MAX 2 6
INT_MAX 32767 2147483647
INT_MIN -32767 -2147483647
LONG_MIN -2147483647 -2147483648
MB_LEN_MAX 1 4
NGROUPS_MAX 0 32
NL_MSGMAX 32767 65535
NL_NMAX No guaranteed minimum 10
NL_SETMAX 255 65535
NL_TEXTMAX _POSIX_LINE_MAX

(2048)
8192

PATH_MAX 255 1024
PIPE_BUF 512 4096
SCHAR_MIN -127 -128
SHRT_MIN -32767 -32768
SSIZE_MAX 32767 53248
UINT_MAX 65535 4294967295

The following are HP extensions to the XPG4 Version 2 specification:

• The values INT_BIT, LLONG_BIT, LLONG_MAX, and LLONG_MIN.

• The sockets-related values _POSIX_FD_SETSIZE, _POSIX_HIWAT,
_POSIX_QLIMIT, and SOCK_MAXBUF.

527186-023 Hewlett-Packard Company 11−17

math(4) OSS System Calls Reference Manual

NAME
math - Specifies mathematical functions, constants, and types

SYNOPSIS
#include <math.h>

DESCRIPTION
The math.h header file defines the following types:

float_t Specifies a floating type at least as wide as float.

double_t Specifies a floating type at least as wide as double.

The following macros are defined, where floating-type indicates an expression of the float type:

int fpclassify(
floating-type x);

int isfinite(
floating-type x);

int isgreater(
floating-type x,
floating-type y);

int isgreaterequal(
floating-type x,
floating-type y);

int isinf(
floating-type x);

int isless(
floating-type x,
floating-type y);

int islessequal(
floating-type x,
floating-type y);

int islessgreater(
floating-type x,
floating-type y);

int isnan(
floating-type x);

int isnormal(
floating-type x);

int isunordered(
floating-type x,
floating-type y);

int signbit(
floating-type x);

The following constants of type double are defined. These constants are accurate within the pre-
cision of the double type:

M_E Specifies the value of e.

11−18 Hewlett-Packard Company 527186-023

Files math(4)

M_LN2 Specifies the value of log to the base e of 2.

M_LN10 Specifies the value of log to the base e of 10.

M_LOG2E Specifies the value of log to the base 2 of e.

M_LOG10E Specifies the value of log to the base 10 of e.

M_PI Specifies the value of pi.

M_PI_2 Specifies the value of pi divided by 2.

M_PI_4 Specifies the value of pi divided by 4.

M_SQRT2 Specifies the value of the square root of 2.

M_SQRT1_2 Specifies the value of 1 divided by the square root of 2.

M_1_PI Specifies the value of 1 divided by pi.

M_2_PI Specifies the value of 2 divided by pi.

M_2_SQRTPI Specifies the value of 2 divided by the square root of pi.

The following symbolic constants are defined:

HUGE_VAL Specifies a positive double expression that cannot necessarily be represented as
a type float value. Used as an error indicator when returned as a value for
mathematics library functions.

For Tandem-format floating-point data, the value of HUGE_VAL is
DBL_MAX. For IEEE floating-point data, the value of HUGE_VAL is positive
infinity of type double.

HUGE_VALF Specifies a positive float expression that cannot necessarily be represented as a
type float value. Used as an error indicator when returned as a value for
mathematics library functions.

For Tandem-format floating-point data, the value of HUGE_VALF is the same
as the value of FLT_MAX. For IEEE floating-point data, the value of
HUGE_VALF is positive infinity of type float.

HUGE_VALL For IEEE floating-point environments only, specifies a positive long double
expression. Used as an error indicator when returned as a value for mathematics
library functions.

INFINITY For IEEE floating-point environments only, specifies a constant expression of
type float representing positive or unsigned infinity, if available; else to a postive
constant of type float that overflows at translation time.

MAXFLOAT Specifies the value of the maximum noninfinite single-precision floating-point
number.

For Tandem-format floating-point data, the value of MAXFLOAT is the same as
the value of DBL_MAX. For IEEE floating-point data, the value of MAX-
FLOAT is also DBL_MAX, but the value of DBL_MAX differs between the
two formats. Refer to the float(4) reference page for more information about
DBL_MAX.

527186-023 Hewlett-Packard Company 11−19

math(4) OSS System Calls Reference Manual

NAN For IEEE floating-point environments only, specifies a constant expression of
type float representing a quiet not-a-number (NaN).

The following macros are defined for number classification. They represent mutually-exclusive
kinds of floating-point values and expand to integer constant expressions with distinct values:

FP_INFINITE
Infinity.

FP_NAN NaN.

FP_NORMAL Normalized.

FP_SUBNORMAL
Denormalized.

FP_ZERO Zero.

The following macros expand to integer constant expressions whose values are returned by
ilogb(x):

FP_ILOGB0 Expands to an integer constant expression whose value is returned by ilogb(x) if
x is zero. The value of FP_ILOGB0 is {INT_MIN}.

FP_ILOGBNAN
Expands to an integer constant expression whose value is returned by ilogb(x) if
x is NaN. The value of FP_ILOGBNAN is either {INT_MIN}.

The following macros are defined to identify the error handling method supported by the math.h
functions:

MATH_ERRNO
Indicates support for the ISO/IEC C99 errno specification.

MATH_ERREXCEPT
Indicates support for the ISO/IEC exception flag specification.

math_errhandling
Defined to be MATH_ERRNO in all situations.

RELATED INFORMATION
Files: float(4).

STANDARDS CONFORMANCE
This function conforms to the ISO/IEC 9899:1999 standard.

This function conforms to the IEEE Std 1003.1, 2004 Edition.

Support for Tandem floating-point values is an HP extension to the standards.

11−20 Hewlett-Packard Company 527186-023

Files named.conf(4)

NAME
named.conf - configuration file for BIND 9 domain name server named

DESCRIPTION
named.conf is the configuration file for the named server.

Within the file, directive statements are enclosed in braces and terminated with a semi-colon.
Clauses in the statements are also terminated with a semi-colon. The following comment styles
are supported:

C style /* */

C++ style // to end of line

UNIX style # to end of line

Directives
acl

acl string { address_match_element; ... };

key

key domain_name {
algorithm string;
secret string;
};

masters

masters string [port integer] {
(masters | ipv4_address [port integer] |
ipv6_address [port integer]) [key string]; ...
};

server

server (ipv4_address | ipv6_address) {
bogus boolean;
edns boolean;
provide-ixfr boolean;
request-ixfr boolean;
keys server_key;
transfers integer;
transfer-format (many-answers | one-answer);
transfer-source (ipv4_address | *)
[port (integer | *)];
transfer-source-v6 (ipv6_address | *)
[port (integer | *)];

support-ixfr boolean; // obsolete
};

trusted-keys

trusted-keys {
domain_name flags protocol algorithm key; ...
};

527186-023 Hewlett-Packard Company 11−21

named.conf(4) OSS System Calls Reference Manual

controls

controls {
inet (ipv4_address | ipv6_address | *)
[port (integer | *)]
allow { address_match_element; ... }
[keys { string; ... }];
unix unsupported; // not implemented
};

logging

logging {
channel string {
file log_file;
syslog optional_facility;
null;
stderr;
severity log_severity;
print-time boolean;
print-severity boolean;
print-category boolean;
};
category string { string; ... };
};

lwres

lwres {
listen-on [port integer] {
(ipv4_address | ipv6_address) [port integer]; ...
};
view string optional_class;
search { string; ... };
ndots integer;
};

options

options {
avoid-v4-udp-ports { port; ... };
avoid-v6-udp-ports { port; ... };
blackhole { address_match_element; ... };
coresize size;
datasize size;
directory quoted_string;
dump-file quoted_string;
files size;
heartbeat-interval integer;
host-statistics boolean; // not implemented
hostname (quoted_string | none);
interface-interval integer;
listen-on [port integer] { address_match_element; ... };
listen-on-v6 [port integer] { address_match_element; ... };
match-mapped-addresses boolean;
memstatistics-file quoted_string;

11−22 Hewlett-Packard Company 527186-023

Files named.conf(4)

pid-file (quoted_string | none);
port integer;
querylog boolean;
recursing-file quoted_string;
random-device quoted_string;
recursive-clients integer;
serial-query-rate integer;
server-id (quoted_string | none |;
stacksize size;
statistics-file quoted_string;
statistics-interval integer; // not yet implemented
tcp-clients integer;
tcp-listen-queue integer;
tkey-dhkey quoted_string integer;
tkey-gssapi-credential quoted_string;
tkey-domain quoted_string;
transfers-per-ns integer;
transfers-in integer;
transfers-out integer;
use-ixfr boolean;
version (quoted_string | none);
allow-recursion { address_match_element; ... };
sortlist { address_match_element; ... };
topology { address_match_element; ... }; // not implemented
auth-nxdomain boolean; // default changed
minimal-responses boolean;
recursion boolean;
rrset-order {
[class string] [type string]
[name quoted_string] string string; ...
};
provide-ixfr boolean;
request-ixfr boolean;
rfc2308-type1 boolean; // not yet implemented
additional-from-auth boolean;
additional-from-cache boolean;
query-source querysource4;
query-source-v6 querysource6;
cleaning-interval integer;
min-roots integer; // not implemented
lame-ttl integer;
max-ncache-ttl integer;
max-cache-ttl integer;
transfer-format (many-answers | one-answer);
max-cache-size size_no_default;
check-names (master | slave | response)
(fail | warn | ignore);
cache-file quoted_string;
suppress-initial-notify boolean; // not yet implemented
preferred-glue string;
dual-stack-servers [port integer] {
(quoted_string [port integer] |
ipv4_address [port integer] |

527186-023 Hewlett-Packard Company 11−23

named.conf(4) OSS System Calls Reference Manual

ipv6_address [port integer]); ...
}
edns-udp-size integer;
root-delegation-only [exclude { quoted_string; ... }];
disable-algorithms string { string; ... };
dnssec-enable boolean;
dnssec-lookaside string trust-anchor string;
dnssec-must-be-secure string boolean;

dialup dialuptype;
ixfr-from-differences ixfrdiff;

allow-query { address_match_element; ... };
allow-transfer { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };

notify notifytype;
notify-source (ipv4_address | *) [port (integer | *)];
notify-source-v6 (ipv6_address | *) [port (integer | *)];
also-notify [port integer] { (ipv4_address | ipv6_address)
[port integer]; ... };
allow-notify { address_match_element; ... };

forward (first | only);
forwarders [port integer] {
(ipv4_address | ipv6_address) [port integer]; ...
};

max-journal-size size_no_default;
max-transfer-time-in integer;
max-transfer-time-out integer;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-retry-time integer;
min-retry-time integer;
max-refresh-time integer;
min-refresh-time integer;
multi-master boolean;
sig-validity-interval integer;

transfer-source (ipv4_address | *)
[port (integer | *)];
transfer-source-v6 (ipv6_address | *)
[port (integer | *)];

alt-transfer-source (ipv4_address | *)
[port (integer | *)];
alt-transfer-source-v6 (ipv6_address | *)
[port (integer | *)];
use-alt-transfer-source boolean;

zone-statistics boolean;
key-directory quoted_string;

11−24 Hewlett-Packard Company 527186-023

Files named.conf(4)

allow-v6-synthesis { address_match_element; ... }; // obsolete
deallocate-on-exit boolean; // obsolete
fake-iquery boolean; // obsolete
fetch-glue boolean; // obsolete
has-old-clients boolean; // obsolete
maintain-ixfr-base boolean; // obsolete
max-ixfr-log-size size; // obsolete
multiple-cnames boolean; // obsolete
named-xfer quoted_string; // obsolete
serial-queries integer; // obsolete
treat-cr-as-space boolean; // obsolete
use-id-pool boolean; // obsolete
};

view

view string optional_class {
match-clients { address_match_element; ... };
match-destinations { address_match_element; ... };
match-recursive-only boolean;

key string {
algorithm string;
secret string;
};

zone string optional_class {
};

server (ipv4_address | ipv6_address) {
};

trusted-keys {
string integer integer integer quoted_string; ...
};

allow-recursion { address_match_element; ... };
sortlist { address_match_element; ... };
topology { address_match_element; ... }; // not implemented
auth-nxdomain boolean; // default changed
minimal-responses boolean;
recursion boolean;
rrset-order {
[class string] [type string]
[name quoted_string] string string; ...
};
provide-ixfr boolean;
request-ixfr boolean;
rfc2308-type1 boolean; // not yet implemented
additional-from-auth boolean;
additional-from-cache boolean;
query-source querysource4;
query-source-v6 querysource6;
cleaning-interval integer;

527186-023 Hewlett-Packard Company 11−25

named.conf(4) OSS System Calls Reference Manual

min-roots integer; // not implemented
lame-ttl integer;
max-ncache-ttl integer;
max-cache-ttl integer;
transfer-format (many-answers | one-answer);
max-cache-size size_no_default;
check-names (master | slave | response)
(fail | warn | ignore);
cache-file quoted_string;
suppress-initial-notify boolean; // not yet implemented
preferred-glue string;
dual-stack-servers [port integer] {
(quoted_string [port integer] |
ipv4_address [port integer] |
ipv6_address [port integer]); ...
};
edns-udp-size integer;
root-delegation-only [exclude { quoted_string; ... }];
disable-algorithms string { string; ... };
dnssec-enable boolean;
dnssec-lookaside string trust-anchor string;

dnssec-must-be-secure string boolean;
dialup dialuptype;
ixfr-from-differences ixfrdiff;

allow-query { address_match_element; ... };
allow-transfer { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };

notify notifytype;
notify-source (ipv4_address | *) [port (integer | *)];
notify-source-v6 (ipv6_address | *) [port (integer | *)];
also-notify [port integer] { (ipv4_address | ipv6_address)
[port integer]; ... };
allow-notify { address_match_element; ... };

forward (first | only);
forwarders [port integer] {
(ipv4_address | ipv6_address) [port integer]; ...
};

max-journal-size size_no_default;
max-transfer-time-in integer;
max-transfer-time-out integer;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-retry-time integer;
min-retry-time integer;
max-refresh-time integer;
min-refresh-time integer;
multi-master boolean;
sig-validity-interval integer;

11−26 Hewlett-Packard Company 527186-023

Files named.conf(4)

transfer-source (ipv4_address | *)
[port (integer | *)];
transfer-source-v6 (ipv6_address | *)
[port (integer | *)];

alt-transfer-source (ipv4_address | *)
[port (integer | *)];
alt-transfer-source-v6 (ipv6_address | *)
[port (integer | *)];
use-alt-transfer-source boolean;

zone-statistics boolean;
key-directory quoted_string;

allow-v6-synthesis { address_match_element; ... }; // obsolete
fetch-glue boolean; // obsolete
maintain-ixfr-base boolean; // obsolete
max-ixfr-log-size size; // obsolete
};

zone

zone string optional_class {
type (master | slave | stub | hint |
forward | delegation-only);
file quoted_string;

masters [port integer] {
(masters |
ipv4_address [port integer] |
ipv6_address [port integer]) [key string]; ...
};

database string;
delegation-only boolean;
check-names (fail | warn | ignore);
dialup dialuptype;
ixfr-from-differences boolean;

allow-query { address_match_element; ... };
allow-transfer { address_match_element; ... };
allow-update { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };
update-policy {
(grant | deny) string
(name | subdomain | wildcard | self) string
rrtypelist; ...
};

notify notifytype;
notify-source (ipv4_address | *) [port (integer | *)];
notify-source-v6 (ipv6_address | *) [port (integer | *)];
also-notify [port integer] { (ipv4_address | ipv6_address)
[port integer]; ... };

527186-023 Hewlett-Packard Company 11−27

named.conf(4) OSS System Calls Reference Manual

allow-notify { address_match_element; ... };

forward (first | only);
forwarders [port integer] {
(ipv4_address | ipv6_address) [port integer]; ...
};

max-journal-size size_no_default;
max-transfer-time-in integer;
max-transfer-time-out integer;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-retry-time integer;
min-retry-time integer;
max-refresh-time integer;
min-refresh-time integer;
multi-master boolean;
sig-validity-interval integer;

transfer-source (ipv4_address | *)
[port (integer | *)];
transfer-source-v6 (ipv6_address | *)
[port (integer | *)];

alt-transfer-source (ipv4_address | *)
[port (integer | *)];
alt-transfer-source-v6 (ipv6_address | *)
[port (integer | *)];
use-alt-transfer-source boolean;

zone-statistics boolean;
key-directory quoted_string;

ixfr-base quoted_string; // obsolete
ixfr-tmp-file quoted_string; // obsolete
maintain-ixfr-base boolean; // obsolete
max-ixfr-log-size size; // obsolete
pubkey integer integer integer quoted_string; // obsolete
};

FILES
/etc/named.conf

Contains the default configuration file for the named server.

RELATED INFORMATION
Commands: dnssec_named(8), dnssec_rndc(8), named(8), rndc(8).

Documents: BIND 9 Adminstrators Reference Manual.

11−28 Hewlett-Packard Company 527186-023

Files null(7)

NAME
null - Is a data sink file

SYNOPSIS
/dev/null

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 (zero) bytes.

EXAMPLES
To create a zero-length file using the cat command, enter:

cat > foo < /dev/null

527186-023 Hewlett-Packard Company 11−29

saveabend(4) OSS System Calls Reference Manual

NAME
saveabend - Is a file containing a memory image

DESCRIPTION
See the core(4) reference page.

11−30 Hewlett-Packard Company 527186-023

Files signal(4)

NAME
signal - Contains definitions and variables used by signal functions

SYNOPSIS
#include <signal.h>

DESCRIPTION
The signal.h header file contains:

• Declarations of symbolic constants used to refer to the signals that occur in the OSS
environment.

• Declarations for the sigset_t type and the sigaction structure. Note that G-series TNS or
accelerated processes and all native processes use different declarations for sigset_t; all
processes using the same sigset_t declaration must be of the same process type.

• Declarations of the stack_t structure used to define and manipulate the alternate signal
stack. This capability is available only on H-series and J-series RVUs.

• Declarations of additional symbolic constants used in signal handling:

MINSIGSTKSZ
Indicates the minimum allowable size of the alternate signal stack.

SA_NOCLDSTOP
Indicates that the SIGCHLD signal should not be generated when a
child process stops.

SA_ONSTACK
Note that this flag is not supported on NSK systems. If an alternate sig-
nal stack is registered and enabled, and if the thread that defined the sig-
nal handler is not blocked when the signal is delivered, the signal
handler only runs on the alternate signal stack. If the thread is blocked,
the signal handler runs on the user stack. However, SA_ONSTACK is
provided to allow ported POSIX applications to run without change.
SA_ONSTACK can be used only if the SA_COMPATABILITY value
is set. However, you should NOT use the SA_ONSTACK flag and the
SA_COMPATABILITY feature test macro in a threaded application
that uses the Standard POSIX Threads library. Use of these two options
with the Standard POSIX Threads library can result in undefined
behavior in the SPT environment.

SIG_ABORT Requests that the process terminate abnormally when a specific signal is
received.

SIG_DEBUG Requests that the process enter the debugger when a specific signal is
received.

SIG_DFL Requests default signal handling.

SIG_ERR Indicates an error condition by reserving a return code for a certain class
of functions. Such functions return a pointer to a function that takes an
integer as a parameter and returns void.

527186-023 Hewlett-Packard Company 11−31

signal(4) OSS System Calls Reference Manual

SIG_IGN Requests that signals be ignored.

SIGSTKSZ Indicates the default size of the alternate signal stack.

SS_DISABLE Indicates that the alternate signal stack is disabled. No signal handling
may be launched at the alternate signal stack.

SS_ONSTACK
Indicates that the alternate signal stack is active. A signal handler is
currently running on the alternate signal stack.

• Declarations of additional symbolic constants used by the sigprocmask() function for
handling process signal masks:

SIG_BLOCK Requests a union of the current mask and a supplied value.

SIG_SETMASK
Creates a mask from the supplied value.

SIG_UNBLOCK
Requests a mask of the current mask less the supplied value.

Note: The MINSIGSTKSZ, SA_ONSTACK, SIGSTKSZ, SS_DISABLE, and SS_ONSTACK
symbolic constants are only supported on systems running J06.10 or later RVUs or H06.21 or
later RVUs.

Signal Generation and Delivery
A signal is said to be generated for (or sent to) a process when the event that causes the signal
first occurs. Examples of such events include detection of hardware faults, timer expiration, and
any operating system trap condition normally detectable by a TNS or accelerated Guardian pro-
cess, in addition to terminal activity, or the invocation of the kill() function.

Note: Signals cannot be sent to a TNS or accelerated Guardian process.

Each process has an action to be taken in response to each signal defined by the system. A signal
is said to be delivered to a process when the appropriate action for the process and signal is
taken.

A process can elect to ignore the delivery of some signals, while allowing the system to perform
default actions upon the delivery of other signals. The system also allows processes to install
process-specific signal-catching functions.

During the time between the generation of a signal and its delivery, the signal is said to be pend-
ing. Usually, this interval cannot be detected by an application.

However, a signal can be blocked from delivery to a process. If the action associated with a
blocked signal is anything other than to ignore the signal, and if that signal is generated for the
process, the signal remains pending until either it is unblocked or the action associated with it is
set to ignore the signal. If the action associated with the blocked signal is to ignore the signal,
and if that signal is generated for the process, it is unspecified whether the signal is discarded
immediately upon generation or remains pending; applications should therefore not depend on
whether the signal is discarded or remains pending.

Each process has a signal mask that defines the set of signals currently blocked from delivery to
it. The signal mask for a process is initialized to that of its parent. The sigaction(), sigproc-
mask(), and sigsuspend() functions control the manipulation of the signal mask.

The determination of which action is taken in response to a signal is made at the time the signal
is delivered, allowing for any changes since the time of generation. This determination is
independent of the means by which the signal was originally generated.

11−32 Hewlett-Packard Company 527186-023

Files signal(4)

If a subsequent occurrence of a pending signal is generated, it is discarded and only one instance
of the same signal remains pending; however, because this action is likely to change in future
releases, users should not rely on this behavior. The order in which pending signals are delivered
to a process is unspecified and should not be relied upon.

When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU) is generated for a pro-
cess, any pending SIGCONT signal for that process is discarded. Conversely, when SIGCONT
is generated for a process, all pending stop signals for that process are discarded even if these
signals are being caught.

When SIGCONT is generated for a process that is stopped, the process continues, even if the
SIGCONT signal is blocked or ignored. If SIGCONT is blocked and not ignored, it remains
pending until either it is unblocked or a stop signal is generated for the process.

When SIGUNCP is generated, the action taken allows an H-series process to control what hap-
pens when the process does not offer frequent enough opportunities to synchronize blade ele-
ments. Either the process can call a user signal-handler function, or the following actions are
defined:

SIG_ABORT The process terminates abnormally.

SIG_DEBUG The process enters the debugger so that an appropriate location for a voluntary
rendezvous opportunity can be identified.

SIG_DFL The signal is ignored by the process, but the system suspends the process until an
EMS event is generated for logging by the $ZLOG distributor.

SIG_IGN The signal is ignored by the process and no EMS event is generated.

When a signal handler is invoked (which normally only happens to allow debugging), the process
should call sigaction() to set SIG_IGN or SIG_DFL or simply return. It is undefined what hap-
pens if the signal is rearmed and siglongjmp() is called before the synchronization completes:
the process might suspend or it might abend.

Signals reserve the last 1000 words of the user stack. When a SIGSTK signal is delivered, the
system cuts back the stack to the start of the last 1000 words. If user data is present in the last
1000 words of the stack, that data is lost.

The Signals
The following table lists each signal name and corresponding signal number and default action.
On receipt of one of these signals, the application can elect to:

• Accept the default action; see Default Action, later in this reference page.

• Ignore the signal; see Ignoring a Signal, later.

• Catch the signal by invoking a signal-specific function; see Catching a Signal, later.

Note that the SIGKILL, SIGSTOP, and SIGABEND signals can neither be caught nor ignored.

527186-023 Hewlett-Packard Company 11−33

signal(4) OSS System Calls Reference Manual

Table 11−8. Signals

Default Action DescriptionName Number___

Terminate with saveabend Abnormal terminationSIGABEND 31
Terminate with saveabend Abort processSIGABRT 6

SIGALRM 14 Terminate process Alarm clock
Discard signal Child has stopped or terminatedSIGCHLD 18
Continue execution Continue executionSIGCONT 28
Terminate with saveabend Arithmetic overflowSIGFPE 8
Terminate process HangupSIGHUP 1
Terminate with saveabend Invalid instructionSIGILL 4
Terminate process InterruptSIGINT 2
Discard signal Input/output possible or com-

pleted
SIGIO 7

Terminate process KillSIGKILL 9
Terminate with saveabend Operating system limits trapSIGLIMIT 27
Terminate with saveabend Uncorrectable memory errorSIGMEMERR 22
Terminate with saveabend Memory manager read errorSIGMEMMGR 24
Terminate with saveabend No memory availableSIGNOMEM 23
Terminate process Write on a pipe, no one to read itSIGPIPE 13
Terminate with saveabend QuitSIGQUIT 3
Discard signal Message queued on $RECEIVE

(currently not used)
SIGRECV 19

Terminate with saveabend Invalid address referenceSIGSEGV 11
Terminate with saveabend Stack overflowSIGSTK 25
Stop process StopSIGSTOP 20
Terminate process Software termination signalSIGTERM 15
Terminate process Process loop timer timeoutSIGTIMEOUT 26
Stop process Interactive stopSIGTSTP 21
Stop process Background read attempted from

controlling terminal
SIGTTIN 29

Stop process Background write attempted to
controlling terminal

SIGTTOU 30

Discard signal Uncooperative process (H-series
servers only)

SIGUNCP 10

Discard signal Urgent condition on I/O channelSIGURG 5
Terminate process User-defined signal 1SIGUSR1 16
Terminate process User-defined signal 2SIGUSR2 17
Discard signal Terminal device window size

changed
SIGWINCH 12

For details of the process loop timer, see the SETLOOPTIMER procedure in the Guardian Pro-
cedure Calls Reference Manual.

11−34 Hewlett-Packard Company 527186-023

Files signal(4)

Note: The process terminates and, where possible, a saveabend (core) file is created on genera-
tion of any signal if both of the following conditions are true:

• The signal was generated as a result of something other than the kill() or raise()
function.

• Either the signal is blocked or ignored, or the process is in operating system code
when the signal is generated.

The _POSIX_JOB_CONTROL symbolic constant is always defined. Hence, the job control sig-
nals are all supported: SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, and
SIGTTOU.

Default Action
The default action for a signal occurs when the signal is not blocked and one of the following is
true:

• No signal-catching function is installed for that signal.

• A signal-catching function is installed for the signal, but the SIG_DFL action is
specified.

The table under The Signals, earlier, indicates a default action for each signal. The default
actions have the following meanings:

Terminate process
Terminate the receiving process with all the consequences described for the
_exit() function.

Terminate with saveabend
Terminate the receiving process with all the consequences described for the
_exit() function. Create a memory image file (saveabend file) in the current
directory of the receiving process if the following conditions are met:

• The effective user ID and the real user ID of the receiving process are
equal.

• A regular file named ZZSAnnnn (the saveabend file) can be created in
the current directory. The file will have the following properties:

— The access permission code 0666 (0x1B6), modified by the
filemode creation mask (see the umask(2) reference page)

— A file owner ID that is the same as the effective user ID of the
receiving process

— A file group ID that is the same as the effective group ID of the
receiving process

Note that the location of the saveabend file is different in the OSS
environment than in the Guardian environment. In the Guardian
environment, the file is created on the same subvolume as the program
file. In the OSS environment, the file is created in the current working
directory.

Saveabend files are known on most UNIX systems as core files.

527186-023 Hewlett-Packard Company 11−35

signal(4) OSS System Calls Reference Manual

Continue execution
Restart the receiving process if it is stopped, or ignore the signal if the process is
already executing.

Stop process Stop the execution of the receiving process. When a process stops, a SIGCHLD
signal is sent to its parent process, unless the parent process has set the
SA_NOCLDSTOP bit.

While a process is stopped, any additional signals that are sent to the process are
not delivered until the process is continued. Exceptions to this are SIGKILL and
SIGABEND signals, which always terminate the receiving process. Any other
signal that causes process termination causes the same result as SIGKILL or
SIGABEND except when they are blocked. The other exception is the
SIGCONT signal, which causes the receiving process to restart or continue run-
ning, even if the signal is blocked or ignored.

Discard signal Ignore the signal. Delivery of the signal has no effect on the receiving process.

If a signal action is set to the SIG_DFL value while the signal is pending, the
signal remains pending.

Ignoring a Signal
A signal is ignored when a signal handler with the action set to SIG_IGN is installed for that
signal.

Delivery of the signal has no effect on the receiving process.

Note that the SIGKILL, SIGSTOP, and SIGABEND signals cannot be ignored.

Catching a Signal
Upon delivery of a signal that is to be caught, the receiving process is to run a signal-catching
function specified in either the sigaction() function call or the signal() function call. The signal-
catching function can be declared as follows:

void handler(
int signal);

The signal parameter is the signal number.

The process may choose to set up an alternate signal stack separate from the main process or
thread stack to launch the signal handler. This option allows the catching of the SIGSTK signal,
and any signals whose handler may overflow the process or thread stack. The signals to be
caught on the alternate signal stack may be specified on a signal-by-signal basis. See sigac-
tion(2) and sigaltstack(2) reference pages.

A new signal mask is calculated and installed for the duration of the signal-catching function or
until a sigprocmask() or sigsuspend() function call is made. This mask is formed by taking the
union of the process signal mask, the mask associated with the action for the signal being
delivered, and a mask corresponding to the signal being delivered.

The mask associated with the signal-catching function is not allowed to block those signals that
cannot be ignored. The system enforces this rule without causing an error to be indicated. If and
when the signal-catching function returns, the original signal mask is restored and the receiving
process resumes execution at the point it was interrupted.

11−36 Hewlett-Packard Company 527186-023

Files signal(4)

The signal-catching function can cause the process to resume in a different context by calling the
siglongjmp() function. When the siglongjmp() function is called, the process reverts to the
state saved by a corresponding call to the sigsetjmp() function.

Once the sigaction() function installs an action for a specific signal, it remains installed until
another action is explicitly requested by another call to the sigaction() function or until a func-
tion from the exec or tdm_exec sets of functions is called. Signal actions installed by the sig-
nal() function, however, are reset to the default action each time the signal is delivered.

If a signal action is set to a pointer to a function while the signal is pending, the signal remains
pending.

When signal-catching functions are invoked asynchronously with process execution, the
behavior of some of the functions is unspecified if they are called from a signal-catching func-
tion. The following is a list of functions that are reentrant. Therefore, applications can invoke
these functions, without restriction, from signal-catching functions:

_exit() getegid() rmdir() tdm_spawnp()
access() geteuid() setgid() tcdrain()
alarm() getgid() setsid() tcflow()
cfgetispeed() getgroups() setuid() tcflush()
cfgetospeed() getpgrp() sigaction() tcgetattr()
cfsetispeed() getpid() sigaddset() tcgetprgp()
cfsetospeed() getppid() sigdelset() tcsendbreak()
chdir() getuid() sigemptyset() tcsetattr()
chmod() kill() sigfillset() tcsetpgrp()
chown() link() sigismember() time()
close() lseek() signal() times()
creat() mkdir() sigpending() umask()
dup() mkfifo() sigprocmask() uname()
dup2() open() sigsuspend() unlink()
execle() pathconf() sleep() utime()
execve() pause() stat() wait()
fcntl() pipe() tdm_execvep() waitpid()
fork() raise() tdm_execvp() write()
fpathconf() read() tdm_fork()
fstat() rename() tdm_spawn()

All other functions are considered to be unsafe with respect to signals and should not be called
from a signal-catching function, because their behavior is undefined.

On successful return from a signal-catching function for a SIGFPE, SIGILL, SIGLIMIT,
SIGMEMERR, SIGMEMMGR, SIGNOMEM, SIGSEGV, or SIGSTK signal that was not
generated by a kill() or raise() function call, a process receives a SIGABEND signal and ter-
minates with a Guardian condition code of -11. A process deletion (-101) Guardian system mes-
sage is sent to the mom, ancestor, or job ancestor of the terminated process and indicates abnor-
mal termination.

No SIGCHLD signal is generated if a process establishes a signal-catching function for the
SIGCHLD signal while the process has a terminated child process for which it has not waited.

RELATED INFORMATION
Functions: kill(2), longjmp(3), raise(3), setjmp(3), sigaction(2), sigaddset(3), sigaltstack(2),
sigdelset(3), sigemptyset(3), sigfillset(3), sigismember(3), siglongjmp(3), signal(3), sigpend-
ing(2), sigprocmask(2), sigsetjmp(3), sigsuspend(2), spt_sigwait(2).

527186-023 Hewlett-Packard Company 11−37

signal(4) OSS System Calls Reference Manual

STANDARDS CONFORMANCE
The HP implementation does not provide the following signals defined in the IEEE Std 1003.1,
2004 Edition specification:

• SIGBUS, SIGPOLL, SIGPROF, SIGSYS, SIGTRAP, SIGVTALRM, SIGXCPU, and
SIGXFSZ.

The POSIX standards leave some features to the implementing vendor to define. The following
features are affected in the HP implementation:

• HP-specific signals are supported; see the extensions listed later.

• The _POSIX_JOB_CONTROL symbolic constant is always defined. Hence, the job
control signals are all supported: SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP,
SIGTTIN, and SIGTTOU.

• On generation of a blocked signal, it is unspecified whether the signal is discarded or
remains pending when the associated action is to ignore the signal.

• Only one instance of the same signal can remain pending for a process. Subsequent
occurrences of the same signal are discarded. However, this action is likely to change in
a future release, so users should not depend on it.

• The order in which pending signals are delivered to a process is unspecified and should
not be relied upon.

• Signals are generated for all operating system trap conditions normally detectable in the
Guardian environment.

• After ignoring a SIGFPE, SIGILL, SIGLIMIT, SIGMEMERR, SIGMEMMGR,
SIGNOMEM, SIGSEGV, or SIGSTK signal that was not generated by a kill() or
raise() function, a process terminates. Similarly, after returning from a signal-catching
function for one occurrence of such a signal, a process receives a SIGABEND signal and
terminates with a Guardian condition code of -11. A process deletion (-101) Guardian
system message is sent to the mom, ancestor, or job ancestor of the terminated process
and indicates abnormal termination.

• No SIGCHLD signal is generated if a process establishes a signal-catching function for
the SIGCHLD signal while the process has a terminated child process for which it has
not waited.

The following are HP extensions to the IEEE Std 1003.1, 2004 Edition specification:

• The following signals are HP extensions: SIGABEND, SIGIO, SIGLIMIT, SIGME-
MERR, SIGMEMMGR, SIGNOMEM, SIGRECV, SIGSTK, SIGTIMEOUT,
SIGWINCH, and SIGUNCP.

11−38 Hewlett-Packard Company 527186-023

Files spthread.h(4)

NAME
spthread.h - Thread-aware header file

SYNOPSIS
#include <spthread.h>

DESCRIPTION
The <spthread.h> header file contains the standard POSIX threads library API definitions. For
reference, this reference page also documents the nonstandard POSIX extensions, thread-aware
functions, thread-aware toolkit APIs, and thread-aware $RECEIVE APIs that are implemented in
T1248 POSIX threads.

Standard POSIX Threads Library APIs
The following are the standard POSIX threads library API definitions included in T1248 POSIX
threads:

int pthread_atfork(
pthread_void_fn_ptr_t, pthread_void_fn_ptr_t,
pthread_void_fn_ptr_t);

int pthread_attr_destroy(pthread_attr_t *);

int pthread_attr_getdetachstate(
const pthread_attr_t *, int *);

int pthread_attr_getinheritsched(
const pthread_attr_t *, int *);

int pthread_attr_getschedparam(
const pthread_attr_t *, struct sched_param *);

int pthread_attr_getschedpolicy(
const pthread_attr_t *, int *);

int pthread_attr_getstackaddr(
const pthread_attr_t *, void **);

int pthread_attr_getstacksize(
const pthread_attr_t *, size_t *);

int pthread_attr_init(pthread_attr_t *);

int pthread_attr_setdetachstate(
pthread_attr_t *, int);

int pthread_attr_setinheritsched(
pthread_attr_t *, int);

int pthread_attr_setschedparam(
pthread_attr_t *,const struct sched_param *);

int pthread_attr_setschedpolicy(
pthread_attr_t *, int);

int pthread_attr_setstacksize(
pthread_attr_t *, size_t);

int pthread_cancel(pthread_t);

void pthread_cleanup_pop(
int);

527186-023 Hewlett-Packard Company 11−39

spthread.h(4) OSS System Calls Reference Manual

void pthread_cleanup_push(
void (*) (void *),
void *);

int pthread_cond_broadcast(pthread_cond_t *);

int pthread_cond_destroy(pthread_cond_t *);

int pthread_cond_init(
pthread_cond_t *, const pthread_condattr_t *);

int pthread_cond_signal(pthread_cond_t *);

int pthread_cond_timedwait(
pthread_cond_t *, pthread_mutex_t *,
const struct timespec *);

int pthread_cond_wait(
pthread_cond_t *, pthread_mutex_t *);

int pthread_condattr_destroy(pthread_condattr_t *);

int pthread_condattr_init(pthread_condattr_t *);

int pthread_create(
pthread_t *, const pthread_attr_t *,
pthread_startroutine_t,
pthread_addr_t);

int pthread_detach(pthread_t);

void pthread_equal(thread1, thread2);

void pthread_exit(pthread_addr_t);

int pthread_getschedparam(
pthread_t, int *, struct sched_param *);

void * pthread_getspecific(pthread_key_t);

int pthread_join(pthread_t, pthread_addr_t *);

int pthread_key_create(
pthread_key_t *, pthread_destructor_t);

int pthread_key_delete(pthread_key_t);

int pthread_kill(pthread_t, int);

int pthread_mutexattr_destroy(pthread_mutexattr_t *);

int pthread_mutexattr_init(pthread_mutexattr_t *);

int pthread_mutex_destroy(pthread_mutex_t *);

int pthread_mutex_init(
pthread_mutex_t *, const pthread_mutexattr_t *);

int pthread_mutex_lock(pthread_mutex_t *);

int pthread_mutex_trylock(pthread_mutex_t *);

int pthread_mutex_unlock(pthread_mutex_t *);

11−40 Hewlett-Packard Company 527186-023

Files spthread.h(4)

int pthread_once(
pthread_once_t *, pthread_initroutine_t);

pthread_t pthread_self(void);

int pthread_setcancelstate(int, int *);

int pthread_setcanceltype(int, int *);

int pthread_setschedparam(
pthread_t, int, const struct sched_param *);

int pthread_setspecific(
pthread_key_t, pthread_addr_t);

int pthread_sigmask(
int, const sigset_t *, sigset_t *);

void pthread_testcancel(void);

Nonstandard POSIX API Definitions
The following are the nonstandard POSIX API definitions:

int pthread_attr_getguardsize_np(
pthread_attr_t *, size_t *);

int pthread_attr_setguardsize_np(
pthread_attr_t *, size_t);

int pthread_cond_signal_int_np(pthread_cond_t *);

int pthread_delay_np(struct timespec *interval);

int pthread_getattr_np(
const pthread_t, pthread_attr_t **);

int pthread_getconcurrency(void);

int pthread_getcontext_np(
pthread_t target, ucontext_t *ucp);

int pthread_get_expiration_np(
struct timespec *, struct timespec *);

int pthread_get_threadstateinfo_np(
pthread_t *tid,
char *state);

int pthread_kill_np(
pthread_t thread,
int sig);

int pthread_lock_global_np(void);

int pthread_mutexattr_getkind_np(pthread_mutexattr_t);

int pthread_mutexattr_setkind_np(
pthread_mutexattr_t *, int);

int pthread_setconcurrency(int new_level);

int pthread_signal_to_cancel_np(
sigset_t *, pthread_t *);

527186-023 Hewlett-Packard Company 11−41

spthread.h(4) OSS System Calls Reference Manual

int pthread_unlock_global_np(void);

pid_t spt_fork(void);

int spt_getTMFConcurrentTransactions(void);

int spt_setTMFConcurrentTransactions(short);

short SPT_ABORTTRANSACTION(void);

short SPT_BEGINTRANSACTION(long * transaction_tag);

short SPT_BEGINTRANSACTION_EXT_ (
int * transaction_tag,
int timeout,
long long * type_flags);

short SPT_ENDTRANSACTION(void);

short SPT_RESUMETRANSACTION(long transaction_tag);

short SPT_SERVERCLASS_DIALOG_BEGIN_ (
long *dialogId,
char * pathmon,
short pathmonbytes,
char * serverclass,
short serverclassbytes,
char * messagebuffer,
short requestbytes,
short maximumreplybytes,
short * actualreplybytes,
long timeout,
short flags,
short * scsoperationnumber,
long tag);

short SPT_SERVERCLASS_DIALOG_BEGINL_ (
long *dialogid,
char * pathmon,
short pathmonbytes,
char * serverclass,
short serverclassbytes,
char * writebufferL,
char * readbufferL,
long requestbytes,
long maximumreplybytes,
long * actualreplybytes,
long timeout,
short flags,
short * scsoperationnumber,
long long tag);

short SPT_SERVERCLASS_DIALOG_SEND_ (
long dialogId,
char * messagebuffer,
short requestbytes,
short maximumreplybytes,
short * actualreplybytes,
long timeout,
short flags,

11−42 Hewlett-Packard Company 527186-023

Files spthread.h(4)

short * scsoperationnumber,
long tag);

short SPT_SERVERCLASS_DIALOG_SENDL_ (
long dialogid,
char * writebufferL,
char * readbufferL,
long requestbytes,
long maximumreplybytes,
long * actualreplybytes,
long timeout,
short flags,
short * scsoperationnumber,
long long tag);

short SPT_SERVERCLASS_DIALOG_END_ (long dialogId);

short SPT_SERVERCLASS_DIALOG_ABORT_ (long dialogId);

short SPT_SERVERCLASS_SEND_INFO_ (
short * serverclasserror,
short * filesystemerror);

short SPT_SERVERCLASS_SEND_ (
char * pathmon, short pathmonbytes,
char * serverclass, short serverclassbytes,
char * messagebuffer,
short requestbytes, short maximumreplybytes,
short * actualreplybytes,
long timeout, short flags,
short * scsoperationnumber, long tag);

short SPT_TMF_GetTxHandle(
SPT_TMF_TxHandle_t *tx_handle);

short SPT_TMF_Init(void);

short SPT_TMF_RESUME(long long *txid);

short SPT_TMF_SetAndValidateTxHandle(
SPT_TMF_TxHandle_t *tx_handle);

short SPT_TMF_SetTxHandle(
SPT_TMF_TxHandle_t *tx_handle);

short SPT_TMF_SUSPEND(long long *txid);

spt_error_t spt_regPathsendFile(const short);

spt_error_t spt_regPathsendTagHandler(
const long,
spt_FileIOHandler_p,
void *);

spt_error_t spt_unregPathsendTagHandler(
const long);

int spt_sigaction(
int, const struct sigaction *,

struct sigaction *);

527186-023 Hewlett-Packard Company 11−43

spthread.h(4) OSS System Calls Reference Manual

unsigned int spt_sleep(
unsigned int);

int spt_usleep(unsigned int);

int spt_pause();

int spt_sigpending(sigset_t *);

int spt_sigsuspend(const sigset_t *);

int spt_sigwait(sigset_t *, int *);

Thread-Aware Function Definitions
If invoking a thread-aware function using the corresponding native UNIX function, first define
SPT_THREAD_AWARE. For example, after defining SPT_THREAD_AWARE, the function
printf will resolve to the nonblocking function spt_printf.

The following are the nonstandard POSIX, HP-implemented thread-aware function definitions:

int spt_accept(
int socket, struct sockaddr *address,
size_t *address_len);

int spt_close(int filedes);

int spt_connect(
int socket, const struct sockaddr *address,
size_t address_len);

int spt_fclose(FILE *stream);

int spt_fflush(FILE *stream);

int spt_fgetc(FILE *stream);

char *spt_fgets(char *string, int n, FILE *stream);

int spt_fgetwc(FILE *stream);

int spt_fprintf(FILE *stream, const char *format, ...);

int spt_fputc(int c, FILE *stream);

int spt_fputs(const char *string, FILE *stream);

wint_t spt_fputwc(wint_t c, FILE *stream);

ssize_t spt_fread(
void *pointer, size_t size,
size_t num_items, FILE *stream);

ssize_t spt_fwrite(
const void *pointer, size_t size,
size_t num_items, FILE *stream);

int spt_getc(FILE *stream);

int spt_getchar(void);

int spt_gets(FILE *stream);

int spt_getw(FILE *stream);

11−44 Hewlett-Packard Company 527186-023

Files spthread.h(4)

wint_t spt_getwc(FILE *stream);

wint_t spt_getwchar(void);

int spt_printf(const char *format, ...);

int spt_putc(int c, FILE *stream);

int spt_putchar(int c);

int spt_puts(const char *string);

int spt_putw(int c, FILE *stream);

wint_t spt_putwc(wint_t c, FILE *stream);

wint_t spt_putwchar(wint_t c);

ssize_tvspt_readv(
int filedes, struct iovec *iov, int iov_count);

ssize_t spt_recv(
int socket, void *buffer,
size_t length, int flags);

ssize_t spt_recvfrom(
int socket, void *buffer,
size_t length,int flags,

struct sockaddr *address,
size_t *address_len);

ssize_t spt_recvmsg(
int socket, struct msghdr *message, int flags);

int spt_select(
int nfds, fd_set *readfds,
fd_set *writefds, fd_set *errorfds,
struct timeval *timeout);

ssize_t spt_send(
int socket, const void *buffer,
size_t length, int flags);

ssize_t spt_sendmsg(
int socket, const struct msghdr *message,
int flags);

ssize_t spt_sendto(
int socket, const void *buffer,
size_t length, Lint flags,
const struct sockaddr *dest_addr,
size_t dest_len);

int spt_vfprintf(
FILE *stream, const char *format,
va_list printarg);

int spt_vprintf(const char *format, va_list printarg);

pid_t spt_waitpid(
pid_t pid, int *stat_loc, int options);

527186-023 Hewlett-Packard Company 11−45

spthread.h(4) OSS System Calls Reference Manual

ssize_t spt_write(
int filedes, void *buffer, size_t nbytes);

ssize_t spt_writev(
int filedes, struct iovec *iov, int iov_count);

Thread-Aware Toolkit API Extensions
The following are the thread-aware toolkit API definitions:

int spt_fd_read_ready(
const int fd, struct timeval *timeout);

int spt_fd_write_ready(
const int fd, struct timeval *timeout);

long spt_generateTag(void);

spt_error_t spt_interrupt(
const short filenum,
const spt_error_t errorSPT);

spt_error_t spt_interruptTag(
const short filenum, const long tag,
const, spt_error_t errorSPT);

spt_error_t spt_regFile(const short filenum);

spt_error_t spt_regFileIOHandler(
const short filenum,
const spt_FileIOHandler_p functionPtr);

spt_error_t spt_regOSSFileIOHandler(const int filedes,
const spt_OSSFileIOHandler_p functionPtr);

spt_error_t spt_regTimerHandler(
const spt_TimerHandler_p functionPtr);

spt_error_t spt_setOSSFileIOHandler(
const int filedes, const int read,
const int write,
const int error);

spt_error_t spt_unregFile(const short filenum);

spt_error_t spt_unregOSSFileIOHandler(
const int filedes);

Thread-Aware $RECEIVE API Definitions
The following are the thread-aware $RECEIVE API definitions:

long spt_INITRECEIVE(
const short filenum,
const short receive_depth);

long spt_RECEIVEREAD(const short filenum,
char *buffer,
const short read_count, long *count_read,
const long timelimit, short *receive_info,
short *dialog_info);

11−46 Hewlett-Packard Company 527186-023

Files spthread.h(4)

long spt_REPLYX(
const char *buffer, const short write_count,
short *count_written, const short msg_tag,
const short error_return);

527186-023 Hewlett-Packard Company 11−47

tar(4) OSS System Calls Reference Manual

NAME
tar - Describes the extended tar archive file format

SYNOPSIS
#include <tar.h>

DESCRIPTION
tar archives are created by the tar command. These archives are standardized and suitable for
porting between different systems.

An extended tar archive or file consists of a series of blocks. Each block is a fixed size of 512
bytes.

Each file within the archive is represented by a header block and zero or more data blocks that
contain the contents of the file. The header block describes the file. There are two blocks filled
with binary zeros at the end of the archive as the end-of-archive indicator.

The data blocks are grouped for physical I/O. Each group of blocks is written with a single
write() operation. On magnetic tape, the result of this write is a single tape record.

The number of blocks in a group is set by the -b flag of the tar command; the default value is 20
blocks. The last group is always written at the full size, so blocks following the two zero blocks
contain undefined data.

The header block is structured as shown in the following table. All lengths and offsets are in
decimal.

Table 11−9. tar Archive File Header Block

Field Name Byte Offset Length________________________________

name 0
mode 100 8
uid 108 8
gid 116 8
size 124 12
mtime 136 12
chksum 148 8
typeflag 156 1
linkname 157 100
magic 257 6
version 263 2
uname 265 32
gname 297 32
devmajor 329 8
devminor 337 8
prefix 345 155

11−48 Hewlett-Packard Company 527186-023

Files tar(4)

Symbolic constants used in the header block are defined in the header file /usr/include/tar.h.
The definitions are as follows:

#define TMAGIC "ustar" /* ustar and a null */
#define TMAGLEN 6
#define TVERSION "00" /* 00 and no null */
#define TVERSLEN 2

/* Values used in typeflag field */
#define REGTYPE ’0’ /* regular file */
#define AREGTYPE ’ ’ /* regular file */
#define LNKTYPE ’1’ /* line */
#define SYMTYPE ’2’ /* reserved */
#define CHRTYPE ’3’ /* character special */
#define BLKTYPE ’4’ /* block special */
#define DIRTYPE ’5’ /* directory */
#define FIFOTYPE ’6’ /* FIFO special */
#define CONTTYPE ’7’ /* reserved */

/* Bits used in the mode field - values in octal */
#define TSUID 04000 /* set UID on execution */
#define TSGID 02000 /* set GID on execution */
#define TSVTX 01000 /* reserved */
#define TUREAD 00400 /* read by owner */
#define TUWRITE 00200 /* write by owner */
#define TUEXEC 00100 /* execute/search by owner */
#define TGREAD 00040 /* read by group */
#define TGWRITE 00020 /* write by group */
#define TGEXEC 00010 /* execute/search by group */
#define TOREAD 00004 /* read by other */
#define TOWRITE 00002 /* write by other */
#define TOEXEC 00001 /* execute/search by other */

The fields in the header block must be contiguous; that is, no padding is used. Each character in
the archive file is stored contiguously.

The fields magic, uname, and gname are null-terminated character strings.

The fields name, linkname, and prefix are null-terminated character strings except when all the
characters in the field are nonnull characters, including the last character.

The version field is two bytes containing the characters "00" (ASCII zero-zero).

The typeflag field contains a single character.

All other fields are leading zero-filled octal numbers in ASCII. Each numeric field is terminated
by one or more space or null characters.

The name and prefix fields produce the pathname of the file. The hierarchical relationship of the
file is retained by specifying the pathname as a path prefix, a slash character, and the filename as
the suffix. If prefix contains nonnull characters, then the value of prefix, a slash character, and
the value of name are concatenated without modification or addition of new characters to pro-
duce a new pathname. In this manner, pathnames of at most 256 characters can be supported. If
a pathname does not fit in the space provided, the tar command notifies the user of the error and
no attempt is made to store any part of the file, header, or data in the archive.

The linkname field does not use prefix to produce a pathname. As such, linkname is limited to
99 characters. If the name does not fit in the space provided, the tar command notifies the user

527186-023 Hewlett-Packard Company 11−49

tar(4) OSS System Calls Reference Manual

of the error and does not attempt to store the link in the archive.

The mode field contains 9 bits specifying file permissions and 3 bits specifying the set user ID
(TSUID), set group ID (TSGID), and unused TSVTX modes. When the user restoring the files
from the archive does not have appropriate permission to set these bits, the bits for which the
user does not have permission are ignored.

The uid and gid fields are the user and group ID of the file’s owner and group, respectively.

The size field is the size of the file in bytes, as follows:

• If the typeflag field specifies a file type of LNKTYPE or SYMTYPE, the size field is 0
(zero).

• If the typeflag field specifies a file type of DIRTYPE, the size field is interpreted as
described for that record type.

• If the typeflag field specifies a file type of CHARTYPE, BLKTYPE, or FIFOTYPE,
the meaning of the size field is implementation-defined and no data blocks are stored in
the archive.

• If the typeflag specifies any other value, the number of blocks written following the
header is (value of size + 511)/512, ignoring any fraction in the result of the division.

The mtime field is the modification time of the file at the time it was archived.

The chksum field is the ASCII representation of the octal value of the simple sum of all bytes in
the header block. Each 8-bit byte in the header is treated as an unsigned value. These values are
added to an unsigned integer that has been initialized to 0 (zero), and that has a precision of no
less than 17 bits. When calculating the checksum, the chksum field is treated as if it were all
blanks.

The typeflag field specifies the type of file archived. If a particular implementation does not
recognize the type, or if the user does not have appropriate privilege to create that type, the file is
extracted as if it were a regular file, if possible. If conversion to a regular file occurs, the tar com-
mand produces an error message indicating that the conversion took place.

The magic field indicates that the archive was output in tar archive file format. If this field con-
tains the value TMAGIC, the uname and gname fields contain the ASCII representation of the
owner and group of the file respectively. When the archive is restored, the password and group
files are scanned for these names. If found, the user and group IDs from these files are used
instead of the values contained within the uid and gid fields.

RELATED INFORMATION
Commands: pax(1), pinstall(1).

11−50 Hewlett-Packard Company 527186-023

Files termcap(4)

NAME
termcap - Describes the terminal capability database

SYNOPSIS
/etc/termcap

DESCRIPTION
The termcap database describes terminals. It is used, for example, by the libtermcap library.
Terminals are described in termcap by giving a set of capabilities that they have and by describ-
ing how operations are performed. Padding requirements and initialization sequences are also
included in termcap.

Entries in termcap consist of fields separated by colons (:). The first field for each terminal
gives the names that are known for the terminal, separated by vertical bar (|) characters. The first
name is always two characters long and is used by older systems that store the terminal name as a
type in a 16-bit word in a system-wide database. The second name given is the most common
abbreviation for the terminal. The last name given should be a long name fully identifying the
terminal; all other names given are understood to be synonyms for the terminal name. All names
but the first and last should be all lowercase letters and should contain no spaces; the last name
can be in uppercase letters and can contain spaces for readability.

Terminal names (except for the last, long entry) should be chosen using the following conven-
tions:

• The particular piece of hardware making up the terminal should have a root name
chosen: for example, hp2621. This name should not contain dashes.

• Modes that the hardware can be in or user preferences should be indicated by appending
a - (dash) and an indicator of the mode. Therefore, a DEC VT100 terminal in 132-
column mode would be vt100-w.

• The suffixes in the following table should be used where possible.

Table 11−10. Terminal Name Suffixes

Suffix Meaning Example___

-w Wide mode (more than 80 columns) vt100-w
-am With automatic margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa-60
-na No arrow keys (leave them in local) concept100-na
-np Number of pages of memory concept100-4p
-rv Reverse video concept100-rv

Terminal Types Supported
When using TELNET to connect to Open System Services, only the terminal type vt100 is sup-
ported. Other terminal types described in this reference page are not supported.

Types of Capabilities
All capabilities have 2-letter name codes, such as cm.

Capabilities in termcap are of three types:

bool Boolean capabilities, which indicate particular features that the terminal has.

num Numeric capabilities, which give the size of the display or the size of other attri-
butes.

527186-023 Hewlett-Packard Company 11−51

termcap(4) OSS System Calls Reference Manual

str String capabilities, which give character sequences that can be used to perform
particular terminal operations.

The following table describes the capabilities used to describe terminals.

Notes to the table:

N Indicates numeric parameter(s).

P Indicates that padding can be specified.

* Indicates that padding can be based on the number of lines affected.

o Indicates that the capability is obsolete. New software should not rely on this capability at
all.

Table 11−11. Terminal Capabilities

Name Type Notes Description__

ae str (P) End alternate character set
AL str (NP*) Add n new blank lines
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
bc str (o) Backspace if not ˆH
bl str (P) Audible signal (bell)
bs bool (o) Terminal can backspace with ˆH
bt str (P) Back tab

bool The le (backspace) wraps from column 0 to last columnbw
Terminal settable command character in prototypeCC str

cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (NP) Set cursor column (horizontal position)
cl str (P*) Clear screen and home cursor
CM str (NP) Memory-relative cursor addressing
cm str (NP) Screen-relative cursor motion

Number of columns in a line (see NOTES section)co num
cr str (P) Carriage return
cs str (NP) Change scrolling region (DEC VT100 terminal)
ct str (P) Clear all tab stops
cv str (NP) Set cursor row (vertical position)
da bool Display can be retained above the screen
dB num (o) Milliseconds of bs delay needed (default 0)
db bool Display can be retained below the screen
DC str (NP*) Delete n characters
dC num (o) Milliseconds of cr delay needed (default 0)
dc str (P*) Delete character
dF num (o) Milliseconds of ff delay needed (default 0)
DL str (NP*) Delete n lines
dl str (P*) Delete line�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

11−52 Hewlett-Packard Company 527186-023

Files termcap(4)

dm str Enter delete mode
dN num (o) Milliseconds of nl delay needed (default 0)
DO str (NP*) Move cursor down n lines
do str Down one line
ds str Disable status line

Milliseconds of horizontal tab delay needed (default 0)dT num (o)
Milliseconds of vertical tab delay needed (default 0)dV num (o)

ec str (NP) Erase n characters
ed str End delete mode
ei str End insert mode
eo bool Can erase overstrikes with a blank
EP bool (o) Even parity
es bool Escape can be used on the status line
ff str (P*) Hard-copy terminal page eject
fs str Return from status line

bool Generic line type (for example, dialup, switch)gn
hc bool Hardcopy terminal
HD bool (o) Half-duplex
hd str Half-line down (forward 1/2 linefeed)
ho str (P) Home cursor
hs bool Has extra status line
hu str Half-line up (reverse 1/2 linefeed)
hz bool Cannot print ˜s (Hazeltine)

Terminal initialization strings (unsupported)i1-i3 str
IC str (NP*) Insert n blank characters
ic str (P*) Insert character

Name of file containing initialization stringif str
im str Enter insert mode
in bool Insert mode distinguishes nulls

Pathname of program for initialization (unsupported)iP str
ip str (P*) Insert pad after character inserted

Terminal initialization string (termcap only)is str
Tabs initially every n positionsit num

K1 str Sent by keypad upper left
K2 str Sent by keypad upper right
K3 str Sent by keypad center
K4 str Sent by keypad lower left
K5 str Sent by keypad lower right
k0-k9 str Sent by function keys 0 to 9
kA str Sent by insert-line key
ka str Sent by clear-all-tabs key
kb str Sent by backspace key
kC str Sent by clear-screen or erase key
kD str Sent by delete-character key
kd str Sent by down-arrow key
kE str Sent by clear-to-end-of-line key
ke str Out of keypad transmit mode
kF str Sent by scroll-forward/down key�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

527186-023 Hewlett-Packard Company 11−53

termcap(4) OSS System Calls Reference Manual

kH str Sent by home-down key
kh str Sent by home key

Sent by insert-character or enter-insert-mode keykI str
kL str Sent by delete-line key
kl str Sent by left-arrow key

Sent by insert key while in insert modekM str
bool Has a meta key (shift, sets parity bit)km

kN str Sent by next-page key
Number of function (k0-k9) keys (default 0)kn num (o)
The termcap entries for other nonfunction keysko str (o)

kP str Sent by previous-page key
kR str Sent by scroll-backward/up key
kr str Sent by right-arrow key
kS str Sent by clear-to-end-of-screen key
ks str Put terminal in keypad transmit mode
kT str Sent by set-tab key
kt str Sent by clear-tab key
ku str Sent by up-arrow key

Labels on function keys if not "fn"l0-l9 str
LC bool (o) Lowercase characters only

Move cursor left n positionsLE str (NP)
le str (P) Move cursor left one position

Number of lines on screen or page (see NOTES section)li num
ll str Last line, first column

Lines of memory if > li (0 means varies)lm num
Arrow key map (used by vi version 2 only)ma str (o)

mb str Turn on blinking attribute
Turn on bold (extra bright) attributemd str

me str Turn off all attributes
mh str Turn on half-bright attribute
mi bool Safe to move while in insert mode

Turn on blank attribute (characters invisible)mk str
ml str (o) Memory lock on above cursor
mm str Turn on meta mode (eighth bit)
mo str Turn off meta mode
mp str Turn on protected attribute
mr str Turn on reverse-video attribute
ms bool Safe to move in standout modes
mu str (o) Memory unlock (turn off memory lock)

bool No correctly working cr (Datamedia 2500, Hazeltine 2000 terminals)nc (o)
Nondestructive space (cursor right)nd str

bool The \n is newline, not linefeedNL (o)
nl str (o) Newline character if not \n

bool Terminal is a CRT, but does not scrollns (o)
Newline (behaves like cr followed by do)nw str (P)

OP bool (o) Odd parity
os bool Terminal overstrikes��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

11−54 Hewlett-Packard Company 527186-023

Files termcap(4)

Lowest baud where delays are requiredpb num
pc str Pad character (default NULL)
pf str Turn off the printer

Program function key n to type string s (unsupported)pk str
Program function key n to execute string s (unsupported)pl str
Turn on the printer for n bytespO str (N)

po str Turn on the printer
ps str Print contents of the screen

bool Has hardware tabs (might need to be set with is)pt (o)
Program function key n to transmit string s (unsupported)px str
Reset terminal completely to sane modes (unsupported)r1-r3 str
Restore cursor to position of last scrc str (P)

rf str Name of file containing reset codes
RI str (NP) Move cursor right n positions
rp str (NP*) Repeat character c n times

Reset terminal completely to sane modes (termcap only)rs str
sa str (NP) Define the video attributes
sc str (P) Save cursor position
se str End standout mode
SF str (NP*) Scroll forward n lines
sf str (P) Scroll text up

Number of garbage characters left by so or se (default 0)sg num
so str Begin standout mode
SR str (NP*) Scroll backward n lines
sr str (P) Scroll text down
st str Set a tab in all rows, current column

Tab to next 8-position hardware tab stopta str (P)
tc str Entry of similar terminal (must be last)

String to end programs that use termcapte str
String to begin programs that use termcapti str

ts str (N) Go to status line, column n
UC bool (o) Uppercase characters only

Underscore one character and move past ituc str
ue str End underscore mode

Number of garbage characters left by us or ue (default 0)ug num
ul bool Underline character overstrikes
UP str (NP*) Move cursor up n lines
up str Up a line (cursor up)
us str Start underscore mode
vb str Visible bell (must not move cursor)

Make cursor appear normal (undo vs/vi)ve str
vi str Make cursor invisible
vs str Make cursor very visible

Virtual terminal number (not supported on all systems)vt num
wi str (N) Set current window
ws num Number of columns in status line
xb bool Beehive (f1=ESC, f2=ˆC)��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

527186-023 Hewlett-Packard Company 11−55

termcap(4) OSS System Calls Reference Manual

bool Newline ignored after 80 columns (Concept)xn
bool Terminal uses xoff/xon (DC3/2DC1) handshakingxo
bool Return acts like ce cr nl (Delta Data)xr (o)
bool Standout not erased by overwriting (Hewlett-Packard terminals)xs
bool Tabs ruin magic so character (Teleray 1061 terminal)xt

xx bool (o) Tektronix 4025 terminal insert-line��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

A Sample Entry
The following entry, which describes the Concept-100, is among the more complex entries in the
termcap file as of this writing:

ca|concept100|c100|concept|c104|concept100-4p|HDS Concept-100:\
:al=3*\EˆR:am:bl=ˆG:cd=16*\EˆC:ce=16\EˆU:cl=2*ˆL:cm=\Ea%+ %+ :\
:co#80:.cr=9ˆM:db:dc=16\EˆA:dl=3*\EˆB:do=ˆJ:ei=\E\200:eo:im=\EˆP:in:\
:ip=16*:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E:k1=\E5:\
:k2=\E6:k3=\E7:kb=ˆh:kd=\E<:ke=\Ex:kh=\E?:kl=\E>:kr=\E=:ks=\EX:\
:ku=\E;:le=ˆH:li#24:mb=\EC:me=\EN\200:mh=\EE:mi:mk=\EH:mp=\EI:\
:mr=\ED:nd=\E=:pb#9600:rp=0.2*\Er%.%+ :se=\Ed\Ee:sf=ˆJ:so=\EE\ED:\
:.ta=8\t:te=\Ev \200\200\200\200\200\200\Ep\r\n:\
:ti=\EU\Ev 8p\Ep\r:ue=\Eg:ul:up=\E;:us=\EG:\
:vb=\Ek\200\200\200\200\200\200\200\200\200\200\200\200\200\200\EK:\
:ve=\Ew:vs=\EW:vt#8:xn:\
:bs:cr=ˆM:dC#9:dT#8:nl=ˆJ:ta=ˆI:pt:

Entries can continue onto multiple lines by using a \ (backslash) as the last character of a line,
and empty fields can be included for readability (here between the last field on a line and the first
field on the next). Comments can be included on lines beginning with a # (number sign) charac-
ter.

For instance, the fact that the Concept terminal has automatic margins (that is, an automatic
return and linefeed when the end of a line is reached) is indicated by the Boolean capability am.
Hence the description of the Concept includes am.

In the termcap file, numeric capabilities are followed by the # (number sign) character and the
value. In the preceding example, the co capability, which indicates the number of columns in the
display, has the value 80 for the Concept terminal.

In the termcap file, string-valued capabilities such as ce (clear-to-end-of-line sequence) are
given by the two-letter capability code, an = (equal sign), then a string ending at the next follow-
ing : (colon).

A delay in milliseconds can appear after the = in such a capability, which causes padding charac-
ters to be supplied after the remainder of the string is sent to provide this delay. The delay can be
either a number (for example, 20), or a number followed by an * (for example, 3*). An * (aster-
isk) indicates that the padding required is proportional to the number of lines affected by the
operation, and the amount given is the per-affected-line padding required. (In the case of insert-
character, the factor is still the number of lines affected; this is always a 1 unless the terminal has
in capability and the software uses it.) When an * (asterisk) is specified, it is sometimes useful to
give a delay of the form 3.5 to specify a delay per line to tenths of milliseconds. (Only one
decimal place is allowed.)

A number of escape sequences are provided in the string-valued capabilities for easy encoding of
control characters there. \E maps to an ESC character, ˆX maps to a <Ctrl-X> for any appropriate
X, and the sequences \n, \r, \t, \b, and \f map to linefeed, return, tab, backspace, and formfeed,
respectively. Finally, characters can be given as three octal digits after a \ (backslash), and the
characters ˆ (circumflex) and \ can be given as \ˆ and \\. If it is necessary to place a : (colon) in a
capability, it must be encoded in octal as \072. If it is necessary to place a NUL character in a

11−56 Hewlett-Packard Company 527186-023

Files termcap(4)

string capability, it must be encoded as \200. (The routines that deal with termcap use C strings
and strip the high bits off the output very late, so that \200 has the same result as \000.)

In the termcap file, individual capabilities must sometimes be commented out. To do this, put a .
(dot) before the capability name. For example, see the first cr and ta capabilities in the preced-
ing example.

Basic Capabilities
The number of columns on each line of the terminal display is given by the co numeric capabil-
ity. If the display is a CRT, then the number of lines on the screen is given by the li capability. If
the display wraps around to the beginning of the next line when the cursor reaches the right mar-
gin, then indicate this with the am capability. If the terminal can clear its screen, indicate this
with the cl string capability. If the terminal overstrikes (rather than clearing the position when a
character is overwritten), indicate this with the os capability. If the terminal is a printing termi-
nal, with no soft copy unit, indicate this with both the hc and os capabilities. (os applies to
storage scope terminals, such as the Tektronix 4010 series, as well as to hard-copy and APL ter-
minals.) If there is a code to move the cursor to the left edge of the current row, indicate this with
the cr capability. (Normally this is carriage return, ˆM.) If there is a code to produce an audible
signal (bell, beep, and so forth), indicate this with the bl capability.

If there is a code (such as a backspace) to move the cursor one position to the left, indicate this
with the le capability. Similarly, codes to move to the right, up, and down should be indicated
with the nd, up, and do capabilities, respectively. These local cursor motions should not alter the
text they pass over; for example, you would not normally use nd= unless the terminal has the os
capability, because the space would erase the character moved over.

Note that the local cursor motions encoded in termcap have undefined behavior at the left and
top edges of a CRT display. Applications should never attempt to backspace around the left
edge, unless bw is given, and never attempt to go up off the top using local cursor motions.

To scroll text up, an application goes to the bottom left corner of the screen and sends the string
given by the sf (index) capability. To scroll text down, an application goes to the top left corner
of the screen and sends the string given by the sr (reverse index) capability. The strings given by
sf and sr have undefined behavior when not on their respective corners of the screen. Parameter-
ized versions of the scrolling sequences are the SF and SR capabilities, which have the same
semantics as sf and sr except that they take one parameter and scroll that many lines. They also
have undefined behavior except at the appropriate corner of the screen.

The am capability indicates whether the cursor sticks at the right edge of the screen when text is
output there, but this action does not necessarily apply to the action of the nd capability from the
last column. Leftward local motion is defined from the left edge only when the bw capability is
given; then the action of the le capability from the left edge moves to the right edge of the previ-
ous row. This is useful for drawing a box around the edge of the screen, for example. If the ter-
minal has switch-selectable automatic margins, the termcap description usually assumes that
this feature is on (that is, assumes the am capability). If the terminal has a command that moves
to the first column of the next line, that command can be given as the nw (newline) capability. It
is permissible for this action to clear the remainder of the current line, so if the terminal has no
correctly working CR and LF, it is still possible to create a working nw capability out of one or
both of them.

These capabilities suffice to describe hard-copy and "glass-tty" terminals. Thus, the Teletype
model 33 is described as follows:

T3 | tty33 | 33 | tty | Teletype model 33:\
:bl=ˆG:co#72:cr=ˆM:do=ˆJ:hc:os:

and the Lear Siegler ADM-3 terminal is described as follows:

l3 | adm3 | 3 | LSI ADM-3:\

527186-023 Hewlett-Packard Company 11−57

termcap(4) OSS System Calls Reference Manual

:am:bl=ˆG:cl=ˆZ:co#80:cr=ˆM:do=ˆJ:le=ˆH:li#24:sf=ˆJ:

Parameterized Strings
Cursor addressing and other strings requiring parameters are described by a parameterized string
capability, with escape encodings like those of the printf() function (%x) in it, while other char-
acters are passed through unchanged. For example, to address the cursor, the cm capability is
given, using two parameters: the row and column to move to. Rows and columns are numbered
from 0 (zero) and refer to the physical screen visible to the user, not to any unseen memory. If
the terminal has memory-relative cursor addressing, that can be indicated by the analogous CM
capability.

The % encodings have the following meanings:

%% Writes %

%d Writes value as printf() %d encoding does

%2 Writes value as printf() %2d encoding does

%3 Writes value as printf() %3d encoding does

%. Writes value as printf() %c encoding does

%+x Adds x to value, then writes %

%>xy If value > x then adds y (no output)

%r Reverses order of two parameters (no output)

%i Increments by 1 (one) (no output)

%n Exclusive ORs all parameters with 0140 (Datamedia 2500)

%B BCD (16*(value/10)) + (value%10) (no output)

%D Reverse coding (value - 2*(value%16)) (no output) (Delta Data terminal)

Consider the Hewlett-Packard 2645 terminal, which, to get to row 3 and column 12, needs to be
sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the row and column coordi-
nates is reversed here and that the row and column are sent as 2-digit integers. Thus, its cm
capability is cm=6\E&%r%2c%2Y.

The Microterm ACT-IV terminal needs the current row and column sent simply encoded in
binary preceded by a ˆT, cm=ˆT%.%.. Terminals that use %. need to be able to backspace the
cursor (the le capability) and to move the cursor up one line on the screen (the up capability).
This is necessary because it is not always safe to transmit \n, ˆD, and \r, as the system can change
or discard them. (Applications using termcap must set terminal modes so that tabs are not
expanded, so \t is safe to send. This is essential for the Ann Arbor 4080 terminal.)

A final example is the Lear Siegler ADM-3a terminal, which offsets row and column by a blank
character; thus, cm=\E=%+ %+.

Row or column absolute cursor addressing can be given as single-parameter capabilities ch (hor-
izontal position absolute) and cv (vertical position absolute). Sometimes these are shorter than
the more general two-parameter sequence (as with the Hewlett-Packard 2645 terminal) and can
be used in preference to cm. If there are parameterized local motions (for example, move n posi-
tions to the right), these can be given as the DO, LE, RI, and UP capabilities with a single
parameter indicating how many positions to move. These capabilities are primarily useful for
terminals that do not have the cm capability, such as the Tektronix 4025 terminal.

11−58 Hewlett-Packard Company 527186-023

Files termcap(4)

Cursor Motions
If the terminal has a fast way to home the cursor (to the upper left-hand corner of the screen), this
can be given as the ho capability. Similarly, a fast way of getting to the lower left-hand corner
can be given as the ll capability; this way can involve going up with the up capability from the
home position, but an application should never do this itself (unless ll does), because it can make
no assumption about the effect of moving up from the home position. Note that the home posi-
tion is the same as cursor address (0,0): to the top left corner of the screen, not of memory.
Therefore, the \EH sequence on Hewlett-Packard terminals cannot be used for the ho capability.

Area Clears
If the terminal can clear from the current position to the end of the line, leaving the cursor where
it is, this should be given as the ce capability. If the terminal can clear from the current position
to the end of the display, this should be given as the cd capability. cd must be invoked only from
the first column of a line. (Therefore, it can be simulated by a request to delete a large number of
lines, if a true cd capability is not available.)

Insert/Delete Line
If the terminal can open a new blank line before the line containing the cursor, this should be
given as the al capability; this action must be invoked only from the first position of a line. The
cursor must then appear at the left of the newly blank line. If the terminal can delete the line that
the cursor is on, this should be given as the dl capability; this action must be used only from the
first position on the line to be deleted. Versions of al and dl that take one parameter and insert or
delete the indicated number of lines can be given as the AL and DL capabilities.

If the terminal has a settable scrolling region (like the DEC VT100 terminal), the command to set
this can be described with the cs capability, which takes two parameters: the top and bottom lines
of the scrolling region. The cursor position is, therefore, undefined after using this capability. It
is possible to get the effect of insert or delete line using this capability — the sc and rc (save and
restore cursor) capabilities are also useful. Inserting lines at the top or bottom of the screen can
also be done using the sr or sf capability on many terminals without a true insert/delete line
feature, and sr and sf are often faster even on terminals with insert/delete line features.

Terminals with the "magic cookie" glitches (the sg and ug capabilities), rather than maintaining
extra attribute bits for each character cell, instead deposit special cookies, or garbage characters,
when they receive mode-setting sequences, which affect the display algorithm.

Some terminals, such as the Hewlett-Packard 2621 terminal, automatically leave standout mode
when they move to a newline or when the cursor is addressed. Applications using standout mode
should exit standout mode on such terminals before moving the cursor or sending a newline. On
terminals where this is not a problem, the ms capability should be present to indicate that this
overhead is unnecessary.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement),
this can be indicated by the vb capability; this action must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to
change, for example, a nonblinking underline into an easier-to-find block or blinking underline),
indicate the vs capability. If there is a way to make the cursor completely invisible, indicate the
vi capability. The ve capability, which undoes the effects of both of these modes, should also be
specified.

If your terminal correctly displays underlined characters (with no special codes needed), even
though it does not overstrike, then you should specify the ul capability. If overstrikes can be
erased with a blank, indicate that by specifying the eo capability.

527186-023 Hewlett-Packard Company 11−59

termcap(4) OSS System Calls Reference Manual

Keypad Support
If the terminal has a keypad that transmits codes when the keys are pressed, this information can
be provided in termcap. Note that it is not possible to handle terminals where the keypad works
only in local mode (this applies, for example, to the unshifted Hewlett-Packard 2621 terminal’s
keys). If the keypad can be set to transmit or not transmit, specify the ks and ke capabilities.
Otherwise, the keypad is assumed to always transmit. The codes sent by the left-arrow, right-
arrow, up-arrow, down-arrow, and home keys can be specified by the kl, kr, ku, kd, and kh capa-
bilities, respectively. If there are function keys such as f0, f1, ..., f9, the codes they send can be
specified by the k0, k1,..., k9 capabilities. If these keys have labels other than the default f0
through f9, the labels can be specified by the l0, l1,..., l9 capabilities.

The codes transmitted by certain other special keys can be specified by the following capabili-
ties:

kH Home down

kb Backspace

ka Clear all tabs

kt Clear the tab stop in this column

kC Clear screen or erase

kD Delete character

kL Delete line

kM Exit insert mode

kE Clear to end of line

kS Clear to end of screen

kI Insert character or enter insert mode

kA Insert line

kN Next page

kP Previous page

kF Scroll forward/down

kR Scroll backward/up

kT Set a tab stop in this column

In addition, if the keypad has a 3-by-3 array of keys including the four arrow keys, then the other
five keys can be specified by the K1, K2, K3, K4, and K5 capabilities. These keys are useful
when the effects of a 3-by-3 directional pad are needed. The obsolete ko capability, used to
describe "other" function keys, has been completely replaced by the preceding list of capabilities.

The ma capability is also used to indicate arrow keys on terminals that have single-character
arrow keys. It is obsolete but still in use in version 2 of the vi utility, which must be run on some
minicomputers due to memory limitations. The ma capability is redundant with the kl, kr, ku,
kd, and kh capabilities. The ma capability consists of groups of two characters. In each group,
the first character is what an arrow key sends, and the second character is the corresponding vi
command. These vi commands are h for the kl capability, j for kd, k for ku, l for kr, and H for
kh. For example, the Microterm Mime terminal would have ma=ˆHhˆKjˆZkˆXl indicating arrow
keys left (ˆH), down (ˆK), up (ˆZ), and right (ˆX). (There is no home key on the Microterm Mime

11−60 Hewlett-Packard Company 527186-023

Files termcap(4)

terminal.)

Tabs and Initialization
If the terminal needs to be in a special mode when running a program that uses these capabilities,
the codes to enter and exit this mode can be specified by the ti and te capabilities. This need
arises, for example, from terminals like the Concept terminal with more than one page of
memory. If the terminal has only memory-relative cursor addressing and not screen-relative cur-
sor addressing, a screen-sized window must be fixed into the display for cursor addressing to
work properly. This is also used for the Tektronix 4025 terminal, where the ti capability sets the
command character to be the one used by termcap.

Other capabilities include is, an initialization string for the terminal, and if, the name of a file
containing long initialization strings. These strings are expected to set the terminal into modes
consistent with the rest of the termcap description. They are printed in the following order:

• is

• setting tabs using the ct and st capabilities

• if

A pair of sequences that does a harder reset from a totally unknown state can be analogously
given as the rs and if capabilities. These strings are output by the reset program, which is used
when the terminal gets into a wedged state. Commands are normally placed in the rs and rf
capabilities only if they produce annoying effects on the screen and are not necessary when log-
ging in. For example, the command to set the DEC VT100 terminal into 80-column mode would
normally be part of the is capability, but it causes annoying behavior of the screen and is not nor-
mally needed because the terminal is usually already in 80-column mode.

If the terminal has hardware tabs, the command to advance to the next tab stop can be indicated
by the ta capability (usually ˆI). A backtab command that moves leftward to the previous tab
stop can be indicated by the bt capability. By convention, if the terminal driver modes indicate
that tab stops are being expanded by the computer rather than being sent to the terminal, applica-
tions should not use ta or bt, even if they are present, because the user might not have the tab
stops properly set. If the terminal has hardware tabs that are initially set every n positions when
the terminal is powered up, then the numeric it capability is given, indicating the number of posi-
tions between tab stops.

If there are commands to set and clear tab stops, they can be given as the ct (clear all tab stops)
capability and the st (set a tab stop in the current column of every row) capability. If a more
complex sequence is needed to set the tabs than can be described by this, the sequence can be
placed in the is or if capabilities.

Delays
Certain capabilities control padding in the terminal driver. Delays embedded in the capabilities
cr, sf, le, ff, and ta cause the appropriate delay bits to be set in the terminal driver. If the pb capa-
bility (padding baud rate) is given, these values can be ignored at baud rates below the value of
pb.

Miscellaneous
If the terminal requires other than a NULL (zero) character as a pad, this can be indicated by the
pc capability. Only the first character of the pc string is used.

If the terminal has commands to save and restore the position of the cursor, indicate this with the
sc and rc capabilities.

If the terminal has an extra status line that is not normally used by software, this fact can be indi-
cated in termcap. If the status line is viewed as an extra line below the bottom line, then the hs
capability should be given.

527186-023 Hewlett-Packard Company 11−61

termcap(4) OSS System Calls Reference Manual

Special strings to go to a position in the status line and to return from the status line can be given
as the ts and fs capabilities. (Note that fs must leave the cursor position in the same place that it
was before ts. If necessary, the strings from the sc and rc capabilities can be included in ts and
fs to get this effect.) The ts capability takes one parameter, which is the column number of the
status line to which the cursor is to be moved.

If escape sequences and other special commands such as tab work while in the status line, the es
capability can be given. A string that turns off the status line (or otherwise erases its contents)
should be indicated by the ds capability.

The status line is normally assumed to be the same width as the rest of the screen; that is, the
value indicated in the co capability. If the status line is a different width (possibly because the
terminal does not allow an entire line to be loaded), then its width in columns can be indicated
with the numeric ws capability.

If the terminal can move up or down half a line, this can be indicated with the hu (half-line up)
and hd (half-line down) capabilities. This feature is primarily useful for superscripts and sub-
scripts on hard-copy terminals. If a hard-copy terminal can eject to the next page (formfeed),
indicate this with the ff capability (usually ˆL).

If the terminal has a settable command character, such as the Tektronix 4025 terminal, indicate
this with the CC capability. A prototype command character is chosen that is used in all capabil-
ities. This character is given in the CC capability to identify it. The following convention is
supported on some UNIX systems: the environment is searched for a CC variable, and if found,
all occurrences of the prototype character are replaced by the character in the environment vari-
able. Do not use the CC environment variable in this way; it conflicts with the make command.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch,
dialup, patch, and network, should include the gn (generic) capability so that applications can
explain that they do not know how to talk to the terminal. (This capability does not apply to vir-
tual terminal descriptions for which the escape sequences are known.)

If the terminal uses xoff/xon (DC3/DC1) handshaking for flow control, indicate this with the xo
capability. Padding information should still be included so that routines can make better deci-
sions about costs, but actual pad characters are not transmitted.

If the terminal has a meta key that acts as a shift key by setting the 8th bit of any character
transmitted, then this fact can be indicated with the km capability. Otherwise, software assumes
that the 8th bit is parity and it will usually be cleared. If strings exist to turn this meta mode on
and off, they can be given by the mm and mo capabilities.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines
of memory can be indicated with the lm capability. An explicit value of 0 (zero) indicates that
the number of lines is not fixed but there is still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX system virtual terminal protocol, the termi-
nal number can be given by the vt capability.

Media copy strings that control an auxiliary printer connected to the terminal can be given with
the following capabilities:

ps Prints the contents of the screen

pf Turns off the printer

po Turns on the printer

When the printer is on, all text sent to the terminal is sent to the printer. It is undefined whether
the text is also displayed on the terminal screen when the printer is on. A variation, the pO capa-
bility, takes one parameter and leaves the printer on for as many characters as the value of the
parameter, then turns the printer off. The parameter should not exceed 255. All text, including

11−62 Hewlett-Packard Company 527186-023

Files termcap(4)

pf, is transparently passed to the printer while pO is in effect.

Similar Terminals
If there are two very similar terminals, one can be defined as being just like the other with certain
exceptions. The tc string capability can be given with the name of the similar terminal. This
capability must be specified last, and the combined length of the entries must not exceed 1024.
The capabilities given before tc override those in the terminal type invoked by tc.

A capability can be canceled by placing xx@ to the left of the tc invocation, where xx is the
capability. For example, the following entry defines a Hewlett-Packard 2621-nl that does not
have the ks or ke capabilities, so it does not turn on the function key labels when in visual mode:

hn | 2621-nl:ks@:ke@:tc=2621:

Canceling capabilities can be useful for different modes for a terminal or for different user prefer-
ences.

NOTES
This reference page documents obsolete function that is provided only for compatibility.

Lines and columns are now stored by the kernel, as well as in the termcap entry. Most applica-
tions now use the kernel information primarily; the information in termcap is used only if the
kernel does not have any information.

The total length of a single entry, excluding only escaped newlines, cannot exceed 1024.

Not all applications support all entries.

Hazeltine terminals, which do not allow ˜ (tilde) characters to be displayed, should be assigned
the hz capability.

The nc capability, now obsolete, was formerly needed for Datamedia terminals, which echo \r \n
for carriage return and then ignore a following linefeed.

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept terminals,
should be assigned the xn capability.

If the ce capability is required to get rid of standout (instead of merely writing normal text on top
of it), the xs capability should be indicated.

Teleray terminals, where tabs turn all characters moved over to blanks, should be assigned the xt
(destructive tabs) capability. This capability is also taken to mean that it is not possible to posi-
tion the cursor on top of a "magic cookie," and that to erase standout mode, it is necessary to use
delete and insert line.

The Beehive Superbee terminal, which is unable to correctly transmit the ESC or ˆC characters,
has the xb capability, indicating that the f1 key is used for ESC and f2 for ˆC. (Only certain
Beehive Superbee terminals have this problem, depending on the ROM.)

Other specific terminal problems can be corrected by adding more capabilities of the form xx .

The names of many of the terminals listed is this reference page are trademarks of the companies
that manufacture the terminals.

RELATED INFORMATION
Functions: printf(3).

527186-023 Hewlett-Packard Company 11−63

termios(4) OSS System Calls Reference Manual

NAME
termios - Describes the terminal interface for POSIX compatibility

SYNOPSIS
#include <termios.h>

DESCRIPTION
The /usr/include/termios.h header file contains information used by system calls that apply to
terminal files. The definitions, values, and structure in this file are required for compatibility with
the Institute of Electrical and Electronics Engineers (IEEE) P1003.1 Portable Operating System
Interface for Computer Environments (POSIX) standard.

The general terminal interface information is contained in the termios.h header file. The termios
structure in the termios.h header file defines the basic input, output, control, and line discipline
modes. The termios structure contains the following fields:

c_iflag Describes the basic terminal input control. The possible input modes are as fol-
lows:

BRKINT Interrupts a signal on the break condition. If set, the break condi-
tion generates an interrupt signal and flushes both the input and
output queues. This flag is initially set by default.

ICRNL Maps a CR character to an NL character on input. If set, a
received CR character is translated into an NL character. This
flag is initially not set by default.

IGNBRK Ignores the break condition. If set, the break condition is not put
on the input queue and is therefore not read by any process.
This flag is initially not set by default.

IGNCR Ignores the CR character. If set, a received CR character is
ignored (not read). This flag is initially not set by default.

IGNPAR Ignores bytes with parity errors. Not supported in the current
release. This flag is initially not set by default.

INLCR Maps newline character (NL) to carriage return (CR) on input. If
set, a received NL character is translated into a CR character.
This flag is initially not set by default.

INPCK Enables input character byte parity checking. Not supported in
the current release. This flag is initially not set by default.

ISTRIP Strips characters. If set, valid input characters are first stripped
to 7 bits; if not set, all 8 bits are processed. This flag is initially
set by default.

IXANY Enables any character to restart output. If set, any character
received restarts output. If not set, stopped output is restarted by
other conventions. This flag is initially not set by default.

IXOFF Enables start and stop input control. If set, the system transmits a
STOP character when the input queue is nearly full and a
START character when enough input has been read that the
queue is nearly empty again. This flag is initially set by default.

11−64 Hewlett-Packard Company 527186-023

Files termios(4)

IXON Enables start and stop output control. If set, a received STOP
character suspends output and a received START character res-
tarts output. The START and STOP characters perform flow
control functions, but they are not read. This flag is initially set
by default.

PARMRK Marks parity errors. If set, a character with a framing or parity
error that is not ignored is read as the 3-character sequence
0377, 0, x, where the x variable is the data of the character
received in error. If the ISTRIP mode is not set, then a valid
character of 0377 is read as 0377, 0377 to avoid ambiguity. If
the PARMRK mode is not set, a framing or parity error that is
not ignored is read as the null character. This flag is initially not
set by default.

c_oflag Specifies how the system treats output. The possible output modes are as fol-
lows:

OCRNL Maps CR character to NL character during output. If set, map-
ping occurs; if not set, mapping does not occur. This flag is ini-
tially not set by default.

ONLCR Maps NL character to CR-NL character sequence during output.
If set, mapping occurs; if not set, mapping does not occur. This
flag is initially set by default.

ONLRET If set, the NL character performs the CR character function. If
not set, the NL character does not perform the CR character
function. This flag is initially not set by default.

ONOCR If set, no CR character is sent for the column 0 (zero) position.
If not set, the CR character is sent for the column 0 (zero) posi-
tion. This flag is initially not set by default.

OPOST If set, the remaining flag masks are interpreted as described; oth-
erwise, characters are transmitted without change. This flag is
initially set by default.

Setting ONLRET or ONLCR causes a terminal emulator to return the error
[EINVAL] for the tcsetattr() function call, so these flags are effectively not sup-
ported.

c_cflag Describes the hardware control of the terminal. In addition to the basic control
modes, this field uses the following control characters:

CLOCAL Specifies a local line. If set, the line is assumed to have a local,
direct connection with no modem control. If not set, modem con-
trol (dialup) is assumed.

CREAD Enables receiver. If set, the receiver is enabled. If not set, char-
acters are not received.

CSIZE Specifies the number of bits per character byte. The values of
CS7 and CS8 are recognized. The values of CS5 and CS6 are
ignored.

527186-023 Hewlett-Packard Company 11−65

termios(4) OSS System Calls Reference Manual

CSTOPB Specifies the number of stop bits. If set, two stop bits are sent; if
not set, only one stop bit is sent. Higher baud rates require two
stop bits. (At 110 baud, for example, 2 stop bits are required.)

CS5 Specifies a data byte of 5 bits. This value is ignored in the
current release.

CS6 Specifies a data byte of 6 bits. This value is ignored in the
current release.

CS7 Specifies a data byte of 7 bits.

CS8 Specifies a data byte of 8 bits.

HUPCL Hangs up on last close. If set, the line is disconnected when the
last process closes the line or when the process terminates (when
the "data terminal ready" signal drops).

PARENB Enable parity detection. Not supported in the current release.

PARODD Specifies odd parity if set or even parity if not set. Not sup-
ported in the current release.

The initial hardware control value after an open is CS8, CREAD, and HUPCL.

c_lflag Controls various terminal functions. The initial value after an open is all bits
clear. In addition to the basic modes, this field uses the following mask name
symbols:

ECHO Enables echo. If set, characters are displayed on the terminal
screen as they are received.

ECHOE Echoes erase character as BS-SP-BS. If ECHOE is set but
ECHO is not set, the erase character is implemented as ASCII
SP-BS.

ECHOK Echoes NL after kill.

ECHONL Echoes NL. If ECHONL is set, the line is cleared when a new-
line function is performed whether or not ECHO is set. This is
useful for terminals that are set to local echo (also referred to as
half-duplex). Unless an escape character precedes an EOF, the
EOF character is not displayed. Because the ASCII EOT char-
acter is the default End-of-File character, this prevents terminals
that respond to the EOT character from hanging up.

ICANON Enables canonical input. If set, canonical processing is enabled,
which enables the erase and kill edit functions as well as the
assembly of input characters into lines delimited by NL, EOF,
and EOL.

If ICANON is not set, read requests are satisfied directly from
the input queue. In this case, a read request is not satisfied until
one of the following conditions is met: either the minimum
number of characters specified by MIN are received, or the
time-out value specified by TIME has expired since the last
character was received. This allows bursts of input to be read,
while still allowing single-character input. The MIN and TIME
values are stored in the positions for the EOF and EOL

11−66 Hewlett-Packard Company 527186-023

Files termios(4)

characters, respectively. The time value represents tenths of a
second.

IEXTEN Enable extended (implementation-defined) functions. Not sup-
ported in the current release.

ISIG Enables signals. If set, each input character is checked against
the INTR and QUIT special control characters. If a character
matches one of these control characters, the function associated
with that character is performed. If ISIG is not set, checking is
not done.

NOFLSH Disables queue flushing. If set, the normal flushing of the input
and output queues associated with the quit and interrupt charac-
ters is not done.

TOSTOP Sends a SIGTTOU signal when a process in a background pro-
cess group tries to write to its controlling terminal. The
SIGTTOU signal stops the members of the process group. If
job control is not supported, this symbol is ignored.

The ICANON, ECHO, ECHOE, ECHOK, ECHONL, and NOFLSH special
input functions are possible only if ISIG is set. These functions can be disabled
individually by changing the value of the control character to an unlikely or
impossible value (for example, 0377 octal or 0xFF).

c_cc Specifies an array that defines the special control characters. The relative posi-
tions and initial values for each function are as follows:

VEOF Indexes the EOF control character (<Ctrl-d>), which can be
used at the terminal to generate an End-of-File character. When
this character is received, all characters waiting to be read are
immediately passed to the program without waiting for a new-
line, and the EOF is discarded. If the EOF is at the beginning of
a line (no characters are waiting), zero characters are passed
back, which is the standard End-of-File character.

VEOL Indexes the EOL control character (<Ctrl-@> or ASCII null),
which is an additional line delimiter that is not normally used.

VERASE Indexes the ERASE control character (<Backspace>), which
erases the preceding character. The ERASE character does not
erase beyond the beginning of the line (delimited by an NL,
EOL, EOF, or EOL2 character).

VINTR Indexes the INTR control character (<Ctrl-Backspace>), which
sends a SIGINT signal to stop all processes controlled by this
terminal.

VKILL Indexes the KILL control character (<Ctrl-u>), which deletes
the entire line (delimited by an NL, EOL, EOF, or EOL2 char-
acter).

527186-023 Hewlett-Packard Company 11−67

termios(4) OSS System Calls Reference Manual

VSTART Indexes the START control character (<Ctrl-q>), which
resumes output that has been suspended by a STOP character.
START characters are ignored if the output is not suspended.

VSTOP Indexes the STOP control character (<Ctrl-s>), which can be
used to temporarily suspend output. This character is recognized
during both input and output if IXOFF (input control) or IXON
(output control) is set.

VSUSP Indexes the SUSP control character (<Ctrl-z>), which causes a
SIGTSTP signal to be sent to all foreground processes con-
trolled by this terminal. This character is recognized during
input if ISIG is set. If job control is not supported, this character
is ignored.

VQUIT Indexes the QUIT control character (<Ctrl-v> or <Ctrl-|>),
which sends a SIGQUIT signal to stop all processes controlled
by this terminal and writes a saveabend file into the current
working directory.

The following values for the optional_actions parameter of the tcsetattr() function are also
defined in the termios.h header file:

TCSADRAIN Waits until all output written to the object file has been transmitted before setting
the terminal parameters from the termios structure.

TCSAFLUSH Waits until all output written to the object file has been transmitted and all input
received but not read has been discarded before setting the terminal parameters
from the termios structure.

TCSANOW Immediately sets the parameters associated with the terminal from the referenced
termios structure.

The following values for the queue_selector parameter of the tcflush() function are also defined
in the termios.h header file:

TCIFLUSH Flushes data that is received but not read.

TCIOFLUSH Flushes both data that is received but not read and data that is written but not
transmitted.

TCOFLUSH Flushes data that is written but not transmitted.

The following values for the action parameter of the tcflow() function are also defined in the
termios.h header file:

TCIOFF Transmits a STOP character to stop data transmission by the terminal device.

TCION Transmits a START character to start or restart data transmission by the terminal
device.

TCOOFF Suspends the output of data by the object file named in the tcflow() function.

TCOON Restarts the output of data that was suspended by the TCOOFF value.

11−68 Hewlett-Packard Company 527186-023

Files termios(4)

RELATED INFORMATION
Commands: sh(1).

Functions: tcflow(3), tcflush(3), tcsetattr(3).

STANDARDS CONFORMANCE
The HP implementation does not support the following symbolic values for the c_oflag field in
the XPG4 Version 2 specification:

• BSDLY, CRDLY, FFDLY, NLDLY, OFILL, TABDLY, and VTDLY.

527186-023 Hewlett-Packard Company 11−69

tty(7) OSS System Calls Reference Manual

NAME
tty - Is the general terminal interface

SYNOPSIS
#include <termios.h>

DESCRIPTION
The tty interface is the general interface for terminal devices. This interface supplies all the
functions needed for I/O over console serial lines, workstation screens, keyboards, and other ter-
minal devices. It consists of the special file /dev/tty and terminal drivers used for conversational
computing.

Much of a terminal interface’s performance is governed by the settings in the terminal’s termios
structure, which is defined in the termios.h header file. This structure provides definitions for
terminal input and output processing, control and local modes, and so on.

The Controlling Terminal
Open System Services supports the concept of a controlling terminal. Any process in the system
can have a controlling terminal associated with it. Certain events, such as the delivery of
keyboard-generated signals (for example, interrupt, quit, and suspend), affect all the processes in
the process group associated with the controlling terminal. The controlling terminal also deter-
mines the physical device that is accessed when the indirect device /dev/tty is opened.

In Open System Services, in accordance with the POSIX 1003.1 specification, a process must be
a session leader to allocate a controlling terminal. (This implies that the O_NOCTTY flag to the
open() function must be cleared.) The following code example illustrates the correct sequence
for obtaining a controlling tty (no error checking is shown). This code fragment calls the set-
sid() function to make the current process the group and session leader and to remove any con-
trolling tty that the process might already have. The code then opens a terminal and attaches it to
the current session as the controlling terminal. Note that the process must not already be a ses-
sion or process group leader and that the console must not already be the controlling tty of any
other session.

(void)setsid(); /* become session leader and */
/* lose controlling tty */

fd = open("/G/ZTNT/#PTY5", O_RDWR);

When a controlling terminal file is closed, pending input is removed and pending output is sent to
the receiving device.

When a terminal file is opened, the process blocks until a carrier signal is detected. If the open()
function is called with the O_NONBLOCK flag set, however, the process does not wait.
Instead, the first read() or write() function call waits for a carrier to be established. If the CLO-
CAL mode is set in the termios structure, the driver assumes that modem control is not in effect
and so the open(), read(), and write() calls proceed without waiting for a carrier signal to be
established.

Process Groups
Each OSS process belongs to a process group with a specific process group ID. Each OSS pro-
cess belongs to the process group of its creating process. This enables related processes to be
signaled. Process group IDs are unique identifiers that cannot be used for other system process
groups until the original process group is disbanded. Each process group also has a process
group leader. A process group leader has the same process ID as its process group.

Each process group belongs to a session. Each process in the process group also belongs to the
process group’s session. A process that is not the process group leader can create its own session
and process group with a call to the setsid() function. That calling process then becomes the ses-
sion leader of the new session and of the new process group. The new session has no controlling
terminal until the session leader assigns one to it. The calling process’s ID is assigned to the new

11−70 Hewlett-Packard Company 527186-023

Files tty(7)

process group. With the setpgid() function, other processes can be added to a process group.

A controlling terminal can have a process group associated with it that is known as the fore-
ground process group. The terminal’s foreground process group is the one that receives signals
generated by the VINTR, VQUIT, and VSUSP special control characters. Certain operations on
the terminal are also restricted to processes in the terminal’s foreground process group (see Ter-
minal Access Control, later in this reference page). A terminal’s foreground process group can
be changed by calling the tcsetpgrp() function. A terminal’s current foreground process group
can be obtained by calling the tcgetpgrp() function.

Input Processing Modes
The terminal drivers have two major modes, characterized by the kind of processing that takes
place on the input characters:

Canonical If a terminal is in canonical mode, input is collected and processed one line at a
time. Lines are terminated by a newline (*L0), End-of-File (VEOF), or End-
of-Line (EOL) character. A read request is not returned until either the line is
terminated or a signal is received. The maximum number of bytes of unread
input allowed on an input terminal is 255 bytes.

Erase and kill processing is performed on input that was not terminated by one of
the line-termination characters. Erase processing removes the last character in
the line; kill processing removes the whole line.

Noncanonical Noncanonical mode eliminates erase and kill processing, making input charac-
ters available to the user program as they are typed. Input is not processed into
lines. The received bytes are processed according to the VMIN and VTIME
elements of the c_cc array in the termios structure.

VMIN The minimum number of bytes the terminal can receive in non-
canonical mode before a read is considered successful.

VTIME Measured in 0.1-second units, times out sporadic input.

These cases are summarized as follows:

VMIN>0, VTIME>0
In this case, VTIME is an interbyte timer that is activated after
the first byte of the input line is received and reset after each
byte is received. The read operation is a success if VMIN bytes
are read before VTIME runs out. If VTIME runs out before
VMIN bytes are received, the characters that were received are
returned.

VMIN>0, VTIME=0
In this case, only VMIN is used. A queued read() function call
waits until either VMIN bytes are received or a signal is
received.

VMIN=0, VTIME>0
In this case, VTIME is used as a read timer that starts when a
read() function call is made. The read() call is finished either
when one byte is read or when VTIME runs out.

527186-023 Hewlett-Packard Company 11−71

tty(7) OSS System Calls Reference Manual

VMIN=0, VTIME=0
In this case, either the number of requested bytes or the number
of currently available bytes is returned, depending on which is
less. The read() function call returns 0 (zero) if no data was
read.

Canonical mode is entered by setting the ICANON flag of the c_lflag field in the terminal’s ter-
mios structure. Other input processing is performed according to the other flags set in the c_iflag
and c_lflag fields.

Input Editing
A terminal ordinarily operates in full-duplex mode. Characters can be typed at any time, even
while output is occurring. Characters are lost only when the system’s character input buffers
become completely overrun, which is rare, or when the user has accumulated the maximum
allowed number of input characters (MAX_INPUT/2) that have not yet been read by some pro-
gram. Currently this limit is 255 characters.

Input characters are normally accepted in either even or odd parity with the parity bit being
stripped off before the character is given to the program. The ISTRIP mask of the c_iflag field
controls whether the parity bit is stripped (ISTRIP set) or not stripped (ISTRIP not set). By set-
ting the PARENB flag in the c_cflag field and either setting (or not setting) the PARODD flag, it
is possible to have input characters with even or odd parity discarded or marked (see Input
Modes, later in this reference page).

Input characters are normally echoed by putting them in an output queue as they arrive. This can
be disabled by clearing the ECHO bit in the c_lflag word using the tcsetattr() function.

In canonical mode, terminal input is processed in units of lines. A program attempting to read is
normally suspended until an entire line is received (however, see the description of the
SIGTTIN signal under Terminal Access Control, later in this reference page). No matter how
many characters are requested in the read call, at most one line is returned. It is not, however,
necessary to read a whole line at once; any number of characters can be requested in a read, even
one, without losing information. In read() requests, the O_NONBLOCK flag affects the read
operation.

If the O_NONBLOCK flag is not set, a read() request is blocked until either data or a signal is
received. If the O_NONBLOCK flag is set, the read() request is not blocked and one of the fol-
lowing situations occurs:

• Some data might have been typed, but there might or might not be enough data to satisfy
the entire read() request. In either case, the read() function returns the data available,
returning the number of bytes of data it read.

• If there is no data for the read operation, the read() function returns the value -1 with an
error value of [EAGAIN].

During input, line editing is normally done with the erase special control character (VERASE)
logically erasing the last character typed and the kill special control character (VKILL) logically
erasing the entire current input line. These characters never erase beyond the beginning of the
current input line or an End-of-File (VEOF) character. These characters, along with the other
special control characters, can be entered literally by preceding them with the literal-next charac-
ter (VLNEXT, for which the default value is <ˆV>).

The drivers normally treat either a newline character (\ n), End-of-File character (VEOF), or
End-of-Line character (VEOL) as terminating an input line, echoing a return and a linefeed. If
the ICRNL mode is set in the c_iflag word of the termios structure, then carriage returns are
translated to newline characters on input and are normally echoed as carriage return-linefeed
sequences. If ICRNL is not set, this processing for carriage return is disabled; it is simply

11−72 Hewlett-Packard Company 527186-023

Files tty(7)

echoed as a return and does not terminate canonical mode input.

Input Modes
The termios structure has an input mode field c_iflag, which controls basic terminal input
characteristics. These characteristics are masks that can be bitwise inclusive ORed. The masks
include:

BRKINT An interrupt is signaled on a break condition.

ICRNL All carriage returns are mapped to newline characters when input.

IGNBRK Break conditions are ignored.

IGNCR Carriage returns are ignored.

INLCR Newline characters are mapped to carriage returns when they are input.

ISTRIP The 8th bit (parity bit) is stripped on input characters.

IXOFF STOP and START characters are sent to enable input flow control.

IXON STOP and START characters are recognized for output flow control.

PARMRK Parity errors are marked with a 3-character sequence.

The input mode mask bits can be combined for the following results.

• If IGNBRK is set, input break conditions are ignored. If IGNBRK is not set but
BRKINT is set, the break condition has the same effect as if the VINTR control charac-
ter had been typed; that is, a SIGINT signal is generated. If neither IGNBRK nor
BRKINT are set, then the break condition is input as a single character 0x00 (zero). If
the PARMRK flag is also set, then the input is read as three characters, 0xff, 0x00, and
0x00.

• If PARMRK is set, a byte with a parity or framing error, except for breaks, is passed as
the three characters 0xff, 0x00, and X, where X is the character data received in error. If
ISTRIP is not set, the valid character 0xff is passed as 0xff, 0xff. If PARMRK is not
set, framing or parity errors, including breaks, are passed as the single character 0x00.

• Setting ISTRIP causes the 8th bit of the 8 valid input bits to be stripped before process-
ing. If ISTRIP is not set, all 8 bits are processed.

• Setting INLCR causes a newline character to be read as a carriage return character. If
IGNCR is also set, the carriage return is ignored. If IGNCR is not set, INLCR works as
described earlier in Input Modes.

• The STOP character (normally <Ctrl-S>) suspends output, and the START character
(normally <Ctrl-Q>) restarts output. Setting IXON enables stop/start output control, in
which the START and STOP characters are not read but rather perform flow control
functions. Extra STOP characters typed when output is already stopped have no effect,
unless the START and STOP characters are made the same, in which case output
resumes. If IXON is not set, the START and STOP characters are read.

• If IXOFF is set, stop/start input control is enabled. When IXOFF is set, the terminal
device is sent STOP characters to halt the transmission of data when the input queue is
in danger of overflowing (exceeds the size MAX_INPUT/2). When enough characters
are read to reduce the amount of data queued to an acceptable level, a START character
is sent to the device to allow it to continue transmitting data. This mode is useful when
the terminal is actually another machine that obeys these conventions.

527186-023 Hewlett-Packard Company 11−73

tty(7) OSS System Calls Reference Manual

Input Echoing and Redisplay
The terminal driver has several modes for handling the echoing of terminal input, controlled by
bits in the c_lflag field of the termios structure.

Erasing Characters From a CRT
When a CRT terminal is in use, the ECHOE bit of the c_lflag field of the termios structure can
be set to cause input to be erased from the screen with a backspace-space-backspace sequence
when character-deleting or word-deleting sequences are used.

Output Processing
When one or more characters are written, they are actually transmitted to the terminal as soon as
previously written characters have finished typing. Input characters are normally echoed by put-
ting them in the output queue as they arrive. When a process produces characters more rapidly
than the terminal can accept them, it is suspended when its output queue exceeds some limit.
When the queue has come down to some threshold, the program resumes.

Line Control and Breaks
The tcsendbreak() function can cause a break condition for a specified amount of time. Break
conditions in the input are handled according to the value in the c_iflag field of the termios
structure. (Refer to Input Modes, earlier, for a complete list of the c_iflag field settings.)

When a TELNET disconnect is detected, all OSS open file descriptors are cleared if the terminal
window is a dynamic window or a static window with CLOCAL not set in the c_cflag field of
the termios structure. All outstanding write requests fail with the error [EIO]. All outstanding
read requests return zero bytes read. If CLOCAL is set on a static window, outstanding read and
write requests are queued until a new TELNET connection is established. If CLOCAL is not set
and a static window is a controlling terminal, a SIGHUP signal is sent to the window’s control-
ling process.

Interrupt Characters
When ISIG is set in the c_lflag word of termios, there are several characters that generate sig-
nals in both canonical and noncanonical mode; all are sent to the processes in the foreground
process group of the terminal. If NOFLSH is not set in c_lflag, these characters also flush pend-
ing input and output when typed at a terminal. The characters shown here are the default charac-
ters; the symbolic names of the indexes of these characters in the c_cc array of termios are also
shown. The characters are as follows:

^C VINTR (in c_cc) generates a SIGINT signal. This is the normal way to stop a
process or to regain control in an interactive program.

^\ VQUIT (in c_cc) generates a SIGQUIT signal. This causes a program to ter-
minate and produce a saveabend file, if possible, in the current directory.

^Z VSUSP (in c_cc) generates a SIGTSTP signal, which is used to suspend the
current process group.

Terminal Access Control
If a process attempts to read from its controlling terminal when the process is not in the fore-
ground process group of the terminal, that background process group is sent a SIGTTIN signal,
the read returns a -1, and errno is set to [EINTR]. This signal normally causes the members of
that process group to stop. If, however, the process is ignoring SIGTTIN or has SIGTTIN
blocked, or if the reading process’s process group is orphaned, the read returns the value -1 with
errno set to [EIO] and does not send a signal.

If a process attempts to write to its controlling terminal when the process is not in the foreground
process group of the terminal, and if TOSTOP is set in the c_lflag word of the termios structure,
the background process group is sent a SIGTTOU signal and the process is prohibited from writ-
ing. If TOSTOP is not set, or if TOSTOP is set and the process is blocking or ignoring the

11−74 Hewlett-Packard Company 527186-023

Files tty(7)

SIGTTOU signal, the writes to the terminal are allowed and the SIGTTOU signal is not sent. If
TOSTOP is set, if the writing process’s process group is orphaned, and if SIGTTOU is not
blocked by the writing process, the write operation returns the value -1 with errno set to [EIO]
and does not a send a signal.

The tty Parameters
In contrast to earlier versions of the tty driver, the OSS terminal parameters and structures are
contained in a single structure, which is the termios structure defined in the termios.h file.

Basic System Calls
A large number of system calls apply to terminals. The applicable calls follow:

tcgetattr() Gets the termios structure and all of its associated parameters. The interface
delays until output is quiescent, then throws away any unread characters.

tcsetattr(TCSANOW)
Immediately sets the parameters according to the termios structure.

tcsetattr(TCSADRAIN)
Waits until all output is transmitted and input is read before setting the parame-
ters according to the termios structure.

tcsetattr(TCSAFLUSH)
Waits until all output is transmitted before setting the parameters according to
the termios structure. Discards all unread input before setting the parameters.

tcflush() Flushes unread input data, nontransmitted output data, or both.

The following system calls perform miscellaneous functions on the controlling terminal. In cases
where arguments are required, they are described as a parameter named arg. Otherwise, arg
should be specified as the value 0 (zero).

tcflow(TCIOFF)
Output is stopped as if the STOP character were typed.

tcflow(TCION)
Output is restarted as if the START character were typed.

tcflow(TCOOFF)
Output is suspended.

tcflow(TCOON)
Suspended output is restarted.

tcgetpgrp() The arg parameter is a pointer to an int parameter into which is placed the pro-
cess group ID of the process group for which this terminal is the control terminal.

tcsetpgrp() The arg parameter is a pointer to an int parameter containing the value to which
the process group ID for this terminal will be set.

FILES
/dev/tty Special file for a tty device.

527186-023 Hewlett-Packard Company 11−75

tty(7) OSS System Calls Reference Manual

RELATED INFORMATION
Functions: tcdrain(3), tcflush(3), tcgetattr(3), tcgetpgrp(3), tcsendbreak(3), tcsetattr(3),
tcsetpgrp(3).

Commands: sh(1).

Files: termios(4).

11−76 Hewlett-Packard Company 527186-023

Section 12. Miscellaneous

This section contains reference pages for some miscellaneous Open System Services
(OSS) topics. These reference pages reside in the cat5 directory and are sorted
alphabetically by U.S. English conventions in this section.

527186-023 Hewlett-Packard Company 12−1

acl(5) OSS System Calls Reference Manual

NAME
acl - Introduction to OSS access control lists (ACLs)

DESCRIPTION
Access control lists (ACLs) are a key enforcement mechanism of discretionary access control
(see "Definitions" later in this reference page). ACLs specify access to files by users and groups
more selectively than traditional UNIX mechanisms.

OSS already enables nonprivileged users or processes, such as file owners, to allow or deny other
users access to files and other objects as determined by their user identity, group identity, or both.
This level of control is accomplished by setting or manipulating a file’s permission bits to grant
or restrict access by owner, group, and others (see the chmod(2) reference page).

ACLs offer a greater degree of selectivity than permission bits. ACLs allow a process whose
effective user ID matches the file owner, super ID, or a member of the Safeguard SECURITY-
OSS-ADMINISTRATOR security group to permit or deny access to a file to a list of specific
users and groups.

ACLs are supported as a superset of the UNIX operating system discretionary access control
(DAC) mechanism for files, but not for other objects such as interprocess communication (IPC)
objects.

All OSS system calls that include pathnames are subject to the ACLs on any directory or file in
the path.

OSS ACLs:

• Are supported in Version 3 catalog OSS filesets on J-series RVUs, on H06.08 and later
H-series RVUs, and G06.29 and later G-series RVUs.

• Are supported for directories, regular files, first-in, first-out (FIFO) special files, and
bound AF_UNIX sockets.

• Support up to 150 ACL entries.

• Support separate permissions for up to 146 additional users and groups.

• Support default ACL inheritance (see "ACL Inheritance" later in this reference page).

• Are based on the POSIX 1003.1e draft standard and the HP-UX implementation of
ACLs.

• Are not supported by the OSS Network File System (NFS) for J06.08 and earlier J-series
RVUs, H06.19 and earlier H-series RVUs, or G-series RVUs. All attempts by NFS
clients to access OSS objects protected by ACLs that contain optional ACL entries are
denied.

• Are supported by the OSS NFS for J06.09 and later J-series RVUs and H06.20 and later
H-series RVUs as follows:

— Access by OSS NFS clients to OSS objects protected by optional ACL entries
can be allowed, depending upon the NFSPERMMAP attribute value for the OSS
fileset that contains the object.

— The NFSPERMMAP attribute value specifies the algorithm used to map the OSS
ACL permissions for the object to the standard permissions bits (rwxrwxrwx)
expected for the object by NFS V2 clients.

12−2 Hewlett-Packard Company 527186-023

Miscellaneous acl(5)

— The default value for the NFSPERMMAP attribute, DISABLED, specifies that
all attempts by NFS clients to access OSS objects protected by ACLs that con-
tain optional ACL entries are denied. This behavior matches the behavior for
J06.08 and earlier J-series RVUs, H06.19 and earlier H-series RVUs, and G-
series RVUs.

For more information about NFS and ACLs, see "OSS Network File System (NFS) and
ACLs" later in this reference page.

Definitions
Control of access to data is a key concern of computer security. These definitions, based on the
Department of Defense Trusted Computer System Evaluation Criteria, explain the concepts of
access control and its relevance to OSS security features:

access A specific type of interaction between a subject and an object that results in the
flow of information from one to the other. Subjects include persons, processes,
or devices that cause information to flow among objects or change the system
state. Objects include files (ordinary files, directories, special files, FIFOs, and so
on) and IPC features (shared memory, message queues, semaphores, and sock-
ets).

access control list (ACL)
An access control list is a set of user.group, mode entries associated with a file
that specifies permissions for all possible combinations of user IDs and group
IDs.

access control list (ACL) entry
An entry in an ACL that specifies access rights for a file owner, owning group,
group class, additional user, additional group, or all others.

change permission
The right to alter DAC information (permission bits or ACL entries). Change
permission is granted to object (file) owners and to privileged users.

discretionary access control (DAC)
A means of restricting access to objects based on the identity of subjects, groups
to which they belong, or both. The controls are discretionary because a subject
with a certain access permission is able to pass that permission (perhaps
indirectly) to any other subject.

mode Three bits in each ACL entry that represent read, write, and execute or search
permissions.

privilege The ability to ignore access restrictions and change restrictions imposed by secu-
rity policy and implemented in an access control mechanism. In OSS, the super
ID is the only user ID that can ignore access restrictions. However, the super ID
and any member of the Safeguard SECURITY-OSS-ADMINISTRATOR secu-
rity group can change the ownership and access permissions (standard UNIX
permissions or ACL entries) of a file.

Access Control List Entries
An ACL consists of a set of one-line entries that specify permissions for a file. Each entry
specifies for one user-ID or group-ID a set of access permissions, including read, write, and
execute/search.

To understand the relationship between access control lists and traditional file permissions, con-
sider the following file and its permissions:

527186-023 Hewlett-Packard Company 12−3

acl(5) OSS System Calls Reference Manual

-rwxr-xr-- james admin datafile

For this file:

• The owner is the user james.

• The group is admin.

• The name of the file is datafile.

• The file owner permissions are rwx.

• The file group permissions are r-x.

• The file other permissions are r--.

In an ACL, user and group IDs are represented by names or numbers, as found in the user authen-
tication database and group database for the system.

ACL Notation
Supported commands that manage ACLs recognize these symbolic representations:

[d[efault]:]u[ser]:[uid]:perm
[d[efault]:]g[roup]:[gid]:perm
[d[efault]:]c[lass]:perm
[d[efault]:]o[ther]:perm

An ACL entry prefixed with d: or default: can only occur in ACLs for directories. The prefix
indicates that the remainder of the entry is not to be used in determining the access rights to the
directory but is instead to be applied to any files or subdirectories created in the directory (see
"ACL Inheritance" later in this reference page).

The uid and gid fields contain either numeric user or group IDs, or their corresponding character
strings from the authentication database and group database for the system.

The perm field indicates access permission either in symbolic form, as a combination of r, w, x,
and - (dash), or in numeric form, as an octal value of 0 through 7 representing the sum of 4 for
read permission, 2 for write permission, and 1 for execute permission.

Types of ACL Entries
An ACL can contain several types of entries:

Base ACL Entries
The base ACL entries grant permissions equivalent to standard UNIX permis-
sions. When an ACL consists of the four base ACL entries only, it is called a
minimal ACL, and the permissions for the class and other ACL entries are
equal. The chmod() and acl() functions can change base ACL entries. Base
ACL entries are:

__
Notation Entry Type Description__
user::perm USER_OBJ Permissions for the owner of the object
group::perm GROUP_OBJ Permissions for the owning group of the object
class:perm CLASS_OBJ The maximum permissions granted to the file group class
other:perm OTHER_OBJ Permissions for other users__�
�
�
�
�
�

�
�
�
�
�
�

Class Entry The class entry, which is one of the base ACL entries, acts as an upper bound for
file permissions. In an ACL that contains optional group entries or optional user
entries, the class entry specifies the maximum permissions that can be granted
to:

12−4 Hewlett-Packard Company 527186-023

Miscellaneous acl(5)

• Members of the owning group

• Any additional user entries (optional users)

• Any additional group entries (members of any optional groups)

The class entry is useful because it allows you to restrict the permissions for all
of the other ACL entries by changing only one ACL entry. If optional user or
optional group ACL entries are present, the chmod command changes the per-
missions of the class ACL entry instead of the permissions of the owning group.
This behavior allows programs that use the chmod command to support files or
directories that have permissions for additional users and groups.

Optional ACL Entries
Optional ACL entries are ACL entries other than the base ACL entries. Optional
ACL entries grant permissions beyond the standard UNIX permissions and can
be used to further allow or deny access to the file. A file or directory is con-
sidered to "have an ACL" only if optional ACLs are present. In OSS, you can
specify up to 146 optional ACL entries in an ACL. You use the setacl command
or the acl() system call to set ACL entries. Nondefault optional ACL entries
include:

__
Notation Entry Type Description__
user:uid:perm USER Permissions for the user specified by uid
group:gid:perm GROUP Permissions for the group specified by gid__��
�
�

��
�
�

Examples of nondefault optional ACL entries:

u:mary:rwx
Grant read, write, and execute access to the user mary.

user:george:---
Deny access to the user george.

g:writers:rw-
Grant read and write access to all members of the group writers.

Actual ACL Entries
The base ACL entries, optional user ACL entries, and optional group ACL
entries are considered "actual" ACL entries because they actually control access
to the associated file or directory. These ACL entries are also called nondefault
ACL entries. Contrast with "Default ACL Entries."

Default ACL Entries
Default ACL entries are allowed for directories only. Default ACL entries do not
determine who can access the directory. Instead, default ACL entries affect the
access permissions for files or directories created in the directory (see "ACL
Inheritance" later in this reference page). All default ACL entries are optional
ACL entries. Default ACL entries include:

527186-023 Hewlett-Packard Company 12−5

acl(5) OSS System Calls Reference Manual

Notation Entry Type Description__
default:user::perm DEF_USER_OBJ Default permissions for the object owner

Default permissions for additional users
specified by uid

default:user:uid:perm DEF_USER

Default permissions for members of the
owning group of the object

default:group::perm DEF_GROUP_OBJ

Default permissions for members of the
additional group specified by gid

default:group:gid:perm DEF_GROUP

Default maximum permissions granted to
the file group class

default:class:perm DEF_CLASS_OBJ

default:other:perm DEF_OTHER_OBJ Default permissions granted to other users__�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

These entries are sometimes referred to as base default ACL entries because the permissions for
these entries in the parent directory, modified by the file-creation mode, the umask, or both,
become the permissions for the base ACL entries for a new file when the new file inherits ACL
entries from the parent directory:

• default:user::perm (DEF_USER_OBJ)

• default:group::perm (DEF_GROUP_OBJ)

• default:class:perm (DEF_CLASS_OBJ)

• default:other:perm (DEF_OTHER_OBJ)

ACL Uniqueness
Entries are unique in each ACL. An ACL can contain only one of each type of base entry, and
one entry for any given user or group ID. Likewise, an ACL can contain only one of each type of
default base entry, and one default entry for any given user or group ID.

ACL Inheritance
The permissions, including access control list entries, if any, for a newly created file are deter-
mined by:

• Whether the fileset of the created file supports OSS ACLs

• Whether the system on which the process is running supports OSS ACLs

• Whether the parent directory of the created file contains default ACL entries

• The file-creation mode (mode)

• The process umask (umask)

If the fileset does not support OSS ACLs, the permissions of the created file are the mode
bitwise-ANDed with the complement of the umask.

If the fileset supports OSS ACLs, but the system on which the process is running does not sup-
port OSS ACLs, and the parent directory for the created file does not have default ACL entries,
the permissions of the created file are the mode bitwise-ANDed with the complement of the
umask.

If the fileset supports OSS ACLs, but the system on which the process is running does not sup-
port OSS ACLs, and the parent directory for the created file has default ACL entries:

• The permissions for the base ACL entries of the created file or directory are determined
by a combination of the file-creation mode and the default base ACL entries of the parent
directory as follows:

12−6 Hewlett-Packard Company 527186-023

Miscellaneous acl(5)

USER_OBJ permissions
The DEF_USER_OBJ permissions bitwise-ANDed with the mode user
permissions bitwise-ANDed with the complement of the umask user
permissions.

GROUP_OBJ permissions
The DEF_GROUP_OBJ permissions

CLASS_OBJ permissions
The DEF_CLASS_OBJ permissions bitwise-ANDed with the mode
group permissions bitwise-ANDed with the complement of the umask
group permissions

OTHER_OBJ permissions
The DEF_OTHER_OBJ permissions bitwise-ANDed with the mode
other permissions bitwise-ANDed with the complement of the umask
other permissions

• The default optional ACL entries for the parent directory of the created file are added to
the ACL of the created file as actual (nondefault) optional ACL entries.

• If the created file is a directory, all of the default ACL entries of the parent directory are
added to the ACL of the new directory. This behavior allows ACL entries to be inherited
by files and directories created under this new directory.

If both the fileset for the created file and the system in which the process is running support OSS
ACLs, and the parent directory for the created file does not have default ACL entries, the permis-
sions of the created file are the mode bitwise-ANDed with the complement of the umask.

If both the fileset for the created file and the system in which the process is running support OSS
ACLs, and the parent directory of the created file contains default ACL entries:

• The permissions for the base ACL entries of the created file or directory are determined
by a combination of the file-creation mode and the default base ACL entries of the parent
directory as follows:

USER_OBJ permissions
The DEF_USER_OBJ permissions bitwise-ANDed with the mode user
permissions

GROUP_OBJ permissions
The DEF_GROUP_OBJ permissions

CLASS_OBJ permissions
The DEF_CLASS_OBJ permissions bitwise-ANDed with the mode
group permissions

OTHER_OBJ permissions
The DEF_OTHER_OBJ permissions bitwise-ANDed with the mode
other permissions

• The default optional ACL entries for the parent directory of the created file are added to
the ACL of the created file as actual (nondefault) optional ACL entries.

• If the created file is a directory, all of the default ACL entries of the parent directory are
copied to the ACL of the new directory. This behavior allows default ACL entries to be
inherited by files and directories created under this new directory.

527186-023 Hewlett-Packard Company 12−7

acl(5) OSS System Calls Reference Manual

For security reasons, if an ACL contains default ACL entries, all of the default base ACL entries
should be provided. During ACL inheritance, if any default base ACL entries are missing, the
permissions for the missing default base ACL entries are derived as follows:

DEF_USER_OBJ permissions
The complement of the umask user permissions

DEF_GROUP_OBJ permissions
The complement of the umask group permissions

DEF_CLASS_OBJ permissions
The complement of the umask group permissions

DEF_OTHER_OBJ permissions
The complement of the umask other permissions

Examples of ACL Inheritance
Directory /a has the following ACL, as reported by the getacl command:

file: /a
owner: alpha
group: uno
user::rwx
group::rwx
class:rwx
other:rwx
default:user:beta:r--
default:user:gamma:r--
default:group:dos:---
default:group:tres:---

In this example, the ACL for a new file created in the directory /a includes the default ACL
entries for directory /a as actual (nondefault) ACL entries:

file: /a/newfile
owner: creator_uid
group: creator_gid
user::rw-
user:beta:r--
user:gamma:r--
group::r--
group:dos:---
group:tres:---
class:r--
other:r--

In this example, a new directory, dir is created in the /a directory. The default ACL entries of the
parent directory, /a, are added to the ACL of the new subdirectory twice, first as actual (nonde-
fault) ACL entries and second as the default ACL entries. This behavior ensures that default
ACLs propagate downward as trees of directories are created. This example shows the ACL of
the new directory, dir:

file: /a/dir
owner: creator_uid
group: creator_gid
user::rwx
user:beta:r--

12−8 Hewlett-Packard Company 527186-023

Miscellaneous acl(5)

user:gamma:r--
group::r-x
group:dos:---
group:tres:---
class:r-x
other:r-x
default:user:beta:r--
default:user:gamma:r--
default:group:dos:---
default:group:tres:---

Access Check Algorithm
To determine the permissions granted to an accessing process, the operating system checks for
matching IDs in the following order:

1. If the EUID of the process is the same as the owner of the file, grant the permissions
specified in the user:: entry of the ACL. Otherwise, continue to the next check.

2. If the EUID matches the UID specified in one of the additional user:uid: ACL entries,
grant the permissions specified in that entry bitwise-ANDed with the permissions
specified in the class entry. Otherwise, continue to the next check.

3. If the EGID or a supplementary GID of the process matches the owning GID of the file or
one of the GIDs specified in any additional group:gid: ACL entries, grant the permis-
sions specified in the class entry bitwise-ANDed with the result of bitwise-ORing
together all of the permissions in all matching group entries. Otherwise, continue to the
next check.

4. Grant the permissions specified in the other: ACL entry.

Because the checks are performed in this order and the ID match checking stops when a match is
found, you can use optional user or group ACL entries with restrictive permissions to deny
access to certain users or groups.

If the EGID, the supplementary GIDs of the process, or both match the GIDs of multiple group
ACL entries for a file, the process is granted the permissions of all of the matching group entries,
restricted by the permissions in the class entry. For example, assume that the effective user ID for
a process represents the user beta, and the group IDs for that process represent group member-
ship only in the dos and tres groups. In this example, that process is allowed to open the file
/a/file with read/write access, because the group:dos: entry granted read access, the group:tres:
entry granted write access, and the class: entry allowed read and write access.

file: /a/file
owner: creator_uid
group: creator_gid
user::rw-
group::rw-
group:dos:r--
group:tres:-w-
class:rw-
other:r--

527186-023 Hewlett-Packard Company 12−9

acl(5) OSS System Calls Reference Manual

ACL Operations Supported
• The acl() system call sets, retrieves, or counts ACLs.

• The setacl command sets or modifies ACLs.

• The getacl command retrieves ACLs.

• The -acl option of the find command locates files with certain ACL properties.

• The cp, cpio -p, mv, and pax -rw commands copy ACLs with the source files to the des-
tination files.

• The Backup and Restore 2 utility backs up ACLs with the files on tape and restores
ACLs with the files back to disk.

ACL Interaction with stat(), chmod(), and chown()
stat() The st_mode field summarizes the access rights to the file. It differs from file per-

mission bits only if the file has one or more optional ACL entries. If one or more
optional ACL entries are present in the ACL of the file, the permissions specified
in the class entry of the ACL are returned as the permissions for group in the
st_mode field. Because of this behavior, programs that use the stat() or chmod()
functions and are ignorant of ACLs are more likely to produce expected results.
The st_acl field indicates the presence of optional ACL entries in the ACL for
the file. The st_basemode field provides the owning user permissions, owning
group permissions, and other permissions for the file.

chmod() Using the chmod() function to set the group permission bits affects the class:
entry for the file, which in turn affects the permissions granted by additional
user:uid: and group:gid: entries. In particular, using chmod() to set file per-
mission bits to all zeros removes all access to the file, regardless of permissions
granted by any additional user:uid: or group:gid: entries. If the chmod() func-
tion is used on an object that does not have optional ACL entries, both the class
ACL entry and the owning group ACL entry permission bits are changed to the
new group permissions value.

chown() If you use the chown() function to change the owner or owning group of a file to
a user ID or group ID that has an existing user:uid: or group:gid: entry in the
ACL for the file, those existing entries are not removed from the ACL. However,
those existing entries no longer have any effect, because the user:: or group::
entries take precedence.

OSS Network File System (NFS) and ACLs
For J06.09 and later J-series RVUs and H06.20 and later H-series RVUs, access by the OSS Net-
work File System (NFS) to OSS objects protected by ACLs that contain optional ACL entries can
be allowed, depending upon the NFSPERMMAP attribute value for the fileset that contains the
object.

The NFSPERMMAP attribute is an attribute of the OSS fileset and is set using Subsystem Con-
trol Facility (SCF) commands. For information about OSS SCF commands, see the Open System
Services Management and Operations Guide.

NFS Version 2 (NFS V2) clients make their own access decisions based on their interpretation of
the permissions bits of the object. Because NFS Version 2 does not support ACLs, the ACL
entries must be mapped to the nine basic permissions bits (rwxrwxrwx) used for objects in NFS.
An object that is protected by an ACL cannot reflect the correct access for all users in these nine
permission bits. It may be that access that would be granted by the mapped permission bits is
actually denied explicitly by the ACL. It may also be that access that seems to be denied by the
mapped permission bits is, in fact, granted explicitly by the ACL.

12−10 Hewlett-Packard Company 527186-023

Miscellaneous acl(5)

The value of the NFSPERMMAP attriute specifies how the permissions for an OSS object pro-
tected by optional access control list (ACL) entries are mapped to the standard permissions bits
(rwxrwxrwx) used by NFS V2 clients on open, read, write, and directory search operations. Write
permissions are always enforced on the NonStop server using the actual standard OSS permis-
sions or OSS ACL permissions (if present) on the object. The values for the NFSPERMMAP
attribute are:

RESTRICTIVE
The other and owning group fields of the permissions bits returned to NFS V2
clients are modified such that only access that would be granted to everyone in
the ACL, excluding the owner, is granted in the permissions bits. That is:

• The ACL entries for the class mask, the owning group, and all optional
users are examined. The group permissions returned to NFS V2 clients
for this object are the most restrictive of the permissions bits of these
ACL entries.

• The ACL entries for the class mask, the owning group, other, all
optional groups, and all optional users are examined. The other permis-
sions returned to NFS V2 clients for this object are the most restrictive
of the permissions bits of these ACL entries.

Setting NFSPERMAP to this value can cause some users on NFS V2 clients to
be denied access to objects to which they should legitimately be granted acceses
according to the OSS ACL on the NonStop server.

PERMISSIVE The other and owning group fields of the permissions bits returned to NFS V2
clients are modified such that access that would be granted to anyone in the
ACL, excluding the owner, is granted in the permissions bits. That is:

• The ACL entries for the class mask, the owning group, and all optional
users are examined. The group permissions returned to NFS V2 clients
for this object are the most permissive of the permissions bits, as
allowed by the class mask, of these ACL entries.

• The ACL entries for the class mask, the owning group, other, all
optional groups, and all optional users are examined. The other permis-
sions returned to NFS V2 clients for this object are the most permissive
of the permissions bits for the other ACL entry and, as allowed by the
class mask, the ACL entries of the owning group, optional groups, and
optional users.

Setting NFSPERMMAP to this value guarantees that users who have read per-
mission in the OSS ACL for an object on the NonStop system will be able to
read the object on NFS V2 clients. However, it also allows users on the NFS V2
client who do not have read permission in the OSS ACL for an object on the
NonStop Server to be able to read data from the object when the data is cached
on the NFS V2 client.

UNMODIFIED
The other and user fields of the permissions bits returned to NFS V2 clients are
unmodified. The group field of the permissions bits returned to NFS V2 clients
are the permissions of the class entry of the ACL. This set of permissions bits
matches the permissions that are displayed on the NonStop server by a command
such as the ls command.

527186-023 Hewlett-Packard Company 12−11

acl(5) OSS System Calls Reference Manual

DISABLED Disables the mapping of OSS ACLs to NFS file permissions. When
NFSPERMMAP is disabled, NFS requests to objects protected by OSS ACLs
that contain optional ACL entries are denied. This behavior matches the
behavior for systems running J06.08 and earlier J-series RVUs, H06.19 and ear-
lier H-series RVUs, and G-series RVUs. This is the default value.

To demonstrate the effect of the value of NFSPERMMAP attribute on the permissions returned to
NFS V2 clients, consider this file:

> setacl -m g:GRP1:--x myfile1
> getacl myfile1
file: myfile1
owner: SUPER.SUPER
group: SUPER
user::rw-
user:TEST.USER01:--x
user:SUPER.USER01:-w-
group::r--
group:TEST1:-w-
group:GRP1:--x
class:rwx
other:rw-

The ACL for the file myfile1 has two optional user entries and two optional group entries. The
permissions returned to the OSS NFS V2 clients are as follows:

• If the NFSPERMMAP attribute is set to RESTRICTIVE, the permissions returned are:
rw-------.

• If the NFSPERMMAP attribute is set to PERMISSIVE, the permissions returned are:
rw-rwxrwx.

• If the NFSPERMMAP attribute is set to UMODIFIED, the permissions returned are:
rw-rwxrw-.

• If the NFSPERMMAP attribute is set to DISABLED, all OSS NFS V2 clients are denied
access to this file.

In the example, a user in the group TEST1 is allowed write access to myfile1 if that user
accesses the file using the OSS filesystem. But, if NFSPERMMAP is RESTRICTIVE, and that
user tries to access myfile1 using the NFS V2 client, that user is denied access to the file.

In contrast, if NFSPERMMAP is PERMISSIVE the permissions returned for myfile1 indicate
that user TEST.USER01 has permission to write to the file. However, because the ACL for the
file does not grant write permission to TEST.USER01, attempts to open the file might succeed
but attempts to write to the file fail with the [EACCESS] error because all write permissions are
enforced on the NonStop server using the actual standard OSS permissions or OSS ACL permis-
sions (if present) on the file.

For more information about OSS NFS file system security, see the Overview of NFS for Open
System Services and the Open System Services NFS Management and Operations Guide.

When using NFS with OSS filesets with objects protected by optional ACL entries, consider the
following:

• NFS client/server interactions work most efficiently for read-only OSS filesets when the
OSS filesets are mounted read-only on the NFS client systems instead of setting the
readonly attribute in either the OSS NFS server configuration or OSS fileset

12−12 Hewlett-Packard Company 527186-023

Miscellaneous acl(5)

configuration. NFS client attempts to write to a read-only OSS fileset are reported
immediately to the NFS client application.

• If an OSS fileset has objects protected by optional OSS ACL entries, if you mount that
fileset from NFS client systems as read-write, you must use mount options that disable
write buffering. Because of the behavior of some NFS V2 clients, if you do not disable
write buffering, the server might not receive the correct user ID information from the
NFS client, which can result in write requests being denied or data being written to a file
by a client that should have been denied write access. See the description of the OSS
fileset NFSPERMMAP attribute in the Open System Services NFS Management and
Operations Guide

• Changing the NFSPERMMAP attribute on an OSS fileset in which NFS clients currently
have open files can confuse some NFS client software. See the discussion about chang-
ing the operating parameters of a fileset in the Open System Services Management and
Operations Guide.

HEADERS
sys/acl.h

The sys/acl.h header file defines the following constants to govern the number of entries per
ACL:

NACLENTRIES
The maximum number of entries per ACL, including base entries

NACLBASE The number of base entries

For compatibility with HP-UX, the variable name NACLVENTRIES is provided as an
alias for NACLENTRIES.

The ACL structure struct acl is also defined and includes these fields:

int a_type; /* type of entry */
uid_t a_id; /* group ID */
unsigned short a_perm; /* see <unistd.h> */

The sys/acl.h header defines the set of valid values for the a_type field in addition to the
valid values for the cmd parameter of the acl() function.

EXAMPLE PROGRAM
This program provides simple examples of acl(2) and aclsort(3) usage.

/* This program provides simple examples of acl(2) and aclsort(3) usage.

* It adds a GROUP ACL entry (with read permissions) to the ACL of the

* file. The file pathname and group ID number are passed as command

* arguments.

* To run:

* addACLgroup <pathname> <group ID number>

* This program performs the following steps:

* 1. Acquires the count of ACL entries in the ACL on the file

* using acl(ACL_CNT).

* 2. Allocates memory for the ACL buffer using malloc().

* 3. Acquires the existing ACL on the file using acl(ACL_GET).

* 4. Adds a new GROUP ACL entry to the end of the ACL buffer.

* 5. Calls aclsort() to sort the ACL entries in the ACL buffer

* into the proper order.

* 6. Sets the new ACL on the file using acl(ACL_SET).

527186-023 Hewlett-Packard Company 12−13

acl(5) OSS System Calls Reference Manual

* If you run this program twice on the same file, it will report

* an error in aclsort() as you are trying to add a second group ACL entry

* for the same group id. aclsort() points to the ACL entry in error.

*/

#include <stdlib.h>

#include <sys/types.h>

#include <stdio.h>

#include <string.h>

#include <acl.h>

#include <errno.h>

#define READPERM 4

#define CALCCLASS 1

typedef struct acl acl_t;

void printAcl(char *header, acl_t *aclEnt, int count)

{

int i;

printf("%s\n",header);

for (i= 0; i < count; i++) {

printf("acl entry %d ", i);

printf("\ta_type = %d ", aclEnt[i].a_type);

printf("\ta_id = %d ", aclEnt[i].a_id);

printf("\ta_perm = %o\n", aclEnt[i].a_perm);

}

}

main(int argc, char *argv[])

{

acl_t *aclEnt = 0; /* pointer to ACL buffer */

char *pathname = 0; /* pointer to pathanme */

int prevCount, newCount; /* counts of ACL entries */

int groupId; /* group ID number for new ACL entry */

int error; /* error variable */

pathname = argv[1]; /* get ptr to pathname command argument */

groupId = atoi(argv[2]); /* get groupId command argument value */

printf("Input pathname = %s, input groupId = %d\n", pathname, groupId);

/* find out how many ACL entries in the existing ACL on the object */

if ((prevCount = acl(pathname, ACL_CNT, NACLENTRIES, aclEnt)) == -1) {

printf("acl(ACL_CNT) error= %d, text = %s\n", errno, strerror(errno));

return 1;

}

printf("Number of ACL entries = %d\n", prevCount);

/* Allocate space, reserving 1 extra ACL entry for the new GROUP entry */

newCount = prevCount + 1;

if ((aclEnt = (acl_t *) malloc(newCount * sizeof(acl_t))) == 0) {

printf("malloc error= %d, text = %s\n", errno, strerror(errno));

return 1;

}

/* Acquire the existing ACL on the object */

if ((prevCount = acl(pathname, ACL_GET, prevCount, aclEnt)) == -1) {

printf("acl(ACL_GET) error= %d, text = %s\n", errno, strerror(errno));

free(aclEnt);

12−14 Hewlett-Packard Company 527186-023

Miscellaneous acl(5)

return 1;

}

printAcl("Existing ACL entries", aclEnt, prevCount);

/* add new GROUP acl entry at the end of the ACL */

aclEnt[newCount-1].a_type = GROUP;

aclEnt[newCount-1].a_id = groupId;

aclEnt[newCount-1].a_perm = READPERM;

printAcl("New ACL entries before aclsort()",aclEnt, newCount);

/* sort all of the ACL entries into proper order for acl(ACL_SET) */

if ((error = aclsort(newCount, CALCCLASS, aclEnt)) != 0) {

printf("aclsort() error = %d\n", error);

free(aclEnt);

return 1;

}

printAcl("New ACL entries after aclsort()", aclEnt, newCount);

/* now set the new ACL on the object */

if ((error = acl(pathname, ACL_SET, newCount, aclEnt)) == -1) {

printf("acl(ACL_SET) error= %d, text = %s\n", errno, strerror(errno));

free(aclEnt);

return 1;

}

free(aclEnt);

return 0;

}

WARNINGS
You cannot use ACLs to restrict the access of the super ID.

Of the various file archive utilities (such as ar, Backup and Restore 2, cpio, pax, and tar), only
the Backup and Restore 2 utility can back up and restore any optional ACL entries associated
with an OSS file. For more information, see the ACL restrictions in the reference pages for the
other file archive utilities.

FILES
sys/acl.h Header file that supports the acl() function.

sys/aclv.h Header file that includes the sys/acl.h header file for compatibility with
HP-UX.

RELATED INFORMATION
Commands: chmod(1), cp(1), find(1), getacl(1), ln(1), ls(1), mv(1), rm(1), setacl(1), fsck(1).

Functions: access(2), acl(2), chmod(2), chown(2), creat(2), mknod(2), open(2), stat(2),
aclsort(3).

527186-023 Hewlett-Packard Company 12−15

ascii(5) OSS System Calls Reference Manual

NAME
ascii - Describes the octal, hexadecimal, and decimal ASCII character sets

DESCRIPTION
The octal character set is as follows:

Table 12−1. ASCII Character Set Octal Values

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack
007 bel 010 bs 011 ht 012 nl 013 vt 014 np 015 cr
016 so 017 si 020 dle 021 dc1 022 dc2 023 dc3 024 dc4
025 nak 026 syn 027 etb 030 can 031 em 032 sub 033 esc
034 fs 035 gs 036 rs 037 us 040 sp 041 ! 042 "
043 # 044 $ 045 % 046 & 047 ’ 050 (051)
052 * 053 + 054 , 055 - 056 . 057 / 060 0
061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 : 073 ; 074 < 075 = 076 >
077 ? 100 @ 101 A 102 B 103 C 104 D 105 E
106 F 107 G 110 H 111 I 112 J 113 K 114 L
115 M 116 N 117 O 120 P 121 Q 122 R 123 S
124 T 125 U 126 V 127 W 130 X 131 Y 132 Z
133 [134 \ 135] 136 ˆ 137 _ 140 ‘ 141 a
142 b 143 c 144 d 145 e 146 f 147 g 150 h
151 i 152 j 153 k 154 l 155 m 156 n 157 o
160 p 161 q 162 r 163 s 164 t 165 u 166 v
167 w 170 x 171 y 172 z 173 { 174 | 175 }
176 ˜ 177 del

The hexadecimal character set is as follows:

Table 12−2. ASCII Character Set Hexadecimal Values

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack
07 bel 08 bs 09 ht 0a nl 0b vt 0c np 0d cr
0e so 0f si 10 dle 11 dc1 12 dc2 13 dc3 14 dc4
15 nak 16 syn 17 etb 18 can 19 em 1a sub 1b esc
1c fs 1d gs 1e rs 1f us 20 sp 21 ! 22 "
23 # 24 $ 25 % 26 & 27 ’ 28 (29)
2a * 2b + 2c , 2d - 2e . 2f / 30 0
31 1 32 2 33 3 34 4 35 5 36 6 37 7
3f ? 38 8 39 9 3a : 3b ; 3c < 3d =
3e > 40 @ 41 A 42 B 43 C 44 D 45 E
46 F 47 G 48 H 49 I 4a J 4b K 4c L
4d M 4e N 4f O 50 P 51 Q 52 R 53 S
54 T 55 U 56 V 57 W 58 X 59 Y 5a Z
5b [5c \ 5d] 5e ˆ 5f _ 60 ` 61 a
62 b 63 c 64 d 65 e 66 f 67 g 68 h
69 i 6a j 6b k 6c l 6d m 6e n 6f o
70 p 71 q 72 r 73 s 74 t 75 u 76 v
77 w 78 x 79 y 7a z 7b { 7c | 7d }
7e ˜ 7f del

12−16 Hewlett-Packard Company 527186-023

Miscellaneous ascii(5)

The decimal character set is as follows:

Table 12−3. ASCII Character Set Decimal Values

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack
7 bel 8 bs 9 ht 10 nl 11 vt 12 np 13 cr
14 so 15 si 16 dle 17 dc1 18 dc2 19 dc3 20 dc4
21 nak 22 syn 23 etb 24 can 25 em 26 sub 27 esc
28 fs 29 gs 30 rs 31 us 32 sp 33 ! 34 "
35 # 36 $ 37 % 38 & 39 ’ 40 (41)
42 * 43 + 44 , 45 - 46 . 47 / 48 0
49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 >
63 ? 64 @ 65 A 66 B 67 C 68 D 69 E
70 F 71 G 72 H 73 I 74 J 75 K 76 L
77 M 78 N 79 O 80 P 81 Q 82 R 83 S
84 T 85 U 86 V 87 W 88 X 89 Y 90 Z
91 [92 \ 93] 94 ˆ 95 _ 96 ‘ 97 a
98 b 99 c 100 d 101 e 102 f 103 g 104 h
105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v
119 w 120 x 121 y 122 z 123 { 124 | 125 }
126 ˜ 127 del

527186-023 Hewlett-Packard Company 12−17

environ(5) OSS System Calls Reference Manual

NAME
environ - Contains the user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
An array of strings called the environment is made available by the execl(), execle(), execlp(),
execv(), execve(), execvp(), tdm_execve(), or tdm_execvep() function when a process begins.
The same array is optionally made available by the tdm_spawn() or tdm_spawnp() function
when a process begins.

COBOL programs also have access to the environment when the COBOL SAVE ALL directive
is used at compile time and the Guardian PARAM SAVE-ENVIRONMENT ON is used before
starting an OSS shell to run the program.

By convention, these strings have the form name=value. The names used by various commands
and utilities are:

AS1 Specifies the pathname of the C or C++ compiler component used when
binary assembly-code conversion to object code is requested. By
default, the program as1 in the directory /usr/lib is used. This environ-
ment variable is used for TNS/R-targeted compilations only.

CCOMBE Determines the pathname of the ccombe component of the C and C++
compilers. | /usr/cmplr/ccombe is the default location for the OSS
environment. |

This environment variable is used for TNS/E-targeted compilations only.

CACHE_CDS_SERVER
Specifies the name of the CDS server to cache. The cached server is not
required to be the initial CDS server. Used during CDS client
configuration by the dce_config command.

CACHE_CDS_SERVER_IP
Specifies the IP address of the CDS server to cache; used by the
dce_config command.

CDPATH Specifies the search path used for the cd command.

CDS_ADVERTISEMENTS
Controls the behavior of the CDS advertiser. When this variable has the
value n, the CDS advertiser is started with the -s switch by the
dce_config command, meaning the server does not send or receive
advertisements.

The default is y.

CDSD_DATABASE_DIR
Specifies the location of the CDS database files, which is a Guardian
subvolume holding NonStop SQL/MP tables. This value is a Guardian
subvolume name, expressed in OSS pathname format and surrounded by
quotation marks; for example, "/G/volume/subvol".

Used by the dce_config command.

12−18 Hewlett-Packard Company 527186-023

Miscellaneous environ(5)

CELL_ADMIN
Specifies the principal name of the initial privileged user of the registry
database (known as the "registry creator"). Used by the dce_config com-
mand during security server configuration.

CELL_ADMIN_PW
Specifies the default password assigned to the accounts created when the
registry database is created, including the account for the registry crea-
tor. Used by the dce_config command.

The default is -dce-.

CELL_NAME
Specifies the name of the cell (without the /.../) on which the
configuration is being performed. Used during security server
configuration by the dce_config command.

CFE Specifies the pathname of the C or C++ compiler used when C or C++
source statements are present. By default, the program cfe in the direc-
tory /usr/lib is used.

This environment variable is used for TNS/R-targeted compilations only.

check_time Specifies whether to check client and server clock synchronization. (All
lowercase characters is correct.)

Valid values are:

y Indicates time is checked

n Indicates time is not checked

The default is y.

Used by the dce_config command.

CLONE_FROM
Specifies the name of the virtual host to be used when cloning is per-
formed. Used by the dce_config command.

This variable is ignored unless CLONING_REQUIRED is set to y. If
CLONING_REQUIRED is set to y, CLONE_FROM must specify the
name of a virtual host that is already installed.

CLONING_REQUIRED
Specifies whether binary files of another virtual host should be shared
(cloned). Used by the dce_config command.

Valid values are:

y Indicates that cloning should occur

n Indicates that cloning should not occur

The default is n.

COMP_ROOT
Specifies a pathname prefix to be used to find the components of the c89
utility.

527186-023 Hewlett-Packard Company 12−19

environ(5) OSS System Calls Reference Manual

COPY_CONFIG_HOST
Specifies the name of the virtual host to be used when copying for
replica servers is performed. Used by the dce_config command.

This variable is ignored unless COPY_CONFIG_INFO is set to y. If
COPY_CONFIG_INFO is set to y, then COPY_CONFIG_HOST
must specify the name of a virtual host that is already installed.

COPY_CONFIG_INFO
Specifies whether the configuration should be copied from another vir-
tual host. Used by the dce_config command.

Copying implies that an additional CDS or security server is being
configured to be a replica of the virtual host named by the
COPY_CONFIG_HOST environment variable.

Valid values are:

y Indicates that copying should occur

n Indicates that copying should not occur

The default is n.

CPU_LIST Specifies the processors to be used by the virtual host being configured.
Used by the dce_config command.

Processor numbers must be separated by one or more spaces, and the list
of numbers must be enclosed in quotation marks. If a specified proces-
sor is down or not available, the system allocates a replacement proces-
sor.

CRON_NAMED
Specifies the process name to be used when the cron utility is run.

Valid values must conform to Guardian process name rules, cannot begin
with a Z, and must be specified in OSS pathname form
(/G/process_name) without the $ character.

DATEMSK Specifies the full pathname for the file of date templates used with the
getdate() function.

DCE_PRIVUSER
Specifies the NonStop operating system user ID permitted to perform
privileged operations, such as configuring servers using dce_config.
This user ID must be a member of the super group.

The default is the super ID (255,255 with a scalar view of 65535).

DCE_PROCESS_PREFIX
Specifies one alphabetic character to be used as the prefix for virtual host
process names. All processes started for a virtual host use this prefix.

The default is Z.

For example, DCE processes started when the default value is used have
the Guardian process names $ZDCED, $ZSECD, and so forth.

Used by the dce_config command.

12−20 Hewlett-Packard Company 527186-023

Miscellaneous environ(5)

DCE_SCP_PROCESS_NAME
Specifies the Guardian process name of the Subsystem Control Point
(SCP) process to be contacted by all DCE processes in the virtual host.
The default is $ZNET.

If this variable is assigned a value, the $ character in the SCP process
name must be preceded by the shell \ character, as in:

export DCE_SCP_PROCESS_NAME=\$ZNET1

If the specified process is not responding or not running, dce_config uses
the default of $ZNET. However, DCE demons and other processes
either do not start or do not respond until the specified process is run-
ning.

DCE_SOCKET_REUSE
Specifies whether the IP address for the dced process is reused when the
process is restarted. Valid values are:

0 (zero) The address is not reused.

1 The socket SO_REUSEADDR option is used at the
time of binding port 135 so that even if the port is used
by another process, dced restarts sucessfully.

The default is 0 (zero).

Used by the dce_config command.

DCED_ADMIN
Specifies whether the administrative group dced-admin should have
permission to access and modify the access control lists that protect
dced objects. Used by the dce_config command.

The value y allows the administrative group to access and modify local
dced objects. If you use the value y, a privileged network user such as
cell_admin is allowed local privileged access to the machine.

The value n restricts access and modification permission to the local host
principal. If you use the value n, security is greater, but remote dced
management is severely restricted.

The default is y.

DCEVH Specifies the TCP/IP host name assigned to the virtual host for which
operations are currently being performed. Used by the dce_config com-
mand, DCE demons, application servers, and clients.

The value specified for DCEVH is used when
TCPIP_PROCESS_NAME is not specified.

If neither DCEVH nor TCPIP_PROCESS_NAME is specified, the
default value of DCEVH is the name of the virtual host containing the
/opt/dcelocal directory. If the /opt/dcelocal directory is not available, a
default process name of /G/ZTC0 is assumed, and the default value of
DCEVH is the hostname attribute of /G/ZTC0.

If TCPIP_PROCESS_NAME and DCEVH are both specified, the
value specified for DCEVH is ignored, and the hostname attribute of the
specified process is used.

527186-023 Hewlett-Packard Company 12−21

environ(5) OSS System Calls Reference Manual

DIR_REPLICATE
Controls the replication of CDS directories when an additional CDS
server is being created at DCE configuration time. Used by the
dce_config command.

Valid values are:

y Causes dce_config to prompt for more directories to
replicate

n Suppresses further replication

The default is n.

DISPLAY_THRESHOLD
Specifies the messages to write to the standard output file.

Valid values are:

DEBUG
DETAIL
ERROR
WARNING
SUMMARY
VERBOSE

The default is SUMMARY.

Used by the dce_config command.

DO_CHECKS Controls whether the prompt

Press <RETURN> to continue, CTRL-C to exit:

is returned when dce_config encounters a nonfatal error. This prompt
forces the user to acknowledge the error and offers a way to exit
dce_config.

Valid values are:

y Displays the prompt

n Does not display the prompt

The default is y.

When DO_CHECK has the value y during configuration of a security
server and a security client, a check is made that a kerberos5 entry
exists in /G/system/ztcpip/services.

DTS_CONFIG
Specifies the type of configuration needed for a distributed time service
(DTS) server during DCE client configuration. Used by the dce_config
command.

Valid values are clerk, global, local, and none.

The default is clerk.

ECOBFE Determines the pathname of the ecobol compiler.
/G/system/system/ecobfe is the default.

12−22 Hewlett-Packard Company 527186-023

Miscellaneous environ(5)

EDITOR Specifies the inline editor used by the shell. If the value of this variable
ends in "vi" and the VISUAL variable is not assinged a variable, the
corresponding inline editor option is enabled.

ELD Specifies the pathname of the TNS/E linker for PIC code used by the
compiler utilities to link object and library files into an executable pro-
gram or dynamic-link library when linking is requested. By default, the
program eld in the directory /usr/bin is used.

This environment variable is used for TNS/E-targeted compilations only.

EMS_COLLECTOR
Specifies alternate collector processes to the syslog() function.

ENV Specifies the path used to find the script to be executed when the shell is
invoked.

EXINIT Provides a start-up list of commands read by the vi utility.

EXIT_ON_ERROR
Indicates whether dce_config exits in the event of a fatal error.

Valid values are:

y Indicates that dce_config exits when it encounters a
fatal error

n Indicates that dce_config does not exit when it
encounters a fatal error

The default is n.

This variable can help prevent a "here" file from getting out of sync with
dce_config.

FCEDIT Specifies the default editor used for the fc command.

FPATH Specifies the search path used for shell function definitions.

Guardian PARAMs
Specify the names and values of Guardian environment PARAMs, as
known to the osh command. The names and values are converted from
the Guardian environment PARAM names and values. See the osh(1)
reference page for details.

HISTFILE Specifies the pathname of the file used by the shell to store the command
history.

HISTSIZE Specifies the number of previously entered commands accessible to the
shell.

HOME Provides a user’s login directory.

HOST_NAME_IP
Specifies the IP address of the virtual host on which dce_config is run-
ning.

527186-023 Hewlett-Packard Company 12−23

environ(5) OSS System Calls Reference Manual

IFS Specifies the internal field separators used in shell scripts.

JAVA_HOME Specifies the pathname for the most current installed version of the Non-
Stop Java Server environment.

KEYSEED Specifies the character string used to seed the random key generator to
create the master key for the master database and each slave database.
Each database has its own master key and keyseed. Used in security
server configuration by the dce_config command.

LANG Sets the locale to be used for all categories, unless overridden by
LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, or LC_TIME environment vari-
ables. The LANG and LC_* environment variables can each have one
of these values:

C For the C locale

POSIX For the POSIX locale

ll_TT.CODESET

ll Is a 2-letter, lowercase abbreviation for
the language name. The abbreviations
come from ISO 639. For example:
en English
fr French
ja Japanese
de German (from Deutsch)

TT Is a 2-letter, uppercase abbreviation for
the territory name. The abbreviations
come from ISO 3166. For example:
US United States of America
JP Japan
NL The Netherlands
ES Spain (from España)

CODESET Is the name of the code set or encoding
method. For example:
ASCII ASCII
ISO8859-1 ISO 8859-1
AJEC Japanese EUC

Some examples of full locale names are:
en_US.ISO8859-1 English,

United States
of America,
ISO 8859-1

fr_FR.ISO8859-1 French, France,
ISO 8859-1

fr_CH.ISO8859-1 French, Switzerland,
ISO 8859-1

ja_JP.AJEC Japanese, Japan, EUC

12−24 Hewlett-Packard Company 527186-023

Miscellaneous environ(5)

LAN_NAME For a multiple-LAN configuration, specifies the internal name of the
LAN (in the LAN profile). Used in CDS server configuration by the
dce_config command.

LC_ALL Sets the locale for all categories and overrides any other locale environ-
ment variables set. See the description of LANG for locale name syntax.

LC_COLLATE
Sets the locale to be used for collating strings. See the description of
LANG for locale name syntax.

LC_CTYPE Sets the locale to be used for classifying characters. See the description
of LANG for locale name syntax.

LC_MESSAGES
Sets the locale to be used for displaying messages. See the description
of LANG for locale name syntax.

LC_MONETARY
Sets the locale to be used for formatting monetary values. See the
description of LANG for locale name syntax.

LC_NUMERIC
Sets the locale to be used for formatting and parsing numeric values.
See the description of LANG for locale name syntax.

LC_TIME Sets the locale to be used for formatting and parsing date and time
values. See the description of LANG for locale name syntax.

LD Specifies the pathname of the TNS/R linker for PIC code used by the
compiler utilities to link object and library files into an executable pro-
gram or dynamic-link library when linking is requested. By default, the
program ld in the directory /usr/bin is used. This environment variable
is used for TNS/R-targeted compilations only.

LOCPATH Specifies the sequence of directories, separated by colons, to be searched
by the iconv_open() function when looking for the table-driven iconv
converter modules.

LOG_THRESHOLD
Specifies the minimum priority log messages to write to the log file,
/tmp/dce_config.log. Used by the dce_config command.

Valid values are:

DEBUG
DETAIL
ERROR
WARNING
SUMMARY
VERBOSE

The default is VERBOSE.

LOGNAME Specifies the user’s login name, as known to the osh command. The
value is converted from the Guardian PARAM LOGNAME.

527186-023 Hewlett-Packard Company 12−25

environ(5) OSS System Calls Reference Manual

MAKEFLAGS
Lists the environment variables for the make utility to process. Setting a
variable in MAKEFLAGS overrides the setting of that variable in the
shell.

MANPATH Sets the path used by the man command to look for files to display. The
default pathname is /usr/share/man.

MSGVERB Defines which message components are sent by the fmtmsg() function
to the standard error file.

MULTIPLE_LAN
Indicates whether to configure the node with multiple LAN capabilities.

Valid values are:

y Indicates configure with multiple LAN capabilities

n Indicates do not configure with multiple LAN capabili-
ties

The default is n.

Used in CDS configuration by the dce_config command.

MXCMP Determines the pathname of the NonStop SQL/MX release 1 compiler.
/G/system/system/mxcmp is the default.

Used by the compiler utilities.

MXCMPUM Determines the pathname of the NonStop SQL/MX release 2 compiler.
/usr/tandem/sqlmx/bin/mxCompileUserModule is the default.

Used by the compiler utilities.

MXSQLC Determines the pathname of the NonStop SQL/MX preprocessor,
mxsqlc. /usr/tandem/sqlmx/bin/mxsqlc is the default.

Used by the c89 command.

MXSQLCO Determines the pathname of the NonStop SQL/MX preprocessor,
mxsqlco. /usr/tandem/sqlmx/bin/mxsqlco is the default.

Used by the nmcobol command.

NLD Specifies the pathname of the non-PIC TNS/R linker used by the com-
piler utilities to link object and library files into an executable program
or shared run-time library when linking is requested. By default, the
program nld in the directory /usr/bin is used.

This environment variable is used for TNS/R-targeted compilations only.

NLSPATH Specifies the sequence of directories, separated by colons, to be searched
by the catopen() function when looking for message catalogs. The
meanings of the variables in the NLSPATH environment variable are:

%N The value passed in the name parameter of catopen().

%L The current locale name defined for the
LC_MESSAGES category: for example,
fr_BE.ISO8859-1.

12−26 Hewlett-Packard Company 527186-023

Miscellaneous environ(5)

%l The language element from the current locale name: for
example, fr.

%t The territory element from the current locale name: for
example, BE.

%c The code-set element from the current locale name: for
example, ISO8859-1.

%% A single % (percent sign) character.

PATH Specifies the sequence of directories, separated by colons, to be searched
by the sh utility, the system command, the execvp() function, and so
forth, when looking for an executable file. The osh command can con-
vert the Guardian PARAM PATH to this value.

PMSEARCHLIST
Specifies the values used by the gtacl command to resolve a Guardian
file identifier.

PRINTER Specifies the name of the default printer.

PS1 Specifies the primary prompt string used by the shell.

PS2 Specifies the secondary prompt string used by the shell.

PS3 Specifies the selection prompt string used by the shell within a loop.

PS4 Specifies the prompt string used by the shell during an execution trace.

PWD Specifies the user’s initial working directory, as known to the osh com-
mand. The value is converted from the Guardian PARAM PWD.

PWD_MGMT_SVR
Specifies the pathname of the Password Management server. The
default value is /opt/dcelocal/bin/pwd_strengthd. Used in Password
Management server configuration by the dce_config command.

PWD_MGMT_SVR_OPTIONS
Specifies the default options for the Password Management server
(pwd_strengthd). The value of the variable is set to -v (verbose) at
server configuration.

Used by the dce_config command.

REMOVE_PREV_CONFIG
Indicates whether to remove all remnants of previous configurations
before performing the new configuration.

Valid values are:

y Indicates remove all remnants

n Indicates do not remove all remnants

If you set this variable to y, dce_config removes all configured com-
ponents each time you configure any component, and you must
reconfigure them all.

Used in all component configurations by the dce_config command.

527186-023 Hewlett-Packard Company 12−27

environ(5) OSS System Calls Reference Manual

REMOVE_PREV_INSTALL
Indicates whether to remove all remnants of previous DCE installations
before performing the new install.

Valid values are:

y Indicates remove all remnants

n Indicates do not remove all remnants

If you set this variable to y, dce_config automatically removes all
installed components each time you install any component, and you
must reinstall them all.

Used in all component installations by the dce_config command.

REP_CLEARINGHOUSE
Specifies the name for a new clearinghouse. Used in additional CDS
server configuration by the dce_config command.

REPLICATE_ALL_DIRS
Specifies whether to replicate all directories from the master CDS server
database to the additional CDS server database during additional CDS
server configuration. Used by the dce_config command.

The value y indicates that all directories should be replicated.

The value n indicates that no directories should be replicated.

The default is n.

REPLICATE_DIR_LIST
Specifies a list of directories to be replicated. Used by the dce_config
command.

Directory pathnames must be separated by one or more spaces, and the
list of directories must be enclosed in quotation marks.

If this variable is not specified, the user is prompted for a directory list.

_RLD_FIRST_LIB_PATH
Specifies a list of directory pathnames to be searched by the rld loader
before searching public libraries or locations specified by the linker.
The list has a format similar to that of the PATH environment variable,
with individual entries separated by colons (:).

For more information, see the dlopen(3) reference page.

_RLD_LIB_PATH
Specifies a list of directory pathnames to be searched by the rld loader
before searching default locations. The list has a format similar to that
of the PATH environment variable, with individual entries separated by
colons (:).

For more information, see the dlopen(3) reference page.

SEC_REPLICA
Specifies the name of the security replica database. Used by the
dce_config command.

The default value is the name of the host being configured.

12−28 Hewlett-Packard Company 527186-023

Miscellaneous environ(5)

SEC_SERVER
Specifies the name of the machine on which the cell’s master security
server runs. Used in security client configuration by the dce_config
command.

SHELL Specifies the full pathname of the user’s login shell.

SOCKET_TRANSPORT_NAME
Specifies the process name of the OSS sockets transport provider process
to be used by the inetd process.

SQLCFE Specifies the pathname of the embedded NonStop SQL/MP preprocessor
and compiler normally invoked by the c89 utility. By default, the pro-
gram sqlcfe in the directory /usr/lib is used.

This environment variable is used for TNS/R-targeted compilations only.

SQLCOMP Specifies the pathname of the final-stage NonStop SQL/MP compiler
invoked by the c89 utility when embedded SQL is present and the pro-
gram file is not a shared resource library file. By default, the program
sqlcomp in the directory /G/system/system is used.

SQLMX_PREPROCESSOR_VERSION
Indicates the preprocessor rules and features to be used. Specifying the
value 800 causes rules and features associated with release 1.8 to be
used; the mxcmp compiler is used and only MDF files and annotated
source files are produced, while rules and features associated with
release 2.0 and later are ignored. Specifying a value of 1200 or larger or
not specifying a value causes rules and features associated with release
2.0 and later to be used; the mxCompileUserModule compiler is used
and annotated source files that contain embedded module definitions are
produced instead of MDF files, while restrictions associated with release
1.8 or earlier are ignored.

SWAPVOL Specifies the disk volume used for working files by Guardian processes
created by the TNS c89 utility. This variable must evaluate to a Guar-
dian disk volume: for example, /G/scratch or $SCRATCH. By default,
the user’s Guardian default volume is used.

SYNC_CLOCKS
Indicates whether to synchronize all client clocks with the security
server clock. Used by the dce_config command.

Valid values are:

y Indicates that client and server clocks will be synchron-
ized

n Indicates that client and server clocks will not be syn-
chronized

If this variable is set to n and if clocks are out of synchronization by
more than the value specified in the TOLERANCE_SEC variable, the
user is prompted to synchronize them. This variable is valid only if the
CHECK_TIME variable is set to y.

527186-023 Hewlett-Packard Company 12−29

environ(5) OSS System Calls Reference Manual

TANDEM_ALT_SRL
Controls whether the shared resource library is placed in an alternate
location. This value is a Guardian filename expressed in OSS pathname
format and surrounded by quotation marks: for example,
"/G/volume/subvol/ldce". The default is "", meaning that the shared
resource library is placed in /G/system/zdce/ldce.

Used by the dce_config command.

TANDEM_INSTALL_DIR
Specifies the location of the pax files for installation. This value is a
Guardian subvolume name expressed in OSS pathname format and sur-
rounded by quotation marks: for example, "/G/isv/zdce".

Used by the dce_config command.

TCPIP_PROCESS_NAME
Specifies the Guardian process name for the TCP/IP stack of the virtual
host. Used by the dce_config command.

If neither DCEVH nor TCPIP_PROCESS_NAME is specified, the
default value of DCEVH is the name of the virtual host containing the
/opt/dcelocal directory. If the /opt/dcelocal directory is not available, a
default process name of /G/ZTC0 is assumed, and the default value of
DCEVH is the hostname attribute of /G/ZTC0.

If TCPIP_PROCESS_NAME and DCEVH are both specified, the
value specified for DCEVH is ignored, and the hostname attribute of the
specified process is used.

TCPIP_RESOLVER_NAME
Specifies the OSS pathname to be used instead of /etc/resolv.conf to
identify the dynamic name server to be used when resolving Internet
addresses. Equivalent to the Guardian environment DEFINE
=TCPIPˆRESOLVERˆNAME.

TCPIP_RESOLVER_ORDER
Controls the search order for TCP/IPv6 when OSS socket calls require
access to addresses for a given host. The /etc/ipnodes and /etc/hosts
files are searched as follows by default:

— If neither file exists, the domain name server (DNS) is checked
for the host information.

— For an IPv4 host address, /etc/ipnodes is checked; if the host is
not found, /etc/hosts is checked.

— For an IPv6 address, only /etc/ipnodes is checked.

For an IPv4 address, if /etc/hosts does not exist, the DNS is checked last.

When /etc/hosts exists, the values declared for the
TCPIP_RESOLVER_ORDER environment variable can be used to
control the search as follows:

DNSONLY Only the DNS is checked.

12−30 Hewlett-Packard Company 527186-023

Miscellaneous environ(5)

HOSTFILEONLY
Only /etc/hosts is checked.

DNS-HOSTFILE
The DNS is checked first; if the host is not found,
/etc/hosts is checked.

HOSTFILE-DNS
/etc/hosts is checked first; if the host is not found, the
DNS is checked.

TERM Specifies the type of terminal for which output must be prepared. This
information is used by commands, such as vi or more, that can exploit
special terminal capabilities. (See the termcap(4) reference page for a
list of terminal types.)

TERMCAP Specifies a string describing the terminal in the TERM environment
variable or, if it begins with a / (slash), the name of the termcap file.
(See TERMPATH.) This string applies only to programs using a
termcap file (only for compatibility).

TERMINFO Points to the directory containing terminfo database files. The tic com-
mand uses the value of this variable.

TERMPATH Specifies a sequence of pathnames of termcap files, separated by colons
or spaces, which are searched for terminal descriptions in the order
listed. The default is:

$HOME/.termcap:/usr/share/lib/termcap

TERMPATH is ignored if TERMCAP contains a full pathname. This
string applies only to programs using the termcap file (only for compati-
bility).

TIME_SERVER
Specifies the virtual host that the security client will try to synchronize
its clock against. This host must have a DTS server (dtsd) running on it.
The recommended choice for the host is the one running the master
security server (the name specified in the SEC_SERVER variable).

Used by the dce_config command.

TMOUT Specifies the number of seconds the shell waits for a response to a
prompt before timing out.

TMPDIR Specifies a pathname that overrides the default directory for temporary
files, /tmp. (Used by the c89 utility.)

TOLERANCE_SEC
Specifies the number of seconds a client system clock can differ from the
security server system clock before either the user is prompted to syn-
chronize the clocks or the clocks are synchronized automatically.

The default is 120 seconds.

Both the security service and the CDS service require that there be no
more than a 5-minute difference between the clocks on any two nodes in
a cell.

Used by the dce_config command.

527186-023 Hewlett-Packard Company 12−31

environ(5) OSS System Calls Reference Manual

TOTAL_CLERKS
Specifies the number of CDS clerks for this host. On NonStop DCE sys-
tems, CDS clerks are shared among users (unlike some other DCE sys-
tems, which use one CDS clerk for each user ID).

The default is 1.

Used by the dce_config command.

TZ Specifies the time zone used by the shell and by time functions

to override the default timezone. The value of TZ has the following
form:

[:]stdoffset[dst[offset][,start[/time],end[/time]]]

std and dst Indicates no less than three, nor more than
TZNAME_MAX, bytes that are the designation for the
standard (std) or the alternative (dst, such as Daylight
Savings Time) timezone. Only std is required; if dst is
omitted, then the alternative time does not apply in this
locale. Uppercase and lowercase letters are allowed.
Any graphic characters except a leading colon (:) or
digits, the comma (,), the minus sign (-), the plus sign
(+), and the null character can appear in these fields.

If preceded by a -, the timezone is east of the Prime
Meridian; otherwise, the timezone is west of the Prime
Meridian (a condition that can be indicated by an
optional preceding +).

offset Indicates the value to add to or subtract from the local
time to arrive at Coordinated Universal Time. The
offset has the form:

hh[:mm[:ss]]

The hour (hh) is required and can be a single digit. The
minutes (mm) and seconds (ss) are optional.

The offset following std is required. If no offset follows
dst, the alternative time is assumed to be one hour ahead
of standard time. One or more digits can be used; the
value is always interpreted as a decimal number. The
hour is between 0 (zero) and 24, and the minutes (and
seconds) are between 0 (zero) and 59. Use of values
outside these ranges causes undefined behavior.

date[/time],date[/time]
The rule that indicates when to change to and back from
the alternative time, where the first date describes when
the change from standard to alternative time occurs and
the second date describes when the change back hap-
pens. Each time field describes when, in current local
time, the change to the other time is made. The format of
date is one of the following:

Jn The Julian day n in the range 1 through
365. Leap days are not counted. That
is, in all years including leap years,

12−32 Hewlett-Packard Company 527186-023

Miscellaneous environ(5)

February 28 is day 59 and March 1 is
day 60. You cannot refer explicitly to
February 29.

n The zero-based Julian day in the range 0
through 365. Leap days are counted,
and you can refer to February 29.

Mm.n.d The dth day (in the range 0 through 6)
of week n (in the range 1 through 5) of
month m of the year (in the range 1
through 12). Week 1 is the first week in
which the day occurs. Week 5 means
"the last d day in month m, which might
occur in either the fourth or the fifth
week. Day zero is Sunday.

time has the same format as offset except that no leading
sign (- or +) is allowed. The default, if time is omitted,
is 02:00:00.

UGEN Specifies the pathname of the C or C++ compiler component used when
binary assembly code is requested. By default, the program ugen in the
directory /usr/lib is used.

This environment variable is used for TNS/R-targeted compilations only.

UNCONFIG_HOST_PRESET
Specifies the name of the virtual host to be unconfigured. Used with the
unconfigure option by the dce_config command.

UOPT Specifies the pathname of the C or C++ compiler component used when
optimization is requested. By default, the program uopt in the directory
/usr/lib is used.

This environment variable is used for TNS/R-targeted compilations only.

UPDATE_ALL_CLONES
Specifies whether the configurations of all existing clones of the current
virtual host should be updated with the files being installed.

Valid values are:

y Indicates that clones should be updated

n Indicates that clones should not be updated

The default is n.

Used by the dce_config command.

USE_DEF_MSG_PATH
Specifies whether to use the default pathname when installing DCE mes-
sage catalogs. Used by the dce_config command.

The value y indicates that message catalogs should be installed in the
default directory /usr/lib/nls/msg/en_US.ISO8859-1.

The value n indicates that the user should be prompted to enter a direc-
tory pathname.

The default is y.

527186-023 Hewlett-Packard Company 12−33

environ(5) OSS System Calls Reference Manual

USER Specifies the login name of the user.

UPDATE_DEFAULT_LIBDCESO
Specifies whether the default /usr/lib/libdce.so file should be updated
with the shared run-time library being installed.

Valid values are:

y Indicates that the update should occur

n Indicates that it should not occur

The default is n.

This variable can be used by the dce_config command only for TNS ver-
sions of NonStop DCE.

UTILSGE Specifies whether a shell utility attempts to include the /E or /G direc-
tories when recursively processing a pathname. This variable also can
be tested by an application program to make the same determination.

Valid values are:

NOE Do not include the /E directory.

NOG Do not include the /G directory.

NOG:NOE Do not include either the /E or /G directory.

The default includes both the /E and /G directories.

VISUAL Specifies the inline editor used by the shell in visual mode.

ZCPU Specifies the processor number of the processor executing the process
for which ZCPU was defined. This environment variable is set by the
Kernel subsystem persistence manager for processes associated with
process objects that are defined with the CPU ALL or CPU LIST attri-
butes. If the variable is inherited by a process that has been spawned to
another processor, the value might not be correct.

Additional names can be placed in the environment by the shell export command, by using
name=value arguments. It is unwise to change the values of certain shell variables that are fre-
quently exported by .profile files, such as PS1, PS2, and IFS.

RELATED INFORMATION
Commands: c89(1), dce_config(8) if installed, gtacl(1), osh(1), sh(1).

Functions: catopen(3), exec(2), getenv(3), iconv_open(3), putenv(3), syslog(3), tdm_execve(2),
tdm_execvep(2).

Files: termcap(4).

STANDARDS CONFORMANCE
HP extensions to the XPG4 Version 2 specification are:

• The AS1, CCOMBE, CFE, COMP_ROOT, CRON_NAMED, EMS_COLLECTOR,
Guardian PARAMs, JAVA_HOME, LOCPATH, NLD, PMSEARCHLIST,
_RLD_FIRST_LIB_PATH, _RLD_LIB_PATH, SQLCFE, SQLCOMP, SWAPVOL,
UGEN, UOPT, UTILSGE, and ZCPU environment variables

• All environment variables used by the dce_config utility

12−34 Hewlett-Packard Company 527186-023

Miscellaneous errno(5)

NAME
errno - Returns the error condition value

SYNOPSIS
#include <errno.h>

DESCRIPTION
The errno external variable contains the most recent error condition set by a function. The sym-
bolic error names returned by a function and descriptions of each error condition are shown in
the ERRORS section in the individual function reference pages. The errno.h header file con-
tains a list of all symbolic error names and a one-line description of each.

The following is a list of the symbolic error names and the error condition each name describes:

[E2BIG] Argument list too long. The sum of the number of bytes used by the new process
image’s argument list and environment list is greater than the allowed system
limits.

[EACCES] Permission denied. The program attempted to access a file in a way forbidden by
its file access permissions.

[EADDRINUSE]
Address in use. The program tried to allocate an address that is already allo-
cated.

[EADDRNOTAVAIL]
Can’t assign requested address. The program tried to allocate an address that
does not exist or cannot be allocated.

[EAFNOSUPPORT]
Address family not supported. The program requested an address in an address
family not supported by the protocol family.

[EAGAIN] Resource temporarily unavailable. A system resource is temporarily unavailable,
and later calls to the same routine might finish normally.

[EALREADY] Operation already in progress. The program attempted to begin an operation
already in progress.

[EBADCF] C file not odd-unstructured. A C file (Guardian file code 180) is not an odd-
unstructured file.

[EBADDATA] Invalid data in buffer. A message buffer contains invalid data.

[EBADF] Bad file descriptor. A file descriptor parameter is out of range or refers to no
open file, or a read (write) request is made to a file that is open only for writing
(reading).

[EBADFILE] File type not supported. A file access error occurred, or the file is of an unsup-
ported type and cannot be opened.

[EBADMSG] An invalid message tag was found. There is no corresponding message for the
message tag.

[EBADSYS] Invalid socket call. The program specified an unrecognized node name or node
number in a socket call.

527186-023 Hewlett-Packard Company 12−35

errno(5) OSS System Calls Reference Manual

[EBIGDIR] The positioning within an OSS directory failed because there were more than
65535 file names beginning with the same two characters in the directory.

[EBUSY] Mount device busy. The program attempted to use a system resource that is not
currently available, because it is being used by another process in a manner that
would conflict with the request being made by this process.

[ECHILD] No child process. The wait() or waitpid() function was executed by a process
that had no existing or unwaited-for child process.

[ECONNABORTED]
Software caused connection abort. Software on the connection path aborted the
connection.

[ECONNREFUSED]
Connection refused. The other end of a requested connection refused to permit
the connection to be made.

[ECONNRESET]
Connection reset by remote host. The connection was reset by the remote host.

[ECWDTOOLONG]
One of the following situations exists:

• The pathname of the current working directory is longer than the PATH-
MAX value when the getcwd() function was called.

• The length of the absolute pathname generated by the Guardian pro-
cedure call FILENAME_TO_PATHNAME_ is longer than
PATH_MAX.

• The length of the absolute pathname generated by an internal Guardian
procedure call is longer than PATH_MAX.

[EDEADLK] Deadlock condition. An attempt was made to lock a system resource that would
have resulted in a deadlock situation.

[EDEFINEERR]
An error exists in a Guardian DEFINE.

[EDESTADDRREQ]
Destination request required. The program omitted a required destination
address.

[EDOM] Argument out of range. A function parameter evaluates to a value that is out of
range (too large or too small).

[EEXIST] File exists. An existing file was mentioned in an inappropriate context; for exam-
ple, as a new link name in the link() function.

[EFAULT] Bad address. The system detected an invalid address when attempting to use a
parameter passed to a call.

[EFBIG] File too large. The size of a file would exceed the maximum file size of an imple-
mentation.

12−36 Hewlett-Packard Company 527186-023

Miscellaneous errno(5)

[EFILEBAD] Corrupt Guardian file or bad EDIT file structure. The program used the open() or
read() function for an EDIT file (Guardian file code 101) in /G (the Guardian
file system) that has an internal structure problem.

[EFSBAD] Fileset catalog internal consistency error. The program attempted an operation
involving a fileset with a corrupted fileset catalog. This error will also be
returned if there is a consistency error detected in an SMF catalog, between an
SMF catalog and a disk process catalog, or an internal inconsistency error in an
SMF files label. When creating or unlinking a file on an SMF Virtual Disk, this
error is returned if the installed OSS Name Server and SMF Virtual Disk Process
are incompatible or if the SMF Virtual Disk Process was unable to obtain
volume status information from its associated SMF pool process.

[EFSERR] File system internal error. The program attempted an operation that failed
because of a system programming error. Follow site-defined procedures for
reporting software problems.

[EGUARDIANLOCKED]
Guardian record or file locked. The program used the write() function for an
object in /G (the Guardian file system) that has a record or file lock, resulting
from a call to one of the following Guardian procedures:

LOCKFILE
LOCKREC
READLOCK
READLOCKX
READUPDATELOCK
READUPDATELOCKX

[EGUARDIANOPEN]
OSS rename() or unlink() function used on open Guardian file. An attempt was
made to rename a file to an open Guardian file or to unlink a Guardian file
opened with the Guardian FILE_OPEN_ procedure.

[EHAVEOOB] Out-of-band urgent data pending. Before receiving or sending normal data over a
network connection, the program must read the out-of-band data by calling the
recv() function with the MSG_OOB flag set.

[EHLDSEM] A semaphore undo operation is occurring for an OSS process that has called a
function in the tdm_exec or tdm_spawn set of functions to start a process in
another processor.

[EHOSTDOWN]
Host is down. An access path has been broken or cannot be completed because a
node has left the network.

[EHOSTUNREACH]
No route to host. No path exists to a node required by the process.

[EIDRM] Identifier removed. A required identifier has been removed.

[EILSEQ] Illegal byte sequence. An invalid wide character or a similarly invalid byte
sequence has been detected.

527186-023 Hewlett-Packard Company 12−37

errno(5) OSS System Calls Reference Manual

[EINPROGRESS]
Operation in progress. A requested operation has begun.

[EINTR] Interrupted function call. An asynchronous signal was caught by the process dur-
ing the execution of an interruptible function.

[EINVAL] Invalid function parameter. One of the following conditions exists:

• The program supplied an invalid parameter value.

• The system does not support execution of a new program file in the
binary format used by a specified program file.

[EIO] I/O error. Some physical input or output error has occurred due to one of the fol-
lowing conditions:

• A file cannot be opened because of an input or output error.

• Data has been lost during an input or output transfer.

• A file cannot be accessed when creating or unlinking a file on an SMF
logical volume and the SMF Virtual Disk Process encountered an error.

• The process is in a background process group and the controlling tty is
either ignoring or blocking SIGTTIN, or the process group is orphaned.

• A Guardian error has occurred, such as error 66 (FEDEVDOWN) or
error 201 (FEPATHDOWN) during a read or write.

• The OSS NS encountered unexpected read/write errors to fileset catalogs
when communicating with other processes like DP2, pipe servers, and
local socket servers.

[EISCONN] Socket is connected. The program attempted to use a socket that is already in
use.

[EISDIR] Is a directory. The program attempted to open an OSS directory with open()
function write mode specified, or a directory in /G with any mode specified.

[EISGUARDIAN]
OSS operation on Guardian file descriptor. The program attempted an OSS
operation involving a Guardian file descriptor.

[ELOOP] Too many symbolic links. The program found too many symbolic links during
pathname resolution.

[EMFILE] Maximum number of files open. The program attempted to open more than the
maximum number of file descriptors allowed in this process.

[EMLINK] Too many links. An attempt was made to have the link count of a single file
exceed allowed system limits.

[EMSGQNOTRUNNING]
The OSS message-queue server for the requested message queue is not currently
running.

12−38 Hewlett-Packard Company 527186-023

Miscellaneous errno(5)

[EMSGSIZE] Message too long. The specified message contained too many bytes.

[ENAMETOOLONG]
File name too long. One of the following is too long:

• A pathname specified in a function call

• A component of a pathname specified in a function call

• The intermediate result of pathname resolution when a symbolic link is
part of a pathname specified in a function call

Use the pathconf() function to obtain the applicable system limits.

[ENETDOWN]
Network down. The last path between the node and the network went down.

[ENETRESET] Network dropped connection on reset. The connection was dropped because the
network was reset.

[ENETUNREACH]
Network unreachable. No path exists between the node and the network.

[ENFILE] File table overflow. Too many files are currently open in the system. The system
has reached its predefined limit for simultaneously open files and temporarily
cannot accept requests to open another one.

[ENOBUFS] Buffer space unavailable. No buffer space is available.

[ENOCPU] CPU unavailable. The program selected a processor that either does not exist, is
down, or is unavailable for process creation.

[ENOCRE] Non-CRE process needs CRE-dependent service. The process is not compliant
with the Common Run-Time Environment (CRE) but requested a service that
depends on CRE.

[ENODATA] No data sent or received. No message or stream queue exists, or no data was sent
or received.

[ENODEV] No such device. The program attempted to apply an inappropriate function to a
device; for example, trying to read a write-only device, such as a printer.

[ENOENT] No such file, directory, or socket transport provider. A component of a specified
pathname does not exist, the pathname is an empty string, a specified provider is
no longer running, or a specified provider does not exist.

[ENOERR] No error occurred. This is the default value for errno.

[ENOEXEC] Executable program file format error. A request was made to execute a program
file that, although it has the appropriate permissions, is not in the format required
by the implementation for executable files.

[ENOIMEM] Insufficient internal memory. There is insufficient system code space in the pro-
cessor to complete the operation.

[ENOLCK] No record locks available. A system-imposed limit on the number of simultane-
ous file and record locks has been reached, and no more are currently available.

527186-023 Hewlett-Packard Company 12−39

errno(5) OSS System Calls Reference Manual

[ENOMEM] Insufficient user memory. The new process image requires more memory than is
allowed by the hardware or system-imposed memory management constraints.

[ENOMSG] No message. There is no message of the requested type.

[ENONSTOP] NonStop programming logic error exists. The program is written to use NonStop
system features but has requested an operation incompatible with correct use of
those features.

[ENOPROTOOPT]
Protocol not available. The requested protocol is not available.

[ENOREPLY] No reply in buffer. There is no reply in the message buffer.

[ENOROOT] Root fileset is not started. The program attempted an operation while the root
fileset (fileset 0) was unavailable.

This error can occur after failure and restart of an OSS name server until the
fileset has been repaired and remounted.

[ENOSPC] No space left on device. During the write() function on a regular file or when
extending a directory, there is no free space left on the device.

[ENOSYS] Function not implemented. An attempt was made to use a function that is not
available in this implementation.

[ENOTCONN] Socket not connected. The socket is not connected.

[ENOTDIR] Not a directory. The program attempted a directory operation on an object that is
not a directory.

[ENOTEMPTY]
Directory not empty. A directory with entries other than . (dot) and . . (dot-dot)
was supplied when an empty directory was expected.

[ENOTOSS] Not an OSS process. The program has called a function that can be called only
from an OSS process.

[ENOTSOCK] Not a socket. The program attempted a socket operation on an object that is not a
socket.

[ENOTSUP] Operation not supported on referenced object. The program attempted an opera-
tion that is not allowed on the referenced object.

[ENOTTY] Not a tty device. The program attempted a tty operation on an object that is not a
tty device.

[ENXIO] No such device or address. An invalid device or address was specified during an
input or output operation on a special file. One of the following events occurred:

• A device was specified that does not exist, or a request was made beyond
the limits of the device.

• The fileset containing the requestor’s current working directory or root
directory is not mounted. This error can occur after failure and restart of
an OSS name server until the fileset has been repaired and remounted.

12−40 Hewlett-Packard Company 527186-023

Miscellaneous errno(5)

[EOPNOTSUPP]
Operation not supported on sockets. The program attempted to perform an opera-
tion that is not valid on a socket.

[EOSSNOTRUNNING]
Open System Services is not running or not installed. The program attempted an
operation on an object in the OSS environment while a required system process
was not available.

[EOVERFLOW]
The program attempted to perform an operation on a file at a position beyond the
offset maximum established when the file was opened.

[EPARTIAL] Partial buffer received. Only a partial buffer of message data was received.

[EPERM] One of the following conditions exist:

• Not owner, permission denied. An attempt was made to perform an
operation limited to processes with appropriate privileges or limited to
the owner of a file or other resource.

• The program attempted an operation on a SEEP-protected fileset. Valid
for J06.15 and later J-series RVUs, and H06.26 and later H-series RVUs.

[EPFNOSUPPORT]
Protocol family not supported. The program specified a protocol family that is
not supported.

[EPIPE] Broken pipe or no reader on socket. The program attempted to write on a pipe,
FIFO, or socket for which there is no process to read the data.

[EPROTONOSUPPORT]
Protocol not supported. The program specified a protocol that is not supported.

[EPROTOTYPE]
Wrong protocol type. The program specified the wrong protocol for the type of
socket.

[ERANGE] Value out of range. A program expression evaluated to a value that is out of
range (too large or too small).

[EROFS] Read-only fileset. The program attempted to modify a file or directory on a fileset
that is read only.

[ESHUTDOWN]
Can’t send after socket shutdown. The program attempted to send data after the
socket shut down.

[ESOCKTNOSUPPORT]
Unsupported socket type. The program specified a socket type that is not sup-
ported.

[ESPIERR] SPI interface error. The Subsystem Programmatic Interface (SPI) used by an OSS
component has returned an error indication.

527186-023 Hewlett-Packard Company 12−41

errno(5) OSS System Calls Reference Manual

[ESPIPE] Invalid seek. The program attempted to access the file offset associated with a
pipe or FIFO.

[ESRCH] No such process or table entry. No process can be found corresponding to the
given process ID.

[ETANOTRUNNING]
Transport agent not running. A transport-agent process for the requested socket
is not running in the current processor.

[ETHNOTRUNNING]
OSS terminal helper process is not running. Under normal conditions, the OSS
terminal helper process runs in all processors. If this error occurs, follow site-
defined procedures for reporting software problems to HP.

[ETIMEDOUT]
Connection timed out. The timer for the connection expired.

[ETXTBSY] Object (text) file busy. The program attempted an operation on a program that is
already busy.

[EUNKNOWN]
Unknown error. An unrecognized or very obscure error occurred. If this error
occurs, follow site-defined procedures for reporting software problems to HP.

[EVERSION] A version number mismatch exists.

[EWOULDBLOCK]
The operation requested by the program would block.

[EWRONGID] One of the following conditions occurred:

• The process attempted an operation through an operating system
input/output process (such as a terminal server process) that has failed or
is in the down state.

• The processor for the disk process of the specified file failed during an
input or output operation and takeover by the backup process occurred.

• An open file descriptor has migrated to a new processor, but the new
processor lacks a resource or system process needed for using the file
descriptor.

[EXDEV] Cross-device link. The program attempted to link to a file on another fileset.

[EXDRDECODE]
XDR decoding error. An XDR decoding error occurred.

[EXDRENCODE]
XDR encoding error. An XDR encoding error occurred.

RELATED INFORMATION
Functions: perror(3), strerror(3).

12−42 Hewlett-Packard Company 527186-023

Miscellaneous errno(5)

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The errno values [EBADCF], [EBIGDIR], [ECWDTOOLONG], [EDEFINEERR],
[EFILEBAD], [EFSBAD], [EFSERR], [EGUARDIANLOCKED], [EGUARDIANO-
PEN], [EHLDSEM], [EISGUARDIAN], [EMSGQNOTRUNNING], [ENOCPU], [ENO-
CRE], [ENOIMEM], [ENONSTOP], [ENOROOT], [ENOTOSS], [ENOTSUP],
[EOSSNOTRUNNING], [ESPIERR], [ETANOTRUNNING], [ETHNOTRUNNING]
[EUNKNOWN], and [EWRONGID] are supported.

527186-023 Hewlett-Packard Company 12−43

filename(5) OSS System Calls Reference Manual

NAME
filename, pathname - Explains OSS file system file naming

SYNOPSIS
For OSS files:

filename

pathname

For local Guardian disk files used from the OSS environment:

/G/volume_name/subvolume_name/file_id

For local Guardian temporary disk files used from the OSS environment:

/G/volume_name/temp_file_id

For local Guardian nondisk devices used from the OSS environment:

/G/device_name/qualifier

For remote Guardian disk files used from the OSS environment:

/E/node_name/G/volume_name/subvolume_name/file_id

For remote Guardian temporary disk files used from the OSS environment:

/E/node_name/G/volume_name/temp_file_id

For remote Guardian nondisk devices used from the OSS environment:

/E/node_name/G/device_name/qualifier

PARAMETERS
filename Identifies a file at a relative location in the OSS file system. A filename value

can be either a single filename or a symbolic link name.

A single filename is a character string of up to NAME_MAX (248) characters,
including a null terminator. Valid characters preceeding the null terminator are
described under OSS Filenames in DESCRIPTION, later in this reference
page.

A symbolic link name is a string of up to NAME_MAX (248) characters,
without a null terminator. Valid characters are described under OSS Filenames
in DESCRIPTION, later in this reference page.

A symbolic link name is a pointer to one of the following:

• a single filename

• another symbolic link

• a pathname

pathname Identifies a file in the OSS file system. A pathname has the following form:

[/] filename_1/filename_2 [/ . . . /filename_n]

A pathname on a remote NonStop server node begins with /E/node_name/ and is
expressed relative to the root directory on that node.

A pathname is a character string of up to PATH_MAX (1024) characters,
including a null terminator. A pathname consists of one or more filename com-
ponents, separated by slash (/) characters. Consecutive slashes are interpreted as

12−44 Hewlett-Packard Company 527186-023

Miscellaneous filename(5)

a single slash.

An absolute pathname begins with a slash character. An absolute pathname
identifies an OSS file with respect to the current root directory.

A relative pathname does not begin with a slash character. A relative pathname
identifies an OSS file with respect to the current working directory.

The filename_1 parameter specifies a directory. If filename_1 is a single period
character (. , called dot), then filename_1 indicates the OSS current working
directory.

If filename_1 is two period characters (. . , called dot-dot), then filename_1 indi-
cates the parent directory of the OSS current working directory.

The filename_2 parameter specifies either another directory or the unique
identifier for a file other than a directory within the filename_1 directory. If
filename_2 specifies a directory, then a filename_3 parameter can be specified,
with the same constraints as for filename_2, and so on. The last filename_n
parameter specified must uniquely identify a file that is not a directory.

All filename_n parameters must meet the requirements for the filename parame-
ter.

node_name Specifies the NonStop server node name used by the Expand product for access
to files on other nodes. A node name is a character string of up to seven valid
characters. Valid characters are the letters a through z and the digits 0 through 9.
(Uppercase letters A through Z are accepted but converted to lowercase letters.)
The first character must be a letter. Node names specified in the OSS file system
do not begin with a backslash (\).

volume_name Specifies the disk volume containing the file. A volume name is a character
string of up to seven valid characters. Valid characters are the letters a through z
and the digits 0 through 9. (Uppercase letters A through Z are accepted but con-
verted to lowercase letters.) The first character must be a letter.

subvolume_name
Specifies the disk subvolume (prefix) of the file identifier. A subvolume name is
a character string of up to eight valid characters. Valid characters are the letters
a through z and the digits 0 through 9. (Uppercase letters A through Z are
accepted but converted to lowercase letters.) The first character must be a letter.

file_id Specifies the unique identifier of the file within its subvolume. A file identifier is
a character string of up to eight valid characters. Valid characters are the letters
a through z and the digits 0 through 9. (Uppercase letters A through Z are
accepted but converted to lowercase letters.) The first character must be a letter.

temp_file_id Specifies the unique identifier of the file within its disk volume. A temporary file
identifier is a character string of two to eight valid characters. The first character
must be a number sign (#). Valid characters for the rest of the string are the
digits 0 through 9.

device_name Specifies the name of the process providing the interface to the device. This
name is a character string of up to seven valid characters. Valid characters are
the letters a through z and the digits 0 through 9. (Uppercase letters A through Z
are accepted but converted to lowercase letters.) The first character must be a
letter.

527186-023 Hewlett-Packard Company 12−45

filename(5) OSS System Calls Reference Manual

qualifier Specifies a unique identifier significant to the device. A qualifier is a character
string of two to eight valid characters. The first character must be a number sign
(#). Valid characters for the rest of the string are the letters a through z, and the
digits 0 through 9. (Uppercase letters A through Z are accepted but converted to
lowercase letters.) The second character must be a letter.

DESCRIPTION
This reference page describes file-naming rules. There is a separate set of naming rules for the
file system in each environment:

• Rules for OSS files

• Rules for Guardian files

There are also rules used to translate a name used in one environment to a name valid for the
opposite environment.

OSS Filenames
In the OSS environment, the term "filename" refers to a component of a pathname that contains
any characters other than a slash (/) character or a null character.

The hyphen (-) should not be the first character of an OSS filename if shell commands or utilities
will be used on the file. The colon (:) should not be a character in an OSS filename if shell com-
mands or utilities will be used on the file.

The OSS file system does not require filename characters to conform to POSIX.1 and ISO C stan-
dards for portable filenames. However, the use of portable filenames is strongly recommended.

Valid characters for a portable filename are the letters A through Z, the letters a through z, the
digits 0 through 9, and the graphic symbols for period, underscore (_), and hyphen (-). The
hyphen cannot be the first character of a portable filename.

Guardian Filenames
In the Guardian environment, the term "filename" refers to the set of information that uniquely
identifies a Guardian object. A Guardian filename can contain the following characters:

• The letters A through Z (lowercase letters are automatically translated to uppercase and
do not appear in the Guardian file system)

• The digits 0 through 9

• The graphic symbols for backslash (\), number sign (#), colon (:), period, and dollar sign
($)

A Guardian filename is approximately equivalent to an OSS pathname; Guardian disk files
appear in the /G directory with pathnames that have been mapped to OSS filenames.

Guardian objects with Guardian filenames include:

• Disk files

• Temporary disk files

• Nondisk devices

• Named processes

12−46 Hewlett-Packard Company 527186-023

Miscellaneous filename(5)

• Unnamed processes

The type of object determines the syntax for the Guardian filename and which subset of the per-
mitted characters is allowed in the parts of that filename.

For a disk file, the Guardian filename consists of the following four parts, separated by periods:

node name A character string of two to eight valid characters, specifying the node within the
NonStop server Expand network. The first character must be a backslash (\).
Valid characters for the rest of the string are the letters A through Z and the
digits 0 through 9. The second character must be a letter.

volume name A character string of two to eight valid characters, specifying the disk volume
containing the file. The first character must be a dollar sign ($). Valid characters
for the rest of the string are the letters A through Z and the digits 0 through 9.
The second character must be a letter.

subvolume name
A character string of up to eight valid characters, specifying the disk subvolume
(prefix) of the file identifier. Valid characters are the letters A through Z and the
digits 0 through 9. The first character must be a letter.

file identifier A character string of up to eight valid characters, specifying the file. Valid char-
acters are the letters A through Z and the digits 0 through 9. The first character
must be a letter.

For a temporary disk file, the Guardian filename consists of the following three parts, separated
by periods:

node name A character string of two to eight valid characters, specifying the node within the
NonStop server Expand network. The first character must be a backslash (\).
Valid characters for the rest of the string are the letters A through Z and the
digits 0 through 9. The second character must be a letter.

volume name A character string of two to eight valid characters, specifying the disk volume
containing the file. The first character must be a dollar sign ($). Valid characters
for the rest of the string are the letters A through Z and the digits 0 through 9.
The second character must be a letter.

temporary file identifier
A character string of two to eight valid characters, specifying the file. The first
character must be a number sign (#). Valid characters for the rest of the string
are the digits 0 through 9.

For a nondisk device, the Guardian filename consists of the following three parts, separated by
periods:

node name A character string of two to eight valid characters, specifying the node within the
NonStop server Expand network. The first character must be a backslash (\).
Valid characters for the rest of the string are the letters A through Z and the
digits 0 through 9. The second character must be a letter.

device name A character string of two to eight valid characters, specifying the name of the
process providing the interface to the device. The first character must be a dollar
sign ($). Valid characters for the rest of the string are the letters A through Z and
the digits 0 through 9. The second character must be a letter.

527186-023 Hewlett-Packard Company 12−47

filename(5) OSS System Calls Reference Manual

qualifier A character string of two to eight valid characters, specifying a unique identifier
significant to the device. The first character must be a number sign (#). Valid
characters for the rest of the string are the letters A through Z and the digits 0
through 9. The second character must be a letter.

For a named process, Guardian filename rules are complex. Guardian named processes are not
accessible through the OSS file system, so the rules are not discussed here.

Guardian unnamed processes are not accessible through the OSS file system, so identification of
them is not discussed here.

Refer to the Guardian Procedure Calls Reference Manual for more information about Guardian
filenames.

Translating Guardian Filenames to OSS Filenames/Pathnames
Each portion of a Guardian filename is separately translated to a valid OSS filename. The result-
ing pathname is prefixed by /G/ for the local NonStop server node and by /E/node_name/G/ for a
remote NonStop server node.

The OSS pathname for the Guardian filename of a disk file therefore becomes
/E/node_name/G/volume_name/subvolume_name/file_id. The /E/ prefix and node name is omit-
ted from the translation for the /G directory on the local node.

The following character translations also occur:

• Any dollar sign is deleted.

• Periods are translated to slashes.

• All uppercase letters are translated to lowercase as a normalizing convention. This trans-
lation allows filename pattern matching; pattern matching is case-sensitive in the OSS
file system.

Translating OSS Filenames/Pathnames to Guardian Filenames
Each OSS filename within a pathname that includes the /G directory is translated to the appropri-
ate part of a fully qualified Guardian filename. The OSS pathname for a file in the /G directory
cannot contain more OSS filename components than the corresponding Guardian filename per-
mits. Extra components cause an operation to fail; an errno value (described under ERRORS
later in this reference page) is returned for function calls.

For a file on the local NonStop server node, the prefix /G/ is translated to the local node name.
For a file on a remote NonStop server node, the prefix /E/node_name/G/ is translated to the
remote node name.

The OSS filenames . (dot) and . . (dot-dot) translate to the corresponding portions of an appropri-
ately resolved OSS pathname when the current working directory is within a /G directory.

The following character translations also occur:

• A dollar sign is prefixed to an OSS filename that corresponds to a Guardian volume name
or to a Guardian process device name.

• Periods, hyphens (-), and underscores (_) within OSS filenames are deleted.

• OSS filenames longer than eight characters are truncated to seven or eight characters, as
appropriate under Guardian filename rules.

12−48 Hewlett-Packard Company 527186-023

Miscellaneous filename(5)

• Lowercase letters are not translated to uppercase for filename pattern matching. Pattern
matching is case-insensitive in the Guardian file system.

• Slashes between OSS filenames are translated to periods.

EXAMPLES
1. The following is an example of an absolute OSS pathname:

/usr/ccomp/prog1.c

2. The following is an example of an absolute OSS pathname:

/usr/ccomp/prog1.c

3. The following is an example of an absolute OSS pathname for the file named prog2 on
the remote NonStop server node NODE2:

/E/node2/usr/ccomp/prog2.c

4. The following is a relative OSS pathname for a file in a subdirectory of the current work-
ing directory:

refman/ch1

5. The following is an alternative relative OSS pathname for the same file in the same sub-
directory of the current working directory:

. /refman/ch1

6. The following is a relative OSS pathname for a file in a subdirectory of the parent direc-
tory of the current working directory:

. . /yourfiles/oldmail

7. The following is an example of an absolute OSS pathname for a disk file in the Guardian
file system with the Guardian filename \NODE1.$DATA1.MYSUBVOL.MYFILE:

/G/data1/mysubvol/myfile

8. The following is an example of an absolute OSS pathname for a disk file in the Guardian
file system on the remote node NODE2 with the Guardian filename
\NODE2.$DATA1.MYSUBVOL.MYFILE:

/E/node2/G/data1/mysubvol/myfile

9. The following is an example of an absolute OSS pathname for a temporary disk file in
the Guardian file system:

/G/guest/#7777777

10. The following is an example of an absolute OSS pathname for a Guardian nondisk dev-
ice (a terminal device emulator):

/G/ztnt/#pty0001

11. The following is an example of translating an OSS pathname to a Guardian filename. If
the OSS pathname /G/data.volume/src.l1.v3.4.8/properties.c is passed to an OSS func-
tion call, the OSS pathname is interpreted as if it were specified to be
/G/datavol/srcl1v34/properti. This interpretation translates to the Guardian filename
\LOCAL.$DATAVOL.SRCL1V34.PROPERTI, where \LOCAL is the node name for the
local system in the NonStop server Expand network.

527186-023 Hewlett-Packard Company 12−49

filename(5) OSS System Calls Reference Manual

12. The following is an example of translating a Guardian filename to an OSS pathname. If
\LOCAL.$ZTNT.#PTY0001 is a nondisk device that needs to be passed to an OSS func-
tion, it can be referred to by specifying /G/ztnt/#pty0001.

NOTES
Guardian subvolume names and file identifiers beginning with the letter Z are reserved. Do not
use such names for files in the /G directory.

During resolution of OSS pathnames, the st_atime field of the stat structure is updated for each
parent directory involved in the resolution.

ERRORS
If an invalid Guardian filename results from OSS pathname or OSS filename translation for a file
in the /G directory, a function call using the OSS pathname or OSS filename fails and one of the
following values is returned for errno:

[EINVAL] The named file cannot be created.

[ENOENT] The named file cannot be opened.

Most OSS filename and pathname errors return the value [ENAMETOOLONG] for errno.

RELATED INFORMATION
Commands: ls(1), mv(1), rm(1).

Functions: creat(2), fstat(2), lstat(2), open(2), stat(2), symlink(2).

Files: limits(4).

Miscellaneous: hier(5).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• Characters in addition to those of the portable character set are supported in OSS
filenames.

12−50 Hewlett-Packard Company 527186-023

Miscellaneous hier(5)

NAME
hier - Explains the OSS file system hierarchy

DESCRIPTION
This reference page describes the file system hierarchy. Subdirectories (and some files) are listed
indented after the directory that they appear in.

/ Root directory of the local OSS file system.

/bin/ Utility program files, including system and internationalization utilities.

unsupported/ Utilities and scripts believed to function correctly but which
have not been thoroughly tested and therefore are not supported
by HP. Use these utilities and scripts at your own discretion and
risk. HP does not guarantee the behavior or performance of
these utilities and is not obligated to fix problems associated
with them.

/bin/unsupported/cat1/ contains reference page files for these
utilities when reference pages exist for them. Use the command
man -M /bin/unsupported utility-name to read these reference
pages.

/dev/ Device directory, which contains only two devices:

tty Current controlling terminal for the application that is running

null Data sink

/E/ Directories and files for OSS and Guardian file systems on remote NonStop
server nodes accessible through the Expand product. Do not mount filesets or
create files here.

/etc/ System configuration files (such as the default profile, termcap, and printcap
files) and sockets-related network configuration files (such as the site-modified
hosts, networks, protocols, and services files). These are not executable files.

install_obsolete/
Files containing lists of files from earlier releases that HP recom-
mends you remove from your system. These files can be used as
input for the Pcleanup utility.

/G/ Guardian files. For example, the Guardian file $SYSTEM.SYSTEM.SCF
($volume.subvolume.fileid) is stored as /G/system/system/scf.

Each Guardian volume is a separate fileset. Guardian environment processes
also appear in this directory. See the stat(2) reference page for additional infor-
mation.

/lost+found/ Files located by the fileset checking program of the OSS Monitor. These have
names of the form #inode_number, where inode_number identifies the inode
number that is associated with the recovered file within the OSS file system.

/nonnative/ Files for use with G-series TNS or accelerated applications.

bin/ G-series TNS or accelerated files corresponding to the native
files found in /bin/. The accelerated version of the c89 utility
and the TNS C compiler are located here on G-series systems.

527186-023 Hewlett-Packard Company 12−51

hier(5) OSS System Calls Reference Manual

usr/ G-series TNS or accelerated files corresponding to the native
files found in /usr/.

share/man/ Reference page files for use with the apropos,
man, and whatis commands when the
corresponding G-series TNS or accelerated
function or utility cannot be described in the
reference page files found in /usr/share/man/.

Use the command man -M
/nonnative/usr/share/man topic to read these
reference pages.

/tmp/ System-generated temporary files (the contents of /tmp are usually not preserved
across a system reboot).

/usr/ User utilities and applications:

bin/ Native language and tools utilities, including the native c89 util-
ity

include/ C program header (include) files

lib/ C run-time library routines, internationalization message cata-
logs, locale conversion files, compiler components, and shared
resource libraries

share/ Text files, such as reference (man) page files

man/ Initially, the man/ directory contains:

cat1/ through cat8/
Preformatted Open System Ser-
vices reference pages

whatis.frag/ The separately maintained por-
tions of the whatis database

/var/ Files that increase in size until the size is deliberately reduced. Normally con-
tains log files and similar files to which information is periodically appended.

RELATED INFORMATION
Commands: find(1), grep(1), ls(1).

Functions: stat(2).

Files: null(7).

12−52 Hewlett-Packard Company 527186-023

Miscellaneous login.defs(5)

NAME
login.defs - The default login configuration file for the user management suite on OSS.

DESCRIPTION
The /etc/login.defs file contains the default values for login configurable variables used in the
user and alias management utilities. The default values are used in the absence of user-specified
values. The login.defs.sample file provides examples for setting variables.

FILE FORMAT
The file consists of variable, value duple entries. They are of the form <variable name> <value>,
specified one duple entry per line. Blank lines and comment lines are ignored. Comments begin
with the "#" sign as the first non-white character of the line.

SECTION DESCRIPTIONS
The utilities in the user management suite recognize following variables:

CREATE_HOME, PASS_MAX_DAYS, USERDEL_CMD, and UMASK.

RELATED INFORMATION
users (5), newusers(8), useradd(8), userdel(8), usermod(8).

527186-023 Hewlett-Packard Company 12−53

pathname(5) OSS System Calls Reference Manual

NAME
pathname - Explains OSS file system path naming

DESCRIPTION
See the filename(5) reference page.

12−54 Hewlett-Packard Company 527186-023

Miscellaneous process_extension_results(5)

NAME
process_extension_results - Contains the status of a process creation attempt

SYNOPSIS
#include <tdmext.h>

struct process_extension_results ∗∗pr_results;

PARAMETERS
pr_results Points to the output structure containing optional process identification and error

information. In case of error, this structure provides additional information
including the PROCESS_LAUNCH_ procedure error and error detail. The struc-
ture is defined in the tdmext.h header file.

The structure must be defined locally and initialized before its first use. Initiali-
zation is done using the #define
DEFAULT_PROCESS_EXTENSION_RESULTS, as defined in the tdmext.h
header file.

DESCRIPTION
The process_extension_results structure contains status information after a call to the
tdm_execve(), tdm_execvep(), tdm_fork(), tdm_spawn(), or tdm_spawnp() function. This
output structure is also used by Guardian environment procedures such as PROCESS_SPAWN_;
therefore, some returned values defined in the tdmext.h header file are not returned to an OSS
process and are not described in this reference page.

Not all of the returned values described in the following subsection are returned for a call to a
specific OSS function.

The tdmext.h header file is not kept current when new error codes are defined for process crea-
tion functions. The list of _TPC_ macros described in this reference page is not complete; for a
current description of error macros and error codes, see the Guardian header file
$SYSTEM.ZSPIDEF.ZGRDC or the summary of process-creation errors in the Guardian Pro-
cedure Calls Reference Manual (see the table entitled "Summary of Process Creation Errors").

Output Structure Information
If the pr_results parameter does not contain a null pointer, it points to an output structure defined
in the tdmext.h header file. This structure can contain fields that vary from release to release,
including reserved and filler fields.

First, the output structure must be initialized using the #define
DEFAULT_PROCESS_EXTENSION_RESULTS. This initialization sets the value of the
pr_len field to the correct value for the current release. The value of the pr_len field should not
be modified after being set by #define DEFAULT_PROCESS_EXTENSION_RESULTS.

The following fields are meaningful in the current release:

#ifdef __LP64

typedef struct process_extension_results {
int pr_len;
short pr_phandle[10];
int pr_pid;
int pr_errno;
short pr_TPCerror;
short pr_TPCdetail;

} process_extension_results_def;

#else /* ! __LP64 */

527186-023 Hewlett-Packard Company 12−55

process_extension_results(5) OSS System Calls Reference Manual

typedef struct process_extension_results {
long pr_len;
short pr_phandle[10];
long pr_pid;
long pr_errno;
short pr_TPCerror;
short pr_TPCdetail;

} process_extension_results_def;

#endif /* ! __LP64 */

RETURN VALUES
Upon successful completion of the function call, this structure returns the following information:

pr_len Specifies the size in bytes of the structure. This value is the one specified as
input.

pr_phandle Contains the Guardian process handle of the new process.

pr_pid Contains the OSS process ID of the new process.

pr_errno Contains the OSS error number normally returned in errno.

pr_TPCerror Identifies the process creation error. If the pr_results parameter of the function
call did not contain a null pointer, the structure it points to returns additional
error information including the PROCESS_LAUNCH_ error and error detail.

Refer to the ERRORS section of this reference page for a description of the
returned information.

pr_TPCdetail Contains additional error information, as indicated in the descriptions of
pr_TPCerror field values. Refer to the ERRORS section of this reference page
for a description of the returned information.

ERRORS
When an error occurs and the calling function provided a nonnull pointer for its pr_results
parameter, one of the following values is returned in pr_TPCerror:

0 No error information is available. The contents of the pr_TPCdetail field are
not meaningful.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(), tdm_spawn(),
tdm_spawnp().

_TPC_BAD_PARAM_REFERENCE
A pointer value in a field in the structure pointed to by the pe_parms parameter
of the calling function is invalid. Refer to error 3 in the discussion of
PROCESS_LAUNCH_ errors in the Guardian Procedure Errors and Messages
Manual for more information.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(), tdm_spawn(),
tdm_spawnp().

The pr_TPCdetail field contains one of the following values to provide addi-
tional information:

_TPC_BAD_ARGV
The pointer to the argv[] array parameter of the calling function
or one of the entries in the array is invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_spawn(),

12−56 Hewlett-Packard Company 527186-023

Miscellaneous process_extension_results(5)

tdm_spawnp().

_TPC_BAD_DEFINES
The pointer to the pe_defines field in the structure pointed to by
the pe_parms parameter of the calling function is invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_ENVIRON
One of the pointers in the environ array is invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_spawn(),
tdm_spawnp().

_TPC_BAD_ENVP
The pointer to the envp[] array parameter of the calling function
or one of the entries in the array is invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_spawn(),
tdm_spawnp().

_TPC_BAD_ERROR_DETAIL
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn().

_TPC_BAD_EXTENSION
The structure pointed to by the pe_parms parameter of the cal-
ling function and used in the function call is invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_EXTSWAP
The pointer to the pe_extswap_file_name field in the structure
pointed to by the pe_parms parameter of the calling function is
invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_FDMAP
The fd_map[] array parameter of the calling function is not valid
for fd_count elements.

Issued for: tdm_spawn(), tdm_spawnp().

_TPC_BAD_HOMETERM
The pointer to the pe_hometerm field in the structure pointed to
by the pe_parms parameter of the calling function is invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_spawn(),
tdm_spawnp().

527186-023 Hewlett-Packard Company 12−57

process_extension_results(5) OSS System Calls Reference Manual

_TPC_BAD_INHERIT
The pointer to the inherit structure parameter of the calling func-
tion is invalid.

Issued for: tdm_spawn(), tdm_spawnp().

_TPC_BAD_INTERNAL
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_OUTPUT
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn().

_TPC_BAD_OUTPUT_LEN
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn().

_TPC_BAD_PARMLIST
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_PIMFILE
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_PRIVATE_LIST
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_PRIVLIST
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

12−58 Hewlett-Packard Company 527186-023

Miscellaneous process_extension_results(5)

_TPC_BAD_PROCESS_NAME
The pointer to the pe_process_name field in the structure
pointed to by the pe_parms parameter of the calling function is
invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_SWAP
The pointer to the pe_swap_file_name field in the structure
pointed to by the pe_parms parameter of the calling function is
invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_UC
The file parameter pointer of the calling function is invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_spawn(),
tdm_spawnp().

_TPC_BAD_UL
The pointer to the pe_library_name field in the structure
pointed to by the pe_parms parameter of the calling function is
invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_spawn(),
tdm_spawnp().

_TPC_BAD_PARAM_VALUE
Some combination of values for fields in the structure pointed to by the
pe_parms parameter of the calling function is invalid. Refer to error 2 in the dis-
cussion of PROCESS_LAUNCH_ errors in the Guardian Procedure Errors and
Messages Manual for more information.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(), tdm_spawn(),
tdm_spawnp().

The pr_TPCdetail field contains one of the following values to provide addi-
tional information:

_TPC_BAD_CPU
The pe_cpu field in the structure pointed to by the pe_parms
parameter of the calling function contains an invalid value.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_CREATE_OPTIONS
The pe_create_options field in the structure pointed to by the
pe_parms parameter of the calling function contains an invalid
value.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

527186-023 Hewlett-Packard Company 12−59

process_extension_results(5) OSS System Calls Reference Manual

_TPC_BAD_DEBUG_OPTIONS
The pe_debug_options field in the structure pointed to by the
pe_parms parameter of the calling function contains an invalid
value.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_DEFINES
The pe_defines field in the structure pointed to by the pe_parms
parameter of the calling function is invalid.

Issued for: tdm_execvep(), tdm_fork(), tdm_spawn(),
tdm_spawnp().

_TPC_BAD_EXTENSION
The structure pointed to by the pe_parms parameter of the cal-
ling function and used in the function call is invalid.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_EXTSWAP
The pe_extswap_file_name field in the structure pointed to by
the pe_parms parameter of the calling function contains an
invalid OSS pathname for a Guardian file.

This error occurs only for G-series TNS or accelerated new pro-
cess image files.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_HOMETERM
The pe_hometerm field in the structure pointed to by the
pe_parms parameter of the calling function points to an invalid
Guardian process name. Refer to error 14 in the discussion of
file-system errors in the Guardian Procedure Errors and Mes-
sages Manual for more information.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_INHERIT
One of the fields in the inherit structure parameter of the calling
function is invalid.

Issued for: tdm_spawn(), tdm_spawnp().

_TPC_BAD_INTERNAL
An internal OSS software problem occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

12−60 Hewlett-Packard Company 527186-023

Miscellaneous process_extension_results(5)

_TPC_BAD_INTERPRETER
The shell script contained in the text file pointed to by the file
parameter of the calling function does not have an interpreter
name in its #! header line.

Issued for: tdm_execve(), tdm_execvep(), tdm_spawn(),
tdm_spawnp().

_TPC_BAD_JOB
The pe_jobid field in the structure pointed to by the pe_parms
parameter of the calling function contains an invalid value.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_MEM
The pe_memory_pages field in the structure pointed to by the
pe_parms parameter of the calling function contains an invalid
value.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_NAME_OPTIONS
The pe_name_options field in the structure pointed to by the
pe_parms parameter of the calling function contains an invalid
value.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_OSS_OPTIONS
The pe_OSS_options field in the structure pointed to by the
pe_parms parameter of the calling function contains an invalid
value.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_OUTPUT
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_spawn().

_TPC_BAD_OUTPUT_LEN
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_spawn().

_TPC_BAD_PARMLIST
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

527186-023 Hewlett-Packard Company 12−61

process_extension_results(5) OSS System Calls Reference Manual

_TPC_BAD_PFS_SIZE
The pe_pfs_size field in the structure pointed to by the
pe_parms parameter of the calling function contains an invalid
value.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_PIMFILE
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_PRIO
The pe_priority field in the structure pointed to by the
pe_parms parameter of the calling function contains an invalid
value.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_PRIVATE_LIST
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_PRIVLIST
An internal OSS software error occurred. If the problem per-
sists, follow site-defined procedures for reporting software prob-
lems to HP.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_PROCESS_NAME
The pe_process_name field in the structure pointed to by the
pe_parms parameter of the calling function points to an invalid
Guardian process name.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_SWAP
The pe_swap_file_name field in the structure pointed to by the
pe_parms parameter of the calling function points to an invalid
Guardian swap file name.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

12−62 Hewlett-Packard Company 527186-023

Miscellaneous process_extension_results(5)

_TPC_BAD_UC
The file parameter value of the calling function cannot be
resolved into a valid program file name.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

_TPC_BAD_UL
The pe_library_name field value of the calling function cannot
be resolved into a valid library file name.

Issued for: tdm_execve(), tdm_execvep(), tdm_fork(),
tdm_spawn(), tdm_spawnp().

For information about specific Guardian file-system errors, see the discussion of file-system
errors in the Guardian Procedure Errors and Messages Manual.

RELATED INFORMATION
Functions: tdm_execve(2), tdm_execvep(2), tdm_fork(2), tdm_spawn(2), tdm_spawnp(2).

STANDARDS CONFORMANCE
This structure is an extension to the XPG4 Version 2 specification.

527186-023 Hewlett-Packard Company 12−63

resolv.conf(5) OSS System Calls Reference Manual

NAME
resolv.conf - BIND 9 Domain Name System resolver configuration file

DESCRIPTION
The default configuration file /etc/resolv.conf provides an explicit default domain name for the
Domain Name System (DNS) to use, and identifies name servers on other processors. The BIND
9 resolver system can be used with other, nondefault versions of resolv.conf.

Each entry in a resolv.conf file is a directive that consists of a keyword followed by one or more
values:

keyword value

The keyword and value must appear on a single line. Start the line with the keyword,
followed by the value, separated by white space.

The /etc/resolv.conf file can contain the following directives:

nameserver address
The Internet address of a domain name server, in standard dot notation. Up to
MAXNS multiple domain name server addresses may be listed.

The resolver queries the domain name servers in the order they are listed in the
file, stopping when it receives a response, or moving to the next in the list if the
query times out. If the resolver reaches the end of the domain name server list
without receiving a response, it will start from the beginning of the list and query
each domain name server again, until a maximum number of retries is reached. If
/etc/resolv.conf contains no nameserver directives, the resolver uses the loop-
back address. Therefore, a domain name server must be running on the proces-
sor on which the file resides.

domain name The default domain to append to names that do not contain a domain, and the
default domain name to be used in searches. No trailing spaces are allowed after
the value in name.

If resolv.conf does not contain a domain directive, then the resolver uses the the
hostname for the processor, but removes the first part of the name. For example,
if the host name is set to "yojimbo.dev1.anyfirm.com," the resolver uses the
name "dev1.anyfirm.com."

Most queries for names within this domain can use short names relative to the
local domain. (Everything after the first "." is presumed to be the domain name.)
If the hostname does not contain a domain part, the root domain is assumed. You
can use the LOCALDOMAIN environment variable to override the domain
name.

The domain and search keywords are mutually exclusive. If more than one
instance of these keywords is present, the last instance takes precedence.

search name ... The explicit search order that you want the resolver to use when looking up host-
names. The search keyword can accept up to six domain names as values, with a
total of 256 characters.

The resolver will perform its search using the order specified after the search
keyword.

The search list is normally determined from the local domain name. By default,
it contains only the local domain name. You can change the default behavior by
listing the desired domain search path following the search keyword, with
spaces or tabs separating the names. Most resolver queries are attempted using
each component of the search path in turn until a match is found. This process

12−64 Hewlett-Packard Company 527186-023

Miscellaneous resolv.conf(5)

might be slow and generates a lot of network traffic if the servers for the listed
domains are not local. Queries time out if no server is available for one of the
domains.

The domain and search keywords are mutually exclusive. If more than one
instance of these keywords is present, the last instance takes precedence.

sortlist addresslist
Allows addresses returned by internal function calls to be sorted.

An addresslist is specified by IP address netmask pairs. The netmask pairs are
optional; an unspecified netmask defaults to the natural netmask of the net. The
IP address and optional netmask pairs are separated by slashes. Up to 10 net-
mask pairs may be specified.

Example: sortlist 130.155.160.0/255.255.240.0 130.155.0.0

options option...
Allows internal resolver variables to be modified. Possible values for option are:

debug Sets RES_DEBUG in the _res.options field.

ndots:n Sets a threshold floor for the number of dots which must appear
in a name before an initial absolute (as-is) query is performed.
The default value for n is 1, which means that if there are any
dots in a name, the name is tried first as an absolute name before
any search list elements are appended to it.

timeout:n Sets the amount of time the resolver waits for a response from a
remote name server before retrying the query via a different
name server. Measured in seconds, the default is
RES_TIMEOUT (described in the <resolv.h> header file).

attempts:n Sets the number of times the resolver sends a query to its name
servers before giving up and returning an error to the calling
application. The default is RES_DFLRETRY (described in
the <resolv.h> header file).

no-check-names
Sets RES_NOCHECKNAME in _res.options. This disables
the modern BIND checking of incoming host names and mail
names for invalid characters such as underscore (_), nonASCII,
or control characters.

You can override the search keyword of the resolv.conf file on a per-process basis by setting the
environment variable LOCALDOMAIN to a space-separated list of search domains.

You can amend the options keyword of the resolv.conf file on a per-process basis by setting the
environment variable RES_OPTIONS to a space-separated list of resolver options.

EXAMPLES
Example lines from a /etc/resolv.conf file are shown below:

domain dev1.anyfirm.com
nameserver 123.456.78.90
nameserver 123.456.78.91

527186-023 Hewlett-Packard Company 12−65

resolv.conf(5) OSS System Calls Reference Manual

RELATED INFORMATION
Commands: dnssec_named(8), named(8).

Functions: gethostbyaddr(3), gethostbyname(3), gethostbyname2(3), setnetent(3).

Files: hosts(4), networks(4), protocols(4), resolv.conf(4), services(4).

12−66 Hewlett-Packard Company 527186-023

Miscellaneous users(5)

NAME
users - The default user configuration file for the user management suite on OSS.

DESCRIPTION
The /etc/default/users file contains the default values for configurable variables used in the user
and alias management utilities. The default values are used in the absence of user-specified
values. You must create and customize this file for your site-specific needs. The users.sample
file provides examples for setting variables.

FILE FORMAT
The file consists of variable, value duple entries. They are of the form <variable name>=<value>,
specified one duple entry per line. Blank lines and comment lines are ignored. Comments begin
with the "#" sign as the first non-white character of the line.

SECTION DESCRIPTIONS
The utilities in the user management suite recognize following variables:

GROUP, USER, HOME, EXPIRE, INACTIVE, and SKEL.

RELATED INFORMATION
login.defs(5), newusers(8), useradd(8), userdel(8), usermod(8).

527186-023 Hewlett-Packard Company 12−67

Permuted Index_____________________________

 spt_fputwc: Thread-aware fputwc() ... spt_fputwc(2)
 required by spt_regFileIOHandler() /Executes callback type ... spt_FileIOHandler_p(2)

 spt_fputc: Thread-aware fputc() function .. spt_fputc(2)
 required by spt_regTimerHandler() function /callback type ... spt_TimerHandler_p(2)

 /Initiates thread-aware select() function for a single file/ .. put_select_single_np(2)
 /Initiates thread-aware select() function for a single file/ .. spt_select_single_np(2)
 /Initiates thread-aware select() function for mulitple file/ ... spt_select(2)

 spt_closez: Initiates close() function for thread-aware/ .. spt_closez(2)
 Renames a file (Guardian rename() function) rename_guardian: rename_guardian(2)

 a file or directory (OSS rename() function) rename_oss: Renames rename_oss(2)
 Initiates thread-aware accept() function spt_accept: ... spt_accept(2)

 Initiates thread-aware close() function spt_close: ... spt_close(2)
 Initiates thread-aware connect() function spt_connect: ... spt_connect(2)

 Initiates thread-aware fclose() function spt_fclose: .. spt_fclose(2)
 Initiates thread-aware fflush() function spt_fflush: ... spt_fflush(2)
 Initiates thread-aware fgetc() function spt_fgetc: ... spt_fgetc(2)
 Initiates thread-aware fgets() function spt_fgets: .. spt_fgets(2)

 Initiates thread-aware fgetwc() function spt_fgetwc: .. spt_fgetwc(2)
 Initiates thread-aware fprintf() function spt_fprintf: ... spt_fprintf(2)

 Initiates thread-aware fputs() function spt_fputs: ... spt_fputs(2)
 Initiates thread-aware fread() function spt_fread: ... spt_fread(2)

 Initiates thread-aware fwrite() function spt_fwrite: .. spt_fwrite(2)
 Initiates thread-aware getc() function spt_getc: ... spt_getc(2)

 Executes thread-aware getchar() function spt_getchar: ... spt_getchar(2)
 Initiates thread-aware gets() function spt_gets: ... spt_gets(2)

 Initiates thread-aware getw() function spt_getw: .. spt_getw(2)
 Initiates thread-aware getwc() function spt_getwc: .. spt_getwc(2)

 Initiates thread-aware getwchar() function spt_getwchar: .. spt_getwchar(2)
 Initiates thread-aware printf() function spt_printf: .. spt_printf(2)

 Initiates thread-aware putc() function spt_putc: ... spt_putc(2)
 Initiates thread-aware putchar() function spt_putchar: ... spt_putchar(2)

 Initiates thread-aware puts() function. spt_puts: .. spt_puts(2)
 Initiates thread-aware putw() function spt_putw: ... spt_putw(2)

 Initiates thread-aware putwc() function spt_putwc: .. spt_putwc(2)
 Initiates thread-aware fputwchar() function spt_putwchar: .. spt_putwchar(2)

 Initiates thread-aware read() function spt_read: ... spt_read(2)
 Initiates thread-aware readv() function spt_readv: ... spt_readv(2)

 Initiates thread-aware recv() function spt_recv: ... spt_recv(2)
 Initiates thread-aware recvfrom() function spt_recvfrom: ... spt_recvfrom(2)

 Initiates thread-aware send() function spt_send: .. spt_send(2)
 Initiates thread-aware sendmsg() function spt_sendmsg: ... spt_sendmsg(2)

 Initiates thread-aware sendto() function spt_sendto: ... spt_sendto(2)
 Initiates thread-aware system() function spt_system: .. spt_system(2)

 Initiates thread-aware vfprintf() function spt_vfprintf: ... spt_vfprintf(2)
 Initiates thread-aware vprintf() function spt_vprintf: .. spt_vprintf(2)

 Initiates thread-aware waitpid() function spt_waitpid: ... spt_waitpid(2)
 Initiates thread-aware write() function spt_write: ... spt_write(2)
 Initiate thread-aware writev() function spt_writev: ... spt_writev(2)
 /configuration file for BIND 9 domain name server named named.conf(4)

configuration/ resolv.conf: BIND 9 Domain Name System resolver resolv.conf(5)
 /Calculates an absolute expiration time ... pthread_get_expiration_np(2)

 Initiates thread-aware accept() function spt_accept: spt_accept(2)
on a socket accept: Accepts a new connection accept(2)

527186-023 Hewlett-Packard Company Pindex−1

OSS System Calls Reference Manual

socket accept: Accepts a new connection on a accept(2)
socket/ spt_acceptx: Accepts a new connection on a spt_acceptx(2)

 utime: Sets file access and modification times utime(2)
information for a file acl: Sets access control list (ACL) .. acl(2)

 acl: Introduction to OSS access control lists (ACLs) ... acl(5)
accessibility of a file access: Determines the .. access(2)

 access: Determines the accessibility of a file .. access(2)
 /Excludes other users from accessing a Guardian disk file PUT_LOCKFILE(2)
 /Excludes other users from accessing a Guardian disk file SPT_LOCKFILE(2)

disk/ /Excludes other users from accessing a record in a Guardian PUT_LOCKREC(2)
disk/ /Excludes other users from accessing a record in a Guardian SPT_LOCKREC(2)

 acl: Sets access control list (ACL) information for a file ... acl(2)
control lists (ACLs) acl: Introduction to OSS access acl(5)

(ACL) information for a file acl: Sets access control list ... acl(2)
 to OSS access control lists (ACLs) acl: Introduction .. acl(5)

signal sigaction: Specifies the action to take upon delivery of a sigaction(2)
 spt_sigaction: Specifies the action to take upon delivery of a/ spt_sigaction(2)

existing file/ link: Creates an additional directory entry for an link(2)
specified/ /Obtains the stackbase address attribute of the .. pthread_attr_getstackaddr(2)

 /a shared memory segment to the address space of the calling/ ... shmat(2)
process/ spt_alarm: Schedules an alarm signal for delivery to a .. spt_alarm(2)

records in/ PUT_READUPDATELOCKX: Allows random processing of PUT_READUPDATELOCKX(2)
records in/ SPT_READUPDATELOCKX: Allows random processing of SPT_READUPDATELOCKX(2)

 but does not wait if the mutex is already locked /a specified mutex pthread_mutex_trylock(2)
 /Sets and gets the signal alternate stack context .. sigaltstack(2)

synchronous/ select: Selects among file descriptors for ... select(2)
 Guardian disk or process file in anticipation of a subsequent/ /a PUT_READUPDATEX(2)
 Guardian disk or process file in anticipation of a subsequent/ /a SPT_READUPDATEX(2)

 /a communication path between an application process and a file PUT_FILE_OPEN_(2)
 /a communication path between an application process and a file SPT_FILE_OPEN_(2)
 /from an open Guardian file to the application process data area .. PUT_READX(2)
 /from an open Guardian file to the application process data area .. SPT_READX(2)

file /data from an array in the application program to a Guardian PUT_WRITEUPDATEX(2)
file /data from an array in the application program to a Guardian SPT_WRITEUPDATEX(2)

 /Writes data from an array in the application program to an open/ PUT_WRITEX(2)
 /Writes data from an array in the application program to an open/ SPT_WRITEX(2)

(library) file format ar: Describes the archive ... ar(4)
 cpio: Describes the extended cpio archive file format ... cpio(4)

 tar: Describes the extended tar archive file format ... tar(4)
 ar: Describes the archive (library) file format .. ar(4)

 to the application process data area /from an open Guardian file PUT_READX(2)
 to the application process data area /from an open Guardian file SPT_READX(2)

 /a file using a pathname, a set of argument strings, and an/ .. execle(2)
 /a file using a pathname, a set of argument strings, and **environ execl(2)
 /a file using a filename, a set of argument strings, and **environ execlp(2)

 /a file using a pathname, an argv array, and an envp array execve(2)
 /a file using a pathname, an argv array, and **environ ... execv(2)
 /a file using a filename, an argv array, and **environ ... execvp(2)
 an argv array, and an envp array /a file using a pathname, execve(2)

 strings, and an undeclared envp array /a set of argument .. execle(2)
 /a file using a pathname, an argv array, and an envp array .. execve(2)
 a file using a pathname, an argv array, and **environ /Executes execv(2)
 a file using a filename, an argv array, and **environ /Executes execvp(2)

 /data to a Guardian file from an array and waits for data to be/ PUT_WRITEREADX(2)
 /data to a Guardian file from an array and waits for data to be/ SPT_WRITEREADX(2)

 process previously opened from an array and waits for data to be/ /a PUT_FILE_WRITEREAD_(2)
to a/ /Transfers data from an array in the application program PUT_WRITEUPDATEX(2)

 PUT_WRITEX: Writes data from an array in the application program/ PUT_WRITEX(2)
to a/ /Transfers data from an array in the application program SPT_WRITEUPDATEX(2)

 SPT_WRITEX: Writes data from an array in the application program/ SPT_WRITEX(2)
 octal, hexadecimal, and decimal ASCII character sets /the .. ascii(5)
hexadecimal, and decimal ASCII/ ascii: Describes the octal, ... ascii(5)
special/ mknod: Creates a file or assigns a pathname to a character mknod(2)

 /Obtains the thread-specific data associated with a key .. pthread_getspecific(2)
 /Sets the thread-specific data associated with a key .. pthread_setspecific(2)

Pindex−2 Hewlett-Packard Company 527186-023

Permuted Index

 /TMF transaction handle to be associated with the current/ .. PUT_TMF_SetAndValidateTxHandle(2)
thread /Suspends a transaction associated with the current ... PUT_TMF_SUSPEND(2)
 /TMF transaction handle to be associated with the current/ .. SPT_TMF_SetAndValidateTxHandle(2)
thread /Suspends a transaction associated with the current ... SPT_TMF_SUSPEND(2)

 previously suspended transaction associated with the current/ /a PUT_TMF_RESUME(2)
 previously suspended transaction associated with the current/ /a SPT_TMF_RESUME(2)

to the address space of/ shmat: Attaches a shared memory segment shmat(2)
 the status of a process creation attempt /Contains .. process_extension_results(5)

mutex but/ pthread_mutex_trylock: Attempts to lock a specified ... pthread_mutex_trylock(2)
 pthread_getattr_np: Gets the attribute object for a thread .. pthread_getattr_np(2)

 mutex type attribute of a mutex attribute object /Gets the .. pthread_mutexattr_gettype(2)
 mutex type attribute of a mutex attribute object /Sets the ... pthread_mutexattr_settype(2)

object /Gets the mutex type attribute of a mutex attribute .. pthread_mutexattr_gettype(2)
object /Sets the mutex type attribute of a mutex attribute .. pthread_mutexattr_settype(2)

object /Obtains the mutex type attribute of a mutex attributes pthread_mutexattr_getkind_np(2)
object /Sets the mutex type attribute of a mutex attributes pthread_mutexattr_setkind_np(2)

object /Obtains the detachstate attribute of a thread attributes pthread_attr_getdetachstate(2)
object /Obtains the guardsize attribute of a thread attributes pthread_attr_getguardsize(2)
object /Obtains the guardsize attribute of a thread attributes pthread_attr_getguardsize_np(2)

 /Obtains the inherit scheduling attribute of a thread attributes/ pthread_attr_getinheritsched(2)
object /of the scheduling policy attribute of a thread attributes pthread_attr_getschedparam(2)
 /Obtains the scheduling policy attribute of a thread attributes/ pthread_attr_getschedpolicy(2)

object /Gets the contentionscope attribute of a thread attributes pthread_attr_getscope(2)
object /Obtains the stacksize attribute of a thread attributes pthread_attr_getstacksize(2)

object /Sets the detachstate attribute of a thread attributes pthread_attr_setdetachstate(2)
object /Sets the guardsize attribute of a thread attributes pthread_attr_setguardsize(2)
object /Sets the guardsize attribute of a thread attributes pthread_attr_setguardsize_np(2)

 /Sets the inherit scheduling attribute of a thread attributes/ pthread_attr_setinheritsched(2)
object /of the scheduling policy attribute of a thread attributes pthread_attr_setschedparam(2)

 /Sets the scheduling policy attribute of a thread attributes/ pthread_attr_setschedpolicy(2)
object /Sets the contentionscope attribute of a thread attributes pthread_attr_setscope(2)

object /Sets the stacksize attribute of a thread attributes pthread_attr_setstacksize(2)
 /Obtains the stackbase address attribute of the specified thread/ pthread_attr_getstackaddr(2)

 /Destroys a thread attributes object ... pthread_attr_destroy(2)
 /attribute of a thread attributes object ... pthread_attr_getscope(2)
 /Initializes a thread attributes object ... pthread_attr_init(2)

 /attribute of a thread attributes object ... pthread_attr_setscope(2)
 /Destroys a condition variable attributes object ... pthread_condattr_destroy(2)

 /Initializes a condition variable attributes object ... pthread_condattr_init(2)
 /Destroys a mutex attributes object ... pthread_mutexattr_destroy(2)

 /Initializes a mutex attributes object ... pthread_mutexattr_init(2)
 attribute of the specified thread attributes object /address .. pthread_attr_getstackaddr(2)
 detachstate attribute of a thread attributes object /Obtains the pthread_attr_getdetachstate(2)

 guardsize attribute of a thread attributes object /Obtains the pthread_attr_getguardsize(2)
 guardsize attribute of a thread attributes object /Obtains the pthread_attr_getguardsize_np(2)
 stacksize attribute of a thread attributes object /Obtains the pthread_attr_getstacksize(2)

 mutex type attribute of a mutex attributes object /Obtains the pthread_mutexattr_getkind_np(2)
 detachstate attribute of a thread attributes object /Sets the ... pthread_attr_setdetachstate(2)

 guardsize attribute of a thread attributes object /Sets the ... pthread_attr_setguardsize(2)
 guardsize attribute of a thread attributes object /Sets the ... pthread_attr_setguardsize_np(2)
 stacksize attribute of a thread attributes object /Sets the ... pthread_attr_setstacksize(2)

 mutex type attribute of a mutex attributes object /Sets the ... pthread_mutexattr_setkind_np(2)
 scheduling attribute of a thread attributes object /the inherit ... pthread_attr_getinheritsched(2)
 scheduling attribute of a thread attributes object /the inherit ... pthread_attr_setinheritsched(2)

 policy attribute of a thread attributes object /the scheduling pthread_attr_getschedparam(2)
 policy attribute of a thread attributes object /the scheduling pthread_attr_getschedpolicy(2)
 policy attribute of a thread attributes object /the scheduling pthread_attr_setschedparam(2)
 policy attribute of a thread attributes object /the scheduling pthread_attr_setschedpolicy(2)

 /Writes modified data and file attributes to permanent storage fsync(2)
 /Writes modified data and file attributes to permanent storage/ spt_fsyncz(2)

 /Interrupts all threads awaiting input or output ... put_interrupt(2)
 /Interrupts all threads awaiting input or output ... spt_interrupt(2)

 /Interrupts thread awaiting tagged I/O ... put_interruptTag(2)
 put_wakeup: Wakes up a thread awaiting tagged I/O ... put_wakeup(2)

 /Interrupts thread awaiting tagged I/O ... spt_interruptTag(2)

527186-023 Hewlett-Packard Company Pindex−3

OSS System Calls Reference Manual

 spt_wakeup: Wakes up a thread awaiting tagged I/O ... spt_wakeup(2)
 put_awaitio: Awaits a tagged I/O file .. put_awaitio(2)
 spt_awaitio: Awaits a tagged I/O file .. spt_awaitio(2)

 /socket connections and limits the backlog of incoming connections listen(2)
 /configuration file for BIND 9 domain name server named named.conf(4)
resolver/ resolv.conf: BIND 9 Domain Name System resolv.conf(5)

 bind: Binds a name to a socket bind(2)
 bind: Binds a name to a socket ... bind(2)

 /Examines signals that are blocked and pending ... spt_sigpending(2)
 sigsuspend: Changes the set of blocked signals and waits for a/ sigsuspend(2)

signal /Changes the set of blocked signals and waits for a spt_sigsuspend(2)
 getsockname: Gets the locally bound name of a socket ... getsockname(2)

 /variable to be signaled or broadcast, or for a specific/ ... pthread_cond_timedwait(2)
 variable to be signaled or broadcast /specified condition pthread_cond_wait(2)

 Reads from a file into scattered buffers readv: ... readv(2)
 /Reads from a file into scattered buffers (thread-aware version) spt_readvx(2)
 /Reads from a file into scattered buffers (thread-aware version) spt_readvz(2)

 /Writes to a file from scattered buffers (thread-aware version) spt_writevx(2)
 /Writes to a file from scattered buffers (thread-aware version) spt_writevz(2)
 Writes to a file from scattered buffers writev: ... writev(2)

 spt_fputcx: Writes a byte to a specified output stream/ spt_fputcx(2)
 spt_putcx: Writes a byte to a specified output stream/ spt_putcx(2)

stream/ spt_putcharx: Writes a byte to the standard output ... spt_putcharx(2)
time pthread_get_expiration_np: Calculates an absolute expiration pthread_get_expiration_np(2)

 /thread-aware REPLYXL procedure call (larger message version) .. put_REPLYXL(2)
 /thread-aware REPLYXL procedure call (larger message version) .. spt_REPLYXL(2)

 thread-aware REPLYX procedure call put_REPLYX: Initiates ... put_REPLYX(2)
 thread-aware REPLYX procedure call spt_REPLYX: Initiates .. spt_REPLYX(2)

 the specified condition variable; callable only from an/ /waiting on pthread_cond_signal_int_np(2)
 /Registers a user-supplied timer callback function ... put_regTimerHandler(2)
 /Registers a user-supplied timer callback function ... spt_regTimerHandler(2)
 descriptor to manage through a callback function /the file ... put_regOSSFileIOHandler(2)
 descriptor to manage through a callback function /the file ... spt_regOSSFileIOHandler(2)
 spt_FileIOHandler_p: Executes callback type required by/ .. spt_FileIOHandler_p(2)
 spt_TimerHandler_p: Executes callback type required by/ .. spt_TimerHandler_p(2)

 spt_OSSFileIOHandler_p: Executes callback type required by the/ spt_OSSFileIOHandler_p(2)
 /fork-handler routines to be called when the calling thread’s/ pthread_atfork(2)

 setgid: Sets the group ID of the calling process ... setgid(2)
 setuid: Sets the user ID of the calling process ... setuid(2)

 Gets the process group ID of the calling process getpgrp: ... getpgrp(2)
 to the address space of the calling process /memory segment shmat(2)

 the scheduling priority of the calling process nice: Changes nice(2)
 the effective group ID of the calling process setegid: Sets .. setegid(2)

 Sets the effective user ID of the calling process seteuid: .. seteuid(2)
 Sets the group list of the calling process setgroups: .. setgroups(2)

 pthread_exit: Terminates the calling thread ... pthread_exit(2)
 the thread identifier of the calling thread /Obtains ... pthread_self(2)
 cancelation request to the calling thread /of a pending ... pthread_testcancel(2)
signal sigwait: Causes the calling thread to wait for a .. sigwait(2)

signal spt_sigwait: Causes the calling thread to wait for a .. spt_sigwait(2)
 pthread_join: Causes the calling thread to wait for the/ pthread_join(2)

 pthread_setcancelstate: Sets the calling thread’s cancelability/ pthread_setcancelstate(2)
 pthread_setcanceltype: Sets the calling thread’s cancelability/ pthread_setcanceltype(2)

 /cleanup-handler routine from the calling thread’s cleanup-handler/ pthread_cleanup_pop(2)
 /routines to be called when the calling thread’s process forks a/ pthread_atfork(2)

 /Examines or changes the calling thread’s signal mask ... pthread_sigmask(2)
once by a single/ pthread_once: Calls a routine to be executed pthread_once(2)

 /Sets the calling thread’s cancelability state .. pthread_setcancelstate(2)
 /Sets the calling thread’s cancelability type .. pthread_setcanceltype(2)

 /Requests delivery of a pending cancelation request to the/ .. pthread_testcancel(2)
signal is/ pthread_kill_np: Cancels a thread if a specified pthread_kill_np(2)

 pthread_signal_to_cancel_np: Cancels a thread if a specified/ pthread_signal_to_cancel_np(2)
operation on a/ PUT_CANCEL: Cancels the oldest incomplete PUT_CANCEL(2)
operation on a/ SPT_CANCEL: Cancels the oldest incomplete SPT_CANCEL(2)

 termcap: Describes the terminal capability database .. termcap(4)

Pindex−4 Hewlett-Packard Company 527186-023

Permuted Index

for a/ pthread_cond_timedwait: Causes a thread to wait either pthread_cond_timedwait(2)
specified/ pthread_cond_wait: Causes a thread to wait for the pthread_cond_wait(2)

for the/ pthread_join: Causes the calling thread to wait pthread_join(2)
for a signal sigwait: Causes the calling thread to wait sigwait(2)

for a signal spt_sigwait: Causes the calling thread to wait spt_sigwait(2)
 ftruncate: Changes file length .. ftruncate(2)

 ftruncate64: Changes file length .. ftruncate64(2)
version) spt_ftruncate64z: Changes file length (thread-aware spt_ftruncate64z(2)

version) spt_ftruncatez: Changes file length (thread-aware spt_ftruncatez(2)
 chmod: Changes file-access permissions chmod(2)

 fchmod: Changes file-access permissions fchmod(2)
 lchmod: Changes file-access permissions lchmod(2)

mask sigprocmask: Changes or examines the signal sigprocmask(2)
 pthread_sigmask: Examines or changes the calling thread’s/ .. pthread_sigmask(2)

directory chdir: Changes the current working .. chdir(2)
directory chroot: Changes the effective root .. chroot(2)

of a file chown: Changes the owner and group IDs chown(2)
of a file fchown: Changes the owner and group IDs fchown(2)
of a file lchown: Changes the owner and group IDs lchown(2)

of the calling process nice: Changes the scheduling priority nice(2)
signals and waits/ sigsuspend: Changes the set of blocked ... sigsuspend(2)

signals and/ spt_sigsuspend: Changes the set of blocked ... spt_sigsuspend(2)
 an interprocess communication channel pipe: Creates ... pipe(2)
input/ spt_fgetwcx: Gets a wide character from a a specified .. spt_fgetwcx(2)

stream/ spt_fgetcx: Gets a character from a specified input spt_fgetcx(2)
stream/ spt_getcx: Gets a character from a specified input spt_getcx(2)

stream/ spt_getwcx: Gets a wide character from a specified input spt_getwcx(2)
stream/ spt_getcharx: Gets a character from the standard input spt_getcharx(2)
 spt_getwcharx: Gets a wide character from the standard input/ spt_getwcharx(2)

 hexadecimal, and decimal ASCII character sets /the octal, ... ascii(5)
 a file or assigns a pathname to a character special file /Creates mknod(2)

 spt_fputwcx: Writes a wide character to a specified stream/ spt_fputwcx(2)
 spt_putwcx: Writes a wide character to a specified stream/ spt_putwcx(2)

 spt_putwcharx: Writes a wide character to the standard output/ spt_putwcharx(2)
working directory chdir: Changes the current .. chdir(2)

 calling thread’s process forks a child process /be called when the pthread_atfork(2)
 waitpid: Waits for a specific child process to stop or/ .. waitpid(2)

 wait: Waits for any child process to terminate ... wait(2)
permissions chmod: Changes file-access .. chmod(2)

group IDs of a file chown: Changes the owner and chown(2)
root directory chroot: Changes the effective chroot(2)

calling/ /(Macro) Removes the cleanup-handler routine from the pthread_cleanup_pop(2)
executed/ /(Macro) Establishes a cleanup-handler routine to be pthread_cleanup_push(2)

 /routine from the calling thread’s cleanup-handler stack and/ ... pthread_cleanup_pop(2)
 spt_close: Initiates thread-aware close() function ... spt_close(2)

 spt_closez: Initiates close() function for/ .. spt_closez(2)
 close: Closes a file descriptor close(2)

 close: Closes a file descriptor .. close(2)
(thread-aware/ spt_closex: Closes a file descriptor .. spt_closex(2)

version) spt_fclosex: Closes a stream (thread-aware spt_fclosex(2)
 PUT_FILE_CLOSE_: Closes an open Guardian file .. PUT_FILE_CLOSE_(2)
 SPT_FILE_CLOSE_: Closes an open Guardian file .. SPT_FILE_CLOSE_(2)

 pipe: Creates an interprocess communication channel .. pipe(2)
 PUT_FILE_OPEN_: Establishes a communication path between an/ PUT_FILE_OPEN_(2)
 SPT_FILE_OPEN_: Establishes a communication path between an/ SPT_FILE_OPEN_(2)

 socket: Creates an endpoint for communications .. socket(2)
 pthread_equal: Compares two thread identifiers pthread_equal(2)

 the terminal interface for POSIX compatibility termios: Describes termios(4)
 /Gets level of concurrency .. pthread_getconcurrency(2)
 /Sets level of concurrency .. pthread_setconcurrency(2)

 /Sets the number of concurrent TMF transactions .. put_setTMFConcurrentTransactions(2)
 /Sets the number of concurrent TMF transactions .. spt_setTMFConcurrentTransactions(2)

used /Gets the number of concurrent TMF transactions being put_getTMFConcurrentTransactions(2)
used /Gets the number of concurrent TMF transactions being spt_getTMFConcurrentTransactions(2)

 /Initializes the tfile for concurrent transaction management PUT_TMF_Init(2)

527186-023 Hewlett-Packard Company Pindex−5

OSS System Calls Reference Manual

 /Initializes the tfile for concurrent transaction management SPT_TMF_Init(2)
 errno: Returns the error condition value .. errno(5)

 pthread_cond_destroy: Destroys a condition variable .. pthread_cond_destroy(2)
 pthread_cond_init: Initializes a condition variable .. pthread_cond_init(2)
 that are waiting on the specified condition variable /all threads pthread_cond_broadcast(2)

object /Destroys a condition variable attributes ... pthread_condattr_destroy(2)
object /Initializes a condition variable attributes ... pthread_condattr_init(2)

 /that is waiting on the specified condition variable; callable only/ pthread_cond_signal_int_np(2)
 that is waiting on the specified condition variable /one thread pthread_cond_signal(2)
or/ /a thread to wait either for a condition variable to be signaled pthread_cond_timedwait(2)

 /thread to wait for the specified condition variable to be signaled/ pthread_cond_wait(2)
 9 Domain Name System resolver configuration file /BIND ... resolv.conf(5)
domain name server/ named.conf: configuration file for BIND 9 named.conf(4)

 login.defs: The default login configuration file for the user/ login.defs(5)
 users: The default user configuration file for the user/ users(5)
 Initiates thread-aware connect() function spt_connect: spt_connect(2)

 connect: Connects a socket ... connect(2)
 recv: Receives a message from a connected socket ... recv(2)

 send: Sends a message on a connected socket ... send(2)
 send64_: Sends a message on a connected socket ... send64_(2)

 Receives a message from a connected socket recv64_: ... recv64_(2)
 /Receives a message from a connected socket (thread-aware/ spt_recvx(2)

 spt_sendx: Sends a message on a connected socket (thread-aware/ spt_sendx(2)
 socketpair: Creates a pair of connected sockets .. socketpair(2)

 accept: Accepts a new connection on a socket .. accept(2)
 spt_acceptx: Accepts a new connection on a socket/ ... spt_acceptx(2)

 listen: Listens for socket connections and limits the/ ... listen(2)
 limits the backlog of incoming connections /connections and listen(2)

 connect: Connects a socket .. connect(2)
version) spt_connectx: Connects a socket (thread-aware spt_connectx(2)

 Specifies mathematical functions, constants, and types math: ... math(4)
 core: Is a file containing a memory image ... core(4)

 saveabend: Is a file containing a memory image ... saveabend(4)
variables used by signal/ signal: Contains definitions and ... signal(4)

 process_extension_results: Contains the status of a process/ process_extension_results(5)
 environ: Contains the user environment environ(5)

 pthread_attr_getscope: Gets the contentionscope attribute of a/ pthread_attr_getscope(2)
 pthread_attr_setscope: Sets the contentionscope attribute of a/ pthread_attr_setscope(2)

 gets the signal alternate stack context sigaltstack: Sets and .. sigaltstack(2)
for a file acl: Sets access control list (ACL) information acl(2)

 acl: Introduction to OSS access control lists (ACLs) ... acl(5)
 msgctl: Performs message control operations .. msgctl(2)

 semctl: Performs semaphore control operations .. semctl(2)
 shmctl: Performs shared memory control operations .. shmctl(2)
 Sets the process group ID for job control setpgid: ... setpgid(2)

 dup2: Duplicates and controls an open file descriptor dup2(2)
 spt_dup2x: Duplicates and controls an open file descriptor/ spt_dup2x(2)

 ioctl: Controls device files .. ioctl(2)
 fcntl: Controls open file descriptors fcntl(2)

(thread-aware/ spt_fcntlx: Controls open file descriptors spt_fcntlx(2)
(thread-aware/ spt_fcntlz: Controls open file descriptors spt_fcntlz(2)

memory image core: Is a file containing a ... core(4)
 cpio: Describes the extended cpio archive file format ... cpio(4)

archive file format cpio: Describes the extended cpio cpio(4)
the OSS environment or rewrites/ creat: Creates a regular file in creat(2)

in the OSS environment or/ creat64: Creates a regular file creat64(2)
 mkdir: Creates a directory ... mkdir(2)

pathname to a character/ mknod: Creates a file or assigns a .. mknod(2)
 fork: Creates a new process ... fork(2)

extensions tdm_fork: Creates a new process with HP tdm_fork(2)
returns the ID of an/ semget: Creates a new semaphore set ID or semget(2)
the process group ID setsid: Creates a new session and sets setsid(2)

segment or returns the/ shmget: Creates a new shared memory shmget(2)
sockets socketpair: Creates a pair of connected ... socketpair(2)

environment or rewrites/ creat: Creates a regular file in the OSS creat(2)

Pindex−6 Hewlett-Packard Company 527186-023

Permuted Index

environment or rewrites/ creat64: Creates a regular file in the OSS creat64(2)
 /a file for reading or writing; creates a regular file in the OSS/ open(2)
 /a file for reading or writing; creates a regular file in the OSS/ open64(2)

 symlink: Creates a symbolic link to a file symlink(2)
 pthread_create: Creates a thread ... pthread_create(2)

entry for an existing file/ link: Creates an additional directory link(2)
communications socket: Creates an endpoint for ... socket(2)

communication channel pipe: Creates an interprocess ... pipe(2)
for a message queue msgget: Creates or returns the identifier msgget(2)

 /Contains the status of a process creation attempt ... process_extension_results(5)
 gets the value of the file mode creation mask umask: Sets and umask(2)

 for an existing file on the current fileset /directory entry link(2)
 Gets the effective user ID of the current process geteuid: ... geteuid(2)

 Gets the group list of the current process getgroups: ... getgroups(2)
 Gets the the real user ID of the current process getuid: ... getuid(2)

 to another thread in the current process /the processor sched_yield(2)
scheduling/ /Obtains the current scheduling policy and pthread_getschedparam(2)

 Gets information identifying the current system uname: .. uname(2)
 transaction associated with the current thread /suspended ... PUT_TMF_RESUME(2)
 transaction associated with the current thread /suspended ... SPT_TMF_RESUME(2)

 a transaction associated with the current thread /Suspends .. PUT_TMF_SUSPEND(2)
 a transaction associated with the current thread /Suspends .. SPT_TMF_SUSPEND(2)
 handle to be associated with the current thread /TMF transaction PUT_TMF_SetAndValidateTxHandle(2)
 handle to be associated with the current thread /TMF transaction SPT_TMF_SetAndValidateTxHandle(2)

 PUT_TMF_GetTxHandle: Gets the current TMF transaction handle PUT_TMF_GetTxHandle(2)
 SPT_TMF_GetTxHandle: Gets the current TMF transaction handle SPT_TMF_GetTxHandle(2)

be associated with the/ /Sets the current TMF transaction handle to PUT_TMF_SetAndValidateTxHandle(2)
be associated with the/ /Sets the current TMF transaction handle to SPT_TMF_SetAndValidateTxHandle(2)

 chdir: Changes the current working directory ... chdir(2)
 /file and any records in that file currently locked by the user ... PUT_UNLOCKFILE(2)
 /Unlocks a Guardian file record currently locked by the user ... PUT_UNLOCKREC(2)
 /file and any records in that file currently locked by the user ... SPT_UNLOCKFILE(2)
 /Unlocks a Guardian file record currently locked by the user ... SPT_UNLOCKREC(2)

permanent/ fsync: Writes modified data and file attributes to ... fsync(2)
 spt_fsyncz: Writes modified data and file attributes to/ ... spt_fsyncz(2)

 file to the application process data area /from an open Guardian PUT_READX(2)
 file to the application process data area /from an open Guardian SPT_READX(2)

 /Obtains the thread-specific data associated with a key .. pthread_getspecific(2)
 /Sets the thread-specific data associated with a key .. pthread_setspecific(2)

process/ PUT_READUPDATEX: Reads data from a Guardian disk or .. PUT_READUPDATEX(2)
process/ SPT_READUPDATEX: Reads data from a Guardian disk or .. SPT_READUPDATEX(2)

 PUT_WRITEUPDATEX: Transfers data from an array in the/ .. PUT_WRITEUPDATEX(2)
application/ PUT_WRITEX: Writes data from an array in the ... PUT_WRITEX(2)
 SPT_WRITEUPDATEX: Transfers data from an array in the/ .. SPT_WRITEUPDATEX(2)
application/ SPT_WRITEX: Writes data from an array in the ... SPT_WRITEX(2)

to the/ PUT_READX: Returns data from an open Guardian file PUT_READX(2)
to the/ SPT_READX: Returns data from an open Guardian file SPT_READX(2)

 a unique thread-specific data key /Generates ... pthread_key_create(2)
 Deletes a thread-specific data key pthread_key_delete: pthread_key_delete(2)

 null: Is a data sink file ... null(7)
array and/ PUT_WRITEREADX: Writes data to a Guardian file from an PUT_WRITEREADX(2)
array and/ SPT_WRITEREADX: Writes data to a Guardian file from an SPT_WRITEREADX(2)

 PUT_FILE_WRITEREAD_: Writes data to a process previously/ .. PUT_FILE_WRITEREAD_(2)
 /file from an array and waits for data to be read back from the/ PUT_WRITEREADX(2)
 /file from an array and waits for data to be read back from the/ SPT_WRITEREADX(2)
the/ /from an array and waits for data to be transferred back from PUT_FILE_WRITEREAD_(2)

 Describes the terminal capability database termcap: ... termcap(4)
 gettimeofday: Gets date and time .. gettimeofday(2)

 /the octal, hexadecimal, and decimal ASCII character sets ascii(5)
be called when/ pthread_atfork: Declares fork-handler routines to pthread_atfork(2)

for the user/ login.defs: The default login configuration file login.defs(5)
for the user/ users: The default user configuration file users(5)

signal/ signal: Contains definitions and variables used by signal(4)
 pthread_delay_np: Delays execution of a thread .. pthread_delay_np(2)

key pthread_key_delete: Deletes a thread-specific data pthread_key_delete(2)

527186-023 Hewlett-Packard Company Pindex−7

OSS System Calls Reference Manual

 Marks a thread object for deletion pthread_detach: .. pthread_detach(2)
 pthread_testcancel: Requests delivery of a pending cancelation/ pthread_testcancel(2)

 /Specifies the action to take upon delivery of a signal/ ... spt_sigaction(2)
 Specifies the action to take upon delivery of a signal sigaction: sigaction(2)

 Schedules an alarm signal for delivery to a process/ spt_alarm: spt_alarm(2)
file format ar: Describes the archive (library) ar(4)

archive file format cpio: Describes the extended cpio ... cpio(4)
archive file format tar: Describes the extended tar .. tar(4)

directories dir: Describes the format of ... dir(4)
and decimal ASCII/ ascii: Describes the octal, hexadecimal, ascii(5)

database termcap: Describes the terminal capability termcap(4)
for POSIX compatibility termios: Describes the terminal interface termios(4)

 close: Closes a file descriptor .. close(2)
 dup: Duplicates an open file descriptor .. dup(2)

 /Sets interest in file descriptor .. put_setOSSFileIOHandler(2)
 /Unregisters an OSS file descriptor .. put_unregOSSFileIOHandler(2)

 /Sets interest in file descriptor .. spt_setOSSFileIOHandler(2)
 /Unregisters an OSS file descriptor .. spt_unregOSSFileIOHandler(2)
 and controls an open file descriptor dup2: Duplicates ... dup2(2)
 Waits on read-ready file descriptor put_fd_read_ready: put_fd_read_ready(2)

 Waits on write-ready file descriptor put_fd_write_ready: put_fd_write_ready(2)
 Waits on read-ready file descriptor spt_fd_read_ready: spt_fd_read_ready(2)

 Waits on write-ready file descriptor spt_fd_write_ready: spt_fd_write_ready(2)
) function for a single file descriptor /thread-aware select(................................... put_select_single_np(2)
) function for a single file descriptor /thread-aware select(................................... spt_select_single_np(2)

 spt_closex: Closes a file descriptor (thread-aware version) spt_closex(2)
 /and controls an open file descriptor (thread-aware version) spt_dup2x(2)

callback/ /Registers the file descriptor to manage through a put_regOSSFileIOHandler(2)
callback/ /Registers the file descriptor to manage through a spt_regOSSFileIOHandler(2)

 fcntl: Controls open file descriptors .. fcntl(2)
 select: Selects among file descriptors for synchronous/ .. select(2)

 spt_fcntlx: Controls open file descriptors (thread-aware/ .. spt_fcntlx(2)
 spt_fcntlz: Controls open file descriptors (thread-aware/ .. spt_fcntlz(2)

) function for mulitple file descriptors /thread-aware select(................................. spt_select(2)
 pthread_condattr_destroy: Destroys a condition variable/ pthread_condattr_destroy(2)

 pthread_cond_destroy: Destroys a condition variable pthread_cond_destroy(2)
 pthread_mutex_destroy: Destroys a mutex ... pthread_mutex_destroy(2)

 pthread_mutexattr_destroy: Destroys a mutex attributes/ ... pthread_mutexattr_destroy(2)
object pthread_attr_destroy: Destroys a thread attributes .. pthread_attr_destroy(2)

 shmdt: Detaches a shared memory segment shmdt(2)
attributes object /Obtains the detachstate attribute of a thread pthread_attr_getdetachstate(2)

attributes object /Sets the detachstate attribute of a thread pthread_attr_setdetachstate(2)
file access: Determines the accessibility of a access(2)

the out-of-band mark sockatmark: Determines whether a socket is at sockatmark(2)
 ioctl: Controls device files ... ioctl(2)

file-system/ PUT_SETMODE: Sets device-dependent Guardian .. PUT_SETMODE(2)
file-system/ SPT_SETMODE: Sets device-dependent Guardian .. SPT_SETMODE(2)

operations PUT_CONTROL: Performs device-dependent input/output PUT_CONTROL(2)
operations SPT_CONTROL: Performs device-dependent input/output SPT_CONTROL(2)

directories dir: Describes the format of .. dir(4)
 dir: Describes the format of directories ... dir(4)

 mkdir: Creates a directory ... mkdir(2)
 rename: Renames a file or directory ... rename(2)

 rmdir: Removes a directory ... rmdir(2)
 Changes the current working directory chdir: .. chdir(2)

 Changes the effective root directory chroot: ... chroot(2)
file/ link: Creates an additional directory entry for an existing link(2)

environment unlink: Removes a directory entry from the OSS .. unlink(2)
 rename_oss: Renames a file or directory (OSS rename()/ ... rename_oss(2)

file/ PUT_UNLOCKFILE: Unlocks a disk file and any records in that PUT_UNLOCKFILE(2)
file/ SPT_UNLOCKFILE: Unlocks a disk file and any records in that SPT_UNLOCKFILE(2)

 users from accessing a Guardian disk file /Excludes other ... PUT_LOCKFILE(2)
 users from accessing a Guardian disk file /Excludes other ... SPT_LOCKFILE(2)
 accessing a record in a Guardian disk file /other users from ... PUT_LOCKREC(2)
 accessing a record in a Guardian disk file /other users from ... SPT_LOCKREC(2)

Pindex−8 Hewlett-Packard Company 527186-023

Permuted Index

 random processing of records in a disk file /Performs ... PUT_WRITEUPDATEUNLOCKX(2)
 random processing of records in a disk file /Performs ... SPT_WRITEUPDATEUNLOCKX(2)

 of records in a Guardian disk file /random processing .. PUT_READUPDATELOCKX(2)
 of records in a Guardian disk file /random processing .. SPT_READUPDATELOCKX(2)

 and reads records in a Guardian disk file /Sequentially locks ... PUT_READLOCKX(2)
 and reads records in a Guardian disk file /Sequentially locks ... SPT_READLOCKX(2)

 /Reads data from a Guardian disk or process file in/ ... PUT_READUPDATEX(2)
 /Reads data from a Guardian disk or process file in/ ... SPT_READUPDATEX(2)

 /to lock a specified mutex but does not wait if the mutex is/ pthread_mutex_trylock(2)
 /configuration file for BIND 9 domain name server named .. named.conf(4)

 resolv.conf: BIND 9 Domain Name System resolver/ resolv.conf(5)
descriptor dup: Duplicates an open file ... dup(2)

open file descriptor dup2: Duplicates and controls an dup2(2)
descriptor dup: Duplicates an open file .. dup(2)

file descriptor dup2: Duplicates and controls an open dup2(2)
file descriptor/ spt_dup2x: Duplicates and controls an open spt_dup2x(2)

 getegid: Gets the effective group ID .. getegid(2)
process setegid: Sets the effective group ID of the calling setegid(2)

 setregid: Sets the real and effective group IDs .. setregid(2)
 chroot: Changes the effective root directory .. chroot(2)

process seteuid: Sets the effective user ID of the calling seteuid(2)
process geteuid: Gets the effective user ID of the current geteuid(2)

 setreuid: Sets the real and effective user IDs ... setreuid(2)
to be/ /Causes a thread to wait either for a condition variable pthread_cond_timedwait(2)

 socket: Creates an endpoint for communications socket(2)
 /Creates an additional directory entry for an existing file on/ .. link(2)

 unlink: Removes a directory entry from the OSS environment unlink(2)
environment environ: Contains the user ... environ(5)

 a pathname, an argv array, and **environ /Executes a file using execv(2)
 a filename, an argv array, and **environ /Executes a file using execvp(2)
 a set of argument strings, and **environ /file using a filename, execlp(2)
 a set of argument strings, and **environ /file using a pathname, execl(2)

 environ: Contains the user environment ... environ(5)
 /Creates a regular file in the OSS environment or rewrites an/ .. creat(2)
 /Creates a regular file in the OSS environment or rewrites an/ .. creat64(2)

 creates a regular file in the OSS environment /reading or writing; open(2)
 creates a regular file in the OSS environment /reading or writing; open64(2)
 a directory entry from the OSS environment unlink: Removes unlink(2)

 strings, and an undeclared envp array /a set of argument execle(2)
 a pathname, an argv array, and an envp array /Executes a file using execve(2)

condition value errno: Returns the error ... errno(5)
 errno: Returns the error condition value ... errno(5)

 pthread_cleanup_push: (Macro) Establishes a cleanup-handler/ pthread_cleanup_push(2)
between an/ PUT_FILE_OPEN_: Establishes a communication path PUT_FILE_OPEN_(2)
between an/ SPT_FILE_OPEN_: Establishes a communication path SPT_FILE_OPEN_(2)

thread’s signal/ pthread_sigmask: Examines or changes the calling pthread_sigmask(2)
 sigpending: Examines pending signals .. sigpending(2)

and pending spt_sigpending: Examines signals that are blocked spt_sigpending(2)
 sigprocmask: Changes or examines the signal mask ... sigprocmask(2)

accessing a/ PUT_LOCKFILE: Excludes other users from ... PUT_LOCKFILE(2)
accessing a record/ PUT_LOCKREC: Excludes other users from ... PUT_LOCKREC(2)

accessing a/ SPT_LOCKFILE: Excludes other users from ... SPT_LOCKFILE(2)
accessing a record/ SPT_LOCKREC: Excludes other users from ... SPT_LOCKREC(2)

functions that execute a file exec: Specifies a set of .. exec(2)
pathname, a set of argument/ execl: Executes a file using a .. execl(2)
pathname, a set of argument/ execle: Executes a file using a execle(2)
filename, a set of argument/ execlp: Executes a file using a execlp(2)

 or more file privileges for an executable file /Sets one ... setfilepriv(2)
 Specifies a set of functions that execute a file exec: .. exec(2)

 /Calls a routine to be executed once by a single thread pthread_once(2)
 /a cleanup-handler routine to be executed when the thread/ .. pthread_cleanup_push(2)

a set of argument/ execlp: Executes a file using a filename, execlp(2)
an argv array, and/ execvp: Executes a file using a filename, execvp(2)

a set of argument/ execl: Executes a file using a pathname, execl(2)
a set of argument/ execle: Executes a file using a pathname, execle(2)

527186-023 Hewlett-Packard Company Pindex−9

OSS System Calls Reference Manual

an argv array, and/ execv: Executes a file using a pathname, execv(2)
an argv array, and an/ execve: Executes a file using a pathname, execve(2)

extensions tdm_execve: Executes a file with HP ... tdm_execve(2)
extensions tdm_execvep: Executes a file with HP ... tdm_execvep(2)

extensions tdm_spawn: Executes a new process with HP tdm_spawn(2)
extensions tdm_spawnp: Executes a new process with HP tdm_spawnp(2)

by/ spt_FileIOHandler_p: Executes callback type required spt_FileIOHandler_p(2)
by the/ spt_OSSFileIOHandler_p: Executes callback type required spt_OSSFileIOHandler_p(2)

by/ spt_TimerHandler_p: Executes callback type required spt_TimerHandler_p(2)
 stack and optionally executes it /cleanup-handler .. pthread_cleanup_pop(2)
function spt_getchar: Executes thread-aware getchar() spt_getchar(2)

 pthread_delay_np: Delays execution of a thread ... pthread_delay_np(2)
specified/ spt_sleep: Suspends execution of the thread for a ... spt_sleep(2)

specified/ spt_usleep: Suspends execution of the thread for a ... spt_usleep(2)
 Requests that a thread terminate execution pthread_cancel: ... pthread_cancel(2)

pathname, an argv array, and/ execv: Executes a file using a execv(2)
pathname, an argv array, and an/ execve: Executes a file using a execve(2)

filename, an argv array, and/ execvp: Executes a file using a execvp(2)
 additional directory entry for an existing file on the current/ /an link(2)
 OSS environment or rewrites an existing file /file in the .. creat(2)
 OSS environment or rewrites an existing file /file in the .. creat64(2)

 set ID or returns the ID of an existing semaphore set /semaphore semget(2)
 /or returns the identifier of an existing shared memory segment shmget(2)

 _exit: Terminates a process .. _exit(2)
 /Calculates an absolute expiration time ... pthread_get_expiration_np(2)

 or broadcast, or for a specific expiration time /to be signaled pthread_cond_timedwait(2)
naming filename: Explains OSS file system file .. filename(5)

naming pathname: Explains OSS file system path pathname(5)
hierarchy hier: Explains the OSS file system .. hier(5)

 cpio: Describes the extended cpio archive file format cpio(4)
 tar: Describes the extended tar archive file format tar(4)

 Executes a file with HP extensions tdm_execve: ... tdm_execve(2)
 Executes a file with HP extensions tdm_execvep: ... tdm_execvep(2)

 Creates a new process with HP extensions tdm_fork: .. tdm_fork(2)
 Executes a new process with HP extensions tdm_spawn: .. tdm_spawn(2)
 Executes a new process with HP extensions tdm_spawnp: .. tdm_spawnp(2)

permissions fchmod: Changes file-access .. fchmod(2)
group IDs of a file fchown: Changes the owner and fchown(2)

 Initiates thread-aware fclose() function spt_fclose: spt_fclose(2)
descriptors fcntl: Controls open file .. fcntl(2)

 Initiates thread-aware fflush() function spt_fflush: ... spt_fflush(2)
 spt_fgetc: Initiates thread-aware fgetc() function ... spt_fgetc(2)
 spt_fgets: Initiates thread-aware fgets() function ... spt_fgets(2)

 Initiates thread-aware fgetwc() function spt_fgetwc: spt_fgetwc(2)
 null: Is a data sink file ... null(7)

 /directory entry for an existing file on the current fileset ... link(2)
 put_awaitio: Awaits a tagged I/O file ... put_awaitio(2)

 read: Reads from a file ... read(2)
 read64_: Reads from a file ... read64_(2)

 spt_awaitio: Awaits a tagged I/O file ... spt_awaitio(2)
 spthread.h: Thread-aware header file ... spthread.h(4)

 write: Writes to a file ... write(2)
 write64_: Writes to a file ... write64_(2)

 Determines the accessibility of a file access: .. access(2)
times utime: Sets file access and modification .. utime(2)

 list (ACL) information for a file acl: Sets access control .. acl(2)
 of records in a Guardian disk file /Allows random processing PUT_READUPDATELOCKX(2)
 of records in a Guardian disk file /Allows random processing SPT_READUPDATELOCKX(2)
 program to an open Guardian file /an array in the application PUT_WRITEX(2)
 program to an open Guardian file /an array in the application SPT_WRITEX(2)

 I/O operations on an open file)) /an open file (serializes .. spt_fstat64z(2)
 I/O operations on an open file) /an open file (serializes ... spt_fstatz(2)

 PUT_UNLOCKFILE: Unlocks a disk file and any records in that file/ PUT_UNLOCKFILE(2)
 SPT_UNLOCKFILE: Unlocks a disk file and any records in that file/ SPT_UNLOCKFILE(2)

 fsync: Writes modified data and file attributes to permanent/ .. fsync(2)

Pindex−10 Hewlett-Packard Company 527186-023

Permuted Index

storage/ /Writes modified data and file attributes to permanent ... spt_fsyncz(2)
 System resolver configuration file /BIND 9 Domain Name ... resolv.conf(5)
 the owner and group IDs of a file chown: Changes .. chown(2)
 an application process and a file /communication path between PUT_FILE_OPEN_(2)
 an application process and a file /communication path between SPT_FILE_OPEN_(2)

 core: Is a file containing a memory image core(4)
 saveabend: Is a file containing a memory image saveabend(4)

 a pathname to a character special file /Creates a file or assigns ... mknod(2)
 /disk file and any records in that file currently locked by the user PUT_UNLOCKFILE(2)
 /disk file and any records in that file currently locked by the user SPT_UNLOCKFILE(2)

 application program to a Guardian file /data from an array in the PUT_WRITEUPDATEX(2)
 application program to a Guardian file /data from an array in the SPT_WRITEUPDATEX(2)

 close: Closes a file descriptor ... close(2)
 dup: Duplicates an open file descriptor ... dup(2)

 /Waits on read-ready file descriptor ... put_fd_read_ready(2)
 /Waits on write-ready file descriptor ... put_fd_write_ready(2)

 /Sets interest in file descriptor ... put_setOSSFileIOHandler(2)
 /Unregisters an OSS file descriptor ... put_unregOSSFileIOHandler(2)
 /Waits on read-ready file descriptor ... spt_fd_read_ready(2)

 /Waits on write-ready file descriptor ... spt_fd_write_ready(2)
 /Sets interest in file descriptor ... spt_setOSSFileIOHandler(2)

 /Unregisters an OSS file descriptor ... spt_unregOSSFileIOHandler(2)
 Duplicates and controls an open file descriptor dup2: .. dup2(2)

version) spt_closex: Closes a file descriptor (thread-aware ... spt_closex(2)
 /Duplicates and controls an open file descriptor (thread-aware/ .. spt_dup2x(2)

 select() function for a single file descriptor /thread-aware .. put_select_single_np(2)
 select() function for a single file descriptor /thread-aware .. spt_select_single_np(2)

a callback/ /Registers the file descriptor to manage through put_regOSSFileIOHandler(2)
a callback/ /Registers the file descriptor to manage through spt_regOSSFileIOHandler(2)

 fcntl: Controls open file descriptors .. fcntl(2)
 select: Selects among file descriptors for synchronous/ select(2)

 spt_fcntlx: Controls open file descriptors (thread-aware/ spt_fcntlx(2)
 spt_fcntlz: Controls open file descriptors (thread-aware/ spt_fcntlz(2)

 select() function for mulitple file descriptors /thread-aware spt_select(2)
 from accessing a Guardian disk file /Excludes other users ... PUT_LOCKFILE(2)
 from accessing a Guardian disk file /Excludes other users ... SPT_LOCKFILE(2)
 a set of functions that execute a file exec: Specifies .. exec(2)

 the owner and group IDs of a file fchown: Changes .. fchown(2)
 of a subsequent write to the file /file in anticipation ... PUT_READUPDATEX(2)
 of a subsequent write to the file /file in anticipation ... SPT_READUPDATEX(2)

 or rewrites an existing file /file in the OSS environment creat(2)
 or rewrites an existing file /file in the OSS environment creat64(2)

server/ named.conf: configuration file for BIND 9 domain name named.conf(4)
creates a regular/ open: Opens a file for reading or writing; .. open(2)

creates a/ open64: Opens a file for reading or writing; .. open64(2)
 /The default login configuration file for the user management/ login.defs(5)
 /The default user configuration file for the user management/ users(5)
 Describes the archive (library) file format ar: ... ar(4)

 the extended cpio archive file format cpio: Describes ... cpio(4)
 the extended tar archive file format tar: Describes .. tar(4)

data/ /Writes data to a Guardian file from an array and waits for PUT_WRITEREADX(2)
data/ /Writes data to a Guardian file from an array and waits for SPT_WRITEREADX(2)

 for data to be read back from the file /from an array and waits .. PUT_WRITEREADX(2)
 for data to be read back from the file /from an array and waits .. SPT_WRITEREADX(2)

 spt_writevx: Writes to a file from scattered buffers/ .. spt_writevx(2)
 spt_writevz: Writes to a file from scattered buffers/ .. spt_writevz(2)

 writev: Writes to a file from scattered buffers ... writev(2)
 information about an open file fstat: Provides ... fstat(2)
 information about an open file fstat64: Provides ... fstat64(2)

 fileset information for an open file fstatvfs: Gets ... fstatvfs(2)
 fileset information for an open file fstatvfs64: Gets ... fstatvfs64(2)
 rename_guardian: Renames a file (Guardian rename()/ ... rename_guardian(2)

 from a Guardian disk or process file in anticipation of a/ /data PUT_READUPDATEX(2)
 from a Guardian disk or process file in anticipation of a/ /data SPT_READUPDATEX(2)

 /or writing; creates a regular file in the OSS environment .. open(2)

527186-023 Hewlett-Packard Company Pindex−11

OSS System Calls Reference Manual

 /or writing; creates a regular file in the OSS environment .. open64(2)
 creat: Creates a regular file in the OSS environment or/ creat(2)

 creat64: Creates a regular file in the OSS environment or/ creat64(2)
 readv: Reads from a file into scattered buffers ... readv(2)

 spt_readvx: Reads from a file into scattered buffers/ ... spt_readvx(2)
 spt_readvz: Reads from a file into scattered buffers/ ... spt_readvz(2)

 the owner and group IDs of a file lchown: Changes .. lchown(2)
 ftruncate: Changes file length ... ftruncate(2)

 ftruncate64: Changes file length ... ftruncate64(2)
 spt_ftruncate64z: Changes file length (thread-aware/ .. spt_ftruncate64z(2)

version) spt_ftruncatez: Changes file length (thread-aware ... spt_ftruncatez(2)
 about a symbolic link or any file lstat: Provides information lstat(2)
 Sets and gets the value of the file mode creation mask umask: umask(2)

 Explains OSS file system file naming filename: .. filename(5)
 put_regFile: Registers the file number ... put_regFile(2)

 /Registers the file number ... put_regFileIOHandler(2)
 spt_regFile: Registers the file number ... spt_regFile(2)

 /Registers the file number ... spt_regFileIOHandler(2)
manages /Unregisters a Guardian file number as one that the user put_unregFile(2)
manages /Unregisters a Guardian file number as one that the user spt_unregFile(2)

 Registers the Pathsend file number put_regPathsendFile: put_regPathsendFile(2)
 Registers the Pathsend file number spt_regPathsendFile: spt_regPathsendFile(2)

operation lseek: Sets file offset for read or write .. lseek(2)
operation lseek64: Sets file offset for read or write .. lseek64(2)

operation/ spt_lseek64z: Sets file offset for read or write .. spt_lseek64z(2)
operation/ spt_lseekz: Sets file offset for read or write .. spt_lseekz(2)

 /operation on a Guardian file opened for nowait I/O ... PUT_CANCEL(2)
 /operation on a Guardian file opened for nowait I/O ... SPT_CANCEL(2)

 I/O operations on an open file) /operation (serializes ... spt_lseek64z(2)
 I/O operations on an open file)) /operation (serializes ... spt_lseekz(2)

character/ mknod: Creates a file or assigns a pathname to a mknod(2)
 rename: Renames a file or directory .. rename(2)

function) rename_oss: Renames a file or directory (OSS rename() rename_oss(2)
 a record in a Guardian disk file /other users from accessing PUT_LOCKREC(2)
 a record in a Guardian disk file /other users from accessing SPT_LOCKREC(2)

 processing of records in a disk file /Performs random ... PUT_WRITEUPDATEUNLOCKX(2)
 processing of records in a disk file /Performs random ... SPT_WRITEUPDATEUNLOCKX(2)

 setfilepriv: Sets one or more file privileges for an executable/ setfilepriv(2)
 about a symbolic link or any file /Provides information ... lstat64(2)

 Closes an open Guardian file PUT_FILE_CLOSE_: ... PUT_FILE_CLOSE_(2)
 PUT_UNLOCKREC: Unlocks a Guardian file record currently locked by/ PUT_UNLOCKREC(2)
 SPT_UNLOCKREC: Unlocks a Guardian file record currently locked by/ SPT_UNLOCKREC(2)

 reads records in a Guardian disk file /Sequentially locks and .. PUT_READLOCKX(2)
 reads records in a Guardian disk file /Sequentially locks and .. SPT_READLOCKX(2)

on an/ /information about an open file (serializes I/O operations .. spt_fstat64z(2)
on an/ /information about an open file (serializes I/O operations .. spt_fstatz(2)

 file privileges for an executable file /Sets one or more .. setfilepriv(2)
 ulimit: Sets and gets file size limits ... ulimit(2)

 Closes an open Guardian file SPT_FILE_CLOSE_: ... SPT_FILE_CLOSE_(2)
 Provides information about a file stat: .. stat(2)
 Provides information about a file stat64: .. stat64(2)
 Creates a symbolic link to a file symlink: ... symlink(2)

 filename: Explains OSS file system file naming .. filename(5)
 hier: Explains the OSS file system hierarchy ... hier(5)

 pathname: Explains OSS file system path naming .. pathname(5)
 spt_readx: Reads from a file (thread-aware version) .. spt_readx(2)
 spt_readz: Reads from a file (thread-aware version) .. spt_readz(2)

 spt_writex: Writes to a file (thread-aware version) .. spt_writex(2)
 spt_writez: Writes to a file (thread-aware version) .. spt_writez(2)

data/ /data from an open Guardian file to the application process PUT_READX(2)
data/ /data from an open Guardian file to the application process SPT_READX(2)

argument/ execlp: Executes a file using a filename, a set of .. execlp(2)
array, and/ execvp: Executes a file using a filename, an argv .. execvp(2)

argument/ execl: Executes a file using a pathname, a set of execl(2)
argument/ execle: Executes a file using a pathname, a set of execle(2)

Pindex−12 Hewlett-Packard Company 527186-023

Permuted Index

array, and/ execv: Executes a file using a pathname, an argv execv(2)
array, and an/ execve: Executes a file using a pathname, an argv execve(2)

 tdm_execve: Executes a file with HP extensions ... tdm_execve(2)
 tdm_execvep: Executes a file with HP extensions ... tdm_execvep(2)

 chmod: Changes file-access permissions .. chmod(2)
 fchmod: Changes file-access permissions .. fchmod(2)
 lchmod: Changes file-access permissions .. lchmod(2)

 execlp: Executes a file using a filename, a set of argument/ .. execlp(2)
 execvp: Executes a file using a filename, an argv array, and/ ... execvp(2)

system file naming filename: Explains OSS file .. filename(5)
 /Registers $RECEIVE filename (larger message version) put_INITRECEIVEL(2)
 /Registers $RECEIVE filename (larger message version) spt_INITRECEIVEL(2)
 Registers $RECEIVE filename put_INITRECEIVE: put_INITRECEIVE(2)
 Registers $RECEIVE filename spt_INITRECEIVE: spt_INITRECEIVE(2)
 ioctl: Controls device files .. ioctl(2)

 an existing file on the current fileset /directory entry for ... link(2)
file fstatvfs: Gets fileset information for an open fstatvfs(2)

file fstatvfs64: Gets fileset information for an open fstatvfs64(2)
pathname statvfs: Gets fileset information using a .. statvfs(2)

pathname statvfs64: Gets fileset information using a .. statvfs64(2)
 /Sets device-dependent Guardian file-system functions ... PUT_SETMODE(2)
 /Sets device-dependent Guardian file-system functions ... SPT_SETMODE(2)

limits for floating-point/ float: Specifies the system ... float(4)
 Specifies the system limits for floating-point operations float: float(4)

version) spt_fflushx: Flushes a stream (thread-aware spt_fflushx(2)
 fork: Creates a new process .. fork(2)

 Initiates a thread-aware fork() operation spt_fork: ... spt_fork(2)
called/ pthread_atfork: Declares fork-handler routines to be ... pthread_atfork(2)

 when the calling thread’s process forks a child process /be called pthread_atfork(2)
 the archive (library) file format ar: Describes .. ar(4)

 the extended cpio archive file format cpio: Describes ... cpio(4)
 dir: Describes the format of directories .. dir(4)

 the extended tar archive file format tar: Describes .. tar(4)
parameters for/ spt_vfprintfx: Formats a variable number of spt_vfprintfx(2)
parameters for/ spt_vprintfx: Formats a variable number of spt_vprintfx(2)

stream/ spt_fprintfx: Prints formatted output to an output spt_fprintfx(2)
output/ spt_printfx: Prints formatted output to the standard spt_printfx(2)

 Initiates thread-aware fprintf() function spt_fprintf: spt_fprintf(2)
 spt_fputc: Thread-aware fputc() function ... spt_fputc(2)

 spt_fputs: Initiates thread-aware fputs() function ... spt_fputs(2)
 spt_fputwc: Thread-aware fputwc() ... spt_fputwc(2)

 /Initiates thread-aware fputwchar() function .. spt_putwchar(2)
 spt_fread: Initiates thread-aware fread() function ... spt_fread(2)

an open file fstat: Provides information about fstat(2)
about an open file fstat64: Provides information fstat64(2)

information for an open file fstatvfs: Gets fileset ... fstatvfs(2)
information for an open file fstatvfs64: Gets fileset ... fstatvfs64(2)
file attributes to permanent/ fsync: Writes modified data and fsync(2)

 ftruncate: Changes file length ftruncate(2)
 ftruncate64: Changes file length ftruncate64(2)

 spt_fputc: Thread-aware fputc() function .. spt_fputc(2)
 by the spt_regOSSFileIOHandler(function /callback type required spt_OSSFileIOHandler_p(2)

 by spt_regTimerHandler() function /callback type required spt_TimerHandler_p(2)
 /Initiates thread-aware select() function for a single file/ ... put_select_single_np(2)
 /Initiates thread-aware select() function for a single file/ ... spt_select_single_np(2)
 /Initiates thread-aware select() function for mulitple file/ ... spt_select(2)

 /Initiates thread-aware function for reading $RECEIVE put_RECEIVEREAD(2)
(larger/ /Initiates thread-aware function for reading $RECEIVE put_RECEIVEREADL(2)

 /Initiates thread-aware function for reading $RECEIVE spt_RECEIVEREAD(2)
(larger/ /Initiates thread-aware function for reading $RECEIVE spt_RECEIVEREADL(2)

 spt_closez: Initiates close() function for thread-aware/ .. spt_closez(2)
 output stream (thread-aware function) /output to the standard spt_printfx(2)

 a user-supplied timer callback function /Registers .. put_regTimerHandler(2)
 a user-supplied timer callback function /Registers .. spt_regTimerHandler(2)

 file or directory (OSS rename() function) rename_oss: Renames a rename_oss(2)

527186-023 Hewlett-Packard Company Pindex−13

OSS System Calls Reference Manual

 a file (Guardian rename() function) /Renames ... rename_guardian(2)
 Initiates thread-aware accept() function spt_accept: ... spt_accept(2)

 Initiates thread-aware close() function spt_close: .. spt_close(2)
 Initiates thread-aware connect() function spt_connect: ... spt_connect(2)

 Initiates thread-aware fclose() function spt_fclose: .. spt_fclose(2)
 Initiates thread-aware fflush() function spt_fflush: ... spt_fflush(2)
 Initiates thread-aware fgetc() function spt_fgetc: .. spt_fgetc(2)
 Initiates thread-aware fgets() function spt_fgets: .. spt_fgets(2)

 Initiates thread-aware fgetwc() function spt_fgetwc: ... spt_fgetwc(2)
 Initiates thread-aware fprintf() function spt_fprintf: ... spt_fprintf(2)

 Initiates thread-aware fputs() function spt_fputs: .. spt_fputs(2)
 Initiates thread-aware fread() function spt_fread: .. spt_fread(2)

 Initiates thread-aware fwrite() function spt_fwrite: .. spt_fwrite(2)
 Initiates thread-aware getc() function spt_getc: ... spt_getc(2)

 Executes thread-aware getchar() function spt_getchar: .. spt_getchar(2)
 Initiates thread-aware gets() function spt_gets: ... spt_gets(2)

 Initiates thread-aware getw() function spt_getw: .. spt_getw(2)
 Initiates thread-aware getwc() function spt_getwc: .. spt_getwc(2)

 thread-aware getwchar() function spt_getwchar: Initiates spt_getwchar(2)
 Initiates thread-aware printf() function spt_printf: ... spt_printf(2)

 Initiates thread-aware putc() function spt_putc: ... spt_putc(2)
 Initiates thread-aware putchar() function spt_putchar: .. spt_putchar(2)

 Initiates thread-aware puts() function. spt_puts: .. spt_puts(2)
 Initiates thread-aware putw() function spt_putw: .. spt_putw(2)

 Initiates thread-aware putwc() function spt_putwc: .. spt_putwc(2)
 thread-aware fputwchar() function spt_putwchar: Initiates spt_putwchar(2)

 Initiates thread-aware read() function spt_read: ... spt_read(2)
 Initiates thread-aware readv() function spt_readv: ... spt_readv(2)

 Initiates thread-aware recv() function spt_recv: ... spt_recv(2)
 thread-aware recvfrom() function spt_recvfrom: Initiates spt_recvfrom(2)

 Initiates thread-aware recvmsg(2) function spt_recvmsg: .. spt_recvmsg(2)
 Initiates thread-aware send() function spt_send: ... spt_send(2)

 Initiates thread-aware sendmsg() function spt_sendmsg: .. spt_sendmsg(2)
 Initiates thread-aware sendto() function spt_sendto: ... spt_sendto(2)
 Initiates thread-aware system() function spt_system: ... spt_system(2)

 thread-aware vfprintf() function spt_vfprintf: Initiates spt_vfprintf(2)
 Initiates thread-aware vprintf() function spt_vprintf: ... spt_vprintf(2)

 Initiates thread-aware waitpid() function spt_waitpid: ... spt_waitpid(2)
 Initiates thread-aware write() function spt_write: .. spt_write(2)
 Initiate thread-aware writev() function spt_writev: ... spt_writev(2)
 to manage through a callback function /the file descriptor .. put_regOSSFileIOHandler(2)
 to manage through a callback function /the file descriptor .. spt_regOSSFileIOHandler(2)
 math: Specifies mathematical functions, constants, and types math(4)

 and variables used by signal functions /Contains definitions signal(4)
) function for thread-aware functions /Initiates close(... spt_closez(2)

 Guardian file-system functions /Sets device-dependent PUT_SETMODE(2)
 Guardian file-system functions /Sets device-dependent SPT_SETMODE(2)

 exec: Specifies a set of functions that execute a file .. exec(2)
 Initiates thread-aware fwrite() function spt_fwrite: spt_fwrite(2)

 tty: Is the general terminal interface ... tty(7)
 pthread_key_create: Generates a unique/ ... pthread_key_create(2)

 spt_getc: Initiates thread-aware getc() function .. spt_getc(2)
 Executes thread-aware getchar() function spt_getchar: spt_getchar(2)

ID getegid: Gets the effective group getegid(2)
ID of the current process geteuid: Gets the effective user geteuid(2)

 getgid: Gets the real group ID getgid(2)
the current process getgroups: Gets the group list of getgroups(2)

local host gethostname: Gets the name of the gethostname(2)
peer socket getpeername: Gets the name of the getpeername(2)

ID for a specified OSS process getpgid: Gets the process group getpgid(2)
ID of the calling process getpgrp: Gets the process group getpgrp(2)

 getpid: Gets the OSS process ID getpid(2)
process ID getppid: Gets the parent OSS getppid(2)

scheduling priority getpriority: Gets the OSS process getpriority(2)
 spt_gets: Initiates thread-aware gets() function ... spt_gets(2)

Pindex−14 Hewlett-Packard Company 527186-023

Permuted Index

input stream/ spt_fgetcx: Gets a character from a specified spt_fgetcx(2)
input stream/ spt_getcx: Gets a character from a specified spt_getcx(2)

standard input/ spt_getcharx: Gets a character from the .. spt_getcharx(2)
(thread-aware/ spt_fgetsx: Gets a string from a stream ... spt_fgetsx(2)

input stream/ spt_getsx: Gets a string from the standard spt_getsx(2)
specified input/ spt_getwcx: Gets a wide character from a .. spt_getwcx(2)

specified input/ spt_fgetwcx: Gets a wide character from a a spt_fgetwcx(2)
standard input/ spt_getwcharx: Gets a wide character from the spt_getwcharx(2)

(thread-aware/ spt_getwx: Gets a word from an input stream spt_getwx(2)
 gettimeofday: Gets date and time ... gettimeofday(2)

 ulimit: Sets and gets file size limits ... ulimit(2)
open file fstatvfs: Gets fileset information for an fstatvfs(2)

open file fstatvfs64: Gets fileset information for an fstatvfs64(2)
pathname statvfs: Gets fileset information using a statvfs(2)

pathname statvfs64: Gets fileset information using a statvfs64(2)
current system uname: Gets information identifying the uname(2)

 pthread_getconcurrency: Gets level of concurrency ... pthread_getconcurrency(2)
 getsockopt: Gets socket options ... getsockopt(2)

thread pthread_getattr_np: Gets the attribute object for a pthread_getattr_np(2)
attribute/ pthread_attr_getscope: Gets the contentionscope .. pthread_attr_getscope(2)

handle PUT_TMF_GetTxHandle: Gets the current TMF transaction PUT_TMF_GetTxHandle(2)
handle SPT_TMF_GetTxHandle: Gets the current TMF transaction SPT_TMF_GetTxHandle(2)

 getegid: Gets the effective group ID ... getegid(2)
current process geteuid: Gets the effective user ID of the geteuid(2)

current process getgroups: Gets the group list of the ... getgroups(2)
socket getsockname: Gets the locally bound name of a getsockname(2)

a/ pthread_mutexattr_gettype: Gets the mutex type attribute of pthread_mutexattr_gettype(2)
 socket_transport_name_get: Gets the name of the/ .. socket_transport_name_get(2)

 gethostname: Gets the name of the local host gethostname(2)
 getpeername: Gets the name of the peer socket getpeername(2)

 put_getTMFConcurrentTransactions: Gets the number of concurrent TMF/ put_getTMFConcurrentTransactions(2)
 spt_getTMFConcurrentTransactions: Gets the number of concurrent TMF/ spt_getTMFConcurrentTransactions(2)

 getpid: Gets the OSS process ID ... getpid(2)
priority getpriority: Gets the OSS process scheduling getpriority(2)

 getppid: Gets the parent OSS process ID getppid(2)
specified OSS process getpgid: Gets the process group ID for a getpgid(2)

calling process getpgrp: Gets the process group ID of the getpgrp(2)
session leader getsid: Gets the process group ID of the getsid(2)

 getgid: Gets the real group ID ... getgid(2)
context sigaltstack: Sets and gets the signal alternate stack sigaltstack(2)

current process getuid: Gets the the real user ID of the getuid(2)
 pthread_get_threadstateinfo_np: Gets the thread state information pthread_get_threadstateinfo_np(2)

creation mask umask: Sets and gets the value of the file mode umask(2)
of the session leader getsid: Gets the process group ID getsid(2)

bound name of a socket getsockname: Gets the locally getsockname(2)
 getsockopt: Gets socket options getsockopt(2)
 gettimeofday: Gets date and time gettimeofday(2)

of the current process getuid: Gets the the real user ID getuid(2)
 spt_getw: Initiates thread-aware getw() function ... spt_getw(2)

 spt_getwc: Initiates thread-aware getwc() function ... spt_getwc(2)
 /Initiates thread-aware getwchar() function .. spt_getwchar(2)

 /Unlocks the threads global mutex .. pthread_unlock_global_np(2)
 pthread_lock_global_np: Locks the global mutex for threads ... pthread_lock_global_np(2)

 getegid: Gets the effective group ID ... getegid(2)
 getgid: Gets the real group ID ... getgid(2)

 setpgrp: Sets the process group ID ... setpgrp(2)
 getpgid: Gets the process group ID for a specified OSS/ getpgid(2)
 setpgid: Sets the process group ID for job control .. setpgid(2)

 getpgrp: Gets the process group ID of the calling process getpgrp(2)
 setegid: Sets the effective group ID of the calling process setegid(2)

 setgid: Sets the group ID of the calling process setgid(2)
 getsid: Gets the process group ID of the session leader getsid(2)

 new session and sets the process group ID setsid: Creates a .. setsid(2)
 chown: Changes the owner and group IDs of a file .. chown(2)

 fchown: Changes the owner and group IDs of a file .. fchown(2)

527186-023 Hewlett-Packard Company Pindex−15

OSS System Calls Reference Manual

 lchown: Changes the owner and group IDs of a file .. lchown(2)
 Sets the real and effective group IDs setregid: ... setregid(2)

 setgroups: Sets the group list of the calling process setgroups(2)
 getgroups: Gets the group list of the current process getgroups(2)

 Sends a signal to a process or group of processes kill: .. kill(2)
 random processing of records in a Guardian disk file /Allows ... PUT_READUPDATELOCKX(2)
 random processing of records in a Guardian disk file /Allows ... SPT_READUPDATELOCKX(2)

 other users from accessing a Guardian disk file /Excludes .. PUT_LOCKFILE(2)
 other users from accessing a Guardian disk file /Excludes .. SPT_LOCKFILE(2)
 from accessing a record in a Guardian disk file /other users PUT_LOCKREC(2)
 from accessing a record in a Guardian disk file /other users SPT_LOCKREC(2)
 locks and reads records in a Guardian disk file /Sequentially PUT_READLOCKX(2)
 locks and reads records in a Guardian disk file /Sequentially SPT_READLOCKX(2)

anticipation/ /Reads data from a Guardian disk or process file in PUT_READUPDATEX(2)
anticipation/ /Reads data from a Guardian disk or process file in SPT_READUPDATEX(2)

 PUT_FILE_CLOSE_: Closes an open Guardian file .. PUT_FILE_CLOSE_(2)
 SPT_FILE_CLOSE_: Closes an open Guardian file .. SPT_FILE_CLOSE_(2)

 application program to an open Guardian file /an array in the PUT_WRITEX(2)
 application program to an open Guardian file /an array in the SPT_WRITEX(2)
 in the application program to a Guardian file /data from an array PUT_WRITEUPDATEX(2)
 in the application program to a Guardian file /data from an array SPT_WRITEUPDATEX(2)

 PUT_WRITEREADX: Writes data to a Guardian file from an array and/ PUT_WRITEREADX(2)
 SPT_WRITEREADX: Writes data to a Guardian file from an array and/ SPT_WRITEREADX(2)

the/ put_unregFile: Unregisters a Guardian file number as one that put_unregFile(2)
the/ spt_unregFile: Unregisters a Guardian file number as one that spt_unregFile(2)

 /oldest incomplete operation on a Guardian file opened for nowait/ PUT_CANCEL(2)
 /oldest incomplete operation on a Guardian file opened for nowait/ SPT_CANCEL(2)

locked/ PUT_UNLOCKREC: Unlocks a Guardian file record currently PUT_UNLOCKREC(2)
locked/ SPT_UNLOCKREC: Unlocks a Guardian file record currently SPT_UNLOCKREC(2)

 /Returns data from an open Guardian file to the application/ PUT_READX(2)
 /Returns data from an open Guardian file to the application/ SPT_READX(2)

 /Sets device-dependent Guardian file-system functions PUT_SETMODE(2)
 /Sets device-dependent Guardian file-system functions SPT_SETMODE(2)

 rename_guardian: Renames a file (Guardian rename() function) rename_guardian(2)
attributes object /Obtains the guardsize attribute of a thread pthread_attr_getguardsize(2)
attributes object /Obtains the guardsize attribute of a thread pthread_attr_getguardsize_np(2)

attributes object /Sets the guardsize attribute of a thread pthread_attr_setguardsize(2)
attributes object /Sets the guardsize attribute of a thread pthread_attr_setguardsize_np(2)

 Gets the current TMF transaction handle PUT_TMF_GetTxHandle: PUT_TMF_GetTxHandle(2)
 Sets the TMF transaction handle PUT_TMF_SetTxHandle: PUT_TMF_SetTxHandle(2)

 Gets the current TMF transaction handle SPT_TMF_GetTxHandle: SPT_TMF_GetTxHandle(2)
 Sets the TMF transaction handle SPT_TMF_SetTxHandle: SPT_TMF_SetTxHandle(2)

 /Sets the current TMF transaction handle to be associated with the/ PUT_TMF_SetAndValidateTxHandle(2)
 /Sets the current TMF transaction handle to be associated with the/ SPT_TMF_SetAndValidateTxHandle(2)

 spt_signal: Installs a new signal handler .. spt_signal(2)
 spthread.h: Thread-aware header file ... spthread.h(4)
 ascii: Describes the octal, hexadecimal, and decimal ASCII/ ascii(5)

system hierarchy hier: Explains the OSS file .. hier(5)
 Explains the OSS file system hierarchy hier: ... hier(5)

 Gets the name of the local host gethostname: ... gethostname(2)
 tdm_execve: Executes a file with HP extensions .. tdm_execve(2)

 tdm_execvep: Executes a file with HP extensions .. tdm_execvep(2)
 Creates a new process with HP extensions tdm_fork: .. tdm_fork(2)

 Executes a new process with HP extensions tdm_spawn: .. tdm_spawn(2)
 Executes a new process with HP extensions tdm_spawnp: .. tdm_spawnp(2)

 getegid: Gets the effective group ID .. getegid(2)
 getgid: Gets the real group ID .. getgid(2)

 getpid: Gets the OSS process ID .. getpid(2)
 setpgrp: Sets the process group ID .. setpgrp(2)

 getpgid: Gets the process group ID for a specified OSS process getpgid(2)
 setpgid: Sets the process group ID for job control ... setpgid(2)

 Gets the parent OSS process ID getppid: .. getppid(2)
 /semaphore set ID or returns the ID of an existing semaphore set semget(2)
 getpgrp: Gets the process group ID of the calling process ... getpgrp(2)
 setegid: Sets the effective group ID of the calling process ... setegid(2)

Pindex−16 Hewlett-Packard Company 527186-023

Permuted Index

 seteuid: Sets the effective user ID of the calling process ... seteuid(2)
 setgid: Sets the group ID of the calling process ... setgid(2)

 setuid: Sets the user ID of the calling process ... setuid(2)
 geteuid: Gets the effective user ID of the current process ... geteuid(2)

 getuid: Gets the the real user ID of the current process ... getuid(2)
 getsid: Gets the process group ID of the session leader ... getsid(2)
 /Creates a new semaphore set ID or returns the ID of an/ ... semget(2)

 and sets the process group ID setsid: Creates a new session setsid(2)
 msgget: Creates or returns the identifier for a message queue msgget(2)

 /memory segment or returns the identifier of an existing shared/ shmget(2)
 pthread_self: Obtains the thread identifier of the calling thread pthread_self(2)

 Compares two thread identifiers pthread_equal: ... pthread_equal(2)
 uname: Gets information identifying the current system uname(2)

 Changes the owner and group IDs of a file chown: ... chown(2)
 Changes the owner and group IDs of a file fchown: ... fchown(2)
 Changes the owner and group IDs of a file lchown: ... lchown(2)

 Sets the real and effective group IDs setregid: .. setregid(2)
 Sets the real and effective user IDs setreuid: .. setreuid(2)

 Is a file containing a memory image core: .. core(4)
 Is a file containing a memory image saveabend: .. saveabend(4)

 and limits the backlog of incoming connections /connections listen(2)
 PUT_CANCEL: Cancels the oldest incomplete operation on a/ ... PUT_CANCEL(2)
 SPT_CANCEL: Cancels the oldest incomplete operation on a/ ... SPT_CANCEL(2)

long tag put_generateTag: Increments and returns a static put_generateTag(2)
long tag spt_generateTag: Increments and returns a static spt_generateTag(2)

 /Gets the thread state information .. pthread_get_threadstateinfo_np(2)
 stat: Provides information about a file ... stat(2)

 stat64: Provides information about a file ... stat64(2)
or any file lstat: Provides information about a symbolic link lstat(2)

or any file lstat64: Provides information about a symbolic link lstat64(2)
 fstat: Provides information about an open file fstat(2)

 fstat64: Provides information about an open file fstat64(2)
 spt_fstat64z: Provides information about an open file/ spt_fstat64z(2)

(serializes/ spt_fstatz: Provides information about an open file spt_fstatz(2)
 Sets access control list (ACL) information for a file acl: ... acl(2)

 fstatvfs: Gets fileset information for an open file .. fstatvfs(2)
 fstatvfs64: Gets fileset information for an open file .. fstatvfs64(2)

current system uname: Gets information identifying the .. uname(2)
 statvfs: Gets fileset information using a pathname statvfs(2)

 statvfs64: Gets fileset information using a pathname statvfs64(2)
thread attributes/ /Obtains the inherit scheduling attribute of a pthread_attr_getinheritsched(2)

thread attributes/ /Sets the inherit scheduling attribute of a pthread_attr_setinheritsched(2)
 pthread_condattr_init: Initializes a condition variable/ pthread_condattr_init(2)

 pthread_cond_init: Initializes a condition variable pthread_cond_init(2)
 pthread_mutex_init: Initializes a mutex ... pthread_mutex_init(2)

object pthread_mutexattr_init: Initializes a mutex attributes .. pthread_mutexattr_init(2)
object pthread_attr_init: Initializes a thread attributes .. pthread_attr_init(2)

concurrent/ PUT_TMF_Init: Initializes the tfile for .. PUT_TMF_Init(2)
concurrent/ SPT_TMF_Init: Initializes the tfile for .. SPT_TMF_Init(2)

function spt_writev: Initiate thread-aware writev() spt_writev(2)
operation spt_fork: Initiates a thread-aware fork() spt_fork(2)

thread-aware/ spt_closez: Initiates close() function for .. spt_closez(2)
function spt_accept: Initiates thread-aware accept() spt_accept(2)

function spt_close: Initiates thread-aware close() spt_close(2)
function spt_connect: Initiates thread-aware connect() spt_connect(2)

function spt_fclose: Initiates thread-aware fclose() spt_fclose(2)
function spt_fflush: Initiates thread-aware fflush() spt_fflush(2)
function spt_fgetc: Initiates thread-aware fgetc() spt_fgetc(2)
function spt_fgets: Initiates thread-aware fgets() spt_fgets(2)

function spt_fgetwc: Initiates thread-aware fgetwc() spt_fgetwc(2)
function spt_fprintf: Initiates thread-aware fprintf() spt_fprintf(2)

function spt_fputs: Initiates thread-aware fputs() spt_fputs(2)
) function spt_putwchar: Initiates thread-aware fputwchar(................................ spt_putwchar(2)

function spt_fread: Initiates thread-aware fread() spt_fread(2)
for reading/ put_RECEIVEREAD: Initiates thread-aware function put_RECEIVEREAD(2)

527186-023 Hewlett-Packard Company Pindex−17

OSS System Calls Reference Manual

for reading/ put_RECEIVEREADL: Initiates thread-aware function put_RECEIVEREADL(2)
for reading/ spt_RECEIVEREAD: Initiates thread-aware function spt_RECEIVEREAD(2)

for reading/ spt_RECEIVEREADL: Initiates thread-aware function spt_RECEIVEREADL(2)
function spt_fwrite: Initiates thread-aware fwrite() spt_fwrite(2)

function spt_getc: Initiates thread-aware getc() .. spt_getc(2)
function spt_gets: Initiates thread-aware gets() .. spt_gets(2)

function spt_getw: Initiates thread-aware getw() spt_getw(2)
function spt_getwc: Initiates thread-aware getwc() spt_getwc(2)

) function spt_getwchar: Initiates thread-aware getwchar(.................................. spt_getwchar(2)
function spt_printf: Initiates thread-aware printf() spt_printf(2)

function spt_putc: Initiates thread-aware putc() .. spt_putc(2)
function spt_putchar: Initiates thread-aware putchar() spt_putchar(2)

function. spt_puts: Initiates thread-aware puts() .. spt_puts(2)
function spt_putw: Initiates thread-aware putw() spt_putw(2)

function spt_putwc: Initiates thread-aware putwc() spt_putwc(2)
function spt_read: Initiates thread-aware read() .. spt_read(2)

function spt_readv: Initiates thread-aware readv() spt_readv(2)
function spt_recv: Initiates thread-aware recv() .. spt_recv(2)

) function spt_recvfrom: Initiates thread-aware recvfrom(.................................. spt_recvfrom(2)
function spt_recvmsg: Initiates thread-aware recvmsg(2) spt_recvmsg(2)

procedure call put_REPLYX: Initiates thread-aware REPLYX put_REPLYX(2)
procedure call spt_REPLYX: Initiates thread-aware REPLYX spt_REPLYX(2)

procedure call/ put_REPLYXL: Initiates thread-aware REPLYXL put_REPLYXL(2)
procedure call/ spt_REPLYXL: Initiates thread-aware REPLYXL spt_REPLYXL(2)
function/ put_select_single_np: Initiates thread-aware select() put_select_single_np(2)

function for/ spt_select: Initiates thread-aware select() spt_select(2)
function/ spt_select_single_np: Initiates thread-aware select() spt_select_single_np(2)

function spt_send: Initiates thread-aware send() spt_send(2)
function spt_sendmsg: Initiates thread-aware sendmsg() spt_sendmsg(2)

function spt_sendto: Initiates thread-aware sendto() spt_sendto(2)
function spt_system: Initiates thread-aware system() spt_system(2)

) function spt_vfprintf: Initiates thread-aware vfprintf(.................................... spt_vfprintf(2)
function spt_vprintf: Initiates thread-aware vprintf() spt_vprintf(2)

function spt_waitpid: Initiates thread-aware waitpid() spt_waitpid(2)
function spt_write: Initiates thread-aware write() spt_write(2)

version) spt_freadx: Reads input from a stream (thread-aware spt_freadx(2)
 Interrupts all threads awaiting input or output put_interrupt: put_interrupt(2)
 Interrupts all threads awaiting input or output spt_interrupt: spt_interrupt(2)

 /Gets a character from a specified input stream (thread-aware/ .. spt_fgetcx(2)
 /Gets a character from a specified input stream (thread-aware/ .. spt_getcx(2)

 /Gets a string from the standard input stream (thread-aware/ .. spt_getsx(2)
 spt_getwx: Gets a word from an input stream (thread-aware/ .. spt_getwx(2)

 wide character from a a specified input stream (thread-aware/ /a spt_fgetwcx(2)
 wide character from the standard input stream (thread-aware/ /a spt_getwcharx(2)

 a character from the standard input stream (thread-aware/ /Gets spt_getcharx(2)
 a wide character from a specified input stream (thread-aware/ /Gets spt_getwcx(2)

 file descriptors for synchronous input/output multiplexing /among select(2)
 /Performs device-dependent input/output operations ... PUT_CONTROL(2)
 /Performs device-dependent input/output operations ... SPT_CONTROL(2)

 spt_signal: Installs a new signal handler .. spt_signal(2)
 put_setOSSFileIOHandler: Sets interest in file descriptor ... put_setOSSFileIOHandler(2)
 spt_setOSSFileIOHandler: Sets interest in file descriptor ... spt_setOSSFileIOHandler(2)

 tty: Is the general terminal interface .. tty(7)
 termios: Describes the terminal interface for POSIX compatibility termios(4)

channel pipe: Creates an interprocess communication ... pipe(2)
 /variable; callable only from an interrupt-handler routine ... pthread_cond_signal_int_np(2)

input or output put_interrupt: Interrupts all threads awaiting put_interrupt(2)
input or output spt_interrupt: Interrupts all threads awaiting spt_interrupt(2)

I/O put_interruptTag: Interrupts thread awaiting tagged put_interruptTag(2)
I/O spt_interruptTag: Interrupts thread awaiting tagged spt_interruptTag(2)

 the thread for a specified time interval /Suspends execution of spt_sleep(2)
control lists (ACLs) acl: Introduction to OSS access ... acl(5)

 put_awaitio: Awaits a tagged I/O file ... put_awaitio(2)
 spt_awaitio: Awaits a tagged I/O file ... spt_awaitio(2)

 a Guardian file opened for nowait I/O /incomplete operation on PUT_CANCEL(2)

Pindex−18 Hewlett-Packard Company 527186-023

Permuted Index

 a Guardian file opened for nowait I/O /incomplete operation on SPT_CANCEL(2)
 /about an open file (serializes I/O operations on an open file)) spt_fstat64z(2)
 /about an open file (serializes I/O operations on an open file) spt_fstatz(2)
 /or write operation (serializes I/O operations on an open file) spt_lseek64z(2)
 /or write operation (serializes I/O operations on an open file)) spt_lseekz(2)

 Interrupts thread awaiting tagged I/O put_interruptTag: ... put_interruptTag(2)
 Wakes up a thread awaiting tagged I/O put_wakeup: ... put_wakeup(2)

 Interrupts thread awaiting tagged I/O spt_interruptTag: .. spt_interruptTag(2)
 Wakes up a thread awaiting tagged I/O spt_wakeup: .. spt_wakeup(2)

 ioctl: Controls device files .. ioctl(2)
 Sets the process group ID for job control setpgid: ... setpgid(2)
 a unique thread-specific data key /Generates ... pthread_key_create(2)

 data associated with a key /Obtains the thread-specific pthread_getspecific(2)
 Deletes a thread-specific data key pthread_key_delete: .. pthread_key_delete(2)

 data associated with a key /Sets the thread-specific .. pthread_setspecific(2)
or group of processes kill: Sends a signal to a process kill(2)

 /Registers $RECEIVE filename (larger message version) ... put_INITRECEIVEL(2)
 /function for reading $RECEIVE (larger message version) ... put_RECEIVEREADL(2)

 /REPLYXL procedure call (larger message version) ... put_REPLYXL(2)
 /Registers $RECEIVE filename (larger message version) ... spt_INITRECEIVEL(2)

 /function for reading $RECEIVE (larger message version) ... spt_RECEIVEREADL(2)
 /REPLYXL procedure call (larger message version) ... spt_REPLYXL(2)

permissions lchmod: Changes file-access ... lchmod(2)
group IDs of a file lchown: Changes the owner and lchown(2)

 process group ID of the session leader getsid: Gets the .. getsid(2)
 pthread_cond_signal: Unblocks at least one thread that is waiting/ pthread_cond_signal(2)

 ftruncate: Changes file length .. ftruncate(2)
 ftruncate64: Changes file length .. ftruncate64(2)

 spt_ftruncate64z: Changes file length (thread-aware version) spt_ftruncate64z(2)
 spt_ftruncatez: Changes file length (thread-aware version) spt_ftruncatez(2)

 pthread_getconcurrency: Gets level of concurrency .. pthread_getconcurrency(2)
 pthread_setconcurrency: Sets level of concurrency .. pthread_setconcurrency(2)

 ar: Describes the archive (library) file format .. ar(4)
 limits: Specifies the system limits ... limits(4)

 ulimit: Sets and gets file size limits ... ulimit(2)
 float: Specifies the system limits for floating-point/ ... float(4)

limits limits: Specifies the system .. limits(4)
 /for socket connections and limits the backlog of incoming/ listen(2)

directory entry for an existing/ link: Creates an additional .. link(2)
 information about a symbolic link or any file lstat: Provides lstat(2)
 information about a symbolic link or any file /Provides .. lstat64(2)
 Reads the value of a symbolic link readlink: ... readlink(2)

 symlink: Creates a symbolic link to a file .. symlink(2)
 acl: Sets access control list (ACL) information for a file acl(2)

 setgroups: Sets the group list of the calling process .. setgroups(2)
 getgroups: Gets the group list of the current process .. getgroups(2)
connections and limits the/ listen: Listens for socket ... listen(2)

and limits the backlog/ listen: Listens for socket connections listen(2)
 to OSS access control lists (ACLs) acl: Introduction acl(5)

 gethostname: Gets the name of the local host .. gethostname(2)
 getsockname: Gets the locally bound name of a socket getsockname(2)

not wait if the/ /Attempts to lock a specified mutex but does pthread_mutex_trylock(2)
 records in that file currently locked by the user /file and any PUT_UNLOCKFILE(2)
 records in that file currently locked by the user /file and any SPT_UNLOCKFILE(2)

 a Guardian file record currently locked by the user /Unlocks ... PUT_UNLOCKREC(2)
 a Guardian file record currently locked by the user /Unlocks ... SPT_UNLOCKREC(2)
 not wait if the mutex is already locked /specified mutex but does pthread_mutex_trylock(2)

 pthread_mutex_lock: Locks an unlocked mutex ... pthread_mutex_lock(2)
 PUT_READLOCKX: Sequentially locks and reads records in a/ ... PUT_READLOCKX(2)
 SPT_READLOCKX: Sequentially locks and reads records in a/ ... SPT_READLOCKX(2)

threads pthread_lock_global_np: Locks the global mutex for ... pthread_lock_global_np(2)
user/ login.defs: The default login configuration file for the login.defs(5)

configuration file for the user/ login.defs: The default login .. login.defs(5)
or write operation lseek: Sets file offset for read .. lseek(2)

read or write operation lseek64: Sets file offset for .. lseek64(2)

527186-023 Hewlett-Packard Company Pindex−19

OSS System Calls Reference Manual

a symbolic link or any file lstat: Provides information about lstat(2)
about a symbolic link or any/ lstat64: Provides information lstat64(2)

 pthread_cleanup_push: (Macro) Establishes a/ ... pthread_cleanup_push(2)
 pthread_cleanup_pop: (Macro) Removes the/ ... pthread_cleanup_pop(2)

 /Registers the file descriptor to manage through a callback/ .. put_regOSSFileIOHandler(2)
 /Registers the file descriptor to manage through a callback/ .. spt_regOSSFileIOHandler(2)
 tfile for concurrent transaction management /Initializes the ... PUT_TMF_Init(2)
 tfile for concurrent transaction management /Initializes the ... SPT_TMF_Init(2)

 configuration file for the user management suite on OSS. /login login.defs(5)
 configuration file for the user management suite on OSS. /user users(5)

 file number as one that the user manages /Unregisters a Guardian put_unregFile(2)
 file number as one that the user manages /Unregisters a Guardian spt_unregFile(2)

 a socket is at the out-of-band mark /Determines whether ... sockatmark(2)
deletion pthread_detach: Marks a thread object for .. pthread_detach(2)

 the calling thread’s signal mask /Examines or changes ... pthread_sigmask(2)
 Changes or examines the signal mask sigprocmask: ... sigprocmask(2)
 value of the file mode creation mask umask: Sets and gets the umask(2)
functions, constants, and types math: Specifies mathematical math(4)
constants, and/ math: Specifies mathematical functions, .. math(4)

policy /Returns the maximum priority for a scheduling sched_get_priority_max(2)
 shmctl: Performs shared memory control operations ... shmctl(2)

 core: Is a file containing a memory image ... core(4)
 saveabend: Is a file containing a memory image ... saveabend(4)

 shmdt: Detaches a shared memory segment ... shmdt(2)
 shmget: Creates a new shared memory segment or returns the/ shmget(2)

 identifier of an existing shared memory segment /or returns the shmget(2)
space/ shmat: Attaches a shared memory segment to the address shmat(2)

 msgctl: Performs message control operations .. msgctl(2)
 recv: Receives a message from a connected socket recv(2)

 recv64_: Receives a message from a connected socket recv64_(2)
 spt_recvx: Receives a message from a connected socket/ spt_recvx(2)

 msgrcv: Receives a message from a message queue msgrcv(2)
 recvfrom: Receives a message from a socket .. recvfrom(2)

 recvfrom64_: Receives a message from a socket .. recvfrom64_(2)
 spt_recvfromx: Receives a message from a socket/ ... spt_recvfromx(2)

message/ recvmsg: Receives a message from a socket using a recvmsg(2)
message/ recvmsg64_: Receives a message from a socket using a recvmsg64_(2)

message/ spt_recvmsgx: Receives a message from a socket using a spt_recvmsgx(2)
 send: Sends a message on a connected socket send(2)

 send64_: Sends a message on a connected socket send64_(2)
(thread-aware/ spt_sendx: Sends a message on a connected socket spt_sendx(2)

 sendto: Sends a message on a socket .. sendto(2)
 sendto64_: Sends a message on a socket .. sendto64_(2)

version) spt_sendtox: Sends a message on a socket (thread-aware spt_sendtox(2)
message/ sendmsg: Sends a message on a socket using a ... sendmsg(2)

message/ sendmsg64_: Sends a message on a socket using a ... sendmsg64_(2)
message/ spt_sendmsgx: Sends a message on a socket using a ... spt_sendmsgx(2)

 msgrcv: Receives a message from a message queue ... msgrcv(2)
 msgsnd: Sends a message to a message queue ... msgsnd(2)

 or returns the identifier for a message queue msgget: Creates msgget(2)
 a message from a socket using a message structure /Receives .. recvmsg(2)
 a message from a socket using a message structure /Receives .. recvmsg64_(2)

 a message on a socket using a message structure sendmsg: Sends sendmsg(2)
 a message on a socket using a message structure /Sends .. sendmsg64_(2)

 /a message from a socket using a message structure (thread-aware/ spt_recvmsgx(2)
 /a message on a socket using a message structure (thread-aware/ spt_sendmsgx(2)

 msgsnd: Sends a message to a message queue ... msgsnd(2)
 for reading $RECEIVE (larger message version) /function .. put_RECEIVEREADL(2)
 for reading $RECEIVE (larger message version) /function .. spt_RECEIVEREADL(2)

 $RECEIVE filename (larger message version) /Registers ... put_INITRECEIVEL(2)
 $RECEIVE filename (larger message version) /Registers ... spt_INITRECEIVEL(2)

 REPLYXL procedure call (larger message version) /thread-aware put_REPLYXL(2)
 REPLYXL procedure call (larger message version) /thread-aware spt_REPLYXL(2)
 thread for a specified number of microseconds /execution of the spt_usleep(2)

policy /Returns the minimum priority for a scheduling sched_get_priority_min(2)

Pindex−20 Hewlett-Packard Company 527186-023

Permuted Index

 mkdir: Creates a directory .. mkdir(2)
a pathname to a character/ mknod: Creates a file or assigns mknod(2)

 and gets the value of the file mode creation mask umask: Sets umask(2)
 utime: Sets file access and modification times ... utime(2)

to permanent/ fsync: Writes modified data and file attributes fsync(2)
to permanent/ spt_fsyncz: Writes modified data and file attributes spt_fsyncz(2)

operations msgctl: Performs message control msgctl(2)
identifier for a message queue msgget: Creates or returns the msgget(2)

message queue msgrcv: Receives a message from a msgrcv(2)
message queue msgsnd: Sends a message to a msgsnd(2)

 /select() function for mulitple file descriptors .. spt_select(2)
 for synchronous input/output multiplexing /file descriptors select(2)

 pthread_mutex_destroy: Destroys a mutex .. pthread_mutex_destroy(2)
 pthread_mutex_init: Initializes a mutex .. pthread_mutex_init(2)

 pthread_mutex_unlock: Unlocks a mutex .. pthread_mutex_unlock(2)
 the mutex type attribute of a mutex attribute object /Gets .. pthread_mutexattr_gettype(2)
 the mutex type attribute of a mutex attribute object /Sets ... pthread_mutexattr_settype(2)

 /Destroys a mutex attributes object ... pthread_mutexattr_destroy(2)
 /Initializes a mutex attributes object ... pthread_mutexattr_init(2)

 the mutex type attribute of a mutex attributes object /Obtains pthread_mutexattr_getkind_np(2)
 the mutex type attribute of a mutex attributes object /Sets .. pthread_mutexattr_setkind_np(2)
 /Attempts to lock a specified mutex but does not wait if the/ pthread_mutex_trylock(2)

 /Locks the global mutex for threads ... pthread_lock_global_np(2)
 /mutex but does not wait if the mutex is already locked .. pthread_mutex_trylock(2)

 Locks an unlocked mutex pthread_mutex_lock: .. pthread_mutex_lock(2)
 Unlocks the threads global mutex pthread_unlock_global_np: pthread_unlock_global_np(2)

attributes object /Obtains the mutex type attribute of a mutex pthread_mutexattr_getkind_np(2)
attribute object /Gets the mutex type attribute of a mutex pthread_mutexattr_gettype(2)
attributes object /Sets the mutex type attribute of a mutex pthread_mutexattr_setkind_np(2)
attribute object /Sets the mutex type attribute of a mutex pthread_mutexattr_settype(2)
 Gets the locally bound name of a socket getsockname: getsockname(2)
 gethostname: Gets the name of the local host ... gethostname(2)
 getpeername: Gets the name of the peer socket ... getpeername(2)

process /Gets the name of the transport-provider socket_transport_name_get(2)
process /Sets the name of the transport-provider socket_transport_name_set(2)

 file for BIND 9 domain name server named /configuration named.conf(4)
 resolv.conf: BIND 9 Domain Name System resolver/ ... resolv.conf(5)

 bind: Binds a name to a socket .. bind(2)
 for BIND 9 domain name server named /configuration file .. named.conf(4)
for BIND 9 domain name server/ named.conf: configuration file named.conf(4)

 Explains OSS file system file naming filename: .. filename(5)
 Explains OSS file system path naming pathname: .. pathname(5)

priority of the calling process nice: Changes the scheduling nice(2)
 on a Guardian file opened for nowait I/O /incomplete operation PUT_CANCEL(2)
 on a Guardian file opened for nowait I/O /incomplete operation SPT_CANCEL(2)

 null: Is a data sink file ... null(7)
 put_regFile: Registers the file number .. put_regFile(2)
 spt_regFile: Registers the file number .. spt_regFile(2)

 /Unregisters a Guardian file number as one that the user/ ... put_unregFile(2)
 /Unregisters a Guardian file number as one that the user/ ... spt_unregFile(2)

transactions being used /Gets the number of concurrent TMF ... put_getTMFConcurrentTransactions(2)
transactions /Sets the number of concurrent TMF ... put_setTMFConcurrentTransactions(2)

transactions being used /Gets the number of concurrent TMF ... spt_getTMFConcurrentTransactions(2)
transactions /Sets the number of concurrent TMF ... spt_setTMFConcurrentTransactions(2)

 of the thread for a specified number of microseconds /execution spt_usleep(2)
 spt_vfprintfx: Formats a variable number of parameters for output/ spt_vfprintfx(2)
 spt_vprintfx: Formats a variable number of parameters for output/ spt_vprintfx(2)

 Registers the file number put_regFileIOHandler: put_regFileIOHandler(2)
 Registers the Pathsend file number put_regPathsendFile: put_regPathsendFile(2)

 Registers the file number spt_regFileIOHandler: spt_regFileIOHandler(2)
 Registers the Pathsend file number spt_regPathsendFile: spt_regPathsendFile(2)

 /Destroys a mutex attributes object .. pthread_mutexattr_destroy(2)
 the specified thread attributes object /address attribute of ... pthread_attr_getstackaddr(2)
 a condition variable attributes object /Destroys .. pthread_condattr_destroy(2)

 /Gets the attribute object for a thread .. pthread_getattr_np(2)

527186-023 Hewlett-Packard Company Pindex−21

OSS System Calls Reference Manual

 pthread_detach: Marks a thread object for deletion ... pthread_detach(2)
 attribute of a thread attributes object /Gets the contentionscope pthread_attr_getscope(2)
 attribute of a mutex attribute object /Gets the mutex type ... pthread_mutexattr_gettype(2)

 a condition variable attributes object /Initializes .. pthread_condattr_init(2)
 attribute of a thread attributes object /Obtains the detachstate pthread_attr_getdetachstate(2)
 attribute of a thread attributes object /Obtains the guardsize pthread_attr_getguardsize(2)
 attribute of a thread attributes object /Obtains the guardsize pthread_attr_getguardsize_np(2)
 attribute of a mutex attributes object /Obtains the mutex type pthread_mutexattr_getkind_np(2)
 attribute of a thread attributes object /Obtains the stacksize pthread_attr_getstacksize(2)
 attribute of a thread attributes object /of the scheduling policy pthread_attr_getschedparam(2)
 attribute of a thread attributes object /of the scheduling policy pthread_attr_setschedparam(2)

 Destroys a thread attributes object pthread_attr_destroy: .. pthread_attr_destroy(2)
 Initializes a thread attributes object pthread_attr_init: ... pthread_attr_init(2)
 Initializes a mutex attributes object pthread_mutexattr_init: pthread_mutexattr_init(2)

 attribute of a thread attributes object /Sets the contentionscope pthread_attr_setscope(2)
 attribute of a thread attributes object /Sets the detachstate .. pthread_attr_setdetachstate(2)
 attribute of a thread attributes object /Sets the guardsize ... pthread_attr_setguardsize(2)
 attribute of a thread attributes object /Sets the guardsize ... pthread_attr_setguardsize_np(2)
 attribute of a mutex attributes object /Sets the mutex type .. pthread_mutexattr_setkind_np(2)
 attribute of a mutex attribute object /Sets the mutex type .. pthread_mutexattr_settype(2)

 attribute of a thread attributes object /Sets the stacksize .. pthread_attr_setstacksize(2)
 attribute of a thread attributes object /the inherit scheduling pthread_attr_getinheritsched(2)
 attribute of a thread attributes object /the inherit scheduling pthread_attr_setinheritsched(2)
 attribute of a thread attributes object /the scheduling policy pthread_attr_getschedpolicy(2)
 attribute of a thread attributes object /the scheduling policy pthread_attr_setschedpolicy(2)

policy/ pthread_getschedparam: Obtains the current scheduling pthread_getschedparam(2)
of/ pthread_attr_getdetachstate: Obtains the detachstate attribute pthread_attr_getdetachstate(2)
of a/ pthread_attr_getguardsize: Obtains the guardsize attribute pthread_attr_getguardsize(2)

of/ pthread_attr_getguardsize_np: Obtains the guardsize attribute pthread_attr_getguardsize_np(2)
 pthread_attr_getinheritsched: Obtains the inherit scheduling/ pthread_attr_getinheritsched(2)

of/ pthread_mutexattr_getkind_np: Obtains the mutex type attribute pthread_mutexattr_getkind_np(2)
of/ pthread_attr_getschedparam: Obtains the scheduling parameters pthread_attr_getschedparam(2)

 pthread_attr_getschedpolicy: Obtains the scheduling policy/ pthread_attr_getschedpolicy(2)
 pthread_attr_getstackaddr: Obtains the stackbase address/ pthread_attr_getstackaddr(2)

of a/ pthread_attr_getstacksize: Obtains the stacksize attribute pthread_attr_getstacksize(2)
the calling thread pthread_self: Obtains the thread identifier of pthread_self(2)

associated/ pthread_getspecific: Obtains the thread-specific data pthread_getspecific(2)
ASCII/ ascii: Describes the octal, hexadecimal, and decimal ascii(5)

operation lseek: Sets file offset for read or write ... lseek(2)
operation lseek64: Sets file offset for read or write ... lseek64(2)

 spt_lseek64z: Sets file offset for read or write/ ... spt_lseek64z(2)
operation/ spt_lseekz: Sets file offset for read or write ... spt_lseekz(2)

Guardian/ PUT_CANCEL: Cancels the oldest incomplete operation on a PUT_CANCEL(2)
Guardian/ SPT_CANCEL: Cancels the oldest incomplete operation on a SPT_CANCEL(2)

 /Calls a routine to be executed once by a single thread .. pthread_once(2)
or writing; creates a regular/ open: Opens a file for reading open(2)

 (serializes I/O operations on an open file)) /about an open file spt_fstat64z(2)
 (serializes I/O operations on an open file) /about an open file .. spt_fstatz(2)

 dup: Duplicates an open file descriptor .. dup(2)
 dup2: Duplicates and controls an open file descriptor .. dup2(2)

 Duplicates and controls an open file descriptor/ spt_dup2x: spt_dup2x(2)
 fcntl: Controls open file descriptors .. fcntl(2)

 spt_fcntlx: Controls open file descriptors/ ... spt_fcntlx(2)
 spt_fcntlz: Controls open file descriptors/ ... spt_fcntlz(2)

 Provides information about an open file fstat: .. fstat(2)
 Provides information about an open file fstat64: ... fstat64(2)
 Gets fileset information for an open file fstatvfs: ... fstatvfs(2)
 Gets fileset information for an open file fstatvfs64: .. fstatvfs64(2)

 (serializes I/O operations on an open file) /or write operation spt_lseek64z(2)
 (serializes I/O operations on an open file)) /or write operation spt_lseekz(2)
 /Provides information about an open file (serializes I/O/ .. spt_fstat64z(2)
 /Provides information about an open file (serializes I/O/ .. spt_fstatz(2)

 PUT_FILE_CLOSE_: Closes an open Guardian file ... PUT_FILE_CLOSE_(2)
 SPT_FILE_CLOSE_: Closes an open Guardian file ... SPT_FILE_CLOSE_(2)
 in the application program to an open Guardian file /from an array PUT_WRITEX(2)

Pindex−22 Hewlett-Packard Company 527186-023

Permuted Index

 in the application program to an open Guardian file /from an array SPT_WRITEX(2)
 PUT_READX: Returns data from an open Guardian file to the/ ... PUT_READX(2)
 SPT_READX: Returns data from an open Guardian file to the/ ... SPT_READX(2)

or writing; creates a regular/ open64: Opens a file for reading open64(2)
 operation on a Guardian file opened for nowait I/O /incomplete PUT_CANCEL(2)
 operation on a Guardian file opened for nowait I/O /incomplete SPT_CANCEL(2)

for/ /data to a process previously opened from an array and waits PUT_FILE_WRITEREAD_(2)
writing; creates a regular/ open: Opens a file for reading or .. open(2)

writing; creates a/ open64: Opens a file for reading or .. open64(2)
 file offset for read or write operation lseek: Sets ... lseek(2)
 file offset for read or write operation lseek64: Sets ... lseek64(2)

 /Cancels the oldest incomplete operation on a Guardian file/ .. PUT_CANCEL(2)
 /Cancels the oldest incomplete operation on a Guardian file/ .. SPT_CANCEL(2)

 file offset for read or write operation (serializes I/O/ /Sets spt_lseek64z(2)
 file offset for read or write operation (serializes I/O/ /Sets spt_lseekz(2)

 Initiates a thread-aware fork() operation spt_fork: ... spt_fork(2)
 msgctl: Performs message control operations ... msgctl(2)

 semop: Performs semaphore operations ... semop(2)
 system limits for floating-point operations float: Specifies the float(4)

 /an open file (serializes I/O operations on an open file)) .. spt_fstat64z(2)
 /an open file (serializes I/O operations on an open file) .. spt_fstatz(2)

 write operation (serializes I/O operations on an open file) /or spt_lseek64z(2)
 write operation (serializes I/O operations on an open file)) /or spt_lseekz(2)

 device-dependent input/output operations PUT_CONTROL: Performs PUT_CONTROL(2)
 Performs semaphore control operations semctl: ... semctl(2)

 Performs shared memory control operations shmctl: ... shmctl(2)
 down socket send and receive operations shutdown: Shuts ... shutdown(2)

 device-dependent input/output operations SPT_CONTROL: Performs SPT_CONTROL(2)
 cleanup-handler stack and optionally executes it /thread’s pthread_cleanup_pop(2)

 getsockopt: Gets socket options .. getsockopt(2)
 setsockopt: Sets socket options .. setsockopt(2)

 acl: Introduction to OSS access control lists (ACLs) acl(5)
 /Creates a regular file in the OSS environment or rewrites an/ creat(2)
 /Creates a regular file in the OSS environment or rewrites an/ creat64(2)

 creates a regular file in the OSS environment /or writing; open(2)
 creates a regular file in the OSS environment /or writing; open64(2)
 a directory entry from the OSS environment unlink: Removes unlink(2)

 /Unregisters an OSS file descriptor ... put_unregOSSFileIOHandler(2)
 /Unregisters an OSS file descriptor ... spt_unregOSSFileIOHandler(2)

 filename: Explains OSS file system file naming .. filename(5)
 hier: Explains the OSS file system hierarchy ... hier(5)

 pathname: Explains OSS file system path naming .. pathname(5)
 for the user management suite on OSS. /login configuration file login.defs(5)

 process group ID for a specified OSS process getpgid: Gets the getpgid(2)
 getpid: Gets the OSS process ID .. getpid(2)

 getppid: Gets the parent OSS process ID .. getppid(2)
 getpriority: Gets the OSS process scheduling priority getpriority(2)

 /Renames a file or directory (OSS rename() function) .. rename_oss(2)
 for the user management suite on OSS. /user configuration file .. users(5)

 whether a socket is at the out-of-band mark /Determines sockatmark(2)
 all threads awaiting input or output put_interrupt: Interrupts put_interrupt(2)
 all threads awaiting input or output spt_interrupt: Interrupts spt_interrupt(2)

 /Prints formatted output to an output stream (thread-aware/ .. spt_fprintfx(2)
 /Writes a byte to a specified output stream (thread-aware/ .. spt_fputcx(2)

 spt_fwritex: Writes to an output stream (thread-aware/ .. spt_fwritex(2)
 /formatted output to the standard output stream (thread-aware/ .. spt_printfx(2)

 /Writes a byte to the standard output stream (thread-aware/ .. spt_putcharx(2)
 /Writes a byte to a specified output stream (thread-aware/ .. spt_putcx(2)

 /Writes a string to the standard output stream (thread-aware/ .. spt_putsx(2)
 /a wide character to the standard output stream (thread-aware) .. spt_putwcharx(2)

 variable number of parameters for output (thread-aware version) /a spt_vfprintfx(2)
 variable number of parameters for output (thread-aware version) /a spt_vprintfx(2)

 spt_fprintfx: Prints formatted output to an output stream/ ... spt_fprintfx(2)
 spt_printfx: Prints formatted output to the standard output/ spt_printfx(2)

 chown: Changes the owner and group IDs of a file chown(2)

527186-023 Hewlett-Packard Company Pindex−23

OSS System Calls Reference Manual

 fchown: Changes the owner and group IDs of a file fchown(2)
 lchown: Changes the owner and group IDs of a file lchown(2)
 socketpair: Creates a pair of connected sockets .. socketpair(2)

 /Formats a variable number of parameters for output/ ... spt_vfprintfx(2)
 /Formats a variable number of parameters for output/ ... spt_vprintfx(2)

 scheduling policy and scheduling parameters of a thread /current pthread_getschedparam(2)
 scheduling policy and scheduling parameters of a thread /Sets the pthread_setschedparam(2)

policy/ /Obtains the scheduling parameters of the scheduling .. pthread_attr_getschedparam(2)
policy/ /Sets the scheduling parameters of the scheduling .. pthread_attr_setschedparam(2)

 getppid: Gets the parent OSS process ID .. getppid(2)
 /Establishes a communication path between an application/ .. PUT_FILE_OPEN_(2)
 /Establishes a communication path between an application/ .. SPT_FILE_OPEN_(2)

 Explains OSS file system path naming pathname: .. pathname(5)
 execl: Executes a file using a pathname, a set of argument/ .. execl(2)

 execle: Executes a file using a pathname, a set of argument/ .. execle(2)
 execv: Executes a file using a pathname, an argv array, and/ execv(2)

 execve: Executes a file using a pathname, an argv array, and an/ execve(2)
system path naming pathname: Explains OSS file .. pathname(5)

 Gets fileset information using a pathname statvfs: .. statvfs(2)
 Gets fileset information using a pathname statvfs64: .. statvfs64(2)

file /Creates a file or assigns a pathname to a character special mknod(2)
 /Registers the Pathsend file number ... put_regPathsendFile(2)
 /Registers the Pathsend file number ... spt_regPathsendFile(2)

 /Registers the user-supplied Pathsend tag ... put_regPathsendTagHandler(2)
 /Unregisters the user-supplied Pathsend tag ... put_unregPathsendTagHandler(2)

 /Registers the user-supplied Pathsend tag ... spt_regPathsendTagHandler(2)
 /Unregisters the user-supplied Pathsend tag ... spt_unregPathsendTagHandler(2)

 getpeername: Gets the name of the peer socket ... getpeername(2)
the/ /Requests delivery of a pending cancelation request to pthread_testcancel(2)

 sigpending: Examines pending signals .. sigpending(2)
 signals that are blocked and pending spt_sigpending: Examines spt_sigpending(2)

input/output/ PUT_CONTROL: Performs device-dependent .. PUT_CONTROL(2)
input/output/ SPT_CONTROL: Performs device-dependent .. SPT_CONTROL(2)

operations msgctl: Performs message control ... msgctl(2)
records/ PUT_WRITEUPDATEUNLOCKX: Performs random processing of PUT_WRITEUPDATEUNLOCKX(2)
records/ SPT_WRITEUPDATEUNLOCKX: Performs random processing of SPT_WRITEUPDATEUNLOCKX(2)

operations semctl: Performs semaphore control ... semctl(2)
 semop: Performs semaphore operations semop(2)

operations shmctl: Performs shared memory control shmctl(2)
 data and file attributes to permanent storage /modified .. fsync(2)

 /data and file attributes to permanent storage (thread-aware/ spt_fsyncz(2)
 chmod: Changes file-access permissions .. chmod(2)

 fchmod: Changes file-access permissions .. fchmod(2)
 lchmod: Changes file-access permissions .. lchmod(2)

communication channel pipe: Creates an interprocess .. pipe(2)
 /Obtains the current scheduling policy and scheduling parameters/ pthread_getschedparam(2)
of a thread /Sets the scheduling policy and scheduling parameters pthread_setschedparam(2)

 /parameters of the scheduling policy attribute of a thread/ .. pthread_attr_getschedparam(2)
 /Obtains the scheduling policy attribute of a thread/ .. pthread_attr_getschedpolicy(2)

 /parameters of the scheduling policy attribute of a thread/ .. pthread_attr_setschedparam(2)
attributes/ /Sets the scheduling policy attribute of a thread ... pthread_attr_setschedpolicy(2)

 maximum priority for a scheduling policy /Returns the .. sched_get_priority_max(2)
 minimum priority for a scheduling policy /Returns the .. sched_get_priority_min(2)

 the terminal interface for POSIX compatibility /Describes termios(4)
and/ /Writes data to a process previously opened from an array PUT_FILE_WRITEREAD_(2)

 PUT_TMF_RESUME: Resumes a previously suspended transaction/ PUT_TMF_RESUME(2)
 SPT_TMF_RESUME: Resumes a previously suspended transaction/ SPT_TMF_RESUME(2)

 Initiates thread-aware printf() function spt_printf: ... spt_printf(2)
output stream/ spt_fprintfx: Prints formatted output to an .. spt_fprintfx(2)

standard output/ spt_printfx: Prints formatted output to the spt_printfx(2)
 /Returns the maximum priority for a scheduling policy sched_get_priority_max(2)
 /Returns the minimum priority for a scheduling policy sched_get_priority_min(2)

 Gets the OSS process scheduling priority getpriority: ... getpriority(2)
 nice: Changes the scheduling priority of the calling process nice(2)

 /Sets one or more file privileges for an executable file setfilepriv(2)

Pindex−24 Hewlett-Packard Company 527186-023

Permuted Index

 /Initiates thread-aware REPLYXL procedure call (larger message/ put_REPLYXL(2)
 /Initiates thread-aware REPLYXL procedure call (larger message/ spt_REPLYXL(2)

 Initiates thread-aware REPLYX procedure call put_REPLYX: put_REPLYX(2)
 Initiates thread-aware REPLYX procedure call spt_REPLYX: spt_REPLYX(2)

 _exit: Terminates a process .. _exit(2)
 fork: Creates a new process .. fork(2)

 path between an application process and a file /communication PUT_FILE_OPEN_(2)
 path between an application process and a file /communication SPT_FILE_OPEN_(2)

 to be transferred back from the process /array and waits for data PUT_FILE_WRITEREAD_(2)
 thread’s process forks a child process /called when the calling pthread_atfork(2)

 priority of the calling process /Changes the scheduling nice(2)
 /Contains the status of a process creation attempt ... process_extension_results(5)

 Guardian file to the application process data area /from an open PUT_READX(2)
 Guardian file to the application process data area /from an open SPT_READX(2)

 /data from a Guardian disk or process file in anticipation of a/ PUT_READUPDATEX(2)
 /data from a Guardian disk or process file in anticipation of a/ SPT_READUPDATEX(2)

 called when the calling thread’s process forks a child process /be pthread_atfork(2)
 effective user ID of the current process geteuid: Gets the ... geteuid(2)

 the group list of the current process getgroups: Gets .. getgroups(2)
 process group ID of the calling process getpgrp: Gets the ... getpgrp(2)

 group ID for a specified OSS process /Gets the process ... getpgid(2)
 name of the transport-provider process /Gets the ... socket_transport_name_get(2)
 the real user ID of the current process getuid: Gets the ... getuid(2)

 setpgrp: Sets the process group ID .. setpgrp(2)
OSS process getpgid: Gets the process group ID for a specified getpgid(2)

 setpgid: Sets the process group ID for job control setpgid(2)
process getpgrp: Gets the process group ID of the calling getpgrp(2)

leader getsid: Gets the process group ID of the session getsid(2)
 a new session and sets the process group ID setsid: Creates setsid(2)

 getpid: Gets the OSS process ID ... getpid(2)
 getppid: Gets the parent OSS process ID ... getppid(2)

 kill: Sends a signal to a process or group of processes kill(2)
array and waits/ /Writes data to a process previously opened from an PUT_FILE_WRITEREAD_(2)

 getpriority: Gets the OSS process scheduling priority ... getpriority(2)
 effective group ID of the calling process setegid: Sets the ... setegid(2)

 effective user ID of the calling process seteuid: Sets the ... seteuid(2)
 Sets the group ID of the calling process setgid: ... setgid(2)

 the group list of the calling process setgroups: Sets ... setgroups(2)
 name of the transport-provider process /Sets the .. socket_transport_name_set(2)
 Sets the user ID of the calling process setuid: ... setuid(2)

 the address space of the calling process /shared memory segment to shmat(2)
 /an alarm signal for delivery to a process (thread-aware version) spt_alarm(2)

 /Waits for a specific child process to stop or terminate .. waitpid(2)
 wait: Waits for any child process to terminate .. wait(2)

 to another thread in the current process /to yield the processor sched_yield(2)
 tdm_fork: Creates a new process with HP extensions .. tdm_fork(2)

 tdm_spawn: Executes a new process with HP extensions .. tdm_spawn(2)
 tdm_spawnp: Executes a new process with HP extensions .. tdm_spawnp(2)

 a signal to a process or group of processes kill: Sends ... kill(2)
Contains the status of a process/ process_extension_results: ... process_extension_results(5)

Guardian disk file /Allows random processing of records in a ... PUT_READUPDATELOCKX(2)
Guardian disk file /Allows random processing of records in a ... SPT_READUPDATELOCKX(2)

file /Performs random processing of records in a disk PUT_WRITEUPDATEUNLOCKX(2)
file /Performs random processing of records in a disk SPT_WRITEUPDATEUNLOCKX(2)

the/ /a willingness to yield the processor to another thread in sched_yield(2)
 from an array in the application program to a Guardian file /data PUT_WRITEUPDATEX(2)
 from an array in the application program to a Guardian file /data SPT_WRITEUPDATEX(2)

 /from an array in the application program to an open Guardian file PUT_WRITEX(2)
 /from an array in the application program to an open Guardian file SPT_WRITEX(2)

symbolic link or any file lstat: Provides information about a lstat(2)
symbolic link or any/ lstat64: Provides information about a lstat64(2)

 stat: Provides information about a file stat(2)
 stat64: Provides information about a file stat64(2)

open file fstat: Provides information about an fstat(2)
open file fstat64: Provides information about an fstat64(2)

527186-023 Hewlett-Packard Company Pindex−25

OSS System Calls Reference Manual

open file/ spt_fstat64z: Provides information about an spt_fstat64z(2)
open file/ spt_fstatz: Provides information about an spt_fstatz(2)

fork-handler routines to be/ pthread_atfork: Declares ... pthread_atfork(2)
thread attributes object pthread_attr_destroy: Destroys a pthread_attr_destroy(2)

Obtains the detachstate/ pthread_attr_getdetachstate: .. pthread_attr_getdetachstate(2)
Obtains the guardsize attribute/ pthread_attr_getguardsize: ... pthread_attr_getguardsize(2)
Obtains the guardsize attribute/ pthread_attr_getguardsize_np: pthread_attr_getguardsize_np(2)
Obtains the inherit scheduling/ pthread_attr_getinheritsched: pthread_attr_getinheritsched(2)

Obtains the scheduling/ pthread_attr_getschedparam: pthread_attr_getschedparam(2)
Obtains the scheduling policy/ pthread_attr_getschedpolicy: pthread_attr_getschedpolicy(2)
contentionscope attribute of a/ pthread_attr_getscope: Gets the pthread_attr_getscope(2)
Obtains the stackbase address/ pthread_attr_getstackaddr: ... pthread_attr_getstackaddr(2)
Obtains the stacksize attribute/ pthread_attr_getstacksize: .. pthread_attr_getstacksize(2)

thread attributes object pthread_attr_init: Initializes a pthread_attr_init(2)
the detachstate attribute of a/ pthread_attr_setdetachstate: Sets pthread_attr_setdetachstate(2)

the guardsize attribute of a/ pthread_attr_setguardsize: Sets pthread_attr_setguardsize(2)
Sets the guardsize attribute of/ pthread_attr_setguardsize_np: pthread_attr_setguardsize_np(2)

Sets the inherit scheduling/ pthread_attr_setinheritsched: pthread_attr_setinheritsched(2)
the scheduling parameters of the/ pthread_attr_setschedparam: Sets pthread_attr_setschedparam(2)

the scheduling policy attribute/ pthread_attr_setschedpolicy: Sets pthread_attr_setschedpolicy(2)
contentionscope attribute of a/ pthread_attr_setscope: Sets the pthread_attr_setscope(2)

the stacksize attribute of a/ pthread_attr_setstacksize: Sets pthread_attr_setstacksize(2)
thread terminate execution pthread_cancel: Requests that a pthread_cancel(2)

Removes the cleanup-handler/ pthread_cleanup_pop: (Macro) pthread_cleanup_pop(2)
Establishes a cleanup-handler/ pthread_cleanup_push: (Macro) pthread_cleanup_push(2)
Destroys a condition variable/ pthread_condattr_destroy: .. pthread_condattr_destroy(2)

Initializes a condition variable/ pthread_condattr_init: .. pthread_condattr_init(2)
all threads that are waiting on/ pthread_cond_broadcast: Unblocks pthread_cond_broadcast(2)

condition variable pthread_cond_destroy: Destroys a pthread_cond_destroy(2)
condition variable pthread_cond_init: Initializes a pthread_cond_init(2)

least one thread that is waiting/ pthread_cond_signal: Unblocks at pthread_cond_signal(2)
Unblocks one thread that is/ pthread_cond_signal_int_np: pthread_cond_signal_int_np(2)

thread to wait either for a/ pthread_cond_timedwait: Causes a pthread_cond_timedwait(2)
thread to wait for the specified/ pthread_cond_wait: Causes a pthread_cond_wait(2)

 pthread_create: Creates a thread pthread_create(2)
execution of a thread pthread_delay_np: Delays .. pthread_delay_np(2)

object for deletion pthread_detach: Marks a thread pthread_detach(2)
thread identifiers pthread_equal: Compares two pthread_equal(2)

calling thread pthread_exit: Terminates the .. pthread_exit(2)
attribute object for a thread pthread_getattr_np: Gets the .. pthread_getattr_np(2)

level of concurrency pthread_getconcurrency: Gets pthread_getconcurrency(2)
Calculates an absolute/ pthread_get_expiration_np: ... pthread_get_expiration_np(2)

the current scheduling policy/ pthread_getschedparam: Obtains pthread_getschedparam(2)
thread-specific data associated/ pthread_getspecific: Obtains the pthread_getspecific(2)

Gets the thread state/ pthread_get_threadstateinfo_np: pthread_get_threadstateinfo_np(2)
thread to wait for the/ pthread_join: Causes the calling pthread_join(2)

unique thread-specific data key pthread_key_create: Generates a pthread_key_create(2)
thread-specific data key pthread_key_delete: Deletes a pthread_key_delete(2)

thread pthread_kill: Sends a signal to a pthread_kill(2)
if a specified signal is/ pthread_kill_np: Cancels a thread pthread_kill_np(2)

global mutex for threads pthread_lock_global_np: Locks the pthread_lock_global_np(2)
Destroys a mutex attributes/ pthread_mutexattr_destroy: ... pthread_mutexattr_destroy(2)

Obtains the mutex type attribute/ pthread_mutexattr_getkind_np: pthread_mutexattr_getkind_np(2)
the mutex type attribute of a/ pthread_mutexattr_gettype: Gets pthread_mutexattr_gettype(2)
Initializes a mutex attributes/ pthread_mutexattr_init: .. pthread_mutexattr_init(2)

Sets the mutex type attribute of/ pthread_mutexattr_setkind_np: pthread_mutexattr_setkind_np(2)
the mutex type attribute of a/ pthread_mutexattr_settype: Sets pthread_mutexattr_settype(2)

mutex pthread_mutex_destroy: Destroys a pthread_mutex_destroy(2)
mutex pthread_mutex_init: Initializes a pthread_mutex_init(2)

unlocked mutex pthread_mutex_lock: Locks an pthread_mutex_lock(2)
to lock a specified mutex but/ pthread_mutex_trylock: Attempts pthread_mutex_trylock(2)

mutex pthread_mutex_unlock: Unlocks a pthread_mutex_unlock(2)
be executed once by a single/ pthread_once: Calls a routine to pthread_once(2)
identifier of the calling thread pthread_self: Obtains the thread pthread_self(2)
calling thread’s cancelability/ pthread_setcancelstate: Sets the pthread_setcancelstate(2)

Pindex−26 Hewlett-Packard Company 527186-023

Permuted Index

calling thread’s cancelability/ pthread_setcanceltype: Sets the pthread_setcanceltype(2)
level of concurrency pthread_setconcurrency: Sets pthread_setconcurrency(2)

scheduling policy and scheduling/ pthread_setschedparam: Sets the pthread_setschedparam(2)
thread-specific data associated/ pthread_setspecific: Sets the ... pthread_setspecific(2)

changes the calling thread’s/ pthread_sigmask: Examines or pthread_sigmask(2)
Cancels a thread if a specified/ pthread_signal_to_cancel_np: pthread_signal_to_cancel_np(2)

delivery of a pending/ pthread_testcancel: Requests pthread_testcancel(2)
the threads global mutex pthread_unlock_global_np: Unlocks pthread_unlock_global_np(2)

file put_awaitio: Awaits a tagged I/O put_awaitio(2)
 spt_putc: Initiates thread-aware putc() function .. spt_putc(2)

incomplete operation on a/ PUT_CANCEL: Cancels the oldest PUT_CANCEL(2)
 Initiates thread-aware putchar() function spt_putchar: spt_putchar(2)

device-dependent input/output/ PUT_CONTROL: Performs .. PUT_CONTROL(2)
read-ready file descriptor put_fd_read_ready: Waits on put_fd_read_ready(2)

write-ready file descriptor put_fd_write_ready: Waits on put_fd_write_ready(2)
Guardian file PUT_FILE_CLOSE_: Closes an open PUT_FILE_CLOSE_(2)

communication path between an/ PUT_FILE_OPEN_: Establishes a PUT_FILE_OPEN_(2)
to a process previously opened/ PUT_FILE_WRITEREAD_: Writes data PUT_FILE_WRITEREAD_(2)

returns a static long tag put_generateTag: Increments and put_generateTag(2)
Gets the number of concurrent/ put_getTMFConcurrentTransactions: put_getTMFConcurrentTransactions(2)

$RECEIVE filename put_INITRECEIVE: Registers put_INITRECEIVE(2)
$RECEIVE filename (larger/ put_INITRECEIVEL: Registers put_INITRECEIVEL(2)

threads awaiting input or output put_interrupt: Interrupts all .. put_interrupt(2)
thread awaiting tagged I/O put_interruptTag: Interrupts ... put_interruptTag(2)

users from accessing a Guardian/ PUT_LOCKFILE: Excludes other PUT_LOCKFILE(2)
from accessing a record in a/ PUT_LOCKREC: Excludes other users PUT_LOCKREC(2)

and reads records in a Guardian/ PUT_READLOCKX: Sequentially locks PUT_READLOCKX(2)
random processing of records in/ PUT_READUPDATELOCKX: Allows PUT_READUPDATELOCKX(2)

a Guardian disk or process file/ PUT_READUPDATEX: Reads data from PUT_READUPDATEX(2)
open Guardian file to the/ PUT_READX: Returns data from an PUT_READX(2)

thread-aware function for/ put_RECEIVEREAD: Initiates put_RECEIVEREAD(2)
thread-aware function for/ put_RECEIVEREADL: Initiates put_RECEIVEREADL(2)

number put_regFile: Registers the file put_regFile(2)
the file number put_regFileIOHandler: Registers put_regFileIOHandler(2)

Registers the file descriptor to/ put_regOSSFileIOHandler: .. put_regOSSFileIOHandler(2)
the Pathsend file number put_regPathsendFile: Registers put_regPathsendFile(2)

Registers the user-supplied/ put_regPathsendTagHandler: put_regPathsendTagHandler(2)
user-supplied timer callback/ put_regTimerHandler: Registers a put_regTimerHandler(2)

thread-aware REPLYX procedure/ put_REPLYX: Initiates ... put_REPLYX(2)
thread-aware REPLYXL procedure/ put_REPLYXL: Initiates ... put_REPLYXL(2)

 spt_puts: Initiates thread-aware puts() function. ... spt_puts(2)
thread-aware select() function/ put_select_single_np: Initiates put_select_single_np(2)

device-dependent Guardian/ PUT_SETMODE: Sets .. PUT_SETMODE(2)
interest in file descriptor put_setOSSFileIOHandler: Sets put_setOSSFileIOHandler(2)

Sets the number of concurrent/ put_setTMFConcurrentTransactions: put_setTMFConcurrentTransactions(2)
current TMF transaction handle PUT_TMF_GetTxHandle: Gets the PUT_TMF_GetTxHandle(2)
tfile for concurrent transaction/ PUT_TMF_Init: Initializes the PUT_TMF_Init(2)

previously suspended transaction/ PUT_TMF_RESUME: Resumes a PUT_TMF_RESUME(2)
Sets the current TMF transaction/ PUT_TMF_SetAndValidateTxHandle: PUT_TMF_SetAndValidateTxHandle(2)

transaction handle PUT_TMF_SetTxHandle: Sets the TMF PUT_TMF_SetTxHandle(2)
transaction associated with the/ PUT_TMF_SUSPEND: Suspends a PUT_TMF_SUSPEND(2)

file and any records in that/ PUT_UNLOCKFILE: Unlocks a disk PUT_UNLOCKFILE(2)
file record currently locked by/ PUT_UNLOCKREC: Unlocks a Guardian PUT_UNLOCKREC(2)

Guardian file number as one that/ put_unregFile: Unregisters a .. put_unregFile(2)
Unregisters an OSS file/ put_unregOSSFileIOHandler: put_unregOSSFileIOHandler(2)

Unregisters the user-supplied/ put_unregPathsendTagHandler: put_unregPathsendTagHandler(2)
 spt_putw: Initiates thread-aware putw() function ... spt_putw(2)

awaiting tagged I/O put_wakeup: Wakes up a thread put_wakeup(2)
 spt_putwc: Initiates thread-aware putwc() function ... spt_putwc(2)

Guardian file from an array and/ PUT_WRITEREADX: Writes data to a PUT_WRITEREADX(2)
random processing of records in/ PUT_WRITEUPDATEUNLOCKX: Performs PUT_WRITEUPDATEUNLOCKX(2)
from an array in the application/ PUT_WRITEUPDATEX: Transfers data PUT_WRITEUPDATEX(2)

array in the application program/ PUT_WRITEX: Writes data from an PUT_WRITEX(2)
 the identifier for a message queue msgget: Creates or returns msgget(2)

 Receives a message from a message queue msgrcv: ... msgrcv(2)

527186-023 Hewlett-Packard Company Pindex−27

OSS System Calls Reference Manual

 Sends a message to a message queue msgsnd: ... msgsnd(2)
 PUT_READUPDATELOCKX: Allows random processing of records in a/ PUT_READUPDATELOCKX(2)

 PUT_WRITEUPDATEUNLOCKX: Performs random processing of records in a/ PUT_WRITEUPDATEUNLOCKX(2)
 SPT_READUPDATELOCKX: Allows random processing of records in a/ SPT_READUPDATELOCKX(2)

 SPT_WRITEUPDATEUNLOCKX: Performs random processing of records in a/ SPT_WRITEUPDATEUNLOCKX(2)
 spt_read: Initiates thread-aware read() function .. spt_read(2)
 an array and waits for data to be read back from the file /from .. PUT_WRITEREADX(2)
 an array and waits for data to be read back from the file /from .. SPT_WRITEREADX(2)

 lseek: Sets file offset for read or write operation .. lseek(2)
 lseek64: Sets file offset for read or write operation .. lseek64(2)

(serializes/ /Sets file offset for read or write operation .. spt_lseek64z(2)
 spt_lseekz: Sets file offset for read or write operation/ ... spt_lseekz(2)

 read: Reads from a file .. read(2)
 read64_: Reads from a file .. read64_(2)

regular/ open: Opens a file for reading or writing; creates a ... open(2)
 open64: Opens a file for reading or writing; creates a/ .. open64(2)

 thread-aware function for reading $RECEIVE /Initiates put_RECEIVEREAD(2)
 thread-aware function for reading $RECEIVE /Initiates spt_RECEIVEREAD(2)

 /thread-aware function for reading $RECEIVE (larger message/ put_RECEIVEREADL(2)
 /thread-aware function for reading $RECEIVE (larger message/ spt_RECEIVEREADL(2)

symbolic link readlink: Reads the value of a readlink(2)
 put_fd_read_ready: Waits on read-ready file descriptor .. put_fd_read_ready(2)
 spt_fd_read_ready: Waits on read-ready file descriptor .. spt_fd_read_ready(2)

or process file/ PUT_READUPDATEX: Reads data from a Guardian disk PUT_READUPDATEX(2)
or process file/ SPT_READUPDATEX: Reads data from a Guardian disk SPT_READUPDATEX(2)

 read: Reads from a file .. read(2)
 read64_: Reads from a file .. read64_(2)

buffers readv: Reads from a file into scattered readv(2)
buffers/ spt_readvx: Reads from a file into scattered spt_readvx(2)
buffers/ spt_readvz: Reads from a file into scattered spt_readvz(2)
version) spt_readx: Reads from a file (thread-aware spt_readx(2)
version) spt_readz: Reads from a file (thread-aware spt_readz(2)

(thread-aware/ spt_freadx: Reads input from a stream .. spt_freadx(2)
file /Sequentially locks and reads records in a Guardian disk PUT_READLOCKX(2)
file /Sequentially locks and reads records in a Guardian disk SPT_READLOCKX(2)

link readlink: Reads the value of a symbolic readlink(2)
 spt_readv: Initiates thread-aware readv() function .. spt_readv(2)

scattered buffers readv: Reads from a file into ... readv(2)
 setregid: Sets the real and effective group IDs ... setregid(2)
 setreuid: Sets the real and effective user IDs .. setreuid(2)
 getgid: Gets the real group ID .. getgid(2)

process getuid: Gets the the real user ID of the current ... getuid(2)
 put_INITRECEIVE: Registers $RECEIVE filename .. put_INITRECEIVE(2)
 spt_INITRECEIVE: Registers $RECEIVE filename .. spt_INITRECEIVE(2)

 put_INITRECEIVEL: Registers $RECEIVE filename (larger message/ put_INITRECEIVEL(2)
 spt_INITRECEIVEL: Registers $RECEIVE filename (larger message/ spt_INITRECEIVEL(2)

 thread-aware function for reading $RECEIVE /Initiates .. put_RECEIVEREAD(2)
 thread-aware function for reading $RECEIVE /Initiates .. spt_RECEIVEREAD(2)

 /thread-aware function for reading $RECEIVE (larger message version) put_RECEIVEREADL(2)
 /thread-aware function for reading $RECEIVE (larger message version) spt_RECEIVEREADL(2)

 Shuts down socket send and receive operations shutdown: shutdown(2)
 a thread if a specified signal is received /Cancels .. pthread_kill_np(2)
 a thread if a specified signal is received /Cancels .. pthread_signal_to_cancel_np(2)

 a thread until a signal is received. spt_pause: Suspends spt_pause(2)
connected socket recv: Receives a message from a ... recv(2)

connected socket recv64_: Receives a message from a ... recv64_(2)
connected socket/ spt_recvx: Receives a message from a ... spt_recvx(2)

queue msgrcv: Receives a message from a message msgrcv(2)
 recvfrom: Receives a message from a socket recvfrom(2)

 recvfrom64_: Receives a message from a socket recvfrom64_(2)
using a message/ recvmsg: Receives a message from a socket recvmsg(2)

using a message/ recvmsg64_: Receives a message from a socket recvmsg64_(2)
(thread-aware/ spt_recvfromx: Receives a message from a socket spt_recvfromx(2)

using a message/ spt_recvmsgx: Receives a message from a socket spt_recvmsgx(2)
user /Unlocks a Guardian file record currently locked by the PUT_UNLOCKREC(2)

Pindex−28 Hewlett-Packard Company 527186-023

Permuted Index

user /Unlocks a Guardian file record currently locked by the SPT_UNLOCKREC(2)
 /other users from accessing a record in a Guardian disk file PUT_LOCKREC(2)
 /other users from accessing a record in a Guardian disk file SPT_LOCKREC(2)

 /Performs random processing of records in a disk file .. PUT_WRITEUPDATEUNLOCKX(2)
 /Performs random processing of records in a disk file .. SPT_WRITEUPDATEUNLOCKX(2)

 /Sequentially locks and reads records in a Guardian disk file PUT_READLOCKX(2)
 /Allows random processing of records in a Guardian disk file PUT_READUPDATELOCKX(2)
 /Sequentially locks and reads records in a Guardian disk file SPT_READLOCKX(2)

 /Allows random processing of records in a Guardian disk file SPT_READUPDATELOCKX(2)
 /Unlocks a disk file and any records in that file currently/ .. PUT_UNLOCKFILE(2)
 /Unlocks a disk file and any records in that file currently/ .. SPT_UNLOCKFILE(2)

 spt_recv: Initiates thread-aware recv() function .. spt_recv(2)
connected socket recv: Receives a message from a recv(2)

a connected socket recv64_: Receives a message from recv64_(2)
 /Initiates thread-aware recvfrom() function .. spt_recvfrom(2)

from a socket recvfrom: Receives a message recvfrom(2)
from a socket recvfrom64_: Receives a message recvfrom64_(2)

a socket using a message/ recvmsg: Receives a message from recvmsg(2)
 Initiates thread-aware recvmsg(2) function spt_recvmsg: spt_recvmsg(2)

from a socket using a message/ recvmsg64_: Receives a message recvmsg64_(2)
callback/ put_regTimerHandler: Registers a user-supplied timer put_regTimerHandler(2)
callback/ spt_regTimerHandler: Registers a user-supplied timer spt_regTimerHandler(2)

 put_INITRECEIVE: Registers $RECEIVE filename put_INITRECEIVE(2)
(larger/ put_INITRECEIVEL: Registers $RECEIVE filename put_INITRECEIVEL(2)

 spt_INITRECEIVE: Registers $RECEIVE filename spt_INITRECEIVE(2)
(larger/ spt_INITRECEIVEL: Registers $RECEIVE filename spt_INITRECEIVEL(2)

manage/ put_regOSSFileIOHandler: Registers the file descriptor to put_regOSSFileIOHandler(2)
manage/ spt_regOSSFileIOHandler: Registers the file descriptor to spt_regOSSFileIOHandler(2)

 put_regFile: Registers the file number .. put_regFile(2)
 put_regFileIOHandler: Registers the file number .. put_regFileIOHandler(2)

 spt_regFile: Registers the file number .. spt_regFile(2)
 spt_regFileIOHandler: Registers the file number .. spt_regFileIOHandler(2)

number put_regPathsendFile: Registers the Pathsend file .. put_regPathsendFile(2)
number spt_regPathsendFile: Registers the Pathsend file .. spt_regPathsendFile(2)
 put_regPathsendTagHandler: Registers the user-supplied/ ... put_regPathsendTagHandler(2)
 spt_regPathsendTagHandler: Registers the user-supplied/ ... spt_regPathsendTagHandler(2)

environment or/ creat: Creates a regular file in the OSS ... creat(2)
environment/ creat64: Creates a regular file in the OSS ... creat64(2)
 for reading or writing; creates a regular file in the OSS/ /a file open(2)
 for reading or writing; creates a regular file in the OSS/ /a file open64(2)

 rmdir: Removes a directory .. rmdir(2)
the OSS environment unlink: Removes a directory entry from unlink(2)

 pthread_cleanup_pop: (Macro) Removes the cleanup-handler/ pthread_cleanup_pop(2)
 /Renames a file (Guardian rename() function) .. rename_guardian(2)

 Renames a file or directory (OSS rename() function) rename_oss: rename_oss(2)
directory rename: Renames a file or ... rename(2)

(Guardian rename() function) rename_guardian: Renames a file rename_guardian(2)
directory (OSS rename()/ rename_oss: Renames a file or rename_oss(2)

) function) rename_guardian: Renames a file (Guardian rename(............................... rename_guardian(2)
 rename: Renames a file or directory ... rename(2)

rename() function) rename_oss: Renames a file or directory (OSS rename_oss(2)
 /Initiates thread-aware REPLYX procedure call .. put_REPLYX(2)
 /Initiates thread-aware REPLYX procedure call .. spt_REPLYX(2)

message/ /Initiates thread-aware REPLYXL procedure call (larger put_REPLYXL(2)
message/ /Initiates thread-aware REPLYXL procedure call (larger spt_REPLYXL(2)

 /delivery of a pending cancelation request to the calling thread ... pthread_testcancel(2)
cancelation/ pthread_testcancel: Requests delivery of a pending pthread_testcancel(2)

execution pthread_cancel: Requests that a thread terminate pthread_cancel(2)
) /Executes callback type required by spt_regFileIOHandler(.............................. spt_FileIOHandler_p(2)

)/ /Executes callback type required by spt_regTimerHandler(............................... spt_TimerHandler_p(2)
 /Executes callback type required by the/ .. spt_OSSFileIOHandler_p(2)

System resolver configuration/ resolv.conf: BIND 9 Domain Name resolv.conf(5)
 /BIND 9 Domain Name System resolver configuration file ... resolv.conf(5)

transaction/ PUT_TMF_RESUME: Resumes a previously suspended PUT_TMF_RESUME(2)
transaction/ SPT_TMF_RESUME: Resumes a previously suspended SPT_TMF_RESUME(2)

527186-023 Hewlett-Packard Company Pindex−29

OSS System Calls Reference Manual

 put_generateTag: Increments and returns a static long tag ... put_generateTag(2)
 spt_generateTag: Increments and returns a static long tag ... spt_generateTag(2)

Guardian file to the/ PUT_READX: Returns data from an open .. PUT_READX(2)
Guardian file to the/ SPT_READX: Returns data from an open .. SPT_READX(2)

 errno: Returns the error condition value errno(5)
 /Creates a new semaphore set ID or returns the ID of an existing/ .. semget(2)

message queue msgget: Creates or returns the identifier for a ... msgget(2)
 /a new shared memory segment or returns the identifier of an/ ... shmget(2)

a/ sched_get_priority_max: Returns the maximum priority for sched_get_priority_max(2)
a/ sched_get_priority_min: Returns the minimum priority for sched_get_priority_min(2)

 /file in the OSS environment or rewrites an existing file ... creat(2)
 /file in the OSS environment or rewrites an existing file ... creat64(2)

 rmdir: Removes a directory .. rmdir(2)
 chroot: Changes the effective root directory ... chroot(2)

 /Removes the cleanup-handler routine from the calling thread’s/ pthread_cleanup_pop(2)
single/ pthread_once: Calls a routine to be executed once by a pthread_once(2)

 /Establishes a cleanup-handler routine to be executed when the/ pthread_cleanup_push(2)
 only from an interrupt-handler routine /variable; callable .. pthread_cond_signal_int_np(2)
calling/ /Declares fork-handler routines to be called when the pthread_atfork(2)

memory image saveabend: Is a file containing a saveabend(4)
 readv: Reads from a file into scattered buffers ... readv(2)
 writev: Writes to a file from scattered buffers ... writev(2)

version) /Reads from a file into scattered buffers (thread-aware spt_readvx(2)
version) /Reads from a file into scattered buffers (thread-aware spt_readvz(2)

version) /Writes to a file from scattered buffers (thread-aware spt_writevx(2)
version) /Writes to a file from scattered buffers (thread-aware spt_writevz(2)

the maximum priority for a/ sched_get_priority_max: Returns sched_get_priority_max(2)
the minimum priority for a/ sched_get_priority_min: Returns sched_get_priority_min(2)

delivery to a process/ spt_alarm: Schedules an alarm signal for spt_alarm(2)
attributes/ /Obtains the inherit scheduling attribute of a thread pthread_attr_getinheritsched(2)

attributes/ /Sets the inherit scheduling attribute of a thread pthread_attr_setinheritsched(2)
 /the current scheduling policy and scheduling parameters of a thread pthread_getschedparam(2)

 /Sets the scheduling policy and scheduling parameters of a thread pthread_setschedparam(2)
scheduling policy/ /Obtains the scheduling parameters of the .. pthread_attr_getschedparam(2)

scheduling policy/ /Sets the scheduling parameters of the .. pthread_attr_setschedparam(2)
parameters/ /Obtains the current scheduling policy and scheduling pthread_getschedparam(2)

 pthread_setschedparam: Sets the scheduling policy and scheduling/ pthread_setschedparam(2)
 /the scheduling parameters of the scheduling policy attribute of a/ pthread_attr_getschedparam(2)

thread attributes/ /Obtains the scheduling policy attribute of a pthread_attr_getschedpolicy(2)
 /the scheduling parameters of the scheduling policy attribute of a/ pthread_attr_setschedparam(2)

thread attributes/ /Sets the scheduling policy attribute of a pthread_attr_setschedpolicy(2)
 the maximum priority for a scheduling policy /Returns .. sched_get_priority_max(2)
 the minimum priority for a scheduling policy /Returns .. sched_get_priority_min(2)

 getpriority: Gets the OSS process scheduling priority .. getpriority(2)
calling/ nice: Changes the scheduling priority of the ... nice(2)

willingness to yield the/ sched_yield: Signals a ... sched_yield(2)
 shmdt: Detaches a shared memory segment .. shmdt(2)
of/ /Creates a new shared memory segment or returns the identifier shmget(2)

 of an existing shared memory segment /returns the identifier shmget(2)
 shmat: Attaches a shared memory segment to the address space of/ shmat(2)

file/ /Initiates thread-aware select() function for a single .. put_select_single_np(2)
file/ /Initiates thread-aware select() function for a single .. spt_select_single_np(2)
file/ /Initiates thread-aware select() function for mulitple spt_select(2)

descriptors for synchronous/ select: Selects among file .. select(2)
for synchronous/ select: Selects among file descriptors select(2)

 semctl: Performs semaphore control operations semctl(2)
 semop: Performs semaphore operations .. semop(2)

ID of an/ semget: Creates a new semaphore set ID or returns the semget(2)
 or returns the ID of an existing semaphore set /semaphore set ID semget(2)

control operations semctl: Performs semaphore ... semctl(2)
set ID or returns the ID of an/ semget: Creates a new semaphore semget(2)

operations semop: Performs semaphore ... semop(2)
 spt_send: Initiates thread-aware send() function .. spt_send(2)

 shutdown: Shuts down socket send and receive operations .. shutdown(2)
connected socket send: Sends a message on a .. send(2)

Pindex−30 Hewlett-Packard Company 527186-023

Permuted Index

connected socket send64_: Sends a message on a send64_(2)
 Initiates thread-aware sendmsg() function spt_sendmsg: spt_sendmsg(2)

socket using a message structure sendmsg: Sends a message on a sendmsg(2)
socket using a message structure sendmsg64_: Sends a message on a sendmsg64_(2)

socket send: Sends a message on a connected send(2)
socket send64_: Sends a message on a connected send64_(2)

socket (thread-aware/ spt_sendx: Sends a message on a connected spt_sendx(2)
 sendto: Sends a message on a socket .. sendto(2)

 sendto64_: Sends a message on a socket .. sendto64_(2)
(thread-aware/ spt_sendtox: Sends a message on a socket .. spt_sendtox(2)

a message structure sendmsg: Sends a message on a socket using sendmsg(2)
a message structure sendmsg64_: Sends a message on a socket using sendmsg64_(2)

a message/ spt_sendmsgx: Sends a message on a socket using spt_sendmsgx(2)
queue msgsnd: Sends a message to a message msgsnd(2)

group of processes kill: Sends a signal to a process or kill(2)
 pthread_kill: Sends a signal to a thread .. pthread_kill(2)

 Initiates thread-aware sendto() function spt_sendto: spt_sendto(2)
socket sendto: Sends a message on a sendto(2)
socket sendto64_: Sends a message on a sendto64_(2)

records in a/ PUT_READLOCKX: Sequentially locks and reads .. PUT_READLOCKX(2)
records in a/ SPT_READLOCKX: Sequentially locks and reads .. SPT_READLOCKX(2)

 /information about an open file (serializes I/O operations on an/ spt_fstat64z(2)
 /information about an open file (serializes I/O operations on an/ spt_fstatz(2)

open/ /for read or write operation (serializes I/O operations on an spt_lseek64z(2)
open/ /for read or write operation (serializes I/O operations on an spt_lseekz(2)

 file for BIND 9 domain name server named /configuration ... named.conf(4)
group ID setsid: Creates a new session and sets the process .. setsid(2)

 Gets the process group ID of the session leader getsid: .. getsid(2)
 semget: Creates a new semaphore set ID or returns the ID of an/ semget(2)

 /a file using a pathname, a set of argument strings, and/ ... execl(2)
 /a file using a filename, a set of argument strings, and/ ... execlp(2)

 /a file using a pathname, a set of argument strings, and an/ execle(2)
for a/ sigsuspend: Changes the set of blocked signals and waits sigsuspend(2)

for/ spt_sigsuspend: Changes the set of blocked signals and waits spt_sigsuspend(2)
file exec: Specifies a set of functions that execute a exec(2)

 the ID of an existing semaphore set /semaphore set ID or returns semget(2)
ID of the calling process setegid: Sets the effective group setegid(2)
ID of the calling process seteuid: Sets the effective user seteuid(2)

file privileges for an/ setfilepriv: Sets one or more ... setfilepriv(2)
calling process setgid: Sets the group ID of the setgid(2)

the calling process setgroups: Sets the group list of setgroups(2)
ID for job control setpgid: Sets the process group setpgid(2)

ID setpgrp: Sets the process group setpgrp(2)
effective group IDs setregid: Sets the real and ... setregid(2)

effective user IDs setreuid: Sets the real and ... setreuid(2)
information for a file acl: Sets access control list (ACL) acl(2)

 ulimit: Sets and gets file size limits .. ulimit(2)
alternate stack/ sigaltstack: Sets and gets the signal ... sigaltstack(2)

file mode creation mask umask: Sets and gets the value of the umask(2)
file-system/ PUT_SETMODE: Sets device-dependent Guardian PUT_SETMODE(2)
file-system/ SPT_SETMODE: Sets device-dependent Guardian SPT_SETMODE(2)

times utime: Sets file access and modification utime(2)
write operation lseek: Sets file offset for read or .. lseek(2)

write operation lseek64: Sets file offset for read or .. lseek64(2)
write operation/ spt_lseek64z: Sets file offset for read or .. spt_lseek64z(2)

write operation/ spt_lseekz: Sets file offset for read or .. spt_lseekz(2)
 put_setOSSFileIOHandler: Sets interest in file descriptor put_setOSSFileIOHandler(2)
 spt_setOSSFileIOHandler: Sets interest in file descriptor spt_setOSSFileIOHandler(2)

 pthread_setconcurrency: Sets level of concurrency .. pthread_setconcurrency(2)
for an executable/ setfilepriv: Sets one or more file privileges setfilepriv(2)

 setsockopt: Sets socket options .. setsockopt(2)
 pthread_setcancelstate: Sets the calling thread’s/ ... pthread_setcancelstate(2)
 pthread_setcanceltype: Sets the calling thread’s/ ... pthread_setcanceltype(2)

attribute/ pthread_attr_setscope: Sets the contentionscope ... pthread_attr_setscope(2)
 PUT_TMF_SetAndValidateTxHandle: Sets the current TMF transaction/ PUT_TMF_SetAndValidateTxHandle(2)

527186-023 Hewlett-Packard Company Pindex−31

OSS System Calls Reference Manual

 SPT_TMF_SetAndValidateTxHandle: Sets the current TMF transaction/ SPT_TMF_SetAndValidateTxHandle(2)
a/ pthread_attr_setdetachstate: Sets the detachstate attribute of pthread_attr_setdetachstate(2)

the calling process setegid: Sets the effective group ID of setegid(2)
calling process seteuid: Sets the effective user ID of the seteuid(2)

process setgid: Sets the group ID of the calling setgid(2)
calling process setgroups: Sets the group list of the ... setgroups(2)

 pthread_attr_setguardsize: Sets the guardsize attribute of a/ pthread_attr_setguardsize(2)
 pthread_attr_setguardsize_np: Sets the guardsize attribute of a/ pthread_attr_setguardsize_np(2)
 pthread_attr_setinheritsched: Sets the inherit scheduling/ .. pthread_attr_setinheritsched(2)

a/ pthread_mutexattr_setkind_np: Sets the mutex type attribute of pthread_mutexattr_setkind_np(2)
a/ pthread_mutexattr_settype: Sets the mutex type attribute of pthread_mutexattr_settype(2)

 socket_transport_name_set: Sets the name of the/ ... socket_transport_name_set(2)
 put_setTMFConcurrentTransactions: Sets the number of concurrent TMF/ put_setTMFConcurrentTransactions(2)
 spt_setTMFConcurrentTransactions: Sets the number of concurrent TMF/ spt_setTMFConcurrentTransactions(2)

 and decimal ASCII character sets /the octal, hexadecimal, .. ascii(5)
 setpgrp: Sets the process group ID ... setpgrp(2)

 setsid: Creates a new session and sets the process group ID .. setsid(2)
control setpgid: Sets the process group ID for job setpgid(2)

IDs setregid: Sets the real and effective group setregid(2)
IDs setreuid: Sets the real and effective user setreuid(2)

the/ pthread_attr_setschedparam: Sets the scheduling parameters of pthread_attr_setschedparam(2)
 pthread_attr_setschedpolicy: Sets the scheduling policy/ ... pthread_attr_setschedpolicy(2)

 pthread_setschedparam: Sets the scheduling policy and/ pthread_setschedparam(2)
 pthread_attr_setstacksize: Sets the stacksize attribute of a/ pthread_attr_setstacksize(2)

associated/ pthread_setspecific: Sets the thread-specific data ... pthread_setspecific(2)
 PUT_TMF_SetTxHandle: Sets the TMF transaction handle PUT_TMF_SetTxHandle(2)
 SPT_TMF_SetTxHandle: Sets the TMF transaction handle SPT_TMF_SetTxHandle(2)

process setuid: Sets the user ID of the calling setuid(2)
sets the process group ID setsid: Creates a new session and setsid(2)

 setsockopt: Sets socket options setsockopt(2)
calling process setuid: Sets the user ID of the setuid(2)

 shmctl: Performs shared memory control operations shmctl(2)
 shmdt: Detaches a shared memory segment ... shmdt(2)

the/ shmget: Creates a new shared memory segment or returns shmget(2)
 the identifier of an existing shared memory segment /or returns shmget(2)

address space/ shmat: Attaches a shared memory segment to the shmat(2)
segment to the address space of/ shmat: Attaches a shared memory shmat(2)

control operations shmctl: Performs shared memory shmctl(2)
segment shmdt: Detaches a shared memory shmdt(2)

memory segment or returns the/ shmget: Creates a new shared shmget(2)
and receive operations shutdown: Shuts down socket send shutdown(2)

receive operations shutdown: Shuts down socket send and ... shutdown(2)
to take upon delivery of a/ sigaction: Specifies the action sigaction(2)

signal alternate stack context sigaltstack: Sets and gets the .. sigaltstack(2)
 sigaltstack: Sets and gets the signal alternate stack context sigaltstack(2)

 blocked signals and waits for a signal /Changes the set of .. sigsuspend(2)
 blocked signals and waits for a signal /Changes the set of .. spt_sigsuspend(2)

variables used by signal/ signal: Contains definitions and signal(4)
 spt_alarm: Schedules an alarm signal for delivery to a process/ spt_alarm(2)

 definitions and variables used by signal functions /Contains ... signal(4)
 spt_signal: Installs a new signal handler ... spt_signal(2)

 /Cancels a thread if a specified signal is received ... pthread_kill_np(2)
 /Cancels a thread if a specified signal is received ... pthread_signal_to_cancel_np(2)

 Suspends a thread until a signal is received. spt_pause: spt_pause(2)
 or changes the calling thread’s signal mask /Examines ... pthread_sigmask(2)

 Changes or examines the signal mask sigprocmask: .. sigprocmask(2)
 action to take upon delivery of a signal sigaction: Specifies the sigaction(2)

 the calling thread to wait for a signal sigwait: Causes .. sigwait(2)
 the calling thread to wait for a signal spt_sigwait: Causes ... spt_sigwait(2)

 /action to take upon delivery of a signal (thread-aware version) spt_sigaction(2)
processes kill: Sends a signal to a process or group of kill(2)
 pthread_kill: Sends a signal to a thread ... pthread_kill(2)

 /for a condition variable to be signaled or broadcast, or for a/ pthread_cond_timedwait(2)
 condition variable to be signaled or broadcast /specified pthread_cond_wait(2)

 sigpending: Examines pending signals ... sigpending(2)

Pindex−32 Hewlett-Packard Company 527186-023

Permuted Index

the processor to/ sched_yield: Signals a willingness to yield sched_yield(2)
 /Changes the set of blocked signals and waits for a signal .. sigsuspend(2)
 /Changes the set of blocked signals and waits for a signal .. spt_sigsuspend(2)

pending spt_sigpending: Examines signals that are blocked and ... spt_sigpending(2)
signals sigpending: Examines pending sigpending(2)

the signal mask sigprocmask: Changes or examines sigprocmask(2)
blocked signals and waits for a/ sigsuspend: Changes the set of sigsuspend(2)

thread to wait for a signal sigwait: Causes the calling ... sigwait(2)
 /select() function for a single file descriptor .. put_select_single_np(2)
 /select() function for a single file descriptor .. spt_select_single_np(2)

 routine to be executed once by a single thread /Calls a .. pthread_once(2)
 null: Is a data sink file ... null(7)

 ulimit: Sets and gets file size limits ... ulimit(2)
socket is at the out-of-band/ sockatmark: Determines whether a sockatmark(2)

 bind: Binds a name to a socket .. bind(2)
 connect: Connects a socket .. connect(2)

 sendto: Sends a message on a socket .. sendto(2)
 sendto64_: Sends a message on a socket .. sendto64_(2)

 Accepts a new connection on a socket accept: .. accept(2)
backlog of/ listen: Listens for socket connections and limits the listen(2)

communications socket: Creates an endpoint for socket(2)
 Gets the name of the peer socket getpeername: ... getpeername(2)

 Gets the locally bound name of a socket getsockname: ... getsockname(2)
 sockatmark: Determines whether a socket is at the out-of-band mark sockatmark(2)

 getsockopt: Gets socket options .. getsockopt(2)
 setsockopt: Sets socket options .. setsockopt(2)

 a message from a connected socket recv: Receives ... recv(2)
 a message from a connected socket recv64_: Receives ... recv64_(2)
 Receives a message from a socket recvfrom: .. recvfrom(2)
 Receives a message from a socket recvfrom64_: .. recvfrom64_(2)

operations shutdown: Shuts down socket send and receive ... shutdown(2)
 Sends a message on a connected socket send: ... send(2)
 Sends a message on a connected socket send64_: ... send64_(2)
 /Accepts a new connection on a socket (thread-aware version) spt_acceptx(2)

 spt_connectx: Connects a socket (thread-aware version) spt_connectx(2)
 /Receives a message from a socket (thread-aware version) spt_recvfromx(2)

 /a message from a connected socket (thread-aware version) spt_recvx(2)
 spt_sendtox: Sends a message on a socket (thread-aware version) spt_sendtox(2)

 /Sends a message on a connected socket (thread-aware version) spt_sendx(2)
 /Receives a message from a socket using a message structure recvmsg(2)
 /Receives a message from a socket using a message structure recvmsg64_(2)

 sendmsg: Sends a message on a socket using a message structure sendmsg(2)
 sendmsg64_: Sends a message on a socket using a message structure sendmsg64_(2)

 /Receives a message from a socket using a message structure/ spt_recvmsgx(2)
 /Sends a message on a socket using a message structure/ spt_sendmsgx(2)

connected sockets socketpair: Creates a pair of .. socketpair(2)
 Creates a pair of connected sockets socketpair: ... socketpair(2)

the name of the/ socket_transport_name_get: Gets socket_transport_name_get(2)
the name of the/ socket_transport_name_set: Sets socket_transport_name_set(2)

 /memory segment to the address space of the calling process .. shmat(2)
 assigns a pathname to a character special file /Creates a file or ... mknod(2)

terminate waitpid: Waits for a specific child process to stop or waitpid(2)
 signaled or broadcast, or for a specific expiration time /to be pthread_cond_timedwait(2)

 /one thread that is waiting on the specified condition variable .. pthread_cond_signal(2)
 /one thread that is waiting on the specified condition variable;/ pthread_cond_signal_int_np(2)

 threads that are waiting on the specified condition variable /all pthread_cond_broadcast(2)
 /Causes a thread to wait for the specified condition variable to/ pthread_cond_wait(2)

 /Gets a character from a specified input stream/ .. spt_fgetcx(2)
 /Gets a wide character from a a specified input stream/ .. spt_fgetwcx(2)

 /Gets a character from a specified input stream/ .. spt_getcx(2)
 /Gets a wide character from a specified input stream/ .. spt_getwcx(2)

if the mutex/ /Attempts to lock a specified mutex but does not wait pthread_mutex_trylock(2)
 /execution of the thread for a specified number of microseconds spt_usleep(2)

 Gets the process group ID for a specified OSS process getpgid: getpgid(2)
 spt_fputcx: Writes a byte to a specified output stream/ .. spt_fputcx(2)

527186-023 Hewlett-Packard Company Pindex−33

OSS System Calls Reference Manual

 spt_putcx: Writes a byte to a specified output stream/ .. spt_putcx(2)
 /Cancels a thread if a specified signal is received ... pthread_kill_np(2)
 /Cancels a thread if a specified signal is received ... pthread_signal_to_cancel_np(2)

 /Writes a wide character to a specified stream (thread-aware/ spt_fputwcx(2)
 /Writes a wide character to a specified stream (thread-aware/ spt_putwcx(2)

object /address attribute of the specified thread attributes ... pthread_attr_getstackaddr(2)
 execution of the thread for a specified time interval /Suspends spt_sleep(2)

execute a file exec: Specifies a set of functions that exec(2)
constants, and types math: Specifies mathematical functions, math(4)

delivery of a signal sigaction: Specifies the action to take upon sigaction(2)
delivery of a/ spt_sigaction: Specifies the action to take upon spt_sigaction(2)

 limits: Specifies the system limits .. limits(4)
floating-point operations float: Specifies the system limits for float(4)
thread-aware accept() function spt_accept: Initiates .. spt_accept(2)

connection on a socket/ spt_acceptx: Accepts a new .. spt_acceptx(2)
signal for delivery to a process/ spt_alarm: Schedules an alarm spt_alarm(2)

file spt_awaitio: Awaits a tagged I/O spt_awaitio(2)
incomplete operation on a/ SPT_CANCEL: Cancels the oldest SPT_CANCEL(2)

close() function spt_close: Initiates thread-aware spt_close(2)
descriptor (thread-aware/ spt_closex: Closes a file .. spt_closex(2)

function for thread-aware/ spt_closez: Initiates close() ... spt_closez(2)
thread-aware connect() function spt_connect: Initiates .. spt_connect(2)

(thread-aware version) spt_connectx: Connects a socket spt_connectx(2)
device-dependent input/output/ SPT_CONTROL: Performs ... SPT_CONTROL(2)
controls an open file descriptor/ spt_dup2x: Duplicates and ... spt_dup2x(2)
thread-aware fclose() function spt_fclose: Initiates ... spt_fclose(2)

(thread-aware version) spt_fclosex: Closes a stream ... spt_fclosex(2)
descriptors (thread-aware/ spt_fcntlx: Controls open file spt_fcntlx(2)
descriptors (thread-aware/ spt_fcntlz: Controls open file spt_fcntlz(2)
read-ready file descriptor spt_fd_read_ready: Waits on .. spt_fd_read_ready(2)

write-ready file descriptor spt_fd_write_ready: Waits on spt_fd_write_ready(2)
thread-aware fflush() function spt_fflush: Initiates .. spt_fflush(2)

(thread-aware version) spt_fflushx: Flushes a stream .. spt_fflushx(2)
fgetc() function spt_fgetc: Initiates thread-aware spt_fgetc(2)

a specified input stream/ spt_fgetcx: Gets a character from spt_fgetcx(2)
fgets() function spt_fgets: Initiates thread-aware spt_fgets(2)

stream (thread-aware version) spt_fgetsx: Gets a string from a spt_fgetsx(2)
thread-aware fgetwc() function spt_fgetwc: Initiates .. spt_fgetwc(2)

character from a a specified/ spt_fgetwcx: Gets a wide .. spt_fgetwcx(2)
Guardian file SPT_FILE_CLOSE_: Closes an open SPT_FILE_CLOSE_(2)

callback type required by/ spt_FileIOHandler_p: Executes spt_FileIOHandler_p(2)
communication path between an/ SPT_FILE_OPEN_: Establishes a SPT_FILE_OPEN_(2)

thread-aware fork() operation spt_fork: Initiates a ... spt_fork(2)
thread-aware fprintf() function spt_fprintf: Initiates .. spt_fprintf(2)

output to an output stream/ spt_fprintfx: Prints formatted spt_fprintfx(2)
function spt_fputc: Thread-aware fputc() spt_fputc(2)

specified output stream/ spt_fputcx: Writes a byte to a spt_fputcx(2)
fputs() function spt_fputs: Initiates thread-aware spt_fputs(2)

stream (thread-aware version) spt_fputsx: Writes a string to a spt_fputsx(2)
) spt_fputwc: Thread-aware fputwc(.............................. spt_fputwc(2)

character to a specified stream/ spt_fputwcx: Writes a wide .. spt_fputwcx(2)
fread() function spt_fread: Initiates thread-aware spt_fread(2)

stream (thread-aware version) spt_freadx: Reads input from a spt_freadx(2)
information about an open file/ spt_fstat64z: Provides ... spt_fstat64z(2)

about an open file (serializes/ spt_fstatz: Provides information spt_fstatz(2)
and file attributes to permanent/ spt_fsyncz: Writes modified data spt_fsyncz(2)

length (thread-aware version) spt_ftruncate64z: Changes file spt_ftruncate64z(2)
length (thread-aware version) spt_ftruncatez: Changes file ... spt_ftruncatez(2)

thread-aware fwrite() function spt_fwrite: Initiates ... spt_fwrite(2)
stream (thread-aware version) spt_fwritex: Writes to an output spt_fwritex(2)

returns a static long tag spt_generateTag: Increments and spt_generateTag(2)
getc() function spt_getc: Initiates thread-aware spt_getc(2)

thread-aware getchar() function spt_getchar: Executes ... spt_getchar(2)
from the standard input stream/ spt_getcharx: Gets a character spt_getcharx(2)

a specified input stream/ spt_getcx: Gets a character from spt_getcx(2)

Pindex−34 Hewlett-Packard Company 527186-023

Permuted Index

gets() function spt_gets: Initiates thread-aware spt_gets(2)
standard input stream/ spt_getsx: Gets a string from the spt_getsx(2)

Gets the number of concurrent/ spt_getTMFConcurrentTransactions: spt_getTMFConcurrentTransactions(2)
getw() function spt_getw: Initiates thread-aware spt_getw(2)

getwc() function spt_getwc: Initiates thread-aware spt_getwc(2)
thread-aware getwchar()/ spt_getwchar: Initiates .. spt_getwchar(2)

character from the standard/ spt_getwcharx: Gets a wide .. spt_getwcharx(2)
from a specified input stream/ spt_getwcx: Gets a wide character spt_getwcx(2)

input stream (thread-aware/ spt_getwx: Gets a word from an spt_getwx(2)
file spthread.h: Thread-aware header spthread.h(4)

$RECEIVE filename spt_INITRECEIVE: Registers spt_INITRECEIVE(2)
$RECEIVE filename (larger/ spt_INITRECEIVEL: Registers spt_INITRECEIVEL(2)

threads awaiting input or output spt_interrupt: Interrupts all ... spt_interrupt(2)
thread awaiting tagged I/O spt_interruptTag: Interrupts .. spt_interruptTag(2)

users from accessing a Guardian/ SPT_LOCKFILE: Excludes other SPT_LOCKFILE(2)
from accessing a record in a/ SPT_LOCKREC: Excludes other users SPT_LOCKREC(2)

for read or write operation/ spt_lseek64z: Sets file offset .. spt_lseek64z(2)
read or write operation/ spt_lseekz: Sets file offset for spt_lseekz(2)

callback type required by the/ spt_OSSFileIOHandler_p: Executes spt_OSSFileIOHandler_p(2)
until a signal is received. spt_pause: Suspends a thread spt_pause(2)

thread-aware printf() function spt_printf: Initiates .. spt_printf(2)
output to the standard output/ spt_printfx: Prints formatted .. spt_printfx(2)

putc() function spt_putc: Initiates thread-aware spt_putc(2)
thread-aware putchar() function spt_putchar: Initiates ... spt_putchar(2)

the standard output stream/ spt_putcharx: Writes a byte to spt_putcharx(2)
specified output stream/ spt_putcx: Writes a byte to a .. spt_putcx(2)

puts() function. spt_puts: Initiates thread-aware spt_puts(2)
standard output stream/ spt_putsx: Writes a string to the spt_putsx(2)

putw() function spt_putw: Initiates thread-aware spt_putw(2)
putwc() function spt_putwc: Initiates thread-aware spt_putwc(2)

thread-aware fputwchar()/ spt_putwchar: Initiates .. spt_putwchar(2)
character to the standard output/ spt_putwcharx: Writes a wide spt_putwcharx(2)

character to a specified stream/ spt_putwcx: Writes a wide ... spt_putwcx(2)
stream (thread-aware version) spt_putwx: Writes a word to a spt_putwx(2)

read() function spt_read: Initiates thread-aware spt_read(2)
and reads records in a Guardian/ SPT_READLOCKX: Sequentially locks SPT_READLOCKX(2)
random processing of records in/ SPT_READUPDATELOCKX: Allows SPT_READUPDATELOCKX(2)

a Guardian disk or process file/ SPT_READUPDATEX: Reads data from SPT_READUPDATEX(2)
readv() function spt_readv: Initiates thread-aware spt_readv(2)

into scattered buffers/ spt_readvx: Reads from a file spt_readvx(2)
into scattered buffers/ spt_readvz: Reads from a file spt_readvz(2)

(thread-aware version) spt_readx: Reads from a file ... spt_readx(2)
open Guardian file to the/ SPT_READX: Returns data from an SPT_READX(2)

(thread-aware version) spt_readz: Reads from a file ... spt_readz(2)
thread-aware function for/ spt_RECEIVEREAD: Initiates spt_RECEIVEREAD(2)
thread-aware function for/ spt_RECEIVEREADL: Initiates spt_RECEIVEREADL(2)

recv() function spt_recv: Initiates thread-aware spt_recv(2)
thread-aware recvfrom()/ spt_recvfrom: Initiates .. spt_recvfrom(2)

message from a socket/ spt_recvfromx: Receives a ... spt_recvfromx(2)
thread-aware recvmsg(2) function spt_recvmsg: Initiates ... spt_recvmsg(2)

from a socket using a message/ spt_recvmsgx: Receives a message spt_recvmsgx(2)
from a connected socket/ spt_recvx: Receives a message spt_recvx(2)

number spt_regFile: Registers the file spt_regFile(2)
 callback type required by spt_regFileIOHandler() /Executes spt_FileIOHandler_p(2)

the file number spt_regFileIOHandler: Registers spt_regFileIOHandler(2)
 /callback type required by the spt_regOSSFileIOHandler(/ ... spt_OSSFileIOHandler_p(2)
Registers the file descriptor to/ spt_regOSSFileIOHandler: ... spt_regOSSFileIOHandler(2)

the Pathsend file number spt_regPathsendFile: Registers spt_regPathsendFile(2)
Registers the user-supplied/ spt_regPathsendTagHandler: .. spt_regPathsendTagHandler(2)
 /callback type required by spt_regTimerHandler() function spt_TimerHandler_p(2)

user-supplied timer callback/ spt_regTimerHandler: Registers a spt_regTimerHandler(2)
thread-aware REPLYX procedure/ spt_REPLYX: Initiates .. spt_REPLYX(2)

thread-aware REPLYXL procedure/ spt_REPLYXL: Initiates ... spt_REPLYXL(2)
thread-aware select() function/ spt_select: Initiates .. spt_select(2)
thread-aware select() function/ spt_select_single_np: Initiates spt_select_single_np(2)

527186-023 Hewlett-Packard Company Pindex−35

OSS System Calls Reference Manual

send() function spt_send: Initiates thread-aware spt_send(2)
thread-aware sendmsg() function spt_sendmsg: Initiates ... spt_sendmsg(2)

a socket using a message/ spt_sendmsgx: Sends a message on spt_sendmsgx(2)
thread-aware sendto() function spt_sendto: Initiates .. spt_sendto(2)

socket (thread-aware version) spt_sendtox: Sends a message on a spt_sendtox(2)
connected socket (thread-aware/ spt_sendx: Sends a message on a spt_sendx(2)

device-dependent Guardian/ SPT_SETMODE: Sets ... SPT_SETMODE(2)
interest in file descriptor spt_setOSSFileIOHandler: Sets spt_setOSSFileIOHandler(2)

Sets the number of concurrent/ spt_setTMFConcurrentTransactions: spt_setTMFConcurrentTransactions(2)
action to take upon delivery of/ spt_sigaction: Specifies the .. spt_sigaction(2)

handler spt_signal: Installs a new signal spt_signal(2)
that are blocked and pending spt_sigpending: Examines signals spt_sigpending(2)

of blocked signals and waits for/ spt_sigsuspend: Changes the set spt_sigsuspend(2)
thread to wait for a signal spt_sigwait: Causes the calling spt_sigwait(2)

the thread for a specified time/ spt_sleep: Suspends execution of spt_sleep(2)
thread-aware system() function spt_system: Initiates .. spt_system(2)

callback type required by/ spt_TimerHandler_p: Executes spt_TimerHandler_p(2)
current TMF transaction handle SPT_TMF_GetTxHandle: Gets the SPT_TMF_GetTxHandle(2)
tfile for concurrent transaction/ SPT_TMF_Init: Initializes the SPT_TMF_Init(2)

previously suspended transaction/ SPT_TMF_RESUME: Resumes a SPT_TMF_RESUME(2)
Sets the current TMF transaction/ SPT_TMF_SetAndValidateTxHandle: SPT_TMF_SetAndValidateTxHandle(2)

transaction handle SPT_TMF_SetTxHandle: Sets the TMF SPT_TMF_SetTxHandle(2)
transaction associated with the/ SPT_TMF_SUSPEND: Suspends a SPT_TMF_SUSPEND(2)

file and any records in that/ SPT_UNLOCKFILE: Unlocks a disk SPT_UNLOCKFILE(2)
file record currently locked by/ SPT_UNLOCKREC: Unlocks a Guardian SPT_UNLOCKREC(2)

Guardian file number as one that/ spt_unregFile: Unregisters a ... spt_unregFile(2)
Unregisters an OSS file/ spt_unregOSSFileIOHandler: spt_unregOSSFileIOHandler(2)

Unregisters the user-supplied/ spt_unregPathsendTagHandler: spt_unregPathsendTagHandler(2)
the thread for a specified/ spt_usleep: Suspends execution of spt_usleep(2)
thread-aware vfprintf()/ spt_vfprintf: Initiates .. spt_vfprintf(2)

number of parameters for output/ spt_vfprintfx: Formats a variable spt_vfprintfx(2)
thread-aware vprintf() function spt_vprintf: Initiates .. spt_vprintf(2)

number of parameters for output/ spt_vprintfx: Formats a variable spt_vprintfx(2)
thread-aware waitpid() function spt_waitpid: Initiates .. spt_waitpid(2)

awaiting tagged I/O spt_wakeup: Wakes up a thread spt_wakeup(2)
write() function spt_write: Initiates thread-aware spt_write(2)

Guardian file from an array and/ SPT_WRITEREADX: Writes data to a SPT_WRITEREADX(2)
random processing of records in/ SPT_WRITEUPDATEUNLOCKX: Performs SPT_WRITEUPDATEUNLOCKX(2)
from an array in the application/ SPT_WRITEUPDATEX: Transfers data SPT_WRITEUPDATEX(2)

writev() function spt_writev: Initiate thread-aware spt_writev(2)
from scattered buffers/ spt_writevx: Writes to a file ... spt_writevx(2)
from scattered buffers/ spt_writevz: Writes to a file .. spt_writevz(2)

array in the application program/ SPT_WRITEX: Writes data from an SPT_WRITEX(2)
(thread-aware version) spt_writex: Writes to a file .. spt_writex(2)
(thread-aware version) spt_writez: Writes to a file .. spt_writez(2)

 /calling thread’s cleanup-handler stack and optionally executes it pthread_cleanup_pop(2)
 and gets the signal alternate stack context sigaltstack: Sets sigaltstack(2)

the specified thread/ /Obtains the stackbase address attribute of pthread_attr_getstackaddr(2)
attributes object /Obtains the stacksize attribute of a thread pthread_attr_getstacksize(2)

attributes object /Sets the stacksize attribute of a thread pthread_attr_setstacksize(2)
 /Gets a character from the standard input stream/ ... spt_getcharx(2)

 spt_getsx: Gets a string from the standard input stream/ ... spt_getsx(2)
 /Gets a wide character from the standard input stream/ ... spt_getwcharx(2)
 /Prints formatted output to the standard output stream/ ... spt_printfx(2)

 /Writes a byte to the standard output stream/ ... spt_putcharx(2)
 spt_putsx: Writes a string to the standard output stream/ ... spt_putsx(2)

 /Writes a wide character to the standard output stream/ ... spt_putwcharx(2)
a file stat: Provides information about stat(2)

about a file stat64: Provides information .. stat64(2)
 Increments and returns a static long tag put_generateTag: put_generateTag(2)
 Increments and returns a static long tag spt_generateTag: spt_generateTag(2)

attempt /Contains the status of a process creation ... process_extension_results(5)
using a pathname statvfs: Gets fileset information statvfs(2)

information using a pathname statvfs64: Gets fileset .. statvfs64(2)
 for a specific child process to stop or terminate waitpid: Waits waitpid(2)

Pindex−36 Hewlett-Packard Company 527186-023

Permuted Index

 /and file attributes to permanent storage (thread-aware version) spt_fsyncz(2)
 and file attributes to permanent storage /Writes modified data fsync(2)
 character to the standard output stream (thread-aware) /a wide spt_putwcharx(2)

 /output to the standard output stream (thread-aware function) spt_printfx(2)
 spt_fclosex: Closes a stream (thread-aware version) spt_fclosex(2)
 spt_fflushx: Flushes a stream (thread-aware version) spt_fflushx(2)

 spt_fgetsx: Gets a string from a stream (thread-aware version) spt_fgetsx(2)
 /from a a specified input stream (thread-aware version) spt_fgetwcx(2)

 /formatted output to an output stream (thread-aware version) spt_fprintfx(2)
 /a byte to a specified output stream (thread-aware version) spt_fputcx(2)

 spt_fputsx: Writes a string to a stream (thread-aware version) spt_fputsx(2)
 /a wide character to a specified stream (thread-aware version) spt_fputwcx(2)
 spt_freadx: Reads input from a stream (thread-aware version) spt_freadx(2)

 spt_fwritex: Writes to an output stream (thread-aware version) spt_fwritex(2)
 /a string from the standard input stream (thread-aware version) spt_getsx(2)

 /character from the standard input stream (thread-aware version) spt_getwcharx(2)
 /character from a specified input stream (thread-aware version) spt_getwcx(2)

 /Gets a word from an input stream (thread-aware version) spt_getwx(2)
 /a byte to the standard output stream (thread-aware version) spt_putcharx(2)

 /a byte to a specified output stream (thread-aware version) spt_putcx(2)
 /a string to the standard output stream (thread-aware version) spt_putsx(2)
 /a wide character to a specified stream (thread-aware version) spt_putwcx(2)
 spt_putwx: Writes a word to a stream (thread-aware version) spt_putwx(2)

 character from a specified input stream (thread-aware version) /a spt_fgetcx(2)
 character from the standard input stream (thread-aware version) /a spt_getcharx(2)

 character from a specified input stream (thread-aware version) /a spt_getcx(2)
(thread-aware/ spt_fgetsx: Gets a string from a stream ... spt_fgetsx(2)

stream/ spt_getsx: Gets a string from the standard input spt_getsx(2)
version) spt_fputsx: Writes a string to a stream (thread-aware spt_fputsx(2)

stream/ spt_putsx: Writes a string to the standard output ... spt_putsx(2)
 /a pathname, a set of argument strings, and an undeclared envp/ execle(2)
 a pathname, a set of argument strings, and **environ /using execl(2)
 a filename, a set of argument strings, and **environ /using execlp(2)

 from a socket using a message structure /Receives a message recvmsg(2)
 from a socket using a message structure /Receives a message recvmsg64_(2)

 on a socket using a message structure /Sends a message ... sendmsg(2)
 on a socket using a message structure /Sends a message ... sendmsg64_(2)

 /from a socket using a message structure (thread-aware version) spt_recvmsgx(2)
 /on a socket using a message structure (thread-aware version) spt_sendmsgx(2)

 process file in anticipation of a subsequent write to the file /or PUT_READUPDATEX(2)
 process file in anticipation of a subsequent write to the file /or SPT_READUPDATEX(2)

 file for the user management suite on OSS. /configuration .. login.defs(5)
 file for the user management suite on OSS. /user configuration users(5)

with the/ /Resumes a previously suspended transaction associated PUT_TMF_RESUME(2)
with the/ /Resumes a previously suspended transaction associated SPT_TMF_RESUME(2)

is received. spt_pause: Suspends a thread until a signal spt_pause(2)
with the/ PUT_TMF_SUSPEND: Suspends a transaction associated PUT_TMF_SUSPEND(2)
with the/ SPT_TMF_SUSPEND: Suspends a transaction associated SPT_TMF_SUSPEND(2)

for a specified time/ spt_sleep: Suspends execution of the thread spt_sleep(2)
for a specified/ spt_usleep: Suspends execution of the thread spt_usleep(2)

 readlink: Reads the value of a symbolic link ... readlink(2)
 /Provides information about a symbolic link or any file ... lstat64(2)
 Provides information about a symbolic link or any file lstat: lstat(2)

 symlink: Creates a symbolic link to a file .. symlink(2)
to a file symlink: Creates a symbolic link symlink(2)

 among file descriptors for synchronous input/output/ /Selects select(2)
 Initiates thread-aware system() function spt_system: spt_system(2)

 filename: Explains OSS file system file naming ... filename(5)
 hier: Explains the OSS file system hierarchy .. hier(5)

 limits: Specifies the system limits .. limits(4)
operations float: Specifies the system limits for floating-point float(4)
 pathname: Explains OSS file system path naming ... pathname(5)

 resolv.conf: BIND 9 Domain Name System resolver configuration/ resolv.conf(5)
 identifying the current system uname: Gets information uname(2)

 and returns a static long tag put_generateTag: Increments put_generateTag(2)

527186-023 Hewlett-Packard Company Pindex−37

OSS System Calls Reference Manual

 the user-supplied Pathsend tag /Registers ... put_regPathsendTagHandler(2)
 the user-supplied Pathsend tag /Registers ... spt_regPathsendTagHandler(2)

 and returns a static long tag spt_generateTag: Increments spt_generateTag(2)
 the user-supplied Pathsend tag /Unregisters ... put_unregPathsendTagHandler(2)
 the user-supplied Pathsend tag /Unregisters ... spt_unregPathsendTagHandler(2)

 put_awaitio: Awaits a tagged I/O file .. put_awaitio(2)
 spt_awaitio: Awaits a tagged I/O file .. spt_awaitio(2)

 Interrupts thread awaiting tagged I/O put_interruptTag: put_interruptTag(2)
 Wakes up a thread awaiting tagged I/O put_wakeup: ... put_wakeup(2)

 Interrupts thread awaiting tagged I/O spt_interruptTag: .. spt_interruptTag(2)
 Wakes up a thread awaiting tagged I/O spt_wakeup: ... spt_wakeup(2)
 tar: Describes the extended tar archive file format .. tar(4)

archive file format tar: Describes the extended tar tar(4)
HP extensions tdm_execve: Executes a file with tdm_execve(2)
HP extensions tdm_execvep: Executes a file with tdm_execvep(2)

with HP extensions tdm_fork: Creates a new process tdm_fork(2)
with HP extensions tdm_spawn: Executes a new process tdm_spawn(2)

process with HP extensions tdm_spawnp: Executes a new tdm_spawnp(2)
capability database termcap: Describes the terminal termcap(4)

 termcap: Describes the terminal capability database ... termcap(4)
 tty: Is the general terminal interface .. tty(7)

 termios: Describes the terminal interface for POSIX/ termios(4)
 /Requests that a thread terminate execution ... pthread_cancel(2)

 Waits for any child process to terminate wait: .. wait(2)
 specific child process to stop or terminate waitpid: Waits for a waitpid(2)

 _exit: Terminates a process ... _exit(2)
 to be executed when the thread terminates /routine .. pthread_cleanup_push(2)

 pthread_exit: Terminates the calling thread pthread_exit(2)
 calling thread to wait for the termination of a thread /the .. pthread_join(2)

interface for POSIX/ termios: Describes the terminal termios(4)
 PUT_TMF_Init: Initializes the tfile for concurrent transaction/ PUT_TMF_Init(2)
 SPT_TMF_Init: Initializes the tfile for concurrent transaction/ SPT_TMF_Init(2)

 pthread_create: Creates a thread .. pthread_create(2)
 pthread_kill: Sends a signal to a thread .. pthread_kill(2)
 pthread_attr_destroy: Destroys a thread attributes object ... pthread_attr_destroy(2)

 pthread_attr_init: Initializes a thread attributes object ... pthread_attr_init(2)
 /Sets the guardsize attribute of a thread attributes object ... pthread_attr_setguardsize(2)
 /Sets the guardsize attribute of a thread attributes object ... pthread_attr_setguardsize_np(2)
 /Sets the stacksize attribute of a thread attributes object ... pthread_attr_setstacksize(2)

 attribute of the specified thread attributes object /address pthread_attr_getstackaddr(2)
 the detachstate attribute of a thread attributes object /Obtains pthread_attr_getdetachstate(2)

 the guardsize attribute of a thread attributes object /Obtains pthread_attr_getguardsize(2)
 the guardsize attribute of a thread attributes object /Obtains pthread_attr_getguardsize_np(2)
 the stacksize attribute of a thread attributes object /Obtains pthread_attr_getstacksize(2)

 scheduling policy attribute of a thread attributes object /of the pthread_attr_getschedparam(2)
 scheduling policy attribute of a thread attributes object /of the pthread_attr_setschedparam(2)

 the detachstate attribute of a thread attributes object /Sets .. pthread_attr_setdetachstate(2)
 inherit scheduling attribute of a thread attributes object /the ... pthread_attr_getinheritsched(2)
 scheduling policy attribute of a thread attributes object /the ... pthread_attr_getschedpolicy(2)

 contentionscope attribute of a thread attributes object /the ... pthread_attr_getscope(2)
 inherit scheduling attribute of a thread attributes object /the ... pthread_attr_setinheritsched(2)
 scheduling policy attribute of a thread attributes object /the ... pthread_attr_setschedpolicy(2)

 contentionscope attribute of a thread attributes object /the ... pthread_attr_setscope(2)
 put_interruptTag: Interrupts thread awaiting tagged I/O ... put_interruptTag(2)

 put_wakeup: Wakes up a thread awaiting tagged I/O ... put_wakeup(2)
 spt_interruptTag: Interrupts thread awaiting tagged I/O ... spt_interruptTag(2)

 spt_wakeup: Wakes up a thread awaiting tagged I/O ... spt_wakeup(2)
 to be executed once by a single thread /Calls a routine .. pthread_once(2)
 to wait for the termination of a thread /Causes the calling thread pthread_join(2)
 and scheduling parameters of a thread /current scheduling policy pthread_getschedparam(2)

 /Suspends execution of the thread for a specified number of/ spt_usleep(2)
 /Suspends execution of the thread for a specified time/ ... spt_sleep(2)

thread pthread_self: Obtains the thread identifier of the calling pthread_self(2)
 pthread_equal: Compares two thread identifiers .. pthread_equal(2)

 pthread_kill_np: Cancels a thread if a specified signal is/ pthread_kill_np(2)

Pindex−38 Hewlett-Packard Company 527186-023

Permuted Index

received /Cancels a thread if a specified signal is .. pthread_signal_to_cancel_np(2)
 /to yield the processor to another thread in the current process ... sched_yield(2)

 pthread_detach: Marks a thread object for deletion .. pthread_detach(2)
 request to the calling thread /of a pending cancelation pthread_testcancel(2)

 Delays execution of a thread pthread_delay_np: ... pthread_delay_np(2)
 Terminates the calling thread pthread_exit: .. pthread_exit(2)

 Gets the attribute object for a thread pthread_getattr_np: ... pthread_getattr_np(2)
 thread identifier of the calling thread pthread_self: Obtains the pthread_self(2)

 /Gets the thread state information .. pthread_get_threadstateinfo_np(2)
 associated with the current thread /suspended transaction PUT_TMF_RESUME(2)
 associated with the current thread /suspended transaction SPT_TMF_RESUME(2)
 associated with the current thread /Suspends a transaction PUT_TMF_SUSPEND(2)
 associated with the current thread /Suspends a transaction SPT_TMF_SUSPEND(2)

 pthread_cancel: Requests that a thread terminate execution ... pthread_cancel(2)
 /routine to be executed when the thread terminates ... pthread_cleanup_push(2)
specified/ /Unblocks at least one thread that is waiting on the ... pthread_cond_signal(2)

specified condition/ /Unblocks one thread that is waiting on the ... pthread_cond_signal_int_np(2)
 and scheduling parameters of a thread /the scheduling policy pthread_setschedparam(2)

 to be associated with the current thread /TMF transaction handle PUT_TMF_SetAndValidateTxHandle(2)
 to be associated with the current thread /TMF transaction handle SPT_TMF_SetAndValidateTxHandle(2)

 pthread_cond_timedwait: Causes a thread to wait either for a/ .. pthread_cond_timedwait(2)
 sigwait: Causes the calling thread to wait for a signal ... sigwait(2)

 spt_sigwait: Causes the calling thread to wait for a signal ... spt_sigwait(2)
 pthread_join: Causes the calling thread to wait for the/ .. pthread_join(2)

 pthread_cond_wait: Causes a thread to wait for the specified/ pthread_cond_wait(2)
received. spt_pause: Suspends a thread until a signal is ... spt_pause(2)

 to the standard output stream (thread-aware) /a wide character spt_putwcharx(2)
 spt_accept: Initiates thread-aware accept() function spt_accept(2)

 spt_close: Initiates thread-aware close() function spt_close(2)
 spt_connect: Initiates thread-aware connect() function spt_connect(2)

 spt_fclose: Initiates thread-aware fclose() function spt_fclose(2)
 spt_fflush: Initiates thread-aware fflush() function spt_fflush(2)
 spt_fgetc: Initiates thread-aware fgetc() function spt_fgetc(2)
 spt_fgets: Initiates thread-aware fgets() function spt_fgets(2)

 spt_fgetwc: Initiates thread-aware fgetwc() function spt_fgetwc(2)
 spt_fork: Initiates a thread-aware fork() operation spt_fork(2)
 spt_fprintf: Initiates thread-aware fprintf() function spt_fprintf(2)

 spt_fputc: Thread-aware fputc() function spt_fputc(2)
 spt_fputs: Initiates thread-aware fputs() function spt_fputs(2)

 spt_fputwc: Thread-aware fputwc() ... spt_fputwc(2)
function spt_putwchar: Initiates thread-aware fputwchar() ... spt_putwchar(2)

 spt_fread: Initiates thread-aware fread() function spt_fread(2)
 put_RECEIVEREAD: Initiates thread-aware function for reading/ put_RECEIVEREAD(2)

 put_RECEIVEREADL: Initiates thread-aware function for reading/ put_RECEIVEREADL(2)
 spt_RECEIVEREAD: Initiates thread-aware function for reading/ spt_RECEIVEREAD(2)

 spt_RECEIVEREADL: Initiates thread-aware function for reading/ spt_RECEIVEREADL(2)
 to the standard output stream (thread-aware function) /output spt_printfx(2)
 /Initiates close() function for thread-aware functions .. spt_closez(2)

 spt_fwrite: Initiates thread-aware fwrite() function spt_fwrite(2)
 spt_getc: Initiates thread-aware getc() function spt_getc(2)

 spt_getchar: Executes thread-aware getchar() function spt_getchar(2)
 spt_gets: Initiates thread-aware gets() function .. spt_gets(2)

 spt_getw: Initiates thread-aware getw() function spt_getw(2)
 spt_getwc: Initiates thread-aware getwc() function spt_getwc(2)

 spt_getwchar: Initiates thread-aware getwchar() function spt_getwchar(2)
 spthread.h: Thread-aware header file ... spthread.h(4)

 spt_printf: Initiates thread-aware printf() function spt_printf(2)
 spt_putc: Initiates thread-aware putc() function spt_putc(2)

 spt_putchar: Initiates thread-aware putchar() function spt_putchar(2)
 spt_puts: Initiates thread-aware puts() function. spt_puts(2)

 spt_putw: Initiates thread-aware putw() function spt_putw(2)
 spt_putwc: Initiates thread-aware putwc() function spt_putwc(2)

 spt_read: Initiates thread-aware read() function spt_read(2)
 spt_readv: Initiates thread-aware readv() function spt_readv(2)

 spt_recv: Initiates thread-aware recv() function spt_recv(2)

527186-023 Hewlett-Packard Company Pindex−39

OSS System Calls Reference Manual

 spt_recvfrom: Initiates thread-aware recvfrom() function spt_recvfrom(2)
 spt_recvmsg: Initiates thread-aware recvmsg(2) function spt_recvmsg(2)

call put_REPLYX: Initiates thread-aware REPLYX procedure put_REPLYX(2)
call spt_REPLYX: Initiates thread-aware REPLYX procedure spt_REPLYX(2)

call/ put_REPLYXL: Initiates thread-aware REPLYXL procedure put_REPLYXL(2)
call/ spt_REPLYXL: Initiates thread-aware REPLYXL procedure spt_REPLYXL(2)

 put_select_single_np: Initiates thread-aware select() function/ put_select_single_np(2)
for/ spt_select: Initiates thread-aware select() function spt_select(2)

 spt_select_single_np: Initiates thread-aware select() function/ spt_select_single_np(2)
 spt_send: Initiates thread-aware send() function spt_send(2)

 spt_sendmsg: Initiates thread-aware sendmsg() function spt_sendmsg(2)
 spt_sendto: Initiates thread-aware sendto() function spt_sendto(2)
 spt_system: Initiates thread-aware system() function spt_system(2)

 /Closes a file descriptor (thread-aware version) .. spt_closex(2)
 spt_connectx: Connects a socket (thread-aware version) .. spt_connectx(2)

 spt_fclosex: Closes a stream (thread-aware version) .. spt_fclosex(2)
 /Controls open file descriptors (thread-aware version) .. spt_fcntlx(2)
 /Controls open file descriptors (thread-aware version) .. spt_fcntlz(2)

 spt_fflushx: Flushes a stream (thread-aware version) .. spt_fflushx(2)
 /Gets a string from a stream (thread-aware version) .. spt_fgetsx(2)
 /Writes a string to a stream (thread-aware version) .. spt_fputsx(2)
 /Reads input from a stream (thread-aware version) .. spt_freadx(2)

 /Changes file length (thread-aware version) .. spt_ftruncate64z(2)
 /Changes file length (thread-aware version) .. spt_ftruncatez(2)

 /Writes to an output stream (thread-aware version) .. spt_fwritex(2)
 /Gets a word from an input stream (thread-aware version) .. spt_getwx(2)

 /Writes a word to a stream (thread-aware version) .. spt_putwx(2)
 spt_readx: Reads from a file (thread-aware version) .. spt_readx(2)
 spt_readz: Reads from a file (thread-aware version) .. spt_readz(2)

 /Receives a message from a socket (thread-aware version) .. spt_recvfromx(2)
 /Sends a message on a socket (thread-aware version) .. spt_sendtox(2)

 spt_writex: Writes to a file (thread-aware version) .. spt_writex(2)
 spt_writez: Writes to a file (thread-aware version) .. spt_writez(2)

 to the standard output stream (thread-aware version) /a byte spt_putcharx(2)
 from the standard input stream (thread-aware version) /a string spt_getsx(2)

 to the standard output stream (thread-aware version) /a string spt_putsx(2)
 character to a specified stream (thread-aware version) /a wide spt_fputwcx(2)
 character to a specified stream (thread-aware version) /a wide spt_putwcx(2)
 a new connection on a socket (thread-aware version) /Accepts spt_acceptx(2)

 to take upon delivery of a signal (thread-aware version) /action spt_sigaction(2)
 signal for delivery to a process (thread-aware version) /an alarm spt_alarm(2)
 attributes to permanent storage (thread-aware version) /and file spt_fsyncz(2)
 controls an open file descriptor (thread-aware version) /and ... spt_dup2x(2)

 from a specified input stream (thread-aware version) /character spt_fgetcx(2)
 from a a specified input stream (thread-aware version) /character spt_fgetwcx(2)
 from the standard input stream (thread-aware version) /character spt_getcharx(2)

 from a specified input stream (thread-aware version) /character spt_getcx(2)
 from the standard input stream (thread-aware version) /character spt_getwcharx(2)

 from a specified input stream (thread-aware version) /character spt_getwcx(2)
 output to an output stream (thread-aware version) /formatted spt_fprintfx(2)

 socket using a message structure (thread-aware version) /from a spt_recvmsgx(2)
 a file into scattered buffers (thread-aware version) /from spt_readvx(2)
 a file into scattered buffers (thread-aware version) /from spt_readvz(2)

 socket using a message structure (thread-aware version) /on a .. spt_sendmsgx(2)
 a message from a connected socket (thread-aware version) /Receives spt_recvx(2)

 a message on a connected socket (thread-aware version) /Sends spt_sendx(2)
 number of parameters for output (thread-aware version) /variable spt_vfprintfx(2)
 number of parameters for output (thread-aware version) /variable spt_vprintfx(2)
 byte to a specified output stream (thread-aware version) /Writes a spt_fputcx(2)
 byte to a specified output stream (thread-aware version) /Writes a spt_putcx(2)

 to a file from scattered buffers (thread-aware version) /Writes spt_writevx(2)
 to a file from scattered buffers (thread-aware version) /Writes spt_writevz(2)

 spt_vfprintf: Initiates thread-aware vfprintf() function spt_vfprintf(2)
 spt_vprintf: Initiates thread-aware vprintf() function spt_vprintf(2)

 spt_waitpid: Initiates thread-aware waitpid() function spt_waitpid(2)

Pindex−40 Hewlett-Packard Company 527186-023

Permuted Index

 spt_write: Initiates thread-aware write() function spt_write(2)
 spt_writev: Initiate thread-aware writev() function spt_writev(2)

 put_interrupt: Interrupts all threads awaiting input or output put_interrupt(2)
 spt_interrupt: Interrupts all threads awaiting input or output spt_interrupt(2)

 /Sets the calling thread’s cancelability state ... pthread_setcancelstate(2)
 /Sets the calling thread’s cancelability type .. pthread_setcanceltype(2)

and/ /routine from the calling thread’s cleanup-handler stack pthread_cleanup_pop(2)
 /Unlocks the threads global mutex ... pthread_unlock_global_np(2)

 /to be called when the calling thread’s process forks a child/ pthread_atfork(2)
 Locks the global mutex for threads pthread_lock_global_np: pthread_lock_global_np(2)

 /Examines or changes the calling thread’s signal mask .. pthread_sigmask(2)
specified condition/ /Unblocks all threads that are waiting on the pthread_cond_broadcast(2)
 pthread_getspecific: Obtains the thread-specific data associated/ pthread_getspecific(2)

 pthread_setspecific: Sets the thread-specific data associated/ pthread_setspecific(2)
 /Generates a unique thread-specific data key .. pthread_key_create(2)

 pthread_key_delete: Deletes a thread-specific data key .. pthread_key_delete(2)
 /Registers a user-supplied timer callback function ... put_regTimerHandler(2)
 /Registers a user-supplied timer callback function ... spt_regTimerHandler(2)

 Sets file access and modification times utime: ... utime(2)
 /Gets the current TMF transaction handle .. PUT_TMF_GetTxHandle(2)

 PUT_TMF_SetTxHandle: Sets the TMF transaction handle .. PUT_TMF_SetTxHandle(2)
 /Gets the current TMF transaction handle .. SPT_TMF_GetTxHandle(2)

 SPT_TMF_SetTxHandle: Sets the TMF transaction handle .. SPT_TMF_SetTxHandle(2)
associated with/ /Sets the current TMF transaction handle to be PUT_TMF_SetAndValidateTxHandle(2)
associated with/ /Sets the current TMF transaction handle to be SPT_TMF_SetAndValidateTxHandle(2)

 /Sets the number of concurrent TMF transactions ... put_setTMFConcurrentTransactions(2)
 /Sets the number of concurrent TMF transactions ... spt_setTMFConcurrentTransactions(2)
 /Gets the number of concurrent TMF transactions being used put_getTMFConcurrentTransactions(2)
 /Gets the number of concurrent TMF transactions being used spt_getTMFConcurrentTransactions(2)

 /Resumes a previously suspended transaction associated with the/ PUT_TMF_RESUME(2)
 PUT_TMF_SUSPEND: Suspends a transaction associated with the/ PUT_TMF_SUSPEND(2)

 /Resumes a previously suspended transaction associated with the/ SPT_TMF_RESUME(2)
 SPT_TMF_SUSPEND: Suspends a transaction associated with the/ SPT_TMF_SUSPEND(2)

 /Gets the current TMF transaction handle ... PUT_TMF_GetTxHandle(2)
 PUT_TMF_SetTxHandle: Sets the TMF transaction handle ... PUT_TMF_SetTxHandle(2)

 /Gets the current TMF transaction handle ... SPT_TMF_GetTxHandle(2)
 SPT_TMF_SetTxHandle: Sets the TMF transaction handle ... SPT_TMF_SetTxHandle(2)

associated/ /Sets the current TMF transaction handle to be .. PUT_TMF_SetAndValidateTxHandle(2)
associated/ /Sets the current TMF transaction handle to be .. SPT_TMF_SetAndValidateTxHandle(2)

 /the tfile for concurrent transaction management ... PUT_TMF_Init(2)
 /the tfile for concurrent transaction management ... SPT_TMF_Init(2)

 /Sets the number of concurrent TMF transactions .. put_setTMFConcurrentTransactions(2)
 /Sets the number of concurrent TMF transactions .. spt_setTMFConcurrentTransactions(2)
 /Gets the number of concurrent TMF transactions being used ... put_getTMFConcurrentTransactions(2)
 /Gets the number of concurrent TMF transactions being used ... spt_getTMFConcurrentTransactions(2)

 /an array and waits for data to be transferred back from the process PUT_FILE_WRITEREAD_(2)
the/ PUT_WRITEUPDATEX: Transfers data from an array in PUT_WRITEUPDATEX(2)
the/ SPT_WRITEUPDATEX: Transfers data from an array in SPT_WRITEUPDATEX(2)

 /Gets the name of the transport-provider process .. socket_transport_name_get(2)
 /Sets the name of the transport-provider process .. socket_transport_name_set(2)

interface tty: Is the general terminal .. tty(7)
attributes/ /Obtains the mutex type attribute of a mutex ... pthread_mutexattr_getkind_np(2)

attribute object /Gets the mutex type attribute of a mutex ... pthread_mutexattr_gettype(2)
attributes object /Sets the mutex type attribute of a mutex ... pthread_mutexattr_setkind_np(2)
attribute object /Sets the mutex type attribute of a mutex ... pthread_mutexattr_settype(2)

 /Executes callback type required by/ .. spt_FileIOHandler_p(2)
 /Executes callback type required by/ .. spt_TimerHandler_p(2)
 /Executes callback type required by the/ ... spt_OSSFileIOHandler_p(2)

 calling thread’s cancelability type /Sets the ... pthread_setcanceltype(2)
 functions, constants, and types /Specifies mathematical math(4)

limits ulimit: Sets and gets file size .. ulimit(2)
the file mode creation mask umask: Sets and gets the value of umask(2)

identifying the current system uname: Gets information .. uname(2)
waiting/ pthread_cond_broadcast: Unblocks all threads that are .. pthread_cond_broadcast(2)

is waiting/ pthread_cond_signal: Unblocks at least one thread that pthread_cond_signal(2)

527186-023 Hewlett-Packard Company Pindex−41

OSS System Calls Reference Manual

 pthread_cond_signal_int_np: Unblocks one thread that is/ ... pthread_cond_signal_int_np(2)
 a set of argument strings, and an undeclared envp array /pathname, execle(2)
 pthread_key_create: Generates a unique thread-specific data key pthread_key_create(2)

from the OSS environment unlink: Removes a directory entry unlink(2)
 pthread_mutex_lock: Locks an unlocked mutex ... pthread_mutex_lock(2)

records in that/ PUT_UNLOCKFILE: Unlocks a disk file and any ... PUT_UNLOCKFILE(2)
records in that/ SPT_UNLOCKFILE: Unlocks a disk file and any ... SPT_UNLOCKFILE(2)

currently locked/ PUT_UNLOCKREC: Unlocks a Guardian file record PUT_UNLOCKREC(2)
currently locked/ SPT_UNLOCKREC: Unlocks a Guardian file record SPT_UNLOCKREC(2)

 pthread_mutex_unlock: Unlocks a mutex .. pthread_mutex_unlock(2)
 pthread_unlock_global_np: Unlocks the threads global mutex pthread_unlock_global_np(2)

number as one/ put_unregFile: Unregisters a Guardian file ... put_unregFile(2)
number as one/ spt_unregFile: Unregisters a Guardian file ... spt_unregFile(2)
 put_unregOSSFileIOHandler: Unregisters an OSS file/ .. put_unregOSSFileIOHandler(2)
 spt_unregOSSFileIOHandler: Unregisters an OSS file/ .. spt_unregOSSFileIOHandler(2)

 put_unregPathsendTagHandler: Unregisters the user-supplied/ put_unregPathsendTagHandler(2)
 spt_unregPathsendTagHandler: Unregisters the user-supplied/ spt_unregPathsendTagHandler(2)

 spt_pause: Suspends a thread until a signal is received. .. spt_pause(2)
 /Specifies the action to take upon delivery of a signal .. sigaction(2)
 /Specifies the action to take upon delivery of a signal/ ... spt_sigaction(2)

user/ users: The default user configuration file for the users(5)
 environ: Contains the user environment ... environ(5)

 that file currently locked by the user /file and any records in ... PUT_UNLOCKFILE(2)
 that file currently locked by the user /file and any records in ... SPT_UNLOCKFILE(2)

 seteuid: Sets the effective user ID of the calling process seteuid(2)
 setuid: Sets the user ID of the calling process setuid(2)

 geteuid: Gets the effective user ID of the current process geteuid(2)
 getuid: Gets the the real user ID of the current process getuid(2)

 Sets the real and effective user IDs setreuid: .. setreuid(2)
 /login configuration file for the user management suite on OSS. login.defs(5)
 /user configuration file for the user management suite on OSS. users(5)

 file number as one that the user manages /a Guardian .. put_unregFile(2)
 file number as one that the user manages /a Guardian .. spt_unregFile(2)

 record currently locked by the user /Unlocks a Guardian file PUT_UNLOCKREC(2)
 record currently locked by the user /Unlocks a Guardian file SPT_UNLOCKREC(2)

 PUT_LOCKFILE: Excludes other users from accessing a Guardian/ PUT_LOCKFILE(2)
 SPT_LOCKFILE: Excludes other users from accessing a Guardian/ SPT_LOCKFILE(2)

a/ PUT_LOCKREC: Excludes other users from accessing a record in PUT_LOCKREC(2)
a/ SPT_LOCKREC: Excludes other users from accessing a record in SPT_LOCKREC(2)

configuration file for the user/ users: The default user .. users(5)
 /Registers the user-supplied Pathsend tag ... put_regPathsendTagHandler(2)

 /Unregisters the user-supplied Pathsend tag ... put_unregPathsendTagHandler(2)
 /Registers the user-supplied Pathsend tag ... spt_regPathsendTagHandler(2)

 /Unregisters the user-supplied Pathsend tag ... spt_unregPathsendTagHandler(2)
 put_regTimerHandler: Registers a user-supplied timer callback/ put_regTimerHandler(2)
 spt_regTimerHandler: Registers a user-supplied timer callback/ spt_regTimerHandler(2)
argument/ execlp: Executes a file using a filename, a set of ... execlp(2)

and/ execvp: Executes a file using a filename, an argv array, execvp(2)
 /Receives a message from a socket using a message structure ... recvmsg(2)
 /Receives a message from a socket using a message structure ... recvmsg64_(2)

 /Sends a message on a socket using a message structure ... sendmsg(2)
 /Sends a message on a socket using a message structure ... sendmsg64_(2)

 /Receives a message from a socket using a message structure/ .. spt_recvmsgx(2)
 /Sends a message on a socket using a message structure/ .. spt_sendmsgx(2)

 statvfs: Gets fileset information using a pathname ... statvfs(2)
argument/ execl: Executes a file using a pathname, a set of ... execl(2)

argument/ execle: Executes a file using a pathname, a set of ... execle(2)
and/ execv: Executes a file using a pathname, an argv array, execv(2)

and an/ execve: Executes a file using a pathname, an argv array, execve(2)
 Gets fileset information using a pathname statvfs64: ... statvfs64(2)

modification times utime: Sets file access and .. utime(2)
 Returns the error condition value errno: .. errno(5)

 readlink: Reads the value of a symbolic link .. readlink(2)
mask umask: Sets and gets the value of the file mode creation umask(2)

 /Destroys a condition variable attributes object .. pthread_condattr_destroy(2)

Pindex−42 Hewlett-Packard Company 527186-023

Permuted Index

 /Initializes a condition variable attributes object .. pthread_condattr_init(2)
 /on the specified condition variable; callable only from an/ pthread_cond_signal_int_np(2)

output/ spt_vfprintfx: Formats a variable number of parameters for spt_vfprintfx(2)
output/ spt_vprintfx: Formats a variable number of parameters for spt_vprintfx(2)

 Destroys a condition variable pthread_cond_destroy: pthread_cond_destroy(2)
 Initializes a condition variable pthread_cond_init: ... pthread_cond_init(2)

 on the specified condition variable /that are waiting ... pthread_cond_broadcast(2)
 on the specified condition variable /thread that is waiting pthread_cond_signal(2)

 /to wait either for a condition variable to be signaled or/ .. pthread_cond_timedwait(2)
 wait for the specified condition variable to be signaled or/ /to pthread_cond_wait(2)
 signal: Contains definitions and variables used by signal/ ... signal(4)

 output stream (thread-aware version) /a byte to a specified spt_fputcx(2)
 output stream (thread-aware version) /a byte to a specified spt_putcx(2)
 output stream (thread-aware version) /a byte to the standard spt_putcharx(2)

 on a socket (thread-aware version) /a new connection .. spt_acceptx(2)
 a specified stream (thread-aware version) /a wide character to .. spt_fputwcx(2)
 a specified stream (thread-aware version) /a wide character to .. spt_putwcx(2)

 file descriptor (thread-aware version) /and controls an open spt_dup2x(2)
 permanent storage (thread-aware version) /and file attributes to spt_fsyncz(2)

 file descriptors (thread-aware version) /Controls open .. spt_fcntlx(2)
 file descriptors (thread-aware version) /Controls open .. spt_fcntlz(2)

 input stream (thread-aware version) /from a a specified .. spt_fgetwcx(2)
 a message structure (thread-aware version) /from a socket using spt_recvmsgx(2)

 input stream (thread-aware version) /from a specified ... spt_fgetcx(2)
 input stream (thread-aware version) /from a specified ... spt_getcx(2)
 input stream (thread-aware version) /from a specified ... spt_getwcx(2)
 input stream (thread-aware version) /from the standard .. spt_getcharx(2)
 input stream (thread-aware version) /from the standard .. spt_getsx(2)
 input stream (thread-aware version) /from the standard .. spt_getwcharx(2)

 reading $RECEIVE (larger message version) /function for .. put_RECEIVEREADL(2)
 reading $RECEIVE (larger message version) /function for .. spt_RECEIVEREADL(2)

 from a stream (thread-aware version) /Gets a string .. spt_fgetsx(2)
 an input stream (thread-aware version) /Gets a word from .. spt_getwx(2)

 for output (thread-aware version) /number of parameters spt_vfprintfx(2)
 for output (thread-aware version) /number of parameters spt_vprintfx(2)

 a message structure (thread-aware version) /on a socket using ... spt_sendmsgx(2)
 to an output stream (thread-aware version) /Prints formatted output spt_fprintfx(2)

 scattered buffers (thread-aware version) /Reads from a file into spt_readvx(2)
 scattered buffers (thread-aware version) /Reads from a file into spt_readvz(2)

 a connected socket (thread-aware version) /Receives a message from spt_recvx(2)
 from a socket (thread-aware version) /Receives a message spt_recvfromx(2)

 $RECEIVE filename (larger message version) /Registers .. put_INITRECEIVEL(2)
 $RECEIVE filename (larger message version) /Registers .. spt_INITRECEIVEL(2)

 a connected socket (thread-aware version) /Sends a message on spt_sendx(2)
 to a process (thread-aware version) /signal for delivery ... spt_alarm(2)

 a file descriptor (thread-aware version) spt_closex: Closes .. spt_closex(2)
 Connects a socket (thread-aware version) spt_connectx: ... spt_connectx(2)

 Closes a stream (thread-aware version) spt_fclosex: .. spt_fclosex(2)
 Flushes a stream (thread-aware version) spt_fflushx: ... spt_fflushx(2)

 string to a stream (thread-aware version) spt_fputsx: Writes a spt_fputsx(2)
 input from a stream (thread-aware version) spt_freadx: Reads ... spt_freadx(2)
 Changes file length (thread-aware version) spt_ftruncate64z: ... spt_ftruncate64z(2)
 Changes file length (thread-aware version) spt_ftruncatez: .. spt_ftruncatez(2)
 to an output stream (thread-aware version) spt_fwritex: Writes .. spt_fwritex(2)
 a word to a stream (thread-aware version) spt_putwx: Writes .. spt_putwx(2)

 Reads from a file (thread-aware version) spt_readx: ... spt_readx(2)
 Reads from a file (thread-aware version) spt_readz: .. spt_readz(2)

 message on a socket (thread-aware version) spt_sendtox: Sends a spt_sendtox(2)
 Writes to a file (thread-aware version) spt_writex: .. spt_writex(2)
 Writes to a file (thread-aware version) spt_writez: .. spt_writez(2)
 output stream (thread-aware version) /string to the standard spt_putsx(2)

 procedure call (larger message version) /thread-aware REPLYXL put_REPLYXL(2)
 procedure call (larger message version) /thread-aware REPLYXL spt_REPLYXL(2)

 of a signal (thread-aware version) /to take upon delivery spt_sigaction(2)
 scattered buffers (thread-aware version) /Writes to a file from spt_writevx(2)

527186-023 Hewlett-Packard Company Pindex−43

OSS System Calls Reference Manual

 scattered buffers (thread-aware version) /Writes to a file from spt_writevz(2)
 /Initiates thread-aware vfprintf() function ... spt_vfprintf(2)
 Initiates thread-aware vprintf() function spt_vprintf: spt_vprintf(2)

variable to/ /Causes a thread to wait either for a condition .. pthread_cond_timedwait(2)
 Causes the calling thread to wait for a signal sigwait: .. sigwait(2)
 Causes the calling thread to wait for a signal spt_sigwait: spt_sigwait(2)

variable to/ /Causes a thread to wait for the specified condition pthread_cond_wait(2)
 /Causes the calling thread to wait for the termination of a/ .. pthread_join(2)

 /a specified mutex but does not wait if the mutex is already/ ... pthread_mutex_trylock(2)
to terminate wait: Waits for any child process wait(2)

 /Unblocks all threads that are waiting on the specified/ ... pthread_cond_broadcast(2)
 /at least one thread that is waiting on the specified/ ... pthread_cond_signal(2)

 /Unblocks one thread that is waiting on the specified/ ... pthread_cond_signal_int_np(2)
 Initiates thread-aware waitpid() function spt_waitpid: spt_waitpid(2)

child process to stop or/ waitpid: Waits for a specific ... waitpid(2)
 the set of blocked signals and waits for a signal /Changes .. sigsuspend(2)
 the set of blocked signals and waits for a signal /Changes .. spt_sigsuspend(2)

process to stop or/ waitpid: Waits for a specific child ... waitpid(2)
terminate wait: Waits for any child process to wait(2)

 /a Guardian file from an array and waits for data to be read back/ PUT_WRITEREADX(2)
 /a Guardian file from an array and waits for data to be read back/ SPT_WRITEREADX(2)

back/ /opened from an array and waits for data to be transferred PUT_FILE_WRITEREAD_(2)
descriptor put_fd_read_ready: Waits on read-ready file .. put_fd_read_ready(2)
descriptor spt_fd_read_ready: Waits on read-ready file .. spt_fd_read_ready(2)

descriptor put_fd_write_ready: Waits on write-ready file ... put_fd_write_ready(2)
descriptor spt_fd_write_ready: Waits on write-ready file ... spt_fd_write_ready(2)

I/O put_wakeup: Wakes up a thread awaiting tagged put_wakeup(2)
I/O spt_wakeup: Wakes up a thread awaiting tagged spt_wakeup(2)

 sockatmark: Determines whether a socket is at the/ ... sockatmark(2)
input stream/ spt_fgetwcx: Gets a wide character from a a specified spt_fgetwcx(2)
input stream/ spt_getwcx: Gets a wide character from a specified spt_getwcx(2)

input/ spt_getwcharx: Gets a wide character from the standard spt_getwcharx(2)
stream/ spt_fputwcx: Writes a wide character to a specified ... spt_fputwcx(2)
stream/ spt_putwcx: Writes a wide character to a specified ... spt_putwcx(2)

output/ spt_putwcharx: Writes a wide character to the standard spt_putwcharx(2)
processor/ sched_yield: Signals a willingness to yield the ... sched_yield(2)
(thread-aware/ spt_getwx: Gets a word from an input stream .. spt_getwx(2)

version) spt_putwx: Writes a word to a stream (thread-aware spt_putwx(2)
 chdir: Changes the current working directory .. chdir(2)

 spt_write: Initiates thread-aware write() function ... spt_write(2)
 Sets file offset for read or write operation lseek: ... lseek(2)
 Sets file offset for read or write operation lseek64: ... lseek64(2)

 /Sets file offset for read or write operation (serializes I/O/ spt_lseek64z(2)
 /Sets file offset for read or write operation (serializes I/O/ spt_lseekz(2)

 in anticipation of a subsequent write to the file /process file ... PUT_READUPDATEX(2)
 in anticipation of a subsequent write to the file /process file ... SPT_READUPDATEX(2)

 write: Writes to a file ... write(2)
 write64_: Writes to a file .. write64_(2)

 put_fd_write_ready: Waits on write-ready file descriptor ... put_fd_write_ready(2)
 spt_fd_write_ready: Waits on write-ready file descriptor ... spt_fd_write_ready(2)

output stream/ spt_fputcx: Writes a byte to a specified ... spt_fputcx(2)
output stream/ spt_putcx: Writes a byte to a specified ... spt_putcx(2)

output stream/ spt_putcharx: Writes a byte to the standard .. spt_putcharx(2)
(thread-aware/ spt_fputsx: Writes a string to a stream .. spt_fputsx(2)
output stream/ spt_putsx: Writes a string to the standard spt_putsx(2)

specified stream/ spt_fputwcx: Writes a wide character to a .. spt_fputwcx(2)
specified stream/ spt_putwcx: Writes a wide character to a .. spt_putwcx(2)

standard output/ spt_putwcharx: Writes a wide character to the spt_putwcharx(2)
(thread-aware/ spt_putwx: Writes a word to a stream ... spt_putwx(2)

application program/ PUT_WRITEX: Writes data from an array in the PUT_WRITEX(2)
application program/ SPT_WRITEX: Writes data from an array in the SPT_WRITEX(2)
from an array/ PUT_WRITEREADX: Writes data to a Guardian file PUT_WRITEREADX(2)
from an array/ SPT_WRITEREADX: Writes data to a Guardian file SPT_WRITEREADX(2)

previously/ PUT_FILE_WRITEREAD_: Writes data to a process .. PUT_FILE_WRITEREAD_(2)
attributes to permanent/ fsync: Writes modified data and file .. fsync(2)

Pindex−44 Hewlett-Packard Company 527186-023

Permuted Index

attributes to/ spt_fsyncz: Writes modified data and file .. spt_fsyncz(2)
 write: Writes to a file .. write(2)

 write64_: Writes to a file .. write64_(2)
buffers/ spt_writevx: Writes to a file from scattered spt_writevx(2)
buffers/ spt_writevz: Writes to a file from scattered spt_writevz(2)

buffers writev: Writes to a file from scattered writev(2)
version) spt_writex: Writes to a file (thread-aware spt_writex(2)
version) spt_writez: Writes to a file (thread-aware spt_writez(2)

(thread-aware/ spt_fwritex: Writes to an output stream .. spt_fwritex(2)
 spt_writev: Initiate thread-aware writev() function ... spt_writev(2)

scattered buffers writev: Writes to a file from .. writev(2)
in/ /Opens a file for reading or writing; creates a regular file .. open(2)
in/ /Opens a file for reading or writing; creates a regular file .. open64(2)

thread/ /Signals a willingness to yield the processor to another sched_yield(2)

527186-023 Hewlett-Packard Company Pindex−45

Index_____________________________

Symbols
/etc/named.conf file, 11-21

A
accept function, 1-2 to 1-5
access

changing for a file, 1-21, 3-2,
4-5

determining for a file, 1-6
Access Control List (ACL), 12-2 to

12-15
access function, 1-6 to 1-9
access modes, file, 1-58, 1-60, 3-11,

7-153, 7-159, 7-166
ACL, 12-2 to 12-15
acl function, 1-10 to 1-13
alternate signal stack, 7-98 to 7-101
ar file format, 11-2
ar header file, 11-2
archive file format

cpio, 11-4
tar, 11-48

archive library file format, 11-2
arguments, passing, 2-3, 2-11, 2-19,

2-27, 2-35, 2-43, 8-3, 8-18,
8-45, 8-62

ASCII character set, 12-16 to 12-17
attributes, saving modified, 3-61,

7-246

B
bc utility, 11-15
binary file, executing, 2-4, 2-12, 2-20,

2-28, 2-36, 2-44, 8-4, 8-19,
8-45, 8-62

bind function, 1-14 to 1-17
binding, socket name, 1-14

C
character, getting from input stream,

7-186, 7-273, 7-275
character set, ASCII, 12-16
characters, writing out, 7-214, 7-308,

7-311
chdir function, 1-18 to 1-20
child. See child process
child process

creating via fork, 3-19
creating via tdm_fork, 8-32
waiting for, 10-2, 10-7

chmod function, 1-21 to 1-25
chown function, 1-26 to 1-30
chroot function, 1-31 to 1-33
close function, 1-34 to 1-36
connect function, 1-37 to 1-42
connection

accepting on a socket, 1-2,
7-131

establishing between two
sockets, 1-37, 7-146

listening for on a socket,
4-19

control operations
on a device file, 3-97
on a file, 1-58, 1-60, 3-11,

7-153, 7-159, 7-166

527186-023 Hewlett-Packard Company Index−1

OSS System Calls Reference Manual

on a message queue, 4-59
on semaphores, 7-15
on shared memory, 7-80

core file, 11-3
core memory image, 11-3
cpio archive file, 11-4 to 11-6
cpio file format, 11-4 to 11-6
creat function, 1-43 to 1-50
creat64 function, 1-51 to 1-57
current working directory, changing,

1-18

D
data sink file, 11-29
decimal ASCII character set, 12-17
default mutex, 5-143, 5-150
descriptors. See file descriptors
device file, control operations on,

3-97
dir, format of directories, 11-7
dir file, 11-7
directory

changing current working,
1-18

changing root, 1-31
creating, 4-48, 4-53
creating link, 4-15
effective root, 1-31
removing, 6-52
removing entry from, 9-7
renaming, 6-43, 6-46

Discretionary access control, 12-2
DNS, using resolv.conf, 12-64
Domain Name System, using

resolv.conf, 12-64
drivers, for terminals, 11-70
dup function, 1-58 to 1-59
dup2 function, 1-60 to 1-62

E
environ external variable, 12-18 to

12-34
environment, specifying, 2-12, 2-20,

2-28, 2-36, 2-44, 8-3, 8-19,
8-45, 8-62

environment variables
AS1, 12-18
CACHE_CDS_SERVER,

12-18
CACHE_CDS_SERVER_IP,

12-18
CCOMBE, 12-18
CDPATH, 12-18
CDSD_DATABASE_DIR,

12-18
CDS_ADVERTISEMENTS,

12-18
CELL_ADMIN, 12-19
CELL_ADMIN_PW, 12-19
CELL_NAME, 12-19
CFE, 12-19
check_time, 12-19
CLONE_FROM, 12-19
CLONING_REQUIRED,

12-19
COMP_ROOT, 12-19
COPY_CONFIG_HOST,

12-20
COPY_CONFIG_INFO,

12-20
CPU_LIST, 12-20
CRON_NAMED, 12-20
DATEMSK, 12-20
DCED_ADMIN, 12-21
DCEVH, 12-21
DCE_PRIVUSER, 12-20
DCE_PROCESS_PREFIX,

12-20
DCE_SCP_PROCESS_NAME,

12-21
DCE_SOCKET_REUSE,

12-21
DIR_REPLICATE, 12-22
DISPLAY_THRESHOLD,

12-22
DO_CHECKS, 12-22
DTS_CONFIG, 12-22

Index−2 Hewlett-Packard Company 527186-023

Index

ECOBFE, 12-22
EDITOR, 12-23
ELD, 12-23
EMS_COLLECTOR, 12-23
ENV, 12-23
EXINIT, 12-23
EXIT_ON_ERROR, 12-23
FCEDIT, 12-23
FPATH, 12-23
Guardian PARAMs, 12-23
HISTFILE, 12-23
HISTSIZE, 12-23
HOME, 12-23
HOST_NAME_IP, 12-23
IFS, 12-24, 12-34
JAVA_HOME, 12-24
KEYSEED, 12-24
LANG, 12-24
LAN_NAME, 12-25
LC_ALL, 12-25
LC_COLLATE, 12-25
LC_CTYPE, 12-25
LC_MESSAGES, 12-25
LC_MONETARY, 12-25
LC_NUMERIC, 12-25
LC_TIME, 12-25
LD, 12-25
LOCPATH, 12-25
LOGNAME, 12-25
LOG_THRESHOLD, 12-25
MAKEFLAGS, 12-26
MANPATH, 12-26
MSGVERB, 12-26
MULTIPLE_LAN, 12-26
MXCMP, 12-26
MXCMPUM, 12-26
MXSQLC, 12-26
MXSQLCO, 12-26
NLD, 12-26
NLSPATH, 12-26
PATH, 12-27
PMSEARCHLIST, 12-27
PRINTER, 12-27
PS1, 12-27, 12-34
PS2, 12-27, 12-34
PS3, 12-27
PS4, 12-27
PWD, 12-27
PWD_MGMT_SVR, 12-27

PWD_MGMT_SVR_OPTIONS,
12-27

REMOVE_PREV_CONFIG,
12-27

REMOVE_PREV_INSTALL,
12-28

REPLICATE_ALL_DIRS,
12-28

REPLICATE_DIR_LIST,
12-28

REP_CLEARINGHOUSE,
12-28

SEC_REPLICA, 12-28
SEC_SERVER, 12-29
SHELL, 12-29
SOCKET_TRANSPORT_NAME,

12-29
SQLCFE, 12-29
SQLCOMP, 12-29
SQLMX_PREPROCESSOR_VERSION,

12-29
SWAPVOL, 12-29
SYNC_CLOCKS, 12-29
TANDEM_ALT_SRL, 12-30
TANDEM_INSTALL_DIR,

12-30
TCPIP_PROCESS_NAME,

12-30
TCPIP_RESOLVER_NAME,

12-30
TERM, 12-31
TERMCAP, 12-31
TERMINFO, 12-31
TERMPATH, 12-31
TIME_SERVER, 12-31
TMOUT, 12-31
TMPDIR, 12-31
TOLERANCE_SEC, 12-31
TOTAL_CLERKS, 12-32
TZ, 12-32
UGEN, 12-33
UNCONFIG_HOST_PRESET,

12-33
UOPT, 12-33
UPDATE_ALL_CLONES,

12-33
UPDATE_DEFAULT_LIBDCESO,

12-34
USER, 12-34

527186-023 Hewlett-Packard Company Index−3

OSS System Calls Reference Manual

USE_DEF_MSG_PATH,
12-33

UTILSGE, 12-34
VISUAL, 12-34
ZCPU, 12-34
_RLD_FIRST_LIB_PATH,

12-28
_RLD_LIB_PATH, 12-28

errno external variable, 12-35 to
12-43

errno value
[E2BIG], 2-8, 2-16, 2-24,

2-32, 2-40, 2-48,
4-67, 7-25, 8-14,
8-29, 8-56, 8-74,
12-35

[EACCES], 1-7, 1-12, 1-15,
1-19, 1-24, 1-28,
1-32, 1-39, 1-47,
1-55, 2-8, 2-16, 2-24,
2-32, 2-40, 2-48,
3-23, 4-8, 4-12, 4-16,
4-36, 4-46, 4-50,
4-56, 4-60, 4-64,
4-67, 4-71, 5-11,
5-22, 6-13, 6-48,
6-53, 7-18, 7-21,
7-25, 7-36, 7-41,
7-46, 7-50, 7-58,
7-61, 7-79, 7-81,
7-88, 7-117, 7-121,
7-147, 7-398, 7-405,
7-502, 7-513, 7-522,
7-531, 7-534, 8-14,
8-29, 8-42, 8-56,
8-74, 9-8, 9-12,
12-35

[EADDRINUSE], 1-4, 1-15,
1-39, 7-148, 12-35

[EADDRNOTAVAIL], 1-15,
1-39, 7-148, 12-35

[EAFNOSUPPORT], 1-15,
1-39, 7-36, 7-41,
7-46, 7-50, 7-117,
7-121, 7-148, 7-398,
7-405, 12-35

[EAGAIN], 2-8, 2-16, 2-24,
2-32, 2-40, 2-49,
3-16, 3-23, 4-71, 6-5,
6-10, 6-18, 7-25,
7-158, 7-163, 7-170,

7-177, 7-180, 7-183,
7-211, 7-215, 7-219,
7-221, 7-225, 7-257,
7-262, 7-265, 7-267,
7-277, 7-304, 7-309,
7-312, 7-316, 7-320,
7-323, 7-325, 7-340,
7-345, 7-356, 7-360,
7-444, 7-447, 7-468,
7-475, 7-485, 7-490,
8-14, 8-30, 8-42,
8-57, 8-74, 10-17,
10-22, 10-28, 12-35

[EALREADY], 1-39, 3-16,
3-62, 3-65, 3-68, 6-5,
6-10, 6-18, 7-148,
7-163, 7-340, 7-356,
7-469, 7-485, 10-17,
10-22, 10-28, 12-35

[EBADCF], 12-35
[EBADDATA], 12-35
[EBADFILE], 12-35
[EBADF], 1-4, 1-15, 1-35,

1-39, 1-58, 1-61, 3-5,
3-9, 3-16, 3-32, 3-43,
3-51, 3-59, 3-62,
3-65, 3-68, 3-76,
3-86, 3-92, 3-99,
4-20, 4-23, 4-26, 6-5,
6-10, 6-18, 6-22,
6-25, 6-29, 6-32,
6-37, 6-41, 7-12,
7-28, 7-32, 7-36,
7-41, 7-46, 7-51,
7-74, 7-90, 7-112,
7-132, 7-142, 7-144,
7-148, 7-154, 7-158,
7-163, 7-171, 7-177,
7-180, 7-184, 7-186,
7-211, 7-215, 7-219,
7-222, 7-225, 7-234,
7-244, 7-247, 7-250,
7-253, 7-257, 7-262,
7-265, 7-268, 7-273,
7-275, 7-278, 7-291,
7-294, 7-304, 7-309,
7-312, 7-316, 7-321,
7-323, 7-325, 7-340,
7-345, 7-356, 7-360,
7-371, 7-375, 7-378,
7-398, 7-405, 7-408,

Index−4 Hewlett-Packard Company 527186-023

Index

7-444, 7-447, 7-469,
7-475, 7-485, 7-491,
8-57, 8-74, 10-17,
10-22, 10-28, 12-35

[EBADMSG], 12-35
[EBADSYS], 12-35
[EBIGDIR], 12-36
[EBUSY], 6-49, 6-54, 9-8,

12-36
[ECHILD], 10-6, 10-12,

12-36
[ECONNABORTED], 1-4,

7-132, 12-36
[ECONNREFUSED], 1-39,

7-148, 12-36
[ECONNRESET], 1-4, 1-15,

1-40, 3-16, 3-76,
3-86, 3-92, 4-20, 6-5,
6-10, 6-18, 6-23,
6-25, 6-29, 6-32,
6-37, 6-41, 7-29,
7-32, 7-36, 7-41,
7-46, 7-51, 7-75,
7-90, 7-112, 7-132,
7-148, 7-163, 7-171,
7-340, 7-345, 7-356,
7-360, 7-371, 7-375,
7-378, 7-398, 7-405,
7-408, 7-469, 7-475,
7-485, 7-491, 10-17,
10-22, 10-28, 12-36

[ECWDTOOLONG], 12-36
[EDEADLK], 12-36
[EDEFINEERR], 7-117,

7-126, 12-36
[EDESTADDRREQ], 1-15,

4-20, 7-29, 7-32,
7-37, 7-41, 7-46,
7-51, 7-398, 7-405,
7-408, 12-36

[EDOM], 12-36
[EEXIST], 4-16, 4-50, 4-56,

4-64, 5-11, 5-23,
6-49, 7-22, 7-88,
7-535, 12-36

[EFAULT], 1-4, 1-7, 1-13,
1-15, 1-19, 1-24,
1-28, 1-32, 1-40,
1-47, 1-55, 2-8, 2-17,
2-25, 2-32, 2-40,
2-49, 3-16, 3-32,

3-43, 3-51, 3-59,
3-73, 3-77, 3-86,
3-92, 3-99, 4-8, 4-12,
4-16, 4-36, 4-46,
4-50, 4-56, 4-60,
4-64, 4-67, 4-71,
5-11, 5-23, 5-28, 6-5,
6-10, 6-13, 6-18,
6-23, 6-25, 6-29,
6-33, 6-37, 6-41,
6-49, 6-54, 7-18,
7-25, 7-29, 7-32,
7-37, 7-41, 7-46,
7-51, 7-75, 7-81,
7-96, 7-100, 7-103,
7-105, 7-121, 7-126,
7-129, 7-133, 7-148,
7-163, 7-171, 7-234,
7-244, 7-340, 7-345,
7-356, 7-360, 7-371,
7-375, 7-378, 7-398,
7-405, 7-408, 7-469,
7-475, 7-486, 7-491,
7-502, 7-513, 7-522,
7-531, 7-535, 8-15,
8-30, 8-42, 8-57,
8-74, 9-6, 9-8, 9-12,
10-6, 10-12, 10-17,
10-23, 10-28, 12-36

[EFBIG], 3-65, 3-69, 7-25,
7-158, 7-178, 7-211,
7-215, 7-219, 7-222,
7-250, 7-253, 7-257,
7-304, 7-309, 7-312,
7-316, 7-321, 7-323,
7-325, 7-444, 7-447,
7-469, 7-475, 7-486,
7-491, 10-17, 10-23,
10-28, 12-36

[EFILEBAD], 1-47, 1-55,
5-11, 5-23, 6-5, 6-10,
6-18, 7-340, 7-346,
7-356, 7-360, 12-37

[EFSBAD], 1-7, 1-19, 1-24,
1-28, 1-32, 1-47,
1-55, 3-5, 3-9, 3-32,
3-43, 4-8, 4-12, 4-16,
4-36, 4-46, 4-50,
4-56, 5-11, 5-23,
6-13, 6-49, 6-54,
7-234, 7-244, 7-502,

527186-023 Hewlett-Packard Company Index−5

OSS System Calls Reference Manual

7-513, 7-535, 9-8,
9-12, 12-37

[EFSERR], 12-37
[EGUARDIANLOCKED],

7-469, 7-475, 7-486,
7-491, 10-17, 10-23,
10-28, 12-37

[EGUARDIANOPEN], 1-47,
1-55, 5-11, 5-23,
6-49, 9-8, 12-37

[EHAVEOOB], 12-37
[EHLDSEM], 8-15, 8-30,

8-42, 8-57, 8-74,
12-37

[EHOSTDOWN], 12-37
[EHOSTUNREACH], 1-40,

7-46, 7-51, 7-148,
7-405, 12-37

[EIDRM], 4-67, 4-71, 7-25,
12-37

[EILSEQ], 7-211, 7-222,
7-304, 7-321, 7-323,
7-444, 7-448, 12-37

[EINPROGRESS], 1-40,
7-148, 12-38

[EINTR], 1-4, 1-8, 1-40,
1-47, 1-55, 3-5, 3-9,
3-16, 3-51, 3-59,
3-62, 3-65, 3-69,
3-99, 4-68, 4-71,
5-11, 5-23, 6-5, 6-10,
6-18, 6-23, 6-25,
6-29, 6-33, 6-37,
6-41, 7-13, 7-25,
7-29, 7-32, 7-37,
7-41, 7-46, 7-51,
7-107, 7-133, 7-148,
7-158, 7-163, 7-171,
7-178, 7-180, 7-184,
7-186, 7-211, 7-215,
7-219, 7-222, 7-225,
7-247, 7-250, 7-253,
7-257, 7-263, 7-265,
7-268, 7-273, 7-275,
7-278, 7-304, 7-309,
7-312, 7-316, 7-321,
7-323, 7-325, 7-341,
7-346, 7-356, 7-360,
7-371, 7-375, 7-378,
7-398, 7-405, 7-408,
7-444, 7-448, 7-469,

7-475, 7-486, 7-491,
7-522, 7-531, 10-6,
10-12, 10-17, 10-23,
10-28, 12-38

[EINVAL], 1-4, 1-8, 1-12,
1-15, 1-24, 1-28,
1-32, 1-40, 1-47,
1-55, 2-8, 2-17, 2-25,
2-32, 2-41, 2-49, 3-5,
3-9, 3-17, 3-51, 3-59,
3-62, 3-65, 3-69,
3-73, 3-77, 3-78,
3-82, 3-86, 3-92,
3-100, 4-4, 4-8, 4-12,
4-16, 4-20, 4-23,
4-27, 4-50, 4-56,
4-60, 4-64, 4-68,
4-71, 5-11, 5-23,
5-33, 6-5, 6-10, 6-13,
6-18, 6-23, 6-25,
6-29, 6-33, 6-37,
6-41, 6-49, 6-54,
7-13, 7-18, 7-22,
7-26, 7-37, 7-41,
7-47, 7-51, 7-53,
7-55, 7-58, 7-59,
7-60, 7-61, 7-64,
7-66, 7-75, 7-76,
7-79, 7-82, 7-84,
7-88, 7-90, 7-96,
7-100, 7-105, 7-126,
7-129, 7-133, 7-149,
7-163, 7-171, 7-211,
7-247, 7-250, 7-253,
7-291, 7-294, 7-304,
7-341, 7-346, 7-356,
7-361, 7-371, 7-375,
7-378, 7-398, 7-405,
7-416, 7-444, 7-448,
7-469, 7-475, 7-486,
7-491, 8-15, 8-30,
8-42, 8-57, 8-74, 9-8,
9-12, 10-12, 10-17,
10-23, 10-28, 12-38

[EIO], 1-8, 1-12, 1-16, 1-19,
1-35, 1-40, 1-48,
1-56, 2-8, 2-17, 2-25,
2-32, 2-41, 2-49,
3-23, 3-51, 3-59,
3-62, 3-66, 3-69,
4-16, 4-36, 4-46,

Index−6 Hewlett-Packard Company 527186-023

Index

4-50, 4-56, 5-12,
5-23, 6-5, 6-10, 6-13,
6-18, 6-30, 6-33,
6-37, 6-42, 6-54,
7-29, 7-32, 7-37,
7-42, 7-47, 7-51,
7-58, 7-142, 7-144,
7-149, 7-158, 7-178,
7-181, 7-184, 7-211,
7-215, 7-219, 7-222,
7-225, 7-247, 7-251,
7-253, 7-257, 7-263,
7-265, 7-268, 7-278,
7-304, 7-309, 7-312,
7-316, 7-321, 7-323,
7-325, 7-341, 7-346,
7-356, 7-361, 7-371,
7-376, 7-399, 7-405,
7-408, 7-444, 7-448,
7-469, 7-475, 7-486,
7-491, 7-502, 7-513,
7-522, 7-531, 7-535,
8-15, 8-30, 8-42,
8-57, 8-75, 9-8, 9-12,
10-18, 10-23, 10-29,
12-38

[EISCONN], 1-40, 7-149,
12-38

[EISDIR], 1-48, 1-56, 4-24,
4-27, 5-12, 5-23, 6-5,
6-10, 6-19, 6-49,
7-292, 7-294, 7-341,
7-346, 7-357, 7-361,
12-38

[EISGUARDIAN], 1-35,
1-59, 1-62, 3-17,
3-33, 3-44, 3-52,
3-60, 3-62, 3-66,
3-69, 4-24, 4-27, 6-5,
6-10, 6-19, 7-142,
7-144, 7-154, 7-164,
7-172, 7-234, 7-244,
7-247, 7-251, 7-253,
7-292, 7-294, 7-341,
7-346, 7-357, 7-361,
7-469, 7-476, 7-486,
7-491, 10-18, 10-23,
10-29, 12-38

[ELOOP], 1-8, 1-16, 1-19,
1-24, 1-28, 1-32,
1-40, 1-48, 1-56, 2-9,

2-17, 2-25, 2-33,
2-41, 2-49, 4-8, 4-12,
4-17, 4-36, 4-46,
4-50, 4-56, 5-12,
5-24, 6-13, 6-49,
6-54, 7-37, 7-42,
7-47, 7-51, 7-149,
7-399, 7-405, 7-502,
7-513, 7-523, 7-532,
7-535, 8-15, 8-30,
8-58, 8-75, 9-9, 9-13,
12-38

[EMFILE], 1-4, 1-48, 1-56,
1-59, 2-9, 2-17, 2-25,
2-33, 2-41, 2-49,
3-17, 5-12, 5-24,
5-28, 6-37, 6-42,
7-79, 7-117, 7-121,
7-133, 7-164, 7-172,
7-376, 8-15, 8-30,
8-58, 8-75, 12-38

[EMLINK], 4-17, 12-38
[EMSGQNOTRUNNING],

4-61, 4-64, 4-68,
4-71, 12-38

[EMSGSIZE], 7-29, 7-32,
7-37, 7-42, 7-47,
7-51, 7-399, 7-405,
7-408, 12-39

[ENAMETOOLONG], 1-8,
1-16, 1-19, 1-24,
1-28, 1-32, 1-48,
1-56, 2-9, 2-17, 2-25,
2-33, 2-41, 2-49, 4-8,
4-12, 4-17, 4-36,
4-46, 4-50, 4-56,
5-12, 5-24, 6-13,
6-49, 6-54, 7-37,
7-42, 7-399, 7-502,
7-513, 7-523, 7-532,
7-535, 8-15, 8-30,
8-58, 8-75, 9-9, 9-13,
12-39

[ENETDOWN], 1-41, 3-17,
3-33, 3-44, 3-52,
3-60, 3-62, 3-66,
3-69, 3-100, 5-12,
5-24, 6-5, 6-11, 6-19,
7-13, 7-29, 7-32,
7-47, 7-51, 7-149,
7-164, 7-172, 7-234,

527186-023 Hewlett-Packard Company Index−7

OSS System Calls Reference Manual

7-244, 7-247, 7-251,
7-254, 7-341, 7-346,
7-357, 7-361, 7-405,
7-409, 7-470, 7-476,
7-486, 7-491, 10-18,
10-23, 10-29, 12-39

[ENETRESET], 12-39
[ENETUNREACH], 1-41,

7-29, 7-32, 7-47,
7-51, 7-149, 7-406,
12-39

[ENFILE], 1-4, 1-48, 1-56,
5-12, 5-24, 5-28,
7-117, 7-121, 7-133,
12-39

[ENOBUFS], 1-4, 1-16, 1-41,
3-77, 3-86, 3-92,
4-20, 6-23, 6-25,
6-30, 6-33, 6-37,
6-42, 7-29, 7-32,
7-37, 7-42, 7-47,
7-51, 7-75, 7-90,
7-112, 7-117, 7-121,
7-133, 7-149, 7-371,
7-376, 7-378, 7-399,
7-406, 7-409, 12-39

[ENOCPU], 8-16, 8-31, 8-58,
8-75, 12-39

[ENOCRE], 12-39
[ENODATA], 12-39
[ENODEV], 2-9, 2-17, 2-25,

2-33, 2-41, 2-49,
8-16, 8-31, 8-58,
8-75, 12-39

[ENOENT], 1-8, 1-12, 1-16,
1-19, 1-24, 1-29,
1-33, 1-41, 1-48,
1-56, 2-9, 2-17, 2-25,
2-33, 2-41, 2-49, 3-5,
4-8, 4-13, 4-17, 4-36,
4-46, 4-50, 4-57,
4-64, 5-13, 5-24,
6-13, 6-50, 6-54,
7-22, 7-37, 7-42,
7-47, 7-52, 7-88,
7-117, 7-121, 7-149,
7-399, 7-406, 7-502,
7-513, 7-523, 7-532,
7-535, 8-16, 8-31,
8-58, 8-75, 9-9, 9-13,
12-39

[ENOERR], 12-39
[ENOEXEC], 2-9, 2-17,

2-25, 2-33, 2-41,
2-49, 8-16, 8-31,
8-58, 8-76, 12-39

[ENOIMEM], 12-39
[ENOLCK], 3-17, 7-164,

7-172, 12-39
[ENOMEM], 1-4, 1-16, 1-41,

1-48, 1-56, 2-9, 2-18,
2-25, 2-33, 2-41,
2-50, 3-23, 3-77,
3-86, 3-92, 4-20,
4-64, 4-68, 5-13,
5-24, 5-28, 6-5, 6-11,
6-19, 6-23, 6-25,
6-30, 6-33, 6-37,
6-42, 6-50, 7-29,
7-32, 7-38, 7-42,
7-47, 7-52, 7-75,
7-79, 7-88, 7-91,
7-100, 7-112, 7-118,
7-122, 7-133, 7-149,
7-181, 7-184, 7-211,
7-215, 7-219, 7-222,
7-225, 7-257, 7-263,
7-265, 7-268, 7-278,
7-304, 7-309, 7-312,
7-316, 7-321, 7-323,
7-325, 7-371, 7-376,
7-379, 7-399, 7-406,
7-409, 7-444, 7-448,
8-16, 8-31, 8-42,
8-58, 8-76, 10-18,
10-23, 10-29, 12-40

[ENOMSG], 4-68, 12-40
[ENONSTOP], 12-40
[ENOPROTOOPT], 3-92,

7-38, 7-42, 7-75,
7-399, 12-40

[ENOREPLY], 12-40
[ENOROOT], 1-8, 1-20,

1-24, 1-29, 1-33,
1-48, 1-56, 3-5, 3-9,
3-33, 3-44, 4-8, 4-13,
4-17, 4-37, 4-47,
4-51, 4-57, 5-13,
5-24, 5-28, 6-13,
6-50, 6-54, 7-235,
7-244, 7-503, 7-514,
7-535, 9-9, 9-13,

Index−8 Hewlett-Packard Company 527186-023

Index

12-40
[ENOSPC], 1-12, 1-48, 1-56,

4-17, 4-51, 4-57,
4-64, 5-13, 5-25,
6-50, 7-22, 7-26,
7-88, 7-178, 7-211,
7-215, 7-219, 7-222,
7-225, 7-257, 7-304,
7-309, 7-312, 7-316,
7-321, 7-323, 7-325,
7-444, 7-448, 7-470,
7-476, 7-486, 7-491,
7-535, 10-18, 10-23,
10-29, 12-40

[ENOSPEC], 7-158
[ENOSYS], 1-13, 12-40
[ENOTCONN], 3-77, 6-6,

6-11, 6-19, 6-23,
6-25, 6-30, 6-33,
6-37, 6-42, 7-29,
7-33, 7-38, 7-42,
7-47, 7-52, 7-91,
7-341, 7-346, 7-357,
7-361, 7-371, 7-376,
7-379, 7-399, 7-406,
7-409, 7-470, 7-476,
7-486, 7-491, 10-18,
10-23, 10-29, 12-40

[ENOTDIR], 1-8, 1-13, 1-16,
1-20, 1-25, 1-29,
1-33, 1-41, 1-48,
1-56, 2-9, 2-18, 2-33,
2-42, 2-50, 4-9, 4-13,
4-17, 4-37, 4-47,
4-51, 4-57, 5-13,
5-25, 6-14, 6-50,
6-55, 7-38, 7-42,
7-47, 7-52, 7-149,
7-399, 7-406, 7-503,
7-514, 7-523, 7-532,
7-535, 8-16, 8-31,
8-58, 8-76, 9-9, 9-13,
12-40

[ENOTEMPTY], 6-55, 12-40
[ENOTOSS], 2-9, 2-18, 2-25,

2-33, 2-42, 2-50,
3-17, 3-23, 3-78,
3-83, 3-84, 4-4, 4-61,
4-64, 4-68, 4-72,
7-18, 7-22, 7-26,
7-61, 7-63, 7-68,

7-79, 7-82, 7-84,
7-88, 7-96, 7-103,
7-105, 7-107, 7-164,
7-172, 8-16, 8-31,
8-42, 8-58, 8-76,
10-6, 10-12, 12-40

[ENOTSOCK], 1-4, 1-16,
1-41, 3-77, 3-86,
3-93, 4-20, 6-23,
6-25, 6-30, 6-33,
6-37, 6-42, 7-29,
7-33, 7-38, 7-42,
7-47, 7-52, 7-75,
7-91, 7-133, 7-149,
7-371, 7-376, 7-379,
7-399, 7-406, 7-409,
12-40

[ENOTSUP], 1-8, 1-13, 1-29,
1-49, 1-57, 3-100,
4-13, 4-37, 4-47,
5-13, 5-25, 7-13,
7-503, 7-514, 7-535,
9-9, 9-13, 12-40

[ENOTTY], 3-100, 7-112,
12-40

[ENXIO], 1-8, 1-20, 1-25,
1-29, 1-33, 1-49,
1-57, 3-33, 3-44,
3-62, 3-100, 4-9,
4-13, 4-17, 4-37,
4-47, 4-51, 4-57,
5-13, 5-25, 6-14,
6-50, 6-55, 7-158,
7-181, 7-184, 7-211,
7-215, 7-219, 7-222,
7-225, 7-235, 7-244,
7-247, 7-257, 7-263,
7-265, 7-268, 7-278,
7-309, 7-312, 7-316,
7-321, 7-323, 7-325,
7-445, 7-448, 7-470,
7-476, 7-486, 7-491,
7-503, 7-514, 7-536,
9-9, 9-13, 10-18,
10-23, 10-29, 12-40

[EOPNOTSUPP], 1-4, 1-16,
1-49, 1-57, 3-77,
3-86, 3-93, 3-100,
4-20, 5-13, 5-25,
6-23, 6-25, 6-30,
6-33, 6-37, 6-42,

527186-023 Hewlett-Packard Company Index−9

OSS System Calls Reference Manual

7-29, 7-33, 7-38,
7-42, 7-47, 7-52,
7-122, 7-133, 7-371,
7-376, 7-379, 7-399,
7-406, 7-409, 12-41

[EOSSNOTRUNNING], 1-8,
1-20, 1-25, 1-29,
1-33, 1-49, 1-57, 3-5,
3-10, 4-9, 4-13, 4-17,
4-37, 4-47, 4-51,
4-57, 5-14, 5-25,
5-28, 6-14, 6-50,
6-55, 7-503, 7-514,
7-536, 9-9, 9-13,
12-41

[EOVERFLOW], 1-49, 3-18,
3-33, 3-52, 4-24,
4-27, 5-14, 6-6, 6-11,
6-19, 7-172, 7-245,
7-292, 7-294, 7-346,
7-361, 7-503, 7-523

[EPARTIAL], 12-41
[EPERM], 1-8, 1-12, 1-16,

1-20, 1-25, 1-29,
1-33, 1-41, 1-49,
1-57, 2-9, 2-18, 2-26,
2-33, 2-42, 2-50, 3-5,
3-10, 3-78, 3-84, 4-4,
4-9, 4-13, 4-18, 4-51,
4-57, 4-61, 5-3, 5-14,
5-25, 6-50, 6-55,
7-18, 7-38, 7-42,
7-47, 7-52, 7-53,
7-55, 7-58, 7-59,
7-60, 7-62, 7-63,
7-64, 7-66, 7-68,
7-76, 7-82, 7-100,
7-399, 7-406, 7-536,
8-16, 8-31, 8-58,
8-76, 9-9, 9-13,
12-41

[EPFNOSUPPORT], 12-41
[EPIPE], 7-29, 7-33, 7-38,

7-42, 7-48, 7-52,
7-158, 7-178, 7-211,
7-215, 7-219, 7-222,
7-225, 7-257, 7-304,
7-309, 7-313, 7-316,
7-321, 7-323, 7-325,
7-399, 7-406, 7-409,
7-445, 7-448, 7-470,

7-476, 7-486, 7-492,
10-18, 10-23, 10-29,
12-41

[EPROTONOSUPPORT],
7-118, 7-122, 12-41

[EPROTOTYPE], 1-41,
7-118, 7-122, 7-150,
12-41

[ERANGE], 7-18, 7-26,
12-41

[EROFS], 1-9, 1-13, 1-16,
1-25, 1-29, 1-49,
1-57, 3-5, 3-10, 3-66,
3-69, 4-9, 4-13, 4-18,
4-51, 4-57, 5-14,
5-25, 6-51, 6-55,
7-58, 7-251, 7-254,
7-536, 9-10, 9-14,
12-41

[ESHUTDOWN], 12-41
[ESOCKTNOSUPPORT],

12-41
[ESPIERR], 12-41
[ESPIPE], 4-24, 4-27, 7-292,

7-295, 12-42
[ESRCH], 3-78, 3-83, 3-84,

4-4, 7-62, 12-42
[ETANOTRUNNING],

7-118, 7-122, 12-42
[ETHNOTRUNNING], 7-13,

12-42
[ETIMEDOUT], 1-41, 6-6,

6-11, 6-19, 6-23,
6-26, 6-30, 6-33,
6-38, 6-42, 7-150,
7-341, 7-346, 7-357,
7-361, 7-371, 7-376,
7-379, 7-470, 7-476,
7-487, 7-492, 10-18,
10-24, 10-29, 12-42

[ETXTBSY], 1-9, 1-49, 1-57,
2-9, 2-18, 2-26, 2-33,
2-42, 2-50, 5-14,
5-25, 6-51, 8-16,
8-31, 8-59, 8-76,
9-10, 9-14, 12-42

[EUNKNOWN], 2-9, 2-18,
2-26, 2-34, 2-42,
2-50, 3-23, 8-16,
8-31, 8-42, 8-59,
8-76, 12-42

Index−10 Hewlett-Packard Company 527186-023

Index

[EVERSION], 12-42
[EWOULDBLOCK], 1-4,

1-41, 6-6, 6-11, 6-19,
6-23, 6-26, 6-30,
6-33, 6-38, 6-42,
7-29, 7-33, 7-38,
7-43, 7-48, 7-52,
7-133, 7-346, 7-361,
7-371, 7-376, 7-379,
7-400, 7-406, 7-409,
7-476, 7-492, 10-18,
10-24, 10-30, 12-42

[EWRONGID], 1-59, 1-62,
3-18, 3-33, 3-44,
3-52, 3-60, 3-63,
3-100, 4-24, 4-27,
6-6, 6-11, 6-19,
7-154, 7-164, 7-172,
7-235, 7-245, 7-247,
7-292, 7-295, 7-341,
7-346, 7-357, 7-361,
7-470, 7-476, 7-487,
7-492, 10-18, 10-24,
10-30, 12-42

[EXDEV], 4-18, 6-51, 12-42
[EXDRDECODE], 12-42
[EXDRENCODE], 12-42

errno values, [EOVERFLOW], 4-37
error checking mutex, 5-143, 5-150
error condition values, 12-35 to

12-43
exec set of functions, 2-2, 2-3 to

2-10, 2-11 to 2-18, 2-19 to
2-26, 2-27 to 2-34, 2-35 to
2-42, 2-43 to 2-50

execl function, 2-3 to 2-10
execle function, 2-11 to 2-18
execlp function, 2-19 to 2-26
execv function, 2-27 to 2-34
execve function, 2-35 to 2-42
execvp function, 2-43 to 2-50
_exit function, 2-51 to 2-52

F
fast mutex, 5-148
fchmod function, 3-2 to 3-6
fchown function, 3-7 to 3-10
fcntl function, 3-11 to 3-18
FIFOs

creating, 4-53
propagating open, 8-4, 8-20,

8-41, 8-46, 8-63
file access flags

O_RDONLY, 5-5, 5-17
O_RDWR, 5-5, 5-17
O_WRONLY, 5-5, 5-17

file access modes, 1-58, 1-60, 7-153
file descriptors

checking I/O status of, 7-8
closing, 1-34, 7-141
controlling, 1-60, 3-11,

7-153, 7-159, 7-166
duplicating, 1-58, 1-60,

7-153
sets for checking I/O status,

7-8
file format

archive library, 11-2
cpio, 11-4
tar, 11-48

file mode creation mask, setting and
getting, 9-4

file status flags
and dup function, 1-58
and dup2 function, 1-60
and spt_dup2x function,

7-153
O_APPEND, 5-7, 5-19
O_CREAT, 5-6, 5-18
O_EXCL, 5-6, 5-18
O_NOCTTY, 5-6, 5-18
O_NONBLOCK, 5-7, 5-19,

5-27
O_SYNC, 5-7, 5-19
O_TRUNC, 5-6, 5-18

file system
hierarchy, 12-51
renaming files and

directories, 6-44,
6-46

file type flags

527186-023 Hewlett-Packard Company Index−11

OSS System Calls Reference Manual

S_IFCHR, 3-26, 3-37, 4-30,
4-40, 7-228, 7-238,
7-496, 7-507

S_IFDIR, 3-26, 3-37, 4-30,
4-40, 4-49, 7-228,
7-238, 7-496, 7-507

S_IFIFO, 3-26, 3-37, 4-30,
4-41, 7-228, 7-238,
7-496, 7-507

S_IFREG, 1-45, 1-53, 3-26,
3-37, 4-30, 4-41, 5-8,
5-20, 7-228, 7-238,
7-496, 7-507

S_IFSOCK, 3-26, 3-37, 4-30,
4-41, 7-228, 7-238,
7-496, 7-507

S_ISVTX, 1-22, 1-45, 1-53,
3-3, 3-27, 3-38, 4-6,
4-31, 4-41, 4-49, 5-8,
5-20, 7-229, 7-239,
7-497, 7-508

S_NONSTOP, 5-8, 5-20
filename, 12-44 to 12-50
files

/dev/null, 11-29
/dev/tty, 11-70
/etc/termcap, 11-51
access, 1-6, 1-21, 3-2, 4-5,

9-11
access flags. See file access

flags

access modes, 1-58, 1-60,
3-11, 7-153, 7-159,
7-166

access time, 9-11
ar, 11-2
archive library, 11-2
changing access, 1-21, 3-2,

4-5
changing length of, 3-64,

3-67, 7-249, 7-252
changing owner and group

IDs, 1-26, 3-7, 4-10
checking I/O status of file

objects, 7-8
closing, 1-34, 7-141
control operations, 1-58,

1-60, 3-11, 7-153,
7-159, 7-166

controlling a device file, 3-97
core memory image, 11-3
cpio, 11-4
creating, 1-43, 1-51, 5-4,

5-16
creating a directory, 4-53
creating a FIFO, 4-53
creating a link for, 4-15
creating a pipe, 5-27
creating a regular file, 4-53
creating a special file, 4-53
creation mask, 9-4
descriptors. See file

descriptors

determining accessibility,
1-6

device file control, 3-97
dir, 11-7
directory. See directory

directory format, 11-7
executable, 2-2, 2-3, 2-11,

2-19, 2-27, 2-35,
2-43, 8-2, 8-17, 8-43,
8-60, 12-55

executing, 2-2, 2-3, 2-11,
2-19, 2-27, 2-35,
2-43, 8-2, 8-17, 8-43,
8-60, 12-55

floating-point specifications,
11-8

group ID, 1-26, 3-7, 4-10
limits specifications, 11-10
locks, 3-11, 7-159, 7-166
login configuration, 12-53
modification time, 9-11
modifications, saving, 3-61,

7-246
names for, 12-44
null, 11-29
open, 8-41
opening for reading or

writing, 1-43, 1-51,
5-4, 5-16

owner ID, 1-26, 3-7, 4-10
pathnames for, 12-44
permission, changing, 1-21,

3-2, 4-5

Index−12 Hewlett-Packard Company 527186-023

Index

process snapshot, 11-3
propagating open, 8-4, 8-20,

8-46, 8-63
providing information about,

3-24, 3-35, 4-28,
4-38, 7-226, 7-236,
7-494, 7-505

read-write offset setting,
4-22, 4-25, 7-290,
7-293

reading from, 6-2, 6-8, 6-15,
7-338, 7-343, 7-354,
7-358

removing a link from, 9-7
renaming, 6-43, 6-44, 6-46
saveabend, 10-3, 10-9, 11-3
setting access and

modification times,
9-11

setting and getting creation
mask value, 9-4

sharing Guardian, 3-22, 8-41,
8-46, 8-64

signal, 11-31
size, 9-2
status flags. See file status

flags

symbolic link. See symbolic
link

tar, 11-48
termcap, 11-51
termios, 11-64
tty, 11-70
types. See file type flags

user configuration, 12-67
writing changes to disk, 3-61,

7-246
writing to, 7-466, 7-472,

7-483, 7-488, 10-14,
10-20, 10-25

fileset information, 3-45, 3-53, 7-515,
7-524

flat segments, 7-77
float header file, 11-8 to 11-9

fork function, 3-19 to 3-23
format of directories, 11-7
formatting output, 7-206, 7-299
formatting output parameters, 7-443,

7-447
fstat function, 3-24 to 3-34
fstat64 function, 3-35 to 3-44
fstatvfs function, 3-45 to 3-52
fstatvfs64 function, 3-53 to 3-60
fsync function, 3-61 to 3-63
ftruncate function, 3-64 to 3-66
ftruncate64 function, 3-67 to 3-69

G
get fileset information, 3-45, 3-53,

7-515, 7-524
get process group ID, 3-84
getegid function, 3-70
geteuid function, 3-71
getgid function, 3-72
getgroups function, 3-73
gethostname function, 3-74
getpeername function, 3-75 to 3-77
getpgid function, 3-78
getpgrp function, 3-79
getpid function, 3-80
getppid function, 3-81
getpriority function, 3-82 to 3-83
getsid function, 3-84
getsockname function, 3-85 to 3-87
getsockopt function, 3-88 to 3-93
gettimeofday function, 3-94 to 3-95
getuid function, 3-96
group ID

changing for a file, 1-26, 3-7,
4-10

effective, 7-53
real and effective, 7-64
returning effective, 3-70
returning for a process, 3-78,

3-79
returning real, 3-72
setting effective, 7-53
setting for a process, 7-61,

7-68

527186-023 Hewlett-Packard Company Index−13

OSS System Calls Reference Manual

setting for process, 7-63
setting real and effective,

7-59, 7-64
group list

returning for current process,
3-73

setting, 7-60
gtacl variables, PMSEARCHLIST,

12-27
Guardian environment, using from

access function, 1-7
chdir function, 1-19
chmod function, 1-23
chown function, 1-28
chroot function, 1-32
creat function, 1-46
creat64 function, 1-54
execl function, 2-8
execle function, 2-16
execlp function, 2-24
execv function, 2-32
execve function, 2-40
execvp function, 2-48
fchmod function, 3-4
fchown function, 3-9
fork function, 3-19
getpgid function, 3-78
getpgrp function, 3-79
getpid function, 3-80
getppid function, 3-81
getpriority function, 3-82
getsid function, 3-84
gettimeofday function, 3-94
ioctl function, 3-99
kill function, 4-2
lchmod function, 4-7
lchown function, 4-12
link function, 4-16
lstat function, 4-35
lstat64 function, 4-45
message queue, 4-60, 4-63,

4-66, 4-70
mkdir function, 4-49
mknod function, 4-55
msgget function, 4-60, 4-63
msgrcv function, 4-66
msgsnd function, 4-70
nice function, 5-3
open function, 5-10, 5-22

pipe function, 5-27
readlink function, 6-12
rename function, 6-44, 6-47,

6-48
rename_oss function, 6-44,

6-47, 6-48
rmdir function, 6-53
select function, 7-10
semaphores, 7-21
semctl function, 7-17
semget function, 7-21
semop function, 7-25
setpgid function, 7-61
setpgrp function, 7-63
setsid function, 7-68
shmat function, 7-78
shmctl function, 7-81
shmdt function, 7-83
sigaction function, 7-92
sigaltstack function, 7-98
sigpending function, 7-102
sigprocmask function, 7-105
sigsuspend function, 7-107
socket function, 7-115
socketpair function, 7-120
stat function, 7-501
stat64 function, 7-512
statvfs function, 7-522
statvfs64 function, 7-531
symlink function, 7-534
tdm_execve function, 8-3
tdm_execvep function, 8-18
tdm_fork function, 8-33
tdm_spawn function, 8-45
tdm_spawnp function, 8-62
unlink function, 9-7
utime function, 9-12
wait function, 10-2
waitpid function, 10-8
_exit function, 2-52

Guardian objects, using on
access function, 1-7
chdir function, 1-18
chmod function, 1-23
chown function, 1-27
chroot function, 1-31
creat function, 1-45
creat64 function, 1-53
fchmod function, 3-4

Index−14 Hewlett-Packard Company 527186-023

Index

fchown function, 3-8
fstat function, 3-30
fstat64 function, 3-41
fsync function, 3-61
ioctl function, 3-99
kill function, 4-2
lchmod function, 4-7
lchown function, 4-11
link function, 4-16
lstat function, 4-34
lstat64 function, 4-44
mknod function, 4-55
nice function, 5-2
open function, 5-9, 5-21
read function, 6-4, 6-9, 7-359
readlink function, 6-12
readv function, 6-16
rename function, 6-47
rename_oss function, 6-47
select function, 7-10
seteuid function, 7-55
spt_fstat64z function, 7-232
spt_fstatz function, 7-242
spt_fsyncz function, 7-246
spt_readvx function, 7-339
spt_readvz function, 7-344
spt_readx function, 7-355
spt_writevx function, 7-468
spt_writevz function, 7-474
spt_writex function, 7-485
stat function, 7-500
stat64 function, 7-511
symlink function, 7-534
umask function, 9-4
utime function, 9-12
write function, 7-490, 10-16,

10-22
writev function, 10-27

H
hexadecimal ASCII character set,

12-16
hierarchy, file system, 12-51 to 12-52

host, returning name of current, 3-74
hostname, returning for current host,

3-74

I
I/O status, checking file descriptor

sets for, 7-8
implementation-dependent constants,

11-10
input stream

getting character from,
7-180, 7-186, 7-262,
7-264, 7-273, 7-275

getting word from, 7-186,
7-273, 7-275, 7-277

interface for terminals, 11-64, 11-70
IO functions, standard, 7-214, 7-218,

7-221, 7-308, 7-311, 7-315,
7-320, 7-322

ioctl function, 3-97 to 3-100

K
kill function, 4-2 to 4-4

L
lchmod function, 4-5 to 4-9
lchown function, 4-10 to 4-14
limits header file, 11-10 to 11-17
link

creating, 4-15
removing, 9-7
symbolic. See symbolic link

link function, 4-15 to 4-18
listen function, 4-19 to 4-21
locales, 12-24

527186-023 Hewlett-Packard Company Index−15

OSS System Calls Reference Manual

locks, file, 3-11, 7-159, 7-166
login configuration file, 12-53
login.defs file, 12-53
lseek function, 4-22 to 4-24
lseek64 function, 4-25 to 4-27
lstat function, 4-28 to 4-37
lstat64 function, 4-38 to 4-47

M
macros

FD_CLR, 7-8 to 7-14
FD_ISSET, 7-8 to 7-14
FD_SET, 7-8 to 7-14
FD_ZERO, 7-8 to 7-14
for cpio, 11-6
S_ISEXPANDOBJECT,

3-31, 3-42, 4-35,
4-45, 7-233, 7-243,
7-501, 7-512

S_ISGUARDIANOBJECT,
3-30, 3-41, 4-34,
4-44, 7-232, 7-242,
7-500, 7-511

WCOMPLETION, 10-3,
10-8

WEXITSTATUS, 10-9
WIFABENDED, 10-3, 10-9
WIFEXITED, 10-3, 10-9
WIFSAVEABEND, 10-3,

10-9
WIFSIGNALED, 10-3, 10-9
WIFSTOPPED, 10-3, 10-9
WSTOPSIG, 10-4, 10-9
WTERMSIG, 10-4, 10-9

mask, file mode creation, 9-4
mask, signal

changing, 7-104, 7-106
examining, 7-104

math header file, 11-18 to 11-20
memory image file, 11-3
message queue

after disk process failures,
4-63

after processor failures, 4-63
cleaning up identifiers, 4-63

creating, 4-62
obtaining key for, 4-63
performing control

operations on, 4-59
receiving a message from,

4-65
removing, 4-59
returning the identifier for,

4-62
sending a message to, 4-69
uniqueness of identifiers,

4-63
use between environments,

4-60, 4-63, 4-66,
4-70

messages
receiving from a message

queue, 4-65
receiving from connected

sockets, 6-21, 6-24,
7-377

receiving from unconnected
sockets, 6-27, 6-31,
7-369

receiving using a message
structure, 6-34, 6-39,
7-373

sending to a message queue,
4-69

sending to connected
sockets, 7-27, 7-31,
7-407

sending to unconnected
sockets, 7-44, 7-49,
7-403

sending using a message
structure, 7-34, 7-39,
7-396

mkdir function, 4-48 to 4-52
mknod function, 4-53 to 4-58
mode values

creat function, 1-45
creat64 function, 1-53
mkdir function, 4-49
open function, 5-8, 5-20

msgctl function, 4-59 to 4-61
msgget function, 4-62 to 4-64

Index−16 Hewlett-Packard Company 527186-023

Index

msgrcv function, 4-65 to 4-68
msgsnd function, 4-69 to 4-72
mutex

default, 5-143, 5-150
error checking, 5-143, 5-150
fast, 5-148
nonrecursive, 5-148
normal, 5-143, 5-150
recursive, 5-143, 5-148,

5-150

N
nice function, 5-2 to 5-3
nonrecursive mutex, 5-148
normal mutex, 5-143, 5-150
null file, 11-29

O
obase values, bc utility, 11-15
octal ASCII character set, 12-16
oflag values, open function, 5-7, 5-19
open function, 5-4 to 5-15
open64 function, 5-16 to 5-26
osh variables

Guardian PARAMs, 12-23
LOGNAME, 12-25
PATH, 12-27
PWD, 12-27

OSS process ID (PID), 3-80, 3-81
output

formatting parameters,
7-443, 7-447

printing and formatting,
7-206, 7-299

output stream, writing word to, 7-324
to 7-326

owner ID, changing for a file, 1-26,
3-7, 4-10

P
parameters, formatting for output,

7-443, 7-447
parent OSS process ID, returning,

3-81
pathname, 12-44 to 12-50
peer address, returning for a socket,

3-75
peer name, returning for a socket,

3-75
permission, changing for a file, 1-21,

3-2, 4-5
pipe function, 5-27 to 5-28
pipes

creating, 5-27
propagating open, 8-4, 8-20,

8-41, 8-46, 8-63
POSIX User Thread Model, 5-29,

5-34, 5-39, 5-41, 5-43, 5-49,
5-54, 5-57, 5-61, 5-64, 5-71,
5-73, 5-76, 5-78, 5-86, 5-93,
5-105, 5-107, 5-109, 5-111,
5-113, 5-115, 5-117, 5-119,
5-121, 5-123, 5-125, 5-136,
5-138, 5-140, 5-146, 5-152,
5-154, 5-160, 5-162, 5-166,
5-168, 5-171, 5-173, 5-176,
5-178, 5-180, 5-182, 5-184,
5-186, 5-193, 5-195, 5-215,
5-217, 5-219, 5-221, 5-223,
5-249, 5-251, 5-253, 5-254,
5-256, 5-262, 5-263, 5-265,
5-267, 5-272, 5-278, 5-280,
5-284, 5-291, 5-293, 5-295,
7-2, 7-4
causing a wait, 5-95
creating, 5-101
creating a data key, 5-128
deleting a data key, 5-131
destroying a condition

variable attributes
object, 5-80

destroying a thread attributes
object, 5-32

getting the contentionscope
attribute, 5-45

getting the mutex type
attribute, 5-143

527186-023 Hewlett-Packard Company Index−17

OSS System Calls Reference Manual

initializing a condition
variable, 5-82, 5-88

initializing a thread attributes
object, 5-51

locking a mutex, 5-156
locking a mutex without

waiting, 5-158
obtaining the guardsize

attribute, 5-36
obtaining the thread

identifier, 5-164
Pathsend file use, 5-258
Pathsend tags, 5-260, 5-294
PUT_ FILE_CLOSE_

function, 5-197
PUT_CANCEL function,

5-188
PUT_CONTROL function,

5-190
PUT_FILE_OPEN_ function,

5-199
PUT_LOCKFILE function,

5-225
PUT_LOCKREC function,

5-228
PUT_READLOCKX

function, 5-232
PUT_READUPDATELOCKX

function, 5-236
PUT_READUPDATEX

function, 5-240
PUT_READX function,

5-243
PUT_SETMODE function,

5-269
PUT_UNLOCKFILE

function, 5-286
PUT_UNLOCKREC

function, 5-288
PUT_WRITEREADX

function, 5-297
PUT_WRITEUPDATEUNLOCKX

function, 5-301
PUT_WRITEUPDATEX

function, 5-305
PUT_WRITEX function,

5-311
setting the contentionscope

attribute, 5-69

setting the mutex type
attribute, 5-150

setting the scheduling policy,
5-67

signaling, 5-133
thread attributes object, 5-47
TMF use, 5-216, 5-274,

5-275, 5-277, 5-282
unblocking all threads on a

condition variable,
5-84

unblocking on a condition
variable, 5-91

waiting for a condition
variable, 5-98

yielding the processor, 7-6
POSIX-defined minimum values,

11-13
POSIX-defined runtime invariant

values, 11-13
printing output, 7-206, 7-299
process

attaching shared memory
segment, 7-77

changing scheduling priority,
5-2

changing signal mask, 7-104,
7-106

cleanup on exit, 2-51
creating a session, 7-68
creating via fork, 3-19
creating via tdm_fork, 8-32
effective group ID, 3-70,

7-53, 7-59, 7-64
effective user ID, 3-71, 7-55,

7-66, 7-76
examining signal mask,

7-104
executing new, 8-32, 8-43,

8-60, 12-55
exiting, 2-51
forking, 3-19, 8-32
group ID, 3-78, 3-79, 7-59,

7-63, 7-68
group list, 7-60
performing shared memory

control operations,
7-80

real group ID, 3-72, 7-59,
7-64

Index−18 Hewlett-Packard Company 527186-023

Index

real user ID, 3-96, 7-66, 7-76
receiving signals, 7-92,

7-415
returning an alternate signal

stack, 7-98
returning effective group ID,

3-70
returning effective user ID,

3-71
returning group ID, 3-78,

3-79
returning group list, 3-73
returning OSS process ID,

3-80
returning parent OSS process

ID, 3-81
returning real group ID, 3-72
returning scheduling priority,

3-82
returning user ID, 3-71, 3-96
saved-set group ID, 7-59
saved-set user ID, 7-76
sending a signal to, 4-2
setting effective group ID,

7-53, 7-63, 7-64
setting effective user ID,

7-55, 7-66, 7-76
setting group ID, 7-61, 7-63,

7-68
setting real group ID, 7-63,

7-64
setting real user ID, 7-66,

7-76
setting user ID, 7-55
specifying an alternate signal

stack, 7-98
specifying signal actions,

7-92, 7-415
suspending, 7-106, 7-466,

7-472, 7-483, 7-488,
10-2, 10-7, 10-14,
10-20, 10-25

terminating, 2-51
transport-provider, 7-124,

7-127
user ID, 3-71, 3-96, 7-55,

7-66, 7-76
waiting for caught signals,

10-2

waiting for child process to
stop, 10-7

process attributes
default Guardian, 8-6, 8-22,

8-34, 8-49, 8-66
Guardian, 2-6, 2-14, 2-22,

2-30, 2-38, 2-46,
3-20

OSS, 2-5, 2-14, 2-22, 2-29,
2-38, 2-46, 3-19, 8-6,
8-21, 8-33, 8-48,
8-65

setting Guardian, 8-8, 8-23,
8-35, 8-50, 8-68

process deletion message, Guardian,
4-3

process group
getting scheduling priority,

3-82
specifying, 8-47, 8-65

process ID, OSS, returning, 3-80,
3-81

process image
identifying file, 2-3, 2-11,

2-19, 2-27, 2-35,
2-43, 8-3, 8-18, 8-45,
8-62

replacing current, 2-2, 2-3,
2-11, 2-19, 2-27,
2-35, 2-43, 8-2, 8-17,
8-43, 8-60, 12-55

using new, 2-2, 2-3, 2-11,
2-19, 2-27, 2-35,
2-43, 8-2, 8-17, 8-43,
8-60, 12-55

process snapshot file, 11-3
process_extension_results structure,

12-55 to 12-63
protocol, supporting sockets, 7-114
pthread_atfork function, 5-29
pthread_attr_destroy function, 5-32
pthread_attr_getdetachstate function,

5-34
pthread_attr_getguardsize function,

5-36
pthread_attr_getguardsize_np

function, 5-38
pthread_attr_getinheritsched

527186-023 Hewlett-Packard Company Index−19

OSS System Calls Reference Manual

function, 5-39
pthread_attr_getschedparam

function, 5-41
pthread_attr_getschedpolicy

function, 5-43
pthread_attr_getscope function, 5-45
pthread_attr_getstackaddr function,

5-47
pthread_attr_getstacksize function,

5-49
pthread_attr_init function, 5-51
pthread_attr_setdetachstate function,

5-54
pthread_attr_setguardsize function,

5-57
pthread_attr_setguardsize_np

function, 5-59
pthread_attr_setinheritsched

function, 5-61
pthread_attr_setschedparam function,

5-64
pthread_attr_setschedpolicy function,

5-67
pthread_attr_setscope function, 5-69
pthread_attr_setstacksize function,

5-71
pthread_cancel function, 5-73
pthread_cleanup_pop function, 5-76
pthread_cleanup_push function, 5-78
pthread_condattr_destroy function,

5-80
pthread_condattr_init function, 5-82
pthread_cond_broadcast function,

5-84
pthread_cond_destroy function, 5-86
pthread_cond_init function, 5-88
pthread_cond_signal function, 5-91
pthread_cond_signal_int_np

function, 5-93
pthread_cond_timedwait function,

5-95
pthread_cond_wait function, 5-98
pthread_create function, 5-101
pthread_delay_np function, 5-105
pthread_detach function, 5-107
pthread_equal function, 5-109
pthread_exit function, 5-111

pthread_getattr_np function, 5-113
pthread_getconcurrency function,

5-115
pthread_getschedparam function,

5-119
pthread_getspecific function, 5-121
pthread_get_expiration_np function,

5-117
pthread_get_threadstateinfo_np

function, 5-123
pthread_join function, 5-125
pthread_key_create function, 5-128
pthread_key_delete function, 5-131
pthread_kill function, 5-133
pthread_kill_np function, 5-136
pthread_lock_global_np function,

5-138
pthread_mutexattr_destroy function,

5-140
pthread_mutexattr_getkind_np

function, 5-142
pthread_mutexattr_gettype function,

5-143, 5-150
pthread_mutexattr_init function,

5-146
pthread_mutexattr_setkind_np

function, 5-148
pthread_mutex_destroy function,

5-152
pthread_mutex_init function, 5-154
pthread_mutex_lock function, 5-156
pthread_mutex_trylock function,

5-158
pthread_mutex_unlock function,

5-160
pthread_once function, 5-162
pthread_self function, 5-164
pthread_setcancelstate function,

5-166
pthread_setcanceltype function,

5-168
pthread_setconcurrency function,

5-171
pthread_setschedparam function,

5-173
pthread_setspecific function, 5-176
pthread_sigmask function, 5-178
pthread_signal_to_cancel_np

Index−20 Hewlett-Packard Company 527186-023

Index

function, 5-180
pthread_testcancel function, 5-182
pthread_unlock_global_np function,

5-184
put_awaitio function, 5-186
PUT_CANCEL function, 5-188 to

5-189
PUT_CONTROL function, 5-190 to

5-192
put_fd_read_ready function, 5-193
put_fd_write_ready function, 5-195
PUT_FILE_CLOSE_ function, 5-197

to 5-198
PUT_FILE_OPEN_ function, 5-199

to 5-211
PUT_FILE_WRITEREAD_ function,

5-212 to 5-214
put_generateTag function, 5-215
put_getTMFConcurrentTransactions

function, 5-216
put_INITRECEIVE function, 5-217
put_INITRECEIVEL function, 5-219
put_interrupt function, 5-221
put_interruptTag function, 5-223
PUT_LOCKFILE function, 5-225 to

5-227
PUT_LOCKREC function, 5-228 to

5-231
PUT_READLOCKX function, 5-232

to 5-235
PUT_READUPDATELOCKX

function, 5-236 to 5-239
PUT_READUPDATEX function,

5-240 to 5-242
PUT_READX function, 5-243 to

5-248
put_RECEIVEREAD function, 5-249
put_RECEIVEREADL function,

5-251
put_regFile function, 5-253
put_regFileIOHandler function,

5-254
put_regOSSFileIOHandler function,

5-256
put_regPathsendFile function, 5-258
put_regPathsendTagHandler

function, 5-260

put_regTimerHandler function, 5-262
put_REPLYX function, 5-263
put_REPLYXL function, 5-265
put_select_single_np function, 5-267
PUT_SETMODE function, 5-269 to

5-271
put_setOSSFileIOHandler function,

5-272
put_setTMFConcurrentTransactions

function, 5-274
PUT_TMF_GetTxHandle function,

5-275
PUT_TMF_Init function, 5-277
PUT_TMF_RESUME function,

5-278
PUT_TMF_SetAndValidateTxHandle

function, 5-280
PUT_TMF_SetTxHandle function,

5-282
PUT_TMF_SUSPEND function,

5-284
PUT_UNLOCKFILE function, 5-286

to 5-287
PUT_UNLOCKREC function, 5-288

to 5-290
put_unregFile function, 5-291
put_unregOSSFileIOHandler

function, 5-293
put_unregPathsendTagHandler

function, 5-294
put_wakeup function, 5-295
PUT_WRITEREADX function,

5-297 to 5-300
PUT_WRITEUPDATEUNLOCKX

function, 5-301 to 5-304
PUT_WRITEUPDATEX function,

5-305 to 5-310
PUT_WRITEX function, 5-311 to

5-316

R
read function, 6-2 to 6-7
read-write offset, setting for a file,

527186-023 Hewlett-Packard Company Index−21

OSS System Calls Reference Manual

4-22, 4-25, 7-290, 7-293
read64_ function, 6-8 to 6-11
readlink function, 6-12 to 6-14
readv function, 6-15 to 6-20
recursive mutex, 5-143, 5-148, 5-150
recv function, 6-21 to 6-23
recv64_ function, 6-24 to 6-26
recvfrom function, 6-27 to 6-30
recvfrom64_ function, 6-31 to 6-33
recvmsg function, 6-34 to 6-38
recvmsg64_ function, 6-39 to 6-42
remote objects, using on

fstat function, 3-31
fstat64 function, 3-42
lstat function, 4-35
lstat64 function, 4-45
spt_fstat64z function, 7-233
spt_fstatz function, 7-243
stat function, 7-501
stat64 function, 7-512

rename function, 6-43, 6-44 to 6-45,
6-46 to 6-51

rename_guardian function, 6-44 to
6-45, 6-48

rename_oss function, 6-44, 6-46 to
6-51

resolv.conf file, 12-64 to 12-66
rmdir function, 6-52 to 6-55
root directory, changing effective,

1-31

S
Safeguard, protecting processes, 4-3
save file, 11-3
saveabend file, 11-3
scale value, bc utility, 11-15
scheduling priority

getting, 3-82
setting, 5-2

sched_get_priority_max function, 7-2
sched_get_priority_min function, 7-4
sched_yield function, 7-6
select function, 7-8 to 7-14
semaphore sets

creating new ID, 7-20

obtaining key for, 7-21
performing control

operations on, 7-15
performing operations on,

7-23
propagating to child process,

7-21, 8-41, 8-47,
8-64

propagating to new process,
2-5, 2-13, 2-21, 2-29,
2-37, 2-45, 8-5, 8-20

returning ID, 7-20
semaphores

performing control
operations on, 7-15

performing operations on,
7-23

semctl function, 7-15 to 7-19
semget function, 7-20 to 7-22
semop function, 7-23 to 7-26
send function, 7-27 to 7-30
send64_ function, 7-31 to 7-33
sendmsg function, 7-34 to 7-38
sendmsg64_ function, 7-39 to 7-43
sendto function, 7-44 to 7-48
sendto64_ function, 7-49 to 7-52
session, creating, 7-68
set access control list, 1-10
setegid function, 7-53
setfilepriv function, 7-57 to 7-58
setgid function, 7-59
setgroups function, 7-60
setpgid function, 7-61 to 7-62
setpgrp function, 7-63
setregid function, 7-64 to 7-65
setreuid function, 7-66 to 7-67
setsid function, 7-68
setsockopt function, 7-69 to 7-75
setuid function, 7-55, 7-76
shared memory

address range, 7-77, 7-83
after disk process failures,

7-87
after processor failures, 7-87
attaching segment, 7-77
cleaning up identifiers, 7-83,

7-87
control operations, 7-80
creating segment, 7-85

Index−22 Hewlett-Packard Company 527186-023

Index

detaching segment, 2-5, 2-13,
2-21, 2-29, 2-37,
2-45, 7-83, 8-5, 8-20,
8-41, 8-47, 8-64

memory alignment of
segments, 7-78

number of segments, 7-78,
7-87

obtaining key for, 7-87
performing control

operations on, 7-80
propagating, 7-78, 8-41
returning identifier of, 7-85
sizes of segments, 7-87
swap file for, 7-87
uniqueness of identifiers,

7-87
shell variables

CDPATH, 12-18
COMP_ROOT, 12-19
EDITOR, 12-23
EMS_COLLECTOR, 12-23
ENV, 12-23
EXINIT, 12-23
FCEDIT, 12-23
FPATH, 12-23
HISTFILE, 12-23
HISTSIZE, 12-23
HOME, 12-23
IFS, 12-24, 12-34
JAVA_HOME, 12-24
LANG, 12-24
LC_ALL, 12-25
LC_COLLATE, 12-25
LC_CTYPE, 12-25
LC_MESSAGES, 12-25
LC_MONETARY, 12-25
LC_NUMERIC, 12-25
LC_TIME, 12-25
LOCPATH, 12-25
MANPATH, 12-26
NLSPATH, 12-26
PATH, 12-27
PRINTER, 12-27
PS1, 12-27, 12-34
PS2, 12-27, 12-34
PS3, 12-27
PS4, 12-27
SHELL, 12-29

SWAPVOL, 12-29
TERM, 12-31
TERMCAP, 12-31
TERMINFO, 12-31
TERMPATH, 12-31
TMOUT, 12-31
TMPDIR, 12-31
TZ, 12-32
USER, 12-34
UTILSGE, 12-34
VISUAL, 12-34
ZCPU, 12-34

shmat function, 7-77 to 7-79
shmctl function, 7-80 to 7-82
shmdt function, 7-83 to 7-84
shmget function, 7-85 to 7-89
shutdown function, 7-90 to 7-91
sigaction function, 7-92 to 7-97
sigaltstack function, 7-98 to 7-101
signal action, 7-92 to 7-97, 7-415 to

7-416
signal file, 11-31 to 11-38
signal mask

changing, 7-104, 7-106
examining, 7-104

signals
blocked, 7-102, 7-104
blocking, 7-93, 7-104, 7-106
catching, 2-5, 2-13, 2-21,

2-29, 2-37, 2-45
declarations used for, 11-31
definitions used for, 11-33
examining pending, 7-102
propagating actions, 8-5,

8-20, 8-47, 8-64
sending to a process or

process group, 4-2
specifying, 7-93
specifying actions for, 7-93
specifying handlers for, 7-93
specifying options for, 7-94
suspending a thread, 7-297
suspending process

execution, 7-106
table of, 11-33
variables used for, 11-33
waiting for, 7-106, 7-109,

7-422

527186-023 Hewlett-Packard Company Index−23

OSS System Calls Reference Manual

sigpending function, 7-102 to 7-103
sigprocmask function, 7-104 to 7-105
sigsuspend function, 7-106 to 7-108
sigwait function, 7-109
sockatmark function, 7-112 to 7-113
socket

accepting a connection, 1-2,
7-131

binding a name, 1-14
connecting, 1-37, 7-146
controlling socket

communication, 7-69
creating, 7-114
creating a connected pair,

7-119
creating by accepting a

connection, 1-2,
7-131

creating endpoints, 7-114
destroying, 1-34, 7-141
disabling send and receive

operations, 7-90
inherited by a process, 3-75,

3-85
listening for connections,

4-19
locally bound address, 3-85
name, 1-14
options for, 3-88
out-of-band data, 7-72
out-of-band mark, 7-112
propagating existing, 8-5,

8-20, 8-41, 8-46,
8-64

receiving messages from
connected, 6-21,
6-24, 7-377

receiving messages from
unconnected, 6-27,
6-31, 7-369

receiving messages using a
message structure,
6-34, 6-39, 7-373

returning locally bound
name, 3-85

returning options for, 3-88
returning peer address, 3-75
returning peer name, 3-75
returning transport-provider

process name, 7-124

send and receive operations,
7-90

sending messages to
connected, 7-27,
7-31, 7-407

sending messages to
unconnected, 7-44,
7-49, 7-403

sending messages using a
message structure,
7-34, 7-39, 7-396

setting options, 7-69
setting transport-provider

process name, 7-127
socket function, 7-114 to 7-118
socket pair, creating, 7-119
socketpair function, 7-119 to 7-123
socket_transport_name_get function,

7-124 to 7-126
socket_transport_name_set function,

7-127 to 7-129
special file, creating, 4-53
spthread.h header, 11-39
spt_accept function, 7-130
spt_acceptx function, 7-131 to 7-133
spt_alarm function, 7-134
spt_awaitio function, 7-136
SPT_CANCEL function, 7-138 to

7-139
spt_close function, 7-140
spt_closex function, 7-141 to 7-142
spt_closez function, 7-143
spt_connect function, 7-145
spt_connectx function, 7-146 to

7-150
SPT_CONTROL function, 7-151 to

7-152
spt_dup2x function, 7-153 to 7-155
spt_fclose function, 7-156
spt_fclosex function, 7-157 to 7-158
spt_fcntlx function, 7-159 to 7-165
spt_fcntlz function, 7-166 to 7-173
spt_fd_read_ready function, 7-174
spt_fd_write_ready function, 7-175
spt_fflush function, 7-176
spt_fflushx function, 7-177 to 7-178
spt_fgetc function, 7-179

Index−24 Hewlett-Packard Company 527186-023

Index

spt_fgetcx function, 7-180 to 7-181
spt_fgets function, 7-182
spt_fgetsx function, 7-183 to 7-184
spt_fgetwc function, 7-185
spt_fgetwcx function, 7-186 to 7-187
spt_FileIOHandler_p function, 7-190
SPT_FILE_CLOSE_ function, 7-188

to 7-189
SPT_FILE_OPEN_ function, 7-191

to 7-203
spt_fork function, 7-204
spt_fprintf function, 7-205
spt_fprintfx function, 7-206 to 7-212
spt_fputc function, 7-213
spt_fputcx function, 7-214 to 7-216
spt_fputs function, 7-217
spt_fputsx function, 7-218 to 7-219
spt_fputwc function, 7-220
spt_fputwcx function, 7-221 to 7-222
spt_fread function, 7-223
spt_freadx function, 7-224 to 7-225
spt_fstat64z function, 7-226 to 7-235
spt_fstatz function, 7-236 to 7-245
spt_fsyncz function, 7-246 to 7-248
spt_ftruncate64z function, 7-249 to

7-251
spt_ftruncatez function, 7-252 to

7-254
spt_fwrite function, 7-255
spt_fwritex function, 7-256 to 7-258
spt_generateTag function, 7-259
spt_getc function, 7-260
spt_getchar function, 7-261
spt_getcharx function, 7-262 to 7-263
spt_getcx function, 7-264 to 7-265
spt_gets function, 7-266
spt_getsx function, 7-267 to 7-268
spt_getTMFConcurrentTransactions

function, 7-269
spt_getw function, 7-270
spt_getwc function, 7-271
spt_getwchar function, 7-272
spt_getwcharx function, 7-273 to

7-274
spt_getwcx function, 7-275 to 7-276
spt_getwx function, 7-277 to 7-278
spt_INITRECEIVE function, 7-279

spt_INITRECEIVEL function, 7-280
spt_interrupt function, 7-281
spt_interruptTag function, 7-282
SPT_LOCKFILE function, 7-283 to

7-285
SPT_LOCKREC function, 7-286 to

7-289
spt_lseek64z function, 7-290 to

7-292
spt_lseekz function, 7-293 to 7-295
spt_OSSFileIOHandler_p function,

7-296
spt_pause function, 7-297
spt_printf function, 7-298
spt_printfx function, 7-299 to 7-305
spt_putc function, 7-306
spt_putchar function, 7-307
spt_putcharx function, 7-308 to

7-310
spt_putcx function, 7-311 to 7-313
spt_puts function, 7-314
spt_putsx function, 7-315 to 7-316
spt_putw function, 7-317
spt_putwc function, 7-318
spt_putwchar function, 7-319
spt_putwcharx function, 7-320 to

7-321
spt_putwcx function, 7-322 to 7-323
spt_putwx function, 7-324 to 7-326
spt_read function, 7-327
SPT_READLOCKX function, 7-328

to 7-330
SPT_READUPDATELOCKX

function, 7-331 to 7-333
SPT_READUPDATEX function,

7-334 to 7-336
spt_readv function, 7-337
spt_readvx function, 7-338 to 7-342
spt_readvz function, 7-343 to 7-347
spt_readx function, 7-354 to 7-357
SPT_READX function, 7-348 to

7-353
spt_readz function, 7-358 to 7-362
spt_RECEIVEREAD function, 7-363
spt_RECEIVEREADL function,

7-365
spt_recv function, 7-367

527186-023 Hewlett-Packard Company Index−25

OSS System Calls Reference Manual

spt_recvfrom function, 7-368
spt_recvfromx function, 7-369 to

7-371
spt_recvmsg function, 7-372
spt_recvmsgx function, 7-373 to

7-376
spt_recvx function, 7-377 to 7-379
spt_regFile function, 7-380
spt_regFileIOHandler function,

7-381
spt_regOSSFileIOHandler function,

7-382
spt_regPathsendFile function, 7-383
spt_regPathsendTagHandler function,

7-384
spt_regTimerHandler function, 7-386
spt_REPLYX function, 7-387
spt_REPLYXL function, 7-388
spt_select function, 7-390 to 7-391
spt_select_single_np function, 7-392

to 7-393
spt_send function, 7-394
spt_sendmsg function, 7-395
spt_sendmsgx function, 7-396 to

7-400
spt_sendto function, 7-401
spt_sendtox function, 7-403 to 7-406
spt_sendx function, 7-407 to 7-409
SPT_SETMODE function, 7-410 to

7-412
spt_setOSSFileIOHandler function,

7-413
spt_setTMFConcurrentTransactions

function, 7-414
spt_sigaction function, 7-415 to

7-416
spt_signal function, 7-417
spt_sigpending function, 7-419
spt_sigsuspend function, 7-420
spt_sigwait function, 7-422
spt_sleep function, 7-424
spt_system function, 7-425
spt_TimerHandler_p function, 7-426
SPT_TMF_GetTxHandle function,

7-427
SPT_TMF_Init function, 7-428
SPT_TMF_RESUME function,

7-429
SPT_TMF_SetAndValidateTxHandle

function, 7-430
SPT_TMF_SetTxHandle function,

7-431
SPT_TMF_SUSPEND function,

7-432
SPT_UNLOCKFILE function, 7-433

to 7-434
SPT_UNLOCKREC function, 7-435

to 7-437
spt_unregFile function, 7-438
spt_unregOSSFileIOHandler

function, 7-439
spt_unregPathsendTagHandler

function, 7-440
spt_usleep function, 7-441
spt_vfprintf function, 7-442
spt_vfprintfx function, 7-443 to

7-445
spt_vprintf function, 7-446
spt_vprintfx function, 7-447 to 7-448
spt_waitpid function, 7-449 to 7-450
spt_wakeup function, 7-451
spt_write function, 7-452
SPT_WRITEREADX function,

7-453 to 7-455
SPT_WRITEUPDATEUNLOCKX

function, 7-456 to 7-459
SPT_WRITEUPDATEX function,

7-460 to 7-464
spt_writev function, 7-465
spt_writevx function, 7-466 to 7-471
spt_writevz function, 7-472 to 7-477
spt_writex function, 7-483 to 7-487
SPT_WRITEX function, 7-478 to

7-482
spt_writez function, 7-488 to 7-493
standard IO functions, 7-214, 7-308,

7-311
Standard POSIX threads, 5-29, 5-34,

5-39, 5-41, 5-43, 5-49, 5-54,
5-59, 5-61, 5-64, 5-71, 5-73,
5-76, 5-78, 5-86, 5-105,
5-107, 5-109, 5-111, 5-115,
5-117, 5-119, 5-121, 5-123,
5-125, 5-136, 5-138, 5-140,
5-146, 5-152, 5-154, 5-160,
5-162, 5-166, 5-168, 5-171,
5-173, 5-176, 5-178, 5-180,
5-182, 5-184, 7-2, 7-4, 7-94,
7-130, 7-134, 7-136, 7-140,
7-143, 7-145, 7-156, 7-174,

Index−26 Hewlett-Packard Company 527186-023

Index

7-175, 7-176, 7-179, 7-182,
7-185, 7-190, 7-205, 7-213,
7-217, 7-220, 7-223, 7-255,
7-259, 7-260, 7-261, 7-266,
7-270, 7-271, 7-272, 7-279,
7-280, 7-281, 7-282, 7-296,
7-298, 7-306, 7-307, 7-314,
7-317, 7-318, 7-319, 7-327,
7-337, 7-363, 7-365, 7-367,
7-368, 7-372, 7-380, 7-381,
7-382, 7-386, 7-387, 7-388,
7-394, 7-395, 7-401, 7-413,
7-417, 7-419, 7-420, 7-426,
7-438, 7-439, 7-442, 7-446,
7-451, 7-452, 7-465, 11-39
attribute object, 5-113
causing a wait, 5-95
creating, 5-101
creating a data key, 5-128
deleting a data key, 5-131
destroying a condition

variable attributes
object, 5-80

destroying a thread attributes
object, 5-32

initializing a condition
variable, 5-82, 5-88

initializing a thread attributes
object, 5-51

locking a mutex, 5-156
locking a mutex without

waiting, 5-158
obtaining the guardsize

attribute, 5-38
obtaining the mutex attribute

type, 5-142
obtaining the thread

identifier, 5-164
Pathsend file use, 7-383
Pathsend tags, 7-384, 7-440
PUT_FILE_WRITEREAD_

function, 5-212
setting the mutex type

attribute, 5-148
setting the scheduling policy,

5-67
signaling, 5-133
SPT_ FILE_CLOSE_

function, 7-188

spt_acceptx function, 7-131
SPT_CANCEL function,

7-138
spt_closex function, 7-141
spt_connectx function, 7-146
SPT_CONTROL function,

7-151
spt_dup2x function, 7-153
spt_fclosex function, 7-157
spt_fcntlx function, 7-159
spt_fflushx function, 7-177
spt_fgetcx function, 7-180
spt_fgetsx function, 7-183
spt_fgetwcx function, 7-186
SPT_FILE_OPEN_ function,

7-191
spt_fprintfx function, 7-206
spt_fputcx function, 7-214
spt_fputsx function, 7-218
spt_fputwcx function, 7-221
spt_freadx function, 7-224
spt_fwritex function, 7-256
spt_getcharx function, 7-262
spt_getcx function, 7-264
spt_getsx function, 7-267
spt_getwcharx function,

7-273
spt_getwcx function, 7-275
spt_getwx function, 7-277
SPT_LOCKFILE function,

7-283
SPT_LOCKREC function,

7-286
spt_printfx function, 7-299
spt_putcharx function, 7-308
spt_putcx function, 7-311
spt_putsx function, 7-315
spt_putwcharx function,

7-320
spt_putwcx function, 7-322
spt_putwx function, 7-324
SPT_READLOCKX

function, 7-328
SPT_READUPDATELOCKX

function, 7-331
SPT_READUPDATEX

function, 7-334
spt_readvx function, 7-338
spt_readx function, 7-354

527186-023 Hewlett-Packard Company Index−27

OSS System Calls Reference Manual

SPT_READX function,
7-348

spt_recvfromx function,
7-369

spt_recvmsgx function,
7-373

spt_recvx function, 7-377
spt_select function, 7-390
spt_select_single_np

function, 7-392
spt_sendmsgx function,

7-396
spt_sendtox function, 7-403
spt_sendx function, 7-407
SPT_SETMODE function,

7-410
spt_system function, 7-425
SPT_UNLOCKFILE

function, 7-433
SPT_UNLOCKREC

function, 7-435
spt_vfprintfx function, 7-443
spt_vprintfx function, 7-447
spt_waitpid function, 7-449
SPT_WRITEREADX

function, 7-453
SPT_WRITEUPDATEUNLOCKX

function, 7-456
SPT_WRITEUPDATEX

function, 7-460
spt_writevx function, 7-466
spt_writex function, 7-483
SPT_WRITEX function,

7-478
suspension, 7-424, 7-441
thread attributes object, 5-47
thread-aware fork, 7-204
TMF use, 7-269, 7-414,

7-427, 7-428, 7-431
unblocking all threads on a

condition variable,
5-84

unblocking on a condition
variable, 5-91

unblocking on a condition
variable from an
interrupt handler,
5-93

waiting for a condition
variable, 5-98

yielding the processor, 7-6
stat function, 7-494 to 7-504
stat64 function, 7-505 to 7-514
status flags. See file status flags
statvfs function, 7-515 to 7-523
statvfs64 function, 7-524 to 7-532
stream

closing, 7-157
flushing, 7-177
getting a string from stdin,

7-267
performing binary

input/output, 7-224,
7-256

string, getting from a stream, 7-183,
7-267

strings, writing out, 7-218, 7-315
structures

inherit, 8-43, 8-61
iovec, 6-15, 7-338, 7-343
linger, 7-72
msgbuf, 4-66, 4-70
msghdr, 6-34, 7-34, 7-373,

7-396
msghdr64, 6-39, 7-39
msqid_ds, 4-70
process_extension, 8-2, 8-8,

8-17, 8-23, 8-32,
8-44, 8-61

process_extension_results,
8-2, 8-14, 8-17, 8-29,
8-32, 8-40, 8-44,
8-55, 8-61, 12-55

sembuf, 7-23
shmid_ds, 7-80
sigaction, 7-92
sigaction_t, 7-415
sigaltstack, 7-98
sockaddr, 1-37, 6-27, 6-31,

7-44, 7-49, 7-146,
7-369, 7-403

stat, 3-24, 3-35, 4-28, 7-236,
7-494, 7-505, 12-50

stat64, 4-38, 7-226
statvfs, 3-45, 7-515, 7-524
statvfs64, 3-53
termios, 11-64
timeval, 3-94
timezone, 3-94

Index−28 Hewlett-Packard Company 527186-023

Index

utimebuf, 9-11
utsname, 9-5
winsize, 3-99

st_atime, 3-29, 3-40, 4-32, 4-43,
7-231, 7-241, 7-499, 7-510,
12-50

swap file, shared segment, 7-87
symbolic link

making, 7-533
names, 12-44
providing information about,

4-28, 4-38
reading from, 6-12

symbolic value
AF_INET, 7-114, 7-124,

7-127
AF_INET6, 7-114, 7-124,

7-127
AF_UNIX, 7-114, 7-119,

7-124, 7-127
ARG_MAX, 11-15
BC_BASE_MAX, 11-10
BC_DIM_MAX, 11-10
BC_SCALE_MAX, 11-10
BC_STRING_MAX, 11-10
BRKINT, 11-64
CHARCLASS_NAME_MAX,

11-11
CHAR_BIT, 11-11
CHAR_MAX, 11-11
CHAR_MIN, 11-11
CHILD_MAX, 11-15
CLOCAL, 11-65
COLL_WEIGHTS_MAX,

11-11
CREAD, 11-65
CS5, 11-66
CS6, 11-66
CS7, 11-66
CS8, 11-66
CSIZE, 11-65
CSTOPB, 11-66
DBL_EPSILON, 11-8
DBL_MANT_DIG, 11-8
DBL_MAX, 11-8
DBL_MAX_10_EXP, 11-8
DBL_MAX_EXP, 11-8
DBL_MIN, 11-8
DBL_MIN_10_EXP, 11-8

DBL_MIN_EXP, 11-8
ECHO, 11-66
ECHOE, 11-66
ECHOK, 11-66
ECHONL, 11-66
EXPR_NEST_MAX, 11-11
FD_CLOEXEC, 1-58, 1-61,

5-27, 7-153
FD_SETSIZE, 7-10
FIONBIO, 3-97
FIONREAD, 3-97
FLT_EPSILON, 11-8
FLT_MANT_DIG, 11-8
FLT_MAX, 11-8
FLT_MAX_10_EXP, 11-8
FLT_MAX_EXP, 11-8
FLT_MIN, 11-8
FLT_MIN_10_EXP, 11-8
FLT_MIN_EXP, 11-8
F_DUPFD, 3-11, 3-15,

7-159, 7-162, 7-166,
7-170

F_GETFD, 3-12, 3-15, 7-160,
7-162, 7-167, 7-170

F_GETFL, 3-12, 3-15, 7-160,
7-162, 7-167, 7-170

F_GETLK, 3-13, 3-15,
7-161, 7-162, 7-168,
7-170

F_GETLK64, 3-14, 3-15,
7-168, 7-170

F_GETOWN, 3-13, 3-15,
7-161, 7-162, 7-168,
7-170

F_SETFD, 3-12, 3-15, 7-160,
7-162, 7-167, 7-170

F_SETFL, 3-12, 3-16, 7-160,
7-162, 7-167, 7-170

F_SETLK, 3-14, 3-16, 7-161,
7-162, 7-168, 7-170

F_SETLK64, 3-14, 3-16,
7-168, 7-170

F_SETLKW, 3-14, 3-16,
7-161, 7-162, 7-168,
7-170

F_SETLKW64, 3-14, 3-16,
7-169, 7-170

F_SETOWN, 3-13, 3-16,
7-161, 7-163, 7-168,
7-170

527186-023 Hewlett-Packard Company Index−29

OSS System Calls Reference Manual

F_UNLCK, 3-14, 7-161,
7-168

GETALL, 7-16
GETNCNT, 7-16, 7-17
GETPID, 7-16, 7-18
GETVAL, 7-16, 7-18
GETZCNT, 7-16, 7-18
HUGE_VAL, 11-19
HUGE_VALF, 11-19
HUGE_VALL, 11-19
HUPCL, 11-66
ICANON, 11-66
ICRNL, 11-64
IEXTEN, 11-67
IGNBRK, 11-64
IGNCR, 11-64
IGNPAR, 11-64
INLCR, 11-64
INPCK, 11-64
INT_BIT, 11-11
INT_MAX, 11-11
INT_MIN, 11-11
IOV_MAX, 11-15
IPC_CREAT, 7-20, 7-85
IPC_EXCL, 7-20, 7-85
IPC_NOWAIT, 7-24
IPC_PRIVATE, 7-20, 7-86
IPC_RMID, 4-59, 7-17, 7-80
IPC_SET, 4-59, 7-15, 7-17,

7-80
IPC_SETNONFT, 4-59
IPC_STAT, 4-60, 7-15, 7-17,

7-80
IPPROTO_IP, 3-88, 7-69
IPPROTO_IPV6, 3-88, 7-69
IPPROTO_TCP, 3-88, 7-69
IPV6_JOIN_GROUP, 7-69
IPV6_LEAVE_GROUP,

7-70
IPV6_MULTICAST_HOPS,

3-88, 7-70
IPV6_MULTICAST_IF,

3-88, 7-70
IPV6_MULTICAST_LOOP,

3-89, 7-70
IPV6_UNICAST_HOPS,

3-89, 7-70
IPV6_V6ONLY, 3-89, 7-70
IP_ADD_MEMBERSHIP,

7-70

IP_DROP_MEMBERSHIP,
7-70

IP_MULTICAST_IF, 3-89,
7-71

IP_MULTICAST_LOOP,
3-89, 7-71

IP_MULTICAST_TTL, 3-89,
7-71

IP_OPTIONS, 3-89, 7-70
ISIG, 11-67
ISTRIP, 11-64
IXANY, 11-64
IXOFF, 11-64
IXON, 11-65
LDBL_EPSILON, 11-8
LDBL_MANT_DIG, 11-8
LDBL_MAX, 11-8
LDBL_MAX_10_EXP, 11-8
LDBL_MAX_EXP, 11-8
LDBL_MIN, 11-8
LDBL_MIN_10_EXP, 11-8
LDBL_MIN_EXP, 11-8
LINE_MAX, 11-11
LINK_MAX, 11-15
LLONG_BIT, 11-11
LLONG_MAX, 11-11
LLONG_MIN, 11-11
LOGIN_NAME_MAX,

11-11
LONG_BIT, 11-11
LONG_MAX, 11-12
LONG_MIN, 11-12
MAXFLOAT, 11-19
MAX_CANON, 11-15
MAX_INPUT, 11-16
MB_LEN_MAX, 11-12
MINSIGSTKSZ, 11-31
MSG_CTRUNC, 6-35, 6-40,

7-374
MSG_DONTROUTE, 7-27,

7-31, 7-34, 7-39,
7-44, 7-49, 7-396,
7-403, 7-407

MSG_OOB, 6-21, 6-24,
6-27, 6-31, 6-34,
6-35, 6-39, 6-40,
7-27, 7-31, 7-34,
7-39, 7-44, 7-49,
7-369, 7-373, 7-374,
7-377, 7-396, 7-403,
7-407

Index−30 Hewlett-Packard Company 527186-023

Index

MSG_PEEK, 6-21, 6-24,
6-27, 6-31, 6-34,
6-39, 7-369, 7-373,
7-377

MSG_TRUNC, 6-35, 6-40,
7-374

M_1_PI, 11-19
M_2_PI, 11-19
M_2_SQRTPI, 11-19
M_E, 11-18
M_LN10, 11-19
M_LN2, 11-19
M_LOG10E, 11-19
M_LOG2E, 11-19
M_PI, 11-19
M_PI_2, 11-19
M_PI_4, 11-19
M_SQRT1_2, 11-19
M_SQRT2, 11-19
NAME_MAX, 11-16
NL_ARGMAX, 11-12
NL_LANGMAX, 11-16
NL_MSGMAX, 11-12
NL_NMAX, 11-12
NL_SETMAX, 11-12
NL_TEXTMAX, 11-12
NOFLSH, 11-67
OCRNL, 11-65
ONLCR, 11-65
ONLRET, 11-65
ONOCR, 11-65
OPEN_MAX, 11-16
OPOST, 11-65
O_NONBLOCK, 6-3, 6-9,

6-16, 6-21, 6-24,
7-339, 7-344, 7-355,
7-359, 7-377, 7-467,
7-473, 7-484, 7-489,
10-15, 10-21, 10-26

PARENB, 11-66
PARMRK, 11-65
PARODD, 11-66
PATH_MAX, 11-12
PIPE_BUF, 7-467, 7-473,

7-484, 7-489, 10-15,
10-21, 10-26, 11-12

PRIO_PGRP, 3-82
PRIO_PROCESS, 3-82
PRIO_USER, 3-82

PTHREAD_DESTRUCTOR_ITERATIONS,
11-13

PTHREAD_KEYS_MAX,
11-13

PTHREAD_STACK_MIN,
11-13

PTHREAD_THREADS_MAX,
11-13

RE_DUP_MAX, 11-12
SA_NOCLDSTOP, 7-94,

11-31
SA_ONSTACK, 11-31
SCHAR_MAX, 11-12
SCHAR_MIN, 11-12
SEEK_CUR, 4-22, 4-25,

7-290, 7-293
SEEK_END, 4-22, 4-25,

7-290, 7-293
SEEK_SET, 4-22, 4-25,

7-290, 7-293
SEM_UNDO, 7-24
SETALL, 7-17
SETVAL, 7-16
SHM_RDONLY, 7-77
SHM_RND, 7-77
SHRT_MAX, 11-12
SHRT_MIN, 11-12
SHUT_RD, 7-90
SHUT_RDWR, 7-90
SHUT_WR, 7-90
SIGSTKSZ, 11-32
SIG_ABORT, 11-31
SIG_BLOCK, 7-104, 11-32
SIG_DEBUG, 11-31
SIG_DFL, 11-31
SIG_ERR, 11-31
SIG_IGN, 11-32
SIG_SETMASK, 7-104,

11-32
SIG_UNBLOCK, 7-104,

11-32
SIOCADDRT, 3-97
SIOCATMARK, 3-97
SIOCDARP, 3-98
SIOCDELRT, 3-97
SIOCGARP, 3-98
SIOCGIFADDR, 3-98
SIOCGIFBRDADDR, 3-98
SIOCGIFCONF, 3-98

527186-023 Hewlett-Packard Company Index−31

OSS System Calls Reference Manual

SIOCGIFDSTADDR, 3-98
SIOCGIFFLAGS, 3-98
SIOCGIFNETMASK, 3-98
SIOCGIFNUM, 3-97
SIOCSARP, 3-98
SIOCSIFADDR, 3-98
SIOCSIFBRDADDR, 3-98
SIOCSIFDSTADDR, 3-98
SIOCSIFFLAGS, 3-98
SIOCSIFNETMASK, 3-98
SOCK_DGRAM, 3-91
SOCK_MAXBUF, 11-16
SOCK_STREAM, 3-91
SOL_SOCKET, 3-88, 7-69
SO_ACCEPTCONN, 3-89
SO_BROADCAST, 3-90,

7-71
SO_DEBUG, 3-90, 7-71
SO_DONTROUTE, 3-90,

7-71
SO_ERROR, 3-90
SO_KEEPALIVE, 3-90, 7-72
SO_LINGER, 1-35, 3-90,

7-72
SO_OOBINLINE, 3-90, 7-72
SO_RCVBUF, 3-90, 7-72
SO_REUSEADDR, 3-90,

7-72
SO_REUSEPORT, 3-90,

7-73
SO_SNDBUF, 3-91, 7-73
SO_TYPE, 3-91
SPAWN_NEWPGROUP,

8-47, 8-65
SPAWN_SETPGROUP,

8-47, 8-65
SPAWN_SETSIGDEF, 8-47,

8-65
SPAWN_SETSIGMASK,

8-47, 8-65
SS_DISABLE, 11-32
SS_ONSTACK, 11-32
STREAM_MAX, 11-16
ST_NOSUID, 3-50, 3-58,

7-520, 7-529
ST_NOTRUNC, 3-50, 3-58,

7-520, 7-529
ST_RDONLY, 3-50, 3-58,

7-520, 7-529

S_IFCHR, 3-26, 3-37, 4-30,
4-40, 4-53, 7-228,
7-238, 7-496, 7-507

S_IFDIR, 3-26, 3-37, 4-30,
4-40, 4-49, 4-53,
7-228, 7-238, 7-496,
7-507

S_IFIFO, 3-26, 3-37, 4-30,
4-41, 4-53, 7-228,
7-238, 7-496, 7-507

S_IFMT, 3-26, 3-37, 4-30,
4-40, 7-228, 7-238,
7-496, 7-507

S_IFREG, 1-45, 1-53, 3-26,
3-37, 4-30, 4-41,
4-53, 5-8, 5-20,
7-228, 7-238, 7-496,
7-507

S_IFSOCK, 3-26, 3-37, 4-30,
4-41, 7-228, 7-238,
7-496, 7-507

S_IRGRP, 1-22, 3-3, 4-6,
4-53, 7-85

S_IROTH, 1-22, 3-3, 4-6,
4-53, 7-85

S_IRUSR, 1-22, 3-3, 4-6,
4-53, 7-85

S_IRWXG, 1-22, 3-3, 3-26,
3-38, 4-6, 4-31, 4-41,
4-53, 7-85, 7-228,
7-238, 7-496, 7-508

S_IRWXO, 1-22, 3-3, 3-26,
3-38, 4-6, 4-31, 4-41,
4-53, 7-85, 7-228,
7-238, 7-496, 7-508

S_IRWXU, 1-22, 3-3, 3-27,
3-38, 4-6, 4-31, 4-41,
4-53, 7-85, 7-228,
7-238, 7-496, 7-508

S_ISGID, 1-22, 3-3, 3-27,
3-38, 4-6, 4-31, 4-41,
4-54, 7-228, 7-238,
7-496, 7-508

S_ISUID, 1-21, 3-2, 3-27,
3-38, 4-5, 4-31, 4-41,
4-54, 7-228, 7-238,
7-496, 7-508

S_ISVTX, 1-22, 1-45, 1-53,
3-3, 3-27, 3-38, 4-6,
4-31, 4-41, 4-49,
4-54, 5-8, 5-20,

Index−32 Hewlett-Packard Company 527186-023

Index

7-229, 7-239, 7-497,
7-508

S_IWGRP, 1-22, 3-3, 4-6,
4-54, 7-85

S_IWOTH, 1-22, 3-3, 4-6,
4-54, 7-85

S_IWUSR, 1-22, 3-3, 4-6,
4-54, 7-85

S_IXGRP, 1-22, 3-3, 4-6,
4-54, 7-85

S_IXOTH, 1-22, 3-3, 4-6,
4-54, 7-85

S_IXUSR, 1-22, 3-3, 4-6,
4-54, 7-85

S_NONSTOP, 5-8, 5-20
TCIFLUSH, 11-68
TCIOFF, 11-68
TCIOFLUSH, 11-68
TCION, 11-68
TCOFLUSH, 11-68
TCOOFF, 11-68
TCOON, 11-68
TCSADRAIN, 11-68
TCSAFLUSH, 11-68
TCSANOW, 11-68
TIOCGWINSZ, 3-98
TIOCSWINSZ, 3-99
TOSTOP, 11-67
TZNAME_MAX, 11-12
UCHAR_MAX, 11-12
UINT_MAX, 11-12
ULLONG_MAX, 11-12
ULONG_MAX, 11-12
USHRT_MAX, 11-13
VEOF, 11-67
VEOL, 11-67
VERASE, 11-67
VINTR, 11-67
VKILL, 11-67
VQUIT, 11-68
VSTART, 11-68
VSTOP, 11-68
VSUSP, 11-68
WNOHANG, 10-8
WORD_BIT, 11-13
WUNTRACED, 10-8
_POSIX2_BC_BASE_MAX,

11-15
_POSIX2_BC_DIM_MAX,

11-15

_POSIX2_BC_SCALE_MAX,
11-15

_POSIX2_BC_STRING_MAX,
11-15

_POSIX2_COLL_WEIGHTS_MAX,
11-15

_POSIX2_EXPR_NEST_MAX,
11-15

_POSIX2_LINE_MAX,
11-15

_POSIX2_RE_DUP_MAX,
11-15

_POSIX_ARG_MAX, 11-13
_POSIX_CHILD_MAX,

11-13
_POSIX_FD_SETSIZE,

11-13
_POSIX_HIWAT, 11-13
_POSIX_LINK_MAX, 11-13
_POSIX_MAX_CANON,

11-14
_POSIX_MAX_INPUT,

11-14
_POSIX_NAME_MAX,

11-14
_POSIX_NGROUPS_MAX,

11-14
_POSIX_OPEN_MAX,

11-14
_POSIX_PATH_MAX,

11-14
_POSIX_PIPE_BUF, 11-14
_POSIX_QLIMIT, 11-14
_POSIX_SSIZE_MAX,

11-14
_POSIX_STREAM_MAX,

11-14
_POSIX_THREAD_DESTRUCTOR_ITERATIONS

11-14
_POSIX_THREAD_KEYS_MAX,

11-14
_POSIX_THREAD_THREADS_MAX,

11-14
_POSIX_TZNAME_MAX,

11-15
_TPC_BAD_ARGV, 12-56
_TPC_BAD_CPU, 12-59
_TPC_BAD_CREATE_OPTIONS,

12-59

527186-023 Hewlett-Packard Company Index−33

OSS System Calls Reference Manual

_TPC_BAD_DEBUG_OPTIONS,
12-60

_TPC_BAD_DEFINES,
12-57, 12-60

_TPC_BAD_ENVIRON,
12-57

_TPC_BAD_ENVP, 12-57
_TPC_BAD_ERROR_DETAIL,

12-57
_TPC_BAD_EXTENSION,

12-57, 12-60
_TPC_BAD_EXTSWAP,

12-57, 12-60
_TPC_BAD_FDMAP, 12-57
_TPC_BAD_HOMETERM,

12-57, 12-60
_TPC_BAD_INHERIT,

12-58, 12-60
_TPC_BAD_INTERNAL,

12-58, 12-60
_TPC_BAD_INTERPRETER,

12-61
_TPC_BAD_JOB, 12-61
_TPC_BAD_MEM, 12-61
_TPC_BAD_NAME_OPTIONS,

12-61
_TPC_BAD_OSS_OPTIONS,

12-61
_TPC_BAD_OUTPUT,

12-58, 12-61
_TPC_BAD_OUTPUT_LEN,

12-58, 12-61
_TPC_BAD_PARAM_REFERENCE,

12-56
_TPC_BAD_PARAM_VALUE,

12-59
_TPC_BAD_PARMLIST,

12-58, 12-61
_TPC_BAD_PFS_SIZE,

12-62
_TPC_BAD_PIMFILE,

12-58, 12-62
_TPC_BAD_PRIO, 12-62
_TPC_BAD_PRIVATE_LIST,

12-58, 12-62
_TPC_BAD_PRIVLIST,

12-58, 12-62
_TPC_BAD_PROCESS_NAME,

12-59, 12-62

_TPC_BAD_SWAP, 12-59,
12-62

_TPC_BAD_UC, 12-59,
12-63

_TPC_BAD_UL, 12-59,
12-63

_TPC_BOTH_DEFINES,
8-10, 8-25, 8-37,
8-52, 8-69

_TPC_CODEFILE_INSPECT_SAVEABEND,
8-11, 8-26, 8-38,
8-53, 8-70

_TPC_DEBUG_NOSAVE,
8-11, 8-26, 8-38,
8-53, 8-70

_TPC_DEBUG_SAVEABEND,
8-11, 8-26, 8-38,
8-53, 8-70

_TPC_ENABLE_DEFINES,
8-10, 8-25, 8-37,
8-52, 8-69

_TPC_ENTER_DEBUG,
8-11, 8-26, 8-38,
8-53, 8-70

_TPC_GENERATE_NAME,
8-12, 8-27, 8-39,
8-54, 8-72

_TPC_HIGHPIN_OFF, 8-10,
8-25, 8-37, 8-52,
8-70

_TPC_IGNORE_FORCEPIN_ATTR,
8-10, 8-25, 8-37,
8-52, 8-70

_TPC_INSPECT_NOSAVE,
8-11, 8-26, 8-38,
8-53, 8-70

_TPC_INSPECT_SAVEABEND,
8-11, 8-26, 8-38,
8-53, 8-70

_TPC_NAME_SUPPLIED,
8-12, 8-27, 8-39,
8-54, 8-72

_TPC_NO_NAME, 8-12,
8-27, 8-39, 8-54,
8-72

_TPC_OVERRIDE_DEFMODE,
8-10, 8-25, 8-37,
8-52, 8-70

_TPC_PROCESS_DEFINES_ONLY,
8-10, 8-26, 8-37,
8-52, 8-70

Index−34 Hewlett-Packard Company 527186-023

Index

_TPC_SUPPLIED_DEFINES_ONLY,
8-11, 8-26, 8-38,
8-53, 8-70

symlink function, 7-533 to 7-536
system

identifying, 9-5
limits, 11-8, 11-10
nodename, 9-5

system time, returning, 3-94
system time-zone, returning, 3-94

T
tar file, 11-50
tar file format, 11-48 to 11-50
tdm_execve function, 8-2 to 8-16
tdm_execvep function, 8-17 to 8-31
tdm_fork function, 8-32 to 8-42
tdm_spawn function, 8-43 to 8-59
tdm_spawnp function, 8-60 to 8-76
termcap file, 11-51 to 11-63
terminal capability database, 11-51
terminal drivers, 11-70
terminal interface, 11-64, 11-70
termios file, 11-64 to 11-69
text file, executing, 2-4, 2-12, 2-20,

2-28, 2-36, 2-44, 8-4, 8-19,
8-45, 8-62

threaded application, fork function,
using, 3-22

Threaded application, using
close function, 1-34
fstat function, 3-31
fstat64 function, 3-42
fsync function, 3-61
ftruncate function, 3-64
ftruncate64 function, 3-68
lseek function, 4-22
lseek64 function, 4-26
read function, 6-4
readv function, 6-17
select function, 7-11
sigaction function, 7-94
sigpending function, 7-102
sigsuspend function, 7-106
write function, 10-16

writev function, 10-27
threads. See Standard POSIX threads

canceling if signal is
received by process,
5-180

getting thread state
information, 5-123

sending a signal, 5-136
transport-provider process, 7-124,

7-127
default, 7-127

tty interface, 11-70 to 11-76
type

double_t, 11-18
float_t, 11-18

U
ulimit function, 9-2 to 9-3
umask function, 9-4
uname function, 9-5 to 9-6
unlink function, 9-7 to 9-10
user, getting scheduling priority, 3-82
user environment variables, 12-18 to

12-34
user file, 12-67
user ID

returning effective, 3-71
returning real, 3-96
setting effective, 7-55
setting real and effective,

7-66, 7-76
utime function, 9-11 to 9-14

V
virtual addresses, specifying for

shared memory, 7-77, 7-83
virtual memory, and shared memory

segments, 7-77, 7-83

527186-023 Hewlett-Packard Company Index−35

OSS System Calls Reference Manual

W
wait function, 10-2 to 10-6
waitpid function, 10-7 to 10-13
word

getting from input stream,
7-186, 7-273, 7-275

writing out, 7-324 to 7-326
write function, 10-14 to 10-19
write64_ function, 10-20 to 10-24
writev function, 10-25 to 10-30
writing out

a string, 7-218
a word, 7-324 to 7-326
characters, 7-214, 7-308
wide characters, 7-221,

7-320, 7-322
writing out a string, 7-315
writing out characters, 7-311

Index−36 Hewlett-Packard Company 527186-023

	Open System Services System Calls ReferenceManual
	Contents
	What Is New in This Manual
	About This Manual
	1. System Functions (a - d)
	2. System Functions (e)
	3. System Functions (f - i)
	4. System Functions (k - m)
	5. System Functions (n - p)
	6. System Functions (r)
	7. System Functions (s and S)
	8. System Functions (t)
	9. System Functions (u)
	10. System Functions (w)
	11. Files
	12. Miscellaneous
	Permuted Index
	Index

